# (19) World Intellectual Property Organization International Bureau



## 

#### (43) International Publication Date 1 May 2003 (01.05.2003)

## **PCT**

# (10) International Publication Number WO 03/035693 A2

| (51) International Patent Classification7: | C07K 14/80. |
|--------------------------------------------|-------------|
| C12N 9/02, 15/09                           |             |

(21) International Application Number: PCT/GB02/04872

(22) International Filing Date: 25 October 2002 (25.10.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

| 60/330,585<br>60/339.421 | 25 October 2001 (25.10.2001)<br>14 December 2001 (14.12.2001) | US<br>US |
|--------------------------|---------------------------------------------------------------|----------|
| 60/341,267               | 20 December 2001 (20.12.2001)                                 | US       |
| 60/396,588               | 18 July 2002 (18.07.2002)                                     | US       |

(71) Applicant (for all designated States except US): ASTEX TECHNOLOGY LTD [GB/GB]; 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Pamela, Ann, [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB). COSME, Jose, Marie, [FR/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWE (GB). WARD, Alison [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWE (GB). BREWERTON, Suzanne, Clare, [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWE (GB). HAMILTON, Bruce, John. [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB). JHOTI, Harren [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge,

Cambridgeshire CB4 0WE (GB). JONES, Michelle, Ann, [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB). VUILLARD, Laurent, Michel, Marie [FR/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB). WILLIAMS, Mark, Gareth [GB/GB]; Astex Technology Ltd, 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB).

- (74) Agents: BRASNETT, Adrian, H. et al.; Mewburn Ellis, York House, 23 Kingsway, London, Greater London WC2B 6HP (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

03/035693 A2

(54) Title: CRYSTALS OF CYTOCHROME P450 2C9, STRUCTURES THEREOF AND THEIR USE

(57) Abstract: The present invention provides cytochrome 2C9 proteins which have been modified to introduce a proline residue at positions 220 or 222 of the wild type sequence which can be crystallised to provide high resolution structures. The structures may be used for homology modelling of other cytochrome P450 structures such as 2C8, 2C18 and 2C19, and for analysis of the interaction of ligands with P450.

## CRYSTALS OF CYTOCHROME P450 2C9, STRUCTURES THEREOF AND THEIR USE

#### Field of the Invention.

5

10

The present invention relates to the human cytochrome P450 protein 2C9, methods for its crystallization, its X-ray crystal structure and the use thereof.

## Background to the Invention.

Cytochrome P450s (CYP450) form a very large and complex gene superfamily of hemeproteins that metabolise physiologically important compounds in many species of microorganisms, plants and animals. Cytochrome P450s are important in the oxidative, peroxidative and reductive metabolism of numerous and diverse endogenous compounds such as steroids, bile, fatty acids, prostaglandins, leukotrienes, retinoids and lipids. Many of these enzymes also metabolise a wide range of xenobiotics including drugs, environmental compounds and pollutants. Their involvement in drug metabolism is extensive, it is estimated that 50% of all known drugs are affected in some way by the action of CYP450 enzymes. Significant resource is employed by the pharmaceutical industry to optimise drug candidates in order to avoid their detrimental interactions with the CYP450 enzymes. Another level of complication results from the fact that these enzymes exhibit different tissue distributions and polymorphisms between individuals and ethnic populations

等值:1455。

Most mammalian P450s are located in the liver, but other organs and tissues have high concentrations of certain cytochrome P450s, including the intestinal wall, lung, kidney, adrenal cortex and nasal epithelium. Mammals have about 50 unique CYP450 genes and each family member is 45-55 KDa in size and contains a heme moiety that catalyses a two-electron activation of oxygen. The source of electrons may be used to classify CYP450s. Those that receive electrons in a three protein chain in which electrons flow from a flavin adenine 25 dinucleotide (FAD) containing reductase, to an iron-sulphur protein, and then to P450 belong to the group of class I P450s, and include most of the bacterial enzymes. Class II P450s receive electrons from a reductase containing both FAD and flavin mononucleotide (FMN), and comprise the microsomal P450s that are the main culprits of drug metabolism. The mammalian microsomal cytochrome P450s are integral membrane proteins anchored by an N-terminal 30 transmembrane spanning  $\alpha$ -helix. They are inserted in the membrane of the endoplasmic reticulum by a short, highly hydrophobic N-terminal segment that acts as a non-cleavable signal sequence for insertion into the membrane. The remainder of the mammalian cytochrome P450 protein is a globular structure that protrudes into the cytoplasmic space. Hence, the bulk of the enzyme faces the cytoplasmic surface of the lipid bilayer. P450s require other membranous enzymatic components for activity including the flavoprotein NADPH-cytochrome P450 oxidoreductase and, in some cases, cytochrome b5. A single cytochrome P450 oxidoreductase supports the activity of all the mammalian microsomal enzymes by interacting directly with the

- 10

20

25

30

35

40

P450s and transferring the required two electrons from NADPH. Cytochrome P450s are able to incorporate one of the two oxygen atoms of an  $O_2$  molecule into a broad variety of substrates with concomitant reduction of the other oxygen atom by two electrons to  $H_2O$ . Cytochrome P450 are known to catalyse hydroxylations, epoxidation, N-, S-, and O-dealkylations, N-oxidations, sulfoxidations, dehalogenations, and other reactions.

The genes of the P450 superfamily have been categorized by Nelson *et al* (Pharmacogenetics, 6; 1-42, 1996) who proposed a systematic nomenclature for the family members. This nomenclature is used widely in the art, and is adopted herein. Nelson *et al* provide cross-references to sequence database entries for P450 sequences.

Homo sapiens has 17 cytochrome P450 gene families and 42 subfamilies that total more than 50 sequenced isoforms. Cytochrome P450s from families 1, 2 and 3 constitute the major pathways for drug metabolism. Many drugs rely on hepatic metabolism by cytochrome P450s for clearance from the circulation and for pharmacological inactivation. Conversely, some drugs have to be converted in the body to their pharmacologically active metabolites by P450s. Many promising lead compounds are terminated in the development phase due to their interaction with one or more P450s. One of the greatest problems in drug discovery is the prediction of the role of cytochrome P450s on the metabolism or modification of drug leads. Early detection of metabolic problems associated with a chemical lead series is of paramount importance for the pharmaceutical industry. Obtaining crystal structures of the main human drug metabolising cytochrome P450s would be highly valuable for drug design, as this would provide detailed information on how P450 enzymes recognize drug molecules and the mode of drug binding. This in turn would allow drug companies to develop strategies to modify metabolic clearance and decrease the attrition rates of compounds in development.

The major human CYP450 isoforms involved in drug metabolism are CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. The level of sequence identity between these family members ranges from about 20-80%, with much of the variability within the residues involved in substrate recognition. CYP450 enzymes are also present in bacteria and much of the understanding of substrate recognition is derived from crystal structures obtained of bacterial CYP450 enzymes.

It is well-known in the art of protein chemistry, that crystallising a protein is a chancy and difficult process without any clear expectation of success. It is now evident that protein crystallization is the main hurdle in protein structure determination. For this reason, protein crystallization has become a research subject in and of itself, and is not simply an extension of the protein crystallographer's laboratory. There are many references which describe the difficulties associated with growing protein crystals. For example, Kierzek, A.M. and Zielenkiewicz, P., (2001), Biophysical Chemistry, 91, 1-20, Models of protein crystal growth,

15

20

25

and the relationship

. Lasine and

Hongridge Bridge

red Really

and Wiencek, J.M. (1999) Annu. Rev. Biomed. Eng., 1, 505-534, New Strategies for crystal growth.

It is commonly held that crystallization of protein molecules from solution is the major obstacle in the process of determining protein structures. The reasons for this are many; proteins are complex molecules, and the delicate balance involving specific and non-specific interactions with other protein molecules and small molecules in solution, is difficult to predict.

Each protein crystallizes under a unique set of conditions, which cannot be predicted in advance. Simply supersaturating the protein to bring it out of solution may not work, the result would, in most cases, be an amorphous precipitate. Many precipitating agents are used, common ones are different salts, and polyethylene glycols, but others are known. In addition, additives such as metals and detergents can be added to modulate the behaviour of the protein in solution. Many kits are available (e.g. from Hampton Research), which attempt to cover as many parameters in crystallization space as possible, but in many cases these are just a starting point to optimise crystalline precipitates and crystals which are unsuitable for diffraction analysis. Successful crystallization is aided by a knowledge of the proteins behaviour in terms of solubility, dependence on metal ions for correct folding or activity, interactions with other molecules and any other information that is available. Even so, crystallization of proteins is often regarded as a time-consuming process, whereby subsequent experiments build on observations of past trials.

In cases where protein crystals are obtained, these are not necessarily always suitable for diffraction analysis; they may be limited in resolution, and it may subsequently be difficult to improve them to the point at which they will diffract to the resolution required for analysis. Limited resolution in a crystal can be due to several things. It may be due to intrinsic mobility of the protein within the crystal, which can be difficult to overcome, even with other crystal forms. It may be due to high solvent content within the crystal, which consequently results in weak scattering. Alternatively, it could be due to defects within the crystal lattice which mean that the diffracted x-rays will not be completely in phase from unit to unit within the lattice. 30 Any one of these or a combination of these could mean that the crystals are not suitable for structure determination.

Some proteins never crystallize, and after a reasonable attempt it is necessary to examine the protein itself and consider whether it is possible to make individual domains, different N or Cterminal truncations, or point mutations. It is often hard to predict how a protein could be reengineered in such a manner as to improve crystallisability. Our understanding of crystallisation mechanisms are still incomplete and the factors of protein structure which are involved in crystallisation are poorly understood.

13.15

. :::

. .

As of 2000, eight cytochrome P450 structures have been solved by X-ray crystallography and are available in the public domain. All of the cytochrome P450s, whose structures have been solved, were expressed in *E. coli*. Six structures correspond to bacterial cytochrome P450s: P450cam (CYP101 Poulos *et al.*, 1985, *J. Biol. Chem.*, 260, 16122), the hemeprotein domain of P450BM3 (CYP102, Ravichandran *et al.*, 1993, *Science*, 261, 731), P450terp (CYP108, Hasemann *et al.*, 1994, *J. Mol. Biol.* 236, 1169), P450eryF (CYP107A1, Cupp-Vickery and Poulos, 1995, *Nature* Struct. Biol. 2, 144), P450 14α-sterol demethylase (CYP51, Podust *et al.*, 2001, *Proc. Natl. Acad. Sci. USA*, 98, 3068) and the crystal structure of a thermophilic cytochrome P450 (CYP119) from Archaeon sulfolobus solfataricus was solved (Yano *et al.*, 2000, *J. Biol. Chem.* 275, 31086). The structure of cytochrome P450nor was obtained from the denitrifying fungus Fusarium oxysporum (Shimizu *et al.* 2000, *J. Inorg. Biochem.* 81, 191). The eighth structure is that of the rabbit 2C5 isoform, the first and only structure of a mammalian cytochrome P450 (Williams *et al.* 2000, *Mol. Cell.* 5, 121).

The reason why the mammalian cytochrome P450s have been particularly difficult to crystallize, compared to their bacterial counterparts, resides in the nature of these proteins. The bacterial cytochrome P450s are soluble whereas the mammalian P450s are membrane-associated proteins. Thus, structural studies on mammalian cytochrome P450s may use the combination of heterologous expression systems that allow expression of single cytochrome P450s at high concentration with modification of their sequences to improve the solubility and the behaviour of these proteins in solution.

Due to significant sequence differences from both the bacterial proteins and rabbit proteins, to fully understand the role of the human CYP450 enzymes in drug metabolism, the crystal structures of human isoforms are still required.

الرابية في مراجع الرابي الأربية الرابية

Ibeanu et al., (1996), J Biol Chem, Vol. 271, 12496-12501 describe the production of modified 2C9 proteins in yeast in which certain residues, including Ser 220 and Pro 221, were altered. These altered proteins were found to exhibit 2C19-like activity for omeprazole. The proteins retained wild-type N-terminal sequence.

#### Disclosure of the Invention.

25

30

A nomenclature has been adopted to describe the secondary structure observed in cytochromes P450. The authors of the first structure of a P450, P450cam denoted the 12 helical segments A through L from the N-terminal to C-terminal direction and this naming has been continued as more structures have been determined. In addition, some P450 structures have shown more helices, for example the description of P450 BM3 details 15 helices (A, B, B', C, D, E, F, G, H, I, J, J', K, K', L), where the additional helices are indicated by the 'symbol.

Each helix is typically 6 amino acids (Helix H in 2C5) to 32 amino acids (Helix I in BM3) in length. The helices are linked by  $\beta$ -strands, short linkers and long flexible loops of up to 30 amino acids in length.

Among these flexible structures, one of the most pronounced is the loop between the F and G helices ("the F-G loop"). This loop is probably involved in the substrate access channel, and could move to accommodate the substrate in the active site. This loop has also been described as participating, with the N-terminus domain, to the anchorage of the cytochrome P450s to the membrane.

10

In the 2C5 structure (PDB ID 1DT6) helix F ends at residue 206 and helix G starts at residue 228, therefore the loop between is residues 207 to 227 (definitions from the secondary structure assignment program DSSP (Kabsch and Sander, Biopolymers 22 (1983) 2577-2637)). Of these 21 residues, 12 cannot be seen in the 2C5 structure. This is an indication of its flexible nature.

We predict it will be similar in the rest of the 2C family and in other human P450s. The region is thought to be involved in membrane association of the enzyme in vivo, and orientation of the substrate access channels.

in the telt for any error is

Using the models we have developed; we predicted the F-G loop in 2C9 was from Leu208 to
Pro227. This region contains 20 residues, 11 of which can be classified as hydrophobic, further
supporting the hypothesis that this region may be embedded in membranes or involved in
aggregation as has been suggested. From the 2C9 structure of the invention, (definitions from
DSSP), the loop between helixes F and G actually starts at 209 and ends at 227.

The invention provides modified human 2C9 P450 proteins as described herein, and nucleic acid encoding such proteins, as well as the use of the nucleic acids in making the proteins.

The invention further provides methods for the production and purification of the 2C9 P450 proteins of the invention.

30

The invention also provides crystals of the modified 2C9 P450 proteins of the invention.

The present invention further relates to the crystal structure of human CYP450 2C9, which allows the binding location of the substrates in the enzyme to be investigated and determined.

35

In general aspects, the present invention is concerned with the provision of a P450 structure and its use in modelling the interaction of molecular structures, e.g. potential pharmaceutical compounds, with this structure.

The above aspects of the invention, both singly and in combination, all contribute to features of the invention which are advantageous.

#### Description of the Drawings

5 Figure 1 sets out Table 1, providing the coordinates of a 2C9 structure,

Figure 2 sets out Table 2, providing the coordinates of a 2C9-FGloop K206E structure,

Figure 3 sets out Table 3, providing the coordinates of a 2C9-FGloop structure, and

10

Figure 4 sets out Table 7, providing modelled coordinates of residues 215, 216, 220, 221, 222, and 223 of a 2C9 wild type protein.

Figure 5 sets out Table 8, providing a refined structure of 2C9-FGloop K206E.

15

Figure 6 sets out Table 11, showing conditions in which crystals of proteins of the invention were obtained.

Figure 7 sets out Table 18, showing a homology model of 2C19.

20

Figure 8 sets out Table 19, showing 2C18 replacement coordinates.

Figure 9 sets out Table 20, showing 2C8 replacement coordinates.

Figure 10 shows the sequence alignment of the N-terminal truncated 2C9 variants and 2C9trunc with the published 2C9 wild type sequence (Meehan et al. 1988, Am. J. Hum. Genet. 42, 26).

Figure 11 shows data from 4-diclofenac hydroxylase assays.

#### 30 <u>Description of Tables.</u>

Table 1 (see Fig. 1) provides the coordinates of the 2C9 structure obtained in Example 9.

Table 2 (see Fig. 2) provides the coordinates of the 2C9-FGloop K206E structure obtained in Example 11.

Table 3 (see Fig. 3) provides the coordinates of 2C9-FGloop obtained in Example 12.

Table 4 (Example 13) lists residues that line the binding site of 2C9.

Table 5 (Example 13) lists residues previously inferred to be in the binding site.

Table 6 (Example 13) lists newly identified binding pocket residues.

Table 7 (see Fig. 4) provides modelled coordinates of residues 215, 216, 220, 221, 222, and 223 of a 2C9 wild type protein.

Table 8 (Example 16 and Figure 5) is a refined 2C9-FGloop K206E structure.

Table 9 (Example 17) describes further 2C9 proteins of the invention and the primers and methods used to obtain them.

Table 10 (Example 17) describes control 2C9 proteins and the primers and methods used to obtain them.

Table 11 (Examples 20 and 24, and Figure 6) shows crystallisation conditions for proteins of the invention.

Table 12 (Example 18) sets out mass spectrometry data for 2C9 proteins.

Table 13 (Example 19) shows activity data for 2C9 proteins of the invention.

Table 14 (Example 21) shows 2C9-2C19 chimeras of the invention and the primers and/or methods used to obtain them.

Table 15 (Example 22) sets out mass spectrometry data for 2C9-2C19 chimeric proteins.

Table 16 (Example 23) shows activity of 2C9-FGloop K206E (1155).

Table 17 (Example 24) shows activity of 2C9-2C19 chimeras of the invention.

Table 18 (Example 25 and Figure 7) sets out a homology model of 2C19.

Table 19 (Example 26 and Figure 8) shows 2C18 replacement coordinates.

Table 20 (Example 27 and Figure 9) shows 2C8 replacement coordinates.

#### Description of sequences.

- 20 SEQ ID NO:1 is DNA sequence of 2C9trunc.
  - SEQ ID NO:2 is the amino acid sequence of 2C9trunc.
  - SEQ ID NO:3 is the DNA sequence of 2C9-P220 (also referred to as 1072).
  - SEQ ID NO:4 is the amino acid sequence of 2C9-P220.
  - SEQ ID NO:5 is the DNA sequence of 2C9-FGloop (also referred to as 1015).
- 25 SEQ ID NO:6 is the amino acid sequence of 2C9-FGloop.
  - SEQ ID NO:7 is the DNA sequence of 2C9-FGloop K206E (also referred to as 1155).
  - SEQ ID NO:8 is the amino acid sequence of 2C9-FGloop K206E.
  - SEQ ID NOs:(2x+7) and (2x+8) where x is an integer from 1 to 49 are the DNA and amino acid sequences, respectively, of the 2C9 proteins referred to as clones 1078, 1081, 1082, 1085, 1097,
- 30 1100, 1101, 1102, 1115, 1116, 1117, 1118, 1121, 1122, 1123, 1165, 1220, 1319, 1339, 1340, 1361, 1362, 1363, 1364, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1391, 1392, 1394, 1396, 1397, 1424, 1443, 1444, 1475, 1477, 1491, 1595, 1600, 1610, 1632, 1661, 1662 and 1664 respectively. Thus the DNA sequence encoding clone 1078 is SEQ ID NO:9 and its corresponding amino acid sequence is SEQ ID NO:10, and for clone 1664 the DNA is SEQ ID
- 35 NO:105 and the corresponding amino acid sequence is SEQ ID NO:106.
  - SEQ ID NO:107 is the DNA sequence of clone 1039 (control clone).
  - SEQ ID NO:108 is the amino acid sequence of clone 1039.
  - SEQ ID NO:109 is the DNA sequence of clone 1365 (control clone).
  - SEO ID NO:110 is the amino acid sequence of clone 1365.
- 40 SEQ ID NO:111 is the DNA sequence of clone 1423 (control clone).

35

SEQ ID NO:112 is the amino acid sequence of clone 1423. Further sequences are identified in the accompanying text.

#### Detailed Description of the Invention.

#### 5 A. 2C9 Proteins and their Production.

The sequence of 2C9 is available in the art, for example from a number of database sources cited in Nelson et al, 1996, *ibid*. This includes the SwissProt database, in which 2C9 is entry number P11712.

The 2C9 P450 protein is desirably truncated in its N-terminal region to delete the hydrophobic trans-membrane domain, and the region replaced by a short (e.g. 8 to 12 amino acid sequence containing one or more (e.g. 3, 4 or 5) positively charged amino acids. For expression of the human 2C9 P450, we have used an N-terminal sequence MAKKTSSKGR (SEQ ID NO:114) in place of the N-terminal 29 amino acid residues, which increases expression of the proteins in *E. coli* and increases solubility.

The 2C9 P450 may optionally comprise a tag, such as a C-terminal polyhistidine tag to allow for recovery and purification of the protein.

We have found that the position of the proline residue in the F-G loop appears to play a significant role in the formation of a P450 crystal. In particular, the presence of a proline at position 220 or 222 in 2C9 appears to be important for crystallisation to occur.

In 2C9 wild type there is a proline residue at position 221. Moving it to position 220, by substituting position 220 by proline and removing the Pro221 (by substitution by any other residue, but preferably alanine or threonine) in 2C9 promotes crystallisation. Alternatively the proline may be moved to position 222, with position 221 likewise being substituted.

In 2C9 we have made the changes to positions 220 and 221 with and without other changes. Where other changes were made, these were I215V, C216Y, I222L and I223L, although it is not essential that any or all of these be made to provide for crystallisation.

Our experiments have been based on the use of a particular N-terminal truncation of 2C9, as set out in SEQ ID NO:2 and shown in Figure 10. This protein also comprises a polyhistidine tag at the C-terminus. The N-terminal truncation and tag are both features which can be varied by those of skill in the art using routine skill. For example, alternative N-terminal sequence might be utilised, for example for production in host cells other than *E. coli*. Likewise, other tags may be used for purification of the protein as described below. These N- and C-terminal

modification may be made to a 2C9 protein which retains the core sequence of residues 31-490 of the wild type sequence illustrated in Figure 10.

The present invention provides a P450 2C9 protein which comprises the following changes: position 220 or position 222 is proline; and

optionally up to 30, for example up to 25, for example up to 10, for example up to 5 other positions are altered,

the positions 220 and 222 being numbered according to wild type 2C9. This numbering is shown in Figure 10.

10

15

20

5

Preferably the change is to position 220.

It will be appreciated from the discussion above that by 2C9 protein, it is meant a protein comprising residues 31 to 490 of the wild type sequence, optionally with N- and/or C-terminal sequences provided to facilitate expression and recovery of the protein.

Where present, the N-terminal sequence is preferably not the wild-type sequence. Preferably, it is shorter that the wild type sequence (which is 30 amino acids). Preferably, the N-terminal region joined to residue 31 is the truncation illustrated in the accompanying examples, i.e. SEQ ID NO:114 plus a proline residue between it and residue 31 (also proline). This type of N-terminal sequence reduces the tendency of 2C9 to anchor to membranes and to aggregate compared to the wild type sequence.

Where present, the C-terminal sequence is preferably no larger than 30, and preferably no larger than 10 amino acids in size.

In a preferred aspect, one of the up to 30 changes is to the position 221, such that it is not proline. However this is not essential as it is shown herein (clone 1078) that crystals can be obtained with proline at position 221 as long as one of the changes made above is also included.

30

A particular advantage of the proteins of the invention is that they are crystallisable. That is, we have found that we have been able to form crystals which diffract X-rays, and thus we have been able to analyse these crystals to provide structural coordinate data at a resolution of 3.1Å or better.

35

A further advantageous feature of the invention is that we have been able to obtain crystals of a P450 protein in the absence of a ligand. Such crystals are useful for screening ligands with a view towards determining co-complex structures. Determining the molecular structure of 2C9 can also be used in computer-based in silico ligand screening.

. . .

30

We have also shown additional changes to the 2C9 wild type sequence in addition to the changes at any of 220-222 may be introduced. A number of specific changes are illustrated in the clones of 2C9 set out in the accompanying examples. These include:

- changes to the FG loop region. A number of clones have such changes, including the clone 2C9-FGloop (3 changes), clone 1363 (3 changes), clones 1361, 1362, 1364 1369 (2 changes), and clones 1366, 1371 (1 change).
- changes to the surface region of 2C9. Such changes are illustrated herein by clone 1123 (3 changes), clones 1102, 1340, 1397, 1443 (2 changes), and clones 1081, 1082, 1085, 1097, 1100, 1101, 1115, 1116, 1117, 1118, 1121, 1122, 1165, 1339, 1391, 1392, 1394, 1396 (1 change). These surface changes may be in addition to the FG loop changes.
  - up to 20 changes in total on top of changes to positions 220 and 221; e.g. clone 1595 (20 changes), 1600 (13), and 1632 (11).

Thus clone 1595 has 22 changes form wild type in total-6 in FG loop (including 220, 221), 3 in active site, 12 on the surface. Of these 9 are conserved changes and 13 are non-conserved.

Our data illustrate that a variety of other positions in addition to the specific 220 or 222 changes may made while still providing a protein which can be crystallised.

In one aspect, the changes which may be introduced are changes which introduce residues found in the corresponding position in another cytochrome P450 molecule. The corresponding position may be found by alignment of the other P450 molecule with the sequence of 2C9 wild type to maximise homology between the two. The changes may be particularly from another cytochrome P450 molecule selected from the group consisting of 2C19, 2C18 and 2C8. Example 21 below sets out the production of proteins in which residues from 2C19 are substituted into the 2C9 sequence.

Examples 25 to 27 illustrate homology modelling of the proteins 2C19, 2C18 and 2C8 respectively. The Tables accompanying these examples may be used to identify the residues of these proteins which may be substituted into 2C9.

In another aspect, the invention provides a protein which is selected from the group consisting of SEQ ID NO:(2x+2), wherein x is an integer from 1 to 52. These proteins all share the common feature of the introduction of a proline residue at position 220 or 222 which facilitates crystallisation of 2C9.

Expression and Recovery of P450

The 2C9 P450 proteins of the invention are produced by recombinant DNA techniques. The nucleic acid sequences which encode wild type P450 proteins are available in the art, and the person of skill in the art may use routine methodology, e.g. site-directed mutagenesis, to introduce coding changes into the nucleic acid sequences so as to provide nucleic acids encoding the P450s of the invention.

Thus in another aspect, the invention provides an isolated nucleic acid encoding a 2C9 P450 protein of the invention. Nucleic acid includes DNA (including both genomic and cDNA) and RNA. Nucleic acid of the invention may be single or double stranded polynucleotides.

Nucleic acids of the invention can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus in a further embodiment, the invention provides a method of making nucleic acids of the invention by introducing a nucleic acid of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell.

Preferably, a nucleic acid of the invention in a vector is operably linked to a control sequence which is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector.

The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences.

Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. Vectors may be plasmids, viral e.g. 'phage phagemid or baculoviral, cosmids, YACs, BACs, or PACs as appropriate.

The vectors may be provided with an origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid or a neomycin resistance gene for a mammalian vector. Vectors may be used *in vitro*, for example for the production of RNA or used to transfect or transform a host cell. Systems for cloning and expression of a polypeptide in a variety of different host cells are well known.

10

15

20

25

30

35

15

35

Walte Biggs

PFO ALLES :

Established and the

Promoters and other expression regulation signals may be selected to be compatible with the host cell for which the expression vector is designed. For example, bacterial promoters include the lacZ promoter, yeast promoters include S. cerevisiae GAL4 and ADH promoters, S. pombe nmt1 and adh promoter, and mammalian promoters include the metallothionein promoter, the SV40 large T antigen promoter or adenovirus promoters.

For further details see, for example, Molecular Cloning: a Laboratory Manual: 3rd edition, Sambrook et al., 2001, Cold Spring Harbor Laboratory Press. Many known techniques and protocols for manipulation of nucleic acid, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene expression, and analysis of proteins, are described in detail in Current Protocols in Molecular Biology, Ausubel et al. eds., John Wiley & Sons, 1992.

A further embodiment of the invention provides host cells transformed or transfected with the vectors for the replication and expression of nucleic acids of the invention. The cells will be chosen to be compatible with the said vector and may for example be bacterial, yeast, insect or mammalian.

The 2C9 P450 proteins of the invention may be expressed in any suitable host cell, which a person of skill in the art wishes to use as a matter of experimental convenience. Cytochrome P450 molecules have been widely expressed in *E. coli*, and there are numerous vector systems for this host cell which may be used.

Other host cells include yeast, e.g. S. cerevisiae, insect or mammalian, e.g. CHO, cells.

Expression systems for these and many other host cell types are widely available in the art.

Host cells may be constructed so that the 2C9 P450 is expressed constitutively, or is induced.

Once the cells have been cultured to express 2C9 P450, they may be recovered by standard techniques available in the art. A convenient means is to recover the cells by low-speed centrifugation such that the cells are pelleted intact.

The process of the present invention is suitable for batch cell culture, and batches of cells from 100 ml to several, e.g. 10 litres can be conveniently handled by current laboratory equipment, though larger batches, e.g. 10 to 100 litres, are not excluded.

This invention also provides a method for expression and recovery of the 2C9 human cytochrome P450s of the invention from host cells. This method comprises:

(a) expressing in a host cell culture said cytochrome 2C9 P450 molecule;

- (b) recovering said cells from said culture and suspending said cells in salt buffer having a conductivity of from 12 to 110 mS/cm;
- (c) lysing said cells and removing cell debris to provide a high-salt lysate;
- (d) adding detergent to said lysate (for example 0.015% to 1.2% v/v) to provide a high-salt-detergent lysate;
- (e) recovering said P450 from said lysate.

In a preferred embodiment, the method comprises:

- (a) expressing in E. coli said cytochrome 2C9 P450 molecule;
- 10 (b) recovering said cells and suspending them in a 200 mM to 1000 mM salt buffer;
  - (c) lysing said cells and removing cell debris to provide a high-salt lysate;
  - (d) adding detergent to said lysate (for example 0.015% to 1.2% v/v) to provide a high-salt-detergent lysate;
  - (e) recovering said P450 from said lysate.

15

30

40

The recovery step involves affinity purification of the 2C9 P450 from the high salt-detergent lysate, since the presence of the high salt rules out the alternative of an ionic exchange purification step.

However, once the P450 has been purified by affinity chromatography, the salt must be removed in order to allow further purification of the product so that crystallization can be performed. In the prior art, salt removal is typically performed by dialysis. However, we have found that this process, which removes salt gradually over a period of several hours, causes aggregation and denaturation of the P450s and thus is undesirable. We have found that rapid desalting alleviates this problem to a significant degree.

Thus in a further aspect, step (e) above may be performed by:

- (e(i)) binding said 2C9 P450 to an affinity support;
- (e(ii)) rinsing said support in a high-salt-detergent wash;
- (e(iii)) removing said 2C9 P450 in a high-salt-detergent buffer to provide a P450-high-salt-detergent preparation; and
- (f) exchanging the buffer to a low ionic strength buffer without detergent by size-exclusion chromatography to provide a P450-low-salt preparation.
- The above steps e(i)-(iii) maintain the 2C9 P450 in a high-salt and detergent buffer throughout the initial stages of the purification process, which aids the recovery of the P450.

The preparation may be subject to additional purification and cleaning procedures, such as cation exchange chromatography, optionally followed by further size-exclusion chromatography or hydrophobic interaction chromatography to obtain a more purified preparation of protein.

Salt buffer

This is buffer with a high ionic strength which is used to suspend the cells. It is a buffer comprising a salt which is readily soluble to provide a buffer having a conductivity of from 12 to 110 mS/cm. Such a buffer is desirably a salt having a concentration in the 200 – 1000 mM range. Preferably the salt is a potassium or sodium salt of an anion. Desirably the anion may be chloride or phosphate. Potassium phosphate (KPi) is particularly preferred.

A preferred salt concentration is selected to provide a conductivity of 25 to 35 mS/cm, for example about 30 mS/cm. A particularly preferred salt concentration is around 500 mM, e.g. 500 + 50 mM.

The buffer will be maintained at a pH range of from 6.5 to 8.0, preferably from 7.0 to 7.6. The buffer may contain other reagents used conventionally in the art for protein purification, such as glycerol, β-mercaptoethanol, DNase, pH buffering agents, histidine, imidazole and protease inhibitors.

Cell lysis

Cells may be lysed by physical means, such as sonication or in a French press or continuous flow cell disruptor, such that the cell walls are broken and the contents of the cells dispersed in the salt buffer. To achieve this in a French press, this may be operated at 10,000 to 20,000 psi.

Cell debris is removed (for example by low-speed centrifugation at about 10,000 –25,000 g (e.g. about 22,000 g or a short high speed centrifugation to 70000 g; i.e. such that any whole cells are pelleted but not the membrane fraction). The debris (e.g. pelleted cells) may be subject to a further round of lysis, and the debris-free lysate from this further round combined with the lysate obtained previously.

The lysate is then ready to use directly in the next stage of the process, without the need to isolate a membrane fraction by ultracentrifugation.

Use of detergent

40

Once the lysate has been obtained, it is desirable that the detergent be added to the lysate as soon as possible, taking account of the constraints of the experimental set up. This will mean that the detergent is added to the lysate within 1 hour, preferably within 30 minutes or less of the preparation of the debris-free lysate.

The detergents that may be used are those conventionally used in the art of molecular and cell biology for the recovery and processing of biological materials. A large number of different types of detergents are available for this purpose. Many of these detergents are those of a

molecular weight range of from about 350 to 1000, such as from 400 to 800. They include anionic surfactants such as cholic acid or salts thereof (e.g. the sodium salt) and deoxycholic acid or salts thereof (e.g. the sodium salt) as well as zwitterionic surfactants such as CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulphonate).

5

A particularly preferred class of detergents are non-ionic detergents. There are a wide variety of non-ionic detergents available in the art. Non-ionic detergents include octyl-β-D-glucopyranoside and ethers, such as C2-10 alkylphenol ethers, of polylethylene glycol. Such compounds may be of a molecular weight range of 500 – 800 Da, and include Nonident<sup>TM</sup> P40, IGEPAL CA630, and Triton<sup>TM</sup> X-100, and the like, which are commercially available.

The detergent is added to provide a usual concentration of from 0.015% to 1.2% v/v of detergent in the lysate. The amount of detergent added is preferably in the range of 0.1 to 1.2%, more preferably about 0.2 to 0.4%, such as about 0.3%.

15

The detergent is added in a volume so that desirably, the concentration of salt or ionic strength does not decrease by more than 10%.

## Recovery of Purified 2C9 P450

25

40

20

We have found that the above high-salt-detergent lysate prepared in accordance with the invention provides for the recovery of 2C9 P450 protein in reduced aggregation form at a level much higher than experienced to date in the art. As mentioned above, the presence of the high salt buffer rules out an immediate ionic exchange chromatography step, but affinity purification may be performed as the next step.

Affinity purification may take the form of providing an affinity support matrix in which a ligand for the 2C9 P450 is attached. The support may be a resin, a bead (e.g. glass or polymer such as polystyrene), a magnetic bead, or the like. Where the 2C9 P450 contains a tag, the ligand will be cognate to the tag, e.g. Ni-NTA for a histidine tag, biotin for a streptavidin tag, etc. The ligand may also be an antibody, either to an epitope tag such as an HA tag, or to an epitope of the 2C9 P450.

The lysate is brought into contact with the affinity support under conditions for the 2C9 P450 to bind to the support. After binding, the support is rinsed. The rinse buffer should be a high-salt-detergent buffer, which may be the same or different to the lysate buffer. Preferably it is the same. If different, it will still have concentrations of salt and detergent as specified above.

After rinsing, the 2C9 P450 is removed from the support. This may be done in batch or by packing the support into a column and eluting the 2C9 P450 using a high-salt-detergent buffer, which is modified to remove the 2C9 P450 from its ligand. For example, for Ni-NTA, the buffer

· . .

Service .

1. 1. Cat

erfor:

may contain histidine or imidazole at a sufficient excess concentration to displace the His tag of the 2C9 P450. Suitable competitors may be used for other types of tags.

#### Desalting

The ionic strength of the resulting P450 solution is lowered by a rapid desalting process. We have found that a size exclusion column may be used for this purpose, with a flow rate such that the 2C9 P450 is separated from the high salt concentration within 10-30, preferably within 10 minutes. The 2C9 P450 is loaded to the column and eluted through the column with a low salt buffer.

10

25

35

40

While not wishing to be bound by any one particular theory, we have observed that whereas gradual desalting by, for example, dialysis, leads to aggregation and denaturation of cytochrome 2C9 P450, the rapid desalting process reduces aggregation to a significant degree.

The low salt buffer is preferably a similar salt to the high salt buffer described above, e.g. a sodium or potassium salt such as a chloride or phosphate, with potassium phosphate again being preferred. By "low salt", it is meant less than 50 mM, preferably less than 20 mM, and preferably about 10 mM. At this stage, it is not necessary to maintain detergent in the buffer.

#### - 20 Further purification

It is desirable that after the desalting step, the preparation is subject to further purification promptly, i.e. without storage or freezing of the sample. This can be achieved by applying the desalted eluate directly to a further purification column. If not, the eluate from the desalting process is collected and applied within 1 hour to the column. A number of techniques are known as such in the art for the further purification or concentration of protein preparations, and examples of these are outlined in the accompanying examples. They include weak cation exchange columns, such as carboxymethyl-Sepharose<sup>TM</sup>, BioRex<sup>TM</sup>70, carboxymethyl-Biogel<sup>TM</sup>, and the like, and strong cation exchange columns such as MonoS, which may be used to further remove detergent. For example, the desalted cytochrome P450 may be directly applied to a CM Sepharose™ column (e.g. a 5 ml HiTrap column, Pharmacia), previously equilibrated with 10 mM KPi, pH 7.4, 20% glycerol, 0.2 - 2.0 mM DTT, 1 mM EDTA ("buffer 1"). The following step elution protocol may then be run on the AKTA FPLC system; wash with 10 - 20 column volumes of buffer 1 and then 10 - 20 column volumes of 10mM KPi, pH 7.4, 20% glycerol, 0.2 - 2.0 mM DTT, 1mM EDTA, 75 mM KCl or NaCl in order to remove any trace of detergent. The P450 is then eluted with the above latter buffer with KCl or NaCl concentration increased to 500 mM.

Optionally this is followed by a size exclusion column, e.g. Superose<sup>TM</sup>, Superdex<sup>TM</sup>, Sephacryl<sup>TM</sup>, and the like. The protein recovered from either the cation exchange or size exclusion step may be concentrated to provide a solution suitable for crystallisation or other use.

A concentration of from 20 to 120, e.g. 20 to 80 mg/ml may be achieved by the use of the present invention.

#### B. Crystallisation of 2C9 Proteins.

A number of methods are known as such in the art for obtaining protein crystals. Conveniently, the final protein is concentrated to 10-60, e.g. 20-40 mg/ml in 10-100 mM potassium phosphate with high salt (e.g. 500 mM NaCl or KCl) by using concentration devices that are commercially available. The protein may be concentrated in presence of 20% glycerol, 2.0 mM DTT and 1 mM EDTA.

10

15

The protein is crystallized by vapour diffusion at 5-25 °C against a range of buffer compositions. Crystals may be prepared using commercially available screening kits such as, Polyethylene glycol (PEG)/ion screens, PEG grid, Ammonium sulphate grid, PEG/ammonium sulphate grid or the like purchased from Hampton Research, Emerald Biostructure, Molecular Dimension and from others.

Typically the vapour diffusion buffer comprises 0 – 27.5%, preferably 2.5-27.5% PEG 1K-20 K, preferably 1-8K or PEG 2000MME-5000MME, preferably PEG 2000 MME, or 0-10% Jeffamine M-600 and/or 5-20%, e.g. 10-20% propanol or 15-20% ethanol or about 15%-30%, e.g. about 15% 2-methyl-2,4-pentanediol (MPD), optionally with 0.01 M –1.6 M salt or salts and/or 0-0.15, e.g. 0-0.1, M of a solution buffer and/or 0-35%, such as 0-15%, glycerol and/or 0-35% PEG300-400; but preferably:

10-25% PEG 1K-8K or PEG 2000MME or 0-10% Jeffamine M-600 and/or 5-15%, e.g. 10-15%, propanol or ethanol, optionally with 0.1 M -0.2 M salt or salts and/or 0-0.15, e.g. 0-0.1 M solution buffer and/or PEG400, but more preferably:

15-20% PEG 3350 or PEG 4000 or PEG 2000MME or 0-10% Jeffamine M-600 or 5-15%, e.g. 10-15% propanol or ethanol, optionally with 0.1 M -0.2 M salt or salts and/or 0-0.15 M solution buffer.

Specifically preferred crystallisation conditions for the 2C9 proteins described herein are:

0.05-0.1 M Tris-HCl pH 8.0-8.8, 0.1-0.2 M Lithium sulphate, 10-15% PEG 4000;

35

30

0.1 M Tris pH 8.0-8.8, 15-30% PEG 400, 5% PEG 8000, 10% glycerol; and

0.1-0.4 M KH<sub>2</sub>PO<sub>4</sub>, 0-25 % PEG 3350, 0-10% glycerol.

The salt may be an alkali metal (particularly lithium, sodium and potassium), alkaline earth metal (e.g. magnesium or calcium), ammonium, ferric, ferrous or transition metal salt (e.g. zinc) of a halide (e.g. bromide, chloride or fluoride), acetate, formate, nitrate, sulphate, tartrate, citrate or phosphate. This includes sodium fluoride, potassium fluoride, ammonium fluoride, ammonium acetate, lithium acetate, magnesium acetate, sodium acetate, potassium acetate, calcium acetate, zinc acetate, ammonium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, potassium bromide, magnesium formate, sodium formate, potassium formate, ammonium formate, ammonium nitrate, lithium nitrate, potassium nitrate, sodium nitrate, ammonium sulphate, potassium sulphate, lithium sulphate, sodium sulphate, disodium tartrate, potassium sodium tartrate, di-ammonium tartrate, potassium dihydrogen phosphate, tri-sodium citrate, tri-potassium citrate, zinc acetate, ferric chloride, calcium chloride, magnesium nitrate, magnesium sulphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, di-potassium hydrogen phosphate, ammonium dihydrogen phosphate, di-ammonium hydrogen phosphate, tri-lithium citrate, nickel chloride, ammonium iodide, di-ammonium hydrogen citrate.

Solution buffers if present include, for example, Hepes, Tris, imidazole, cacodylate, tri-sodium citrate/citric acid, tri-sodium citrate/HCl, acetic acid/sodium acetate, phosphate-citrate, sodium potassium phosphate, 2-(N-morpholino)-ethane sulphonic acid/NaOH (MES), CHES, bistrispropane, CAPS, potassium dihydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate or disodium hydrogen phosphate.

The pH range is desirably maintained at pH 4.2-10.5, preferably 4.2-8.5, more preferably 4.7-8.5 and most preferably 6.5-8.5.

25

5

10

15

Section 1844

eja eja se

Crystals may be prepared using a Hampton Research Screening kit, Poly-ethylene glycol (PEG)/ion screens, PEG grid, Ammonium sulphate grid, PEG/ammonium sulphate grid or the like.

Crystallisation may also be performed in the presence of an inhibitor or substrate of P450, e.g. 30 fluoroxamine or 2-phenyl imidazole.

Additives can be added to a crystallisation condition identified to influence crystallisation. Additive Screens are to be used during the optimisation of preliminary crystallisation conditions where the presence of additives may assist in the crystallisation of the sample and the additives may improve the quality of the crystal e.g. Hampton additive Screens which use glycerol, polyols and other protein stabilizing agents in protein crystallisation (R. Sousa, Acta, Cryst. (1995) D51, 271-277) or divalent cations (Trakhanov, S. and Quiocho, F.A. Protein Science (1995) 4,9, 1914-1919).

35

### C. Crystals

In a further aspect, the invention thus provides a crystal of human 2C9 P450 protein molecules, and a method of obtaining the crystal structure of a human 2C P450 molecule which comprises subjecting said crystal to X-rays, and analysing the diffraction pattern obtained to determine the 3-dimensional coordinates of the atoms of said 2C9 P450.

Thus the present invention provides a crystal of P450 having the trigonal space group P321, and unit cell dimensions 165.46 Å, 165.46 Å, 111.70 Å, 90°, 90°, 120°. The crystal contains two copies of 2C9 in an asymmetric unit, denominated at A and B in Tables 1, 2, 3 and 8. Unit cell variability of 5% may be observed in all dimensions.

Such a crystal may be obtained using the methods described in the accompanying examples.

The crystal may be of a 2C9 protein which comprises the sequence of SEQ ID NO:2 other the following changes:

position 220 or position 222 is proline; and

optionally up to 21, for example up to 10, for example up to 5 other positions are altered, the positions being numbered according to wild type 2C9, and include the sequences described herein in the accompanying examples.

20

35

40

5

10

The methodology used to provide a P450 crystal illustrated herein may be used generally to provide a human P450 crystal resolvable at a resolution of at least 3.1 Å and preferably at least 3 Å.

The invention thus further provides a crystal of a P450 protein described herein having a resolution of at least 3.1 Å and preferably at least 3 Å.

In a further aspect, the invention provides a method for making a protein crystal of a P450 protein described herein, which method comprises growing a crystal by vapour diffusion using a reservoir buffer that contains a potassium salt and a PEG precipitate. The growing of the crystal is by vapour diffusion and is performed by placing an aliquot of the solution on a cover slip as a hanging drop above a well containing the reservoir buffer. Preferably the potassium salt is potassium phosphate, particularly 0.05 to 0.2 M potassium phosphate. The PEG precipitate concentration is preferably 10-30% PEG (more preferably 10-20% PEG). A higher weight PEG in the range of PEG 2000 to PEG 4000 may be used. Preferably PEG 3350 is used. The aliquot contains protein solution and reservoir buffer, typically in a ratio of 1 part protein solution to 1 part reservoir buffer. The protein solution was 0.7 mM. Most preferably the reservoir buffer is 0.2 M dibasic potassium phosphate and 20% PEG 3350. Alternative crystallisation conditions comprise (i) 0-0.2 M Tris-HCl (pH 8-9.5, preferably pH 8.4-8.8), 0-20% PEG 400, 0-20% PEG 8000, 0-20% glycerol or (ii) 0-0.2 M Tris-HCl (pH 8-9), 0-0.25 M Li<sub>2</sub>SO<sub>4</sub>, 0-20% PEG 4000;

more particularly (iii) 0.1 M Tris-HCl (pH 8.8), 15% PEG 400, 5% PEG 8000, 10% glycerol, (iv) 0.1 M Tris-HCl (pH 8.5), 0.2 M Li<sub>2</sub>SO<sub>4</sub>, 15% PEG 4000 or (v) 0.1 M Tris-HCl (pH 8.4), 15% PEG 400, 5% PEG 8000, 10% glycerol. Condition (iv) is particularly preferred.

A total of 2648 crystallisation wells were set up to obtain a 3.0 Å dataset suitable for the solution of the first structure. A further 1584 wells were set up to achieve a crystal resolvable to 2.6 Å. This is an indication of the difficulty in obtaining crystals of suitable resolution for structure solution. The interpretation of the crystallisation screens and subsequent analysis of the results to determine which conditions to be set up, require significant experience.

10

Other crystals of the invention include crystals which have selected coordinates of the binding pocket, wherein the amino acid residues associated with those selected coordinates are located in a protein framework which holds these amino acids in a relative spatial configuration corresponding to the spatial configuration of those amino acids in Table 1, 2, 3 or 8. By "corresponding to", it is meant within a r.m.s.d. of less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.64 Å and most preferably less than 0.5 Å. The amino acids which provide the selected coordinates are preferably selected from amino acids which form part of the binding pocket of P450, and include those of Table 5 or 6, or combinations thereof as defined further herein below.

20

35

40

15

Ver All

13. 365

Crystals of the invention also include crystals of 2C9 mutants and chimeras as defined further below in Sections F and G.

The invention further provides a method of assessing the ability of a compound to interact with P450 protein which comprises:

obtaining or synthesising said compound;

forming a crystallised complex of a P450 protein and said compound, said complex diffracting X-rays for the determination of atomic coordinates of said complex to a resolution of better than 3.1 Å and preferably at least 3 Å; and

analysing said complex by X-ray crystallography to determine the ability of said compound to interact with the P450 protein.

#### D. Description of Structure.

The analysis of the crystals obtained in the present invention has allowed a detailed analysis of the structure of a human P450 molecule. Cytochrome P450 2C9 can be considered to be a two domain protein, with a smaller, predominantly beta strand domain and a larger, predominantly alpha helical domain, forming an overall triangular arrangement. All P450 structures solved to date have the same overall topology, leading to a nomenclature adopted by the literature to describe the individual alpha helices and beta strands within P450 structures (see Ravichandran et al, Science, 1993, 261, 731-736 for definitions). The protein as purified consists of residues

1:1

digi.

....

19-494 (numbering from full length 2C9), and all but the first and last few of these residues are distinguishable in the electron density. The beta strand domain consists of beta sheets 1 and 2 and alpha helices A and B. These structural elements are formed by the N-terminal region of the polypeptide chain (residues 30-90) and residues between the helices K and K'. These residues, along with the loops between helices B and C, and helices F and G (herein referred to as the B-C and F-G loops), are implicated in the interaction of mammalian P450s with the membrane when the protein is in its native membranous form. These loops also confer some of the reaction specificity to individual P450s and are among the most divergent regions of sequence.

10

The alpha helical domain consists of helices C through L. The heme moiety is located between the alpha helical and the beta strand domains, and sits above helix I (residues 284-315). The single protein ligand to the heme, cysteine 435, is found in a loop prior to the last alpha helix. Given the range of compounds that P450s metabolise, the substrate binding pockets of these enzymes can accommodate a variety of shapes and sizes. Access to and from the heme group may be regulated by the position of the loops that form the substrate binding site, leading to open and closed conformations of the enzyme. Mutational and activity data has allowed the mapping of regions of sequence to function.

A total of six substrate recognition sites (SRS) have been proposed by Gotoh (Gotoh, J. Biol. Chem., 267 (1992), 83-90). Some of the residues that line the binding pocket of the 2C9 structure include residues within these predicted SRS and include several residues that have been linked to changes in both specificity and reaction rates within mutant forms of the protein. The regiospecific hydroxylation of warfarin has been linked to polymorphism at residue 359; which lies above and to one side of the heme group, while residue 114 which has been shown to change warfarin and diclofenac hydroxylation rates, lies above and to the other side of the heme group.

The structure of the present invention confirms that many of the residues inferred as potential

SRS residues in the prior art by other methods (e.g. sequence alignment and mutagenesis) are
found in the various SRSs seen in our structure. We have also identified many other residues
which are likely to provide side chains capable of interacting with many P450 substrates. For
example, our structure indicates a number of residues, particularly with hydrophobic side chains,
are in the SRS regions.

35

In the embodiments of the invention described herein where selected coordinates of the P450 structure may be used, the coordinates may include some or all of these residues.

An overlay of the 2C5 and 2C9 structure indicates that while the gross features of the protein are largely conserved between the two proteins, there are some interesting differences. The first

WO 03/035693 PCT/GB02/04872

resolvable residue in the electron density is residue 30 (all numbering is in relation to the full length protein), and the last residue is residue 490. Thus there are 10 residues without electron density at the N-terminus and the four histidine C-terminal tag is also not resolved.

- Starting at the N-terminus, the two proteins adopt the same position at residue 48. Following the polypeptide chain back towards the N-terminus, the position of the two sequences is out of register by one, and towards the end, two residues, while the backbone trace of the two proteins is very close. The sequence identity in this region is particularly high, so such a difference seems somewhat surprising. It is probably attributable to the comparatively low resolution of the 2C5 structure which made accurately assigning the sequence at the N-terminus difficult. The higher resolution of the 2C9 structure has made assigning the sequence in this region less ambiguous. Thus this structure of 2C9 may be more representative of the true conformation of the N-termini of both 2C5 and 2C9.
- The first region in which the two proteins differ substantially is the region between the B and C helices (residues 99 to 111). The temperature factors of the chain between residues 99 and 109 for 2C5 are high (the average B factor for all atoms in this range is 99.1 Å<sup>2</sup>), implying much mobility in this region, and hence little confidence can be placed in their position. In contract, the average B-factors for all atoms for residues 99 to 111 is 55.5 Å<sup>2</sup> in 2C9.

20

25

30

35

In the 2C9 structure residues 101 to 106 have adopted a helical formation (helix B') that has been observed in bacterial P450 structures. These residues form part of SRS 1, and thus contribute to the active site of the P450. The electron density has allowed unambiguous interpretation of all side chain positions in this region. A notable feature in this region is Arg97, which is proposed to be an important cation in the active site (2C9 substrate are predominantly acidic). The equivalent residue in 2C5 (Arg97) adopted a different conformation, and as a result did not form part of the active site. His99 has been implicated in omeprazole activity (Ibeanu et al., (1996), J Biol Chem, Vol. 271, 12496-12501); it is the only residue in SRS 1 not conserved between 2C9 and 2C19 (in 2C9 is it a Ile, in 2C19 a His), and mutation of this residue alone in 2C19 confers omeprazole activity to the resulting mutant protein. The 2C9 structure confirms that this residue forms part of the active site.

In the 2C9 structure the side chain position of Arg97 is clearly resolved, forming an interaction with the haem and Val113. Phe114 points into the active site and is well positioned to form pipi stacking interactions with substrates as has been suggested by a number of groups. Phe110 is in close proximity, but not as exposed at Phe114.

Arg105 and Arg108, which have also been suggested as potentially contributing to a cation site within the active site, both point away from the cavity.

LARGE PROVIDENCE IN THE STATE OF THE STATE O

The next region of divergence between the 2C5 and 2C9 structures is the region between the F and G helices. Residues 212 to 222 inclusive, which form part of the F-G loop, were absent in the published 2C5 structure. These residues are well resolved in the 2C9 structure, and form two turns of helix (all secondary structure assignment done using the program DSSP (Kabsch and Sander, Biopolymers 22 (1983) 2577-2637). Residues 220 and 221, while not contributing to the active site, clearly do have some impact on the accessibility of the active site, by mediating the position of the F-G loop. One of the disadvantages of mapping regions of sequence involved in substrate contact is the inability to distinguish between those regions which directly contact substrates (by lining the active site) and those that mediate the interaction the substrate has with the P450 by regulating structural elements within the enzyme. The 2C9 structure will allow the distinction between direct and indirect impact of individual residues on substrate specificity and activity. The redesign of compounds to facilitate or remove interactions with 2C9 is clearly going to be simplified by this distinction.

The residues at positions 286 and 289 have been implicated in substrate specificity (Klose et al., (1998), Arch. Biochem. Biophys., Vol. 357, 240-248). Only residue 289 actually lines the active site, but both are in close proximity to Phel 10 of the B-C loop, and hence their role in substrate specificity may be an indirect one via the packing of structural elements, rather than a direct one through substrate contact.

20

30

35

Helices H and I adopt the same spatial conformation in the two proteins; the loop between the two helices is three residues longer and is clearly resolved in the electron density.

Phe476 forms a hydrophobic patch in the active site along with Phe100, Leu102, Leu208, Leu362, and Leu366.

There are 4 other alleles of 2C9 which have currently been identified, which have an amino acid substitution. 2C9\*2 has R144C, 2C9\*3 I359L, 2C9\*4 I359T and 2C9\*5 D360E. Ile359 does not lie in the active site, but is close to Thr305 and Thr361. It is not easy to envisage a direct effect of this residue on ability to catalyse compounds, but as has been noted for other residues, a mutation here may cause the shift of structural elements, which will impact on the active site. A similar effect may be true for Asp360. Arg 144 does not form part of the binding pocket of 2C9. It has however been widely believed that the variation in drug metabolism properties exhibited by those individuals possessing the 2C9 R144C allele variation is due to a modified interaction between the P450 and the reductase. The peripheral location of this residue in the structure of 2C9 would support this argument.

#### Dimer Interface

The rotation angle between the two copies in the asymmetric unit is not 180°, and as a result the interface between the two copies (here referred to as A and B) is non-symmetrical. The

interface involves a number of hydrogen bonds between residues in helix D of molecule A and the G-H loop of molecule B, the G-H loop of molecule A and the C-terminus and helix D of molecule B, the C terminus of A and the G-H loop of molecule B.

#### 5 E. Crystal Coordinates.

In a further aspect, the invention also provides a crystal of P450 having the three dimensional atomic coordinates of Table 1, 2, 3 or 8. An advantageous feature of the structure defined by the atomic coordinates is that it has a high resolution (about 3 Å for Table 1, about 2.6 Å for Table 2, about 3.1 Å for Table 3 and about 2.6 Å for Table 8).

10

15

20

25

30

40

Another advantageous feature of the invention in that it provides atomic coordinate data relating to the loop between helices F and G (the FG loop). The FG loop is one of the most divergent topological regions between the mammalian and bacterial P450 enzymes. As such, it is one of the more difficult parts of the mammalian enzymes to model when using a bacterial structure as a modelling template. The structure of P450BM3 (Ravichandran et al, 1993, ibid) has been widely used within the field as a structural template for modelling the human forms. P450BM3 has just twelve residues in the FG loop, as opposed to the 21 residues in the 2C isoforms. The only mammalian P450 structure in the public domain is that of the rabbit 2C5 isoform, solved by X-ray crystallography to a resolution of 3.0 Å (Williams et al, Mol Cell (2000), 5, 121-131). While the 2C5 structure does provide an improved modelling template when compared to the bacterial structures, the position of the FG loop was not resolvable in the crystal structure. In contrast, the 2C9 structure described here includes the FG loop. Residues within the FG loop have not been widely implicated in the substrate selectivity of P450s, and lie outside the substrate recognition sites (SRS's) identified by Gotoh (Gotoh, O, J. Biol. Chem, 267; 83-90 (1992)). Residues within the FG loop have been shown to modify the compound binding specificity of 2C9 (Tsao et al, Biochemistry (2001), 40, 1937-1944). It was not clear whether this effect was due to direct interaction of residues within the FG loop and the compound, or a secondary effect caused by the interaction of these residues with residues within the pocket that fall within the substrate recognition sites (SRS) of the enzymes. It is now evident from our structure that the residues of the FG loop do not contribute to the binding pocket. The structure of 2C9 will therefore more readily facilitate the identification of direct and indirect interactions between compounds and 2C9.

Another advantageous feature is that the average B-factor of the 2C9 structure is 43.9 Å<sup>2</sup> in contrast to the 2C5 structure which had an overall B-factor of 58.6 Å<sup>2</sup>, resulting in a better definition for most of the side chains within the structure. This is advantageous for all uses of the coordinates, especially *in silico* work, molecular replacement, and homology modelling.

A further advantage of the 2C9 structures described herein is that they are unliganded, apo structures. This makes them particularly suitable for soaking in ligands and hence determining

118,334

co-complex structures and, are also ideal for homology modelling purposes as there is no conformational bias from a ligand.

The BC and FG loops are among the most varied features of cytochromes P450. Both loops contribute to the enzymes catalytic cycle; the BC loop directly by providing residues that form part of the active site, and mediate specificity and activity interactions, and the FG loop by movement allowing substrate entry and exit. In this high resolution 2C9 structure both of these loops are well resolved, in contrast to the 2C5 structure.

Tables 1, 2, 3 and 8 give atomic coordinate data for P450 2C9. In Tables 1, 2, 3 and 8 the third column denotes the atom, the fourth the residue type, the fifth the chain identification (either A or B), the sixth the residue number (the atom numbering is with respect to the full length wild type protein), the seventh, eighth and ninth columns are the X, Y, Z coordinates respectively of the atom in question, the tenth column the occupancy of the atom, the eleventh the temperature factor of the atom, the twelfth (where present) the chain identification, and the last the atom type.

The coordinates of Tables 1, 2, 3 and 8 provide a measure of atomic location in Angstroms, to 3 decimal places. The coordinates are a relative set of positions that define a shape in three dimensions, but the skilled person would understand that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, the skilled person would understand that varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.64 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1, 2, 3 or 8 for the residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1, 2, 3 or 8 in terms of both its structural characteristics and usefulness for structure-based analysis of P450-interactivity molecular structures.

30

20

25

Likewise the skilled person would understand that changing the number and/or positions of the water molecules and/or substrate molecules of Table 1, 2, 3 or 8 will not generally affect the usefulness of the structure for structure-based analysis of P450-interacting structure. Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1, 2, 3 or 8 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.64 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1, 2, 3 or 8 for the residue

WO 03/035693 PCT/GB02/04872

backbone atoms; and/or the number and/or positions of water molecules and/or substrate molecules is varied.

Reference herein to the coordinate data of Table 1, 2, 3 or 8 and the like thus includes the coordinate data in which one or more individual values of the Table are varied in this way. By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

Thus, for example, varying the atomic positions of the atoms of the structure by up to about 0.5

Å, preferably up to about 0.3 Å in any direction will result in a structure which is substantially the same as the structure of Table 1, 2, 3 or 8 in terms of both its structural characteristics and utility e.g. for molecular structure-based analysis.

Those of skill in the art will appreciate that in many applications of the invention, it is not necessary to utilise all the coordinates of Table 1, 2, 3 or 8, but merely a portion of them. For example, as described below, in methods of modelling candidate compounds with P450, selected coordinates of 2C9 may be used.

By "selected coordinates" it is meant for example at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100, for example at least 500 or at least 1000 atoms of the 2C9 structure. Likewise, the other applications of the invention described herein, including homology modelling and structure solution, and data storage and computer assisted manipulation of the coordinates, may also utilise all or a portion of the coordinates (i.e. selected coordinates) of Table 1, 2, 3 or 8. The selected coordinates may include or may consist of atoms found in the 2C9 P450 binding pocket, as described herein below.

#### F. Chimaeras

15

20

25

35

40

The use of chimaeric proteins to achieve desired properties is now common in the scientific literature. For example, Sieber et al (Nature Biotechnology (2001) 19, 456-460) produced hybrids between human cytochrome P450 isoform 1A2 and the bacterial P450 BM3, in order to make proteins with the specificity of 1A2, but which had desirable expression and solubility properties of BM3. Active site chimaeras are also described: for example, Swairjo et al (Biochemistry (1998) 37, 10928-10936) made loop chimaeras of HIV-1 and HIV-2 protease to try to understand determinants of inhibitor-binding specificity.

Of particular relevance are cases where the active site is modified so as to provide a surrogate system to obtain structural information. Thus Ikuta et al (J Biol Chem (2001) 276, 27548-27554) modified the active site of cdk2, for which they could obtain structural data, to resemble that of cdk4, for which no X-ray structure is currently available. In this way they were able to obtain protein/ligand structures from the chimaeric protein which were useful in cdk4 inhibitor

10

25

design. In a similar way, based on comparison of primary sequences of highly related isoforms (such as 2C19 or even 2D6), the active site of the 2C9 protein could be modified to resemble those isoforms. Protein structures or protein/ligand structures of the chimaeric proteins could be used in structure-based alteration of the metabolism of compounds which are substrates of that related P450 isoform.

Even if the percentage of the amino acid sequence identity between mammalian P450 ranks from 20 to 80%, the overall folding of mammalian P450s is expected to be very similar, with the same spatial distribution of the structural elements. Furthermore, this class of enzymes exhibits distinct substrate specificities that rely on only a limited number of residues located in non-contiguous parts of the polypeptide chain. The substrate-binding pocket of P450 is generally constituted by residues that fall in the SRS regions (substrate recognition sites) defined by Gotoh (Gotoh, O, J. Biol. Chem, 267; 83-90 (1992)) and in loops of the molecule.

Aspects of the present invention therefore relate to modification of P450 proteins such that the active sites mimic those of related isoforms. For example, from a knowledge of the structure and residues of the active site of the human 2C9 protein described herein, and that of the rabbit 2C5 protein published previously, a person skilled in the art could modify the 2C5 protein such that the active site mimicked that of human 2C9. This protein could then be used to obtain information on compound binding through the determination of protein/ligand complex structures using the chimaeric 2C5 protein.

For example, in one aspect the present invention provides a chimaeric protein having a binding cavity which provides a substrate specificity substantially identical to that of P450 2C9 protein, wherein the chimaeric protein binding cavity is lined by a plurality of atoms which correspond to selected P450 2C9 atoms lining the P450 2C9 binding cavity, the relative positions of the plurality of atoms corresponding to the relative positions, as defined by Table 1, 2, 3 or 8, of the selected P450 2C9 atoms.

1. 数据的A. 600 G.

30 It is possible to postulate that only few changes would be required to inter-convert the substrate specificities of P450 isoforms that exhibit more than 70% of amino acid identity. For example, 2C9 and 2C19, although they differ at only 43 of 490 amino acids, exhibits clear substrate specificity differences. Using a panel of 2C9/2C19 chimaeric proteins, Jung et al. (Jung, F. Biochemistry, 37, 16270-16279 (1998)), have identified the sequences differences that confer to 2C19 a high affinity binding to sulfaphenazole, a very potent and specific inhibitor of 2C9. Site directed mutagenesis experiments have revealed that the conversion of 2C19 to a 2C9-like protein was possible by introducing a limited number of substitutions in the 2C19 amino acid sequence. These mutations are located in the SRS3 and SRS4 regions of the proteins. Similar studies performed by Klose et al. (Arch. Biochem. Biophys. 357, 240-248 (1998)) and Tsao et

grant to the

2000年11日 1914年

there, the state of the

30cm 11 8100 237 B

Lie to and the rooms

· I draw be chiant

al. (Biochemistry, 40, 1937-1944, (2001)) have demonstrated the feasibility of the transfer of substrate specificities between 2C9 and 2C19 by mutating SRS regions.

The substrate specificity of an enzyme generally relies on only a limited number of residues located in non-contiguous parts of the polypeptide chain. The substrate specificities of these isoforms could be analysed by substituting these residues by site-directed mutagenesis. The minimal changes that would be required to convert another protein into a 2C9-like chimera could be at least two amino acids selected from Table 4. These mutations can be introduced by site-directed mutagenesis e.g. using a Stratagene QuikChange<sup>TM</sup> Site-Directed Mutagenesis Kit or cassette mutagenesis methods (Ausubel, F.M., Brent, R., Kingston, R.E. et al. editors. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.). Thus the invention provides a chimaeric protein having one or more binding pockets defined by the residues of Table 4.

15 `

20

This strategy could clearly be applied for proteins that exhibit high sequence homology with or without overlapping substrate specificities and from different species. The rabbit 2C5 and the human 2C9 and 2C19 P450s have been reported to be involved in the metabolism of progesterone with different rates, the rabbit isoform being clearly the most efficient enzyme. The use of the crystal structures solved for 2C5 and 2C9 would allow the characterization of the binding mode of the progesterone molecule in the substrate pocket of these proteins. This in turn would allow the identification of residues to be modified in the human isoforms to convert them into efficient progesterone metabolising enzymes.

en fe

25

In one embodiment, a chimaeric 2C9 enzyme is produced which is isoformal with another enzyme of the 2C subfamily. For example, 2C9 could be turned into a 2C19-like isoform with a few amino acid changes. Based on the information available from the literature on the structure/activity studies performed on the 2C9 and 2C19 isoforms, and the analysis of the structure of the human 2C9, we postulate that the 2C9 protein could be converted to a 2C19-like protein with the substrate specificities attributed to 2C19.

The residues to be mutated are one or more of:

Substitute SRS 1 of 2C9 with SRS 1 of 2C19 (the amino acid change introduced is I99H); and/or

Substitute SRS 3 of 2C9 with SRS 3 of 2C19 (the amino acid changes introduced are V237L and K241E); and/or

Substitute SRS 4 of 2C9 with SRS 4 of 2C19 (the amino acid changes introduced are S286N, E288V, N289I, V292A and F295L - the key changes could be S286N, N289I, V292A and F295L); and/or

Move SRS5 of 2C19 to 2C9 (the amino acid L362I is introduced).

The minimal changes that would be required to convert 2C9 to 2C19 could be I99H, K241E, S286N, N289I, V292A, F295L and L362I and more likely to be I99H, S286N, N289I, V292A, and F295L. These mutations can be introduced by site-directed mutagenesis or cassette mutagenesis methods, as described herein.

5

10

A 2C19-like chimera can also be made by making the following changes: I99H, S286N, E288V, N289I, V292A, F295L. An alternative minimal change would be I99H, S286N, N289I.

The crystallization of such chimeras and the determination of the three-dimensional structures relies on the ability of our 2C9 proteins to yield crystals that diffract at high resolution. The aim is to modify the inside part or 2C9 to produce a new substrate binding site of 2C19 without modifying the outside shell of the proteins that allow the protein to crystallize.

#### G. Homology Modelling.

The invention also provides a means for homology modelling of other proteins (referred to below as target P450 proteins). By "homology modelling", it is meant the prediction of related P450 structures based either on x-ray crystallographic data or computer-assisted *de novo* prediction of structure, based upon manipulation of the coordinate data of Table 1, 2, 3 or 8.

The P450 structure set out in Table 1, 2, 3 or 8 is, as explained in further detail herein, a dimer structure. The various *in silico* modelling techniques described in this section and in the other sections of this application may utilize either the dimer structure of Table 1, 2, 3 or 8, or either of the subunits A and B. To avoid unnecessary repetition, reference is made herein to the coordinate data of Table 1, 2, 3 or 8, but this will be understood to mean either the data for both subunits or just one of the subunits.

"Homology modelling" extends to target P450 proteins which are analogues or homologues of the 2C9 P450 protein whose structure has been determined in the accompanying examples. It also extends to P450 protein mutants of 2C9 protein itself.

30

35

40

In general, the method involves comparing the amino acid sequences of the 2C9 P450 protein of Table 1, 2, 3 or 8 with a target P450 protein by aligning the amino acid sequences. Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.

Homology between amino acid sequences can be determined using commercially available algorithms. The programs *BLAST*, *gapped BLAST*, *BLASTN*, *PSI-BLAST* and *BLAST* 2 sequences (provided by the National Center for Biotechnology Information) are widely used in the art for this purpose, and can align homologous regions of two amino acid sequences. These

may be used with default parameters to determine the degree of homology between the amino acid sequence of the Table 1, 2, 3 or 8 protein and other target P450 proteins which are to be modelled.

Analogues are defined as proteins with similar three-dimensional structures and/or functions and little evidence of a common ancestor at a sequence level.

Homologues are defined as proteins with evidence of a common ancestor i.e. likely to be the result of evolutionary divergence and are divided into remote, medium and close sub-divisions based on the degree (usually expressed as a percentage) of sequence identity.

A homologue is defined here as a protein with at least 15% sequence identity or which has at least one functional domain, which is characteristic of 2C9. This includes polymorphic forms of 2C9.

15

10

There are two types of homologue: orthologues and paralogues. Orthologues are defined as homologous genes in different organisms, i.e. the genes share a common ancestor coincident with the speciation event that generated them. Paralogues are defined as homologous genes in the same organism derived from a gene/chromosome/genome duplication, i.e. the common ancestor of the genes occurred since the last speciation event.

A mutant is a 2C9 characterized by replacement or deletion of at least one amino acid from the wild type 2C9. Such a mutant may be prepared for example by site-specific mutagenesis, or incorporation of natural or unnatural amino acids.

25

30

40

The present invention contemplates "mutants" wherein a "mutant" refers to a polypeptide which is obtained by replacing at least one amino acid residue in a native or synthetic 2C9 with a different amino acid residue and/or by adding and/or deleting amino acid residues within the native polypeptide or at the N- and/or C-terminus of a polypeptide corresponding to 2C9 and which has substantially the same three-dimensional structure as 2C9 from which it is derived. By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates that have a root mean square deviation (r.m.s.d.) of less than or equal to about 2.0 Å when superimposed with the atomic structure coordinates of the 2C9 from which the mutant is derived when at least about 50% to 100% of the  $C_{\alpha}$  atoms of the 2C9 are included in the superposition. A mutant may have, but need not have, enzymatic or catalytic activity.

To produce homologues or mutants, amino acids present in the said protein can be replaced by other amino acids having similar properties, for example hydrophobicity, hydrophobic moment, antigenicity, propensity to form or break  $\alpha$ -helical or  $\beta$ -sheet structures, and so. Substitutional variants of a protein are those in which at least one amino acid in the protein sequence has been

removed and a different residue inserted in its place. Amino acid substitutions are typically of single residues but may be clustered depending on functional constraints e.g. at a crystal contact. Preferably amino acid substitutions will comprise conservative amino acid substitutions. Insertional amino acid variants are those in which one or more amino acids are introduced. This can be amino-terminal and/or carboxy-terminal fusion as well as intrasequence. Examples of amino-terminal and/or carboxy-terminal fusions are affinity tags, MBP tag, and epitope tags.

Amino acid substitutions, deletions and additions which do not significantly interfere with the three-dimensional structure of the 2C9 will depend, in part, on the region of the 2C9 where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional structure of the molecule. In highly conserved regions, or regions containing significant secondary structure, conservative amino acid substitutions are preferred.

15

10

Conservative amino acid substitutions are well-known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.

25 I

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a 2C9 binding pocket or catalytic residue in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of 2C9 will be apparent to those having skills in the art.

30

It should be noted that the mutants contemplated herein need not exhibit enzymatic activity. Indeed, amino acid substitutions, additions or deletions that interfere with the catalytic activity of the 2C9 but which do not significantly alter the three-dimensional structure of the catalytic region are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained there from, can be used to identify compounds that bind to the protein.

35

40

Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in a computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the

j\*1,11

polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.

- The structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization.
- Homology modelling as such is a technique that is well known to those skilled in the art (see e.g. Greer, Science, Vol. 228, (1985), 1055, and Blundell et al., Eur. J. Biochem, Vol. 172, (1988), 513). The techniques described in these references, as well as other homology modelling techniques generally available in the art, may be used in performing the present invention.

Thus the invention provides a method of homology modelling comprising the steps of:
(a) aligning a representation of an amino acid sequence of a target P450 protein of unknown three-dimensional structure with the amino acid sequence of the P450 of Table 1, 2, 3 or 8 to match homologous regions of the amino acid sequences;

(b) modelling the structure of the matched homologous regions of said target P450 of unknown structure on the corresponding regions of the P450 structure as defined by Table 1, 2, 3 or 8; and (c) determining a conformation (e.g. so that favourable interactions are formed within the target P450 of unknown structure and/or so that a low energy conformation is formed) for said target P450 of unknown structure which substantially preserves the structure of said matched homologous regions.

Preferably one or all of steps (a) to (c) are performed by computer modelling.

- The presence of the FG loop in our structure is particularly advantageous for modelling of other

  P450s especially mammalian P450s, which have longer FG loops than bacterial P450s as there
  is currently nothing known in the art about the conformation of the FG loop in mammalian
  structures. This is advantageous for modelling compounds into this structure or modelled
  structures.
- The data of Table 1, 2, 3 or 8 will be particularly advantageous for homology modelling of other human P450 proteins, in particular human P450s such as 2C8, 2C18, 2C19, 2D6, 3A4, 1A1, 1A2, 2E1. These proteins may be the target P450 protein in the method of the invention described above.

In a particularly preferred aspect, the homology model is selected from the group consisting of 2C19, 2C18 and 2C8. The accompanying examples show a complete homology model for 2C19 and the coordinates of 2C18 and 2C8 which may be introduced into the structures of 2C9 or 2C19 in order to provide a homology model of these proteins. The resulting homology models may be used in the methods described herein below in sections H, I and J.

#### H. Structure Solution

10

15

20

25

30

35

The structure of the human 2C9 P450 can also be used to solve the crystal structure of other target P450 proteins including other crystal forms of 2C9, mutants, co-complexes of 2C9, where X-ray diffraction data of these target P450 proteins has been generated and requires interpretation in order to provide a structure.

In the case of 2C9, this protein may crystallize in more than one crystal form. The structure coordinates of 2C9, or portions thereof, as provided by this invention are particularly useful to solve the structure of those other crystal forms of 2C9. They may also be used to solve the structure of 2C9 mutants, 2C9 co-complexes, or of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of 2C9.

In the case of other target P450 proteins, particularly the human P450 proteins referred to in Section D above, the present invention allows the structures of such targets to be obtained more readily where raw X-ray diffraction data is generated.

Thus, where X-ray crystallographic or NMR spectroscopic data is provided for a target P450 of unknown three-dimensional structure, the structure of P450 as defined by Table 1, 2, 3, 8 or 18 may be used to interpret that data to provide a likely structure for the other P450 by techniques which are well known in the art, e.g. phasing in the case of X-ray crystallography and assisting peak assignments in NMR spectra.

One method that may be employed for these purposes is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of 2C9, a 2C9 mutant, or a 2C9 co-complex, or the crystal of a target P450 protein with amino acid sequence homology to any functional domain of 2C9, may be determined using the 2C9 structure coordinates of this invention as provided herein. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.

Examples of computer programs known in the art for performing molecular replacement are CNX (Brunger A.T.; Adams P.D.; Rice L.M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelerys San Diego,

WO 03/035693 PCT/GB02/04872 34

CA) or AMORE (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157-163).

Thus, in a further aspect of the invention provides a method for determining the structure of a protein, which method comprises;

providing the coordinates of Table 1, 2, 3 or 8, and positioning the coordinates in the crystal unit cell of said protein so as to provide a structure for said protein.

10 In a preferred aspect of this invention the coordinates are used to solve the structure of target P450s particularly homologues of 2C9 for example 2C19, 2C8, 2C18.

The invention may also be used to assign peaks of NMR spectra of such proteins, by manipulation of the data of Table 1, 2, 3 or 8.

#### Computer Systems.

5

15

25

40

In another aspect, the present invention provides systems, particularly a computer system, the systems containing either (a) atomic coordinate data according to Table 1, 2, 3, 8 or 18, said data defining the three-dimensional structure of P450 or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for P450, said structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3, 8 or 18; (c) atomic coordinate data of a target P450 protein generated by homology modelling of the target based on the data of Table 1, 2, 3, 8 or 18; (d) atomic coordinate data of a target P450 protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1, 2, 3 or 18; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

The atomic coordinate data may be the data of the entire Table or a selected portion thereof.

With regard to (c) above, it will be appreciated that Table 18 itself is atomic coordinate data of a 30 2C19 obtained by the homology modelling the 2C9 structure of the present invention and the data of Table 18, and its use, forms a further aspect of the invention.

The invention also provides such systems containing atomic coordinate data of target P450 35 proteins wherein such data has been generated according to the methods of the invention described herein based on the starting data provided by Table 1, 2, 3, 8 or 18.

Such data is useful for a number of purposes, including the generation of structures to analyse the mechanisms of action of P450 proteins and/or to perform rational drug design of compounds which interact with P450, such as compounds which are metabolised by P450s.

In a further aspect, the present invention provides computer readable storage medium with either (a) atomic coordinate data according to Table 1, 2, 3, 8 or 18 recorded thereon, said data defining the three-dimensional structure of P450, or at least selected coordinates thereof; (b) structure factor data for P450 recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3, 8 or 18; (c) atomic coordinate data of a target P450 protein generated by homology modelling of the target based on the data of Table 1, 2, 3, 8 or 18; (d) atomic coordinate data of a target P450 protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1, 2, 3, 8 or 18; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

The atomic coordinate data may be the data of the entire Table or a selected portion thereof.

As used herein, "computer-readable storage medium" refers to any medium or media which can
be read and accessed directly by a computer. Such media include, but are not limited to:
magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape;
optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM
and ROM; and hybrids of these categories such as magnetic/optical storage media.

- By providing such a storage medium, the atomic coordinate data can be routinely accessed to model P450 or selected coordinates thereof. For example, RASMOL (Sayle et al., TIBS, Vol. 20, (1995), 374) is a publicly available computer software package which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.
- On the other hand, structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)), are particularly useful for calculating e.g. difference Fourier electron density maps.
- As used herein, "a computer system" refers to the hardware means, software means and data storage means used to analyse the atomic coordinate data of the present invention. The minimum hardware means of the computer-based systems of the present invention typically comprises a central processing unit (CPU), a working memory and data storage means, and e.g. input means, output means etc. Desirably a monitor is provided to visualize structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

15

20

25

30

35

40

In another aspect, the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion (i.e. selected coordinates as defined herein) of the structure coordinates of 2C9 of Table 1, 2, 3 or 8, or a homologue of 2C9 including the structure of 2C19 of Table 18, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms (nitrogen-carbon<sub>a</sub>-carbon) of Table 1, 2, 3 or 8 of not more than 2.0 Å (preferably not more than 1.5 Å).

The invention also provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (i.e. selected coordinates as defined herein) of the structural coordinates for 2C9 according to Table 1, 2, 3 or 8 or 2C19 of Table 18; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

A further aspect of the invention provides a method of providing data for generating structures and/or performing drug design with 2C9, 2C9 homologues or analogues, complexes of 2C9 with a compound, or complexes of 2C9 homologues or analogues with compounds, the method comprising:

- (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, 2, 3 or 8, said data defining the three-dimensional structure of 2C9, at least one sub-domain of the threedimensional structure of 2C9, or the coordinates of a plurality of atoms of 2C9; (b) structure factor data for 2C9, said structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3 or 8; (c) atomic coordinate data of a target 2C9 homologue or analogue generated by homology modelling of the target based on the data of Table 1, 2, 3 or 8, such as the data of Table 18; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1, 2, 3 or 8; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and
  - (ii) receiving said computer-readable data from said remote device.

Thus another aspect of the invention provides a method of providing data for generating structures and/or performing drug design with 2C19, 2C19 homologues or analogues, complexes of 2C19 with a compound, or complexes of 2C19 homologues or analogues with compounds, the method comprising:

(i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 18, said data defining the three-dimensional structure of 2C19, at least one sub-domain of the three-dimensional

structure of 2C19, or the coordinates of a plurality of atoms of 2C19; (b) structure factor data for 2C19, said structure factor data being derivable from the atomic coordinate data of Table 18; (c) atomic coordinate data of a target 2C19 homologue or analogue generated by homology modelling of the target based on the data of Table 18; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 18; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and

- (ii) receiving said computer-readable data from said remote device.
- Thus the remote device may comprise e.g. a computer system or a computer-readable storage medium of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received.

The communication may be via the internet, intranet, e-mail etc. Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibres.

## J. W. Uses of the Structures of the Invention.

20

25

30

35

40

The crystal structures obtained according to the present invention (including the structures of Table 1, 2, 3, 8 and 18 as well the structures of target P450 proteins obtained in accordance with the methods described herein) may be used in several ways for drug design. For example, many drugs or drug candidates fail to be of clinical use due to the detrimental interactions with P450 proteins, resulting in a rapid clearance of the drugs from the body. The present invention will allow those of skill in the art to attempt to rescue such compounds from development by following these structure-based chemical strategies.

In the case where a drug molecule is being metabolised by a P450, information on the binding orientation by either co-crystallization, soaking or computationally docking the binding orientation of the drug in the binding pocket can be determined. This will guide specific modifications to the chemical structure designed to mediate or control the interaction of the drug with the protein. Such modifications can be designed with an aim of reducing the metabolism of the drug by P450 and so of improving its therapeutic action.

The crystal structure could also be useful to understand drug-drug interactions. Many examples exist where adverse reactions to drugs are recorded if administered while the patient is already taking other medicines. The mechanism behind this detrimental and often dangerous drug-drug interaction scenario may be when one drug behaves as an inhibitor of a P450 resulting in toxic levels of the other drug building-up due to less or no metabolism occurring. The crystal structure of the present invention complexed to such an inhibitor (either *in* vitro or *in silico*) may also allow rational modifications either to modify the inhibitor such that it no longer inhibits or

inhibits less, or to modify the second drug such that it could bind better to the P450 (so becoming metabolised) and so displace the inhibitor.

P450s display significant polymorphic variations dependent on ethnic origin of the patient. This can manifest itself in adverse reactions from some segments of patient populations to some drugs. By using the crystal structures of the present invention to map the relevant mutation with respect to the binding mode of the drug, chemical modifications could also be made to the drug to avoid interactions with the variable region of the protein. This would ensure more consistent therapeutic value from the drug for such segments of the population and avoid dangerous side-effects.

Some pharmaceutical compounds are converted by P450s into active metabolites. In the case of such compounds, a greater understanding of how such compounds are converted by a P450 will allow modification of the compound so that it can be converted at a different rate. For example, increasing the rate of conversion may allow a more rapid delivery of a desired therapeutic effect, whereas decreasing the rate of conversion may allow for higher doses to be administered or the development of sustained release pharmaceutical preparations, for example comprising a mixture of compounds which are metabolised at different rates to form the same active metabolite.

20

25

10

15

Thus, the determination of the three-dimensional structure of P450 provides a basis for the design of new compounds which interact with P450 in novel ways. For example, knowing the three-dimensional structure of P450, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed active sites, such as binding sites or other structural or functional features of P450.

### (i) Obtaining and analysing crystal complexes.

In one approach, the structure of a compound bound to a P450 may be determined by experiment. This will provide a starting point in the analysis of the compound bound to P450, thus providing those of skill in the art with a detailed insight as to how that particular compound interacts with P450 and the mechanism by which it is metabolised.

Many of the techniques and approaches to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein complex. A common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand. However, in order to produce the map (as explained e.g. by Blundell et al., mentioned above) it is necessary to know beforehand the protein 3D structure (or at least the protein structure factors). Therefore, determination of the P450 structure also allows production

of difference Fourier electron density maps of P450-compound complexes and determination of the binding position of a drug, and hence may greatly assist the process of rational drug design.

Accordingly, the invention provides a method for determining the structure of a compound bound to P450, said method comprising:

providing a crystal of 2C9 P450 according to the invention; soaking the crystal with said compounds; and

determining the structure of said 2C9 P450 compound complex by employing the data of Table 1, 2, 3, 8 or 18.

10

15

20

William water

5

Alternatively, the P450 and compound may be co-crystallized. Thus the invention provides a method for determining the structure of a compound bound to P450, said method comprising; mixing the protein with the compound(s), crystallizing the protein-compound(s) complex; and determining the structure of said P450-compound(s) complex by reference to the data of Table 1, 2, 3, 8 or 18.

The analysis of such structures may employ (i) X-ray crystallographic diffraction data from the Representation of P450, or at least selected coordinates thereof, the second services and (ii) a three-dimensional structure of P450, or at least selected coordinates thereof, the second services are selected coordinates thereof. to generate a difference Fourier electron density map of the complex, the three-dimensional structure being defined by atomic coordinate data according to Table 1, 2, 3 or 8. The difference Fourier electron density map may then be analysed.

COL.

Therefore, such complexes can be crystallized and analysed using X-ray diffraction methods, e.g. according to the approach described by Greer et al., J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054, and difference Fourier electron density maps can be calculated based on Xray diffraction patterns of soaked or co-crystallized P450 and the solved structure of uncomplexed P450. These maps can then be analysed e.g. to determine whether and where a particular compound binds to P450 and/or changes the conformation of P450.

30 Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.). For map visualization and model building programs such as "O" (Jones et al., Acta Crystallographica, A47, (1991), 110-119) can be used.

35

40

In addition, in accordance with this invention, 2C9 mutants may be crystallized in co-complex with known 2C9 substrates or inhibitors or novel compounds. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of the 2C9 of Table 1, 2, 3 or 8. Potential sites for modification within the various binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between 2C9 and a chemical entity or compound.

For example there are alleles of 2C9, which differ from the native 2C9 by only 1 or 2 amino acid substitutions, and yet individuals who express these allelic variants may exhibit very different drug metabolism profiles. By generating these allelic proteins and determining the co-complex with compounds a greater understanding of allelic interactions with compounds may be developed.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined against 1.5 to 3.5 Å resolution X-ray data to an R value of about 0.30 or less using computer software, such as CNX (mentioned above) X-PLOR (Yale University, ©1992, distributed by Accelerys – also see, e.g., Blundell et al; Methods in Enzymology, vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985) (23)).

This information may thus be used to optimise known classes of 2C9 substrates or inhibitors, and more importantly, to design and synthesize novel classes of 2C9 inhibitors and design drugs with modified P450 metabolism.

20 (ii) In silico analysis and design.

15

25

30

35

40

Although the invention will facilitate the determination of actual crystal structures comprising a P450 and a compound which interacts with the P450, current computational techniques provide a powerful alternative to the need to generate such crystals and generate and analyse diffraction date. Accordingly, a particularly preferred aspect of the invention relates to *in silico* methods directed to the analysis and development of compounds which interact with P450 structures of the present invention.

Thus as a result of the determination of the P450 three-dimensional structure, more purely computational techniques for rational drug design may also be used to design structures whose interaction with P450 is better understood (for an overview of these techniques see e.g. Walters et al (*Drug Discovery Today*, Vol.3, No.4, (1998), 160-178). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in *Current Opinion in Biotechnology*, Vol.6, (1995), 652-656) which require accurate information on the atomic coordinates of target receptors may be used.

The aspects of the invention described herein which utilize the P450 structure in silico may be equally applied to both the 2C9 structure of Table 1, 2, 3 or 8 and the models of target P450 proteins obtained by other aspects of the invention. Thus having determined a conformation of a P450 by the method described above, such a conformation may be used in a computer-based

method of rational drug design as described herein. In addition the availability of the structure

20 .

25

30

35

of the P450 2C9 will allow the generation of highly predictive pharmacophore models for virtual library screening or compound design.

Accordingly, the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a P450 structure of the invention, which comprises:

providing the structure of a P450 of the invention; providing a molecular structure to be fitted to said P450 structure; and fitting the molecular structure to the P450 structure.

The P450 structure of the invention may be the structure of any one of Table 1, 2, 3, 8 or 18 or selected coordinates thereof.

In an alternative aspect, the method of the invention may utilize the coordinates of atoms of interest of the P450 which are in the vicinity of a putative molecular structure binding region in order to model the pocket in which the structure binds. These coordinates may be used to define a space which is then analysed "in silico". Thus the invention provides a computer-based method for the analysis of molecular structures which comprises:

providing the coordinates of at least two atoms of a P450 structure of the invention ("selected coordinates");

providing a molecular structure to be fitted to said coordinates; and fitting the structure to the selected coordinates of the P450.

In practice, it will be desirable to model a sufficient number of atoms of the P450 as defined by the coordinates of Table 1, 2, 3, 8 or 18 which represent a binding pocket. Binding pockets and other features of the interaction of P450 with co-factor are described in the accompanying example. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 selected atoms such as at least 500 or at least 1000 atoms of the P450 structure.

Although every different compound metabolised by P450 may interact with different parts of the binding pocket of the protein, the structure of this P450 allows the identification of a number of particular sites which are likely to be involved in many of the interactions of P450 with a drug candidate. The residues are set out in the accompanying example. Thus in this aspect of the invention, the selected coordinates may comprise coordinates of some or all of these residues.

In order to provide a three-dimensional structure of compounds to be fitted to a P450 structure of the invention, the compound structure may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the

30

35

coordinates of the structure may be used to provide a representation of the compound for fitting to a P450 structure of the invention.

- By "fitting", it is meant determining by automatic, or semi-automatic means, interactions between at least one atom of a molecular structure and at least one atom of a P450 structure of the invention, and calculating the extent to which such an interaction is stable. Interactions include attraction and repulsion, brought about by charge, steric considerations and the like. Various computer-based methods for fitting are described further herein.
- More specifically, the interaction of a compound with P450 can be examined through the use of 10 computer modelling using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2, (1997), 27-42). This procedure can include computer fitting of compounds to P450 to ascertain how well the shape and the chemical structure of the compound 15 will bind to the P450.

Also computer-assisted, manual examination of the active site structure of P450 may be performed. The use of programs such as GRID (Goodford, J. Med. Chem., 28, (1985), 849-857) - a program that determines probable interaction sites between molecules with various functional groups and an enzyme surface - may also be used to analyse the active site to predict, for example, the types of modifications which will alter the rate of metabolism of a compound.

Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (i.e. the P450 and a compound).

If more than one P450 active site is characterized and a plurality of respective smaller compounds are designed or selected, a compound may be formed by linking the respective small compounds into a larger compound which maintains the relative positions and orientations of the respective compounds at the active sites. The larger compound may be formed as a real molecule or by computer modelling.

Detailed structural information can then be obtained about the binding of the compound to P450, and in the light of this information adjustments can be made to the structure or functionality of the compound, e.g. to alter its interaction with P450. The above steps may be repeated and rerepeated as necessary.

As indicated above, molecular structures which may be fitted to the P450 structure of the invention include compounds under development as potential pharmaceutical agents. The agents may be fitted in order to determine how the action of P450 modifies the agent and to provide a basis for modelling candidate agents which are metabolised at a different rate by a P450.

Molecular structures which may be used in the present invention will usually be compounds under development for pharmaceutical use. Generally such compounds will be organic molecules which are typically from about 100 to 2000 Da, more preferably from about 100 to 1000 Da in molecular weight. Such compounds include peptides and derivatives thereof, steroids, anti-inflammatory drugs, anti-cancer agents, anti-bacterial or antiviral agents, neurological agents and the like. In principle, any compound under development in the field of pharmacy can be used in the present invention in order to facilitate its development or to allow further rational drug design to improve its properties.

A single reductase provides several different isoforms of P450 with the electrons required in the catalytical cycle. As such, knowledge of the cytochrome P450 reductase (CPR) binding site on P450 and its characteristics present a means of altering the rate of catalysis, by mediating the P450 CPR interactions. The structure of 2C9 will allow the in silico identification of residues important in the P450 - CPR interface.

### (iii) Analysis and modification of compounds and metabolites

10

20

30

35

40

1.00 3 2 3 4 3 3 M 43.

> Where the primary metabolite of a potential or actual pharmaceutical compound is known, and this metabolite is generated by the action of P450, the structure of the agent and its metabolite may both be modelled and compared to each other in order to better determine residues of P450 which interact with the agent. In any event, the present invention provides a process for predicting potential pharmaceutical compounds with a desired activity which are metabolised by P450 at a rate different from a starting compound having the same desired activity, which method comprises:

fitting a starting compound to a P450 structure of the invention or selected coordinates thereof;

determining or predicting how said compound is metabolised by said P450 structure; and modifying the compound structure so as to alter the interaction between it and the P450.

It would be understood by those of skill in the art that modification of the structure will usually occur in silico, allowing predictions to be made as to how the modified structure interacts with the P450.

Modification will be those conventional in the art known to the skilled medicinal chemist, and will include, for example, substitutions or removal of groups containing residues which interact with the amino acid side chain groups of a P450 structure of the invention. For example, the replacements may include the addition or removal of groups in order to decrease or increase the charge of a group in a test compound, the replacement of a charge group with a group of the

opposite charge, or the replacement of a hydrophobic group with a hydrophilic group or vice versa. It will be understood that these are only examples of the type of substitutions considered by medicinal chemists in the development of new pharmaceutical compounds and other modifications may be made, depending upon the nature of the starting compound and its activity.

Although it is usually desired to alter a compound to prevent its metabolism by P450, or at least to reduce the rate at which P450 metabolises the compound, the present invention also includes developing compounds which are metabolised more rapidly than a starting compound, for example where such a compound blocks metabolism of another drug.

Where a potential modified compound has been developed by fitting a starting compound to the P450 structure of the invention and predicting from this a modified compound with an altered rate of metabolism, the invention further includes the step of synthesizing the modified compound and testing it in a in vivo or in vitro biological system in order to determine its activity and/or the rate at which it is metabolised.

The above-described processes of the invention may be iterated in that the modified compound may itself be the basis for further compound design.

125/10/2005

44.44

ile govati

20

5

10

15

# (iv) Fragment linking and growing.

talve i Militari del

The provision of the crystal structures of the invention will also allow the development of compounds which interact with the binding pocket regions of P450s (for example to act as inhibitors of a P450) based on a fragment linking or fragment growing approach.

25

30

For example, the binding of one or more molecular fragments can be determined in the protein binding pocket by X-ray crystallography. Molecular fragments are typically compounds with a molecular weight between 100 and 200 Da. This can then provide a starting point for medicinal chemistry to optimise the interactions using a structure-based approach. The fragments can be combined onto a template or used as the starting point for 'growing out' an inhibitor into other pockets of the protein. The fragments can be positioned in the binding pocket of the P450 and then 'grown' to fill the space available, exploring the electrostatic, van der Waals or hydrogen-bonding interactions that are involved in molecular recognition. The potency of the original weakly binding fragment thus can be rapidly improved using iterative structure-based chemical synthesis.

35 synth

At one or more stages in the fragment growing approach, the compound may be synthesized and tested in a biological system for its activity. This can be used to guide the further growing out of the fragment.

 $\mathcal{A} \in \mathcal{C}(X)$ 

Strain Street

CHARGE

WO 03/035693 PCT/GB02/04872 45

Where two fragment-binding regions are identified, a linked fragment approach may be based upon attempting to link the two fragments directly, or growing one or both fragments in the manner described above in order to obtain a larger, linked structure which may have the desired properties.

5

### (v) Compounds of the invention.

Where a potential modified compound has been developed by fitting a starting compound to the P450 structure of the invention and predicting from this a modified compound with an altered rate of metabolism (including a slower, faster or zero rate), the invention further includes the step of synthesizing the modified compound and testing it in a in vivo or in vitro biological system in order to determine its activity and/or the rate at which it is metabolised.

In another aspect, the invention includes a compound which is identified by the methods of the invention described above.

15

25

10

Following identification of such a compound, it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

Thus, the present invention extends in various aspects not only to a compound as provided by the invention, but also a pharmaceutical composition, medicament, drug or other composition comprising such a compound e.g. for treatment (which may include preventative treatment) of disease; a method comprising administration of such a composition to a patient, e.g. for treatment of disease; use of such an inhibitor in the manufacture of a composition for administration, e.g. for treatment of disease; and a method of making a pharmaceutical composition comprising admixing such an inhibitor with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

#### Summary of Examples.

The invention is illustrated by the examples, which illustrate the invention as follows: 30

Example 1 shows the production of DNA encoding 2C9trunc, 2C9-FGloop, 2C9-FGloop K206E and 2C9P220.

35 Example 2 shows the expression of 2C9P220 and 2C9-FGloop in bacteria and the recovery of protein.

Example 3 shows quality assays of the proteins of example 2.

40 Example 4 shows crystallisation conditions used to obtain crystals of 2C9-FGloop. Example 5 shows crystallisation conditions used to obtain crystals of 2C9P220.

Example 6 shows a further production of 2C9-FGloop and the mass spectrometry and activity data of the recovered protein.

Example 7 shows the production of crystals of 2C9-FGloop.

Example 8 shows the expression and recovery of 2C9-FGloop K206E and the mass spectrometry and activity data of the recovered protein, plus crystallisation of the protein.

Example 9 shows the crystallisation and structure analysis of 2C9-FGloop K206E at a 3Å resolution, as set out in Table 1.

15 Example 10 shows a further crystallisation of 2C9-FGloop K206E.

Example 11 shows the production of a higher resolution (2.6Å) structure of 2C9-FGloop K206E

Example 12 shows the production of a high resolution (3.1Å) structure of 2C9-FGloop.

20

Strange James

141 ye

Example 13 identifies residues of the P450 binding pocket and describes their use in the practice of the present invention.

Example 14 describes the use of modelling techniques using structures of the invention.

25

Example 15 outlines a docking experiment.

Example 16 shows the refinement of 2C9-FGloop K206E structure.

30 Example 17 shows the production of further 2C9 proteins.

Example 18 shows the production of 2C9 proteins.

Example 19 shows the activity of 2C9 Proteins of the invention.

35

Example 20 shows crystallisation of 2C9 proteins.

Example 21 describes 2C9-2C19 Chimeras.

Example 22 shows the production of 2C9-2C19 chimeras.

dally.

Example 23 shows validation of 2C9-FGloop K206E.

Example 24 shows the activity of 2C9-2C19 Chimeras.

Example 25 shows crystallisation of 2C9-2C19 chimeric proteins.

Example 26 shows homology Modelling of 2C19.

10 Example 27 shows homology modelling of 2C18.

Example 28 shows homology modelling of 2C8.

### Example 1: Production of DNA encoding 2C9 proteins.

15 Summary

35

5

Cytochrome P450 2C9 was targeted for crystallisation. Conversion of this intrinsic membranous protein to a more water-soluble form, by removal of the N-terminus trans-membrane domain was performed prior to crystallisation.

- Several N-terminus truncations, largely described in the literature, have been used to produce N-truncated cytochrome P450s (including 2E1, 2D6, 2B1 and others). However, most of these N-terminal truncations failed to produce fully soluble proteins and in most cases, the truncated P450s still remained associated with membranes.
- The membrane anchor domain MDSLVVLVLCLSCLLLLSLWRQSSGRGKL (SEQ ID NO:113) present in 2C9 (residues 2 to 29) was substituted by a short hydrophilic peptide MAKKTSSKGR (SEQ ID NO:114). The introduction of a highly charged polypeptide at the N-terminus of this protein was found to greatly decrease the membrane association of these proteins. It has also been found that the nature of the second codon in a lacZ expression system influences the level of expression (Looman et al, EMBO J., 6;2489-24992, 1987) and here alanine at position 2 provided good expression in *E. coli*.

Cytochrome P450 exhibits a high tendency to form large aggregates. The N-terminal deletion of cytochrome P450 has prevented aggregation and reduced polydispersity. This, in turn, facilitates the crystallisation of these proteins.

A four histidine tag was inserted at the C-terminus of 2C9 to help purification in high salt buffers.

10

15

20

25

30

35

Our preliminary results, using conditions from commercially available screening kits, indicated that the apo and native N-terminus truncated 2C9, 2C9trunc, did not produce any useful crystals. Thus the protein requires further modifications to promote crystallisation, and more importantly to promote production of useful crystals. Accordingly, the FG loop of the protein was considered for modification.

The design of the modification in the F-G loop was based on the published results on the crystallisation of the rabbit cytochrome P450 that indicated that the F and G helices were involved in the formation of a crystal contact. We predicted that the relative position of the F-G loop in the protein 2C9trunc could interfere with the ability of the F and G helices to constitute crystal contacts. It was proposed that the F-G loop, longer and more mobile than the counterpart found in the bacterial P450 BM3, may be stabilized or conformationally changed by six amino acid substitutions: Ile215Val, Cys216Tyr, Ser220Pro, Pro221Ala, Ile222Leu and Ile223Leu. In the resultant construct, 2C9-FGloop, the position of proline 220 is moved by one residue. The proline residue, often reported as initiating changes in secondary structure, may induce a conformational change in the F-G loop and facilitate the formation of crystal contacts. In the generation of the protein 2C9-P220, the proline is moved from position 221, as seen in 2C9 wild type to position 220 as seen in 2C19 wild type. Thus the serine 220 was mutated to proline and proline 221 was mutated to threonine. The introduction of these two changes alone was sufficient to promote crystallisation. A single mutation of S220P, retaining the proline at 221 was also sufficient to get crystallisation.

In the generation of the protein 1424, the proline is moved from position 221, as seen in 2C9 wild type to position 222. This shows that the proline can be moved one amino acid either side of 221 to promote successful crystallisation.

We believe having a proline at 220 or 222, preferably proline 220 is a critical determinant for crystallisation of 2C9. In particular it is a critical determinant for obtaining apo crystals of 2C9. It is also important for obtaining diffraction quality crystals of 2C9. Residue 221 can be alanine, or threonine. It can also be proline or serine.

The mutagenesis of human 2C9 cytochrome P450 was performed by a variety of standard recombinant DNA techniques including cassette mutagenesis, site-directed mutagenesis or specific cloning protocols. For cassette mutagenesis, complementary oligonucleotides bearing the mutations were annealed and cloned, using natural restriction sites or sites that have been introduced by PCR mutagenesis into the P450 cDNA. The constructs were verified by restriction mapping followed by full sequencing. Other techniques are described herein or are well known as such to those of skill in the art.

N-terminal truncation of P450

The expression vector pCWOri+, provided by Prof. F. W. Dahlquist, University of Oregon, Eugene, Oregon, USA, was used to express the truncated human cytochrome P450s in the *E. coli* strain XL1 Blue (Stratagene). A full-length cDNAs encoding cytochrome P450 2C9 was used as a template for PCR amplification, engineering the 5' terminus deletion, insertion of silent restriction sites and insertion of a four Histidine tag at the C-terminus.

A *NotI* restriction site (underlined) was introduced in 2C9 at position 87 by PCR amplification using the following 5'oligonucleotide:

10 5'-ATAAGAAT<u>GCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATC-3'</u> (SEQ ID NO:115).

The 3' oligonucleotides:

5'-TGCGGTCGACTCAGTGGTGGTGGTGGACAGGAATGAAGCAGAGCTGGTAG-3'
(SEQ ID NO: 116) with a Sall cloning site (underlined) and the four Histidine tag (italics) was
used. A total of 30 cycles at 94 °C for 1 min, 52 °C for 1 min, and 72 °C for 2 min were
followed by an extension of 10 min at 72 °C. The 1420-bp PCR fragment was double digested
with Notl/Sall and purified by gel agarose elution and extraction.

The complementary oligonucleotides

5'-TATGGCTAAGAAAACGAGCTCTAAAGGGC-3' (SEQ ID NO:117) and
 5'-GGCCGCCCTTTAGAGCTCGTTTTCTTAGCCA-3' (SEQ ID NO:118)
 with the NdeI and NotI overhang restriction sites (underlined) were designed to substitute the residues 2-29 of the native N terminus of human cytochrome P450 2C9 by the short AKKTSSKGR polypeptide. The oligonucleotides were annealed by mixing 10 μg of each
 Oligonucleotide in 100 μl of water, heating at 100°C for 5 min and slow cooling at room temperature.

The 1420-bp PCR fragment was mixed to the double stranded oligonucleotide and ligated in the vector pCWori+, previously digested with *NdeI* and *SalI*. An aliquot of the ligation product was used to transform *E. coli* XL1 Blue strain to yield the plasmid pCW-2C9trunc that encodes for the amino-terminal truncated 2C9.

The truncated 2C9 was used to make the proteins for further crystallisation experiments.

35 Construction of 2C9-FGloop

30

40

The plasmid pCW-2C9trunc was used as template for the insertion of six amino acids substitutions, Ile215Val, Cys216Tyr, Ser220Pro, Pro221Ala, Ile222Leu, Ile223Leu in the FG loop. pCW-2C9trunc was digested by *Nde1* and *BamHI* restriction enzyme and the 579-bp corresponding to the 5' terminus of the P450 gene was purified by gel agarose extraction and elution. A double strand oligonucleotide designed to introduce the six amino acids substitution

in the FG loop, was generated by annealing the following complementary oligonucleotides 5'-GATCCAGGTCTACAATAATTTCCCTGCTCTCTTGATTATTTC\_3' (SEQ ID NO:119) and 5'-CCGGGAAATAATCAAGGAGAGCAGGGAAATTATTGTAGACCTG\_3' (SEQ ID NO:120) with the overhang BamHI and XmaI restriction sites (underlined) and the six mutated codons (italics). The 579-bp fragment and the double strand oligonucleotide were ligated in the vector pCW-2C9trunc, previously digested by NdeI and XmaI. An aliquot of the ligation was used to transform Xl1 Blue E. coli and yield the plasmid pCW-2C9-FGloop.

### Construction of 2C9-P220

- 2C9-P220 is a 2C9trunc mutant carrying the mutations S220P and P221T. This mutant was 10 made using the Stratagene Quikchange<sup>TM</sup> mutagenesis kit (catalogue number #200518), according to manufacturers instructions. The Quikchange<sup>TM</sup> mutagenesis method generates a mutated plasmid with staggered nicks and uses DpnI digestion to remove all parental DNA. Reactions were made incorporating 5.0 µL x10 reaction buffer, 5-50 ng pCW-2C9trunc plasmid DNA, 1.0 µL dNTP and 125 ng oligonucleotide primers as follows, with mutated bases shown in lowercase and the two amino acid change underlined: 5' CCAGATCTGCAATAATTTTcCgaCcACATTGATTACTTCCC 3' (SEQ ID NO:121) 5' GGGAAGTAATCAATGATgGtcGgAAAATTATTGCAGATCTGG 3' (SEQ ID NO:122) Reactions were made to 50  $\mu L$  with sterile water, 2.5U Pfu Turbo was then added and the reaction overlayed with 30 µL mineral oil. Thermocycling was then carried out as follows: 20 95°C, 30 sec (1 cycle), 95°C, 30 sec, 55°C, 1 min, 68°C 13.5 min (18 cycles) and finally a holding period at 4°C. A control reaction was also included with water in place of oligonucleotide primers.
- Following thermocycling 10 U DpnI was added, under the level of the mineral oil, to each reaction. The reactions were then gently mixed followed by centrifugation in a bench top microcentrifuge, 1 min, 13,000 rpm and incubated at 37 °C for 3 hr. Digested product (1 μL) was then used to transform 50 μL competent *E. coli* XL1-Blue cells. The whole transformation as then plated onto Luria agar plates containing 100 μg/ml carbenicillin, inverted, and incubated overnight at 37 °C. Colonies were isolated and the plasmid DNA pCW-2C9-P220 isolated and sequenced to check for the insertion of the correct mutation.

### Construction of 2C9-FGloop-K206E

The plasmid pCW-2C9-FGloop was used as a template for the substitution Lys206Glu (where the numbering is of the full length wild type 2C9, SwissProt: P11712, not that of SEQ ID NO:2 or 4). Primers were designed to lie across the region to be mutated; 5'-GGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGG-3' (SEQ ID NO:123)
5'-CCAGGGGCTGCTCAAAATCTCGATGTTTTCATTCAACTTTTCC-3' (SEQ ID NO:124)

where the mutated codon is shown in bold. These primers were then used in the protocol for Quikchange<sup>TM</sup> mutagenesis (Stratagene) which is briefly summarised.

Primers were resuspended to 125 ng/µl and used in a PCR reaction which elongated around the plasmid from the mutagenic primer. The template DNA was then digested using DpnI, a methylation specific restriction endonuclease which preferentially degrades the template due to its methylation. After DpnI treatment 1µl of the resultant sample was transformed into E. coli XL1 Blue strain. Colonies were picked and sequenced. Plasmids containing the mutation were chosen and digested with the restriction endonucleases NdeI and SalI. The NdeI SalI DNA fragment corresponding to the coding sequence of the 2C9-FGloop K206E mutant was then subcloned into a pCW vector digested with NdeI and SalI. This served to remove any errors

# Example 2: Expression of 2C9P220 and 2C9-FGloop.

incorporated during the PCR phase of the Quickchange mutagenesis.

### Bacteria expression

A single ampicillin resistant colony of XL1 blue cells was grown overnight at 37 °C in Terrific Broth (TB) with shaking to near saturation and used to inoculate fresh TB media. Bacteria were grown to an OD600nm =0.4 in 1 litre of TB broth containing 100 μg/ml of ampicillin at 37 °C at 185 rpm in 2 litre flask. The haem precursor delta aminolevulinic acid (80 mg/l) was added 30 min prior to induction with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and the temperature lowered to 30 °C. The bacterial culture was continued under agitation at 30 °C for 48 to 72 hours.

### (a) Protein purification

计连续点 海海水红

25

30

The cells were pelleted at 10000 g for 10 min and resuspended in a buffer containing 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 0.1% (v/v) of protease inhibitor cocktail (Calbiochem), 10 mM imidazole, 0.01 mg/ml DNase 1 and 5 mM MgSO<sub>4</sub>.

The cells were lysed by passing twice through a Constant Systems Cell Homogeniser at 12000 psi. The cell debris was then removed by centrifugation at 70000 g at 4 °C for 30 min.

Detergent IGEPAL CA630 (Sigma) was added dropwise from a 10% stock solution to the lysate at a final concentration of 0.3% (v/v) and the lysate was incubated with previously washed NiNTA resin (Qiagen) overnight at 4 °C, using agitation. The protein bound-NiNTA resin was pelleted by centrifugation at 2000 g for 2 min at 4 °C. The resin was washed with 20 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 10 mM imidazole, 1:1000 dilution of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630 and the resin pelleted by centrifugation at 2000 xg for 2 min at 4 °C. The resin was then washed with 10 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 20 mM imidazole, 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630 and the resin recovered by centrifugation as described above. The washing step was repeated as described above with buffer containing 50

mM imidazole. The resin was packed into a column at 4 °C and the cytochrome P450 eluted with 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 300 mM imidazole, 0.1% (v/v) of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630.

- (b) An alternative method for protein purification is as follows:

  The cells were pelleted at 10000 g for 10 min and resuspended in a buffer containing 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 0.1% (v/v) of protease inhibitor cocktail (Calbiochem), 0.01 mg/ml DNase 1 and 5 mM MgSO<sub>4</sub>.
- The cells were lysed by passing twice through a Constant Systems Cell Homogeniser at 12000 psi. The cell debris was then removed by centrifugation at 70000 g at 4°C for 30 min.
- Detergent IGEPAL CA630 (Sigma) was added dropwise from a 10% stock solution to the lysate at a final concentration of 0.3% (v/v) and the lysate was incubated with previously washed

  NiNTA resin (Qiagen) overnight at 4°C, using agitation. The NiNTA resin was pelleted by centrifugation at 2000 g for 2 min at 4°C and washed, as described above, with 20 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 50 mM glycine 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630, followed by washing with 10 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 7.5 mM Histidine, 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630. The resin was recovered by centrifugation between washing steps and then the resin was packed into a column at 4 °C. The protein was eluted with 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 100 mM histidine, 0.1% (v/v) of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630.
- The cytochrome P450 obtained from the NiNTA column by either elution protocol was quickly desalted (<10 min) into 10 mM KPi, pH 7.4, 20% glycerol, 0.2 mM DTT, 1 mM EDTA using a HiPrep 26/10 desalting column (Pharmacia), at a flow rate of 5 ml/min and collecting 16 ml fractions. The desalted cytochrome P450 was directly applied to a CM Sepharose column (Pharmacia), previously equilibrated with 10 mM KPi, pH 7.4, 20% glycerol, 0.2 mM DTT, 1 mM EDTA. The following step elution was applied: wash with 10 column volumes of 10 mM KPi, pH 7.4, 20% glycerol, 0.2 mM DTT, 1 mM EDTA, wash with the above buffer with 75 mM KCl in order to remove any trace of detergent, then eluted with the above buffer with KCl concentration increased to 500 mM. The protein was concentrated up to 40 mg/ml using a microconcentrator for crystallization assays.

35

40

At this stage, the protein can be optionally further purified by running a gel filtration column. The concentrated P450 sample was applied on the top of a Superose 6 HR10/30 gel filtration column (Pharmacia) and eluted at 0.2 ml/min with buffer containing 100 mM KPi, pH 7.4, 300 mM KCl, 20% glycerol, 0.2 mM DTT. The protein was collected and concentrated up to 40 mg/ml, as described above, for crystallization and quality assays.

### Example 3: Quality Assays.

The quality of the final preparation of proteins from Example 2 was evaluated by:

5 (a) SDS polyacrylamide gel electrophoresis.

This was performed using commercial gels (Nugen) followed by CBB (coomassie brilliant blue) staining according to the manufacturer's instructions. The purity as estimated by scanning a digital image of a gel was estimated to be at least 95%.

10 (b) Gel filtration chromatography.

This was done using a Superose 6 HR10-30 column (Pharmacia) was performed to assess the aggregation state. The fractionation range for this column is  $5 \times 10^3$  to  $5 \times 10^6$  Da and is thus well adapted to the resolution of large complexes. The column was eluted at 0.2 ml/min with buffer containing 100 mM KPi, pH 7.4, 300 mM KCl, 20% glycerol, 0.2 mM DTT, 1 mM EDTA. 0.2 ml protein samples at a concentration of approximately 40 mg/ml were used. Absorbance at 280 nm was monitored and the peak was collected and analysed using dynamic light scattering.

# (c)Light scattering.

30

Samples (0.15 ml) collected after the CM Sepharose column and/or the gel filtration column were analysed by DLS in fluorimeter quartz cells at 90° using laser radiation at 830.3 nm. Data was collected using a log correlator with variable expansion spanning a wide dynamic range. All measurements were performed at 20 °C with samples collected immediately from the gel filtration column. A run was on average 10 runs of 10 seconds each. To obtain an estimation of the molecular weight, we used a frictional ratio of 1.26 and a partial specific volume of 0.726.

Samples prepared using our new method of purification possessed a good solubility and an absence of significant aggregation as shown by:

- the ratio of far channel extrapolation and measured average scattering was always between 0.999 and 1.003.
- the average count rate did not vary significantly, with approximately 1% standard deviation.
- analysis of the autocorrelation function using bi exponential fitting showed that 2C9 had an estimated Mr of approximately 180 KDa, i.e. it is an oligomer composed of no more than four subunits.
- good stability of the samples (over 24h) at 20°C.

Samples prepared by published protocols showed signs of a severe aggregation:

- large fluctuations of the scattered light intensity, with a standard deviation of more than 10%.

- analysis of the autocorrelation function showed very slow exponential decay an indication of the presence of large aggregates ( $Mr > 10^6$  Da), composed of a large number of P450 subunits. These samples also show a high degree of polydispersity.
- samples also showed further aggregation as a function of time.

These signs of severe aggregation in samples prepared by published methods were still present after sample filtration through 20 nm diameter pores or centrifugation at 200,000g for 30 min.

### (d) Mass Spectroscopy

•

Mass spectroscopy was performed on a single quadrupole mass spectrometer (platformII, Micromass UK Ltd.). Samples (25  $\mu$ l of purified protein at 25-60 mg/ml) were dialyzed against 0.1 M ammonium acetate at 4 °C for 4 hours, using microcell dialyser (Pierce). The samples were diluted by a factor of 100 in 1:1  $\nu/\nu$  methanol:0.1% aqueous formic acid and were then infused into the ionisation source of the mass spectrometer with a flow rate of 20  $\mu$ l/min.

15

- 20

The mass spectrometer was fitted with a standard electrospray ionisation source. Positive electrospray ionisation was affected with a probe tip voltage of 3.5 kV, and a counter electrode voltage of 0.5 kV. Nitrogen was employed as both the nebulising and the drying gas, with a nebulising gas flow rate of 20 L/hr and a drying flow rate of 200L/hr. The sampling cone voltage was maintained at 40V. Data were acquired over the appropriate m/z range and were subsequently processed by manual identification of the components wherever possible, followed by transposition onto a true molecular mass scale for more facile identification using Maximum Entropy processing techniques. The mass accuracy obtained for the analysed protein was 0.01% of the mass.

25

### (e) Functionality assays

Activity assays on P450 2C9 were performed in a 96-well plate assay format with a Fluoroscan Ascent FL Instruments (Labsystem), using the methoxy-4-(trifluoromethyl)-coumarin as a fluorescent substrate.

30

35

Fifteen pmoles of P450 were reconstituted with 0.1 unit of purified human oxidoreductase, in presence of 140  $\mu$ M of substrate methoxy-4-(trifluoromethyl)-coumarin, a NADPH regenerating system that includes 0.15 mM NADP<sup>+</sup>, 0.38 mM Glucose-6-phosphate and 2.9 unit/ml glucose-6-phosphate dehydrogenase in 170  $\mu$ l final volume of 25 mM KPi, pH 7.4, 0.38 mM MgCl<sub>2</sub>. Incubations were performed at 37°C for several minutes and 7-hydroxy -4-(trifluoromethyl)-coumarin was used as metabolite standard to determinate the metabolic rate. The excitation and emission wavelengths used were respectively 409 and 530nm.

### Example 4: Crystallisation conditions for 2C9-FGloop.

Crystallization of P450 2C9-FGloop was achieved at 10-60 mg/ml protein in 10 mM Potassium phosphate, pH 7.4; 0.5 M KCl; 0.2 mM DTT; 1.0 mM EDTA; 20% glycerol against the conditions listed below. Crystals grew over a two week period in the morphologies indicated.

5

Appearance: Needles and rods

Cell dimensions: a=161 Å, b= 161 Å, c=110 Å,  $\alpha$ =90°,  $\beta$ =90°,  $\gamma$ =120°.

Space Group: P321

- 10 0.2 M Sodium Fluoride, 20% PEG 3350
  - 0.2 M Potassium Fluoride, 20% PEG 3350
  - 0.2 M Ammonium Fluoride, 20% PEG 3350
  - 0.2 M Lithium Chloride, 20% PEG 3350
  - 0.2 M Magnesium Chloride, 20% PEG 3350
  - 0.2 M Sodium Chloride, 20% PEG 3350
    - 2.0 M Sodium Chloride, 10% PEG 6K
    - 0.2 M Calcium Chloride, 20% PEG 3350
    - 0.2 M Potassium Chloride, 20% PEG 3350
    - 0.2 M Ammonium Chloride, 20% PEG 3350
- 20 0.2 M Lithium Nitrate, 20% PEG 3350
  - 0.2 M Magnesium Nitrate, 20% PEG 3350
  - 0.2 M Sodium Nitrate, 20% PEG 3350
  - 0.2 M Potassium Nitrate, 20% PEG 3350
  - 0.2 M Ammonium Nitrate, 20% PEG 3350
- 0.2 M Magnesium Formate, 20% PEG 3350
  - 0.2 M Sodium Formate, 20% PEG 3350
  - 0.2 M Potassium Formate, 20% PEG 3350
  - 0.2 M Ammonium Formate, 20% PEG 3350
  - 0.2 M Lithium Acetate, 20% PEG 3350
- 0.2 M Magnesium Acetate, 20% PEG 3350
  - 0.2 M Sodium Acetate, 20% PEG 3350
  - 0.2 M Sodium Acetate pH 4.6, 10-20% PEG 4000
  - 0.2 M Calcium Acetate, 20% PEG 3350
  - 0.2 M Potassium Acetate, 20% PEG 3350
- 35 0.2 M Ammonium Acetate, 20% PEG 3350
  - 0.2 M Ammonium Acetate pH 4.6, 10-20% PEG 4000
  - 0.2 M Sodium Sulfate, 20% PEG 3350
  - 0.2 M Magnesium Sulfate, 20% PEG 3350
  - 0.2 M Potassium Sulfate, 20% PEG 3350
- 40 0.2 M Ammonium Sulfate, 20% PEG 3350

- 0.2 M di-Sodium Tartrate, 20% PEG 3350
- 0.2 M Potassium Sodium Tartrate, 20% PEG 3350
- 0.2 M di-Ammonium Tartrate, 20% PEG 3350
- 0.2 M Sodium dihydrogen Phosphate, 20% PEG 3350
- 5 0.2 M di-Sodium hydrogen phosphate dihydrate, 20% PEG 3350
  - 0.2 M Potassium dihydrogen Phosphate, 20% PEG 3350
  - 0.2 M di-Potassium hydrogen Phosphate, 20% PEG 3350
  - 0.2 M Ammonium dihydrogen Phosphate, 20% PEG 3350
  - 0.2 M di-Ammonium hydrogen Phosphate, 20% PEG 3350
- 10 0.2 M tri-Lithium Citrate, 20% PEG 3350
  - 0.2 M tri-Sodium Citrate, 20% PEG 3350
  - 0.2 M tri-Potassium Citrate, 20% PEG 3350
  - 15% PEG 1500
  - 30% PEG 1500
- 15 0.1 M MES pH 6.0, 5-20% PEG 6000
  - 0.1 M MES pH 6.5, 12% PEG 20,000
  - 0.1 M Citric acid pH 5.0, 10% PEG 6000
  - 0.1 M Sodium Cacodylate, pH 6.6, 10-25% PEG 1500
  - 0.1 M Sodium Cacodylate, pH 6.4-6.8, 0.05-0.2 M Magnesium acetate, 10-20% PEG 8000
- 20 0.05-0.1 M Potassium dihydrogen phosphate, 10-20% PEG 8000
  - 0.2 M Potassium dihydrogen phosphate, 20% PEG 3000
  - 0-0.2 M Sodium Chloride, 0.1 M Potassium dihydrogen phosphate/di-Sodium hydrogen phosphate pH 5.8-6.6, 5-20% PEG 8000
  - 0-0.2 M Sodium Chloride, 0.1 M Potassium dihydrogen phosphate/di-Sodium hydrogen
- 25 phosphate pH 5.8-6.6, 20% PEG 1000
  - 0-0.2 M Sodium Chloride, 0.1 M Potassium dihydrogen phosphate/di-Sodium hydrogen phosphate pH 5.8-6.6, 20% PEG 3350
  - 0-0.2 M Sodium Chloride, 0.1 M Potassium dihydrogen phosphate/di-Sodium hydrogen phosphate pH 5.8-6.6, 15-20% PEG 5000MME
- 30 0.5 M Ammonium Sulfate, 0.1 M HEPES pH 7.5, 30% 2-Methyl-2,4-pentanediol
  - 0.01 M Nickel (II) Chloride, 0.1 M Tris pH 8.5, 20% PEG MME 2000
  - 0.05-0.2 M Calcium Acetate, 0.1 M Tris HCl pH 7.0-7.6, 10-22.5% PEG 3000
  - 0.1 M phosphate-citrate, pH 4.2, 0.05 M Lithium sulphate, 20% PEG 1000
  - 0.025-0.25 M di-potassium hydrogen phosphate, pH 7.0-7.8
- 35 0.2 M di-potassium hydrogen phosphate, pH 8.4, 17.5% PEG 3350
  - 0.2 M Ammonium iodide, 20% PEG 3350
  - 0.2 M di-Ammonium hydrogen citrate, 20% PEG 3350
  - 0.2 M Lithium sulphate, 20% PEG 3350
  - 0.05-0.2 M K2HPO4, 10% PEG 4000
- 40 0.05-0.2 M K2HPO4, 6.25%-20% PEG 3350

garage at the

- 0.2 M K2HPO4, 3.75-25% PEG 3350
- 0.2-0.35 M K2HPO4, 20% PEG 3350
- 0.1-0.15 M K2HPO4, 10% MPEG 2000
- 0.2M K2HPO4, 3.75-10 % MPEG 2000
- 5 0.5 M K2HPO4, 10% MPEG 2000
  - 0.1-0.15 M K2HPO4 , 10% PEG 1000
  - 0.2 M K2HPO4, 3.75-10% PEG 1000
  - 0.5 M K2HPO4, 10% PEG 1000
  - 0.1M Citrate-HCl pH 5.6, 20% PEG 3000
- 10 0.1 M Tris-HCl pH 7.0, 20% MPEG 2000
  - 0.1 M HEPES pH 7.5, 0.2 M sodium chloride, 20% PEG 3000
  - 0.1 M Imidazole-HCl pH 8.0, 0.2 M Calcium acetate, 10% PEG 8000
  - 0.1 M Imidazole-HCl pH 8.0, 10% Iso-Propanol
  - 0.1 M Imidazole-HCl pH 6.5, 0.5 M Sodium acetate
- 15 0.1 M Sodium cacodylate pH 6.6, 20% PEG 3350
  - 0.1 M Citrate-HCl pH 5.6, 10% PEG 4000, 10% Isopropanol
  - 0.1 M Tris-HCl pH 7.0-7.6, 0.1-0.2 M Calcium acetate, 15-20% PEG 3000
  - 0.1 M phosphate-citrate pH 4.2, 0.2 M Lithium sulphate, 10% 2-propanol
  - 0.1 M citrate pH 5.5, 0.2 M Lithium sulphate, 15% ethanol
- 20 0.1 M HEPES pH 7.5, 0.2 M Magnesium chloride, 15% ethanol 20% PEG 300, 10% Glycerol, 0.1 M Tris pH8.5, 5% PEG 8000

### Example 5: Crystallisation conditions for 2C9P220.

Crystallization of P450 2C9P220 was achieved at 10-60 mg/ml protein in 10 mM Potassium phosphate, pH 7.4; 0.5 M KCl; 0.2 mM DTT; 1.0 mM EDTA; 20% glycerol against the conditions listed below. Crystals grew over a two week period in the morphologies indicated.

Appearance: Spherical clusters

化等温度压缩

25

- 30 0.1 M Tris-HCl pH 8.5, 0.2 M sodium acetate, 15% PEG 4000
  - 0.1 M Tris-HCl pH 8.5, 4% PEG 8000
  - 0.1 M Tri-Sodium Citrate Dihydrate pH 5.6, 10% Iso-PropanolPEG 4000
  - 0.1M HEPES pH 7.5, 0.2 M sodium chloride, 20% PEG 3000
  - 0.1M Na/K phosphate pH 6.2, 10% PEG 3000
- 35 0.1M Tris pH 7.0, 0.2 M calcium acetate, 20% PEG 3000
  - 0.1M Tris pH 8.5, 20% PEG 1000
  - 0.1 M HEPES pH 7.5, 0.2 M sodium chloride, 30% PEG 400
  - 0.2M di-Sodium tartrate, 20% PEG 3350
  - 0.2 M di-Sodium hydrogen phosphate dihydrate, 20% PEG 3350
- 40 0.2 M di-Potassium hydrogen phosphate, 20% PEG 3350

0.2 M tri-Lithium citrate, 20% PEG 3350

0.2 M tri-Sodium citrate, 20% PEG 3350

0.2 M tri-Potassium citrate, 20% PEG 3350

0.1M Tris-HCl pH 7.0, 0.2 M Calcium acetate, 20% PEG 3000

0.2 M K2 H PO4, 15% PEG 3350

0.2M K2 H PO4, 15% PEG 3350

0.1M Tris-HCl pH 7.2, 0.2 M Calcium acetate, 20% PEG 3000

0.1M Tris-HCl pH 7.2, 0.2 M Calcium acetate, 15% PEG 3000

0.2M K2 H PO4, 17.5% PEG 3350

10 0.2 M K2 H PO4, 20%PEG 3350

0.3M K2 H PO4,20%PEG 3350

0.2 M K2 H PO4, 22.5% PEG 3350

0.2 M K2 H PO4, 25% PEG 3350

0.1M Tris-HCl pH 7.6, 0.2 M Calcium acetate, 20% PEG 3000

5 0.1 M Tris-HCl pH 7.6, 0.2 M Calcium acetate, 15% PEG 3000

0.1 M Tri-Sodium Citrate Dihydrate pH 5.0, 5% PEG 4000

0.1 M HEPES 7.0, 5% PEG 4000

0.1 M Tris pH 8.0, 5%-15% PEG 4000

0.1 M Bis-Tris Propane pH 9.0, 5%-10% PEG 4000

20

#### Example 6: Further production of 2C9-FGloop.

2C9-FGloop was prepared in, and recovered from, a bacterial expression system as described in Example 2(a) above, and subject to further analysis by mass spectroscopy and an activity assay.

#### 25 Mass Spectroscopy

Mass spectroscopy was performed using a Bruker "BioTOF" electrospray time of flight instrument. Samples were either diluted by a factor of 1000 straight from storage buffer into methanol/water/formic acid (50:48:2 v/v/v), or subjected to reverse phase HPLC separation using a C4 column. Calibration was achieved using Bombesin and angiotensin I using the 2+ and 1+ charge state. Data were acquired between 200 and 2000m/z range and were subsequently processed using Bruker's X-mass program. Mass accuracy was typically below 1 in 10 000.

Mass spec of 2C9-FGloop:

53967 Da (observed)

53963.72 Da (predicted)

35

30

### Functionality assays

Activity assays on P450 2C9 were performed in a 96-well plate assay format with a Fluoroscan Ascent FL Instruments (Labsystem), using the methoxy-4-(trifluoromethyl)-coumarin as a fluorescent substrate.

Fifteen pmoles of P450 were reconstituted with 0.1 unit of purified human oxidoreductase, in presence of 140 μM of substrate methoxy-4-(trifluoromethyl)-coumarin, a NADPH regenerating system that includes 0.15 mM NADP<sup>+</sup>, 0.38 mM Glucose-6-phosphate and 2.9 unit/ml glucose-6-phosphate dehydrogenase in 170 μl final volume of 25 mM KPi, pH 7.4, 0.38 mM MgCl<sub>2</sub> Incubations were performed at 37°C for several minutes and 7-hydroxy-4-(trifluoromethyl)-coumarin was used as metabolite standard to determinate the metabolic rate. The excitation and

emission wavelengths used were respectively 409 and 530nm. The activity of 2C9-FGloop was 0.110 pmol/min/pmol P450 with 2C9 substrate.

# 10 Example 7: Crystals of 2C9-FGloop.

15

Crystals of the 2C9-FGloop were grown using the hanging drop vapour diffusion method. Protein from example 6 at 40mg/ml in 10mM Kpi pH 7.4, 0.5 M KCl, 2mM DTT, 1mM EDTA, 20% glycerol, was mixed in a 1:1 ratio, using 0.5 µl drops, with a reservoir solution. The crystals of 2C9-FGloop grew over a reservoir solution containing 0.1 M Tris-HCl, pH 8.8; 15% PEG 400; 5% PEG 8000; 10% glycerol. Crystals formed within 1-7 days at 25°C, and had morphologies of hexagonal needles and rods. In a first experiment, a first crystal ("1"), was found to have approximate cell dimensions of 161 Å, 161 Å, 110 Å, 90°, 90°, 120°. In a second experiment, a second crystal ("2"), was found to have approximate cell dimensions of 164 Å, 111 Å, 90°, 90°, 120°. This illustrates a typical range of variation within the 5% variability mentioned above.

The crystals were flash frozen in liquid nitrogen, using 80% reservoir solution, 10% PEG 400 and 10% glycerol as a cryoprotectant.

Data was collected from a 2C9-FGloop crystal to 3.3 Å resolution at beamline ID14.1 (wavelength 0.933 Å) at the European Synchrotron Radiation Source using a Quantum4 CCD detector from a single crystal at 100K. The crystals belong to spacegroup P321. Crystal 1 was found to have cell dimensions 161.35 Å, 161.35 Å, 110.75 Å, 90°, 90°, 120°; in the case of crystal 2 the dimensions were 163.95 Å, 163.95 Å, 111.06 Å, 90°, 90°, 120° and the data were collected to 3.0 Å for the crystal.

Coordinates of Table 1 or 2 can be used to solve the structure of 2C9-FGloop by molecular replacement.

## 35 Example 8: Crystallisation and structure analysis of 2C9-FGloop K206E.

E. coli transformed with the 2C9-FGloop K206E vector described above were grown and described in Example 2.

### Protein Purification

5

The cells were pelleted at 10000 g for 10 min and resuspended in a buffer containing 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 0.1% (v/v) of protease inhibitor cocktail (Calbiochem), 10 mM imidazole, 40U/ml DNase 1 and 5 mM MgSO<sub>4</sub>.

The cells were lysed by passing twice through a Constant Systems Cell Homogeniser at 12000 psi. The cell debris was then removed by centrifugation at 70000 g at 4°C for 30 min.

Detergent IGEPAL CA630 (Sigma) was added dropwise from a 10% stock solution to the lysate at a final concentration of 0.3% (v/v) and the lysate was incubated with previously washed 10 NiNTA resin (Qiagen) overnight at 4°C, using agitation. The protein bound-NiNTA resin was pelleted by centrifugation at 2000 g for 2 min at 4°C. The resin was washed with 20 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 10 mM imidazole, 1:1000 dilution of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630 and the resin pelleted by centrifugation at 2000 xg for 2 min at 4°C. The resin was then washed with 10 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 20 mM imidazole, 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630 and the resin recovered by centrifugation as described above.

The resin was packed into a column at 4°C and the cytochrome P450 eluted with 500 mM KPi, 20 pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 300 mM imidazole, 0.1% (v/v) of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630.

The cytochrome P450 obtained from the NiNTA column by either elution protocol was quickly desalted into 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA using a HiPrep 25 26/10 desalting column (Pharmacia), at a flow rate of 5 ml/min and collecting 17 ml fractions.

The desalted cytochrome P450 was directly applied to a CM Sepharose column (Pharmacia), previously equilibrated with 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA. The following step elution was applied: wash with 10 column volumes of 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA, wash with the above buffer with 75 mM KCl in order to remove any trace of detergent, then eluted with the above buffer with KCl concentration increased to 500 mM.

The protein was concentrated up to 40 mg/ml using a microconcentrator for crystallization 35 assays. To characterize the protein, the quality of the final preparation was evaluated by:

### (a) SDS polyacrylamide gel electrophoresis

This was performed using commercial gels (Nugen) followed by CBB staining according to the manufacturer's instructions. The purity as estimated by scanning a digital image of a gel was estimated to be at least 95%.

5

### (b) Mass Spectroscopy

Mass spectroscopy was performed using a Bruker "BioTOF" electrospray time of flight instrument. Samples were either diluted by a factor of 1000 straight from storage buffer into methanol/water/formic acid (50:48:2 v/v/v), or subjected to reverse phase HPLC separation using a C4 column. Calibration was achieved using Bombesin and angiotensin I using the 2+ and 1+ charge state. Data were acquired between 200 and 2000m/z range and were subsequently processed using Bruker's X-mass program. Mass accuracy was typically below 1 in 10 000.

Mass spec of 2C9-FGloop-K206E:

53966 Da (observed)

53964.67 Da (predicted)

15

10

## (c) Functionality assays

Activity assays on P450 2C9 were performed in a 96-well plate assay format with a Fluoroscan Ascent FL Instruments (Labsystem), using the methoxy-4-(trifluoromethyl)-coumarin as a fluorescent substrate.

Fifteen pmoles of P450 were reconstituted with 0.1 unit of purified human oxidoreductase, in presence of 140 µM of substrate methoxy-4-(trifluoromethyl)-coumarin, a NADPH regenerating system that includes 0.15 mM NADP<sup>+</sup>, 0.38 mM Glucose-6-phosphate and 2.9 unit/ml glucose-6-phosphate dehydrogenase in 170 μl final volume of 25 mM KPi, pH 7.4, 0.38 mM MgCl<sub>2</sub>. Incubations were performed at 37°C for several minutes and 7-hydroxy -4-(trifluoromethyl)coumarin was used as metabolite standard to determinate the metabolic rate. The excitation and emission wavelengths used were respectively 409 and 530 nm. The activity of the 2C9-FGloop-K206E was 0.083 pmol/min/pmol P450 with 2C9 substrate.

30

35

### Crystallization of 2C9-FGLoop-K206E

Crystals of the 2C9-FGloop-K206E were grown using the hanging drop vapour diffusion method. Protein at 40mg/ml in 10mM Kpi pH 7.4, 0.5 M KCl, 2mM DTT, 1mM EDTA, 20% glycerol, was mixed in a 1:1 ratio, using 0.5 µl drops, with a reservoir solution. The crystals of 2C9-FGloop-K206E grew over a reservoir solution containing 0.2 M dibasic potassium phosphate and 20% PEG 3350 (Alternative conditions were also used, which were 0.1 M Tris-HCl, pH 8.5; 0.2 M LiSO4; 15% PEG 4000). Crystals formed within 1-7 days at 25°C, and had morphologies of hexagonal needles and rods. The approximate cell dimensions of the crystals were 165 Å, 165 Å, 112 Å, 90°, 90°, 120°. The crystals were flash frozen in liquid nitrogen, 40 using 80% reservoir solution, 10% PEG 400 and 10% glycerol as a cryoprotectant.

# Example 9: Structure of 2C9-FGloop K206E.

Data was collected from a 2C9-FGloop-K206E crystal (prepared as described in Example 8) to 3.0 Å resolution at beamline ID14.1 (wavelength 0.933 Å) at the European Synchrotron Radiation Source using a Quantum4 CCD detector from a single crystal at 100K. A total of 90 one degree oscillation images were collected and processed using MOSFLM 6.11 (Leslie, A. G. W. (1992). *Int CCP4/ESF-EACMB Newslett. Protein Crystallogr.* 26), scaled using SCALA 4.1, and reduced using the CCP4 suite of programs (Collaborative Computational Project, Number 4, (1994). *The CCP4 suite: programs for protein crystallography. Acta Cryst.* D50, 760-763).

Table of data statistics

10

15

20

25

| Resolution       | 15-3.0 Å | 3.16-3.0 Å |
|------------------|----------|------------|
| Completeness (%) | 99.4     | 98.7       |
| Multiplicity     | 5.2      | 4.8        |
| I/Sigma(I)       | 3.5      | 1.3        |
| Rmerge (%)       | 12.7     | 54.2       |

The crystals belong to spacegroup P321 and have cell dimensions 165.46 Å, 165.46 Å, 111.70 Å, 90°, 90°, 120°. There are two copies in the asymmetric unit, and the crystals have a solvent content of 68%. The structure was solved by molecular replacement using the 2C5 structure (pdbid 1DT6) (Williams, P A; Cosme, J; Sridhar, V; Johnson, E F; McRee, D E, Molecular Cell, Volume 5, Issue 1, January 2000, Pages 121-131) and the program AMORE (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157-163), giving a correlation coefficient of 67.8% and an R-factor of 38.9%. The coordinates of the structure are set out in Table 1. The two copies in the asymmetric unit are related by a rotation of 145° about the Z-axis. The initial maps (both averaged and unaveraged) were relatively clean, and containing unmistakable electron density for the heme group which was omitted from the search model. This solution was using as a starting point for refinement using the program CNX (ibid).

### Example 10: Further crystallisation of 2C9-FGloop K206E.

### Bacteria Expression

A single ampicillin resistant colony of XL1 blue cells transformed with the 2C9-FGloop

K206E-expressing plasmid described above was grown overnight at 37°C in Terrific Broth (TB) with shaking to near saturation and used to inoculate fresh TB media. Bacteria were grown to an OD600nm = 0.4 in 1 litre of TB broth containing 100 μg/ml of ampicillin at 37°C at 185 rpm in 2 litre flask. The heme precursor delta aminolevulinic acid (80 mg/l) was added 30 min prior to induction with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and the temperature lowered to 25°C. The bacterial culture was continued under agitation at 25°C for 72 hours.

### Protein Purification

The cells were pelleted at 10000 g for 10 min and resuspended in a buffer containing 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 0.1% (v/v) of protease inhibitor cocktail (Calbiochem), 10 mM imidazole, 40 U/ml DNase 1 and 5 mM MgSO<sub>4</sub>.

5

30

The cells were lysed by passing twice through a Constant Systems Cell Homogeniser at 10000 psi. The cell debris was then removed by centrifugation at 22000 x g at 4°C for 30 min.

Detergent IGEPAL CA630 (Sigma) was added dropwise from a 10% stock solution to the lysate at a final concentration of 0.3% (v/v) and the lysate was incubated with previously washed NiNTA resin (Qiagen) overnight at 4°C, using agitation. The protein bound-NiNTA resin was pelleted by centrifugation at 2000 g for 2 min at 4°C. The resin was washed with 30 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 10 mM imidazole, 1:1000 dilution of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630 and the resin pelleted by centrifugation at 2000 xg for 2 min at 4°C. The resin was then washed with 15 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 20 mM imidazole, 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630 and the resin recovered by centrifugation as described above.

The resin was packed into a column at 4°C and the cytochrome P450 eluted with 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 300 mM imidazole, 0.1% (v/v) of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630.

The cytochrome P450 obtained from the NiNTA column was quickly desalted into 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA using a HiPrep 26/10 desalting column (Pharmacia), at a flow rate of 5 ml/min.

The desalted cytochrome P450 was directly applied to a CM Sepharose column (Pharmacia), previously equilibrated with 10 mM KPi, pH 7.0, 20% glycerol, 2.0 mM DTT, 1 mM EDTA. The following step elution was applied: wash with 20 column volumes of 10 mM KPi, pH 7.0, 20% glycerol, 2.0 mM DTT, 1 mM EDTA, wash with the above buffer with 75 mM KCl in order to remove any trace of detergent, then eluted with the above buffer with KCl concentration increased to 500 mM.

35 The protein was concentrated up to 40 mg/ml using a microconcentrator for crystallization assays.

#### Crystallization of 2C9-FGloop K206E

Crystals of the 2C9-FGloop-K206E were grown using the hanging drop vapour diffusion method. Protein at 40 mg/ml in 10mM Kpi pH 7.0, 0.5 M KCl, 2mM DTT, 1mM EDTA, 20%

glycerol, was mixed in a 1:1 ratio, using 0.5 µl drops, with a reservoir solution. The crystals of 2C9-FGloop-K206E were grown over a reservoir solution containing: 0.1 M Tris-HCl pH 8.4, 15% PEG 400, 5% PEG 8000, 10% glycerol.

Rod shaped crystals formed within 1 day at 25°C. The crystals were flash frozen in liquid nitrogen, using the reservoir solution as a cryoprotectant. The approximate cell dimensions of the crystals were 164.9 Å, 164.9 Å, 111.1 Å,  $\alpha = 90^{\circ}$ ,  $\beta = 90^{\circ}$ ,  $\gamma = 120^{\circ}$ .

# Example 11: Production of a 2.6Å resolution structure of 2C9-FGloop K206E

Data was collected to 2.6 Å resolution from a crystal of 2C9-FGloop-K206E crystal (prepared as described in Example 4) at beam line 14.1 at the European Synchrotron Radiation Facility, using a Quantum4 CCD detector from a single crystal at 100 K. The crystal was grown against a reservoir solution of 0.1M Tris pH 8.4, 15% PEG 400, 5% PEG 8000, 10% Glycerol, and was frozen directly from the reservoir solution. A total of 50 images were collected and processed using MOSFLM (Leslie, A. G. W. (1992). *Int CCP4/ESF-EACMB Newslett. Protein Crystallogr.* 26), scaled using SCALA and reduced using the CCP4 suite of programs (Collaborative Computational Project, Number 4, (1994). *The CCP4 suite: programs for protein crystallography. Acta Cryst.* D50, 760-763).

### 20 Table of data statistics

25

30

35

| Resolution   | 50-2.6 Å | 2.74-2.60 Å |
|--------------|----------|-------------|
| Completeness | 96.5%    | 84.3%       |
| Multiplicity | 2.6      | 2.0         |
| I/ Sigma I   | 6.8      | 1.2         |
| R merge      | 8.7      | 57.0        |

This data was used in refinement, using the model generated by the refinement against the initial 3.0 Å data, to generate the coordinates of Table 2. A consistent set of 5% of the reflections was flagged for Free R calculation, and extended to the higher resolution. The refinement was continued using the programs CNX (Brunger et al., Current Opinion in Structural Biology, Vol. 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA) and REFMAC (Collaborative Computational Project, Number 4, (1994). The CCP4 suite: programs for protein crystallography. Acta Cryst. D50, 760-763), to an R factor of 21.9% and an R free factor 25.0%.

#### Example 12: Structure of 2C9-FGloop.

Data were collected from a 2C9-FGloop crystal 2 (prepared as described in Example 7) to 3.1 Å resolution at beamline ID14.1 (wavelength 0.933 Å) at the European Synchrotron Radiation Source using a Quantum4 CCD detector from a single crystal, frozen directly from the crystallisation solution (0.1 M Tris-HCl pH 8.8, 15% PEG 400, 5% PEG 8000, 10% glycerol) at

100K. The crystal belong to space group P321. Crystal 2 was found to have cell dimensions 163.95 Å, 163.95 Å, 111.06 Å, 90°, 90°, 120°.

A total of 100 degrees of data were collected, processing using MOSFLM, scaled using SCALA and reduced further using the CCP4 suite of programs. The structure of 2C9-FGloop was solved by molecular replacement using the program AMORE and the 2.6 Å 2C9-FGloop-K206E structure (Table 2) as a search model. The structure was refined using strict noncrystallographic symmetry using the program CNX to generate the coordinates of Table 3. The final structure has an R factor of 26.8% and a Free R factor of 29.8% for all data between 30 and 3.1 Å.

Table of data statistics:

| Resolution | R merge | Completeness | Mult | I/Sig I |
|------------|---------|--------------|------|---------|
| 9.80       | 0.041   | 96.8         | 3.0  | 15.0    |
| 6.93       | 0.056   | 99.8         | 3.1  | 8.0     |
| 5.66       | 0.101   | 99.8         | 3.1  | 6.5     |
| 4.90       | 0.113   | 99.8         | 3.1  | 5.3     |
| 4.38       | 0.117   | 98.4         | 2.8  | 5.4     |
| 4.00       | 0.118   | 92.1         | 2.4  | 5.2     |
| 3.71       | 0.141   | 80.4         | 2.0  | 4.1     |
| 3.47       | 0.183   | 71.7         | 1.8  | 1.4     |
| 3.27       | 0.242   | 65.1         | 1.7  | 2.4     |
| 3.10       | 0.374   | 58.7         | 1.7  | 1.7     |
| Overall    | 0.099   | 81.9         | 2.4  | 5.0     |

# Example 13: Identification and use of P450 binding pocket residues.

The crystal structure for 2C9 has for the first time allowed the precise identification of all the residues that line the binding site of the enzyme (Table 4). Some residues proposed to be in the catalytic site by a variety of sources can now be shown not to be binding pocket residues but residues that hold the catalytic residues in place.

20 Table 4: All residues lining the 2C9 binding pocket

| ARG  | 97  | GLY  | 98  | ILE         | 99   | PHE | 100 | LEU | 102 | ALA | 103 |
|------|-----|------|-----|-------------|------|-----|-----|-----|-----|-----|-----|
| ALA  | 106 | ASN  | 107 | GLY         | 109  | PHE | 110 | GLY | 111 | ILE | 112 |
| VAL  | 113 | PHE  | 114 | THR         | 167  | PHE | 168 | ILE | 178 | CYS | 179 |
| ILE  | 181 | ILE  | 182 | MET         | 198  | LEU | 201 | ASN | 202 | ASN | 204 |
| ILE  | 205 | LEU  | 208 | SER         | 209  | SER | 210 | PRO | 211 | ILE | 213 |
| GLN  | 214 | ASN  | 217 | LEU         | 233  | VAL | 237 | MET | 240 | LYS | 241 |
| ASN  | 289 | VAL  | 292 | ASP         | 293  | LEU | 294 | PHE | 295 | GLY | 296 |
| ALA  | 297 | GLY  | 298 | THR         | 299  | GLU | 300 | THR | 301 | THR | 302 |
| SER  | 303 | THR  | 304 | THR         | 305  | ARG | 307 | ASP | 360 | LEU | 361 |
| LEU  | 362 | PRO  | 363 | THR         | 364  | SER | 365 | LEU | 366 | PRO | 367 |
| ASN  | 474 | GLY  | 475 | PHE         | 476  | ALA | 477 | SER | 478 | VAL | 479 |
| ASIN | 7/7 | 1001 | 773 | 1 1 1 1 1 1 | -170 |     |     |     |     |     |     |

Residues previously inferred to be in the binding site of 2C9 from modelling (e.g. homology modelling, SRS proposals, 3D/4D-QSAR, sequence alignments, or mutagenesis studies) which

with the aid of the crystal structure are now known to line the 2C9 binding pocket are in Table 5.

Table 5: Residues previously inferred to be in the binding site of 2C9

|     |     |     |     | -   |      |     | -   | -   |     |     |     |
|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| ARG | 97  | GLY | 98  | ILE | - 99 | PHE | 100 | LEU | 102 | ALA | 103 |
| ALA | 106 | ASN | 107 | GLY | 109  | PHE | 110 | GLY | 111 | ILE | 112 |
| VAL | 113 | PHE | 114 | LEU | 201  | ASN | 202 | ASN | 204 | ILE | 205 |
| LEU | 208 | SER | 209 | SER | 210  | GLN | 214 | LEU | 233 | VAL | 237 |
| MET | 240 | LYS | 241 | ASN | 289  | VAL | 292 | ASP | 293 | LEU | 294 |
| PHE | 295 | GLY | 296 | ALA | 297  | GLY | 298 | THR | 299 | GLU | 300 |
| THR | 301 | THR | 302 | SER | 303  | THR | 304 | THR | 305 | ARG | 307 |
| ASP | 360 | LEU | 361 | LEU | 362  | PRO | 363 | THR | 364 | SER | 365 |
| LEU | 366 | PRO | 367 | ASN | 474  | GLY | 475 | PHE | 476 | ALA | 477 |
| SER | 478 |     |     |     | - "  |     |     |     |     |     |     |

5

Some residues found in the binding pocket have never before been identified as binding site residues. These are listed in Table 6. The identification of these will greatly facilitate the modelling of compound binding.

Table 6: Residues newly identified as lining the 2C9 binding pocket

| 1 | THR | 167 | PHE | 168 | ILE | 178 | CYS | 179 | ILE | 181 | ILE | 182 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|   | MET | 198 | PRO | 211 | ILE | 213 | ASN | 217 | VAL | 479 |     |     |

Accordingly, in a preferred aspect of the invention, the selected coordinates used in a method of the invention will comprise at least one coordinate, preferably at least one side-chain coordinate of an amino acid residue selected from either Table 5 or 6.

15

30

Preferably, the selected coordinates include the coordinates of all the atoms of Table 1, 2, 3 or 8 relating to at least one amino acid from Table 5 or 6.

Also preferred, whether all or just some atoms of a particular amino acid are selected, is that at least 2, more preferably at least 5, and most preferably at least 10 of the selected coordinates are of side chain residues from the corresponding number of different amino acid residues. These may be selected exclusively from either of Table 5 or 6, or a combination thereof. Preferably at least one side chain residue coordinate of Table 6 is included.

#### 25 Example 14: Modelling other P450 structures.

Some of the residues in Tables 5 and 6 are residues which do not occur at the sequence positions indicated in the Tables in a naturally occurring human 2C9 or are residues which differ in other human P450 structures. For these residues in particular, molecular modelling techniques (including but not limited to molecular replacement or computer assisted semi-manual methods) may be used to obtain a model in which a different residue is provided at such a location. For example, position 206 (recited in Table 5 above) in the protein 2C9-FGloop is lysine, which

10

15

20

25

comprises a positive charge. Using the X-ray diffraction data of the 2C9-FGloopK206E we have modelled the 2C9-FGloop protein to provide coordinate data for this protein.

The coordinate data corresponds to Table 1 apart from the data for residue 206, which is as follows:

| ATOM | 1328 | N  | LYS A 206 | -9.209 | 86.411 | 32.115 | 1.00 52.64 | A | N |
|------|------|----|-----------|--------|--------|--------|------------|---|---|
| ATOM | 1329 | CA | LYS A 206 | -8.030 | 86.236 | 32.948 | 1.00 53.62 | Α | С |
| ATOM | 1330 | СВ | LYS A 206 | -6.751 | 86.197 | 32.104 | 1.00 56.05 | A | С |
| 1    |      |    | LYS A 206 | -6.295 | 84.776 | 31.762 | 1.00 60.03 | Α | С |
|      |      |    | LYS A 206 | -7.406 | 83.981 | 31.026 | 1.00 61.59 | Α | C |
|      |      |    | LYS A 206 | -7.093 | 82.478 | 30.921 | 1.00 62.61 | Α | c |
| ATOM | 1334 | NZ | LYS A 206 | -6.906 | 81.756 | 32.235 | 1.00 63.34 | A | N |
| ATOM | 1335 | C  | LYS A 206 | -7.966 | 87.351 | 33.963 | 1.00 52.66 | Α | С |
| 1    |      |    | LYS A 206 | -7.663 | 87.117 | 35.125 | 1.00 52.36 | A | 0 |

It will be observed that the CB carbon atom, i.e. the first carbon atom in the side-chain is in an almost identical position to the Glu CB carbon atom of Table 1, whereas the remaining atoms of the side chain (CD, CE & NZ) are in locations based upon a low-energy configuration of the lysine side chain, taking into account the connection of the side chain to the CA carbon atom. It is thus relatively simple for a person skilled in the art of molecular modelling to arrive at a model for a P450 in which one or more residues of the 2C9-FGloopK206E is replaced in an analogous manner. The coordinate data for 2C9-FGloop are set out in Table 3. It will be appreciated by those of skill in the art that in the space group P321 it is possible to index diffraction data in one of two ways. The data can be converted from one indexing to the other using the operator k, h, -l. In the case of 2C9-FGloop K206E at 3.0 Å (Table 1) the data were indexed differently compared to the data of 2C9-FGloop K206E at 2.6 Å (Table 2) or 2C9-FGloop (Table 3), and hence while the crystal forms of the proteins are substantially identical, the crystal structures are not in the same absolute space. Hence the co-ordinate data for Glu206 in Table 3 is not numerically equivalent to that shown above as this modelled in Table 1. Those of skill in the art will be able to convert the above data for residue 206 accordingly.

Thus where in modelling the interaction of a compound or a metabolite thereof with a P450 structure of the invention, it is found that the residue at position 206 may be involved in the interaction with that particular metabolite, the above data for residue 206 may be used in Table 1 in place of the data for 206Glu. This is in view of the change of charge which results from the difference. For compounds or metabolites which are found to interact with other regions of P450, there may be no need to amend Table 1 in this manner.

However, similar modelling may be performed for other parts of P450 where it is determined to be important that the potential interactions of a compound with the binding pocket in those parts of the protein is of particular interest. Thus the residues Pro220, Ala221, Leu222 and Leu223 in particular were remodelled in a similar manner to that discussed above in order to predict the coordinates of wild type residue side chains in a P450 structure.

The modelled coordinates of the 2C9 wild type protein are the same as those contained in Table 1, 2, 3 or 8 except that the residues listed in Table 7 substitute for the corresponding residues of Table 1, 2, 3 or 8.

10

Thus the present invention covers a structure of 2C9 for use in silico in which the coordinates are those of Table 1, 2, 3 or 8, except that the atoms and corresponding coordinates of one or more of residues 215, 216, 220, 221, 222, and 223 are substituted by the atoms and corresponding coordinates of the wild typed residues of Table 7. Thus to the extent that previous aspects of the invention relate to Table 1, 2, 3 or 8, they also relate to Table 1, 2, 3 or 8 with the atoms and corresponding coordinates of one or more of residues 215, 216, 220, 221, 222, and 223 substituted by those of the wild typed residues listed in Table 7.

# Example 15: Docking Experiment.

20

The crystal structure of 2C9 was used to computationally dock a drug molecule into the binding 15 pocket. The drug diclofenac, a known substrate for human 2C9, was generated and placed into the 2C9 binding pocket using interactive computer graphics. The observed interactions can now be used to chemically modify diclofenac via a structure-based design strategy to mediate its interaction with human 2C9 and improve its therapeutic potential.

### Example 16: Refinement of 2C9-FGloop K206E structure.

Data generated in Example 11 was further refined to generated Table 8 (Figure 5). A total of 147 water molecules have been added (manually and automatically) and included in the refinement. This resulted in an Rfactor of 20.7% and a R free factor of 25.9%.

25

#### Example 17: Production of further 2C9 proteins.

The nucleic acid encoding 2C9trunc, 2C9P220 (also called 1072), 2C9-FGloop (1015) and 2C9-FGloop K206E (1155) were used to produce further 2C9-encoding nucleic acids using either cassette mutagenesis (CM) or site-directed mutagenesis (QC). Site-Directed Mutatgenesis (PCR mutagenesis) was performed using the Stratagene Quikchange<sup>TM</sup> mutagenesis kit (catalogue number #200518), according to manufacturers instructions. The Quikchange<sup>TM</sup> mutagenesis method generates a mutated plasmid with staggered nicks and uses DpnI digestion to remove all parental DNA. Reactions were made incorporating 5.0 µL of 10X reaction buffer, 5-50 ng template plasmid DNA, 1.0 µL dNTP mix and 125 ng oligonucleotide primers. The primers and template used for each construct are as listed in the table below.

Reactions were made to 50 µL with sterile water, 2.5U Pfu Turbo was then added and the reaction overlayed with 30 µL mineral oil. Thermocycling was then carried out as follows: 95°C, 30 sec (1 cycle), 95°C, 30 sec, 55°C, 1 min, 68°C 13.5 min (18 cycles) and finally a holding period at 4°C. A control reaction was also included with water in place of oligonucleotide primers. Following thermocycling 10 U DpnI was added, under the level of the mineral oil, to each reaction. The reactions were then gently mixed followed by centrifugation in a bench top microcentrifuge, 1 min, 13,000 rpm and incubated at 37°C for 3 hr.

5

Digested product (1  $\mu$ L) was then used to transform 50  $\mu$ L competent *E. coli* XL1-Blue cells (Stratagene). The whole transformation as then plated onto Luria agar plates containing 100  $\mu$ g/ml carbenicillin, inverted, and incubated overnight at 37°C. Plasmid DNA was prepared from individual colonies and sequenced to check for the insertion of the correct mutation(s).

10

Cassette mutagenesis was performed on the 2C9 FG region (residues 215 to 226) utilising the BamHI and XmaI sites, two unique and natural restriction sites that are present in this region. Complementary oligonucleotides with the 5' BamHI and 3' XmaI overhang restriction sites were designed to introduce mutations in the FG region (Tables 9, 10 and 14). Double stranded oligonucleotides were prepared by heating 10 µg of a mixture of complementary Oligonucleotides at 100°C for 5 min in 100 µl of water and slow cooling at 25°C. Double stranded Oligonucleotides were ligated into purified plasmid pCW-2C9 wt opened by BamHI and XmaI restriction enzymes and an aliquot of the ligation was used to transform XI1 Blue E. coli.

20

15

2C9 proteins of the invention produced by the above methods are set out in Table 9, which also indicates the primers used. Crystals of all these proteins were obtained under a variety of conditions, shown in Table 11 (see Example 20).

25 A

As controls, 2C9 proteins without proline at 220 were made using the same techniques. The proteins made are shown in Table 10. Under a range of conditions tested, no protein crystals were recovered.

Table 9. Further 2C9 Proteins of the invention.

| Clone | Mutations                       | Primers (SEQ ID NOs)                                                                                                   | Template   | Cloning<br>strategy |
|-------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 1078  | 2C9 S220P                       | Fw 5'ccagaictgcaataattticcgcctatcattgattacttccc3' (125)<br>Rev 5'ggtctagacgttattaaaaggcggatagtaactaatgaaggg3' (126)    | 2C9 trunc  | OC.                 |
| 1081  | 2C9-FGloop +<br>N466D           | Fw 5'ctetegttgacccaaaggacettgacaccactccag3' (127)<br>Rev 5'ctggagtggtgtcaaggtectttgggtcaaccagag3' (128)                | 2C9-FGloop | <b>ე</b> ბ          |
| 1082  | 2C9-FGloop + F482S              | Fw 5'gcctctggccgcctcctaccagctgtgcttcatt3' (129)<br>Rev 5'aatgaagcacagctggtaggagggcgcacagaggc3' (130)                   | 2C9-FGloop | <b>ე</b> ბ          |
| 1085  | 2C9-FGloop +<br>Q192E           | Fw 5'gcgctttgattataaggagggaatttcttaacttaatggaaag3' (131) Rev 5'cttttccattaagttaaggaaattgctcatctttataatcaaagcgc3' (132) | 2C9-FGloop | 20                  |
| 1097  | 2C9-FGloop +<br>Q193E           | Fw 5'gattataaagatcaggaatttcttaacttaatggaaaag3' (133) Rev 5'cttttccattaagttaagaaattcctgatcttiataatcaaagcgc3' (134)      | 2C9-FGloop | ၁၀                  |
| 1100  | 2C9-FGloop +<br>E253K           | Fw 5'graaaagaacaccaaaaatcaatggacatgaacatgaacaccctc3' (135) Rev 5'gagggtigttcatgtccattgatttttggtgttctttac3' (136)       | 2C9-FGloop | <b>ე</b> ბ          |
| 1011  | 2C9-FGloop +<br>K273Q           | Fw 5'cctgatgaaaatggagcaggaaaagcacaaccaacc3' (137) Rev 5'ggttggttggcttttcctgctccatttcatcagg3' (138)                     | 2C9-FGloop | ებ                  |
| 1102  | 2C9-FGloop +<br>K275DH276D      | Fw 5'gatgaaaafggagaaggaggagacaaccaaccatctgaatttac3' (139)<br>Rev 5'taaattcagatggttggttgtcttccttctccattttcatc3' (140)   | 2C9-FGloop | OC                  |
| 1115  | 2C9-FGloop +<br>E415A           | Fw 5'catcactttctggatgcaggtggcaatttaagaaagg3' (141) Rev 5'ctttcttaaaattgccacctgcatccagaaagtgatg3' (142)                 | 2C9-FGloop | ებ                  |
| 1116  | 2C9-FGloop +<br>K465A           | Fw 5'cctgaaatctctggttgacccagcgaaccttgacaccac3' (143) Rev 5'gtggtgtcaaggttcgctgggtcaaccagagatttcagg3' (144)             | 2C9-FGloop | <u>ာ</u> ဝ်         |
| 1117  | 2C9-FGloop + K48A               | Fw 5'cctacagataggtattgcggacatcagcaaatccttaacc3' (145)<br>Rev 5'ggttaaggatttgctgatgtccgcaatacctatctgtagg3' (146)        | 2C9-FGloop | <b>OC</b>           |
| 1118  | 2C9-FGloop +<br>K160A           | Fw 5'catcactttctggatgcaggtggcaattttaagaaag5' (147) Rev 5'cttttcttaaaattgccacctgcatccagaaagtgatg3' (148)                | 2C9-FGloop | δc                  |
| 1121  | 2C9-FGloop +<br>K273A           | Fw 5'gatgaaaaiggaggeggaaaagcacaaccatc3' (149)<br>Rev 5'gatggitggttgtgcttttccgcctccattttcatc3' (150)                    | 2C9-FGloop | <b>م</b> د          |
| 1122  | 2C9-FGloop + E81A               | Fw 5'gregtgregearggatatgcagragtgaaggccc3'(151) Rev 5'gregtrectreactgctgcatatccatgcagcaccac3'(152)                      | 2C9-FGloop | ٥ <u>ر</u>          |
| 1123  | 2C9-FGloop +<br>K118AK119AK121A | Fw 5'gttttcagcaatggagcggcatgggcggagatccggcg3' (153)<br>Rev 5'cgccggatctccgcccatgccgctccattgctgaaaac3' (154)            | 2C9-FGloop | တွ                  |
| 1165  | 2C9-FGloop + del HI<br>loop     | Fw 5'ggagaaggaaaagcactctgaatttactattgaaagcttgg3' (155) Rev 5'ccaagctttcaatagtaaattcagagtgcttttccttctcc3' (156)         | 2C9-FGloop | 8                   |

| Clone | Mutations                            | Primers (SEQ ID NOs)                                                                                                                                                                                                              | Template   | Cloning strategy |
|-------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|
| 1220  | 2C9 S220P P221S                      | Fw 5' gatetgeaataattiteettetateattgattaette3' (157)<br>Rev 5' gaagtaateaatgatagaaggaaaattattgeagate3' (158)                                                                                                                       | 2C9 trunc  | ОC               |
| 1319  | 2C9-FGloop + L71S                    | Fw 5'grgttcactctgramtiggctcgaaacccatagtggtgc3' (159) Rev 5'gcaccactatgggtttcgagccaaaatacagagtgaacac3' (160)                                                                                                                       | 2C9-FGloop | <b>ე</b> ბ       |
| 1339  | 2C9-FGloop +<br>Y243F                | Fw 5'cgttgcttttatgaaaagtttatttggaaaagtaaaagtaaaagaacacc3'(161) Rev 5'ggtgttctttacttttacttttccaaaataaaacttttcataaaagcaacg3'(162)                                                                                                   | 2C9-FGloop | OC               |
| 1340  | 2C9-FGloop + E81A<br>Y243F           | Fw 5'gtggtgctgcatggatatgcagcagtgaaggcacgcoc3' (163) Rev 5'gtggcttccttcactgctgcatatccatgcagcaccac3' (164) Fw 5'cgttgcttttatgaaaagttttattttggaaaaagtaaaagaacacc3' (165) Rev 5'gttgcttttatcttttccaaaataaaacttttcätaaaagcaacg2' (166) | 2C9-FGloop | <b>ე</b> ბ       |
| 1361  | 2C9 C216Y S220P<br>P221A I222L I223L | Fw 5'gatccagattacaataatttcctgctctcctgattattc3' (167) Rev 5'ccgggaaataatcaaggagagagagagatattgtaaatctg3' (168)                                                                                                                      | 2C9 trunc  | СМ               |
| 1362  | 2C9 I215V S220P<br>P221A I222L I223L | Fw 5'gatocaggrotgoaataatttocotgototoctigattatto3' (169) Rev 5'ocgggaaataatcaaggagagagagagatattatgoagacotg3' (170)                                                                                                                 | 2C9 trunc  | CM               |
| 1363  | 2C9 I215V C216Y<br>S220P P221A I223L | Fw 5'gatccaggtctacaataatttccctgctatcctfgattattc3' (171) Rev 5'ccgggaaataatcaaggatagcaggaaattattgtagacctg3' (172)                                                                                                                  | 2C9 trunc  | СМ               |
| 1364  | 2C9 1215V C216Y<br>S220P P221A 1222L | Fw 5'gatccaggictacaataatttcctgctctcattgattattc3' (173) Rev 5'ccgggaaataatcaatgagagcaggaaattattgtagacctg3' (174)                                                                                                                   | 2C9 trunc  | CM               |
| 1366  | 2C9 S220P P221A<br>I222L I223L       | Fw 5'gatocagattigcaataatttocotgototoottgattattic3' (175) Rev 5'oogggaaataatcaaggagaggaaattattgcaaatotg3' (176)                                                                                                                    | 2C9 trunc  | CM               |
| 1367  | 2C9 S220P P221A<br>I222L             | Fw 5'gatocagatttgcaataatttccctgctctcattgatratttc3' (177) Rev 5'ccgggaaataatcaatgagagaagcagggaaattattgcaaatctg3' (178)                                                                                                             | 2C9 trunc  | CM               |
| 1368  | 2C9 S220P P221A                      | Fw 5'gatccagaittgcaataatttccctgctatcattgattatttc3' (179) Rev 5'ccgggaaataatcaatgatagcaggaaattattgcaaatctg3' (180)                                                                                                                 | 2C9 trunc  | СМ               |
| 1369  | 2C9 I215V C216Y<br>S220P P221A       | Fw 5'gatccaggtctacaataatttcctgctatcattgattatttc3' (181) Rev 5'ccgggaaataatcaatgatagcaggaaattattgtagacctg3' (182)                                                                                                                  | 2C9 trunc  | CM               |
| 1370  | 2C9 I215V S220P<br>P221A             | Fw 5'gatccaggtctgcaataatttcctgctatcattgattatttc3' (183) Rev 5'ccgggaaataatcaatgatagcaggaaattattgcagacctg3' (184)                                                                                                                  | 2C9 trunc  | CM               |
| 1371  | 2C9 C216Y S220P<br>P221A 1222L       | Fw 5'gatocagatitataataatttccctgctctcattgattatttc3'(185) Rev 5'ccgggaaataatcaatgagagaaagtattataaatctg3'(186)                                                                                                                       | 2C9 trunc  | CM               |
| 1372  | 2C9 C216S S220P<br>P221A             | Fw 5'gatecagatitetaataattteeetgetateattgattattte3' (187) Rev 5'eegggaaataateaatgataggaaattattagaaatetg3' (188)                                                                                                                    | 2C9 trunc  | CM               |
| 1391  | 2C9-FGloop +<br>N258H                | Fw 5'caatgacatgcacaaccctc3' (189) Rev 5'gagggttgtgcatgtccattg3' (190)                                                                                                                                                             | 2C9-FGloop | ÓC               |
| 1392  | 2C9-FGloop +<br>Q252H                | Fw 5'gtaaaagaacaccatgaatcaatggacatg3' (191) Rev 5'catgtccattgattcattgatcttttac3' (192)                                                                                                                                            | 2C9-FGloop | သွ               |

| Clone | Mutations       | Primers (SEQ ID NOs)                                       | Template   | Cloning    |
|-------|-----------------|------------------------------------------------------------|------------|------------|
|       |                 |                                                            |            | strategy   |
| 1394  | 2C9-FGloop +    | Fw 5'gccgccttctaccacctctgcttc3' (193)                      | 2C9-FGloop | သ          |
|       | Q484H           | Rev 5' gaagcagagggggagaggggggc3' (194)                     |            |            |
| 1396  | 2C9-FGloop +    | Fw 5'ggagcccctgcatgagcgacaggagcc3' (195)                   | 2C9-FGloop | သ          |
|       | Q340S           | Rev 5'ggctcctgtcgctcatgcaggggctcc3' (196)                  | •          | ,          |
| 1397  | 2C9-FGloop +    | Fw 5'cceteateacttictggatgttggtggeaattttaag3' (197)         | 2C9-FGloop | သ          |
|       | E415V E438I     | Rev 5'cttaaaattgccaccaacatccagaaagtgatgaggg3' (198)        |            |            |
|       | -               | Fw 5'ggatttgtgtgggaatcgccctggccggcatgg3' (199)             |            |            |
|       |                 | Rev 5'ccatgccggccaggcgattcccacacaaatcc3' (200)             |            |            |
| 1424  | 2C9 P221A I222P | Fw 5'gatetgeaataatttttetgeteecattgattaetteeegggaac3' (201) | 2C9 trunc  | သ          |
|       |                 | Rev 5'gttcccgggaagtaatcaatgggagcagaaaaattattgcagatc3'(202) |            |            |
| 1443  | 2C9-FGloop +    | Fw 5'ccaggaagattgaaaatgtgattggc3' (203)                    | 2C9-FGloop | ည          |
|       | R329N Q484H     | Rev 5' gccaatcacattttcaatctctccfgg3' (204)                 |            |            |
|       |                 | Fw 5'gccgcccttctaccacctctgcttc3'(205)                      |            | ,          |
|       |                 | Rev 5'gaagcagaggtggtagaagggcggc3' (206)                    |            |            |
| 1444  | 2C9-FGloop +    | Fw 5'gaatgaaaacatccacattttgagcagcccc3' (207)               | 1155       | <b>ઝ</b>   |
|       | K206H E415V     | Rev S'ggggcfgctcaaaafgtggatgtttcattc3' (208)               |            |            |
|       |                 | Fw 5'ccctcatcactttctggatgttggtggcaatttfaag3 (209)          |            |            |
|       |                 | Rev 5'cttaaaattgccaccaacatccagaaagtgatgaggg3' (210)        |            |            |
| 1475  | 2C9-FGloop +    | Fw 5'ccegggaactcaccacaaattacttaaaaagg3'(211)               | 1155       | <u>ر</u> د |
|       | K206E N231H     | Rev 5'cgtttttaagtaatttgtggtgagttcccggg3'(212)              |            |            |
| 1477  | 2C9-FGloop +    | Fw 5'ctggaagaggcattagcccactggctgaaag3' (213) FW            | 1155       | သွ         |
|       | K206E F100S     | Rev 5'ctttcagccagtgggctaatgcctcttccag3'(214)               |            |            |
| 1491  | 2C9-FGloop +    | Fw 5'gaaaacatcgagattgcgagcagcccctggatcc3' (215)            | 1155       | <b>)</b>   |
|       | K206E L208A     | Rev 5'ggatccaggggctgctcgcaatctcgatgttttc3' (216)           |            |            |

Table 10. Control 2C9 Proteins.

| Clone | Clone Mutations                           | Primers (SEQ ID NOs)                                                                                                                              | Template  | Cloning<br>strategy |
|-------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
| 1039  | 1039 2C9 P221A                            | Fw 5'cctggatccagatctgcaataatttttctgctatcattgattacttcccgggaactatc3' (217) Rev 5'gatagttcccgggaagtaatcaatgatagcagaaaattattgcagatctggatccagg3' (218) | 2C9 trunc | သွ                  |
| 1365  | 1365 2C9 1215V C216Y<br>P221A 1222L 1223L | Fw 5'gatccaggtctacaataatttctctgctctccttgattatttc3' (219) Rev 5'ccgggaaataatcaaggagagcagagaaattattgtagacctg3' (220)                                | 2C9.trunc | СМ                  |
| 1423  | 2C9 F219P P221A                           | Fw 5'gatccagatctgcaataatccttctgctatcattgattacttcc3' (221) Rev 5'ggaagtaatcaatgatagcagaaggattattgcagatctggatc3' (222)                              | 2C9 trunc | သွ                  |

#### Example 18: Production of 2C9 proteins.

#### Bacteria Expression.

The 2C9 proteins of Example 17 were produced in a bacterial expression system. A single ampicillin resistant colony of XL1 blue cells was grown overnight at 37°C in Terrific Broth (TB) with shaking to near saturation and used to inoculate fresh TB media. Bacteria were grown to an OD600nm = 0.4 in 1 litre of TB broth containing 100  $\mu$ g/ml of ampicillin at 37°C at 185 rpm in 2 litre flask. The heme precursor delta aminolevulinic acid (80 mg/l) was added 30 min prior to induction with 1 mM isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG) and the temperature lowered to 25°C. The bacterial culture was continued under agitation at 25°C for 72 hours.

### Protein Purification

20

25

30

35

The cells were pelleted at 10000 g for 10 min and resuspended in a buffer containing 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 0.1% (v/v) of protease inhibitor cocktail (Calbiochem), 10 mM imidazole, 40 U/ml DNase 1 and 5 mM MgSO<sub>4</sub>.

The cells were lysed by passing twice through a Constant Systems Cell Homogeniser at 10000 psi. The cell debris was then removed by centrifugation at 22000 x g at 4°C for 30 min.

Detergent IGEPAL CA630 (Sigma) was added dropwise from a 10% stock solution to the lysate at a final concentration of 0.3% (v/v) and the lysate was incubated with previously washed NiNTA resin (Qiagen) overnight at 4°C, using agitation. The protein bound-NiNTA resin was pelleted by centrifugation at 2000 g for 5 min at 4°C. The resin was washed with 30 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 10 mM imidazole, 1:1000 dilution of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630 and the resin pelleted by centrifugation at 2000 xg for 5 min at 4°C. The resin was then washed with 15 resin volumes of 500 mM KPi, pH 7.4, 20% glycerol, 10 mM mercaptoethanol, 20 mM imidazole, 0.1% (v/v) protease inhibitors, 0.3% IGEPAL CA630 and the resin recovered by centrifugation as described above.

The resin was packed into a column at 4°C and the cytochrome P450 eluted with 500 mM KPi, pH 7.4, 20 % glycerol, 10 mM mercaptoethanol, 300 mM imidazole, 1:1000(v/v) of protease inhibitor cocktail, 0.3%(v/v) IGEPAL CA630.

The cytochrome P450 obtained from the NiNTA column was quickly desalted into 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA using a HiPrep 26/10 desalting column (Pharmacia), at a flow rate of 5 ml/min.

The desalted cytochrome P450 was directly applied to a CM Sepharose column (Pharmacia), previously equilibrated with 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA. The following step elution was applied: wash with 20 column volumes of 10 mM KPi, pH 7.4, 20% glycerol, 2.0 mM DTT, 1 mM EDTA, wash with the above buffer with 75 mM KCl in order to remove any trace of detergent, then eluted with the above buffer with KCl concentration increased to 500 mM.

The protein was concentrated up to 40 mg/ml using a microconcentrator for crystallization assays. The quality of the final preparation was evaluated by:

### (a) SDS polyacrylamide gel electrophoresis

This was performed using commercial gels (Nugen) followed by CBB staining according to the manufacturer's instructions. The purity as estimated by scanning a digital image of a gel was estimated to be at least 95%.

### (b) Mass Spectroscopy

5

10

15

20

25

Mass spectrometry was performed using a Bruker BioTOF II electrospray time of flight instrument. Samples were either diluted by a factor of 1000 straight from storage buffer into methanol/water/formic acid (50:48:2 v/v/v), or subjected to a reverse phase separation using a C4 Millipore 'zip-tip' or a C4 HPLC column, before being diluted into methanol/water/formic acid. Calibration was achieved by measurement of the 2+ and 1+ charge states of a peptide mixture containing Bombesin and angiotensin I or by using the multiple charge states of Horse Myoglobin. Data were acquired in the m/z range 200 to 2000 and were subsequently processed using Bruker's X-mass program. Mass accuracy was expected to be better than 1 in 10 000 (100ppm).

Predicted and observed mass spectrometry data for the proteins is listed in Table 12.

Table 12. Mass Spectrometry Data for 2C9 proteins.

| Clone ID | Calculated Mass (without N-met) (Da) | Observed Mass (Da) | Mass Diff (without N-met) (ppm) |
|----------|--------------------------------------|--------------------|---------------------------------|
| 1015     | 53964                                | 53966.65           | 2.65                            |
| 1039     | 53907.96                             | 53911.25           | 3.29                            |
| 1072     | 53948.02                             | 53950.23           | 2.21                            |
| 1078     | 53944.03                             | 53944              | -0.03                           |
| 1081     | 53964.98                             | 53967              | 2.02                            |
| 1082     | 53903.9                              | 53909              | 5.1                             |
| 1085     | 53964.98                             | 53964.95           | -0.03                           |
| 1097     | 53964.98                             | 53971              | 6.02                            |
| 1100     | 53963.06                             | 53971              | 7.94                            |
| 1101     | 53963.96                             | 53965              | 1.04                            |
| 1102     | 53928.86                             | 53930.37           | 1.51                            |

| Clone ID | Calculated Mass (without N-met) (Da) | Observed Mass (Da) | Mass Diff (without N-met) (ppm) |
|----------|--------------------------------------|--------------------|---------------------------------|
| 1115     | 53905.96                             | 53905              | -0.96                           |
| 1116     | 53906.9                              | 53910              | 3.1                             |
| 1117     | 53906.9                              | 53909              | 2.1                             |
| 1118     | 53906.9                              | 53907              | 0.1                             |
| 1121     | 53906.9                              | 53910              | 3.1                             |
| 1122     | 53905.96                             | 53908              | 2.04                            |
| 1123     | 53792.72                             | 53795.16           | 2.44                            |
| 1155     | 53964.94                             | 53964.84           | -0.1                            |
| 1165     | 53624.65                             | 53627              | 2.35                            |
| 1220     | 53933.99                             | 53936.03           | 2.04                            |
| 1319     | 53937.92                             | 53942.38           | 4.46                            |
| 1339     | 53948                                | 53953              | 5                               |
| 1340     | 53889.96                             | 53892              | 2.04                            |
| 1361     | 53978.03                             | 53978.83           | 0.8                             |
| 1362     | 53903.97                             | 53901.62           | -2.35                           |
| 1363     | 53964                                | 53964.32           | 0.32                            |
| 1364     | 53964                                | 53966.32           | 2.32                            |
| 1365     | 53953.96                             | 53955.22           | 1.26                            |
| 1366     | 53918                                | 53920.06           | 2.06                            |
| 1367     | 53918                                | 53919.31           | 1.31                            |
| 1368     | 53918                                | 53900.75           | 33.02                           |
| 1369     | 53964                                | 53964.08           | 0.08                            |
| 1370     | 53903.97                             | 53907.52           | 3.55                            |
| 1371     | 53978.03                             | 53978.74           | 0.71                            |
| 1372     | 53901.93                             | 53901.83           | -0.1                            |
| 1391     | 53987.04                             | 53987.61           | 0.57                            |
| 1392     | 53973.01                             | 53975.41           | 2.4                             |
| 1394     | 53973.01                             | 53973.65           | 0.64                            |
| 1396     | 53922.95                             | 53924.21           | 1.26                            |
| 1397     | 53918.06                             | 53914.83           | -3.23                           |
| 1423     | 53857.9                              | 53858.94           | 1.04                            |
| 1424     | 53891.92                             | 53891.92           | 0                               |
| 1443     | 53930.93                             | 53932.6            | 30.97                           |
| 1444     | 53942.98                             | 53943.2            | 0.22                            |
| 1475     | 53987.98                             | 53988.71           | 0.73                            |
| 1477     | 53904.84                             | 53907.07           | 2.23                            |
| 1491     | 53922.86                             | 53923.9            | 1.04                            |

# Example 19: Activity of 2C9 Proteins of the invention.

Activity assays on P450 2C9 were performed in a 96-well plate assay format with a Fluoroscan Ascent FL Instruments (Labsystem), using the 7-methoxy-4-(trifluoromethyl)-coumarin as a fluorescent substrate.

Fifteen pmoles of purified P450 were reconstituted with 0.1 unit of purified human oxidoreductase, in presence of 137  $\mu$ M of substrate 7-methoxy-4-(trifluoromethyl)-coumarin

and a NADPH regenerating system that includes 0.14 mM NADP $^+$ , 0.37 mM Glucose-6-phosphate, 0.38 mM MgCl<sub>2</sub> and 2.8 unit/ml glucose-6-phosphate dehydrogenase, in 180  $\mu$ l final volume of 25 mM KPi, pH 7.4. Incubations were performed at 37°C for 40 minutes and 37.5 pmoles of metabolite standard 7-hydroxy -4-(trifluoromethyl)-coumarin were used to determinate the metabolic rate. The excitation and emission wavelengths used were respectively 409 and 530 nm. The results for the clones tested are set out in Table 13.

Table 13. Activity Data.

| Clone             | Activity |
|-------------------|----------|
| 1015 (2C9-FGloop) | 0.26     |
| 1072 (2C9-P220)   | 0.43     |
| 1361              | 0.68     |
| 1362              | 0.33     |
| 1363              | 0.27     |
| 1364              | 0.15     |
| 1366              | 0.27     |
| 1367              | 0.56     |
| 1368              | 0.52     |
| 1369              | 0.43     |
| 1370              | 0.69     |
| 1371              | 0.17     |
| 1372              | 0.20     |

As a control, the activity of the protein 2C9trunc (wild type) and 1365 (which both have no proline at 220) was determined and found to be 0.47 and 0.43, respectively.

#### Example 20: Crystallisation of 2C9 proteins.

Crystals of the 2C9 mutants were grown using the hanging drop vapour diffusion method.

Protein at 10-60 mg/ml (usually 40 mg/ml) in 10mM Kpi pH 7.4, 0.5 M KCl, 2mM DTT, 1mM EDTA, 20% glycerol, was mixed in a 1:1 ratio, using 0.5 µl drops, with a reservoir solution. A number of different 2C9 proteins of the invention formed crystals under the following reservoir solution conditions:

0.05-0.1 M Tris-HCl pH 8.0-8.8, 0.1-0.2 M Lithium sulphate, 10-15% PEG 4000;

20 0.1 M Tris pH 8.0-8.8, 15-30% PEG 400, 5% PEG 8000, 10% glycerol; and 0.1-0.4 M KH<sub>2</sub>PO<sub>4</sub>, 0-25 % PEG 3350, 0-10% glycerol.

Further reservoir solutions containing the conditions listed in Table 11 (Figure 6) were also used to obtain further crystals of various different 2C9 proteins of the invention. In Table 11,

- crystallisation of the clones identified by clone number was obtained by using a reservoir solution containing the constituent parts listed in the columns, wherein these are as follows: Buffer (M)-Molarity of buffer (in M).
  - Buffer-Buffer type.
  - pH-pH of buffer used.
- 30 Salt (M)-Molarity of salt (in M).

77

Salt-Salt type.

Ppt (M)-Molarity of precipitant (in M).

Ppt-Precipitant type.

Ppt 2 (M)-Molarity of precipitant 2 (in M).

Ppt 2-Precipitant 2 used.

Add M-Molarity of additive (in M).

Additive-Additive used.

### Example 21: 2C9-2C19 Chimeras.

Seven further 2C9 proteins were generated which were based upon substitution into 2C9 of residues found in 2C19. Three chimeras (1661, 1662 and 1664) were generated by site directed mutagenesis as described in Example 17 above and using the primers listed below in Table 14. The four other chimeras, 1595, 1600, 1610 and 1632 were generated by cloning methods as follows:

15

#### Chimera 1595

The mutant 1155 I99H was first generated by the Quikchange<sup>TM</sup> mutagenesis method, using the oligonucleotides listed in Table 14. Residues 227 to 339 were then substituted in the construct 1155 I99H by those present in cytochrome P450 2C19 (clone 1026) by cloning the Xmal/SphI 339-bp DNA fragment of 2C19 into the plasmid pCW-1155 I99H that was opened by the same restriction enzymes, to yield the chimera 1595.

#### Chimera 1600

Chimera 1600 was yielded from chimera 1595 by substituting residues 1 to 282 by those found in the 1155 I99H construct. A silent restriction site *EcoRI* (underlined) was introduced into the 1155 I99H construct at position 784 by PCR amplification using the following 5'oligonucleotides: 5'ctttcaatagtgaattcagatggttggttgtgc3' (SEQ ID NO:226) and 5'tatggctaagaaaacgagctctaaagggc3' (SEQ ID NO:225) with the EcoRI restriction site underlined. A total of 28 cycles at 94 °C for 30 sec, 55 °C for 1 min, and 72 °C for 1 min were followed by an extension of 10 min at 72 °C. The 795-bp PCR fragment was double digested with *NotI/EcoRI* and purified by agarose gel extraction and elution. The NotI/EcoRI DNA fragment was then cloned into the plasmid 1595 opened by the NotI/EcoRI restriction enzymes to yield the 1155 I99H/1595 chimera. Finally, the L362I change was introduced in the 1155 I99H/1595 chimera by the Quikchange<sup>TM</sup> mutagenesis method, using the oligonucleotides listed in Table 14, to yield the chimera 1600.

#### Chimera 1610

35

Chimera 1610 was yielded from the construct 1155 by substituting residues 215 to 328 by those found in the chimera 1600. The BamHI/AffIII DNA fragment was isolated from the chimera

1600 and cloned into the plasmid pCW-1155 opened with the BamHI/AffIII restriction enzymes.

### Chimera 1632

The construct 1632 was yielded from the chimera 1600 by substituting residues 329 to 476 in 1600 by those found in the construct 1155. The AffIII/SalI DNA fragment was isolated from the construct 1155 and cloned into the plasmid pCW-1600 opened with the AffIII/SalI restriction enzymes. Table 14 sets out the chimeras.

#### 10 Table 14. 2C9-2C19 chimeras

| Clone    | Mutations          | Primers (SEQ ID NOs)                                            |
|----------|--------------------|-----------------------------------------------------------------|
| 1595     | 2C9-FGloop + K206E | Fw 5'ctggaagaggccatttcccactggctgaaag3' (223)                    |
|          | 199H V237L K241E   | Rev 5'ctttcagccagtgggaaatggcctcttccag3' (224)                   |
|          | Y243D M257I Q261R  |                                                                 |
|          | M269I H276Q P279Q  | ·                                                               |
| İ        | S286N E288V N289I  |                                                                 |
|          | V292A F295L I331V  |                                                                 |
| 1600     | 2C9-FGloop + K206E | Fw 5'tatggctaagaaaacgagctctaaagggc3' (225)                      |
|          | 199H S286N E288V   | Rev 5'ctttcaatagtgaattcagatggttggttgtgc3'[EcoRI] (226)          |
| İ        | N289I V292A F295L  | Fw 5'gagatacattgaccttattcccaccagcctgc3' [L3621] (227)           |
|          | L362I I331V        | Rev 5'gcaggctggtgggaataaggtcaatgtatctc3' (228)                  |
| 1610     | 2C9-FGloop + K206E | (see text)                                                      |
|          | S286N E288V N289I  | No. 1, The Land                                                 |
|          | V292A F295L        |                                                                 |
| 1632     | 2C9-FGloop + K206E | (see text)                                                      |
|          | 199H S286N E288V   |                                                                 |
| L        | N2891 V292A F295L  |                                                                 |
| 1661     | 2C9-FGloop + K206E | Fw 5'ctgaatttactattgaaaacttggaaatcactgcagttgacttgtttgg3' (229)  |
|          | 199H S286N N2891   | Rev 5'ccaaacaagtcaactgcagtgatttccaagttttcaatagtaaattcag3' (230) |
| 1662     | 2C9-FGloop + K206E | Fw 5'gaatttactattgaaaacttggaaaacactgcagttg3' (231)              |
| <u> </u> | S286N              | Rev 5'caactgcagtgttttccaagttttcaatagtaaattc3' (232)             |
| 1664     | 2C9-FGloop + K206E | Fw 5'gaatttactattgaaaacttggaaaacactgcagttg3' (233)              |
| 1 .      | S286N N289I        | Rev 5'caactgcagtgttttccaagttttcaatagtaaattc3' (234)             |
|          |                    | Fw 5'ctattgaaagcttggaaatcactgcagttgacttg3' (235)                |
|          |                    | Rev 5'caagtcaactgcagtgatttccaagctttcaatag3' (236)               |

### Example 22: Production of 2C9-2C19 chimeras.

These protein were produced as described above for the 2C9 proteins of Example 18 above.

15 Predicted and observed mass spectrometry data for the proteins is listed in Table 15.

Table 15. Mass Spectrometry for 2C9 proteins.

| Clone ID | Calculated Mass (without N-met) (Da) | Observed Mass (Da) | Mass Diff (without N-met) (ppm) |
|----------|--------------------------------------|--------------------|---------------------------------|
| 1595     | 53889.79                             | 53891.6            | 1.81                            |
| 1600     | 53908.92                             | 53907.07           | -1.85                           |
| 1610     | 53898.97                             | 53900.75           | 1.78                            |
| 1632     | 53922.95                             | 53922.27           | -0.68                           |
| 1661     | 54015                                | 54018.32           | 3.32                            |
| 1662     | 53991.97                             | 53997.11           | 5.14                            |
| 1664     | 53908.92                             | 53910.93           | 37.29                           |

### Example 23: Validation of 2C9-FGloop K206E.

The substrate specificity of 2C9-FGloop K206E was characterized by performing metabolic assays with diclofenac as substrate, in combination with inhibition assays with six substrates/inhibitors of 2C9 reported in the literature

The 4-diclofenac hydroxylase assays (Figure 11), determined following the method described by Mancy et al., (Biochemistry (1999) 38, 14264-14270) indicate that the Km value of 2C9FGloop K206E mutant for diclofenac is similar to that obtained for the native N-truncated 2C9, and falls within the range of values reported in the literature for the native full-length 2C9.
However, cytochrome P450 2C9-FGloop K206E exhibits a two-fold lower Vmax value that may reflect altered interactions with its redox partner. Results from the inhibition studies (Table 16) also indicate that the inhibition profile of 2C9-FGloop K206E is unchanged when compared to the native N-truncated enzyme, with Ki and IC50 values that match closely those reported in the literature.

These results, altogether, clearly demonstrate that the mutations introduced in the FG loop region to promote the crystallization of 2C9 do not change the substrate specificity, nor do they modify the integrity of the substrate-binding pocket. Therefore, 2C9-FGloop K206E represents a suitable model of the native 2C9 to study the binging mode of chemical compounds into the active site.

Table 16. Activity of 2C9-FGloop K206E (1155)

| Compound           | 2C9<br>Published data (μΜ) | 2C9trunc<br>IC50/Ki (μM) | 2C9-FGloop<br>K206E |
|--------------------|----------------------------|--------------------------|---------------------|
|                    | · donotion data (pr.1)     | 1059/11/ (μ.ν.)          | IC50/Ki (μM)        |
| Bisphenol A        | Km=4 .                     | 4.8/2.9                  | 7.8/3.3             |
| Fluoxetine         | Ki=13                      | 1.5/1.5                  | 2.1/4.1             |
| Phenytoin          | Ki=6                       | 250/116                  | 40/62               |
| Sulfaphenazole     | Ki=0.5 to 1.6              | 0.4/0.9                  | 1.6/0.93            |
| 4 Phenyl Imidazole | NA                         | 3/1.6                    | 2.8/1.2             |
| Fluvoxamine        | Ki=2-5                     | 0.6/0.7                  | 0.4/0.85            |

20

#### Example 24: Activity of 2C9-2C19 Chimeras.

The substrate specificity of the proteins made in Example 22 was characterized by performing inhibition assays with six substrates/inhibitors of 2C19 and 2C9 reported in the literature.

5 The activity and inhibition assays were performed on the 2C9-2C19 chimeric proteins and the results are shown in Table 17.

Table 17. Activity of 2C9-2C19 chimeras.

|                     | AA<br>differences | 7-MFC<br>(min-1) | Sulfaphenazole<br>Ki (µM) | Diclofenac<br>Ki (μΜ) | Piroxicam<br>Ki (μΜ) | 4-Phenyl<br>Imidazole<br>Ki (µM) | Fluvoxamine<br>Ki (µM) |
|---------------------|-------------------|------------------|---------------------------|-----------------------|----------------------|----------------------------------|------------------------|
| 1155                | -                 | 0.23             | 1                         | 4                     | 30                   | 3                                | 0.4                    |
| 2C19<br>(published) | 43                | 2.98             | >500                      | 231                   | 133                  | 0.5                              | 1.5                    |
| 1595                | 15                | 3.2              |                           |                       |                      |                                  |                        |
| 1600                | 8                 | 3.3              | >500                      | >200                  | >100                 | 1                                | <1                     |
| 1632                | 6                 | 3.31             | >500                      | >200                  | >100                 | 1.1                              | 1.6                    |
| 1661                | 3                 | 2.14             | >500                      | > 200                 | >100                 | 0.9                              | 0.5                    |

As can be seen 1632 and 1661 display 2C19 like activity. Hence, a 2C9-2C19 chimera can also be made by making the following changes I99H S286N E288V N289I V292A F295L. An alternative minimal mutant is I99H S286N N289I.

#### Example 25: Crystallisation of 2C9-2C19 chimeric proteins.

- 15 Crystals were prepared as described in Example 20 above. The crystals were grown over a reservoir solution containing the following conditions:
  - 0.05-0.1 M Tris-HCl pH 8.0-8.8, 0.1-0.2 M Lithium sulphate, 10-15% PEG 4000;
  - 0.1 M Tris pH 8.0-8.8, 15-30% PEG 400, 5% PEG 8000, 10% glycerol; and
  - 0.1-0.4 M KH<sub>2</sub>PO<sub>4</sub>, 0-25 % PEG 3350, 0-10% glycerol; and also the conditions listed in Table
- 20 11 (Figure 6).

## Example 26: Homology Modelling of 2C19.

Using homology modelling, a model of the 2C19 protein was produced. The model was constructed from an alignment of the 2C9 template structure and the target sequence using CLUSTALW. The alignments were adjusted with information from the PSIPRED secondary structure program and optimised manually. The program MODELLER was used to build and optimise the three-dimensional models, with the final model being the one which had the lowest energy and closely satisfied the restraints generated by the program. The 2C19 model produced is set out in Table 18 (Figure 7).

This was performed by determining the residues that differ in 2C18 from 2C19 and using the techniques described above in Example 25 to determine the coordinates of those residues. These coordinates, set out in Table 19 (Figure 8), may be substituted into the 2C9 or 2C19 coordinate tables.

### Example 28: Homology modelling of 2C8.

This was performed by determining the residues that differ in 2C8 from 2C19 and using the techniques described above in Example 25 to determine the coordinates of those residues. These coordinates, set out in Table 20 (Figure 9), may be substituted into the 2C9 or 2C19 coordinate tables.

### Summary

AUGUSTANAS (). Augustas salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah

5

10

While the invention has been described in conjunction with the exemplary embodiments

described above, many equivalent modifications and variations will be apparent to those skilled
in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention
set forth are considered to be illustrative and not limiting. Various changes to the described
embodiments may be made without departing from the spirit and scope of the invention.

order att organis Offenske flyddiaeth

e politica area problida a

WO 03/035693 PCT/GB02/04872 82

#### Claims:

A P450 2C9 protein comprising residues 31 to 490 of the wild type sequence and which 1. comprises the following changes:

position 220 or position 222 is proline; optionally up to 30 other positions are altered; and wherein the region N-terminal to position 31 is other than wild-type.

- The protein of claim 1 wherein position 221 is not proline. 2.
- The protein of claim 1 or 2 wherein said up to 30 other positions are altered to introduce 3. residues found in the corresponding position in another cytochrome P450 molecule.
- The protein of claim 3 wherein said another cytochrome P450 molecule is selected from 4. the group consisting of 2C19, 2C18 and 2C8.
- The protein of claim 1 which is selected from the group consisting of SEQ ID 5. NO:(2x+2), wherein x is an integer from 1 to 52.
- The protein of any one of the preceding claims in crystal form. 6.
- A crystallisable composition comprising a 2C9 P450 protein complexed to a ligand. 7.
- A crystal of P450 2C9 protein having a trigonal space group P321. 8.
- 9. The crystal of claim 8 with unit cell dimensions selected from the group:

```
a = b = 165.46 \text{ Å} \pm 5\%, and c = 111.70 \text{ Å} \pm 5\%;
a = b = 161.35 \text{Å} \pm 5\%, and c = 110.75 \text{ Å} \pm 5\%; and
a = b = 163.95 \text{Å} \pm 5\%, and c = 111.06 \text{ Å} \pm 5\%.
```

- A crystal of P450 2C9 protein having a resolution better than 3.1 Å. 10.
- A crystal of P450 protein having the structure defined by the co-ordinates of Table 1, 2, 11. 3 or 8.
- A method of making P450 2C9 protein crystals which method comprises the hanging 12. drop vapour-diffusion technique, using a precipitant solution comprising 0-0.2 M Tris-HCl (pH 8-9), 0-0.25 M Li2SO4, 0-20% PEG 4000.
- A computer-based method for the analysis of the interaction of a molecular structure 13. with a P450 structure, which comprises:

engladieni engladieni

providing the P450 structure of Table 1, 2, 3, 8 or 18 or selected coordinates thereof; providing a molecular structure to be fitted to said P450 structure or selected coordinates thereof; and

fitting the molecular structure to said P450 structure.

- 14. The method of claim 13 wherein said selected coordinates include atoms from one or more of the residues of Table 4.
- 15. The method of claim 14 wherein at least one of said atoms is from a residue of Table 6.
- 16. The method of any one of claims 13 to 15 which further comprises the steps of: obtaining or synthesising a compound which has said molecular structure; and contacting said compound with P450 protein to determine the ability of said compound to interact with the P450.
- 17. The method of any one of claims 13 to 15 which further comprises the steps of: obtaining or synthesising a compound which has said molecular structure; forming a complex of a 2C9 P450 protein and said compound; and analysing said complex by X-ray crystallography to determine the ability of said compound to interact with the P450.
- 18. The method of any one of claims 13 to 15 which further comprises the steps of: obtaining or synthesising a compound which has said molecular structure; and determining or predicting how said compound is metabolised by said P450 structure; and modifying the compound structure so as to alter the interaction between it and the P450.
- 19. A compound having the modified structure identified using the method of claim 18.
- 20. A method of predicting three dimensional structures of P450 homologues or analogues of unknown structure, the method comprises the steps of:

aligning a representation of an amino acid sequence of a target P450 protein of unknown three-dimensional structure with the amino acid sequence of the P450 of Table 1, 2, 3, 8 or 18 to match homologous regions of the amino acid sequences;

modelling the structure of the matched homologous regions of said target P450 of unknown structure on the corresponding regions of the P450 structure as defined by Table 1, 2, 3, 8 or 18; and

determining a conformation for said target P450 of unknown structure which substantially preserves the structure of said matched homologous regions.

WO 03/035693 PCT/GB02/04872 84

- 21. The method of claim 20 wherein said target P450 protein is selected from the group consisting of 2C8, 2C18 and 2C19.
- A chimaeric protein having a binding cavity which provides a substrate specificity 22. substantially identical to that of P450 2C9 protein,

wherein the chimaeric protein binding cavity is lined by a plurality of atoms which correspond to selected P450 2C9 atoms lining the P450 2C9 binding cavity, the relative positions of said plurality of atoms corresponding to the relative positions, as defined by Table 1, 2, 3 or 8, of said selected P450 2C9 atoms.

- A method for determining the structure of a protein, which method comprises; 23. providing the co-ordinates of Table 1, 2, 3, 8 or 18 or selected coordinates thereof, and either (a) positioning said co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein, or (b) assigning NMR spectra peaks of said protein by manipulating said co-ordinates.
- 24. A method for determining the structure of a compound bound to P450 protein, said method comprising:

providing a crystal of P450 protein; soaking the crystal with the compound to form a complex; and determining the structure of the complex by employing the data of Table 1, 2, 3, 8 or 18 or a portion thereof.

A method for determining the structure of a compound bound to P450 protein, said 25. method comprising:

mixing P450 protein with the compound;

crystallizing a P450 protein-compound complex; and

determining the structure of the complex by employing the data of Table 1, 2, 3, 8 or 18 or a portion thereof.

A method of assessing the ability of a compound to interact with P450 2C9 protein 26. which comprises:

obtaining or synthesising said compound;

forming a crystallised complex of a P450 2C9 protein and said compound, said complex diffracting X-rays for the determination of atomic coordinates of said complex to a resolution of better than 3.1 A; and

analysing said complex by X-ray crystallography to determine the ability of said compound to interact with the P450 2C9 protein.

- 27. A computer system, intended to generate structures and/or perform optimisation of compounds which interact with P450, P450 homologues or analogues, complexes of P450 with compounds, or complexes of P450 homologues or analogues with compounds, the system containing computer-readable data comprising one or more of:
- (a) atomic coordinate data according to Table 1, 2, 3, 8 or 18, said data defining the three-dimensional structure of P450 or at least selected coordinates thereof;
- (b) structure factor data for P450, said structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3, 8 or 18;
- (c) atomic coordinate data of a target P450 protein generated by homology modelling of the target based on the data of Table 1, 2, 3, 8 or 18;
- (d) atomic coordinate data of a target P450 protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1, 2, 3, 8 or 18; and
  - (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 28. A computer system according to claim 27, wherein said atomic coordinate data is for at least one of the atoms provided by the residues of Table 4.
- 29. A computer system according to claim 27 or 28 comprising:
- (i) a computer-readable data storage medium comprising data storage material encoded with said computer-readable data;
- (ii) a working memory for storing instructions for processing said computer-readable data; and
- (iii) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design.
- 30. A computer system according to claim 29 further comprising a display coupled to said central-processing unit for displaying said structures.
- 31. A method of providing data for generating structures and/or performing optimisation of compounds which interact with P450, P450 homologues or analogues, complexes of P450 with compounds, or complexes of P450 homologues or analogues with compounds, the method comprising:
- (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, 2, 3, 8 or 18, said data defining the three-dimensional structure of P450, or the coordinates of a plurality of atoms of P450; (b) structure factor data for P450, said structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3, 8 or 18; (c) atomic coordinate data of a target P450 homologue or analogue generated by homology modelling of the target based on the data of Table 1, 2, 3, 8 or 18; (d) atomic coordinate data of a protein generated by interpreting X-ray

PCT/GB02/04872 WO 03/035693 86

crystallographic data or NMR data by reference to the data of Table 1, 2, 3, 8 or 18; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and

- (ii) receiving said computer-readable data from said remote device.
- A computer-readable storage medium comprising a data storage material encoded with 32. computer-readable data, wherein the data are defined by:
- (a) atomic coordinate data according to Table 1, 2, 3, 8 or 18, said data defining the three-dimensional structure of P450 or at least selected coordinates thereof;
- (b) structure factor data for P450, said structure factor data being derivable from the atomic coordinate data of Table 1, 2, 3, 8 or 18;
- (c) atomic coordinate data of a target P450 protein generated by homology modeling of the target based on the data of Table 1, 2, 3, 8 or 18;
- (d) atomic coordinate data of a target P450 protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1, 2, 3, 8 or 18; and
  - (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 33. A computer-readable storage medium according to claim 32, wherein said atomic coordinate data is for at least one of the atoms provided by the residues of Table 4.
- A computer-readable storage medium, comprising a data storage material encoded with 34. computer readable data, wherein the data are defined by all or a portion of the structure coordinates of the P450 protein of Table 1, 2, 3, 8 or 18, or a homologue of P450, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms of Table 1, 2, 3, 8 or 18 of not more than 2.0 Å.
- 35. A computer-readable storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates for the P450 protein according to Table 1, 2, 3, 8 or 18; which data, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
- A nucleic acid comprising a sequence coding for the 2C9 protein of any one of claims 1 36. to 5.
- 37. A vector comprising the nucleic acid of claim 36 operably linked to a promoter.
- 38. A host cell carrying the vector of claim 37.

- 39. A method of making the protein of any one of claims 1 to 5 comprising culturing the host cell of claim 38. under conditions to express the protein, and recovering the protein.
- 40. The method of claim 39 which comprises:
  - (a) expressing in a host cell culture said cytochrome 2C9 P450 molecule;
- (b) recovering said cells from said culture and suspending said cells in salt buffer having a conductivity of from 12 to 110 mS/cm;
  - (c) lysing said cells and removing cell debris to provide a high-salt lysate;
- (d) adding detergent to said lysate (for example 0.015% to 1.2% v/v) to provide a high-salt-detergent lysate;
  - (e) recovering said P450 from said lysate.
- 41. The method of claim 40 wherein step (e) is performed by:
  - (e(i)) binding said 2C9 P450 to an affinity support;
  - (e(ii)) rinsing said support in a high-salt-detergent wash;
- (e(iii)) removing said 2C9 P450 in a high-salt-detergent buffer to provide a P450-high-salt-detergent preparation; followed by
- (f) exchanging the buffer to a low ionic strength buffer without detergent by size-exclusion chromatography to provide a P450-low-salt preparation.
- 42. The method of claim 41 which further comprises crystallising the protein.
- 43. The method of claim 42 wherein the protein is crystallised by the hanging drop method of claim 12 to provide a crystal.
- 44. The method of claim 43 which further comprises obtaining an X-ray diffraction pattern of the crystal.
- 45. Use of the atomic coordinate data or selected coordinates thereof of any one of Tables 1, 2, 3, 8 or 18 for the provision of a computer-generated structure of a cytochrome P450 molecule bound to a ligand.

## Figure 1

## Table 1

|                                        | 377014 | •  | CB  | EDO 3 | 30   | -25 600              | 07 020  | 61 032 | 1 00 76 70 |     |                                 |
|----------------------------------------|--------|----|-----|-------|------|----------------------|---------|--------|------------|-----|---------------------------------|
|                                        | MOTA   | 1  | СВ  | PRO A |      | -35.689              | 87.020  | 61.932 | 1.00 76.79 | A   | C                               |
|                                        | MOTA   | 2  | CG  | PRO A | - 30 | -37.155              | 86.821  | 61.522 | 1.00 77.60 | A   | C                               |
|                                        | ATOM   | 3  | С   | PRO A | 30   | -34.403              | 87.007  | 59.756 | 1.00 73.52 | A   | С                               |
|                                        | MOTA   | 4  | 0   | PRO A | 30   | -34.732              | 85.846  | 59.559 | 1.00 73.18 | A   | ō                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |
|                                        | MOTA   | 5  | N   | PRO A | 30   | -36.326              | 88.579  | 60.199 | 1.00 77.30 | A   | N                               |
|                                        | ATOM   | 6  | CD  | PRO A | 30   | -37.563              | 88.163  | 60.888 | 1.00 77.81 | A   | C                               |
|                                        | ATOM   | 7  | CA  | PRO A | 30   | -35.157              | 87.870  | 60.780 | 1.00 75.82 | A.  | C                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |
|                                        | MOTA   | 8  | N   | PRO A | 31   | -33.382              | 87.580  | 59.095 | 1.00 71.70 | A   | N                               |
|                                        | ATOM   | 9  | CD  | PRO A | 31   | -32.994              | 88.996  | 59.228 | 1.00 72.56 | A   | С                               |
|                                        | ATOM   | 10 | CA  | PRO A | 31   | -32.546              | B6.922  | 58.087 | 1.00 70.15 | A   | С                               |
|                                        |        |    | СВ  | PRO A | 31   |                      | 87.951  | 57.828 |            |     | č                               |
|                                        | ATOM   | 11 |     |       |      | -31.447              |         |        | 1.00 71.10 | A   |                                 |
|                                        | ATOM   | 12 | CG  | PRO A | 31   | -32.166              | 89.233  | 57.967 | 1.00 72.05 | A   | С                               |
|                                        | ATOM   | 13 | С   | PRO A | 31   | -31.974              | 85.608  | 58.589 | 1.00 67.98 | A   | С                               |
| •                                      | MOTA   | 14 | 0   | PRO A | 31   | -31.700              | 85.468  | 59.774 | 1.00 67.76 | A   | 0                               |
|                                        |        |    |     |       |      |                      |         | 57.683 |            |     | N                               |
|                                        | MOTA   | 15 | N   | GLY A | 32   | -31.794              | 84.653  |        | 1.00 65.66 | A   |                                 |
|                                        | MOTA   | 16 | CA  | GLY A | 32   | -31.254              | 83.360  | 58.080 | 1.00 63.13 | A   | C                               |
|                                        | ATOM   | 17 | С   | GLY A | 32   | -29.964              | 83.490  | 58.871 | 1.00 61.36 | A   | С                               |
|                                        | ATOM   | 18 | 0   | GLY A | 32   | -29.252              | 84.482  | 58.719 | 1.00 62.17 | A   | 0                               |
|                                        |        |    |     |       |      |                      |         |        |            |     | N                               |
|                                        | MOTA   | 19 | N   | PRO A | 33   | -29.642              | 82.506  | 59.731 | 1.00 59.37 | A   |                                 |
|                                        | MOTA   | 20 | CD  | PRO A | 33   | -30.530              | 81.363  | 59.991 | 1.00 58.87 | A   | С                               |
|                                        | ATOM   | 21 | CA  | PRO A | 33   | -28.447              | 82.429  | 60.580 | 1.00 58.22 | A   | C                               |
|                                        | MOTA   | 22 | ÇВ  | PRO A | 33   | -28.484              | 80.994  | 61.081 | 1.00 58.60 | A   | c                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |
| •                                      | MOTA   | 23 | CG  | PRO A | 33   | -29.936              | 80.761  | 61.245 | 1.00 59.87 | A   | Ç ,                             |
| •                                      | MOTA   | 24 | С   | PRO A | 33   | -27.163              | 82.735  | 59.812 | 1.00 57.40 | A   | C .                             |
|                                        | ATOM   | 25 | 0   | PRO A | 33   | -27.114              | 82.572  | 58.592 | 1.00 57.48 | A   | 0                               |
|                                        | ATOM   | 26 | N   | THR A | 34   | -26.122              | 83.156  | 60.523 | 1.00 56.01 | A   | N                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |
| Secretary and Company of the following | ATOM   | 27 | CA  | THR A | 34   | -24.866              | 83.503  | 59.868 | 1.00 56,18 | A   | C. Salarana Salarana            |
| . Littligeria gliffliger               | ATOM   | 28 | CB  | THR A | 34   | -24.976              | 84.896  | 59.164 | 1.00 59.00 | , А | Contact this termination of the |
|                                        | ATOM   | 29 | 0G1 | THR A | . 34 | -23.680              | 85.318  | 58.718 | 1.00 60.40 | A   | 0                               |
|                                        | MOTA   | 30 | CG2 |       | 34   | -25.519              | 85.963  | 60.137 | 1.00 59.99 | A   | c                               |
|                                        |        |    |     | THR A |      |                      |         |        |            |     | Č                               |
| 1946 (27 5.38 5                        | ATOM   | 31 | C   |       | 34   | -23.663              | 83.582  | 60.783 | 1.00 53.95 | A   |                                 |
|                                        | ATOM   | 32 | 0   | THR A | 34   | -23.773              | 83.964  | 61.939 | 1.00 55.62 | A   | 0                               |
|                                        | ATOM   | 33 | N   | PRO A | 35   | -22.486              | 83.226  | 60.275 | 1.00 51.24 | A   | No septiment of the first       |
|                                        | ATOM   | 34 | CD  | PRO A | 35   | -22.098              | 82.599  | 59.005 | 1.00 50.33 | A   | С                               |
|                                        |        |    | ÇA  |       | 35   | -21.357              | 83.338  | 61.185 | 1.00 50.88 | A   | <b>C</b>                        |
|                                        | ATOM   | 35 |     | PRO A |      |                      |         |        |            |     |                                 |
|                                        | ATOM   | 36 | CB  | PRO A | 35.  | -20.242              | 82.599  | 60.448 | 1.00 48.93 | A   | C                               |
|                                        | MOTA   | 37 | CG  | PRO A | 35   | -20.598              | 82.782  | 58.993 | 1.00 49.16 | A   | C '                             |
|                                        | MOTA   | 38 | C.  | PRO A | 35   | -21.067              | 84.830  | 61.376 | 1.00 51.60 | A   | С                               |
|                                        | ATOM   | 39 | ŏ   | PRO A | 35   | -20.726              | 85.520  | 60.412 | 1.00 52.24 | A   | Ö                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |
|                                        | MOTA   | 40 | N   | LEU A | 36   | -21.222              | 85.324  | 62.607 | 1.00 52.00 | A   | N                               |
|                                        | ATOM   | 41 | CA  | LEU A | 36   | -20. <del>9</del> 80 | 86.731  | 62.924 | 1.00 52.00 | A   | C                               |
|                                        | ATOM   | 42 | CB  | LEU A | 36   | -20.773              | 86.942  | 64.422 | 1.00 53.80 | ` A | C                               |
|                                        | ATOM   | 43 | CG  | LEU A | 36   | -22.001              | 86.709  | 65.283 | 1.00 55.78 | A   | С                               |
|                                        |        |    |     |       | 36   |                      |         | 66.711 | 1.00 57.16 |     | Č                               |
|                                        | ATOM   | 44 | CD1 |       |      | -21.705              | 87.157  |        |            | A   |                                 |
|                                        | ATOM   | 45 | CD2 | LEU A | 36   | -23.182              | 87.482  |        | 1.00 55.66 | A   | С                               |
|                                        | ATOM   | 46 | С   | LEŲ A | 36   | -19.786              | 87.313  | 62.213 | 1.00 50.83 | A   | С                               |
|                                        | MOTA   | 47 | 0   | LEU A | 36   | -18.657              | 86.809  | 62.332 | 1.00 50.33 | A   | 0                               |
|                                        |        |    |     |       |      | -20.026              | 88.397  | 61.468 | 1.00 49.37 | A   | N                               |
|                                        | ATOM   | 48 | N   | PRO A | 37   |                      |         |        |            |     |                                 |
|                                        | MOTA   | 49 | CD  | PRO A | 37   | -21.395              | 88.892  | 61.243 | 1.00 48.29 | A   | <b>c</b> .                      |
|                                        | MOTA   | 50 | CA  | PRO A | 37   | -19.069              | 89.161  | 60.680 | 1.00 49.26 | A   | C .                             |
|                                        | ATOM   | 51 | CB  | PRO A | 37   | -19.956              | 89.856  | 59.664 | 1.00 48.32 | A   | С                               |
|                                        | ATOM   | 52 | CG  | PRO A | 37   | -21.176              | 90.137  | 60.452 | 1.00 47.64 | A   | С                               |
|                                        |        |    |     |       |      |                      |         | 61.545 | 1.00 51.09 | A   | Č                               |
|                                        | MOTA   | 53 | С   | PRO A | 37   | -18.313              | 90.137  |        |            |     |                                 |
| •                                      | ATOM   | 54 | 0   | PRO A | 37   | -18.907              | 90.950  | 62.258 | 1.00 51.17 | A   | 0                               |
|                                        | ATOM   | 55 | N   | VAL A | 38   | -16.998              | 90.031  | 61.518 | 1.00 53.50 | A   | N                               |
|                                        | ATOM   | 56 | CA  | VAL A | 38   | -16.204              | 90.936  | 62.297 | 1.00 56.11 | A   | С                               |
|                                        | ATOM   | 57 | СВ  | VAL A | 38   | -14.744              | 90.464  | 62.337 | 1.00 55.60 | A   | С                               |
|                                        |        |    |     |       |      |                      |         |        |            |     | c                               |
|                                        | ATOM   | 58 | CG1 |       | 38   | -14.027              | 90.850  | 61.053 | 1.00 54.50 | A   |                                 |
|                                        | · ATOM | 59 | CG2 | VAL A | 38   | -14.069              | 91.040  | 63.558 | 1.00 57.08 | A   | · С                             |
|                                        | ATOM   | 60 | С   | VAL A | 38   | -16.373              | 92.230  | 61.493 | 1.00 58.12 | , A | С                               |
|                                        | ATOM   | 61 | ŏ   | VAL A | 38   | -16.594              | 92.183  | 60.279 | 1.00 57.75 | A   | 0                               |
|                                        |        |    |     |       |      |                      |         |        | 1.00 60.26 |     | N ·                             |
|                                        | ATOM   | 62 | N   | ILE A | 39   | -16.322              | 93.377  | 62.159 |            | A   |                                 |
|                                        | MOTA   | 63 | CA  | ILE A | 39   | -16.527              | 94.630  | 61.449 | 1.00 62.14 | A   | С                               |
|                                        | ATOM   | 64 | CB  | ILE A | 39   | -16.553              | 95.821  | 62.401 | 1.00 64.13 | A   | С                               |
|                                        | ATOM   | 65 |     | ILE A | 39   | -17.306              | 96.976  | 61.731 | 1.00 65.47 | A   | С                               |
|                                        |        |    |     |       |      | -17.235              | .95.426 | 63.721 | 1.00 66.46 | A   | č                               |
|                                        | MOTA   | 66 |     | ILE A | 39   |                      |         |        |            |     |                                 |
|                                        | MOTA   | 67 |     | ILE A | 39   | -17.314              | 96.567  | 64.762 | 1.00 69.35 | A   | c                               |
|                                        | MOTA   | 68 | С   | ILE A | 39   | -15.492              | 94.899  | 60.371 | 1.00 61.66 | A   | С                               |
|                                        | ATOM   | 69 | 0   | ILE A | 39   | -14.290              | 94.837  | 60.617 | 1.00 62.26 | A   | 0                               |
|                                        | ATOM   | 70 | N   | GLY A | 40   | -15.977              | 95.199  | 59.173 | 1.00 61.42 | A   | N                               |
| ·                                      |        |    |     |       |      | -15.090              | 95.475  | 58.065 | 1.00 61.48 | A   | Ċ                               |
|                                        | MOTA   | 71 | CA  | GLY A | 40   |                      |         |        |            |     |                                 |
|                                        | MOTA   | 72 | С   | GLY A | 40   | -15.082              | 94.381  | 57.018 | 1.00 60.99 | A   | С                               |
|                                        |        |    |     |       |      |                      |         |        |            |     |                                 |

| MOTA         | 73         | 0        | GLY         | A | 40       | -14.912            | 94.690           | 55.838           | 1.00 | 60.73          |     | A        | 0      |
|--------------|------------|----------|-------------|---|----------|--------------------|------------------|------------------|------|----------------|-----|----------|--------|
| MOTA         | 74         | N        | ASN         |   | 41       | -15.277            | 93.122           | 57.432           |      | 59.93          |     | A        | N      |
| ATOM         | 75         | CA       | ASN         |   | 41       | -15.271            | 91.980           | 56.506           |      | 59.44          |     | A        | C      |
| ATOM<br>ATOM | 76<br>77   | CB<br>CG | ASN<br>ASN  |   | 41<br>41 | -13.832<br>-12.814 | 91.695<br>92.469 | 56.088<br>56.926 |      | 58.18<br>57.75 |     | A<br>A   | c      |
| ATOM         | 78         |          | ASN         |   | 41       | -12.783            | 92.364           | 58.144           |      | 57.04          | · . | Α        | ŏ      |
| MOTA         | 79         |          | ASN         |   | 41       | -11.979            | 93.257           | 56.259           |      | 57.26          |     | A        | N      |
| MOTA         | 80         | С        | ASN         |   | 41       | -15.880            | 90.696           | 57.076           | 1.00 | 60.68          |     | A        | С      |
| MOTA         | 81         | 0        | ASN         |   | 41       | -16.599            | 90.720           | 58.069           |      | 62.04          |     | A        | 0      |
| ATOM         | 82         | N        | ILE         |   | 42       | -15.593            | 89.575           | 56.418           |      | 62.47          |     | A        | N      |
| MOTA         | 83         | CA       | ILE         |   | 42       | -16.012            | 88.223           | 56.853           |      | 62.55          |     | A        | C      |
| ATOM<br>ATOM | 84<br>85   | CB       | ILE         |   | 42<br>42 | -17.440<br>-17.414 | 87.843<br>87.351 | 56.418<br>54.973 |      | 61.21<br>63.41 |     | A<br>A   | C      |
| MOTA         | 86         |          | ILE         |   | 42       | -17.963            | 86.702           | 57.313           | -    | 59.37          |     | n<br>A   | c      |
| MOTA         | 87         |          | ILE         |   | 42       | -19.467            | 86.475           | 57.267           |      | 55.41          |     | A        | c      |
| ATOM         | 88         | С        | ILE         | A | 42       | -15.017            | 87.277           | 56.159           | 1.00 | 63.22          | i   | A        | С      |
| ATOM         | 89         | 0        | ILE         |   | 42       | -15.087            | B6.054           | 56.284           |      | 61.16          |     | A.       | 0      |
| ATOM         | 90         | N        | LEU         |   | 43       | -14.094            | 87.909           | 55.434           |      | 65.03          |     | A.       | N      |
| MOTA<br>MOTA | 91<br>92   | CA<br>CB | LEU         |   | 43<br>43 | -13.024<br>-11.987 | 87.281<br>88.349 | 54.678<br>54.321 |      | 66.62<br>66.27 |     | A<br>A   | C      |
| ATOM         | 93         | CG       | LEU         |   | 43       | -11.305            | 88.231           | 52.960           |      | 66.48          |     | A.       | c      |
| ATOM         | 94         |          | LEU         |   | 43       | -12.299            | 88.654           | 51.894           |      | 68.25          |     | A        | C      |
| MOTA         | 95         | CD2      | LEU         | A | 43       | -10.062            | 89.101           | 52.894           | 1.00 | 66.70          | i   | A        | С      |
| MOTA         | 96         | С        | LEU         |   | 43       | -12.326            | 86.148           | 55.430           |      | 68.15          |     | A        | С      |
| ATOM         | 97         | 0        | LEU         |   | 43       | -11.884            | 85.170           | 54.825           |      | 68.49          |     | A        | 0      |
| ATOM<br>ATOM | 98<br>99   | n<br>Ca  | GLN<br>GLN  |   | 44<br>44 | -12.215<br>-11.549 | 86.291<br>85.297 | 56.748<br>57.580 |      | 69.83<br>70.78 |     | A<br>A   | N<br>C |
|              | 100        | CB       | GLN.        |   | 44       | -11.491            | 85.781           | 59.027           |      | 71.59          |     | n<br>A   | c      |
| ATOM         | 101        | CG       | GLN         |   | 44       | -10.491            | 86.882           | 59.246           |      | 74.67          |     | A        | Č      |
| ATOM .       | 102        |          | GLN         |   | .44      | -9.120             | 86.510           | 58.717           |      | 76.78          | *   | A        | С      |
| MOTA         | 103        |          | GLN         |   | 44       | -8.531             | 85.509           | 59.136           |      | 78.74          | 1   | A        | 0      |
| MOTA         | 104        |          | GLN         |   | 44       | -8.603             | 87.314           | 57.786           |      | 77.42          |     | A        | N      |
| ATOM         | 105        | C        | GLN         |   | 44       | -12.202            | 83.931           | 57.545<br>58.372 |      | 70.99          |     | A.       | C      |
| MOTA<br>MOTA | 106        | O<br>N   | .GLN<br>ILE |   | 44<br>45 | -11.906<br>-13.081 | 83.072<br>83.717 | 56.580           |      | 71.64<br>71.87 |     | A<br>A   | O<br>N |
| ATOM         | 108        | CA       | ILE         |   | 45       | -13.767            | 82.446           | 56.498           |      | 72.31          |     | A.       | C      |
| ATOM         | 109        | СВ       | ILE         |   | 45       | -15.057            | 82.530           | 57.312           |      | 72.40          |     | A.       | Ċ      |
| MOTA         | 110        |          | ILE         |   | 45       | -16.098            | 83.315           | 56.542           |      | 73.06          |     | A        | С      |
| ATOM         | 111        |          | ILE         |   | 45       | -15.534            | 81.132           | 57.681           |      | 73.99          |     | A        | С      |
| ATOM         | 112        |          | ILE         |   | 45       | -16.431            | 81.132           | 58.910           |      | 75.32          |     | 4        | C      |
| ATOM<br>ATOM | 113<br>114 | 0        | ILE         |   | 45<br>45 | -14.047<br>-15.047 | 82.013<br>81.360 | 55.055<br>54.768 |      | 72.34<br>72.08 |     | A<br>A   | 0      |
| ATOM         | 115        | N        | GLY         |   | 46       | -13.140            | 82.386           | 54.155           |      | 72.70          |     | •        | N      |
| ATOM         | 116        | CA       | GLY         |   | 46       | -13.272            | 82.008           | 52.764           |      | 72.66          |     | Ā        | C      |
| MOTA         | 117        | С        | GLY         | A | 46       | -12.390            | 82.766           | 51.778           |      | 73.12          |     | 4        | С      |
| ATOM         | 118        | 0        | GLY         |   | 46       | -12.169            | 83.974           | 51.907           |      | 72.03          |     | A.       | 0      |
| ATOM         | 119        | N        | ILE         |   | 47       | -11.882<br>-11.049 | 82.036           | 50.785           |      | 74.22<br>75.49 |     | <b>A</b> | N<br>C |
| ATOM<br>ATOM | 120<br>121 | CA<br>CB | ILE         |   | 47<br>47 | -9.737             | 82.599<br>83.237 | 49.712<br>50.246 |      | 74.62          |     | A<br>A   | c      |
| ATOM         | 122        |          | ILE         |   | 47       | -8.877             | 82.184           | 50.941           |      | 75.70          |     | À        | c      |
| MOTA         | 123        |          | ILE         |   | 47       | -8.982             | 83.885           | 49.081           | 1.00 | 73.61          | 7   | Ą        | С      |
| MOTA         | 124        |          | ILE         |   | 47       | -9.794             | 84.953           | 48,370           |      | 72.77          |     | 4        | С      |
| ATOM         | 125        | C        | ILE         |   | 47       | -10.674            | 81.558           | 48.641           |      | 76.34          |     | 4        | C      |
| ATOM<br>ATOM | 126        | O<br>N   | ILE         |   | 47<br>48 | -10.040            | 80.537           | 48.938<br>47.397 |      | 75.82<br>76.96 | ,   | <b>4</b> | Ŋ      |
| ATOM<br>ATOM | 127<br>128 | CA       | LYS<br>LYS  |   | 48       | -11.063<br>-10.782 | 81.835<br>80.941 | 46.279           |      | 77.61          |     | À        | c      |
| ATOM         | 129        | СВ       | LYS         |   | 48       | -9.311             | 80.488           | 46.320           |      | 77.92          |     | A"       | C      |
| MOTA         | 130        | CG       | LYS         |   | 48       | -8.302             | 81.651           | 46.294           |      | 78.44          | 2   | A        | C      |
| MOTA         | 131        | CD       | LYS         |   | 48       | -6.849             | 81.200           | 46.490           |      | 79.15          | 1   |          | С      |
| MOTA         | 132        | CE       | LYS         |   | 48       | -6.324             | 80.352           | 45.341           |      | 79.92<br>79.66 |     | 4        | C      |
| ATOM<br>ATOM | 133<br>134 | NZ<br>C  | LYS<br>LYS  |   | 48<br>48 | -4.954<br>-11.724  | 79.847<br>79.736 | 45.668<br>46.334 |      | 77.53          |     | 4<br>4   | И<br>С |
| MOTA         | 135        | Ö        | LYS         |   | 48       | -12.656            | 79.639           | 45.537           |      | 77.94          |     | `        | ō      |
| ATOM         | 136        | N        | ASP         |   | 49       | -11.492            | 78.832           | 47.282           |      | 77.06          | ,   |          | N      |
| MOTA         | 137        | CA       | ASP         |   | 49       | -12.324            | 77.638           | 47.427           | 1.00 | 76.51          | 1   | 4        | С      |
| MOTA         | 138        | СВ       | ASP         |   | 49       | -11.557            | 76.579           | 48,235           |      | 78.75          | 7   |          | C      |
| MOTA         | 139        | CG       | ASP         |   | 49       | -11.410            | 75.260           | 47.487           |      | 81.36          | I   |          | С      |
| MOTA         | 140        |          | ASP         |   | 49<br>49 | -12.456<br>-10.259 | 74.681<br>74.799 | 47.101<br>47.287 |      | 83.26<br>82.23 | 1   |          | 0      |
| ATOM<br>ATOM | 141<br>142 |          | ASP<br>ASP  |   | 49       | -13.667            | 77.971           | 48.101           |      | 75.08          | 7   |          | c      |
| MOTA         | 143        | ŏ        | ASP         |   | 49       | -14.245            | 77.144           | 48.820           |      | 74.35          | 7   |          | ō      |
| ATOM         | 144        | N        | ILE         |   | 50       | -14.150            | 79.189           | 47.846           | 1.00 | 72.60          | 7   |          | N      |
| MOTA         | 145        | CA       | ILE         | A | 50       | -15.411            | 79.698           | 48.398           |      | 69.88          | I   |          | С      |
| ATOM         | 146        | СВ       | ILE         |   | 50       | -15.939            | 80.914           | 47.589           |      | 70.44          | 7   |          | C      |
| MOTA         | 147        | CG2      | ILE         | A | 50       | -17.236            | B1.432           | 48.199           | 1.00 | 68.21          | F   | ١.       | С      |

Figure 1

|      |     |     |     |   |    |         |               |        |      |       | _   | _   |
|------|-----|-----|-----|---|----|---------|---------------|--------|------|-------|-----|-----|
| ATOM | 148 | CG1 | ILE | A | 50 | -14.870 | 82.012        | 47.548 |      | 70.26 | A   | С   |
| ATOM | 149 | CD1 | ILE | A | 50 | -14.434 | 82.507        | 48.910 | 1.00 | 70.37 | A   | С   |
| ATOM | 150 | С   | ILE | Α | 50 | -16.529 | 78.665        | 48.455 | 1.00 | 67.93 | A   | С   |
| ATOM | 151 | 0   | ILE | Α | 50 | -17.316 | 78.651        | 49.399 | 1.00 | 67.54 | A   | 0   |
| MOTA | 152 | N   | SER |   | 51 | -16.612 | 77.815        | 47.439 | 1.00 | 66.24 | A   | N   |
| ATOM | 153 | CA  | SER |   | 51 | -17.640 | 76.782        | 47.409 |      | 65.71 | A   | C   |
| ATOM | 154 | СВ  | SER |   | 51 | -17.625 | 76.055        | 46.060 |      | 65.57 | A   | č   |
|      |     |     |     |   | 51 | -18.418 | 74.879        | 46.100 |      | 65.19 | A   | . ŏ |
| ATOM | 155 | OG  | SER |   |    |         |               |        |      |       |     |     |
| MOTA | 156 | C   | SER |   | 51 | -17.451 | 75.765        | 48.538 |      | 65.07 | A   | c   |
| MOTA | 157 | 0   | SER |   | 51 | -18.425 | 75.245        | 49.081 |      | 65.15 | A   | 0   |
| ATOM | 158 | N   | LYS |   | 52 | -16.198 | 75.486        | 48.891 |      | 63.99 | A   | N   |
| MOTA | 159 | CA  | LYS | Α | 52 | -15.903 | 74.515        | 49.943 | 1.00 | 62.29 | A   | С   |
| ATOM | 160 | CB  | LYS | Α | 52 | -14.420 | 74.172        | 49.951 | 1.00 | 65.11 | A   | C   |
| ATOM | 161 | CG  | LYS | Α | 52 | -14.071 | 72.998        | 50.869 | 1.00 | 68.49 | A   | С   |
| ATOM | 162 | CD  | LYS |   | 52 | -12.652 | 72.517        | 50.587 | 1.00 | 71.15 | A   | С   |
| ATOM | 163 | CE  | LYS |   | 52 | -12.406 | 71.113        | 51.103 |      | 72.63 | A   | č   |
| ATOM | 164 | NZ  | LYS |   | 52 | -11.170 | 70.535        | 50.487 |      | 74.71 | A   | N   |
|      |     |     |     |   |    |         |               |        |      | 59.70 | A   | Č   |
| ATOM | 165 | С   | LYS |   | 52 | -16.295 |               | 51.326 |      |       |     |     |
| MOTA | 166 | 0   | LYS |   | 52 | -16.865 | 74.245        | 52.120 |      | 59.00 | A   | 0   |
| MOTA | 167 | N   | SER |   | 53 | -15.960 | 76.242        | 51.618 |      | 56.11 | A   | N   |
| MOTA | 168 | CA  | SER | A | 53 | -16.285 | 76.829        | 52.902 |      | 51.68 | A   |     |
| ATOM | 169 | CB  | SER | A | 53 | -15.702 | 78.215        | 52.991 | 1.00 | 51.19 | A   | С   |
| ATOM | 170 | OG  | SER | Α | 53 | -16.199 | 78.980        | 51.918 | 1.00 | 52.51 | A   | 0   |
| ATOM | 171 | С   | SER | Α | 53 | -17.782 | 76.921        | 53.039 | 1.00 | 49.74 | A   | С   |
| ATOM | 172 | Ō   | SER |   | 53 | -18.296 | 77.043        | 54.145 | 1.00 | 50.16 | A   | 0   |
| ATOM | 173 | N   | LEU |   | 54 | -18.488 | 76.874        | 51.914 |      | 47.87 | A   | N   |
|      | 174 |     | LEU |   | 54 | -19.942 | 76.944        | 51.953 |      | 45.22 | A   | Ċ   |
| ATOM |     | CA  |     |   |    |         |               |        |      | 44.58 | A   | č   |
| ATOM | 175 | CB  | LEU |   | 54 | -20.506 | 77.342        | 50.591 |      |       |     |     |
| MOTA | 176 | CG  | LEU |   | 54 | -20.288 | 78.754        | 50.059 |      | 44.49 | A   | c   |
| MOTA | 177 | CD1 | LEU | A | 54 | -21.172 | 78.919        | 48.823 |      | 43.80 | A   | С   |
| ATOM | 178 | CD2 | LEU | Α | 54 | -20.635 | 79.808        | 51.097 | 1.00 | 43.31 | A   | С   |
| MOTA | 179 | С   | LEU | Α | 54 | -20.559 | 75.617        | 52.387 | 1.00 | 43.50 | A   | С   |
| ATOM | 180 | 0   | LEU | Α | 54 | -21.569 | 75.598        | 53.074 | 1.00 | 41.88 | A   | 0   |
| ATOM | 181 | N   | THR |   | 55 | -19.955 | 74.508        | 51.987 | 1.00 | 42.59 | A   | N   |
| ATOM | 182 | CA  | THR |   | 55 | -20.491 | 73.213        | 52.355 |      | 42.97 | A   | С   |
| ATOM | 183 | СВ  | THR |   | 55 | -19.745 | 72.092        | 51.625 |      | 44.28 | A   | Ċ   |
|      |     |     |     |   |    | -19.925 | 72.261        | 50.213 |      | 48.33 | A   | ŏ   |
| ATOM | 184 |     | THR |   | 55 |         |               |        |      |       |     | č   |
| ATOM | 185 | CG2 |     |   | 55 | -20.276 | 70.730        | 52.041 |      | 43.17 | A   |     |
| ATOM | 186 | С   | THR |   | 55 | -20.385 | 73.019        | 53.860 |      | 42.22 | A   | C   |
| ATOM | 187 | 0   | THR | Α | 55 | -21.262 | 72.430        | 54.485 |      | 43.28 | A   | . 0 |
| ATOM | 188 | N   | ASN | A | 56 | -19.306 | 73.525        | 54.438 | 1.00 | 40.31 | A   | N   |
| ATOM | 189 | CA  | ASN | A | 56 | -19.107 | 73.424        | 55.861 | 1.00 | 38.01 | · А | С   |
| ATOM | 190 | CB  | ASN |   | 56 | -17.640 | 73.648        | 56.194 | 1.00 | 37.49 | A   | С   |
| ATOM | 191 | CG  | ASN |   | 56 | -16.780 | 72.458        | 55.819 | 1.00 | 38.76 | A   | С   |
| ATOM | 192 |     | ASN |   | 56 | -15.591 | 72.590        | 55.572 |      | 39.50 | A   | 0   |
|      |     |     | ASN |   | 56 | -17.387 | 71.281        | 55.781 |      | 38.71 | A   | N   |
| ATOM | 193 |     |     |   |    |         | 74.409        | 56.608 | 1.00 |       | A   | Ċ   |
| MOTA | 194 | С   | ASN |   | 56 | -19.992 |               |        |      |       | A   | ŏ   |
| MOTA | 195 | 0   | ASN |   | 56 | -20.493 | 74.098        | 57.670 |      | 38.49 |     |     |
| ATOM | 196 | N   | LEU |   | 57 | -20.221 | 75.592        | 56.070 |      | 35.61 | A   | N   |
| MOTA | 197 | CA  | LEU | Α | 57 | -21.075 | 76.516        | 56.786 |      | 36.02 | A   |     |
| ATOM | 198 | CB  | LEU | Α | 57 | -21.100 | 77.871        | 56.093 |      | 37.02 | A   |     |
| ATOM | 199 | CG  | LEU | Α | 57 | -19.896 | 78.773        | 56.315 | 1.00 | 38.86 | A   |     |
| ATOM | 200 | CD1 | LEU | Α | 57 | -19.942 | 79.864        | 55.294 | 1.00 | 39.91 | A   | С   |
| ATOM | 201 | CD2 | LEU | Α | 57 | -19.888 | 79.332        | 57.745 | 1.00 | 37.65 | A   | C   |
| ATOM | 202 | c   | LEU |   | 57 | -22.504 | 76.004        | 56.898 | 1.00 | 35.97 | A   | С   |
| ATOM | 203 | ō   | LEU |   | 57 | -23.157 | 76.185        | 57.917 | 1.00 | 36.48 | A   | 0   |
|      |     |     |     |   | 58 | -22.998 | 75.377        | 55.839 |      | 35.81 | A   |     |
| ATOM | 204 | N   | SER |   |    |         | 74.853        | 55.799 |      | 33.52 | A   |     |
| MOTA | 205 | CA  | SER |   | 58 | -24.363 |               |        |      |       | A   |     |
| MOTA | 206 | CB  | SER |   | 58 | -24.629 | 74.265        | 54.439 |      | 32.60 |     |     |
| ATOM | 207 | OG  | SER | A | 58 | -23.736 | 73.183        | 54.264 |      | 33.25 | A   |     |
| ATOM | 208 | С.  | SER | Α | 58 | -24.513 | 73.745        | 56.798 |      | 33.06 | A   |     |
| ATOM | 209 | 0   | SER | A | 58 | -25.617 | 73.389        | 57.200 |      | 32.92 | A   |     |
| ATOM | 210 | N   | LYS |   | 59 | -23.376 | 73.172        | 57.154 | 1.00 | 33.47 | A   | N   |
| ATOM | 211 | CA  | LYS |   | 59 | -23.333 | 72.075        | 58.091 | 1.00 | 34.07 | A   |     |
| ATOM | 212 | СВ  | LYS |   | 59 | -21.996 | 71.359        | 57.984 | 1.00 | 35.04 | A   |     |
|      |     |     |     |   | 59 | -22.152 | 69.922        | 57.564 |      | 37.82 | A   |     |
| ATOM | 213 | CG  | LYS |   |    |         | 69.225        | 57.346 |      | 40.93 | A   |     |
| MOTA | 214 | CD  | LYS |   | 59 | -20.826 |               |        |      | 42.79 | A   |     |
| MOTA | 215 | CE  | LYS |   | 59 | -20.214 | 69.610        | 56.005 |      |       |     |     |
| ATOM | 216 | ΝZ  | LYS |   | 59 | -18.957 | 68.857        | 55.669 |      | 44.17 | A   |     |
| MOTA | 217 | С   | LYS | A | 59 | -23.526 | 72.596        | 59.483 |      | 34.10 | A   |     |
| MOTA | 218 | 0   | LYS | Α | 59 | -23.768 | 71.831        | 60.407 |      | 36.05 | A   |     |
| ATOM | 219 | N   | VAL |   | 60 | -23.438 | 73.912        | 59.627 |      | 34.12 | A   |     |
| ATOM | 220 | CA  | VAL |   | 60 | -23.586 | 74.531        | 60.927 |      | 32.76 | A   | С   |
|      | 221 | СВ  | VAL |   | 60 | -22.342 | 75.292        | 61.322 |      | 31.28 | А   | С   |
| ATOM |     |     |     |   | 60 | -22.486 | 75.762        | 62.748 |      | 32.90 | A   |     |
| MOTA | 222 |     | VAL | * | ٠. | -22.400 | , , , , , , , | 02.790 |      |       | ••  | _   |

| MOTA | 223 | CG2 | VAL | A | 60   | -21.124 | 74.425 | 61.152 | 1.00 | 28.64 |    | A | С |
|------|-----|-----|-----|---|------|---------|--------|--------|------|-------|----|---|---|
| ATOM | 224 | c   | VAL |   | 60   | -24.726 | 75.504 | 61.007 |      | 32.78 |    | A | č |
|      |     | ŏ   |     |   |      |         |        |        |      | 34.72 |    |   |   |
| ATOM | 225 |     | VAL |   | 60   | -25.232 | 75.760 | 62.089 |      |       |    | Α | 0 |
| MOTA | 226 | N   | TYR |   | 61   | -25.128 | 76.074 | 59.885 |      | 32.62 |    | A | N |
| ATOM | 227 | CA  | TYR |   | 61   | -26.211 | 77.026 | 59.951 | 1.00 | 34.23 |    | A | С |
| ATOM | 228 | CB  | TYR | Α | 61   | -25.764 | 78.365 | 59.392 | 1.00 | 34.62 |    | Α | С |
| ATOM | 229 | CG  | TYR | Α | 61   | -24.629 | 78.954 | 60.186 | 1.00 | 37.04 |    | Α | С |
| ATOM | 230 |     | TYR | A | 61   | -24.862 | 79.584 | 61.399 | 1.00 | 36.49 |    | A | C |
| ATOM | 231 |     | TYR |   | 61   | -23.822 | 80.075 | 62.155 | 1.00 | 38.31 |    | A | č |
|      |     |     |     |   |      |         |        |        |      |       |    |   |   |
| ATOM | 232 | CD2 | TYR |   | 61   | -23.312 | 78.831 | 59.749 | 1.00 | 37.25 |    | A | С |
| ATOM | 233 | CE2 | TYR |   | 61   | -22.264 | 79.319 | 60.501 |      | 37.77 |    | A | С |
| ATOM | 234 | CZ  | TYR | Α | 61   | -22.531 | 79.941 | 61.708 | 1.00 | 38.91 |    | A | ¢ |
| ATOM | 235 | OH  | TYR | Α | 61   | -21.519 | 80.442 | 62.495 | 1.00 | 42.77 |    | Α | 0 |
| ATOM | 236 | С   | TYR | Α | 61   | -27.439 | 76.556 | 59.236 | 1.00 | 35.77 |    | A | С |
| ATOM | 237 | Ō   | TYR |   | 61   | -28.512 | 77.107 | 59.445 | 1.00 | 39.48 |    | A | ō |
|      |     | N   |     |   | 62   |         |        |        |      |       |    |   | N |
| ATOM | 238 |     | GLY |   |      | -27.295 | 75.539 | 58.393 | 1.00 | 35.52 |    | A |   |
| ATOM | 239 | CA  | GLY |   | 62   | -28.442 | 75.034 | 57.662 |      | 34.04 |    | A | C |
| ATOM | 240 | С   | GLY | A | 62   | -28.351 | 75.237 | 56.162 |      | 34.90 |    | Α | С |
| ATOM | 241 | 0   | GLY | Α | 62   | -27.331 | 75.688 | 55.662 | 1.00 | 34.87 |    | A | 0 |
| ATOM | 242 | N   | PRO | Α | 63   | -29.417 | 74.906 | 55.412 | 1.00 | 35.94 |    | A | N |
| ATOM | 243 | CD  | PRO | Α | 63   | -30.652 | 74.253 |        | 1.00 | 34.83 |    | A | С |
| ATOM | 244 | CA  | PRO |   | 63   | -29.470 | 75.046 | 53.958 | 1.00 | 35.67 |    | A | Č |
|      |     |     |     |   |      |         |        |        |      |       |    |   |   |
| ATOM | 245 | CB  | PRO |   | 63   | -30.637 | 74.142 | 53.599 |      | 36.44 |    | A | С |
| MOTA | 246 | CG  | PRO |   | 63   | -31.579 | 74.391 | 54.715 |      | 32.77 |    | A | ¢ |
| ATOM | 247 | С   | PRO | A | 63   | -29.725 | 76.480 | 53.514 | 1.00 | 35.56 |    | A | С |
| ATOM | 248 | 0   | PRO | Α | 63   | -29.804 | 76.761 | 52.319 | 1.00 | 36.44 |    | Α | 0 |
| ATOM | 249 | N   | VAL | A | 64   | -29.891 | 77.384 | 54.474 | 1.00 | 35.99 |    | A | N |
| MOTA | 250 | CA  | VAL |   | 64   | -30.171 | 78.781 | 54.144 |      | 34.49 |    | A | С |
| ATOM | 251 | CB  | VAL |   | 64   | -31.672 | 79.026 | 54.056 |      | 32.22 |    | A | č |
|      |     |     |     |   |      |         |        |        |      |       |    |   |   |
| ATOM | 252 |     | VAL |   | 64   | -31.932 | 80.483 | 53.834 |      | 32.63 | ٠. | A | С |
| MOTA | 253 | CG2 | VAL | Α | 64   | -32.250 | 78.227 | 52.933 |      | 32.93 |    | A | С |
| MOTA | 254 | С   | VAL | Α | 64   | -29.583 | 79.774 | 55.127 | 1.00 | 34.65 |    | A | С |
| ATOM | 255 | 0   | VAL | Α | 64   | -30.275 | 80.262 | 56.006 | 1.00 | 33.50 |    | Α | 0 |
| ATOM | 256 | N   | PHE | А | 65   | -28.312 | 80.110 | 54.942 | 1.00 | 35.99 |    | Α | N |
| ATOM | 257 | CA  | PHE |   | 65   | -27.643 | 81.036 | 55.851 | 1.00 | 38.42 |    | A | C |
|      |     |     |     |   |      |         |        |        |      | _     |    |   | č |
| ATOM | 258 | CB  | PHE |   | 65   | -26.518 | 80.310 | 56.536 |      | 35.64 |    | A |   |
| ATOM | 259 | CG  | PHE |   | 65   | -25.485 | 79.807 | 55.594 | 1.00 | 32.42 |    | A | C |
| atom | 260 | CD1 | PHE | Α | 65   | -24.366 | 80.571 | 55.302 | 1.00 | 31.25 |    | A | С |
| ATOM | 261 | CD2 | PHE | A | 65   | -25.615 | 78.551 | 55.019 | 1.00 | 30.81 |    | A | С |
| ATOM | 262 | CE1 | PHE | Α | 65   | -23.381 | 80.084 | 54.456 | 1.00 | 31.87 |    | A | С |
| ATOM | 263 |     | PHE |   | 65   | -24.639 | 78.054 | 54.172 | 1.00 | 29.62 |    | Α | C |
| ATOM | 264 | CZ  | PHE |   | 65   | -23.520 | 78.820 | 53.889 |      | 31.13 |    | A | Č |
|      |     |     |     |   |      |         | 82.272 | 55.178 |      | 40.64 |    | A | č |
| ATOM | 265 | С   | PHE |   | 65   | -27.072 |        |        |      |       |    |   |   |
| ATOM | 266 | 0   | PHE |   | 65   | -26.734 | 82.251 | 53.993 |      | 42.20 |    | A | 0 |
| ATOM | 267 | N   | THR | A | 66   | -26.934 | 83.348 | 55.942 |      | 41.29 |    | A | N |
| MOTA | 268 | CA  | THR | A | · 66 | -26.395 | 84.563 | 55.362 | 1.00 | 42.21 |    | Α | С |
| ATOM | 269 | СВ  | THR | Α | 66   | -27.080 | 85.801 | 55.940 | 1.00 | 42.73 |    | A | С |
| ATOM | 270 | OG1 | THR | A | 66   | -27.092 | 85.714 | 57.363 | 1.00 | 44.68 |    | A | 0 |
| ATOM | 271 |     | THR |   | 66   | -28.508 | 85.892 | 55.443 |      | 43.37 |    | Α | С |
|      |     |     |     |   | 66   | -24.880 | 84.682 | 55.528 |      | 42.03 |    | A | Č |
| ATOM | 272 | C   | THR |   |      |         |        |        |      |       |    | A | ŏ |
| ATOM | 273 | 0   | THR |   | 66   | -24.294 | 84.178 | 56.473 |      | 41.81 |    |   |   |
| ATOM | 274 | N   | LEU | А | 67   | -24.242 | 85.321 | 54.562 |      | 41.92 |    | A | N |
| ATOM | 275 | CA  | LEU | A | 67   | -22.806 | 85.517 | 54.593 | 1.00 | 40.87 |    | A | C |
| ATOM | 276 | СВ  | LEU | Α | 67   | -22.140 | 84.643 | 53.531 |      | 39.57 |    | A | С |
| ATOM | 277 | CG  | LEU | Α | 67   | -21.012 | 83.726 | 54.004 | 1.00 | 38.82 |    | A | С |
| ATOM | 278 |     | LEU |   | 67   | -21.362 | 83.086 | 55.339 | 1.00 | 38.76 |    | Α | С |
| ATOM | 279 | CD2 | LEU | y | 67   | -20.746 | 82.656 | 52.947 |      | 37.38 |    | A | С |
|      |     |     |     |   |      | -22.587 | 86.997 | 54.292 |      | 42.22 |    | A | č |
| ATOM | 280 | С   | LEU |   | 67 • |         |        |        |      |       |    |   |   |
| ATOM | 281 | 0   | LEU |   | 67   | -23.283 | 87.583 | 53.444 |      | 42.13 |    | A | 0 |
| ATOM | 282 | N   | TYR | A | 68   | -21.635 | 87.608 | 54.997 |      | 42.85 |    | A | N |
| ATOM | 283 | CA  | TYR | Α | 68   | -21.338 | 89.025 | 54.785 | 1.00 | 42.05 |    | A | С |
| ATOM | 284 | CB  | TYR | Α | 68   | -21.101 | 89.755 | 56.111 | 1.00 | 40.59 |    | A | С |
| ATOM | 285 | CG  | TYR |   | 68   | -22.367 | 90.213 | 56.754 | 1.00 | 40.19 |    | Α | С |
| ATOM | 286 |     | TYR |   | 68   | -23.172 |        | 57.446 |      | 41.94 |    | A | C |
|      |     |     |     |   |      | -24.415 | 89.714 | 57.931 |      | 43.96 |    | A | c |
| ATOM | 287 |     | TYR |   | 68   |         |        |        |      |       |    |   |   |
| MOTA | 288 |     | TYR |   | 68   | -22.822 | 91.511 | 56.570 |      | 40.51 |    | A | С |
| ATOM | 289 | CE2 | TYR | Α | 68   | -24.057 | 91.917 | 57.046 |      | 41.58 |    | A | C |
| ATOM | 290 | CZ  | TYR | Α | 68   | -24.853 | 91.014 | 57.721 |      | 43.34 |    | A | С |
| MOTA | 291 | OH  | TYR |   | 68   | -26.111 | 91.384 | 58.148 | 1.00 | 46.10 |    | Α | 0 |
| ATOM | 292 | C   | TYR |   | 68   | -20.128 | 89.226 | 53.897 | 1.00 | 42.18 |    | Α | С |
| ATOM | 293 | ō   | TYR |   | 68   | -19.004 | 89.078 | 54.338 |      | 42.14 |    | A | 0 |
|      |     |     |     |   | 69   | -20.359 | 89.555 | 52.635 |      | 43.35 |    | A | N |
| ATOM | 294 | N   | PHE |   |      |         |        |        |      | 43.71 |    | A | Ċ |
| ATOM | 295 | CA  | PHE |   | 69   | -19.256 | 89.811 | 51.722 |      |       |    |   |   |
| ATOM | 296 | CB  | PHE |   | 69   | -19.652 | 89.523 | 50.275 |      | 46.53 |    | Α | C |
| MOTA | 297 | CG  | PHE | Α | 69   | -19.651 | 88.070 | 49.929 | 1.00 | 49.69 |    | Α | С |

Figure 1

| OM 2                                         | 98 (                            | CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 51.37                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                |
|----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| OM 2                                         | 99 (                            | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| OM 31                                        | 00                              | CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  | ٠.                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| DM 31                                        | 01 (                            | CE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  | `                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                |
| ו אכ                                         | 02 (                            | CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -19.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                |
| OM 3                                         | 03 (                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -19.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С<br>0           |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ċ                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | č                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94:482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 46.91                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -22.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 46.85                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21.918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 48.57                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                |
| OM 3                                         | 18                              | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| 3 MC                                         | 19                              | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| OM 3:                                        | 20                              | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
| OM 3:                                        | 21                              | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -25.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O<br>N           |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.               |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
| _                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | č                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _0               |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              | A :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | Α .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -24.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 15.00                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.               |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -25.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 15.00                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| OM 3                                         | 37                              | CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -24.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| OM 3                                         | 38                              | CDl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| OM 3                                         | 39                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -26.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| _                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ċ                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Č                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Č                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ō                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N -              |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 33.20                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 31.13                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
|                                              |                                 | CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -25.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 28.87                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| OM 3                                         | 52                              | CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -24.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                  |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                |
| OM 3                                         | 53                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                |
| ом 3                                         | 154                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                |
| om 3                                         | 155                             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
| OM 3                                         | 156                             | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ö                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ċ                |
| 3                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -26.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 29.33                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c                |
|                                              | 20                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                |
| OM 3                                         |                                 | CB<br>CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -25 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.B72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 27.47                            |                              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| OM 3                                         | 166                             | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -25.265<br>-24.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.912<br>74.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.872<br>50.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 27.47<br>27.87                   |                              | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                |
| OM 3<br>OM 3<br>OM 3                         | 166<br>167                      | CG<br>CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -24.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                           | 27.47<br>27.87<br>28.24          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| OM 3<br>OM 3<br>OM 3<br>OM 3                 | 166<br>167<br>168               | CG<br>CD2<br>ND1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIS<br>HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -24.052<br>-25.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.349<br>72.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.461<br>51.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00<br>1.00                   | 27.87                            |                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c<br>c           |
| OM 3<br>OM 3<br>OM 3<br>OM 3<br>OM 3         | 166<br>167<br>168<br>169        | CG<br>CD2<br>ND1<br>CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIS<br>HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78<br>78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -24.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br>1.00<br>1.00           | 27.87<br>28.24                   |                              | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C<br>C<br>N      |
| OM 3<br>OM 3<br>OM 3<br>OM 3<br>OM 3<br>OM 3 | 166<br>167<br>168<br>169        | CG<br>CD2<br>ND1<br>CE1<br>NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HIS<br>HIS<br>HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78<br>78<br>78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -24.052<br>-25.150<br>-23.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.349<br>72.550<br>72.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.461<br>51.027<br>50.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00   | 27.87<br>28.24<br>29.31          |                              | A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С<br>К<br>С      |
| OM 3<br>OM 3<br>OM 3<br>OM 3<br>OM 3<br>OM 3 | 166<br>167<br>168<br>169<br>170 | CG<br>CD2<br>ND1<br>CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIS<br>HIS<br>HIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78<br>78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -24.052<br>-25.150<br>-23.919<br>-23.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.349<br>72.550<br>72.175<br>73.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.461<br>51.027<br>50.721<br>50.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00<br>1.00<br>1.00<br>1.00   | 27.87<br>28.24<br>29.31<br>29.70 |                              | A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С<br>И<br>С<br>И |
|                                              | 20 M                            | 299 M 300 M 301 M 302 M 303 M 303 M 304 M 305 M 306 M 307 M 308 M 307 M 308 M 309 M 310 M 311 M 312 M 313 M 314 M 315 M 316 M 317 M 318 M 319 M 320 M 321 M 322 M 323 M 324 M 325 M 326 M 327 M 328 M 329 M 321 M 323 M 324 M 325 M 328 M 329 M 321 M 328 M 329 M 321 M 328 M 329 M 321 M 328 M 329 M 321 M 328 M 329 M 327 M 328 M 329 M 327 M 328 M 329 M 327 M 328 M 329 M 327 M 328 M 329 M 327 M 328 M 327 M 328 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 331 M 328 M 329 M 329 M 331 M 335 M 336 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 337 M 338 M 338 M 338 M 337 M 328 M 329 M 337 M 328 M 337 M 328 M 329 M 337 M 338 M 337 M 338 M 337 M 328 M 329 M 337 M 328 M 329 M 337 M 328 M 329 M 337 M 328 M 329 M 337 M 328 M 329 M 337 M 328 M 329 M 329 M 329 M 337 M 328 M 329 M 329 M 329 M 337 M 328 M 329 M 329 M 329 M 329 M 337 M 328 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M 329 M | XM         299         CD2           XM         300         CE1           XM         301         CE2           XM         302         CZ           XM         303         C           XM         304         O           XM         307         C           XM         307         C           XM         309         N           XM         310         CA           XM         312         CG           XM         315         C           XM         316         O           XM         317         N           XM         318         CA           XM         316         O           XM         317         N           XM         318         CA           XM         319         CB           XM         322         CE           XM         323         NZ           XM         322         CE           XM         322         CD           XM         327         CD           XM         333         CG           XM         333 | 299         CD2         PHE           MM         300         CE1         PHE           MM         300         CE1         PHE           MM         301         CE2         PHE           MM         303         C         PHE           MM         304         O         PHE           MM         305         N         GLY           MM         307         C         GLY           MM         309         N         LEU           MM         310         CA         LEU           MM         311         CB         LEU           MM         312         CG         LEU           MM         315         C         LEU           MM         316         C         LEU           MM         317         N         LYS           MM         320         CB         LYS           MM         321         CD         LYS           MM         322         CE         LYS           MM         322         CE         LYS           MM         322         CE         LYS           MM         326 <td>MM         299         CD2         PHE         A           MM         300         CE1         PHE         A           MM         301         CE2         PHE         A           MM         303         C         PHE         A           MM         304         O         PHE         A           MM         305         N         GLY         A           MM         307         C         GLY         A           MM         309         N         LEU         A           MM         310         CA         LEU         A           MM         311         CB         LEU         A           MM         312         CG         LEU         A           MM         313         CD1         LEU         A           MM         316         O         LEU         A           MM         316         C         LEU         A           MM         316         C         LEU         A           MM         316         C         LEU         A           MM         320         CG         LYS         A</td> <td>MM         299         CD2         PHE         A         69           MM         300         CE1         PHE         A         69           MM         300         CE2         PHE         A         69           MM         301         C         PHE         A         69           MM         304         O         PHE         A         69           MM         305         C         GLY         A         70           MM         306         CA         GLY         A         70           MM         307         C         GLY         A         70           MM         308         O         GLY         A         70           MM         309         N         LEU         A         71           MM         310         CA         LEU         A         71           MM         311         CB         LEU         A         71           MM         312         CG         LEU         A         71           MM         315         C         LEU         A         72           MM         317         N         LYS<td>MM         299         CD2         PHE A         69         -18.656           MM         300         CE1         PHE A         69         -20.640           MM         301         CE2         PHE A         69         -19.640           MM         303         C         PHE A         69         -19.006           MM         304         O         PHE A         69         -19.788           MM         305         N         GLY A         70         -17.613           MM         306         CA         GLY A         70         -17.613           MM         307         C         GLY A         70         -18.677           MM         309         N         LEU A         71         -20.531           MM         310         CA         LEU A         71         -20.531           MM         311         CB         LEU A         71         -18.677           MM         312         CG         LEU A         71         -18.677           MM         313         CD         LEU A         71         -20.531           MM         312         CB         LEU A         71         &lt;</td><td>MM 299 CD2 PHE A 69 -18.656 87.541  MM 300 CE1 PHE A 69 -20.640 85.873  MM 301 CE2 PHE A 69 -19.646 86.188  MM 302 CZ PHE A 69 -19.006 91.293  MM 303 C PHE A 69 -19.006 91.293  MM 304 O PHE A 69 -19.788 92.122  MM 305 N GLY A 70 -17.613 92.999  MM 306 CA GLY A 70 -17.613 92.999  MM 307 C GLY A 70 -18.677 93.502  MM 308 O GLY A 70 -18.792 93.031  MM 309 N LEU A 71 -20.531 94.956  MM 310 CA LEU A 71 -20.531 94.956  MM 311 CB LEU A 71 -20.546 96.468  MM 312 CG LEU A 71 -19.757 97.134  MM 313 CD1 LEU A 71 -18.290 97.322  MM 314 CD2 LEU A 71 -20.411 98.464  MM 315 C LEU A 71 -22.850 94.507  MM 317 N LYS A 72 -21.918 94.063  MM 318 CA LYS A 72 -23.159 93.582  MM 319 CB LYS A 72 -23.345 94.952  MM 320 CG LYS A 72 -23.345 95.403  MM 321 CD LYS A 72 -23.345 95.403  MM 322 CE LYS A 72 -23.349 97.014  MM 323 NZ LYS A 72 -22.6429 97.014  MM 326 N PRO A 73 -25.268 90.699  MM 327 CD PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.307  MM 330 CG PRO A 73 -25.268 90.699  MM 331 C PRO A 73 -25.269 86.430  MM 332 CG LEU A 74 -25.860 87.707  MM 333 CG LEU A 74 -25.860 87.707  MM 336 CG LEU A 75 -22.694 97.014  MM 327 CD PRO A 73 -25.268 90.699  MM 328 CA PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 320 CG LYS A 72 -23.349 92.196  MM 321 CD LYS A 72 -23.499 97.014  MM 322 CC LYS A 72 -23.499 97.014  MM 323 N LEU A 74 -25.860 87.707  MM 330 CG PRO A 73 -25.269 86.430  MM 331 N LEE A 74 -25.860 87.707  MM 333 C LIE A 74 -25.860 87.707  MM 336 CG LEU A 75 -29.951 84.693  MM 327 CD LEU A 75 -29.951 84.693  MM 328 CD LEU A 77 -30.026 83.966  MM 329 CB LEU A 77 -30.026 83.966  MM 315 C RU A 76 -27.978 84.693  MM 316 CG LEU A 77 -30.056 78.300  MM 317 N LY A 76 -27.978 80.037  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.600  MM 319 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056</td><td>  May   199   CD2   PHE   A   69</td><td>  March   199   CD2   PHE A   69</td><td>  May   299   CD2   PHE A   69</td><td>  March   Marc</td><td>  May   199</td></td> | MM         299         CD2         PHE         A           MM         300         CE1         PHE         A           MM         301         CE2         PHE         A           MM         303         C         PHE         A           MM         304         O         PHE         A           MM         305         N         GLY         A           MM         307         C         GLY         A           MM         309         N         LEU         A           MM         310         CA         LEU         A           MM         311         CB         LEU         A           MM         312         CG         LEU         A           MM         313         CD1         LEU         A           MM         316         O         LEU         A           MM         316         C         LEU         A           MM         316         C         LEU         A           MM         316         C         LEU         A           MM         320         CG         LYS         A | MM         299         CD2         PHE         A         69           MM         300         CE1         PHE         A         69           MM         300         CE2         PHE         A         69           MM         301         C         PHE         A         69           MM         304         O         PHE         A         69           MM         305         C         GLY         A         70           MM         306         CA         GLY         A         70           MM         307         C         GLY         A         70           MM         308         O         GLY         A         70           MM         309         N         LEU         A         71           MM         310         CA         LEU         A         71           MM         311         CB         LEU         A         71           MM         312         CG         LEU         A         71           MM         315         C         LEU         A         72           MM         317         N         LYS <td>MM         299         CD2         PHE A         69         -18.656           MM         300         CE1         PHE A         69         -20.640           MM         301         CE2         PHE A         69         -19.640           MM         303         C         PHE A         69         -19.006           MM         304         O         PHE A         69         -19.788           MM         305         N         GLY A         70         -17.613           MM         306         CA         GLY A         70         -17.613           MM         307         C         GLY A         70         -18.677           MM         309         N         LEU A         71         -20.531           MM         310         CA         LEU A         71         -20.531           MM         311         CB         LEU A         71         -18.677           MM         312         CG         LEU A         71         -18.677           MM         313         CD         LEU A         71         -20.531           MM         312         CB         LEU A         71         &lt;</td> <td>MM 299 CD2 PHE A 69 -18.656 87.541  MM 300 CE1 PHE A 69 -20.640 85.873  MM 301 CE2 PHE A 69 -19.646 86.188  MM 302 CZ PHE A 69 -19.006 91.293  MM 303 C PHE A 69 -19.006 91.293  MM 304 O PHE A 69 -19.788 92.122  MM 305 N GLY A 70 -17.613 92.999  MM 306 CA GLY A 70 -17.613 92.999  MM 307 C GLY A 70 -18.677 93.502  MM 308 O GLY A 70 -18.792 93.031  MM 309 N LEU A 71 -20.531 94.956  MM 310 CA LEU A 71 -20.531 94.956  MM 311 CB LEU A 71 -20.546 96.468  MM 312 CG LEU A 71 -19.757 97.134  MM 313 CD1 LEU A 71 -18.290 97.322  MM 314 CD2 LEU A 71 -20.411 98.464  MM 315 C LEU A 71 -22.850 94.507  MM 317 N LYS A 72 -21.918 94.063  MM 318 CA LYS A 72 -23.159 93.582  MM 319 CB LYS A 72 -23.345 94.952  MM 320 CG LYS A 72 -23.345 95.403  MM 321 CD LYS A 72 -23.345 95.403  MM 322 CE LYS A 72 -23.349 97.014  MM 323 NZ LYS A 72 -22.6429 97.014  MM 326 N PRO A 73 -25.268 90.699  MM 327 CD PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.307  MM 330 CG PRO A 73 -25.268 90.699  MM 331 C PRO A 73 -25.269 86.430  MM 332 CG LEU A 74 -25.860 87.707  MM 333 CG LEU A 74 -25.860 87.707  MM 336 CG LEU A 75 -22.694 97.014  MM 327 CD PRO A 73 -25.268 90.699  MM 328 CA PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 320 CG LYS A 72 -23.349 92.196  MM 321 CD LYS A 72 -23.499 97.014  MM 322 CC LYS A 72 -23.499 97.014  MM 323 N LEU A 74 -25.860 87.707  MM 330 CG PRO A 73 -25.269 86.430  MM 331 N LEE A 74 -25.860 87.707  MM 333 C LIE A 74 -25.860 87.707  MM 336 CG LEU A 75 -29.951 84.693  MM 327 CD LEU A 75 -29.951 84.693  MM 328 CD LEU A 77 -30.026 83.966  MM 329 CB LEU A 77 -30.026 83.966  MM 315 C RU A 76 -27.978 84.693  MM 316 CG LEU A 77 -30.056 78.300  MM 317 N LY A 76 -27.978 80.037  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.600  MM 319 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056</td> <td>  May   199   CD2   PHE   A   69</td> <td>  March   199   CD2   PHE A   69</td> <td>  May   299   CD2   PHE A   69</td> <td>  March   Marc</td> <td>  May   199</td> | MM         299         CD2         PHE A         69         -18.656           MM         300         CE1         PHE A         69         -20.640           MM         301         CE2         PHE A         69         -19.640           MM         303         C         PHE A         69         -19.006           MM         304         O         PHE A         69         -19.788           MM         305         N         GLY A         70         -17.613           MM         306         CA         GLY A         70         -17.613           MM         307         C         GLY A         70         -18.677           MM         309         N         LEU A         71         -20.531           MM         310         CA         LEU A         71         -20.531           MM         311         CB         LEU A         71         -18.677           MM         312         CG         LEU A         71         -18.677           MM         313         CD         LEU A         71         -20.531           MM         312         CB         LEU A         71         < | MM 299 CD2 PHE A 69 -18.656 87.541  MM 300 CE1 PHE A 69 -20.640 85.873  MM 301 CE2 PHE A 69 -19.646 86.188  MM 302 CZ PHE A 69 -19.006 91.293  MM 303 C PHE A 69 -19.006 91.293  MM 304 O PHE A 69 -19.788 92.122  MM 305 N GLY A 70 -17.613 92.999  MM 306 CA GLY A 70 -17.613 92.999  MM 307 C GLY A 70 -18.677 93.502  MM 308 O GLY A 70 -18.792 93.031  MM 309 N LEU A 71 -20.531 94.956  MM 310 CA LEU A 71 -20.531 94.956  MM 311 CB LEU A 71 -20.546 96.468  MM 312 CG LEU A 71 -19.757 97.134  MM 313 CD1 LEU A 71 -18.290 97.322  MM 314 CD2 LEU A 71 -20.411 98.464  MM 315 C LEU A 71 -22.850 94.507  MM 317 N LYS A 72 -21.918 94.063  MM 318 CA LYS A 72 -23.159 93.582  MM 319 CB LYS A 72 -23.345 94.952  MM 320 CG LYS A 72 -23.345 95.403  MM 321 CD LYS A 72 -23.345 95.403  MM 322 CE LYS A 72 -23.349 97.014  MM 323 NZ LYS A 72 -22.6429 97.014  MM 326 N PRO A 73 -25.268 90.699  MM 327 CD PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.307  MM 330 CG PRO A 73 -25.268 90.699  MM 331 C PRO A 73 -25.269 86.430  MM 332 CG LEU A 74 -25.860 87.707  MM 333 CG LEU A 74 -25.860 87.707  MM 336 CG LEU A 75 -22.694 97.014  MM 327 CD PRO A 73 -25.268 90.699  MM 328 CA PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 329 CB PRO A 73 -25.268 90.699  MM 320 CG LYS A 72 -23.349 92.196  MM 321 CD LYS A 72 -23.499 97.014  MM 322 CC LYS A 72 -23.499 97.014  MM 323 N LEU A 74 -25.860 87.707  MM 330 CG PRO A 73 -25.269 86.430  MM 331 N LEE A 74 -25.860 87.707  MM 333 C LIE A 74 -25.860 87.707  MM 336 CG LEU A 75 -29.951 84.693  MM 327 CD LEU A 75 -29.951 84.693  MM 328 CD LEU A 77 -30.026 83.966  MM 329 CB LEU A 77 -30.026 83.966  MM 315 C RU A 76 -27.978 84.693  MM 316 CG LEU A 77 -30.056 78.300  MM 317 N LY A 76 -27.978 80.037  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.300  MM 318 CG LEU A 77 -30.056 78.600  MM 319 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 78.600  MM 310 CG LEU A 77 -30.056 | May   199   CD2   PHE   A   69 | March   199   CD2   PHE A   69   | May   299   CD2   PHE A   69 | March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc | May   199        |

A 2 Ths Course of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Charles of Char

Figure 1

| ATO          | M        | 373        | N         | GLY        | Α      | 79       | -29.097            | 73.109           | 50.038           | 1.00 | 32.22          | A      | N      |
|--------------|----------|------------|-----------|------------|--------|----------|--------------------|------------------|------------------|------|----------------|--------|--------|
| ATO          | M        | 374        | CA        | GLY        | A      | 79       | -29.664            | 71.862           | 49.605           | 1.00 | 36.10          | A      | C      |
| ATO          |          | 375        | C         | GLY        |        | 79       | -30.195            | 71.979           | 48.193           |      | 36.69          | A      | С      |
| ATO          |          | 376        | 0         | GLY        |        | 79       | -30.124            | 73.038           | 47.563           |      | 36.46          | A      | 0      |
| ATO          |          | 377        | N         | TYR        |        | 80       | -30.709            | 70.848           | 47.722           | 1.00 | 38.55          | A      | N      |
| ATO          |          | 378<br>379 | CA<br>CB  | TYR<br>TYR |        | 80<br>80 | -31.347            | 70.692           | 46.431           |      | 38.23<br>37.73 | A      | C      |
| ATO          |          | 380        | CG        | TYR        |        | 80       | -31.424<br>-32.411 | 69.214<br>68.981 | 46.028<br>44.907 | 1.00 | 37.73          | A<br>A | c      |
| ATO          |          | 381        |           | TYR        |        | 80       | -32.115            | 69.392           | 43.611           |      | 38.84          | A      | č      |
| ATO          |          | 382        |           | TYR        |        | 80       | -33.080            | 69.367           | 42.601           |      | 36.51          | A      | Ċ      |
| ATO          | M        | 383        | CD2       | TYR        | A      | 80       | -33.697            | 68.514           | 45.160           | 1.00 | 35.77          | A      | C      |
| ATO          |          | 384        |           | TYR        |        | 80       | -34.669            | 68.488           | 44.150           |      | 34.53          | A      | С      |
| ATO          |          | 385        | CZ        | TYR        |        | 80       | -34.354            | 68.924           | 42.886           | 1.00 | 34.66          | A      | C      |
| ATO          |          | 386<br>387 | OH        | TYR        |        | 80<br>80 | -35.329<br>-32.751 | 69.000<br>71.157 | 41.930           | 1.00 | 34.47          | A<br>A | 0      |
| ATO          |          | 388        | 0         | TYR        |        | 80       | -33.399            | 71.795           | 46.749<br>45.942 |      | 38.94<br>38.25 | A      | Ö      |
| ATO          |          | 389        | N         | GLU        |        | 81       | -33.219            | 70.821           | 47.946           |      | 41.35          | A      | N      |
| ATO          | M        | 390        | CA        | GLU        | A      | 81       | -34.550            | 71.216           | 48.347           |      | 44.24          | A      | С      |
| ATO          | M        | 391        | СВ        | GLU        |        | 81       | -34.942            | 70.576           | 49.668           | 1.00 | 47.08          | A      | С      |
| ATO          |          | 392        | CG        | GLU        |        | 81       | -34.759            | 69.092           | 49.734           |      | 53.37          | A      | C      |
| ATO          |          | 393        | CD        | GLU        |        | 81       | -35.138            | 68.530           | 51.108           |      | 59.14          | A      | C      |
| ATO!         |          | 394<br>395 |           | GLU<br>GLU |        | 81<br>81 | -36.361<br>-34.211 | 68.488<br>68.138 | 51.431<br>51.872 |      | 62.35<br>61.02 | A<br>A | 0      |
| ATO          |          | 396        | C         | GLU        |        | 81       | -34.576            | 72.714           | 48.508           |      | 44.31          | A      | č      |
| ATO          |          | 397        | ō         | GLU        |        | 81       | -35.617            | 73.334           | 48.344           |      | 45.46          | A      | ō      |
| ATO          | 4        | 398        | N         | ALA        |        | 82       | -33.433            | 73.309           | 48.821           |      | 44.52          | A.     | N      |
| ATO          | 4        | 399        | CA        | ALA        | A      | 82       | -33.407            | 74.753           | 49.005           | 1.00 | 43.93          | A      | С      |
| ATO          |          |            | CB        | ALA        |        | 82       | -32.274            | 75.145           | 49.909           |      | 45.87          | A      | С      |
| ATO          |          | 401        | C         | ALA        |        | 82       | -33.280            | 75.460           | 47.679           |      | 44.00          | A      | C      |
| OTA<br>OTA   |          | 402<br>403 | 0         | ALA<br>VAL |        | 82       | -33.910            | 76.483           | 47.457<br>46.794 |      | 43.01<br>44.66 | A      | 0      |
| ATO          |          |            | N<br>CA   | VAL        |        | 83<br>83 | -32.460<br>-32.278 | 74.912<br>75.522 | 45.493           |      | 46.36          | A<br>A | N<br>C |
| ATO          |          | 405        | СВ        | VAL        |        | 83       | -31.070            | 74.909           | 44.753           |      | 46.39          | A      | č      |
| ATOR         |          | 406        |           | VAL        |        | 83       | -30.888            | 75.570           | 43.398           |      | 47.69          | A      | Č      |
| OTA          | <b>(</b> | 407        | CG2       | VAL        | A      | 83       | -29.816            | 75.085           | 45.581           | 1.00 | 45.66          | A      | С      |
| ATO          |          | 408        | C         | VAL        |        | 83       | -33.539            | 75.325           | 44.664           |      | 47.65          | A      | С      |
| OTA          |          | 409        | 0         | VAL        |        | 83       | -34.064            | 76.276           | 44.076           |      | 47.84          | A      | 0      |
| ATO          |          | 410        | N<br>CA   | LYS        | A<br>A | 84       | -34.027            | 74.089           | 44.635           |      | 49.08          | A      | N      |
| ATOM<br>ATOM |          | 411<br>412 | CB        | LYS<br>LYS |        | 84<br>84 | -35.223<br>-35.528 | 73.741<br>72.245 | 43.875           | 1.00 | 51.22<br>53.13 | A<br>A | C<br>C |
| ATON         |          | 413        | CG        | LYS        |        | 84       | -36.997            | 71.857           | 44.132           |      | 56.14          | A      | Ċ      |
| ATON         |          | 414        | CD        | LYS        |        | 84       | -37.792            | 72.081           | 42.854           |      | 58.80          | A      | Č      |
| ATON         | 1        | 415        | CE        | LYS        | Α      | 84       | -39.306            | 71.932           | 43.161           | 1.00 | 61.75          | A      | C      |
| 4OTA         |          | 416        | NZ        | LYS        |        | 84       | -40.218            | 71.949           | 41.977           | 1.00 | 62.41          | A      | N      |
| ATON         |          | 417        | C         | LYS        |        | 84       | -36.424            | 74.581           | 44.270           | 1.00 | 50.96          | A      | C      |
| ATON<br>ATON |          | 418<br>419 | O<br>N    | LYS        |        | 84<br>85 | -37.087<br>-36.703 | 75.171<br>74.635 | 43.414<br>45.565 |      | 51.75<br>50.76 | A<br>A | O<br>N |
| ATOM         |          | 420        | CA        | GLU        |        | 85       | -37.840            | 75.394           | 46.067           |      | 51.17          | A      | Č      |
| ATON         |          | 421        | СВ        | GLU        |        | 85       | -37.829            | 75.398           | 47.593           |      | 52.54          | A      | č      |
| ATOM         | •        | 422        | CG        | GLU        | A      | 85       | -39.109            | 75.908           | 48.192           | 1.00 | 55.78          | A      | С      |
| ATOM         |          | 423        | CD        | GLU        |        | 85       | -39.091            | 75.920           | 49.713           |      | 58.01          | A      | С      |
| ATOM         |          | 424        |           | GLU        |        | 85       | -38.639            | 74.919           | 50.323           |      | 58.09          | A      | 0      |
| ATOM<br>ATOM |          | 425<br>426 | OE2<br>C  | GLU<br>GLU |        | 85<br>85 | -39.545            | 76.933<br>76.830 | 50.300<br>45.570 |      | 59.66<br>50.59 | A<br>A | O<br>C |
| ATON         |          | 427        | 0         | GLU        |        | 85       | -37.805<br>-38.740 | 77.315           | 44.936           |      | 50.57          | A      | Ö      |
| ATOM         |          | 428        | N         | ALA        |        | 86       | -36.697            | 77.496           | 45.871           |      | 50.32          | A      | N      |
| ATOM         |          | 429        | CA        | ALA        |        | 86       | -36.470            | 78.890           | 45.517           |      | 48.53          | A      | С      |
| MOTA         | •        | 430        | CB        | ALA        | A      | 86       | -35.238            | 79.397           | 46.250           |      | 47,.44         | A      | С      |
| ATOM         |          | 431        | С         | ALA        |        | 86       | -36.331            | 79.172           | 44.034           |      | 48.14          | A      | С      |
| ATOM         |          | 432        | 0         | ALA        |        | B 6      | -36.771            | 80.215           | 43.566           |      | 48.91          | A      | 0      |
| ATOM         |          | 433        | N         | LEU        |        | 87       | -35.721            | 78.260           | 43.286<br>41.859 |      | 48.20<br>47.61 | A<br>A | N<br>C |
| MOTA         |          | 434<br>435 | CA<br>CB  | LEU        |        | 87<br>87 | -35.532<br>-34.227 | 78.496<br>77.866 | 41.387           |      | 45.68          | A      | Ċ      |
| ATOM         |          | 436        | CG        | LEU        |        | 87       | -32.948            | 78.606           | 41.791           |      | 43.63          | A      | č      |
| ATOM         |          | 437        | CD1       |            |        | 87       | -31.773            | 77.963           | 41.061           |      | 41.82          | A      | č      |
| ATOM         |          | 438        | CD2       |            |        | 87       | -33.056            | 80.092           | 41.443           |      | 40.01          | A      | С      |
| ATOM         |          | 439        | С         | LEU        | A      | 87       | -36.662            | 78.034           | 40.968           |      | 48.25          | A      | C      |
| ATOM         |          | 440        |           | LEU        |        | 87       | -36.735            | 78.421           | 39.803           |      | 48.33          | Α      | 0      |
| ATOM         |          | 441        | N         | ILE        |        | 88       | -37.558            | 77.219           | 41.514           |      | 15.00          | A      |        |
| ATOM         |          | 442        | CA        | ILE        |        | 88<br>88 | -38.672<br>-38.645 | 76.735<br>75.198 | 40.708           |      | 15.00<br>15.00 | A<br>A |        |
| ATOM<br>ATOM |          | 443<br>444 | CB<br>CG2 | ILE        |        | 88       | -38.645            | 74.713           | 39.823           |      | 15.00          | A      |        |
| ATOM         |          | 145        | CG1       |            |        | 88       | -37.366            | 74.750           | 39.875           |      | 15.00          | A      |        |
| ATOM         |          | 446        | CD1       |            |        | 88       | -37.046            | 73.282           | 40.059           |      | 15:00          | A      |        |
| ATOM         |          | 147        |           | ILE        |        | 88       | -40.008            | 77.154           | 41.311           | 1.00 | 15.00          | A      |        |
|              |          |            |           |            |        |          |                    |                  |                  |      |                |        |        |

SUBSTITUTE SHEET (RULE 26)

Figure 1

| ATOM | 448 | 0   | ILE  | A | 88   | -40.871 | 77.665 | 40.582 | 1.00 | 52.40 | 7   |     |
|------|-----|-----|------|---|------|---------|--------|--------|------|-------|-----|-----|
| ATOM | 449 | N   | ASP  |   | 89   | -40,203 | 76.961 | 42.610 | 1.00 | 53.28 | 7   | N N |
| ATOM | 450 | CA  | ASP  |   | 89   | -41.452 | 77.362 | 43.249 |      | 55.38 | 7   | , c |
|      |     | СВ  | ASP  |   | 89   | -41.549 | 76.802 | 44.665 | -    | 56.01 |     |     |
| MOTA | 451 |     |      |   | 89   |         | 75.282 | 44.698 |      | 58.43 | 7   |     |
| MOTA | 452 | CG  | ASP  |   |      | -41.599 |        |        |      |       | ,   |     |
| ATOM | 453 |     | ASP  |   | 89   | -41.828 | 74.729 | 45.799 |      | 60.43 |     |     |
| ATOM | 454 |     | ASP  |   | 89   | -41.410 | 74.640 | 43.643 |      | 59.05 | F   |     |
| MOTA | 455 | С   | ASP  | Α | 89   | -41.585 | 78.886 | 43.297 |      | 56.46 | 7   |     |
| MOTA | 456 | 0   | ASP  | Α | 89   | -42.680 | 79.419 | 43.161 | 1.00 | 58.54 | Į   |     |
| ATOM | 457 | N   | LEU  | Α | 90   | -40.482 | 79.596 | 43.504 | 1.00 | 56.79 |     | N N |
| ATOM | 458 | CA  | LEU  | А | 90   | -40.545 | 81.048 | 43.543 | 1.00 | 56.57 | 1   | A C |
| ATOM | 459 | СВ  | LEU  |   | 90   | -40.051 | 81.578 | 44.889 | 1.00 | 57.40 | 7   | L C |
| ATOM | 460 | CG  | LEU  |   | 90   | -40.886 | 81.268 | 46.140 |      | 58.05 | 7   |     |
|      | 461 |     | LEU  |   | 90   | -40.701 | 79.815 | 46.539 |      | 58.41 |     |     |
| ATOM |     |     |      |   |      |         |        | 47.285 |      | 57.11 | į   |     |
| MOTA | 462 |     | LEU  |   | 90   | -40.456 | 82.184 |        |      |       |     | _   |
| MOTA | 463 | С   | LEU  |   | 90   | -39.711 | 81.640 | 42.418 |      | 56.89 | ,   |     |
| ATOM | 464 | 0   | LEU  |   | 90   | -39.068 | B2.676 | 42.580 |      | 56.81 | Į   |     |
| ATOM | 465 | N   | GLY  | Α | 91   | -39.738 | 80.974 | 41.270 |      | 57.35 | 7   |     |
| ATOM | 466 | CA  | GLY  | A | 91   | -38.982 | 81.423 | 40.112 |      | 58.46 | I   |     |
| ATOM | 467 | С   | GLY  | A | 91   | -38.983 | 82.916 | 39.818 | 1.00 | 58.23 | 7   | , c |
| MOTA | 468 | 0   | GLY  | A | 91   | -37.959 | 83.458 | 39.415 | 1.00 | 59.77 | 7   | 4 0 |
| ATOM | 469 | N   | GLU  |   | 92   | -40.117 | 83.586 | 39.982 | 1.00 | 57.74 | ,   | A N |
| ATOM | 470 | CA  | GLU  |   | 92   | -40.147 | 85.013 | 39.718 |      | 57.73 | . 1 | A C |
|      | 471 | CB  | GLU  |   | 92   | -41.577 | 85.513 | 39.469 |      | 57.90 | 1   |     |
| ATOM |     |     |      |   |      |         |        | 37.994 |      | 59.10 |     | i č |
| ATOM | 472 | CG  | GLU  |   | 92   | -41.979 | 85.593 |        |      |       |     |     |
| ATOM | 473 | CD  | GLU  |   | 92   | -41.138 | 86.591 | 37.197 |      | 59.97 |     | A C |
| ATOM | 474 |     | GLU  |   | 92   | -41.076 | 87.777 | 37.597 |      | 61.50 |     | A 0 |
| ATOM | 475 | OE2 | GLU  | Α | 92   | -40.543 | 86.187 | 36.170 |      | 58.37 |     | A 0 |
| ATOM | 476 | С   | GLU  | Ά | 92   | -39.543 | 85.774 | 40.885 | 1.00 | 57.25 | 1   | A C |
| ATOM | 477 | ο.  | GLU  | Α | 92 - | -38.882 | 86.795 | 40.698 | 1.00 | 57.44 | 1   | A 0 |
| ATOM | 478 | N   | GLU  |   | 93   | -39.755 | 85.282 | 42.095 | 1.00 | 56.15 | 1   | A N |
| ATOM | 479 | CA  | GLU  |   | 93   | -39.217 | 85.974 | 43.249 |      | 55.91 |     | 4 C |
|      | 480 | CB  | GLU  |   | 93   | -39.808 | 85.399 | 44.528 |      | 56.89 |     | A C |
| ATOM |     |     |      |   |      |         |        |        |      | 59.84 |     | . č |
| ATOM | 481 | CG  | GLU  |   | 93   | -41.291 | 85.674 | 44.663 |      |       |     |     |
| MOTA | 482 | CD  | GLU. |   | 93   | -42.146 | 84.723 | 43.844 |      | 61.30 |     | A C |
| ATOM | 483 |     | GLU  |   | 93   | -42.016 | 84.700 | 42.599 |      | 62.53 |     | A 0 |
| ATOM | 484 | OE2 | GLU  | А | 93 - | -42.954 | 83.990 | 44.455 | 1.00 | 61.84 | 1   | A 0 |
| MOTA | 485 | С   | GLU  | Α | 93   | -37.702 | 85.903 | 43.282 | 1.00 | 55.23 | 1   | A C |
| ATOM | 486 | 0   | GLU  | А | 93   | -37.035 | 86.844 | 43.712 | 1.00 | 55.21 | 1   | A 0 |
| ATOM | 487 | N   | PHE  |   | 94   | -37.164 | 84.786 | 42.809 | 1.00 | 54.04 | 1   | A N |
| ATOM | 488 | CA  | PHE  |   | 94   | -35.726 | 84.574 | 42.775 |      | 52.77 |     | A C |
|      | 489 | CB  | PHE  |   | 94   | -35.394 | 83.203 | 43.375 |      | 51.30 |     | A C |
| ATOM |     |     |      |   |      |         |        |        |      | 50.02 |     | A C |
| ATOM | 490 | CG  | PHÉ  |   | 94   | -35.406 | 83.174 | 44.880 |      |       |     |     |
| ATOM | 491 |     | PHE  |   | 94   | -34.305 | 83.618 | 45.600 |      | 48.70 |     |     |
| ATOM | 492 |     | PHE  |   | 94   | -36.517 | 82.705 | 45.576 |      | 49.37 |     | A C |
| ATOM | 493 | CE1 | PHE  | Α | 94   | -34.305 | 83.596 | 46.991 |      | 48.96 |     | A C |
| ATOM | 494 | CE2 | PHE  | Α | 94   | -36.527 | 82.679 | 46.968 | 1.00 | 48.23 |     | A Ç |
| ATOM | 495 | CZ  | PHE  | А | 94   | -35.419 | 83.125 | 47.676 | 1.00 | 48.49 | 1   | A C |
| ATOM | 496 | С   | PHE  |   | 94   | -35.198 | 84.638 | 41.350 | 1.00 | 53.14 | 1   | A C |
| ATOM | 497 | Ō   | PHE  |   | 94   | -34.880 | 83.613 | 40.775 | 1.00 | 54.57 |     | A 0 |
| ATOM | 498 | N   | SER  |   | 95   | -35.097 |        | 40.768 |      | 53.67 |     | A N |
|      |     |     |      |   |      | -34.596 | 85.912 | 39.403 |      | 54.25 |     | A C |
| MOTA | 499 | CA  | SER  |   | 95   |         |        |        |      |       |     | A C |
| MOTA | 500 | CB  | SER  |   | 95   | -35.760 | 85.840 | 38.430 |      | 52.74 |     | A O |
| MOTA | 501 | OG  | SER  |   | 95   | -36.788 | 86.710 | 38.844 |      |       |     |     |
| ATOM | 502 | С   | SER  |   | 95   | -33.753 | 87.148 | 39.113 |      | 55.98 |     | A C |
| ATOM | 503 | 0   | SER  | Α | 95   | -33.662 | 87.584 | 37.965 |      | 55.73 |     | A O |
| ATOM | 504 | N   | GLY  | A | 96   | -33.117 | 87.686 | 40.152 |      | 57.52 |     | A N |
| ATOM | 505 | CA  | GLY  | Α | 96   | -32.275 | 88.854 | 39.985 | 1.00 | 59.25 | i   | A C |
| ATOM | 506 | С   | GLY  |   | 96   | -30.823 | 88.500 | 39.702 | 1.00 | 60.80 |     | A C |
| ATOM | 507 | ō   | GLY  |   | 96   | -30.532 | 87.383 | 39.290 | 1.00 | 60.60 |     | A O |
| ATOM | 508 | N   | ARG  |   | 97   | -29.912 | 89.448 | 39.932 |      | 61.73 | •   | A N |
|      |     |     |      |   |      |         | 89.239 | 39.681 |      | 62.05 |     | A C |
| ATOM | 509 | CA  | ARG  |   | 97   | -28.492 |        |        |      | 62.87 |     | A C |
| ATOM | 510 | CB  | ARG  |   | 97   | -28.084 | 89.973 | 38.405 |      |       |     |     |
| MOTA | 511 | CG  | ARG  |   | 97   | -28.996 | 89.728 | 37.210 |      | 62.95 |     | A C |
| MOTA | 512 | CD  | ARG  |   | 97   | -30.385 | 90.400 | 37.355 |      | 65.51 |     | A C |
| ATOM | 513 | NE  | ARG  | A | 97   | -30.303 | 91.861 | 37.500 |      | 65.59 |     | A N |
| ATOM | 514 | CZ  | ARG  |   | 97   | -31.293 | 92.718 | 37.248 | 1.00 | 63.42 |     | A C |
| ATOM | 515 |     | ARG  |   | 97   | -32.482 | 92.294 | 36.829 |      | 60.91 |     | A N |
| MOTA | 516 |     | ARG  |   | 97   | -31.079 | 94.012 | 37.407 |      | 63.25 |     | A N |
|      |     |     | ARG  |   | 97   | -27.674 | 89.755 | 40.866 |      | 62.86 |     | A C |
| ATOM | 517 | C   |      |   |      | -27.113 |        | 41.639 |      | 62.89 |     | A O |
| ATOM | 518 | 0   | ARG  |   | 97   |         | 88.976 |        |      |       |     |     |
| ATOM | 519 | N   | GLY  |   | 98   | ~27.588 | 91.078 | 40.986 |      | 64.88 |     | N A |
| ATOM | 520 | CA  | GLY  |   | 98   | -26.879 | 91.695 | 42.099 |      | 66.10 |     | A C |
| ATOM | 521 | С   | GLY  | A | 98   | -25.403 | 92.024 | 42.000 |      | 66.56 |     | A C |
| MOTA | 522 | 0   | GLY  | Α | 98   | -24.651 | 91.621 | 42.875 | 1.00 | 68.28 |     | A 0 |
|      |     |     |      |   |      |         |        |        |      |       |     |     |

Figure 1

| ATOM         | 523        | N      | ILE | A | 99  | -24.974            | 92.769           | 40.986           | 1.00 | 65.66          |     | A      | N      |
|--------------|------------|--------|-----|---|-----|--------------------|------------------|------------------|------|----------------|-----|--------|--------|
| ATOM         | 524        | CA     | ILE |   | 99  | -23.559            | 93.100           | 40.887           | _    | 63.38          |     | A      | c      |
| ATOM         | 525        | СВ     | ILE |   | 99  | -22.696            | 91.792           | 41.117           |      | 64.27          |     | A      | Ċ      |
| ATOM         | 526        | CG2    | ILE | Α | 99  | -21.954            | 91.346           | 39.834           | 1.00 | 62.63          |     | A      | ¢      |
| MOTA         | 527        | CG1    | ILE | Α | 99  | -21.763            | 92.000           | 42.323           | 1.00 | 61.57          |     | A      | С      |
| ATOM         | 528        | CD1    | ILE | A | 99  | -20.791            | 93.153           | 42.216           | 1.00 | 61.14          |     | A      | С      |
| ATOM         | 529        | С      | ILE | Α | 99  | -23.212            | 93.797           | 39.564           | 1.00 | 61.40          |     | A      | С      |
| ATOM         | 530        | 0      | ILE |   | 99  | -23.958            | 93.703           | 38.578           |      | 62.17          |     | A      | 0      |
| ATOM         | 531        | N      | PHE | A | 100 | -22.091            | 94.522           | 39.567           | 1.00 | 59.26          | i   | A      | N      |
| MOTA         | 532        | CA     | PHE | A | 100 | -21.629            | 95.250           | 38.381           | 1.00 | 60.28          |     | A      | С      |
| ATOM         | 533        | CB     | PHE | A | 100 | -21.463            | 96.774           | 38.671           | 1.00 | 58.70          |     | A      | С      |
| ATOM         | 534        | CG     | PHE | A | 100 | -22.511            | 97.354           | 39.590           | 1.00 | 58.62          |     | A      | С      |
| ATOM         | 535        | CD1    | PHE | A | 100 | -22.380            | 97.258           | 40.978           | 1.00 | 56.04          |     | A      | С      |
| ATOM         | 536        | CD2    | PHE | A | 100 | -23.660            | 97.940           | 39.069           | 1.00 | 58.09          |     | A      | С      |
| ATOM         | 537        | CE1    | PHE | Α | 100 | -23.393            | 97.742           | 41.834           | 1.00 | 57.49          |     | A      | С      |
| ATOM         | 538        | CE2    | PHE | A | 100 | -24.680            | 98.426           | 39.911           | 1.00 | 59.49          |     | A      | C      |
| ATOM         | 539        | CZ     | PHE | A | 100 | ~24.547            | 98.323           | 41.298           | 1.00 | 59.34          | i   | A      | C      |
| MOTA         | 540        | С      | PHE | Α | 100 | -20.286            | 94.683           | 37.896           | 1.00 | 60.52          |     | A.     | С      |
| ATOM         | 541        | 0      | PHE | A | 100 | -19.449            | 95.493           | 37.422           | 1.00 | 63.21          |     | A      | 0      |
| ATOM         | 542        | OXT    | PHE | A | 100 | -20.101            | 93.446           | 37.990           | 1.00 | 61.69          | i   | A      | 0      |
| TER          | 542        |        | PHE | A | 100 |                    |                  |                  |      |                |     |        |        |
| ATOM         | 543        | CB     | PHE | A | 110 | -28.202            | 96.471           | 27.900           | 1.00 | 68.08          | i   | A      | C      |
| ATOM         | 544        | CG     | PHE | A | 110 | -29.237            | 97.522           | 28.122           | 1.00 | 71.17          |     | A      | С      |
| MOTA         | 545        | CD1    | PHE | A | 110 | -30.361            | 97.255           | 28.902           | 1.00 | 71.98          | i   | A      | С      |
| ATOM         | 546        | CD2    | PHE | A | 110 | -29.096            | 98.781           | 27.545           | 1.00 | 71.46          | i   | A      | С      |
| ATOM'        | 547        | CE1    | PHE | A | 110 | -31.334            | 98.227           | 29.104           | 1.00 | 72.74          |     | A.     | C      |
| ATOM         | 548        | CE2    | PHE | A | 110 | -30.060            | 99.757           | 27.739           | 1.00 | 72.95          | i   | A      | С      |
| ATOM         | 549        | CZ     | PHE | A | 110 | -31.183            | 99.483           | 28.522           | 1.00 | 73.51          |     | A      | С      |
| ATOM         | 550        | С      | PHE | A | 110 | -27.234            | 94.433           | 28.870           | 1.00 | 65.BO          | , ; | A      | С      |
| MOTA         | 551        | 0      | PHE | A | 110 | -26.378            | 93.861           | 29.555           | 1.00 | 67.80          | ٠,  | A      | 0      |
| MOTA         | 552        | N      | PHE | A | 110 | -26.608            | 96.676           | 29.790           | 1.00 | 66.06          | i   | A      | N      |
| ATOM         | 553        | CA     | PHE | A | 110 | -27.684            | 95.839           | 29.185           | 1.00 | 66.01          | i   | A      | С      |
| ATOM         | 554        | N      | GLY | A | 111 | -27.825            | 93.877           | 27.821           | 1.00 | 64.08          | i   | A      | N      |
| MOTA         | 555        | ÇA     | GLY | A | 111 | -27.488            | 92.531           | 27.414           | 1.00 | 62.26          | 1   | A      | С      |
| ATOM         | 556        | C      | GLY | A | 111 | -28.475            | 91.552           | 28.010           |      | 60.73          | i   | A      | С      |
| MOTA         | 557        | 0      | GLY | A | 111 | -29.448            | 91.941           | 28.659           | 1.00 | 60.39          | i   | A      | 0      |
| ATOM         | 558        | N      | ILE | A | 112 | -28.236            | 90.272           | 27.770           | 1.00 | 59.19          | i   | A      | N      |
| MOTA         | 559        | CA     | ILE | A | 112 | -29.113            | 89.252           | 28.300           | 1.00 | 57.54          | i   | A      | С      |
| ATOM         | 560        | CB     | ILE | A | 112 | -28.892            | 87.907           | 27.615           | 1.00 | 57.93          | i   | A      | С      |
| ATOM         | 561        |        | ILE |   |     | -29.725            | 86.851           | 28.301           |      | 58.78          | i   | A      | ¢      |
| ATOM         | 562        | CG1    | ILE | A | 112 | -29.256            | 88.001           | 26.133           | 1.00 | 58.37          | 1   | A      | С      |
| ATOM         | 563        |        | ILE |   |     | -28.958            | 86.730           | 25.353           |      | 59.83          |     | A      | C      |
| ATOM         | 564        | С      | ILE |   |     | -28.821            | 89.107           | 29.784           |      | 56.31          |     | A      | С      |
| ATOM         | 565        | 0      | ILE |   |     | -29.738            | 89.097           | 30.602           |      | 56.32          |     | A      | 0      |
| ATOM         | 566        | N      | VAL |   |     | -27.546            | 88.978           | 30.137           |      | 54.82          |     | A      | N      |
| ATOM         | 567        | CA     | VAL |   |     | -27.194            | 88.859           | 31.546           |      | 53.44          |     | A      | C      |
| ATOM         | 568        | CB     | VAL |   |     | -25.919            | 88.004           | 31.799           |      | 51.44          |     | A      | С      |
| ATOM         | 569        |        | VAL |   |     | -24.759            | 88.490           | 30.977           |      | 47.97          |     | A.     | С      |
| ATOM         | 570        |        | VAL |   |     | -25.572            | 88.046           | 33.278           |      | 50.28          |     | A      | С      |
| ATOM         | 571        | С      | VAL |   |     | -26.955            | 90.227           | 32.123           |      | 54.92          |     | A      | Ç      |
| ATOM         | 572        | 0      | VAL |   |     | -26.845            | 91.206           | 31.389           |      | 57.43          |     | A.     | 0      |
| ATOM         | 573        | N      | PHE |   |     | -26.867            | 90.297           | 33.443           |      | 55.01          |     | A<br>A | N<br>N |
| ATOM         | 574        | CA     | PHE |   |     | -26.631            | 91.560           | 34.115           |      | 54.91<br>51.81 |     | A.     | c      |
| ATOM         | 575        | CB     | PHE |   |     | -25.277            | 92.142           | 33.725           |      | 50.25          |     | A.     | c      |
| ATOM         | 576<br>577 | CG     | PHE |   |     | -24.130<br>-23.151 | 91.350<br>90.934 | 34.192<br>33.304 |      | 50.28          |     | A.     | c      |
| MOTA<br>MOTA | 578        |        | PHE |   |     | -24.035            | 90.996           | 35.522           |      | 50.54          |     | Α.     | Č      |
| MOTA         | 579        |        | PHE |   |     | -22.093            | 90.165           | 33.738           |      | 50.20          |     | A      | č      |
| ATOM         | 580        |        | PHE |   |     | -22.989            | 90.230           | 35.974           |      | 51.24          |     | A      | Č      |
|              |            | CZ     | PHE |   |     | -22.010            | 89.809           | 35.080           |      | 52.11          |     | A      | Č      |
| MOTA<br>MOTA | 581<br>582 |        | PHE |   |     | -27.669            | 92.570           | 33.723           |      | 56.67          |     | A      | č      |
|              |            | C      |     |   |     | -27.325            | 93.724           | 33.539           |      | 58.74          |     | A.     | ō      |
| ATOM<br>ATOM | 583<br>584 | 0<br>N | PHE |   |     | -28.927            | 92.184           | 33.567           |      | 58.18          |     | A.     | N      |
| MOTA         | 585        | CA     | SER |   |     | -29.884            | 93.206           | 33.182           |      | 60.31          |     | A.     | č      |
| MOTA         | 586        | CB     | SER |   |     | -30.163            | 93.122           | 31.676           |      | 59.40          |     | A.     | Č      |
| ATOM         | 587        | OG     | SER |   |     | -31.390            | 92.485           | 31.403           |      | 61.82          |     | A.     | Ö      |
| ATOM         | 588        | C      | SER |   |     | -31.183            | 93.249           | 33.982           |      | 62.32          |     | À      | c      |
| ATOM         | 589        | ō      | SER |   |     | -31.709            | 92.218           | 34.388           |      | 60.79          |     | A      | ŏ      |
| ATOM         | 590        | N      | ASN |   |     | -31.667            | 94.473           | 34.220           |      | 66.51          |     | Ā      | N      |
| ATOM         | 591        | CA     | ASN |   |     | -32.900            | 94.731           | 34.976           |      | 69.32          |     | Ā      | c      |
| ATOM         | 592        | СВ     | ASN |   |     | -33.306            | 96.223           | 34.873           |      | 70.77          |     | Ā      | c      |
| ATOM         | 593        | CG     | ASN |   |     | -33.991            | 96.758           | 36.149           |      | 72.73          |     | Ā      | c      |
| ATOM         | 594        |        | ASN |   |     | -34.856            | 96.095           | 36.745           |      | 73.36          |     | A      | o      |
| ATOM         | 595        |        | ASN |   |     | -33.615            | 97.973           | 36.551           |      | 73.16          |     | Α .    | N      |
| ATOM         | 596        | C      | ASN |   |     | -33.999            | 93.863           | 34.383           |      | 69.09          |     | Ą      | С      |

| MOTA | 597 | 0   | ASN | A | 116  | -34.218 | 93.862 | 33.178 | 1.00 | 67.03 | A   | 0   |
|------|-----|-----|-----|---|------|---------|--------|--------|------|-------|-----|-----|
| ATOM | 598 | N   | GLY |   |      | -34.705 | 93.133 | 35.216 |      | 15.00 | A   | _   |
|      | 599 | CA  | GLY |   |      | -35.754 |        | 34.817 |      | 15.00 |     |     |
| ATOM |     |     |     |   |      |         | 92.214 |        |      |       | A   |     |
| MOTA | 600 | C   | GLY |   |      | -36.596 | 92.753 | 33.676 |      | 15.00 | A   |     |
| MOTA | 601 | 0   | GLY |   |      | -36.836 | 92.012 | 32.686 |      | 71.45 | A   |     |
| ATOM | 602 | N   | ALA |   |      | -37.142 | 93.963 | 33.746 |      | 62.90 | A   | N   |
| MOTA | 603 | CA  | ALA | A | 118  | -38.003 | 94.513 | 32.694 |      | 61.34 | Α   | С   |
| ATOM | 604 | CB  | ALA | Α | 118  | -38.360 | 95.962 | 33.028 | 1.00 | 61.29 | Α   | С   |
| MOTA | 605 | С   | ALA | Α | 118  | -37.358 | 94.430 | 31.299 | 1.00 | 61.36 | A   | С   |
| ATOM | 606 | 0   | ALA | A | 118  | -37.903 | 93.809 | 30.392 | 1.00 | 64.60 | A   | 0   |
| ATOM | 607 | N   | LYS |   |      | -36.202 | 95.109 | 31.131 |      | 15.00 | A   | _   |
| ATOM | 608 | CA  | LYS |   |      | -35.467 | 95.036 | 29.875 |      | 15.00 | A   |     |
| MOTA | 609 | CB  | LYS |   |      | -34.242 | 95.952 | 29.924 |      | 15.00 | A   |     |
|      |     |     | LYS |   |      | -34.574 |        |        |      | 15.00 |     |     |
| MOTA | 610 | CG  |     |   |      |         | 97.435 | 29.910 |      |       | A   |     |
| MOTA | 611 | CD  | LYS |   |      | -33.313 | 98.283 | 29.935 |      | 15.00 | A   |     |
| MOTA | 612 | CE  | LYS |   |      | -33.645 | 99.767 | 29.921 |      | 15.00 | A   |     |
| MOTA | 613 | NZ  | LYS |   |      | -32.418 |        | 29.945 |      | 15.00 | A   |     |
| ATOM | 614 | С   | LYS |   |      | -35.030 | 93.605 | 29.579 |      | 15.00 | A   |     |
| MOTA | 615 | 0   | LYS | A | 119  | -34.938 | 93.180 | 28.460 | 1.00 | 62.88 | A   |     |
| ATOM | 616 | N   | TRP | А | 120  | -34.733 | 92.930 | 30.693 | 1.00 | 59.37 | A   | N   |
| ATOM | 617 | CA  | TRP | A | 120  | -34.259 | 91.562 | 30.632 | 1.00 | 54.99 | A   | С   |
| ATOM | 618 | СВ  | TRP | Α | 120  | -33.947 | 91.088 | 32.043 | 1.00 | 51.94 | A   | С   |
| ATOM | 619 | CG  | TRP |   |      | -33.619 | 89.657 | 32.131 | 1.00 | 49.03 | Α   | С   |
| ATOM | 620 |     | TRP |   |      | -34.390 | 88.652 | 32.794 |      | 47.45 | A   | Ç   |
| MOTA | 621 |     | TRP |   |      | -33.733 | 87.420 | 32.594 |      | 46.75 | A   | č   |
|      |     |     |     |   |      | -35.571 |        |        |      |       | A   | Č   |
| ATOM | 622 |     | TRP |   |      |         | 88.671 | 33.548 |      | 45.26 |     | Ċ   |
| ATOM | 623 |     | TRP |   |      | -32.557 | 89.020 | 31.56B |      | 47.88 | A   |     |
| ATOM | 624 |     | TRP |   |      | -32.617 | 87.675 | 31.838 |      | 48.19 | A   | N   |
| MOTA | 625 |     | TRP |   |      | -34.222 | 86.218 | 33.105 |      | 45.87 | A   | С   |
| ATOM | 626 | CZ3 | TRP | Α | 120  | -36.055 | 87.482 | 34.055 | 1.00 | 45.11 | Α.  |     |
| ATOM | 627 | CH2 | TRP | Α | 120  | -35.380 | 86.270 | 33.836 | 1.00 | 45.90 | A   | С   |
| MOTA | 628 | С   | TRP | А | 120  | -35.261 | 90.641 | 29.960 | 1.00 | 55.50 | A   | С   |
| ATOM | 629 | Ō   | TRP | A | 120  | -34.948 | 89.987 | 28.956 | 1.00 | 54.26 | A   | . 0 |
| ATOM | 630 | N   | LYS |   |      | -36.465 | 90.598 | 30.520 |      | 55.08 | . A | N   |
| ATOM | 631 | CA  | LYS |   |      | -37.547 | 89.771 | 30.002 | -    | 55.97 | A   | Ĉ   |
|      |     |     |     |   |      |         |        |        |      | 57.28 | Ä   | . c |
| ATOM | 632 | CB  | LYS |   |      | -38.887 | 90.274 | 30.538 |      |       |     | c   |
| MOTA | 633 | CG  | LYS |   |      | -39.265 | 89.739 | 31.911 |      | 60.42 | A   |     |
| ATOM | 634 | CD  | LYS |   |      | -39.674 | 88.260 | 31.828 |      | 65.13 | A   | C   |
| ATOM | 635 | CE  | LYS |   |      | -40.096 | 87.679 | 33.192 |      | 67.60 | A   | , С |
| ATOM | 636 | NZ  | LYS | A | 121  | -40.534 | 86.237 | 33.118 |      | 69.23 | A   | N   |
| MOTA | 637 | С   | LYS | Α | 121  | -37.577 | 89.775 | 28.487 | 1.00 | 56.27 | A   | С   |
| ATOM | 638 | 0   | LYS | Α | 121  | -37.457 | 88.730 | 27.841 | 1.00 | 56.64 | A   | 0   |
| ATOM | 639 | N   | GLU | Α | 122  | -37.726 | 90.958 | 27.918 | 1.00 | 55.63 | A   | N   |
| ATOM | 640 | CA  | GLU | А | 122  | -37.788 | 91.069 | 26.482 | 1.00 | 55.87 | A   | С   |
| ATOM | 641 | СВ  |     |   | 122' | -38.047 | 92.514 | 26.097 |      | 57.51 | A   | С   |
|      |     | CG  | GLU |   |      | -39.219 | 93.079 | 26.850 |      | 59.95 | A   | Č   |
| MOTA | 642 |     |     |   | 122  | -39.998 | 94.084 | 26.041 |      | 62.13 | Ä   | č   |
| ATOM | 643 | CD  |     |   |      |         | 94.735 |        |      |       | A   | ō   |
| MOTA | 644 | OE1 |     |   |      | -40.895 |        | 26.622 |      | 64.25 |     |     |
| ATOM | 645 |     | GLU |   |      | -39.723 | 94.218 | 24.826 |      | 62.31 | A   | 0   |
| ATOM | 646 | С   |     |   | 122  | -36.559 | 90.540 | 25.767 |      | 55.35 | A   | С   |
| ATOM | 647 | 0   |     |   | 122  | -36.674 | 89.618 | 24.962 |      | 56.73 | A   | 0   |
| ATOM | 648 | N   | ILE | Α | 123  | -35.387 | 91.095 | 26.067 | 1.00 | 53.02 | A   | N   |
| ATOM | 649 | CA  | ILE | Α | 123  | -34.162 | 90.662 | 25.400 | 1.00 | 50.76 | A   | С   |
| ATOM | 650 | CB  | ILE | Α | 123  | -32.931 | 91.452 | 25.885 | 1.00 | 51.04 | Α   | С   |
| ATOM | 651 | CG2 | ILE | Α | 123  | -31.729 | 91.158 | 24.976 | 1.00 | 48.91 | A   | С   |
| ATOM | 652 |     | ILE |   |      | -33.214 | 92.949 | 25.823 | 1.00 | 50.62 | Α   | С   |
| ATOM | 653 |     | ILE |   |      | -33.355 | 93.462 | 24.417 | 1.00 | 50.22 | Α   | С   |
| ATOM | 654 | c   |     |   | 123  | -33.857 | 89.181 | 25.564 |      | 50.27 | A   | С   |
|      |     | 0   |     |   | 123  | -33.243 | 88.573 | 24.691 |      | 50.92 | A   | ō   |
| ATOM | 655 |     |     |   |      |         |        | 26.677 |      | 48.30 | A   | N   |
| ATOM | 656 | N   |     |   | 124  | -34.263 | 88.587 |        |      | 46.31 | Ä   | č   |
| MOTA | 657 | CA  |     |   | 124  | -33.999 | 87.168 | 26.865 |      |       |     |     |
| ATOM | 658 | CB  |     |   | 124  | -34.199 | 86.760 | 28.321 |      | 46.92 | A   | C   |
| MOTA | 659 | CG  |     |   | 124  | -34.110 | 85.262 | 28.539 |      | 45.73 | A   | C   |
| MOTA | 660 | CD  | ARG | A | 124  | -34.463 | 84.905 | 29.967 |      | 46.BO | A   | С   |
| MOTA | 661 | NE  | ARG | A | 124  | ~34.436 | 83.458 | 30.186 |      | 46.78 | A   | N   |
| ATOM | 662 | CZ  |     |   | 124  | -33.340 | 82.753 | 30.462 | 1.00 | 45.67 | Α   | С   |
| ATOM | 663 |     | ARG |   |      | -32.163 | 83.360 | 30.571 | 1.00 | 45.03 | Α   | N   |
| ATOM | 664 |     | ARG |   |      | -33.420 | 81.436 | 30.596 |      | 42.11 | Α   | N   |
| MOTA | 665 | C   | ARG |   |      | -34.969 | 86.387 | 26.016 |      | 45.52 | Α   | С   |
|      |     |     | ARG |   |      | -34.598 | 85.423 | 25.359 |      | 43.86 | A   | ō   |
| ATOM | 666 | 0   |     |   | 125  | -36.223 | 86.827 | 26.039 |      | 46.96 | A   | Ŋ   |
| ATOM | 667 | N   |     |   |      |         | 86.177 | 25.291 |      | 48.34 | A   | Ċ   |
| ATOM | 668 | CA  | ARG |   |      | -37.288 |        |        |      | 51.76 | A   | c   |
| MOTA | 669 | CB  | ARG |   |      | -38.604 | 86.937 | 25.464 |      |       |     |     |
| ATOM | 670 | CG  | ARG |   |      | -39.801 | 86.271 | 24.785 |      | 56.56 | A   | C   |
| ATOM | 671 | CD  | ARG | Α | 125  | -40.308 | 87.074 | 23.582 | 1.00 | 62.17 | A   | С   |

| ATOM         | 672 | NE  | ARG | A | 125 | -41.133 | 86.271  | 22.664 | 1.00 | 67.17 |    | Α | N   |
|--------------|-----|-----|-----|---|-----|---------|---------|--------|------|-------|----|---|-----|
| ATOM         | 673 | CZ  | ARG | Α | 125 | -42.443 | 86.433  | 22.465 | 1.00 | 69.41 |    | Α | С   |
| ATOM         | 674 |     | ARG |   |     | -43.089 | 85.650  | 21.601 |      | 69.86 |    | A | N   |
| ATOM         | 675 |     | ARG |   |     | -43.110 | 87.376  | 23.126 |      | 70.46 |    | A | N   |
| ATOM         | 676 | С   |     |   | 125 | -36.934 | 86.103  | 23.822 |      | 47.60 |    | A | Ċ   |
|              |     | Ö   |     |   | 125 |         |         | 23.200 |      | 47.93 |    | A | ŏ   |
| ATOM         | 677 |     |     |   |     | -37.058 | 85.060  |        |      |       |    |   |     |
| ATOM         | 678 | N   |     |   | 126 | -36.487 | 87.220  | 23.273 |      | 46.76 |    | A | N   |
| MOTA         | 679 | CA  |     |   | 126 | -36.119 | 87.293  | 21.875 |      | 45.50 |    | A | C   |
| ATOM         | 680 | СB  |     |   | 126 | -35.802 | 88.740  | 21.516 |      | 46.21 |    | Α | С   |
| ATOM -       | 681 | CG  | PHE | A | 126 | -35.112 | 88.892  | 20.209 |      | 45.92 |    | A | С   |
| MOTA         | 682 | CD1 | PHE | Α | 126 | -33.734 | 88.741  | 20.115 | 1.00 | 46.34 |    | Α | С   |
| MOTA         | 683 | CD2 | PHE | A | 126 | -35.847 | 89.121  | 19.059 | 1.00 | 44.48 |    | Α | С   |
| ATOM         | 684 | CE1 | PHE | Α | 126 | -33.103 | 88.811  | 18.891 | 1.00 | 47.70 |    | Α | С   |
| MOTA         | 685 | CE2 | PHE | Α | 126 | -35.231 | 89.192  | 17.836 | 1.00 | 44.86 |    | A | С   |
| ATOM         | 686 | CZ  |     |   | 126 | -33.856 | 89.036  | 17.744 | 1.00 | 46.97 |    | A | С   |
| ATOM         | 687 | c   |     |   | 126 | -34.928 | 86.414  | 21.541 |      | 45.10 |    | Α | C   |
| ATOM         | 688 | ō   |     |   | 126 | -34.920 | 85.723  | 20.527 |      | 45.58 |    | A | ō   |
|              | 689 | N   |     |   | 127 | -33.913 | 86.465  | 22.396 |      | 44.90 |    | A | N   |
| ATOM         |     |     |     |   |     |         |         |        |      |       |    | A | Č   |
| ATOM         | 690 | CA  |     |   | 127 | -32.694 | 85.689  | 22.216 |      | 43.69 |    |   |     |
| MOTA         | 691 | CB  |     |   | 127 | -31.740 | 85.938  | 23.383 |      | 43.27 |    | A | C   |
| ATOM         | 692 | OG  |     |   | 127 | -31.337 |         | 23.436 |      | 41.41 |    | A | , O |
| ATOM         | 693 | С   |     |   | 127 | -32.997 | 84.208  | 22.127 |      | 43.64 |    | A | ,C  |
| ATOM         | 694 | 0   | SER | A | 127 | -32.509 | 83.515  | 21.235 | 1.00 | 43.64 |    | A | 0   |
| ATOM         | 695 | N   | LEU | Α | 128 | -33.802 | 83.722  | 23.059 | 1.00 | 43.63 |    | Α | N   |
| ATOM         | 696 | CA  | LEU | Α | 128 | -34.154 | 82.319  | 23.067 | 1.00 | 45.47 |    | A | С   |
| ATOM         | 697 | CB  | LEU | Α | 128 | -34.996 | 82.005  | 24.291 | 1.00 | 43.12 |    | Α | С   |
| ATOM         | 698 | CG  | LEU | A | 128 | -34.133 | 81.732  | 25.525 | 1.00 | 41.00 |    | A | C   |
| ATOM         | 699 |     | LEU | Α | 128 | -35.043 | 81.569  | 26.704 | 1.00 | 39.88 |    | Α | С   |
| ATOM         | 700 |     | LEU |   |     | -33.252 | 80.491  | 25.321 | 1.00 | 38.44 |    | Α | С   |
| MOTA         | 701 | c   | LEU |   |     | -34.863 | 81.842  | 21.809 |      | 48.12 |    | A | c   |
| ATOM         | 702 | ŏ   | LEU |   |     | -34.528 | 80.780  | 21.285 |      | 49.59 |    | A | ŏ   |
|              | 703 | N   |     |   | 129 | -35.831 | 82.612  | 21.315 |      | 50.88 |    | A | N   |
| ATOM         |     |     |     |   |     |         |         |        |      | 52.84 |    | A | c   |
| MOTA         | 704 | CA  |     |   | 129 | -36.556 | 82.220  | 20.108 |      |       |    |   |     |
| ATOM         | 705 | CB  |     |   | 129 | -37.847 | 83.01B  | 19.968 |      | 55.20 |    | A | C   |
| ATOM         | 706 | CG  |     |   | 129 | -38.785 | 82.826  | 21.146 |      | 60.77 |    | Α | С   |
| ATOM         | 707 | SD  |     |   | 129 | -40.513 | 83.278  | 20.802 |      | 66.89 |    | A | S   |
| ATOM         | 708 | CE  | MET | Α | 129 | -40.336 | 84.979  | 20.156 | 1.00 | 65.46 |    | A | С   |
| MOTA         | 709 | С   | MET | Α | 129 | -35.732 | 82.350  | 18.839 | 1.00 | 52.57 |    | Α | С   |
| MOTA         | 710 | 0   | MET | Α | 129 | -36.212 | 82.058  | 17.753 | 1.00 | 53.90 |    | Α | 0   |
| ATOM         | 711 | N   | THR | Α | 130 | -34.489 | 82.789  | 18.974 | 1.00 | 52.46 |    | Α | N   |
| MOTA         | 712 | CA  | THR |   |     | -33.616 | 82.912  | 17.818 | 1.00 | 52.38 |    | A | С   |
| ATOM         | 713 | СВ  | THR |   |     | -32.886 | 84.276  | 17.772 |      | 53.59 |    | A | С   |
| ATOM         | 714 |     | THR |   |     | -32.002 | 84.387  | 18.897 |      | 55.82 |    | A | ō   |
| ATOM         | 715 |     | THR |   |     | -33.892 | 85.428  | 17.789 |      | 53.91 |    | A | č   |
|              |     |     |     |   |     | -32.564 |         | 17.907 |      | 51.33 |    | A | č   |
| ATOM         | 716 | C   | THR |   |     |         | 81.825  |        |      | 52.08 |    | A | ō   |
| ATOM         | 717 | 0   | THR |   |     | -31.996 | 81.425  | 16.897 |      |       |    |   |     |
| ATOM         | 718 | N   | LEU |   |     | -32.302 | 81.365  | 19.129 |      | 49.85 |    | Α | N   |
| ATOM         | 719 | CA  | LEU |   |     | -31.308 | 80.325  | 19.376 |      | 48.34 |    | A | c   |
| ATOM         | 720 | CB  | LEU |   |     | -30.756 | 80.449  | 20.791 |      | 47.37 |    | Α | C   |
| ATOM         | 721 | CG  | LEU | A | 131 | -29.585 | 81.407  | 20.941 |      | 46.87 |    | Α | С   |
| MOTA         | 722 | CD1 | LEU | A | 131 | -29.336 | 81.735  | 22.401 |      | 46.14 |    | A | С   |
| MOTA         | 723 | CD2 | LEU | Α | 131 | -28.363 | 80.767  | 20.318 | 1.00 | 47.51 |    | Α | C   |
| MOTA         | 724 | С   | LEU | A | 131 | -31.898 | 78.948  | 19.177 | 1.00 | 47.86 |    | Α | С   |
| MOTA         | 725 | 0   | LEU | А | 131 | -31.283 | 77.939  | 19.519 | 1.00 | 47.61 |    | Α | 0   |
| MOTA         | 726 | N   | ARG |   |     | -33.107 | 78.918  | 18.633 | 1.00 | 48.01 |    | Α | N   |
| ATOM         | 727 | CA  | ARG | _ |     | -33.793 | 77.667  | 18.362 | 1.00 | 48.97 |    | Α | С   |
| MOTA         | 728 | СВ  | ARG |   |     | -35.264 | 77.938  | 18.068 | 1.00 | 51.30 |    | A | С   |
| ATOM         | 729 | CG  | ARG |   |     | -35.963 | 78.854  | 19.062 |      | 53.99 |    | A | Č   |
|              |     |     | ARG |   |     | -37.400 | 79.065  | 18.629 |      | 58.79 |    | Α | č   |
| MOTA         | 730 | CD  |     |   | _   |         |         | 17.171 |      | 63.21 |    | A | N   |
| MOTA         | 731 | NE  | ARG |   |     | -37.480 | 79.211  |        |      |       |    |   |     |
| ATOM         | 732 | CZ  | ARG |   |     | -38.418 | 79.891. | 16.516 |      | 64.60 |    | A | C   |
| MOTA         | 733 |     | ARG |   |     | -38.387 | 79.946  | 15.190 |      | 65.17 |    | A | N   |
| MOTA         | 734 | NH2 | ARG |   |     | -39.369 | 80.534  | 17.180 |      | 65.96 |    | A | N   |
| MOTA         | 735 | С   | ARG | A | 132 | -33.119 | 77.094  | 17.124 |      | 47.80 |    | Α | С   |
| MOTA         | 736 | 0   | ARG | A | 132 | -32.733 | 77.850  | 16.239 |      | 48.15 |    | A | 0   |
| MOTA         | 737 | N   | ASN | Α | 133 | -32.986 | 75.775  | 17.043 | 1.00 | 46.88 |    | Α | N   |
| ATOM         | 738 | CA  | ASN |   |     | -32.330 | 75.154  | 15.891 | 1.00 | 46.90 |    | A | С   |
| ATOM         | 739 | СВ  | ASN |   |     | -32.549 | 73.639  | 15.903 | 1.00 | 46.63 |    | Α | С   |
| ATOM         | 740 | CG  | ASN |   |     | -31.455 | 72.882  | 15.162 |      | 47.62 |    | A | С   |
| ATOM         | 741 |     | ASN |   |     | -31.632 | 71.727  | 14.785 |      | 49.61 |    | Ą | ō   |
|              | 742 |     | ASN |   |     | -30.315 | 73.528  | 14.962 |      | 47.53 | ** | A | N.  |
| ATOM<br>ATOM |     |     | ASN |   |     | -32.769 | 75.716  | 14.530 |      | 47.39 |    | A | c   |
| ATOM         | 743 | C   |     |   |     | -32.769 | 75.594  | 13.547 |      | 46.25 |    | A | ŏ   |
| MOTA         | 744 | 0   | ASN |   |     |         |         | 14.483 |      | 49.02 |    |   | N   |
| MOTA         | 745 | N   | PHE |   |     | -33.961 | 76.318  |        |      |       |    | A |     |
| MOTA         | 746 | CA  | PHE | A | 134 | -34.520 | 76.916  | 13.260 | 1.00 | 50.18 |    | Α | С   |

| ATOM         | 747          | СВ       | PHE        | A | 134        | -35.56           | 8 75 | . 993          | 12.636           | 1.00 | 49.20          | 1 | A C  |
|--------------|--------------|----------|------------|---|------------|------------------|------|----------------|------------------|------|----------------|---|------|
| ATOM         | 748          | CG       | PHE        | A | 134        | -35.01           |      | . 691          | 12.152           | 1.00 | 49.20          | 1 | A C  |
| ATOM         | 749          | CD1      | PHE        | A | 134        | -34.34           | 9 74 | . 611          | 10.931           | 1.00 | 49.32          | 7 | A C  |
| ATOM         | 750          | CD2      | PHE        | A | 134        | -35.06           | 2 73 | .556           | 12.962           | 1.00 | 48.67          | 1 | A C  |
| ATOM         | 751          |          | PHE        |   |            | -33.73           | 8 73 | . 420          | 10.531           |      | 48.88          | 1 | A C  |
| MOTA         | 752          |          | PHE        |   |            | -34.45           | -    | .372           | 12.570           |      | 46.13          |   | A C  |
| ATOM         | 753          | CZ       |            |   | 134        | -33.79           |      | .304           | 11.358           |      | 47.35          |   | A C  |
| ATOM         | 754          | С        |            |   | 134        | -35.17           |      | .261           | 13.560           |      | 51.73          |   | 4 C  |
| MOTA         | 755          | 0        |            |   | 134        | -35.98           |      | .745           | 12.776           |      | 53.08          |   | 4 0  |
| ATOM         | 756          | N        |            |   | 135        | -34.81           |      | .858           | 14.693           |      | 52.77          |   | N    |
| ATOM         | 757          | CA       |            |   | 135<br>135 | -35.40           |      | .132           | 15.065           |      | 55.56          |   | 4 C  |
| ATOM<br>ATOM | 758<br>759   | С<br>0   |            |   | 135        | -35.03<br>-35.34 |      | . 282<br>. 436 | 14.145           |      | 58.23<br>59.36 | 1 |      |
| ATOM         | 760          | N        |            |   | 136        | -34.35           |      | .986           | 13.038           |      | 59.36          |   | A N  |
| ATOM         | 761          | CA       |            |   | 136        | -33.95           |      | .024           | 12.085           |      | 60.33          | , |      |
| ATOM         | 762          | СВ       |            |   | 136        | -32.95           |      | .003           | 12.732           |      | 58.84          | 1 |      |
| ATOM         | 763          | CG       |            |   | 136        | -31.77           |      | .345           | 13.424           |      | 58.09          |   | A C  |
| ATOM         | 764          | SD       | MET        | Α | 136        | -30.63           | 8 83 | .477           | 14.301           | 1.00 | 57.30          | 2 | A S  |
| ATOM         | 765          | CE       | MET        | A | 136        | -29.05           | 6 82 | .763           | 13.873           | 1.00 | 54.57          | 1 |      |
| ATOM         | 766          | С        | MET        | Α | 136        | -33.35           | 1 81 | . 421          | 10.818           | 1.00 | 61.93          | 1 | , c  |
| ATOM         | 767          | 0        |            |   | 136        | -32.87           |      | .287           | 10.829           |      | 62.78          | 7 |      |
| MOTA         | 768          | N        |            |   | 137        | -33.40           |      | .172           | 9.724            |      | 62.78          | 1 |      |
| ATOM         | 769          | CA       |            |   | 137        | -32.84           |      | .702           | 8.465            |      | 64.09          |   | A C  |
| ATOM         | 770          | C        |            |   | 137        | -33.38           |      | .383           | 7.933            |      | 64.96          | 1 |      |
| ATOM         | 771          | 0        |            |   | 137        | -34.48           |      | .946           | 8.262            |      | 65.79          | , |      |
| ATOM         | 772          | N        |            |   | 138        | -32.57           |      | .759           | 7.080            |      | 65.58          |   | N    |
| MOTA         | 773          | CA       |            |   | 138        | -32.90           |      | .475           | 6.470            |      | 65.76<br>68.51 | , | A C  |
| ATOM -       | , 774<br>775 | CB<br>CG |            |   | 138<br>138 | -32.94<br>-34.22 |      | .588<br>.196   | 4.931            |      | 71.45          |   | i c  |
| ATOM         | 776          | CD.      |            |   | 138        | -34.49           |      | .709           | 2.907            |      | 73.91          | 1 |      |
| ATOM         | 777          | CE.      |            |   | 138        | -33.36           |      | .076           | 1.925            |      | 75.37          |   | i c  |
|              |              | NZ       |            |   | 138        | -33.61           |      | .559           | 0.533            |      | 75.79          |   | N    |
| ATOM         | 779          | C.       |            |   | 138        | -31.79           |      | .513           | 6.887            |      | 63.97          | 2 |      |
| ATOM         | 780          | 0        |            |   | 138        | -31.79           |      | .335           | 6.524            |      | 64.44          |   | A 0  |
| ATOM         | 781          | N .      |            |   | 139        | -30.85           |      | .046           | 7.649            |      | 60.95          |   | A N  |
| ATOM         | 782          | CA       |            |   | 139        | -29.72           |      | .281           | 8.138            | 1.00 | 57.95          | 1 | 4 C. |
| ATOM         | 783          | CB       | ARG        | A | 139        | -28.45           | 9 78 | .109           | 7.955            | 1.00 | 57.45          | 7 | A C  |
| ATOM.        | 784          | CG       | ARG        | A | 139        | -27.16           | 8 77 | .358           | 8.173            | 1.00 | 58.21          | 2 | A C  |
| ATOM         | 785          | CD.      | ARG        | A | 139        | -25.99           | 3 7B | .181           | 7.671            | 1.00 | 58.90          | 2 |      |
| ATOM         | 786          | NE       | ARG        | A | 139        | -24.70           | 3 77 | . 523          | 7.866            |      | 60.11          |   | A N  |
| MOTA         | 787          | CZ       |            |   | 139        | -24.40           |      | . 300          | 7.438            |      | 60.54          |   | A C  |
| MOTA         | 788          |          | ARG        |   |            | -23.19           |      | .807           | 7.669            |      | 60.64          |   | A. N |
| ATOM         | 789          |          | ARG        |   |            | -25.30           |      | .563           | 6.791            |      | 61.00          |   |      |
| ATOM         | 790          | С        |            |   | 139        | -30.01           |      | .009           | 9.616            |      | 56.35          |   | , c  |
| ATOM         | 791          | 0        |            |   | 139        | -30.51           |      | .881           | 10.318           |      | 56.84          | 7 |      |
| MOTA         | 792          | N        |            |   | 140        | -29.72           |      | .800           | 10.081           |      | 53.54          | 1 |      |
| ATOM<br>ATOM | 793<br>794   | CA<br>CB |            |   | 140        | -29.96<br>-30.38 |      | .425<br>.974   | 11.472<br>11.546 |      | 49.35          |   | i c  |
| ATOM         | 794.         | OG       |            |   | 140        | -29.27           |      | .178           | 11.191           |      | 48.55          |   | . 0  |
| ATOM         | 796          | C        |            |   | 140        | -28.73           |      | .556           | 12.337           |      | 48.08          |   | i c  |
| ATOM         | 797          | ŏ        |            |   | 140        | -27.61           |      | .389           | 11.864           |      | 48.22          | 1 |      |
| ATOM         | 798          | N        | ILE        |   | 141        | -28.95           |      | .808           | 13.620           |      | 44.92          | 1 | A N  |
| ATOM         | 799          | CA       |            |   | 141        | -27.85           |      | .911           | 14.570           | 1.00 | 41.97          | 1 | A C  |
| MOTA         | 800          | CB       | ILE        | A | 141        | -28.42           | 0 76 | .084           | 15.977           | 1.00 | 41.15          | 1 |      |
| ATOM         | 801          | CG2      | ILE        | A | 141        | -27.34           |      | . 906          | 17.037           |      | 39.54          | 1 |      |
| ATOM         | 802          |          | ILE        |   |            | -29.04           |      | . 458          | 16.067           |      | 42.31          | 1 |      |
| ATOM         | 803          | CD1      | ILE        |   |            | -29.64           |      | .715           | 17.373           |      | 45.27          | 1 |      |
| MOTA         | 804          | С        |            |   | 141        | -27.01           |      | .648           | 14.508           |      | 40.77          |   | A C  |
| MOTA         | 805          | 0        |            |   | 141        | -25.80           |      | .686           | 14.686           |      | 40.02          |   |      |
| MOTA         | 806          | N        |            |   | 142        | -27.67           |      | .525           | 14.255           |      | 38.02          | 1 |      |
| ATOM         | 807          | CA       | GLU        |   |            | -26.95           |      | .285           | 14.181           |      | 36.75<br>37.54 | 1 |      |
| ATOM         | 808          | CB       | GLU        |   |            | -27.91           |      | .116           | 14.145           |      | 38.52          | , |      |
| MOTA         | 809          | CG       |            |   | 142        | -27.19           |      | .813           | 14.360           |      | 38.04          | 7 |      |
| ATOM         | 810          | CD       |            |   | 142        | -28.11<br>-29.19 |      | .644<br>.765   | 14.414<br>15.022 |      | 38.75          | , |      |
| ATOM<br>ATOM | 811          |          | GLU        |   |            | -29.19<br>-27.75 |      | .594           | 13.856           |      | 38.20          | , |      |
| ATOM         | 812<br>813   | C C      | GLU<br>GLU |   |            | -26.07           |      | .246           | 12.949           |      | 36.94          | 7 |      |
| MOTA         | 814          | 0        | GLU        |   |            | -25.00           |      | .630           | 12.947           |      | 34.74          |   |      |
| MOTA         | 815          | N        |            |   | 143        | -26.52           |      | .884           | 11.884           |      | 37.02          | 2 |      |
| ATOM         | 816          | CA       |            |   | 143        | -25.74           |      | .915           | 10.671           |      | 38.35          | I |      |
| ATOM         | 817          | CB       | ASP        |   |            | -26.51           |      | .578           | 9.550            |      | 41.42          | I |      |
| ATOM         | 818          | ÇĞ       | ASP        |   |            | -27.11           |      | .573           | 8.623            |      | 45.89          | I |      |
| ATOM         | 819          |          | ASP        |   |            | -26.47           |      | .504           | 8.440            |      | 47.43          | Į | ۰ ٥  |
| ATOM         | 820          |          | ASP        |   |            | -28.21           | 6 72 | .853           | 8.078            |      | 47.48          | 1 |      |
| ATOM         | 821          | С        | ASP        |   |            | -24.46           | 2 73 | . 665          | 10.905           | 1.00 | 38.09          | 7 | , c  |
|              |              |          |            |   |            |                  |      |                |                  |      |                |   |      |

| ATOM         | 822 | 0   | ASP        | А | 143   | -23.436            | 73.378           | 10.297 | 1.00   | 39.21 | A      | 0   |
|--------------|-----|-----|------------|---|-------|--------------------|------------------|--------|--------|-------|--------|-----|
| ATOM         | 823 | N   | ARG        |   |       | -24.549            | 74.640           | 11.799 | 1.00   |       | Α      | N   |
| ATOM         | 824 | CA  | ARG        |   |       | -23.431            | 75.480           | 12.162 | 1.00 3 | 35.62 | A      | С   |
| ATOM         | 825 | СB  | ARG        |   |       | -23.933            | 76.702           | 12.901 | 1.00   |       | A      | С   |
| ATOM         | 826 | ĊG  | ARG        |   |       | -25.028            | 77.363           | 12.167 | 1.00 3 |       | A      | · C |
| ATOM         | 827 | CD  | ARG        |   |       | -25.226            | 78.804           | 12.568 | 1.00   |       | A      | Ċ   |
| ATOM         | 828 | NE  | ARG        |   |       | -25.520            | 79.558           | 11.356 | 1.00 3 |       | A      | N   |
| ATOM         | 829 | CZ  | ARG        |   |       | -26.435            | 80.508           | 11.256 | 1.00   |       | A      | C   |
| ATOM         | 830 | NH1 |            |   |       | -27.172            | 80.846           | 12.306 | 1.00   |       | A      | N   |
| ATOM         | 831 |     | ARG        |   |       | -26.620            | 81.103           | 10.091 | 1.00   |       | A      | N   |
| MOTA         | 832 | c   | ARG        |   |       | -22.474            | 74.721           | 13.041 | 1.00   |       | A      | С   |
| ATOM         | 833 | ō   | ARG        |   |       | -21.265            | 74.718           | 12.801 | 1.00   |       | A      | ō   |
| ATOM         | 834 | N   | VAL        |   |       | -23.028            | 74.111           | 14.073 | 1.00   |       | A      | -   |
| MOTA         | 835 | CA  | VAL        |   |       | -22.175            | 73.315           | 14.947 | 1.00   |       | A      |     |
| ATOM         | 836 | CB  | VAL        |   |       | -22.968            | 72.757           | 16.146 | 1.00   |       | A      |     |
| ATOM         | 837 |     | VAL        |   |       | -22.102            | 71.794           | 16.943 | 1.00   |       | A      | ,   |
| ATOM         | 838 |     | VAL        |   |       | -23.456            | 73.895           | 17.027 | 1.00   |       | A      |     |
| ATOM         | 839 | C   | VAL        |   |       | -21.550            | 72,150           | 14.187 | 1.00   |       | A      |     |
| ATOM         | 840 | Ö   | VAL        |   |       | -20.401            | 71.868           | 14.315 | 1.00   |       | A      |     |
|              | 841 | N   | GLN        |   |       | -22.402            | 71.551           | 13.366 | 1.00   |       | A      | . N |
| MOTA<br>MOTA | 842 | CA  | GLN        |   |       | -21.913            | 70.453           | 12.562 | 1.00   |       | A      | C   |
|              | 843 | CB  | GLN        |   |       | -23.043            | 69.844           | 11.754 | 1.00   |       | A      | Č   |
| MOTA         | 844 | CG  | GLN        |   |       | -23.651            | 68.638           | 12.410 | 1.00   |       | A      | Č   |
| MOTA         | 845 | CD  | GLN        |   |       | -25.016            | 68.305           | 11.871 | 1.00   |       | A      | č   |
| MOTA         |     |     | GLN        |   |       | -25.574            | 67.270           | 12.199 | 1.00   |       | A      | ŏ   |
| MOTA         | 846 |     |            |   |       | -25.566            | 69.177           | 11.045 | 1.00   |       | A      | N   |
| ATOM         | 847 |     | GLN        |   |       | -20.836            | 70.947           | 11.632 | 1.00   |       | A      | Ċ   |
| ATOM.        | 848 | C   | GLN<br>GLN |   |       |                    | 70.236           | 11.361 | 1.00   |       | A      | ŏ   |
| ATOM         | 849 | 0   |            |   |       | -19.875<br>-20.987 | 72.175           | 11.152 | 1.00   |       | Ä.     | N   |
| MOTA         | 850 | N   | GLU        |   |       |                    | .72.717          | 10.229 | 1.00   |       | Ä      | Ċ   |
| ATOM         | 851 | CA  | GLU        |   |       | -20.011            | 73.952           | 9.549  | 1.00   |       | A      | c   |
| ATOM         | 852 | СВ  | GLU        |   | 147   | -20.537            | -                | 8.323  | 1.00   |       | A      | Ċ   |
| ATOM         | 853 | CG  | GLU        |   |       | -19.736            | 74.249<br>75.714 |        | 1.00   |       | A      | Ċ   |
| ATOM         | 854 | CD  | GLU        |   |       | -19.530            |                  | 8.117  | 1.00   |       | A      | ŏ   |
| ATOM         | 855 |     | GLU        |   |       | -20.259            | 76.501           | 8.753  | 1.00   |       | A      | ŏ   |
| ATOM         | 856 |     | GLU        |   |       | -18.643            | 76.082           | 7.312  |        |       | A      | c   |
| ATOM         | 857 | С   | GLU        |   |       | -18.731            | 73.089           | 10.918 | 1.00   |       |        | Ö   |
| ATOM         | 858 | 0   |            |   | 147 - | -17.643            | 72.974           | 10.352 | 1.00   |       | A      | N   |
| ATOM         | 859 | N   |            |   | 148 - | -18.879            | 73.566           | 12.145 | 1.00   |       | A<br>A | Č   |
| ATOM         | 860 | CA  | GLU        |   | 148   | -17.747            | 73.986           | 12.932 | 1.00   |       | A      | c   |
| ATOM         | 861 | СВ  | GLU        |   |       | -18.233            | 74.815           | 14.113 | 1.00   |       | A      | Č   |
| ATOM         | 862 | CG  | GLU        |   |       | -17.145            | 75.645           | 14.760 | 1.00   |       | A      | c   |
| ATOM         | 863 | CD  | GLU        |   |       | -16.549            | 76.691           | 13.809 | 1.00   |       |        |     |
| ATOM         | 864 |     | GLU        |   |       | -17.309            | 77.561           | 13.316 | 1.00   |       | A      | 0   |
| MOTA         | 865 | OE2 | GLU        |   |       | -15.317            | 76.632           | 13.566 | 1.00   |       | A      | 0   |
| MOTA         | 866 | С   | GLU        |   |       | -17.012            | 72.745           | 13.409 | 1.00   |       | A      | C   |
| ATOM         | 867 | 0   | GLU        |   |       | -15.798            | 72.761           | 13.549 | 1.00   |       | A      | 0   |
| ATOM         | 868 | N   | ALA        |   |       | -17.755            | 71.665           | 13.644 | 1.00   |       | A      | N   |
| MOTA         | 869 | CA  | ALA        |   |       | -17.190            | 70.397           | 14.114 | 1.00   |       | A      | C   |
| ATOM         | 870 | ÇВ  | ALA        |   |       | -18.313            | 69.447           | 14.510 | 1.00   |       | Α      | C   |
| MOTA         | 871 | С   | ALA        | A | 149   | -16.330            | 69.759           | 13.049 | 1.00   |       | A      | C   |
| ATOM         | 872 | 0   | ALA        | A | 149   | -15.312            | 69.137           | 13.348 | 1.00   |       | A      | 0   |
| MOTA         | 873 | N   | ARG        | A | 150   | -16.766            | 69.905           | 11.800 | 1.00   |       | A      | . N |
| ATOM         | 874 | CA  | ARG        | A | 150   | -16.060            | 69.353           | 10.640 | 1.00   |       | A      | C   |
| ATOM         | 875 | CB  | ARG        | A | 150   | -16.901            | 69.567           | 9.373  | 1.00   |       | A      | C   |
| MOTA         | 876 | CG  | ARG        |   |       | -16.430            | 68.798           | 8.131  | 1.00   |       | A      | C   |
| MOTA         | 877 | CD  |            |   | 150   | -16.508            | 69.664           | 6.844  | 1.00   |       | A      | C   |
| ATOM         | 878 | NE  | ARG        | A | 150   | -15.353            | 70.559           | 6.736  | 1.00   |       | A      | N   |
| ATOM         | 879 | CZ  | ARG        | Α | 150   | -15.309            | 71.667           | 6.003  | 1.00   |       | A      | C   |
| ATOM         | 880 | NH1 | ARG        | Α | 150   | -16.366            | 72.040           | 5.291  | 1.00   |       | A      | N   |
| ATOM         | 881 | NH2 | ARG        | A | 150   | -14.208            | 72.411           | 6.002  | 1.00   |       | A      | N   |
| ATOM         | 882 | С   | ARG        | Α | 150   | -14.709            | 70.066           | 10.521 | 1.00   |       | A      | C   |
| ATOM         | 883 | 0   | ARG        | A | 150   | -13.703            | 69.442           | 10.215 | 1.00   |       | A      | 0   |
| ATOM         | 884 | N   |            |   | 151   | -14.692            | 71.367           | 10.801 | 1.00   |       | A      | N   |
| ATOM         | 885 | CA  |            |   | 151   | -13.472            | 72.163           | 10.724 | 1.00   |       | A      | C   |
| ATOM         | 886 | СВ  |            |   | 151   | -13.826            | 73.635           | 10.629 | 1.00   |       | A      | C   |
| ATOM         | 887 | SG  |            |   | 151   | -14.939            | 73.927           | 9.256  | 1.00   |       | A      | S   |
| ATOM         | 888 | c   |            |   | 151   | -12.553            | 71.935           | 11.913 | 1.00   | 41.82 | A      | С   |
| ATOM         | 889 | Ö   |            |   | 151   | -11.336            | 71.991           | 11.788 | 1.00   | 41.84 | A      | 0   |
| ATOM         | 890 | N   |            |   | 152   | -13.143            | 71.686           | 13.072 | 1.00   | 41.86 | A      | N   |
| ATOM         | 891 | CA  |            |   | 152   | -12.379            | 71.432           | 14.272 | 1.00   |       | A      | C   |
| ATOM         | 892 | CB  |            |   | 152   | -13.319            | 71.225           | 15.451 | 1.00   |       | A      | C   |
|              | 893 | CG  |            |   | 152   | -12.799            | 71.468           | 16.874 | 1.00   |       | A      | С   |
| ATOM         | 894 |     | LEU        |   |       | -13.939            | 71.219           | 17.847 | 1.00   |       | A      | С   |
| ATOM         | 895 |     | LEU        |   |       | -11.635            | 70.577           | 17.205 | 1.00   |       | Α      | С   |
| ATOM         |     | C   |            |   | 152   | -11.585            | 70.163           | 14.030 | 1.00   |       | Α      | С   |
| MOTA         | 896 | -   | 220        | ^ |       |                    |                  |        |        | •     |        |     |

Figure 1

| ATOM         | 897        | .0       | LEU        | A | 152        | -10.477            | 70.007           | 14.528           | 1.00 | 41.27          | A        | 0      |
|--------------|------------|----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|----------|--------|
| ATOM         | 898        | N        | VAL        |   |            | -12.149            | 69.255           | 13.245           |      | 44.27          | A        | N      |
| ATOM<br>ATOM | 899<br>900 | CA<br>CB | VAL        |   | 153<br>153 | -11.473<br>-12.446 | 67.994<br>66.945 | 12.964           |      | 46.10          | , A<br>A | C<br>C |
| ATOM         | 901        |          | VAL        |   |            | -11.693            | 65.660           | 12.133           |      | 41.95          | A        | č      |
| ATOM         | 902        | CG2      | VAL        |   |            | -13.521            | 66.705           | 13.459           |      | 41.54          | A        | С      |
| ATOM         | 903        | С        | VAL        | A | 153        | -10.349            | 68.131           | 11.954           |      | 48.74          | A        | С      |
| MOTA         | 904        | 0        | VAL        |   |            | -9.381             | 67.371           | 11.985           |      | 49.05          | A        | 0      |
| ATOM         | 905        | N        | GLU<br>GLU |   |            | -10.478<br>-9.461  | 69.101<br>69.314 | 11.059<br>10.042 |      | 51.96          | A<br>A   | N<br>C |
| MOTA<br>MOTA | 906<br>907 | CA<br>CB | GLU        |   |            | -10.010            | 70.194           | 8.925            |      | 56.49          | A        | č      |
| MOTA         | 908        | CG       | GLU        |   |            | -11.382            | 69.783           | 8.469            |      | 61.13          | A        | С      |
| ATOM         | 909        | CD       | GLU        |   |            | -11.544            | 69.822           | 6.960            |      | 64.38          | A        | c      |
| ATOM         | 910        |          | GLU        |   |            | -12.699            | 69.729           | 6.477            |      | 64.26          | A        | 0      |
| ATOM<br>ATOM | 911<br>912 | C        | GLU<br>GLU |   |            | -10.517<br>-8.241  | 69.941<br>69.970 | 6.250<br>10.668  |      | 67.83<br>55.02 | A<br>A   | 0      |
| ATOM         | 913        | Ö        | GLU        |   |            | -7.109             | 69.564           | 10.417           |      | 56.40          | A        | ŏ      |
| ATOM         | 914        | N        | GLU        |   |            | -8.471             | 70.983           | 11.494           | 1.00 | 54.50          | A        | N      |
| ATOM         | 915        | CA       | GLU        |   |            | -7.369             | 71.677           | 12.135           |      | 53.41          | A        | C      |
| ATOM         | 916        | CB       | GLU        |   |            | -7.863<br>-7.413   | 72.910           | 12.881           |      | 55.67<br>61.17 | A<br>A   | C      |
| ATOM<br>ATOM | 917<br>918 | CG       | GLU        |   |            | -6.036             | 74.204           | 12.231<br>12.703 |      | 64.74          | A        | c      |
| ATOM         | 919        |          | GLU        |   |            | -5.135             | 73.812           | 12.888           |      | 66.30          | A        | ō      |
| ATOM         | 920        | OE2      | GLU        | A | 155        | -5.855             | 75.901           | 12.885           | 1.00 | 67.32          | A        | 0      |
| MOTA         | 921        | С        | GLU        |   |            | -6.617             | 70.772           | 13.079           |      | 52.04          | A        | C      |
| ATOM         | 922        | 0        | GLU        |   |            | -5.412<br>-7.318   | 70.889           | 13.206<br>13.754 |      | 53.35          | A<br>A   | О<br>И |
| ATOM<br>ATOM | 923<br>924 | N<br>CA  | LEU        |   |            | -6.657             | 69.871<br>68.947 | 14.675           |      | 49.81          | A        | Č      |
| ATOM         | 925        | CB       |            |   | 156        | -7.671             | 68.095           | 15.414           |      | 49.98          | A        | c      |
| ATOM         | 926        | CG       | LEU        | A | 156        | -8.401             | 68.685           | 16.618           |      |                | A        | C      |
| ATOM         | 927        |          | LEU        |   |            | -9.510             |                  | 17.086           |      | 47.99          | A        | . c    |
| ATOM         | 928<br>929 |          | LEU        |   | 156        | -7.392<br>-5.772   | 68.921<br>68.023 | 17.724<br>13.895 | 1.00 |                | A<br>A   | C      |
| ATOM<br>ATOM | 930        | С<br>0   | LEU        |   |            | -4.799             | 67.492           | 14.416           |      |                | A        | ŏ      |
| ATOM         | 931        | N        | ARG        |   |            | -6.127             | 67.810           | 12.636           |      |                | A        | N      |
| MOTA         | 932        | CA       | ARG        |   |            | -5.358             | 66.916           | 11.793           |      |                | A        | ·c     |
| ATOM         | 933        | CB       | ARG        |   |            | -6.180             |                  |                  | 1.00 |                | A<br>A   | C      |
| MOTA<br>MOTA | 934<br>935 | CG       | ARG<br>ARG |   |            | -5.722<br>-6.486   | 65.252<br>65.017 | 9.923            | 1.00 | 51.01          | A        | c      |
| ATOM         | 936        | NE       | ARG        |   |            | -7.909             | 64.787           | 8.855            |      | 50.12          | A        | N      |
| ATOM         | 937        | CZ       | ARG        |   |            | 8.402              | 63.683           | 9.408            | 1.00 | 49.07          | A        | С      |
| ATOM         | 938        |          | ARG        |   |            | -7.595             | 62.705           | 9.787            |      | 48.13          | A        | N      |
| ATOM         | 939        |          | ARG        |   |            | -9.706             | 63.552           | 9.576<br>11.388  |      | 47.33<br>52.02 | A<br>A   | N<br>C |
| ATOM<br>ATOM | 940<br>941 | С<br>0   | ARG<br>ARG |   |            | -4.057<br>-3.128   | 67.588<br>66.932 | 10.920           |      | 52.55          | A        | õ      |
| ATOM         | 942        | N        | LYS        |   |            | -3.994             | 68.897           | 11.603           |      | 52.73          | A        | N      |
| MOTA         | 943        | CA       | LYS        |   |            | -2.822             | 69.682           | 11.274           |      | 54.42          | A        | c      |
| ATOM         | 944        | СВ       | LYS        |   | -          | -3.194             | 71.144           | 11.158           |      | 55.76<br>58.77 | A<br>A   | C      |
| ATOM<br>ATOM | 945<br>946 | CG<br>CD | LYS<br>LYS |   | -          | -4.128<br>-4.420   | 71.413           | 10.034<br>9.972  |      | 60.65          | A        | č      |
| ATOM         | 947        | CE       | LYS        |   |            | -5.330             | 73.197           | 8.821            |      | 62.55          | A        | Ċ      |
| ATOM         | 948        | NZ       | LYS        |   |            | -5.401             | 74.674           | 8.718            |      | 66.32          | A        | N      |
| ATOM         | 949        | C        | LYS        |   |            | -1.705             | 69.554           | 12.282           |      | 55.37          | A        | C<br>0 |
| ATOM         | 950        | 0        | LYS        |   |            | -0.538<br>-2.051   | 69.724<br>69.258 | 11.939<br>13.525 |      | 56.64<br>56.23 | A<br>A   | N      |
| MOTA<br>MOTA | 951<br>952 | N<br>CA  | THR        |   |            | -1.034             | 69.126           | 14.556           | 1.00 | 57.27          | A        | Ċ      |
| ATOM         | 953        | СВ       | THR        |   |            | -1.655             | 68.818           | 15.926           | 1.00 | 57.46          | A        | С      |
| ATOM         | 954        |          | THR        |   |            | -2.130             | 67.465           | 15.940           |      | 58.33          | A        | 0      |
| ATOM         | 955        |          | THR        |   |            | -2.806             | 69.768           | 16.218           |      | 55.51<br>57.87 | A<br>A   | C      |
| ATOM<br>ATOM | 956<br>957 | 0        |            |   | 159<br>159 | -0.037<br>1.010    | 68.016<br>67.910 | 14.222<br>14.853 |      | 58.38          | A        | ō      |
| ATOM         | 958        | N        | LYS        |   |            | -0.372             | 67.185           | 13.242           |      | 59.21          | A        | N      |
| MOTA         | 959        | CA       | LYS        |   |            | 0.503              | 66.093           | 12.814           |      | 61.25          | A        | C      |
| MOTA         | 960        | CB       |            |   | 160        | 1.823              | 66.657           | 12.250           |      | 63.14          | A        | C      |
| ATOM         | 961        | CG       |            |   | 160        | 1.695              | 67.360           | 10.889<br>10.250 |      | 64.79<br>67.20 | A<br>A   | C      |
| MOTA<br>MOTA | 962<br>963 | CD       |            |   | 160<br>160 | 3.060<br>3.807     | 67.616<br>66.298 | 9.963            |      | 68.22          | Ā        | c      |
| ATOM         | 964        | N2       |            |   | 160        | 5.183              | 66.471           | 9.360            |      | 68.99          | A        | N      |
| ATOM         | 965        | c        |            |   | 160        | 0.805              | 65.036           | 13.892           |      | 61.38          | A        | C      |
| ATOM         | 966        | 0        | LYS        |   |            | 1.893              | 64.448           | 13.926           |      | 60.97          | A        | 0      |
| ATOM         | 967        | N        | ALA        |   |            | -0.163             | 64.803<br>63.801 | 14.770<br>15.824 |      | 62.02<br>62.73 | A<br>A   | И      |
| ATOM<br>ATOM | 968<br>969 | CA<br>CB | ALA<br>ALA |   |            | -0.033<br>0.212    | 62.440           | 15.209           |      | 63.17          | Ä        | c      |
| ATOM         | 970        | СВ       | ALA        |   |            | 1.054              | 64.102           | 16.837           |      | 63.30          | A        | С      |
| ATOM         | 971        | ō        | ALA        |   |            | 1.430              | 63.236           | 17.639           |      | 63.14          | A        | 0      |

| ATOM | 972  | N   | SER | А | 162 | 1.561   | 65.326 | 16.803 | 1.00 | 63.53 | A      | N   |
|------|------|-----|-----|---|-----|---------|--------|--------|------|-------|--------|-----|
| ATOM | 973  | CA  | SER |   |     | 2.605   | 65.712 | 17.734 | 1.00 | 63.72 | Α      | С   |
| -    |      |     |     |   |     | 3.571   | 66.688 | 17.071 |      | 65.98 | A      | С   |
| MOTA | 974  | СВ  | SER |   |     | *       |        |        |      | 70.53 | A      | ō   |
| ATOM | 975  | OG  | SER |   |     | 4.714   | 66.876 | 17.890 |      |       |        |     |
| ATOM | 976  | С   | SER | A | 162 | 1.974   | 66.356 | 18.952 |      | 61.86 | A      | С   |
| MOTA | 977  | 0   | SER | Α | 162 | 0.946   | 67.023 | 18.844 | 1.00 | 62.38 | A      | 0   |
| ATOM | 978  | N   | PRO | А | 163 | 2.582   | 66.172 | 20.129 | 1.00 | 59.84 | Α      | N   |
| ATOM | 979  | CD  | PRO |   |     | 3.870   | 65.502 | 20.363 | 1.00 | 59.37 | Α      | С   |
|      |      |     |     |   |     | 2.056   | 66.747 | 21.370 |      | 58.88 | Α      | С   |
| ATOM | 980  | CA  | PRO |   |     |         |        |        |      | 59.46 | A      | Č   |
| ATOM | 981  | CB  | PRO |   |     | 3.237   | 66.630 | 22.324 |      |       |        |     |
| MOTA | 982  | CG  | PRO | A | 163 | 3.892   | 65.362 | 21.869 |      | 60.18 | A      | C   |
| ATOM | 983  | С   | PRO | Α | 163 | 1.581   | 68.191 | 21.202 |      | 57.56 | A      | С   |
| ATOM | 984  | 0   | PRO | Α | 163 | 2.083   | 68.912 | 20.341 | 1.00 | 57.25 | A      | 0   |
| ATOM | 985  | N   | CYS |   |     | 0.613   | 68.608 | 22.020 | 1.00 | 56.25 | Α      | N   |
|      | 986  | CA  | CYS |   |     | 0.093   | 69.969 | 21.939 | 1.00 | 54.65 | Α      | С   |
| MOTA |      |     |     |   |     | -0.673  | 70.163 | 20.636 |      | 54.58 | Α      | С   |
| ATOM | 987  | СВ  | CYS |   |     | -2.435  |        | 20.807 |      | 51.21 | A      | S   |
| MOTA | 988  | SG  | CYS |   |     |         | 69.808 |        |      | 54.07 |        | c   |
| MOTA | 989  | C   | CYS | А | 164 | -0.858  | 70.345 | 23.068 |      |       | A      |     |
| ATOM | 990  | 0   | CYS | A | 164 | -1.360  | 69.489 | 23.800 |      | 55.17 | A      | 0   |
| ATOM | 991  | N   | ASP | Α | 165 | -1.114  | 71.646 | 23.172 | 1.00 | 51.86 | A      | N   |
| ATOM | 992  | ÇA  | ASP | А | 165 | -2.040  | 72.189 | 24.150 | 1.00 | 49.08 | A      | С   |
| ATOM | 993  | CB  | ASP |   |     | -1.522  | 73.513 | 24.730 | 1.00 | 50.98 | A·     | С   |
|      |      |     |     |   |     | -2.350  | 74.012 | 25.919 |      | 52.42 | A      | С   |
| ATOM | 994  | CG  | ASP |   |     |         |        | 26.396 |      | 52.79 | A      | 0   |
| MOTA | 995  |     | ASP |   |     | -2.105  | 75.142 |        |      |       |        |     |
| MOTA | 996  | OD2 | ASP | A | 165 | -3.244  | 73.283 | 26.387 |      | 54.94 | A      | 0   |
| MOTA | 997  | С   | ASP | Α | 165 | -3.316  | 72.439 | 23.358 |      | 46.84 | A      | C   |
| ATOM | 998  | 0   | ASP | А | 165 | -3.309  | 73.158 | 22.343 | 1.00 | 48.17 | Α      | 0   |
| ATOM | 999  | N   | PRO |   |     | -4.424  | 71.817 | 23.785 | 1.00 | 43.29 | A      | N   |
|      | 1000 | CD  | PRO |   |     | -4.462  | 70.687 | 24.724 | 1.00 | 41.41 | Α.     | С   |
| ATOM |      |     |     |   |     | -5.717  | 71.966 | 23.125 |      | 40.20 | A .    | С   |
| ATOM | 1001 | CA  | PRO |   |     |         |        |        |      | 41.09 | A.     | č   |
| ATOM | 1002 | CB  | PRO |   |     | -6.541  | 70.858 | 23.745 |      | -     |        |     |
| MOTA | 1003 | ÇG  | PRO | A | 166 | -5.527  | 69.849 | 24.144 |      | 41.02 | A ·    |     |
| ATOM | 1004 | C·  | PRO | Α | 166 | -6.348  | 73.315 | 23.397 |      | 37.68 | A :    | C . |
| ATOM | 1005 | Ó   | PRO |   |     | -7.154  | 73.809 | 22.611 | 1.00 | 37.11 | A      | 0   |
| ATOM | 1006 | N   | THR |   |     | -5.971  | 73.916 | 24.514 | 1.00 | 35.02 | A      | N   |
|      |      |     | THR |   |     | -6.565  | 75.175 | 24.900 |      | 34.99 | A      | С   |
| ATOM | 1007 | CA  |     |   |     |         |        | 25.852 |      | 34.19 | A      | С   |
| MOTA | 1008 | CB  | THR |   |     | -5.685  | 75.933 |        |      |       | <br>A. | ŏ   |
| ATOM | 1009 |     | THR |   |     | -5.161  | 75.034 | 26.836 |      | 35.21 |        |     |
| MOTA | 1010 | CG2 | THR | Α | 167 | -6.511  | 76.997 | 26.557 |      | 32.68 | A      | С.  |
| MOTA | 1011 | C   | THR | А | 167 | -6.986  | 76.135 | 23.796 | 1.00 | 35.64 | A      | С   |
| ATOM | 1012 | ŏ   | THR |   |     | -8.126  | 76.584 | 23.782 | 1.00 | 38.31 | Α      | 0   |
|      |      |     |     |   | 168 | -6.091  | 76.449 | 22.869 | 1.00 | 34.81 | Α      | N   |
| ATOM | 1013 | N   |     |   |     | -6.415  | 77.391 | 21.802 |      | 33.50 | A      | С   |
| MOTA | 1014 | CA  |     |   | 168 |         |        |        |      | 34.64 | A      | Ċ   |
| ATOM | 1015 | CB  |     |   | 168 | -5.132  | 77.893 | 21.134 |      |       |        | č   |
| MOTA | 1016 | CG  | PHE | Α | 168 | -5.372  | 78.813 | 19.966 |      | 34.39 | A      |     |
| MOTA | 1017 | CD1 | PHE | A | 168 | -5.305  | 78.337 | 18.655 | 1.00 | 33.49 | A      | С   |
| ATOM | 1018 | CD2 | PHE | Α | 168 | -5.722  | 80.141 | 20.179 | 1.00 | 33.63 | A      | С   |
| ATOM | 1019 | CE1 |     |   | 168 | -5.591  | 79.174 | 17.579 | 1.00 | 33.33 | Α      | С   |
|      | 1020 | CE2 |     |   | 168 | -6.012  | 80.986 | 19.105 | 1.00 | 34.22 | Α      | С   |
| ATOM |      | •   |     |   |     | -5.947  | 80.498 | 17.803 |      | 33.81 | A      | С   |
| MOTA | 1021 | CZ  |     |   | 168 |         |        | 20.744 |      | 33.77 | A      | č   |
| ATOM | 1022 | С   |     |   | 168 | -7.360  | 76.854 |        |      |       |        | ŏ   |
| MOTA | 1023 | 0   |     |   | 168 | -8.324  | 77.532 | 20.372 |      | 34.04 | A      | N   |
| ATOM | 1024 | N   | ILE | А | 169 | -7.076  | 75.657 | 20.228 |      | 33.04 | A      |     |
| MOTA | 1025 | CA  | ILE | A | 169 | -7.946  | 75.056 | 19.216 |      | 31.16 | A      | C   |
| ATOM | 1026 | СВ  |     |   | 169 | -7.465  | 73.648 | 18.802 |      | 29.19 | A      | С   |
|      |      |     | ILE |   |     | -8.540  | 72.964 | 17.987 |      | 31.04 | A      | С   |
| ATOM | 1027 |     | ILE |   |     | -6.155  | 73.751 | 18.013 | 1.00 | 29.06 | Α      | C   |
| ATOM | 1028 |     |     |   |     | -5.673  | 72.433 | 17.363 |      | 23.45 | Α      | С   |
| ATOM | 1029 |     | ILE |   |     |         |        |        |      | 31.16 | A      | Č   |
| MOTA | 1030 | С   |     |   | 169 | -9.329  | 74.953 | 19.850 |      |       | A      | ŏ   |
| ATOM | 1031 | 0   |     |   | 169 | -10.297 | 75.560 | 19.377 |      | 30.18 |        |     |
| ATOM | 1032 | N   | LEU | A | 170 | -9.392  | 74.206 | 20.944 |      | 30.66 | A      | N   |
| ATOM | 1033 | CA  |     |   | 170 | -10.615 | 74.015 | 21.684 |      | 33.01 | A.     | C   |
|      | 1034 | СВ  |     |   | 170 | -10.329 | 73.274 | 22.974 | 1.00 | 32.78 | A      | С   |
| ATOM |      |     |     |   | 170 | -10.837 | 71.850 | 23.058 | 1.00 | 34.59 | A      | Ç   |
| ATOM | 1035 | CG  |     |   |     | -10.723 | 71.127 | 21.702 |      | 34.12 | Α      | С   |
| MOTA | 1036 |     | LEU |   |     |         |        |        |      | 33.75 | A      | č   |
| MOTA | 1037 | CD2 | LEU |   |     | -10.021 | 71.151 | 24.136 |      |       | A      | . c |
| ATOM | 1038 | ,C  | LEU | A | 170 | -11.290 | 75.329 | 22.024 |      | 36.23 |        |     |
| ATOM | 1039 | 0   | LEU | A | 170 | -12.493 | 75.366 | 22.280 |      | 38.84 | A      | 0   |
| ATOM | 1040 | N   |     |   | 171 | -10.527 | 76.412 | 22.059 |      | 36.68 | Α      | N   |
| ATOM | 1041 | CA  |     |   | 171 | -11.123 | 77.697 | 22.368 |      | 36.55 | A      | С   |
|      |      |     |     |   | 171 | -11.744 | 78.344 | 21.144 | 1.00 | 37.28 | A      | С   |
| MOTA | 1042 | C   |     |   |     |         | 79.089 | 21.246 |      | 37.69 | A      | 0   |
| MOTA | 1043 | 0   |     |   | 171 | -12.715 |        | 19.974 |      | 37.14 | A      | N   |
| ATOM | 1044 | N   |     |   | 172 | -11.200 | 78.043 |        |      | 37.77 | A      | Ċ   |
| ATOM | 1045 | CA  |     |   | 172 | -11.714 | 78.634 | 18.755 |      |       |        |     |
| ATOM | 1046 | СВ  | CYS | Α | 172 | -10.716 | 78.435 | 17.620 | 1.00 | 38.28 | A      | С   |
|      |      |     |     |   |     |         |        |        |      |       |        |     |

|       |      |     |       |     |       |         |        |        |      |        |   |     | •   |
|-------|------|-----|-------|-----|-------|---------|--------|--------|------|--------|---|-----|-----|
| ATOM  | 1047 | SG  | CYS / | Α : | 172   | -9.163  | 79.283 | 17.873 |      | 39.93  |   | A   | S   |
| MOTA  | 1048 | С   | CYS A | Α : | 172   | -13.042 | 78.046 | 18.344 | 1.00 | 37.68  |   | A   | C   |
|       | 1049 | ō   | CYS I |     |       | -13.963 | 78.755 | 17.941 | 1.00 | 38.54  |   | A   | 0   |
| ATOM  |      |     | ALA A |     |       | -13.126 | 76.731 | 18.440 |      | 36.49  |   | Α   | N   |
| ATOM  | 1050 | N   |       |     | _     |         |        |        |      | 34.61  |   | A   | С   |
| ATOM  | 1051 | CA  | ALA A |     |       | -14.322 | 76.029 | 18.041 | _    |        |   |     | č   |
| MOTA  | 1052 | CB  | ALA A | A : | 173   | -14.240 | 74.581 | 18.499 |      | 36.10  |   | A   |     |
| ATOM  | 1053 | С   | ALA 2 | A : | 173   | -15.571 | 76.694 | 18.574 |      | 33.15  |   | A   | С   |
| ATOM  | 1054 | Ō   | ALA A |     |       | -16.352 | 77.242 | 17.807 | 1.00 | 33.82  |   | Α   | 0   |
|       |      |     |       |     |       | -15.750 | 76.698 | 19.904 | 1.00 | 32.21  |   | A   | N   |
| MOTA  | 1055 | N   | PRO I |     |       |         |        | 20.938 | -    | 30.78  |   | A   | C   |
| MOTA  | 1056 | CD  | PRO A |     |       | -14.773 | 76.314 |        |      |        |   |     | č   |
| MOTA  | 1057 | CA  | PRO A | A : | 174   | -16.928 | 77.300 | 20.532 |      | 30.68  |   | A   |     |
| MOTA  | 1058 | CB  | PRO I | A : | 174   | -16.630 | 77.156 | 22.016 |      | 30.41  |   | A . | C   |
| MOTA  | 1059 | CG  | PRO 2 | A   | 174   | -15.666 | 76.014 | 22.084 | 1.00 | 30.71  |   | A   | С   |
|       | 1060 | c   | PRO 2 |     |       | -17.180 | 78.747 | 20.145 | 1.00 | 31.02  |   | A   | С   |
| MOTA  |      |     |       |     |       |         | 79.140 | 19.864 |      | 31.28  |   | A   | 0   |
| MOTA  | 1061 | 0   | PRO 7 |     |       | -18.308 |        |        |      | 31.91  |   | A   | N   |
| ATOM  | 1062 | N   | CYS   |     |       | -16.113 | 79.535 | 20.148 |      |        |   |     |     |
| ATOM  | 1063 | CA  | CYS . | A   | 175   | -16.179 | 80.947 | 19.817 |      | 32.91  |   | A   | . С |
| ATOM  | 1064 | CB  | CYS . | Α   | 175   | -14.799 | 81.564 | 20.006 | 1.00 | 34.54  |   | A   | С   |
| MOTA  | 1065 | SG  | CYS . | A   | 175   | -14.733 | 83.343 | 19.679 | 1.00 | 43.98  |   | Α   | S   |
|       | 1066 | č   | CYS   |     |       | -16.669 | 81.159 | 18.384 | 1.00 | 32.00  |   | A   | Ç   |
| ATOM  |      |     |       |     |       |         | 82.033 | 18.110 |      | 31.12  |   | Α   | 0   |
| ATOM  | 1067 | 0   | CYS   |     |       | -17.496 |        |        |      | 31.75  |   | A   | N   |
| ATOM  | 1068 | N   | ASN   | A   | 176   | -16.163 | 80.327 | 17.481 |      |        |   |     |     |
| MOTA  | 1069 | CA  | ASN . | A   | 176   | -16.521 | 80.390 | 16.076 |      | 31.54  |   | A   | C   |
| ATOM  | 1070 | CB  | ASN . | A   | 176   | -15.676 | 79.387 | 15.282 |      | 31.58  |   | A   | С   |
| ATOM  | 1071 | CG  | ASN   |     |       | -15.027 | 80.018 | 14.050 | 1.00 | 32.62  |   | A   | С   |
|       | 1072 |     | ASN   |     |       | -15.651 | 80.794 | 13.349 | 1.00 | 30.16  |   | A   | 0   |
| MOTA  |      |     |       |     |       | -13.771 | 79.681 | 13.792 |      | 34.48  |   | A   | N   |
| MOTA  | 1073 |     | ASN   |     |       |         |        |        |      | 30.78  |   | A   | Ċ   |
| ATOM  | 1074 | С   | ASN   | A   | 176   | -18.019 | 80.137 | 15.858 |      |        |   |     |     |
| ATOM. | 1075 | 0   | ASN   | Α   | 176   | -18.629 | 80.711 | 14.956 |      | 29.78  |   | A   | 0   |
| MOTA  | 1076 | N   | VAL   | Α   | 177   | -18.613 | 79.282 | 16.686 | 1.00 | 30.56  |   | A   | N   |
| ATOM  | 1077 | CA  | VAL   |     |       | -20.041 | 78.989 | 16.580 | 1.00 | 29.05  |   | Α   | С   |
|       |      |     |       |     |       | -20.503 | 77.941 | 17.634 | 1.00 | 28.06  |   | A   | С   |
| MOTA  | 1078 | CB  | VAL   |     |       |         |        | 17.769 |      | 29.47  |   | A   | С   |
| ATOM  | 1079 |     | VAL   |     |       | -22.014 | 77.969 |        |      |        |   |     | č   |
| MOTA  | 1080 | CG2 | VAL   | A   | 177 . | -20.058 | 76.547 | 17.234 |      | 25.39  |   | A   |     |
| MOTA  | 1081 | С   | VAL   | Α   | 177   | -20.862 | 80.261 | 16.783 |      | 29.46  |   | A   | C   |
| MOTA  | 1082 | 0   | VAL   | A   | 177   | -21.721 | 80.572 | 15.968 | 1.00 | 28.88  |   | A   | 0   |
| ATOM  | 1083 | N   | ILE   |     |       | -20.600 | 80.994 | 17.867 | 1.00 | 30.19  |   | A   | N   |
|       |      |     |       |     |       | -21.341 | 82.224 | 18.154 | 1.00 | 31.36  |   | Α   | С   |
| ATOM  | 1084 | CA  | ILE   |     |       |         |        | 19.477 |      | 30.60  |   | Α   | С   |
| MOTA  | 1085 | CB  | ILE   |     |       | -20.864 | 82.872 |        |      |        |   | A   | Č   |
| ATOM  | 1086 | CG2 | ILE   | A   | 178   | -21.455 | 84.248 | 19.633 |      | 31.81  |   |     |     |
| ATOM  | 1087 | CG1 | ILE   | Α   | 178   | -21.301 | 82.078 | 20.678 |      | 31.09  |   | A   | С   |
| ATOM  | 1088 | CD1 | ILE   | Α   | 178   | -20.823 | 80.697 | 20.834 | 1.00 | 29.91  |   | A   | С   |
|       | 1089 | c   | ILE   |     |       | -21.275 | 83.246 | 17.010 | 1.00 | 33.20  |   | Α   | С   |
| ATOM  |      |     |       |     |       | -22.226 | 84.001 | 16.797 |      | 31.56  |   | A   | 0   |
| MOTA  | 1090 | 0   | ILE   |     |       |         |        | 16.283 |      | 35.80  |   | A   | N   |
| ATOM  | 1091 | N   | CYS   |     |       | -20.155 | 83.259 |        |      |        |   |     | Ċ   |
| ATOM  | 1092 | CA  | CYS   | A   | 179   | -19.938 | 84.157 | 15.142 |      | 38.59. |   | A   |     |
| ATOM  | 1093 | CB  | CYS   | Α   | 179   | -18.499 | 84.052 | 14.661 |      | 37.92  |   | A   | С   |
| ATOM  | 1094 | SG  | CYS   | А   | 179   | -17.308 | 84.897 | 15.679 | 1.00 | 44.53  |   | Α   | s   |
| ATOM  | 1095 | c   | CYS   |     |       | -20.850 | 83.830 | 13.963 | 1.00 | 41.01  |   | Α   | С   |
|       |      |     | CYS   |     |       | -21.383 | 84.713 | 13.295 | 1.00 | 41.99  |   | Α   | 0   |
| MOTA  | 1096 | 0   |       |     |       |         | 82.541 | 13.699 |      | 43.69  |   | A   | N   |
| MOTA  | 1097 | N   | SER   |     |       | -21.003 |        |        |      |        |   | A   | c   |
| MOTA  | 1098 | CA  | SER   | Α   | 180   | -21.825 | 82.061 | 12.604 |      | 44.63  |   |     |     |
| ATOM  | 1099 | CB  | SER   | Α   | 180   | -21.553 | BO.559 | 12.401 |      | 45.23  |   | A   | C   |
| ATOM  | 1100 | OG  | SER   | Α   | 180   | -22.193 | 80.057 | 11.238 |      | 47.67  |   | A   | 0   |
| ATOM  | 1101 | c   | SER   |     |       | -23.289 | 82.294 | 12.967 | 1.00 | 44.98  |   | A   | С   |
|       | 1102 | _   | SER   |     |       | -24.170 |        | 12.111 | 1.00 | 46.29  |   | A   | 0   |
| ATOM  |      | 0   |       |     |       | -23.536 |        | 14.243 |      | 43.92  |   | Α   | N   |
| ATOM  | 1103 | N   | ILE   |     |       |         |        | 14.729 |      | 43.46  |   | A   | С   |
| MOTA  | 1104 | ÇA  | ILE   |     |       | -24.889 |        |        |      | 43.02  |   | A   | č   |
| ATOM  | 1105 | CB  | ILE   | А   | 181   | -25.071 |        | 16.091 |      |        |   |     |     |
| ATOM  | 1106 | CG2 | ILE   | A   | 181   | -26.466 | 82.327 | 16.607 |      | 42.15  |   | A   | c   |
| ATOM  |      |     | ILE   |     |       | -24.780 | 80.595 | 15.979 | 1.00 | 41.93  |   | Α   | С   |
|       | 1108 |     | ILE   |     |       | -24.676 |        | 17.324 | 1.00 | 40.49  |   | Α   | С   |
| ATOM  |      |     |       |     |       | -25.269 |        | 14.870 |      | 44.20  |   | Α   | С   |
| MOTA  | 1109 | С   |       |     | 181   |         |        | 15.100 |      | 45.43  |   | A   | 0   |
| ATOM  | 1110 | 0   |       |     | 181   | -26.425 |        |        |      | 46.04  |   | Α   | N   |
| ATOM  | 1111 | N   |       |     | 182   | -24.297 |        | 14.725 |      |        |   |     |     |
| ATOM  | 1112 | CA  |       |     | 182   | -24.552 | 86.538 | 14.861 |      | 46.87  |   | A   | c   |
| ATOM  | 1113 | СВ  |       |     | 182   | -23.777 | 87.115 | 16.086 |      | 46.79  |   | A   | С   |
|       |      |     | ILE   |     |       | -24.211 |        | 16.362 | 1.00 | 45.98  |   | Α   | С   |
| MOTA  | 1114 |     |       |     |       | -24.095 |        |        |      | 45.55  |   | Α   | С   |
| ATOM  | 1115 |     | ILE   |     |       |         |        |        |      | 46.20  |   | A   | č   |
| ATOM  | 1116 | CD1 | ILE   |     |       | -23.412 |        |        |      | 47.28  |   | A   | č   |
| MOTA  | 1117 | С   |       |     | 182   | -24.111 |        |        |      |        |   |     |     |
| MOTA  | 1118 | 0   | ILE   | A   | 182 ' | -24.747 | 88.198 |        |      | 46.28  |   | A   | 0   |
| ATOM  | 1119 | N   |       |     | 183   | -23.024 | 86.758 | 13.008 |      | 48.09  | • | A   | N   |
|       |      |     |       |     | 183   | -22.461 |        |        | 1.00 | 49.83  |   | Α   | С   |
| ATOM  | 1120 |     |       |     |       |         |        |        |      | 47.78  |   | A   | С   |
| MOTA  | 1121 | CB  | PHE   | A   | 183   | -20.947 | 01.331 |        |      |        |   |     | _   |
|       |      |     |       |     |       |         |        |        |      |        |   |     |     |

|      |      | •    |     |   |     |         |        |        |            |     |     |
|------|------|------|-----|---|-----|---------|--------|--------|------------|-----|-----|
| MOTA | 1122 | CG   | PHE | A | 183 | -20.486 | 88.108 | 13.144 | 1.00 45.09 | Α   | C   |
|      |      |      | PHE |   |     | -19.167 | 88.032 | 13.539 | 1.00 44.50 | A   | ¢   |
| MOTA | 1123 |      |     |   |     |         |        |        | 1.00 45.88 | A   | č   |
| MOTA | 1124 |      | PHE |   |     | -21.366 | 88.871 | 13.893 |            |     |     |
| MOTA | 1125 |      | PHE |   |     | -18.728 | 88.706 | 14.664 | 1.00 46.27 | A   | C   |
| ATOM | 1126 | CE2  | PHE | Α | 183 | -20.940 | B9.552 | 15.025 | 1.00 46.50 | , А | C   |
| MOTA | 1127 | CZ   | PHE | Α | 183 | -19.619 | 89.472 | 15.413 | 1.00 46.15 | A   | С   |
| ATOM | 1128 | c    | PHE |   |     | -22.824 | 86.406 | 10.622 | 1.00 51.99 | A   | С   |
|      |      |      |     |   | 183 | -22.487 | 86.681 | 9.469  | 1.00 51.93 | A   | ō   |
| MOTA | 1129 | 0    |     |   |     |         |        |        | 1.00 54.26 | A   | N   |
| MOTA | 1130 | N    | HIS |   |     | -23.500 | 85.309 | 10.937 |            |     |     |
| ATOM | 1131 | CA   | HIS | A | 184 | -23.919 | 84.347 | 9.929  | 1.00 57.04 | A   | С   |
| MOTA | 1132 | CB   | HIS | A | 184 | -24.736 | 85.040 | 8.839  | 1.00 58.34 | A · | Ç   |
| ATOM | 1133 | CG   | HIS | A | 184 | -25.284 | 84.102 | 7.811  | 1.00 61.20 | A   | С   |
| MOTA | 1134 |      | HIS |   |     | -25.064 | 84.007 | 6.477  | 1.00 62.06 | A   | С   |
|      |      |      | HIS |   |     | -26.184 |        | 8.122  | 1.00 61.93 | A   | N   |
| MOTA | 1135 |      |     |   |     |         | 83.106 |        |            |     |     |
| ATOM | 1136 |      | HIS |   |     | -26.497 | 82.438 | 7.027  | 1.00 62.15 | A   | C   |
| ATOM | 1137 | NE2  | HIS | A | 184 | -25.831 | 82.964 | 6.015  | 1.00 62.55 | A   | N   |
| MOTA | 1138 | C    | HIS | A | 184 | -22.736 | 83.644 | 9.281  | 1.00 57.30 | A   | С   |
| MOTA | 1139 | 0    | HIS |   |     | -22.878 | 82.545 | 8.743  | 1.00 58.94 | A   | 0   |
|      |      | N    |     |   | 185 | -21.567 | 84.267 | 9.334  | 1.00 56.65 | A   | N   |
| MOTA | 1140 |      |     |   |     |         |        |        | 1.00 56.03 | A   | Ċ   |
| ATOM | 1141 | CA   |     |   | 185 | -20.390 | 83.680 | 8.714  |            |     |     |
| MOTA | 1142 | СВ   | LYS | A | 185 | -19.809 | 84.674 | 7.686  | 1.00 58.53 | A   | C   |
| ATOM | 1143 | CG   | LYS | Α | 185 | -18.698 | 84.116 | 6.780  | 1.00 60.06 | A   | С   |
| ATOM | 1144 | CD   | LYS | Α | 185 | -18.079 | 85.192 | 5.892  | 1.00 59.90 | A   | С   |
| ATOM | 1145 | CE   |     |   | 185 | -16.667 | 85.564 | 6.357  | 1.00 60.83 | A   | С   |
|      |      |      |     |   |     | -16.655 | 86.030 | 7.774  | 1.00 60.91 | A   | N   |
| ATOM | 1146 | NZ   |     |   | 185 |         |        |        |            |     | · c |
| ATOM | 1147 | С    |     |   | 185 | -19.331 |        | 9.751  | 1.00 54.45 | A   |     |
| MOTA | 1148 | 0    | LYS | A | 185 | -18.985 | 84.161 | 10.589 | 1.00 55.44 | A   | 0   |
| ATOM | 1149 | N    | ARG | Α | 186 | -18.819 | 82.107 | 9.703  | 1.00 52.11 | . А | N   |
| ATOM | 1150 | CA   |     |   | 186 | -17.770 | 81.702 | 10.634 | 1.00 50.12 | A   | С   |
|      | 1151 | CB   |     |   | 186 | -17.726 | 80.179 | 10.784 | 1.00 49.38 | . A | С   |
| ATOM |      |      |     |   |     |         |        | 9.648  | 1.00 48.39 | A   | C   |
| ATOM | 1152 | CG   |     |   | 186 | -17.037 | 79.456 |        |            |     |     |
| ATOM | 1153 | CD . | ARG | A | 186 | -16.916 | 77.954 | 9.889  | 1.00 49.08 | A   | С   |
| MOTA | 1154 | NE   | ARG | A | 186 | -15.874 | 77.546 | 10.839 | 1.00 48.59 | A   | N   |
| ATOM | 1155 | CZ   | ARG | Α | 186 | -14.598 | 77.313 | 10.527 | 1.00 48.23 | A   | С   |
| ATOM | 1156 |      | ARG |   |     | -14.155 | 77.452 | 9.288  | 1.00 45.39 | A   | N   |
|      |      | NH2  |     |   |     | -13.768 | 76.875 | 11.452 | 1.00 50.19 | A   | N   |
| ATOM | 1157 |      |     |   |     |         |        |        | 1.00 50.52 | A   | Ċ   |
| MOTA | 1158 | С    |     |   | 186 | -16.441 | 82.192 | 10.065 |            |     |     |
| ATOM | 1159 | 0    | ARG | Α | 186 | -16.377 | 82.639 | 8.926  | 1.00 50.42 | A   | 0   |
| ATOM | 1160 | N    | PHE | Α | 187 | -15.380 | 82.113 | 10.853 | 1.00 51.94 | A   | N   |
| ATOM | 1161 | CA   | PHE | A | 187 | -14.070 | 82.565 | 10.398 | 1.00 53.53 | A   | С   |
|      | 1162 | СВ   |     |   | 187 | -13.502 | 83.654 | 11.322 | 1.00 53.37 | A   | С   |
| ATOM |      |      |     |   |     |         |        | 11.435 | 1.00 53.65 | A   | Ċ   |
| MOTA | 1163 | CG   |     |   | 187 | -14.367 | 84.863 |        |            |     |     |
| ATOM | 1164 |      | PHE |   |     | -15.366 | 84.928 | 12.391 | 1.00 54.23 | A   | C   |
| ATOM | 1165 | CD2  | PHE | A | 187 | -14.217 | 85.917 | 10.549 | 1.00 54.26 | A   | С   |
| MOTA | 1166 | CEI  | PHE | Α | 187 | -16.215 | 86.030 | 12.466 | 1.00 56.45 | A   | С   |
| ATOM | 1167 |      | PHE |   |     | -15.056 | 87.024 | 10.609 | 1.00 56.87 | A   | С   |
|      |      | CZ   |     |   | 187 | -16.063 | 87.083 | 11.571 | 1.00 57.29 | A   | Ç   |
| ATOM | 1168 |      |     |   |     |         |        |        | 1.00 54.85 | A   | Č   |
| MOTA | 1169 | С    |     |   | 187 | -13.081 | 81.420 | 10.367 |            |     |     |
| MOTA | 1170 | 0    | PHE | A | 187 | -13.276 | 80.400 | 11.028 | 1.00 55.43 | A   | 0   |
| ATOM | 1171 | N    | ASP | Α | 188 | -12.016 | 81.605 | 9.593  | 1.00 57.10 | A   | N   |
| MOTA | 1172 | CA   | ASP | Α | 188 | -10.947 | 80.626 | 9.472  | 1.00 58.85 | A   | С   |
| ATOM | 1173 | CB   |     |   | 188 | -10.080 | 80.920 | 8.228  | 1.00 60.34 | A   | С   |
| MOTA | 1174 | CG   |     |   | 188 | -8.991  | 79.853 | 7.975  | 1.00 62.29 | A   | С   |
|      |      |      |     |   |     |         | 79.686 | 8.826  | 1.00 62.15 | A   | 0   |
| MOTA | 1175 |      | ASP |   |     | -8.083  |        |        | 1.00 62.26 | Ä   | ŏ   |
| MOTA | 1176 | OD2  | ASP |   |     | -9.044  | 79.185 | 6.914  |            |     | c   |
| ATOM | 1177 | С    | ASP | Α | 188 | -10.126 | 80.804 | 10.740 |            | A   |     |
| MOTA | 1178 | 0    | ASP | A | 188 | -9.980  | 81.914 | 11.255 | 1.00 59.52 | A   | 0   |
| MOTA | 1179 | N    |     |   | 189 | -9.605  | 79.698 | 11.247 | 1.00 60.70 | A   | N   |
|      |      | CA   |     |   | 189 | -8.797  | 79.723 | 12.444 | 1.00 61.22 | A   | С   |
| ATOM | 1180 |      |     |   |     | -8.374  | 78.286 | 12.801 | 1.00 61.01 | A   | С   |
| MOTA | 1181 | СВ   |     |   | 189 |         |        |        | 1.00 60.56 | A   | Č   |
| MOTA | 1182 | CG   |     |   | 189 |         | 77.446 | 13.337 |            |     |     |
| MOTA | 1183 | CD1  | TYR | A | 189 | -9.333  | 76.134 | 13.777 | 1.00 59.75 | A   | C   |
| MOTA | 1184 | CE1  | TYR | A | 189 | -10.404 | 75.390 | 14.301 | 1.00 59.10 | A   | С   |
| ATOM | 1185 |      |     |   | 189 | -10.809 | 77.986 | 13.432 | 1.00 60.47 | A   | С   |
| ATOM | 1186 |      |     |   | 189 | -11.867 | 77.258 | 13.948 | 1.00 59.24 | A   | С   |
|      |      |      |     |   |     | -11.666 | 75.970 | 14.379 | 1.00 58.53 | A   | c   |
| ATOM | 1187 | CZ   |     |   | 189 |         |        |        |            |     | ŏ   |
| MOTA | 1188 | OH   |     |   | 189 | -12.744 | 75.288 | 14.878 | 1.00 58.88 | A   |     |
| ATOM | 1189 | C    | TYR | A | 189 | -7.585  | 80.636 | 12.289 | 1.00 61.69 | A   | C.  |
| ATOM | 1190 | 0    | TYR | A | 189 | -6.757  | 80.714 | 13.186 | 1.00 62.29 | A   | 0   |
| ATOM | 1191 | N    |     |   | 190 | -7.480  | 81.336 | 11.162 | 1.00 62.67 | A   | N   |
|      |      |      |     |   | 190 | -6.347  | 82.238 | 10.940 | 1.00 63.95 | A   | С   |
| ATOM | 1192 | CA   |     |   |     |         | 81.800 | 9.717  | 1.00 66.52 | A   | č   |
| MOTA | 1193 | CB   |     |   | 190 | -5.540  |        |        |            | Ä   | c   |
| MOTA | 1194 | CG   |     |   | 190 | -4.560  | 80.647 | 9.973  | 1.00 70.33 |     |     |
| MOTA | 1195 | CD   | LYS | A | 190 | -5.095  | 79.309 | 9.444  | 1.00 73.18 | A   | C   |
| ATOM | 1196 | CE   |     |   | 190 | -5.302  | 79.345 | 7.932  | 1.00 73.73 | A   | С   |
|      |      |      |     |   |     |         |        |        |            |     |     |

| ATOM         | 1197         | NZ       | LYS | A | 190        | -6.197             | 78.240           | 7.466            | 1.00 73.45               | A          | N      |
|--------------|--------------|----------|-----|---|------------|--------------------|------------------|------------------|--------------------------|------------|--------|
| MOTA         | 1198         | С        | LYS | Α | 190        | -6.748             | 83.700           | 10.773           | 1.00 63.06               | A          | С      |
| MOTA         | 1199         | 0        |     |   | 190        | ~5.971             | 84.606           | 11.075           | 1.00 62.20               | A          | 0      |
| MOTA         | 1200         | N        |     |   | 191        | -7.954             | 83.920           | 10.268           | 1.00 62.75               | A          | N      |
| ATOM         | 1201         | CA       |     |   | 191        | -8.477             | 85.260           | 10.062           | 1.00 62.69               | A          | C      |
| ATOM         | 1202         | CB       |     |   | 191        | -9.988             | 85.167           | 9.851            | 1.00 64.65               | A          | C      |
| MOTA         | 1203         | CG       |     |   | 191        | -10.601            | 86.467           | 9.393<br>8.973   | 1.00 66.31               | A          | C      |
| ATOM         | 1204         |          | ASP |   |            | -11.777            | 86.439           | 9.458            | 1.00 67.27               | A<br>A     | 0      |
| ATOM         | 1205<br>1206 |          | ASP |   | 191        | -9.923<br>-8.140   | 87.513<br>86.141 | 11.256           | 1.00 62.47               | A          | č      |
| MOTA<br>MOTA | 1207         | 0        |     |   | 191        | -8.399             | 85.784           | 12.402           | 1.00 62.44               | A          | Ö      |
| MOTA         | 1209         | N        |     |   | 192        | -7.566             | 87.296           | 10.989           | 1.00 15.00               | A          | •      |
| ATOM         | 1209         | CA       |     |   | 192        | -7.131             | 88.234           | 12.017           | 1.00 15.00               | A          |        |
| ATOM         | 1210         | CB       |     |   | 192        | -6.410             | 89.423           | 11.379           | 1.00 15.00               | A          |        |
| ATOM         | 1211         | CG       |     |   | 192        | -5.133             | 89.053           | 10.643           | 1.00 15.00               | A          |        |
| ATOM         | 1212         | CD       | GLN | A | 192        | 4.471              | 90.248           | 9.984            | 1.00 15.00               | A          |        |
| MOTA         | 1213         |          | GLN |   |            | -4.996             | 91.362           | 10.025           | 1.00 15.00               | A          |        |
| ATOM         | 1214         | NE2      | GLN |   |            | -3.315             | 90.022           | 9.373            | 1.00 15.00               | A          |        |
| ATOM         | 1215         | С        |     |   | 192        | -8.316             | 88.729           | 12.841           | 1.00 15.00               | A          | •      |
| MOTA         | 1216         | 0        |     |   | 192        | -8.218             | 88.816           | 14.081           | 1.00 65.61               | A          |        |
| ATOM         | 1217         | N        |     |   | 193        | -9.420             | 89.082           | 12.192           | 1.00 63.99               | A          | N<br>C |
| MOTA         | 1218         | CA       |     |   | 193        | -10.619            | 89.547           | 12.880<br>11.937 | 1.00 63.01<br>1.00 65.19 | A<br>A     | c      |
| ATOM<br>ATOM | 1219<br>1220 | CB<br>CG |     |   | 193<br>193 | -11.820<br>-11.703 | 89.540<br>90:479 | 10.762           | 1.00 68.69               | A          | č      |
| MOTA         | 1221         | CD       |     |   | 193        | -12.944            | 90.461           | 9.885            | 1.00 70.19               | A          | č      |
| MOTA         | 1222         |          | GLN |   |            | -14.066            | 90.687           | 10.359           | 1.00 68.27               | A          | ŏ      |
| MOTA         | 1223         |          | GLN |   |            | -12.748            | 90.191           | 8.595            | 1.00 72.11               | A.         | N      |
| ATOM         | 1224         | C        |     |   | 193        | -10.910            | 88.584           | 14.013           | 1.00 61.09               | A          | С      |
| ATOM         | 1225         | ō        |     |   | 193        | -11.166            |                  | 15.145           | 1.00 61.23               | A          | 0      |
| ATOM         | 1226         | N        | PHE | A | 194        | -10.867            | 87.303           | 13.685           | 1.00 58.88               | . <b>A</b> | N      |
| ATOM         | 1227         | CA       | PHE | A | 194        | -11.130            | 86.260           | 14.654           | 1.00 56.78               | A          | С      |
| MOTA         | 1228         | СВ       | PHE | A | 194        | -11.122            | 84.906           | 13.966           | 1.00 55.24               | A          |        |
| MOTA         | 1229         | CG       |     |   | 194        | -11.712            | 83.811           | 14.784           | 1.00 53.90               | A          | С      |
| ATOM         | 1230         |          | PHE |   |            | -11.062            | 82.591           | 14.896           | 1.00 54.07               |            | c      |
| MOTA         | 1231         |          | PHE |   |            |                    | 83.970           |                  | 1.00 54.82               | A          |        |
| ATOM         | 1232         |          | PHE |   |            | -11.637            | 81.538           | 15.591           | 1.00 53.76               | A          | c      |
| ATOM         | 1233         |          | PHE |   |            | -13.541            | 82.924           | 16.091           | 1.00 55.32               | A<br>A     | C      |
| ATOM         | 1234         | CZ.      |     |   | 194        | -12.881            | 81.702           | 16.190           | 1.00 55.56<br>1.00 57.13 | A          | c      |
| MOTA         | 1235         | С<br>0   |     |   | 194<br>194 | -10:079<br>-10:404 | 86.269<br>86.276 | 15.743<br>16.930 | 1.00 58.32               | Ä          | Ö      |
| ATOM<br>ATOM | 1236<br>1237 | N        |     |   | 195        | -8.815             | 86.265           | 15.332           | 1.00 55.88               | A          | N      |
| ATOM         | 1238         | CA       |     |   | 195        | -7.700             | 86.257           | 16.270           | 1.00 54.01               | A          | c.     |
| ATOM         | 1239         | CB       |     |   | 195        | -6.394             | 86.339           | 15.514           | 1.00 54.24               | A          | Ċ      |
| ATOM         | 1240         | ĊG       |     |   | 195        | -6.114             | 85.090           | 14.714           | 1.00 54.86               | A          | С      |
| ATOM         | 1241         |          | LEU |   |            | -5.053             | 85.404           | 13.703           | 1.00 57.10               | A          | С      |
| ATOM         | 1242         | CD2      | LEU | A | 195        | -5.681             | 83.959           | 15.634           | 1.00 55.28               | A          | С      |
| ATOM         | 1243         | С        |     |   | 195        | <del>-</del> 7.736 | 87.371           | 17.295           | 1.00 52.83               | A          | C      |
| ATOM         | 1244         | ·O       |     |   | 195        | -7.242             | 87.209           | 18.406           | 1.00 52.98               | A          | 0      |
| MOTA         | 1245         | N        |     |   | 196        | -8.306             | 88.508           | 16.927           | 1.00 51.86               | A          |        |
| ATOM         | 1246         | CA       |     |   | 196        | -8.370             | B9.632           | 17.849           | 1.00 51.70               | A<br>A     |        |
| MOTA         | 1247         | CB       |     |   | 196        | -8.599             | 90.934           | 17.088<br>16.218 | 1.00 52.23               | A          |        |
| ATOM         | 1248         | CG       | ASN |   | 196        | -7.425<br>-7.565   | 91.310<br>92.109 | 15.295           | 1.00 53.69               | A          |        |
| ATOM<br>ATOM | 1249<br>1250 |          | ASN |   |            | -6.257             | 90.743           | 16.506           | 1.00 50.27               | A          | N      |
| ATOM         | 1251         | C        |     |   | 196        | -9.464             | 89.463           | 18.880           | 1.00 50.85               | A          | С      |
| ATOM         | 1252         | ō        |     |   | 196        | -9.244             | 89.742           | 20.058           | 1.00 52.16               | A          | 0      |
| ATOM         | 1253         | N        |     |   | 197        | -10.639            | 89.022           | 18.427           | 1.00 49.68               | A          | N      |
| ATOM         | 1254         | CA       |     |   | 197        | -11.797            | 88.802           | 19.300           | 1.00 47.99               | A          |        |
| ATOM         | 1255         | СВ       |     |   | 197        | -12.970            | 88.230           | 18.507           | 1.00 47.91               | A          |        |
| MOTA         | 1256         | CG       | LEU | A | 197        | -14.344            | 88.850           | 18.749           | 1.00 48.91               | A          |        |
| MOTA         | 1257         | CD1      | LEU | Α | 197        | -15.394            | 88.116           | 17.909           | 1.00 49.94               | A          |        |
| MOTA         | 1258         |          | LEU |   |            | -14.686            | 88.794           | 20.213           | 1.00 48.21               | A          |        |
| MOTA         | 1259         | С        |     |   | 197        | -11.385            | 87.790           | 20.345           | 1.00 47.15               | A          | C      |
| MOTA         | 1260         | 0        |     |   | 197        | -11.714            | 87.900           | 21.521           | 1.00 45.95<br>1.00 46.15 | A<br>A     | О<br>И |
| MOTA         | 1261         | N        |     |   | 198        | -10.664            | 86.786           | 19.890<br>20.777 | 1.00 46.13               | A          | C      |
| ATOM         | 1262         | CA       |     |   | 198        | -10.203<br>-9.382  | 85.767<br>84.775 | 19.991           | 1.00 49.05               | A          |        |
| ATOM         | 1263         | CB       |     |   | 198<br>198 | -10.217            | 84.773           | 18.990           | 1.00 43.03               | A          |        |
| ATOM         | 1264<br>1265 | CG<br>SD |     |   | 198        | -11.195            | 82.782           | 19.833           | 1.00 57.49               | Α          |        |
| ATOM<br>ATOM | 1266         | CE       |     |   | 198        | -9.921             | 81.441           | 19.999           | 1.00 54.82               | A          |        |
| ATOM         | 1267         | C        |     |   | 198        | -9.373             | 86.406           | 21.874           | 1.00 46.81               | A          | С      |
| MOTA         | 1268         | ō        |     |   | 198        | -9.679             | 86.269           | 23.051           | 1.00 46.02               | A          | 0      |
| MOTA         | 1269         | N        |     |   | 199        | -8.324             | 87.116           | 21.475           | 1.00 48.48               | A          | N      |
| ATOM         | 1270         | CA       |     |   | 199        | -7.420             | 87.783           | 22.404           | 1.00 49.71               | A          | C      |
| MOTA         | 1271         | CB       |     |   | 199        | -6.480             | 88.717           | 21.627           | 1.00 51.45               | A          | C.     |
|              |              |          |     |   |            |                    |                  |                  |                          |            |        |

|              |              |           |            |   |            |                    |                  |                  |      |                | _      | _  |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|--------|----|
| ATOM         | 1272         | CG        |            |   | 199        | -5.314             | 89.306           | 22.426           |      | 54.58<br>56.73 | A      | C  |
| MOTA         | 1273<br>1274 | CD<br>OF1 | GLU        | - | 199        | -5.487<br>-5.615   | 90.798<br>91.618 | 22.750<br>21.804 |      | 57.97          | A<br>A | 0  |
| atom<br>Atom | 1275         |           | GLU        |   |            | -5.490             | 91.145           | 23.958           |      | 54.14          | A      | ŏ  |
| ATOM         | 1276         | C         |            |   | 199        | -8.193             | 88.584           | 23.433           |      | 49.24          | A      | Ċ  |
| ATOM         | 1277         | ō         |            |   | 199        | -8.042             | 88.399           | 24.642           | 1.00 | 49.47          | A      | 0  |
| ATOM         | 1278         | N         |            |   | 200        | -9.034             | 89.478           | 22.947           |      | 48.27          | A      | N  |
| MOTA         | 1279         | CA        |            |   | 200        | -9.793             | 90.318           | 23.835           |      | 48.22          | A      | C  |
| ATOM         | 1280         | CB        |            |   | 200        | -10.527            | 91.376           | 23.004           |      | 48.78          | A      | C  |
| ATOM         | 1281         | CG        |            |   | 200        | -10.405<br>-8.961  | 92.800<br>93.247 | 23.561<br>23.811 |      | 50.73<br>52.94 | A<br>A | C  |
| ATOM<br>ATOM | 1282<br>1283 | CD        |            |   | 200        | -8.129             | 93.336           | 22.534           |      | 54.46          | A      | Č  |
| ATOM         | 1284         | NZ        |            |   | 200        | -6.765             | 93.906           | 22.840           |      | 56.57          | A      | N  |
| ATOM         | 1285         | c         | LYS        |   |            | -10.737            | 89.498           | 24.729           |      | 47.84          | A      | С  |
| ATOM         | 1286         | Ó         | LYS        | A | 200        | -11.163            | 89.974           | 25.784           |      | 46.65          | A      | Ο. |
| ATOM         | 1287         | N         | LEU        |   |            | -11.039            | 88.262           | 24.314           |      | 48.23          | A      | N  |
| MOTA         | . 1288       | CA        | LEU        |   |            | -11.898            | 87.346           | 25.088           |      | 47.14          | A      | C  |
| MOTA         | 1289         | CB        | LEU        |   |            | -12.609            | 86.344           | 24.174           |      | 45.38<br>44.55 | A<br>A | C  |
| ATOM         | 1290<br>1291 | CG        | LEU        |   | 201        | -14.002<br>-14.541 | 86.708<br>85.595 | 23.648<br>22.753 |      | 43.84          | A      | c  |
| atom<br>atom | 1292         |           | LEU        |   |            | -14.929            | 86.944           | 24.808           |      | 42.83          | A      | č  |
| ATOM         | 1293         | c         |            |   | 201        | -11.100            | 86.570           | 26.130           |      | 47.37          | A      | С  |
| ATOM         | 1294         | ō         |            |   | 201        | -11.529            | 86.456           | 27.267           | 1.00 | 47.30          | A      | 0  |
| ATOM         | 1295         | N         | ASN        | A | 202        | -9.951             | 86.020           | 25.747           |      | 49.17          | A      | N  |
| MOTA         | 1296         | CA        |            |   | 202        | -9.165             | 85.281           | 26.717           |      | 50.88          | A      | С  |
| MOTA         | 1297         | CB        |            |   | 202        | -8.111             | 84.390           | 26.054           |      | 53.37          | A      | C  |
| MOTA         | 1298         | CG        |            |   | 202        | -7.129             | 83.789           | 27.086<br>28.065 |      | 57.37<br>58.56 | A<br>A | 0  |
| ATOM         | 1299<br>1300 |           | ASN<br>ASN |   |            | -7.548<br>-5.825   | 83.144<br>84.013 | 26.878           |      | 58.93          | A      | N  |
| ATOM<br>ATOM | 1301         | C         |            |   | 202        | -8.487             |                  | 27.731           |      | 51.77          | A      | C. |
| ATOM         | 1302         | ŏ         |            |   | 202        | -8.016             | 85.715           | 28.757           |      |                | A      | 0  |
| ATOM         | 1303         | N         |            |   | 203        | -8.424             | 87.498           | 27.459           | 1.00 | 53.14          | A      | Ń  |
| MOTA         | 1304         | CA        | GLU        | A | 203        | -7.813             | 88.426           | 28.419           |      | 53.99          | A      | C  |
| MOTA         | 1305         | CB        |            |   | 203        | -7.352             | 89.725           | 27.744           |      | 57.58          | A      | С  |
| MOTA         | 1306         | CG        |            |   | 203        | -6.008             | 89.637           | 27.015           |      | 63.64          | A<br>A | C  |
| ATOM         | 1307         | CD        |            |   | 203        | -5.302             | 91.000           | 26.901<br>26.469 | 1.00 | 65.85<br>67.69 | A<br>A | 0  |
| atom<br>Atom | 1308<br>1309 |           | GLU<br>GLU |   |            | -5.949<br>-4.096   | 91.987<br>91.072 | 27.246           |      | 67.28          | A      | ŏ  |
| ATOM         | 1310         | C         |            |   | 203        | -8.817             | 88.768           | 29.520           |      | 52.30          | A      | Č  |
| MOTA         | 1311         | ō         |            |   | 203        | -8.499             | 88.704           | 30.709           | 1.00 | 50.38          | A      | 0  |
| MOTA         | 1312         | N         |            |   | 204        | -10.033            | 89.117           | 29.106           | 1.00 | 51.66          | A      | N  |
| MOTA         | 1313         | CA        | ASN        | A | 204        | -11.094            | 89.460           | 30.033           |      | 52.29          | A      | C  |
| MOTA         | 1314         | CB        |            |   | 204        | -12.379            | 89.797           | 29.277           | 1.00 | 52.54          | A      | С  |
| ATOM         | 1315         | CG        |            |   | 204        | -12.529            | 91.288           | 28.996           |      | 53.58<br>54.12 | A<br>A | C  |
| ATOM         | 1316         |           | ASN        |   |            | -13.156<br>-11.969 | 91.683<br>92.117 | 28.014<br>29.862 | 1.00 | 53.94          | A      | N  |
| ATOM<br>ATOM | 1317<br>1318 | C<br>C    | ASN        |   | 204        | -11.365            | 88.325           | 31.014           |      | 53.02          | A.     | c  |
| MOTA         | 1319         | ō         |            |   | 204        | -11.687            | 88.575           | 32.180           |      | 53.52          | A      | 0  |
| ATOM         | 1320         | N         |            |   | 205        | -11.237            | 87.083           | 30.550           | 1.00 | 52.58          | A      | N  |
| ATOM         | 1321         | CA        | ILE        | A | 205        | -11.481            | 85.942           | 31.421           |      | 52.48          | A      | С  |
| ATOM         | 1322         | CB        |            |   | 205        | -11.768            | 84.641           | 30.652           |      | 52.82          | A      | C  |
| ATOM         | 1323         |           | ILE        |   |            | -12.877            | 84.860           | 29.641           |      | 52.62          | A      | C  |
| ATOM         | 1324         |           | ILE        |   |            | -10.499            | 84.161<br>82.668 | 29.965<br>29.914 |      | 54.84<br>56.22 | A<br>A | Č  |
| ATOM         | 1325         |           | ILE        |   | 205        | -10.396<br>-10.292 | 85.673           | 32.317           |      | 52.07          | A      | č  |
| ATOM<br>ATOM | 1326<br>1327 | С<br>0    |            |   | 205        | -10.350            | 84.799           | 33.176           |      | 51.76          | A      | 0  |
| ATOM         | 1328         | N         |            |   | 206        | -9.207             | 86.400           | 32.096           |      | 15.00          | A      | N  |
| MOTA         | 1329         | CA        |            |   | 206        | -8.038             | 86.235           | 32.951           |      | 15.00          | A      | С  |
| ATOM         | 1330         | CB        | GLU        | A | 206        | -6.763             | 86.202           | 32.106           |      | 15.00          | A      | С  |
| MOTA         | 1331         | CG        |            |   | 206        | -5.503             | 85.889           | 32.895           |      | 15.00          | A      | C  |
| MOTA         | 1332         | CD        |            |   | 206        | -4.275             | 85.770           | 32.012           |      | 15.00          | A<br>A | C  |
| MOTA         | 1333         |           | GLU        |   |            | -3.205             | 85.384           | 32.529           |      | 15.00<br>15.00 | A      | 0  |
| MOTA         | 1334         |           | GLU        |   |            | -4.382<br>-7.948   | 86.061<br>87.359 | 30.803<br>33.978 |      | 15.00          | A      | c  |
| ATOM         | 1335<br>1336 | C<br>O    |            |   | 206<br>206 | -7.663             | 87.117           | 35.125           |      | 52.36          | A      | ō  |
| ATOM<br>ATOM | 1337         | Ŋ         |            |   | 207        | -8.250             | 88.575           | 33.547           |      | 52.43          | A      | N  |
| ATOM         | 1338         | CA        |            |   | 207        | -8.231             | 89.647           | 34.526           | 1.00 | 52.34          | A      | С  |
| MOTA         | 1339         | СВ        |            |   | 207        | -8.312             | 91.029           | 33.884           |      | 51.96          | A      | C  |
| MOTA         | 1340         | CG2       | ILE        | A | 207        | -7.195             | 91.204           | 32.896           |      | 51.22          | A      | C  |
| MOTA         | 1341         |           | ILE        |   |            | -9.649             | 91.218           | 33.187           |      | 52.16          | A<br>A | C  |
| MOTA         | 1342         |           | ILE        |   |            | -9.683             | 92.492           | 32.419<br>35.348 |      | 54.91<br>52.23 | A<br>A | C  |
| ATOM         | 1343         | C         |            |   | 207<br>207 | -9.487<br>-9.647   | 89.456<br>90.061 | 36.399           |      | 53.42          | A      | ŏ  |
| ATOM<br>ATOM | 1344<br>1345 | O<br>N    |            |   | 208        | -10.380            | 88.602           | 34.855           |      | 51.14          | A      | N  |
| ATOM         | 1345         | CA        |            |   | 208        | -11.640            | 88.350           | 35.530           |      | 48.95          | A      | С  |
| 0            | • •          |           |            |   |            |                    |                  |                  |      |                |        |    |

Figure 1

| ATOM 1346 GG LEUN A 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|-----|---|-----|---------|--------|--------|------|-------|---|------------|
| NOTE   1349   COL   LEU A 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MOTA | 1347 | CB  | LEU | A | 208 | -12.726 | 88.048 | 34.507 | 1.00 | 48.64 | A | С          |
| NOTE   1350   CODE   LEU A 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MOTA | 1348 | CG  | LEU | A | 208 | -14.092 | 88.693 | 34.717 | 1.00 | 49.84 | A |            |
| NOTICE   1351   C   LEU A 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATOM | 1349 | CD1 | LEU | Α | 208 | -13.966 | 90.202 | 34.847 | 1.00 | 50.40 | A |            |
| NOTICE   1352   O   LEU A 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MOTA | 1350 | CD2 | LEU | Α | 208 | -14.980 | 88.335 | 33.527 | 1.00 | 51.62 | A | . C        |
| NTON   1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATOM | 1351 | С   |     |   |     | -11.471 | 87.176 | 36.459 | 1.00 | 47.52 | A | С          |
| NOTE   1954   CA   SER A 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MOTA | 1352 | 0   | LEU | Α | 208 | -12.236 |        |        |      |       |   |            |
| ATOM   1355   CB   SER A 209   -9.805   84.025   36.169   1.00   42.89   A   C   ATOM   1357   C   SER A 209   -9.111   85.483   81.013   1.00   45.79   A   C   ATOM   1358   O   SER A 209   -9.111   85.483   81.013   1.00   45.79   A   C   ATOM   1359   C   SER A 209   -9.121   85.483   81.013   1.00   45.79   A   C   ATOM   1359   O   SER A 210   -6.477   84.442   38.630   1.00   44.94   A   N   ATOM   1360   C   SER A 210   -6.447   84.465   37.314   1.00   45.75   A   C   ATOM   1360   C   SER A 210   -6.447   84.465   37.314   1.00   51.50   A   C   ATOM   1363   C   SER A 210   -6.447   84.465   37.314   1.00   51.50   A   C   ATOM   1364   O   SER A 210   -7.756   85.425   07.394   1.00   43.84   A   C   ATOM   1366   C   SER A 210   -7.756   85.425   07.894   1.00   43.84   A   C   ATOM   1366   C   SER A 210   -7.408   84.762   41.999   1.00   44.30   A   A   C   ATOM   1366   C   PRO A 211   -7.408   84.762   41.999   1.00   44.30   A   A   C   ATOM   1366   C   PRO A 211   -7.527   85.905   43.324   1.00   43.60   A   C   ATOM   1368   CB   PRO A 211   -7.527   85.905   43.324   1.00   43.60   A   C   ATOM   1369   CG   PRO A 211   -5.818   83.528   43.106   1.00   44.91   A   C   ATOM   1370   C   PRO A 211   -9.180   86.646   43.894   1.00   44.91   A   C   ATOM   1371   O   PRO A 211   -9.180   86.646   43.899   1.00   44.21   A   O   ATOM   1372   N   TRR A 212   -7.655   88.757   44.004   1.00   15.00   A   A   A   A   A   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 1353 | N   | SER | A | 209 | -10.454 |        |        | 1.00 | 46.74 |   |            |
| NOTICE   1356   OG   SER A 209   -8,439   84,179   38,637   1.00   37,96   A   O   A   A   O   A   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1354 | ÇA  | SER | A | 209 | -10.233 | 85.192 | 37.047 | 1.00 | 45.53 | A |            |
| NOTE   1357   C   SER A 209   -9.111   85.483   38.013   1.00   45.79   A   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MOTA | 1355 | CB  | SER | A | 209 | -9.805  | 84.025 | 36.169 | 1.00 | 42.89 | A |            |
| TOTO    1358   O   SER A 209   -8.729   86.546   38.212   1.00   48.55   A   O   A   A   N   A   A   N   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOTA | 1356 | OG  | SER | A | 209 | -8.439  | 84.179 | 35.857 | 1.00 | 37.96 | A |            |
| NOTE   1359   N   SER   210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOTA | 1357 | С   | SER | A | 209 |         | B5.483 | 38.013 | 1.00 | 45.79 | A |            |
| ATOM 1360 CA SER A 210 -7.446 84.699 39.480 1.00 45.52 A C ATOM 1362 CG SER A 210 -6.427 84.955 37.334 1.00 51.50 A O ATOM 1363 C SER A 210 -8.259 86.565 40.801 1.00 40.94 A O ATOM 1365 N PRO A 211 -7.268 85.425 40.789 1.00 43.84 A C ATOM 1366 CD PRO A 211 -7.268 84.762 41.909 1.00 44.30 A A O ATOM 1366 CD PRO A 211 -7.527 85.090 43.324 1.760 1.00 44.10 A C ATOM 1366 CD PRO A 211 -7.527 85.090 43.324 1.00 44.52 A C ATOM 1366 CD PRO A 211 -7.527 85.090 43.324 1.00 44.52 A C ATOM 1368 CB PRO A 211 -5.518 83.528 43.106 1.00 44.52 A C ATOM 1369 CG PRO A 211 -5.518 83.528 43.106 1.00 44.52 A C ATOM 1369 CG PRO A 211 -5.518 83.528 43.106 1.00 44.21 A C ATOM 1370 C PRO A 211 -5.518 83.528 43.106 1.00 44.21 A C ATOM 1371 O PRO A 211 -5.518 83.528 43.106 1.00 44.21 A C ATOM 1371 O PRO A 211 -5.518 83.528 43.106 1.00 44.21 A C ATOM 1371 O PRO A 211 -5.518 83.528 43.106 1.00 15.00 A A ATOM 1372 N TRP A 212 -7.655 88.757 44.004 1.00 15.00 A A ATOM 1374 CB TRP A 212 -7.655 88.757 44.004 1.00 15.00 A A ATOM 1375 CG TRP A 212 -7.657 89.379 43.950 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1378 CE3 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1376 CD2 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1380 CE3 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1380 CE3 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1380 CE3 TRP A 212 -7.657 93.348 44.250 1.00 15.00 A A ATOM 1380 CE3 TRP A 212 -8.253 94.624 2.348 1.00 15.00 A A ATOM 1390 CE3 TRP A 212 -9.858 99.607 41.217 1.00 15.00 A A ATOM 1390 CE3 TRP A 212 -9.858 99.607 41.917 1.00 15.00 A A ATOM 1390 CE3 TRP A 212 -9.858 99.607 41.217 1.00 15.00 A A ATOM 1390 CE3 TRP A 212  | MOTA | 1358 | 0   | SER | Α | 209 |         |        |        |      |       |   |            |
| ATOM 1361 CB SER A 210 -6.447 85.497 38.654 1.00 48.08 A C ATOM 1362 OG SER A 210 -7.756 85.497 38.654 1.00 48.08 A C ATOM 1363 C SER A 210 -7.756 85.425 40.789 1.00 43.84 A C ATOM 1365 N PRO A 211 -7.008 84.762 41.909 1.00 44.30 A N ATOM 1366 CD PRO A 211 -7.527 85.090 43.324 1.00 43.60 A C ATOM 1366 CD PRO A 211 -7.527 85.090 43.324 1.00 43.60 A C ATOM 1367 CA PRO A 211 -7.527 85.090 43.324 1.00 43.60 A C ATOM 1369 CG PRO A 211 -7.527 85.090 43.324 1.00 43.60 A C ATOM 1369 CG PRO A 211 -7.527 85.090 43.324 1.00 44.32 A C ATOM 1369 CG PRO A 211 -8.188 83.528 43.105 1.00 44.31 A C ATOM 1370 C PRO A 211 -8.188 83.528 43.105 1.00 44.91 A C ATOM 1370 C PRO A 211 -8.188 83.528 43.105 1.00 44.91 A C ATOM 1373 CA TRP A 212 -7.165 86.469 43.692 1.00 42.83 A C ATOM 1373 CA TRP A 212 -7.165 87.435 43.661 1.00 44.21 A O ATOM 1375 CG TRP A 212 -6.537 89.790 43.950 1.00 15.00 A A ATOM 1375 CG TRP A 212 -6.537 89.790 43.950 1.00 15.00 A A ATOM 1375 CG TRP A 212 -7.367 89.790 43.950 1.00 15.00 A A ATOM 1376 CG PRO A 211 -7.667 83.48 42.062 1.00 15.00 A A ATOM 1376 CG PRO A 212 -7.327 92.239 43.450 1.00 15.00 A A ATOM 1376 CG PRO A 212 -7.327 92.239 43.450 1.00 15.00 A A ATOM 1379 CG TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1379 CG TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1376 CG PRO A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 NEI TRP A 212 -7.567 93.348 44.250 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.567 93.597 41.559 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.567 93.597 41.559 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.567 93.597 41.504 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.567 93.597 41.504 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.568 93.909 1.00 15.00 A A ATOM 1380 CG TRP A 212 -7.568 93.909 1.00 15.0 | ATOM |      |     |     |   |     |         |        |        |      |       |   |            |
| TOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM |      | CA  |     |   |     |         |        |        |      |       |   |            |
| TOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |     |     |   |     |         |        |        |      |       |   |            |
| TOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM   1365   N   PRO   A   211   -7.08   84.762   41.909   1.00   44.30   A   N   ATOM   1366   CD   PRO   A   211   -7.527   81.509   43.324   1.00   43.60   A   C   ATOM   1367   CA   PRO   A   211   -7.527   81.509   43.324   1.00   43.60   A   C   ATOM   1369   CG   PRO   A   211   -7.527   81.809   43.324   1.00   44.51   A   C   ATOM   1369   CG   PRO   A   211   -8.188   83.528   43.105   1.00   44.91   A   C   ATOM   1370   C   PRO   A   211   -8.188   83.528   43.105   1.00   44.91   A   C   ATOM   1371   O   PRO   A   211   -9.160   86.69   43.692   1.00   42.93   A   C   ATOM   1372   N   TRP   A   212   -7.155   87.435   43.661   1.00   15.00   A   ATOM   1373   CA   TRP   A   212   -7.655   88.757   44.004   1.00   15.00   A   ATOM   1373   CG   TRP   A   212   -7.655   88.757   44.004   1.00   15.00   A   ATOM   1375   CG   TRP   A   212   -7.657   89.750   43.950   1.00   15.00   A   ATOM   1376   CG   TRP   A   212   -7.657   89.750   43.950   1.00   15.00   A   ATOM   1376   CG   TRP   A   212   -7.657   89.750   43.450   1.00   15.00   A   ATOM   1377   CE2   TRP   A   212   -7.657   89.346   42.506   1.00   15.00   A   ATOM   1378   CE3   TRP   A   212   -7.657   89.346   42.506   1.00   15.00   A   ATOM   1378   CE3   TRP   A   212   -7.657   89.346   42.506   1.00   15.00   A   ATOM   1382   C23   TRP   A   212   -7.657   89.346   42.506   1.00   15.00   A   A   ATOM   1382   C23   TRP   A   212   -7.567   93.346   42.506   1.00   15.00   A   A   A   A   A   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1366 CD PRO A 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1367 CA PRO A 211 -7.527 85.090 43.324 1.00 43.60 A C ATOM 1369 CB PRO A 211 -6.137 84.804 43.834 1.00 44.52 A C ATOM 1370 C PRO A 211 -5.818 83.528 43.106 1.00 44.91 A C ATOM 1370 O PRO A 211 -8.016 86.469 43.682 1.00 42.83 A C ATOM 1371 O PRO A 211 -9.180 86.646 43.998 1.00 42.83 A C ATOM 1371 O PRO A 211 -7.155 87.435 43.661 1.00 15.00 A ATOM 1373 CA TRE A 212 -7.655 88.757 44.004 1.00 15.00 A ATOM 1373 CA TRE A 212 -7.656 88.757 44.004 1.00 15.00 A ATOM 1375 CG TRE A 212 -6.537 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1375 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1380 CG TRE A 212 -7.567 89.790 43.950 1.00 15.00 A ATOM 1380 CG TRE A 212 -7.567 89.348 44.250 1.00 15.00 A ATOM 1380 NEI TRE A 212 -7.561 92.971 45.559 1.00 15.00 A ATOM 1380 CG2 TRE A 212 -8.233 94.594 42.062 1.00 15.00 A ATOM 1380 CG2 TRE A 212 -8.235 94.624 42.348 1.00 15.00 A ATOM 1380 CG TRE A 212 -8.918 99.710 43.053 1.00 15.00 A ATOM 1380 CG TRE A 212 -8.919 189.170 43.053 1.00 15.00 A ATOM 1380 CG TRE A 212 -8.919 189.170 43.053 1.00 15.00 A ATOM 1380 CG TRE A 212 -8.919 189.170 43.053 1.00 15.00 A ATOM 1380 CG TRE A 213 -11.088 90.068 42.978 1.00 15.00 A ATOM 1389 CG TRE A 213 -11.088 90.068 42.978 1.00 15.00 A ATOM 1389 CG TRE A 213 -11.481 189.194 41.764 1.00 15.00 A ATOM 1389 CG TRE A 213 -11.481 189.194 41.764 1.00 15.00 A ATOM 1399 CG TRE A 213 -11.481 189.194 41.764 1.00 15.00 A ATOM 1399 CG TRE A 213 -11.481 189.194 41.764 1.00 15.00 A ATOM 1399 CG TRE A 213 -11.889 89.607 41.217 1.00 15.00 A ATOM 1399 CG TRE A 214 -12.936 89.316 40.600 1.00 15.00 A ATOM 1399 CG TRE A 214 -12.936 89.316 40.600 1.00 15.00 A ATOM 1400 CG VAL A 215 -11.858 90.015 40.8091 1.00 15.00 A ATOM 1400 CG VAL A 215 - |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1368 CB PRO A 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1369 CG PRO A 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        | •    |       |   |            |
| ATOM 1370 C PRO A 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1371 O PRO A 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1372 N TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        | _    |       |   |            |
| ATOM 1373 CA TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   | U          |
| ATOM 1374 CG TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1375 CG TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1376 CD2 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1377 CE2 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1378 CE3 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1379 CD1 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1380 NEI TRP A 212 -7.521 92.971 45.559 1.00 15.00 A ATOM 1381 C22 TRP A 212 -8.123 94.549 43.709 1.00 15.00 A ATOM 1382 C23 TRP A 212 -7.907 93.537 41.526 1.00 15.00 A ATOM 1383 CH2 TRP A 212 -8.235 94.624 42.348 1.00 15.00 A ATOM 1385 C TRP A 212 -8.707 88.946 41.840 1.00 43.70 A ATOM 1386 N ILE A 213 -9.854 89.631 43.580 1.00 15.00 A ATOM 1386 N ILE A 213 -9.854 89.631 43.580 1.00 15.00 A ATOM 1387 CA ILE A 213 -11.108 90.068 42.978 1.00 15.00 A ATOM 1389 CG2 ILE A 213 -11.481 89.194 41.764 1.00 15.00 A ATOM 1389 CG2 ILE A 213 -10.409 89.316 40.680 1.00 15.00 A ATOM 1391 CD1 ILE A 213 -10.400 89.316 40.680 1.00 15.00 A ATOM 1392 C ILE A 213 -10.460 88.215 39.642 1.00 15.00 A ATOM 1393 O ILE A 213 -12.248 90.015 43.989 1.00 15.00 A ATOM 1393 O ILE A 213 -13.157 90.767 44.053 1.00 45.29 A ATOM 1395 CA GLN A 214 -11.972 89.039 44.894 1.00 45.17 A ATOM 1396 CB GLN A 214 -12.836 88.877 64.026 1.00 45.70 A ATOM 1396 CB GLN A 214 -12.836 88.877 64.026 1.00 45.70 A ATOM 1399 CD GLN A 214 -12.836 88.877 64.026 1.00 45.70 A ATOM 1399 CD GLN A 214 -12.836 88.877 46.026 1.00 45.70 A ATOM 1399 CD GLN A 214 -12.836 88.877 46.026 1.00 45.70 A ATOM 1390 CD GLN A 214 -15.434 87.493 45.835 1.00 46.79 A ATOM 1400 NE2 GLN A 214 -15.434 87.493 45.835 1.00 46.13 A C ATOM 1390 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A ATOM 1401 C GLN A 214 -15.889 87.456 47.100 1.00 47.05 A ATOM 1402 O GLN A 214 -15.889 87.456 47.081 1.00 45.95 A ATOM 1401 C GLN A 215 -11.541 93.197 47.081 1.00 45.95 A ATOM 1402 C GLN A 215 -9.643 91.633 47.551 1.00 45.00 A ATOM 1403 N VAL A 215 -9.643 91.633 47.551 1.00 45.00 A ATOM 1404 CA VAL A 215 -9.643 91.633 47.551 1.00 45.00 A ATOM 1407 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1408 C VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1410 CR TYR A 216 -12.379 94.084 43.894 1.00 15.00 A ATOM 1410 CR TYR A 216 -12.379 94.084 43.994 1.00 15.00 A ATOM 1416 CD TYR A 216 -12.379 94.084 43.994 1.00 15.00 A ATOM 1416 CD TYR A 216 -14 |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1381 C22 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1382 C23 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1383 CH2 TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1384 C TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1385 O TRP A 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1386 N ILE A 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |     |     |   |     |         |        |        |      |       |   | 1          |
| ATOM 1387 CA ILE A 213 -11.108 90.068 42.978 1.00 15.00 A ATOM 1388 CB ILE A 213 -11.481 89.194 41.764 1.00 15.00 A ATOM 1389 CG2 ILE A 213 -12.838 89.607 41.217 1.00 15.00 A ATOM 1390 CG1 ILE A 213 -10.409 89.316 40.680 1.00 15.00 A ATOM 1391 CD1 ILE A 213 -10.409 89.316 40.680 1.00 15.00 A ATOM 1392 C ILE A 213 -10.460 88.215 39.642 1.00 15.00 A ATOM 1393 O ILE A 213 -12.248 90.015 43.989 1.00 15.00 A ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.29 A ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A ATOM 1396 CB GLN A 214 -12.836 88.877 46.026 1.00 45.70 A ATOM 1397 CG GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 46.79 A CATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 46.79 A CATOM 1399 OEI GLN A 214 -15.889 87.456 47.100 1.00 47.05 A CATOM 1400 NEZ GLN A 214 -12.030 89.622 47.081 1.00 48.25 A CATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 47.05 A CATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A CATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A CATOM 1406 CGI VAL A 215 -11.876 90.776 46.846 1.00 15.00 A CATOM 1407 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1408 C VAL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1409 O VAL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1401 C GLY AL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1407 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1408 C VAL A 215 -9.643 91.633 47.551 1.00 15.00 A CATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A CATOM 1408 C VAL A 215 -11.574 93.197 47.140 1.00 15.00 A CATOM 1410 C GLY AL A 215 -11.574 93.190 40.8425 1.00 15.00 A CATOM 1410 C GLY AL A 215 -11.542 94.180 47.551 1.00 15.00 A CATOM 1410 C GLY AL A 215 -11.542 94.180 47.551 1.00 15.00 A CATOM 1410 C GLY AL A 215 -11.542 94.180 47.551 1.00 15.00 A CATOM 1410 C C TYR A 216 -12.337 92.899 46.065 1.00 15.00 A CATOM 1410 C C TYR A 216 -12.349 94.100 15.00 A CATOM 1411 CA TYR A 216 -12.484 94.912 42.298 1.00 15.00 A CATOM 1412 CB TYR A 216 -12.485 94.912 42.298 1.00 15. |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1388 CB ILE A 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1399 CG2 ILE A 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       | A |            |
| ATOM 1390 CG1 ILE A 213 -10.409 89.316 40.680 1.00 15.00 A ATOM 1391 CD1 ILE A 213 -10.460 88.215 39.642 1.00 15.00 A ATOM 1392 C ILE A 213 -12.248 90.015 43.989 1.00 15.00 A ATOM 1393 O ILE A 213 -13.157 90.767 44.053 1.00 45.29 A ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.17 A N ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1396 CB GLN A 214 -12.896 88.877 46.026 1.00 45.70 A C ATOM 1397 CG GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1402 O GLN A 214 -15.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1405 CB VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1407 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A A ATOM 1408 C VAL A 215 -12.541 93.197 47.140 1.00 15.00 A A ATOM 1407 CG2 VAL A 215 -12.549 94.180 47.551 1.00 15.00 A A ATOM 1407 CG2 VAL A 215 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1410 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1410 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1410 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 141 |      |      |     |     |   |     |         |        |        | 1.00 | 15.00 | A |            |
| ATOM 1391 CD1 ILE A 213 -10.460 88.215 39.642 1.00 15.00 A ATOM 1392 C ILE A 213 -12.248 90.015 43.989 1.00 15.00 A ATOM 1393 O ILE A 213 -13.157 90.767 44.053 1.00 45.29 A ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.17 A N ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1396 CB GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1397 CG GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.889 87.493 45.835 1.00 48.41 A C ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -11.513 89.058 48.051 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 45.95 A C ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.800 47.628 1.00 15.00 A ATOM 1406 CGI VAL A 215 -9.643 91.800 47.628 1.00 15.00 A ATOM 1408 C VAL A 215 -9.643 91.800 47.628 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.379 95.143 43.100 1.00 15.00 A ATOM 1414 CDI TYR A 216 -12.379 95.143 43.100 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.379 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.379 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.785 95.947 41.471 1.00 15.00 A                                                              |      |      |     |     |   |     |         |        | 40.680 | 1.00 | 15.00 | Ą |            |
| ATOM 1392 C ILE A 213 -12.248 90.015 43.989 1.00 15.00 A ATOM 1393 O ILE A 213 -13.157 90.767 44.053 1.00 45.29 A ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.77 A N ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1396 CB GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1397 CG GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -11.513 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1410 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.337 92.899 46.065 47.500 1.00 15.00 A ATOM 1415 CEI TYR A 216 -12.337 92.899 46.065 47.500 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.255 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -12.740 96.445 43.255 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 OH TYR A 216 -14.685 98.264 40.918 1.00 15.00 A                                                                                                      |      |      |     |     |   |     |         | 88.215 | 39.642 | 1.00 | 15.00 | A |            |
| ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.17 A N ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1396 CB GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1397 CG GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1398 CD GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1410 CB TYR A 216 -12.337 92.899 45.368 1.00 15.00 A ATOM 1410 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1412 CB TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 CH TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 CH TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 CH TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 CH TYR A 216 -14.865 96.264 40.918 1.00 15. |      |      | С   | ILE | А | 213 | -12.248 | 90.015 | 43.989 | 1.00 | 15.00 | A |            |
| ATOM 1394 N GLN A 214 -11.972 89.039 44.894 1.00 45.17 A N ATOM 1395 CA GLN A 214 -12.836 88.877 46.026 1.00 45.70 A C ATOM 1396 CB GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1397 CG GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1402 O GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1405 CB VAL A 215 -11.874 91.800 47.628 1.00 15.00 A ATOM 1406 CGI VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1408 C VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1410 CA TYR A 216 -12.337 92.899 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.337 92.899 45.368 1.00 15.00 A ATOM 1415 CEI TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.455 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.455 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1410 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1410 OH TYR A 216 -14.865 98.264 40.918 1.00 1 |      |      |     |     |   |     | -13.157 | 90.767 | 44.053 | 1.00 | 45.29 | A |            |
| ATOM 1396 CB GLN A 214 -12.998 87.395 46.363 1.00 46.13 A C ATOM 1397 CG GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OE1 GLN A 214 -15.434 87.493 45.835 1.00 48.25 A O ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 48.25 A O ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1406 CG1 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1415 CEI TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.455 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.288 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.865 98.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A A ATOM 1410 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.665 98.264 40.918 1.00 15.00 A A ATOM | MOTA | 1394 | N   | GLN | Α | 214 | -11.972 | 89.039 | 44.894 | 1.00 | 45.17 | Α | N          |
| ATOM 1397 CG GLN A 214 -14.103 86.770 45.574 1.00 46.79 A C ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -16.038 88.091 44.914 1.00 48.25 A O ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1406 CGI VAL A 215 -8.954 92.807 48.228 1.00 15.00 A A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1412 CB TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1415 CEI TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 96.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 96.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.865 96.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.565 96.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.565 96.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.565 96.264 40.918 1.00 15.00 A A ATOM 14 | MOTA | 1395 | CA  | GLN | A | 214 | -12.836 | 88.877 | 46.026 | 1.00 | 45.70 | A | С          |
| ATOM 1398 CD GLN A 214 -15.434 87.493 45.835 1.00 48.41 A C ATOM 1399 OEI GLN A 214 -16.038 88.091 44.914 1.00 48.25 A O ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.174 91.800 47.628 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CGI VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1412 CB TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1414 CDI TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1415 CEI TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.455 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.288 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.365 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.365 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C  | ATOM | 1396 | ÇВ  | GLN | Α | 214 | -12.998 | 87.395 | 46.363 | 1.00 | 46.13 | A |            |
| ATOM 1399 OE1 GLN A 214 -16.038 88.091 44.914 1.00 48.25 A O ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1402 O GLN A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.286 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.586 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A ATOM 1420 C  | ATOM | 1397 | CG  | GLN | Α | 214 | -14.103 | 86.770 | 45.574 | 1.00 | 46.79 |   |            |
| ATOM 1400 NE2 GLN A 214 -15.889 87.456 47.100 1.00 47.05 A N ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A A ATOM 1405 CB VAL A 215 -11.174 91.800 47.628 1.00 15.00 A A ATOM 1406 CG1 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1406 CG2 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A A ATOM 1400 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A A ATOM 1415 CE1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -13.197 95.143 43.100 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A A ATOM 1416 CD2 TYR A 216 -14.2865 99.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 99.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 99.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 99.264 40.918 1.00 15.00 A A ATOM 1419 OH TYR A 216 -14.865 99.264 40.918 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A A ATOM 142 | ATOM | 1398 | CD  | GLN | Α | 214 | -15.434 | 87.493 | 45.835 |      |       |   |            |
| ATOM 1401 C GLN A 214 -12.030 89.622 47.081 1.00 45.95 A C ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.174 91.800 47.628 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1400 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1415 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM | 1399 | OE1 | GLN | А | 214 | -16.038 | 88.091 |        |      |       |   |            |
| ATOM 1402 O GLN A 214 -11.513 89.058 48.051 1.00 47.62 A O ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.174 91.800 47.628 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CGI VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1400 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1412 CD TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CDI TYR A 216 -13.197 95.143 43.100 15.00 A ATOM 1415 CEI TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.365 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.565 98.264 40.918 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1400 | NE2 | GLN | A | 214 | -15.889 |        |        |      |       |   |            |
| ATOM 1403 N VAL A 215 -11.858 90.776 46.846 1.00 15.00 A ATOM 1404 CA VAL A 215 -11.174 91.800 47.628 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   | . <b>C</b> |
| ATOM 1404 CA VAL A 215 -11.174 91.800 47.628 1.00 15.00 A ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 43.08 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.28 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   | Ō          |
| ATOM 1405 CB VAL A 215 -9.643 91.633 47.551 1.00 15.00 A ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 43.08 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1406 CG1 VAL A 215 -8.954 92.807 48.228 1.00 15.00 A ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 15.00 A ATOM 1414 CD1 TYR A 216 -13.197 95.143 43.100 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1416 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.600 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.315 99.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.565 98.264 40.918 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1407 CG2 VAL A 215 -9.225 90.321 48.194 1.00 15.00 A ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 43.08 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.694 1.00 15.00 A ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.289 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1408 C VAL A 215 -11.541 93.197 47.140 1.00 15.00 A ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 43.08 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1409 O VAL A 215 -11.242 94.180 47.510 1.00 43.08 A ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1410 N TYR A 216 -12.337 92.899 46.065 1.00 15.00 A ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1419 CC TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1411 CA TYR A 216 -13.002 93.993 45.368 1.00 15.00 A ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1412 CB TYR A 216 -12.590 94.008 43.894 1.00 15.00 A ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1413 CG TYR A 216 -13.197 95.143 43.100 1.00 15.00 A ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1414 CD1 TYR A 216 -12.740 96.445 43.253 1.00 15.00 A ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1415 CE1 TYR A 216 -13.292 97.486 42.529 1.00 15.00 A ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1416 CD2 TYR A 216 -14.228 94.912 42.198 1.00 15.00 A ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1417 CE2 TYR A 216 -14.785 95.947 41.471 1.00 15.00 A ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1418 CZ TYR A 216 -14.314 97.231 41.640 1.00 15.00 A ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1419 OH TYR A 216 -14.865 98.264 40.918 1.00 15.00 A ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ATOM 1420 C TYR A 216 -14.517 93.872 45.479 1.00 15.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |     |     |   |     |         |        |        |      |       |   |            |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |     |     |   |     |         |        |        |      |       |   |            |
| ALON ATEL O THE REST STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |     |     |   |     |         |        |        |      |       |   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATON | 4761 | •   |     | ~ |     | -51     |        |        |      | ·     |   |            |

Figure 1

| ATOM         | 1422         | N         | ASN        | A | 217        | -14.903            | 92.556             | 45.415           | 1.00 15.00               | A        |   |
|--------------|--------------|-----------|------------|---|------------|--------------------|--------------------|------------------|--------------------------|----------|---|
| MOTA         | 1423         | CA        | ASN        |   |            | -16.312            | 92.310             | 45.696           | 1.00 15.00               | A        |   |
| MOTA         | 1424         | CB        | ASN        |   |            | -16.636            | 90.824             | 45.522           | 1.00 15.00               | A        |   |
| ATOM         | 1425         | CG        | ASN        |   |            | -16.640<br>-17.184 | 90.394<br>91.085   | 44.069<br>43.207 | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| ATOM<br>ATOM | 1426<br>1427 | OD1       | ASN        |   |            | -16.035            | 89.246             | 43.789           | 1.00 15.00               | Ä        |   |
| ATOM         | 1428         | c         | ASN        |   |            | -16.673            | 92.756             | 47.108           | 1.00 15.00               | A        |   |
| ATOM         | 1429         | 0         | ASN        |   |            | -17.214            | 93.787             | 47.292           | 1.00 36.52               | A        |   |
| ATOM         | 1430         | N         | ASN        |   |            | -16.162            | 91.940             | 48.022           | 1.00 15.00               | A        |   |
| ATOM         | 1431         | CA        | ASN        |   |            | -16.216            | 92.506             | 49.364           | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| MOTA<br>MOTA | 1432<br>1433 | CB<br>CG  | ASN<br>ASN |   |            | -15.728<br>-16.717 | 91.482<br>90.354   | 50.391<br>50.606 | 1.00 15.00               | A        |   |
| ATOM         | 1434         |           | ASN        |   |            | -17.921            | 90.583             | 50.724           | 1.00 15.00               | A        |   |
| ATOM         | 1435         | ND2       | ASN        |   |            | -16.214            | 89.128             | 50.661           | 1.00 15.00               | A        |   |
| ATOM         | 1436         | С         | ASN        |   |            | -15.375            | 93.774             | 49.457           | 1.00 15.00               | A        |   |
| ATOM         | 1437         | 0         | ASN        |   |            | -14.719            | 94.008             | 48.342           | 1.00 38.46<br>1.00 15.00 | A<br>A   |   |
| ATOM<br>ATOM | 1438<br>1439 | N<br>CA   |            |   | 219<br>219 | -15.346<br>-14.466 | 94.522<br>95.671   | 50.415<br>50.586 | 1.00 15.00               | Ä        |   |
| ATOM         | 1440         | СВ        |            |   | 219        | -13.160            | 95.242             | 51.258           | 1.00 15.00               | A        |   |
| ATOM         |              | CG        | PHE        |   |            | -12.319            | 94.324             | 50.417           | 1.00 15.00               | A        |   |
| ATOM         | 1442         | CD1       | PHE        |   |            | -11.384            | 94.835             | 49.532           | 1.00 15.00               | A        |   |
| ATOM         | 1443         |           | PHE        |   |            | -12.463            | 92.950             | 50.512           | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| MOTA<br>MOTA | 1444<br>1445 | CE1       | PHE        |   |            | -10.610<br>-11.691 | 93.993<br>92.103   | 48.756<br>49.739 | 1.00 15.00               | Ä        |   |
| ATOM         | 1446         | CZ        |            |   | 219        | -10.763            | 92.625             | 48.862           | 1.00 15.00               | A        |   |
| ATOM         | 1447         | С         | PHE        | A | 219        | -14.164            | 96.334             | 49.246           | 1.00 15.00               | A        |   |
| MOTA         | 1448         | 0         |            |   | 219        | -12.944            | 96.588             | 48.919           | 1.00 39.04               | A        |   |
| ATOM         | 1449         | N         |            |   | 220        | -15.142            | 96.820<br>96.853   | 48.420           | 1.00 39.53<br>1.00 39.41 | A<br>A   | 1 |
| MOTA         | 1450<br>1451 | CD<br>CA  | PRO        |   | 220        | -16.579<br>-14.903 | 97.520             | 48.727<br>47.146 | 1.00 40.20               | Ä        | ò |
| ATOM         | 1452         | СВ        |            |   | 220        | -16.302            | 97.678             | 46.572           | 1.00 39.40               | A        | ( |
| ATOM         | 1453         | CG        | PRO        | A | 220        | -17.077            | 97.957             | 47.777           | 1.00 39.30               | A        | ( |
| ATOM         | 1454         | С         |            |   | 220        |                    | 98.880             | 47.315           | 1.00 42.68               | A        | ( |
| ATOM         | 1455         | 0         | PRO<br>ALA |   |            | -14.489<br>-13.419 | 99.807<br>99.020   | 46.545<br>48.340 | 1.00 44.59               | A<br>A   | 1 |
| ATOM         | 1456<br>1457 | N<br>Ca   | ALA        |   |            |                    | 100.283            | 48.558           | 1.00 43.86               | A.       | Ġ |
| ATOM         | 1458         | СВ        | ALA        |   |            |                    | 100.195            | 49.808           | 1.00 45.60               | A        | ( |
| ATOM         | 1459         | С         | ALA        |   |            |                    | 100.564            | 47.338           | 1.00 43.51               | A        | ( |
| MOTA         | 1460         | 0         | ALA        |   |            |                    | 101.694            | 46.867           | 1.00 43.21               | A        | • |
| ATOM         | 1461<br>1462 | N<br>CA   | LEU        |   |            | -11.204<br>-10.333 | 99.546<br>99.736   | 46.802<br>45.648 | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| MOTA<br>MOTA | 1463         | CB        | LEU        |   |            | -9.709             | 98.402             | 45.230           | 1.00 15.00               | A        |   |
| MOTA         | 1464         | CG        |            |   | 222        | -8.810             | 97.720             | 46.265           | 1.00 15.00               | A        |   |
| MOTA         | 1465         |           | LEU        |   |            | -8.472             | 96.309             | 45.808           | 1.00 15.00               | A        |   |
| ATOM         | 1466         |           | LEU        |   |            | -7.545             | 98.536             | 46.470           | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| ATOM<br>ATOM | 1467<br>1468 | С<br>0    |            |   | 222        | -11.774            | 100.337<br>99.645  | 44.476<br>43.688 | 1.00 47.42               | A        |   |
| ATOM         | 1469         | N         |            |   | 223        | -11.072            |                    | 44.405           | 1.00 15.00               | A        |   |
| ATOM         | 1470         | CA        | LEU        | A | 223        | -11.276            | 102.462            | 43.309           | 1.00 15.00               | A        |   |
| ATOM         | 1471         | CB        | -          |   | 223        | -12.382            |                    | 43.665           | 1.00 15.00               | A        |   |
| ATOM         | 1472<br>1473 | CG<br>CD1 | LEU        |   | 223        | -13.774<br>-14.694 |                    | 43.909<br>44.487 | 1.00 15.00               | A<br>A   |   |
| ATOM<br>ATOM | 1474         |           | LEU        |   |            |                    | 102.317            | 42.609           | 1.00 15.00               | A        |   |
| ATOM         | 1475         | c         | LEU        |   |            | -9.988             |                    | 42.988           | 1.00 15.00               | A        |   |
| MOTA         | 1476         | 0         | -          |   | 223        |                    | 104.163            | 42.397           | 1.00 54.92               | A        |   |
| ATOM         | 1477         | N         |            |   | 224        |                    | 102.661            | 43.976<br>43.682 | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| ATOM<br>ATOM | 1478<br>1479 | CA<br>CB  |            |   | 224<br>224 |                    | 102.575<br>102.120 | 44.925           | 1.00 15.00               | Ä        |   |
| ATOM         | 1480         | CG        |            |   | 224        |                    | 103.181            | 46.008           | 1.00 15.00               | A        |   |
| MOTA         | 1481         |           | ASP        |   |            | -6.791             | 104.382            | 45.666           | 1.00 15.00               | A        |   |
| ATOM         | 1482         |           | ASP        |   |            |                    | 102.812            | 47.201           | 1.00 15.00               | A        |   |
| MOTA         | 1483         | C         |            |   | 224        |                    | 101.610<br>100.451 | 42.531<br>42.703 | 1.00 15.00<br>1.00 15.00 | A<br>A   |   |
| MOTA<br>MOTA | 1484<br>1485 | N<br>N    |            |   | 224<br>225 |                    | 102.041            | 41.286           | 1.00 15.00               | Ä        |   |
| MOTA         | 1486         | CA        |            |   | 225        |                    | 101.479            | 40.098           | 1.00 15.00               | A        |   |
| ATOM         | 1487         | СВ        | TYR        | Α | 225        | -8.035             | 102.493            | 38.951           | 1.00 15.00               | A        |   |
| ATOM         | 1488         | CG        |            |   | 225        |                    | 103.748            | 39.220           | 1.00 15.00               | A        |   |
| ATOM         | 1489         |           | TYR        |   |            |                    | 104.928<br>106.077 | 39.595<br>39.840 | 1.00 15.00<br>1.00 15.00 | . A<br>A |   |
| ATOM<br>ATOM | 1490<br>1491 |           | TYR<br>TYR |   |            |                    | 108.077            | 39.100           | 1.00 15.00               | Ä        |   |
| ATOM         | 1492         |           | TYR        |   |            |                    | 104.897            | 39.344           | 1.00 15.00               | A        |   |
| ATOM         | 1493         | CZ        | TYR        | A | 225        | -10.306            | 106.056            | 39.714           | 1.00 15.00               | A        |   |
| MOTA         | 1494         | ОН        |            |   | 225        |                    | 107.197            | 39.958           | 1.00 15.00               | A<br>A   |   |
| MOTA         | 1495         | C         |            |   | 225        | -7.374<br>-8.063   |                    | 39.667<br>38.967 | 1.00 15.00<br>1.00 73.66 | A<br>A   |   |
| ATOM         | 1496         | 0         | TIK        | А | 225        | -0.003             | 33.304             | 55.507           |                          | ••       |   |

| ATOM         | 1497         | N       | PHE A | 226            | -6.190             | 100.087               | 40.180           | 1.00 80.51               | A          | N  |
|--------------|--------------|---------|-------|----------------|--------------------|-----------------------|------------------|--------------------------|------------|----|
| ATOM         | 1498         | CA      | PHE A |                | -5.512             |                       | 40.298           | 1.00 82.70               | A          | С  |
| MOTA         | 1499         | CB      | PHE A | 226            | -6.278             | 97.716                | 40.941           | 1.00 84.50               | A          | С  |
| ATOM         | 1500         | CG      | PHE A | 226            | -5.470             | 96.742                | 41.735           | 1.00 84.75               | A          | C  |
| MOTA         | 1501         |         | PHE A |                | -4.842             |                       | 41.126           | 1.00 85.57               | A          | С  |
| MOTA         | 1502         |         | PHE A |                | -5.325             |                       | 43.105           | 1.00 85.01               | A          | C  |
| MOTA         | 1503         |         | PHE A |                | -4.069             |                       | 41.872           | 1.00 84.36               | A          | C  |
| MOTA         | 1504         |         | PHE A |                | -4.552             |                       | 43.845           | 1.00 83.59               | A          | C  |
| MOTA         | 1505         | cz      | PHE A |                | -3.932             |                       | 43.226<br>39.125 | 1.00 83.07<br>1.00 84.91 | A          | C  |
| ATOM         | 1506         | C       | PHE A |                | -4.696             |                       | 39.123           | 1.00 84.91               | A<br>A     | Ö. |
| ATOM         | 1507         | 0       | PHE A |                | -3.594<br>-5.128   |                       | 37.874           | 1.00 82.22               | Ä          | N. |
| ATOM         | 1508<br>1509 | N<br>CD | PRO A |                | -4.001             |                       | 36.954           | 1.00 81.81               | A          | c  |
| MOTA<br>MOTA | 1510         | CA      | PRO A |                | -6.337             |                       | 37.325           | 1.00 80.08               | A          | č  |
| ATOM         | 1511         | СВ      | PRO A |                |                    | 100.206               | 36.298           | 1.00 80.60               | A .        | C  |
| ATOM         | 1512         | ÇG      | PRO A |                |                    | 100.221               | 36.571           | 1.00 81.08               | A          | С  |
| MOTA         | 1513         | C       | PRO A | 227            | -7.273             | 98.171                | 36.696           | 1.00 80.26               | A          | С  |
| ATOM         | 1514         | 0       | PRO A | 227            | -7.251             | 97.930                | 35.485           | 1.00 78.06               | A          | 0  |
| ATOM         | 1515         | N       | GLY A |                | -8.092             |                       | 37.546           | 1.00 80.12               | A          | N  |
| ATOM         | 1516         | CA      | GLY A |                | -9.023             |                       | 37.109           | 1.00 79.49               | A          | С  |
| ATOM         | 1517         | C       | GLY A |                | -10.177            |                       | 36.205           | 1.00 79.54               | A          | C  |
| ATOM         | 1518         | 0       | GLY A |                | -10.102            |                       | 35.000           | 1.00 79.62               | A          | 0  |
| ATOM         | 1519         | N       | THR A |                | -10.474            |                       | 36.793           | 1.00 15.00               | A          |    |
| MOTA         | 1520         | CA      | THR A |                | -11.638            |                       | 36.028           | 1.00 15.00               | A          |    |
| MOTA         | 1521         | CB      | THR A |                | -12.719            |                       | 36.945           | 1.00 15.00<br>1.00 15.00 | A<br>A     |    |
| MOTA         | 1522         |         | THR A |                | -13.156            |                       | 37.886<br>36.124 | 1.00 15.00               | A          |    |
| ATOM         | 1523         |         | THR A |                | -13.909<br>-11.251 | _                     | 34.979           | 1.00 15.00               | A          |    |
| MOTA<br>MOTA | 1524<br>1525 | C.      | THR A |                | -11.371            |                       | 33.779           | 1.00 80.84               | A          |    |
| ATOM         | 1526         |         | HIS A |                |                    | 100.083               | 35.492           | 1.00 81.54               | A          | N  |
| ATOM         | 1527         | CA      | HIS A |                |                    | 101.234               | 34.689           | 1.00 80.85               | A          | C  |
| ATOM         | 1528         | CB      | HIS A |                |                    | 102.394               | 35.588           | 1.00 82.82               | A          | С  |
| ATOM         | 1529         | CG      | HIS A |                |                    | 103.728               | 34.911           | 1.00 85.21               | A          | С  |
| ATOM         | 1530         |         | HIS A |                |                    | 104.625               | 34.573           | 1.00 86.94               | A          | С  |
| ATOM         | 1531         |         | HIS A |                | -12.085            | 104.251               | 34.451           | 1.00 86.71               | A          | N  |
| ATOM         | 1532         | CEI     | HIS A | 230            | -11.862            | 105.412               | 33.860           | 1.00 87.15               | A          | С  |
| ATOM         | 1533         | NE2     | HIS A | . 230          | -10.568            | 105.663               | 33.921           | 1.00 87.71               | A          | N  |
| MOTA         | 1534         | С       | HIS A | - 230          | -10.172            | 100.988               | 33.659           | 1.00 79.02               | · A        | С  |
| ATOM         | 1535         | 0       | HIS A | 230            |                    | 5 101.929             | 33.275           | 1.00 78.82               | , <b>A</b> | 0  |
| MOTA         | 1536         | N       | ASN A | 231            | -9.977             |                       | 33.212           | 1.00 15.00               | A          |    |
| MOTA         | 1537         | CA      | ASN A |                | -8.920             |                       | 32.217           | 1.00 15.00               | A          |    |
| MOTA         | 1538         | CB      | ASN A |                | -7.569             |                       | 32.901           | 1.00 15.00               | A          |    |
| MOTA         | 1539         | CG      | ASN A |                |                    | 100.641               | 33.595           | 1.00 15.00               | A<br>A     |    |
| MOTA         | 1540         |         | ASN A |                |                    | 2 101.741             | 33.044<br>34.808 | 1.00 15.00               | A          |    |
| ATOM         | 1541         |         | ASN A |                | -9.20              | 3 100.475<br>5 98.474 | 31.252           | 1.00 15.00               | A          |    |
| ATOM         | 1542<br>1543 | С<br>О  | ASN A |                | -10.150            |                       | 30.469           | 1.00 71.12               | A          |    |
| ATOM<br>ATOM | 1544         | N       | LYS A |                | -8.159             |                       | 31.727           | 1.00 15.00               | A          |    |
| MOTA         | 1545         | CA      | LYS A |                | -8.249             |                       | 30.764           | 1.00 15.00               | A          |    |
| ATOM         | 1546         | СВ      | LYS A |                | -7.31              |                       | 31.168           | 1.00 15.00               | A          |    |
| ATOM         | 1547         | CG      | LYS A |                | -5.836             |                       | 31.013           | 1.00 15.00               | A          |    |
| ATOM         | 1548         | CD      | LYS F |                | -4.968             | 94.643                | 31.407           | 1.00 15.00               | A          |    |
| ATOM         | 1549         | CE      | LYS A | 232            | -3.49              | 94.967                | 31.253           | 1.00 15.00               | A          |    |
| ATOM         | 1550         | NZ      | LYS F | 232            | -2.62              |                       | 31.636           | 1.00 15.00               | A          |    |
| MOTA         | 1551         | С       | LYS A |                | -9.679             |                       | 30.656           | 1.00 15.00               | A          |    |
| ATOM         | 1552         | 0       |       | 232            | -10.15             |                       | 29.532           | 1.00 64.62               | A          |    |
| MOTA         | 1553         | N       |       | 233            | -10.64             |                       | 31.303           | 1.00 60.06               | A          | N  |
| MOTA         | 1554         | CA      |       | 233            | -12.028            |                       | 31.322           | 1.00 55.48               | A          | c  |
| ATOM         | 1555         | CB      |       | 233            | -12.55             |                       | 32.757           | 1.00 54.82<br>1.00 52.33 | A<br>A     | c  |
| ATOM         | 1556         | CG      |       | 233            | -12.576<br>-13.22  |                       | 33.406<br>34.774 | 1.00 51.29               | Ã          | Ċ  |
| ATOM         | 1557         |         | LEU A |                |                    |                       | 32.504           | 1.00 51.25               | Ä          | Ċ  |
| ATOM         | 1558         |         | LEU A |                | -13.340<br>-12.92  |                       | 30.483           | 1.00 53.90               | A          | Č  |
| ATOM         | 1559<br>1560 | C       |       | A 233<br>A 233 | -13.43             |                       | 29.443           | 1.00 53.05               | A          | ŏ  |
| MOTA<br>MOTA |              | O<br>N  |       | 1 233          | -13.08             |                       | 30.946           | 1.00 53.45               | A          | N  |
| ATOM         | 1561<br>1562 | CA      |       | 234            | -13.918            |                       | 30.272           | 1.00 51:59               | A          | Ċ  |
| ATOM         | 1563         | CB      |       | 234            | -13.90             |                       | 31.034           | 1.00 50.95               | A          | Ċ  |
| ATOM         | 1564         | CG      |       | 234            |                    | 100.289               | 31.526           | 1.00 50.06               | A          | С  |
| ATOM         | 1565         |         | LEU A |                | -16.37             |                       | 30.711           | 1.00 51.42               | A          | С  |
| ATOM         | 1566         |         | LEU A |                | -15.420            |                       | 32.995           | 1.00 49.03               | A          | С  |
| ATOM         | 1567         | c       |       | 234            | -13.51             | 98.654                | 28.832           | 1.00 51.24               | A          | С  |
| ATOM         | 1568         | ō       |       | 234            | -14.37             |                       | 27.972           | 1.00 51.48               | A          | 0  |
| MOTA         | 1569         | N       |       | A 235          |                    |                       | 28.563           | 1.00 51.05               | A          | N  |
| MOTA         | 1570         | CA      | LYS A | 235            | -11.83             |                       | 27.182           | 1.00 51.65               | A          | c  |
| MOTA         | 1571         | CB      | LYS A | 235            | -10.37             | 6 99.426              | 27.114           | 1.00 54.50               | A          | С  |
|              |              |         |       |                |                    |                       |                  |                          |            |    |

| ATOM | 1572 | CG  | LYS | A | 235   | -9.512  | 98.636  | 26.145 | 1.00 59.35 |     | A   | С  |
|------|------|-----|-----|---|-------|---------|---------|--------|------------|-----|-----|----|
| ATOM | 1573 | CD  |     |   | 235   | -8.084  | 99.158  | 26.129 | 1.00 63.07 |     | A   | Č  |
| ATOM | 1574 | CE  |     |   | 235   | -7.220  | 98.368  | 25.159 | 1.00 65.70 |     | A.  | č  |
| ATOM | 1575 | NZ  |     |   | 235   | -5.817  | 98.868  | 25.132 | 1.00 65.87 |     | A   | N  |
|      |      |     |     |   |       |         |         |        | 1.00 50.30 |     | A   | Ç  |
| ATOM | 1576 | C   |     |   | 235   | -12.012 | 97.714  | 26.314 |            |     |     |    |
| MOTA | 1577 | 0   |     |   | 235   | -12.558 | 97.827  | 25.230 | 1.00 50.44 |     | A   | 0  |
| ATOM | 1578 | N   |     |   | 236   | -11.628 | 96.543  | 26.797 | 1.00 49.30 |     | A   | N  |
| ATOM | 1579 | CA  |     |   | 236   | -11.831 | 95.347  | 25.994 | 1.00 48.34 |     | A   | С  |
| MOTA | 1580 | CB  | asn | A | 236   | -11.308 | 94.109  | 26.710 | 1.00 49.19 | . 7 | A   | С  |
| ATOM | 1581 | CG  | ASN | A | 236   | -9.807  | 94.121  | 26.850 | 1.00 50.75 |     | A   | С  |
| ATOM | 1582 | OD1 | ASN | A | 236   | -9.201  | 93.155  | 27.301 | 1.00 51.34 |     | A   | 0  |
| MOTA | 1583 | ND2 | ASN | A | 236   | -9.195  | 95.228  | 26.465 | 1.00 52.82 | i   | A . | N  |
| ATOM | 1584 | C   |     |   | 236   | -13.310 | 95.187  | 25.692 | 1.00 47.92 |     | A   | С  |
| ATOM | 1585 | ŏ   |     |   | 236   | -13.682 | 94.872  | 24.567 | 1.00 47.43 |     | A   | ō  |
| ATOM | 1586 | N   |     |   | 237   | -14.139 | 95.399  | 26.694 | 1.00 15.00 |     | A   | ٠  |
|      | 1587 |     | VAL |   |       | -15.569 | 95.281  | 26.439 | 1.00 15.00 |     | A   |    |
| ATOM |      |     |     |   |       |         |         |        | 1.00 15.00 |     |     |    |
| ATOM | 1588 | CB  |     |   | 237   | -16.384 | 95.440  | 27.739 |            |     | A   |    |
| MOTA | 1589 |     | VAL |   |       | -17.870 | 95.486  | 27.422 | 1.00 15.00 |     | A.  |    |
| ATOM | 1590 |     | VAL |   |       | -16.074 | 94.300  | 28.695 | 1.00 15.00 |     | A   |    |
| MOTA | 1591 | С   | VAL | A | 237   | -16.034 | 96.332  | 25.437 | 1.00 15.00 |     | A   |    |
| MOTA | 1592 | 0   | VAL | Α | 237   | -17.161 | 96.391  | 25.021 | 1.00 47.86 | i   | A   |    |
| MOTA | 1593 | CB  | ALA | Α | 238   | -14.500 | 99.389  | 23.973 | 1.00 15.00 | i   | A   |    |
| ATOM | 1594 | С   | ALA | Α | 238   | -14.722 | 97.622  | 22.219 | 1.00 15.00 | 1   | A.  |    |
| ATOM | 1595 | 0   |     |   | 238   | -15.440 | 97.638  | 21.257 | 1.00 51.74 |     | A   |    |
| ATOM | 1596 | N   |     |   | 238   | -14.966 | 97.052  | 24.624 | 1.00 15.00 |     | A   |    |
| ATOM | 1597 | CA  |     |   | 238   | -15.203 | 98.095  | 23.586 | 1.00 15.00 |     | A.  |    |
| ATOM | 1598 | N   |     |   | 239   | -13.572 | 97.261  | 22.656 | 1.00 50.57 |     | A   | N  |
|      |      |     |     |   |       |         |         |        |            |     | A   |    |
| ATOM | 1599 | CA  |     |   | 239   | -13.007 | 96.764  | 21.417 | 1.00 50.13 |     |     | C  |
| ATOM | 1600 | CB  |     |   | 239   | -11.673 | 96.087  | 21.654 | 1.00 49.83 |     | A   | C  |
| MOTA | 1601 | CG  |     |   | 239   | -11.081 | 95.496  | 20.417 | 1.00 51.21 |     | A.  | С  |
| MOTA | 1602 |     | PHE |   |       | -10.427 | 94.280  | 20.468 | 1.00 53.04 |     | A   | С  |
| MOTA | 1603 | CD2 | PHE | Α | 239   | -11.161 | 96.160  | 19.199 | 1.00 51.74 | - 2 | A   | С  |
| ATOM | 1604 | CE1 | PHE | Α | 239   | -9.858  | 93.727  | 19.326 | 1.00 53.55 |     | A   | С  |
| ATOM | 1605 | CE2 | PHE | Α | 239   | -10.596 | 95.620  | 18.051 | 1.00 52.66 | 7   | A   | С  |
| ATOM | 1606 | CZ  |     |   | 239   | -9.942  | 94.399  | 18.115 | 1.00 53.31 |     | A   | C. |
| ATOM | 1607 | C   |     |   | 239   | -13.949 | 95.760  | 20.793 | 1.00 50.44 |     | A   | С  |
| ATOM | 1608 | ō.  |     |   | 239   | -13.995 | 95.617  | 19.580 | 1.00 52.03 |     | A   | ō  |
| ATOM | 1609 | N   |     |   | 240   | -14.695 | 95.050  | 21.628 | 1.00 51.45 |     | A   | N  |
|      |      |     |     |   |       |         |         |        | 1.00 50.48 |     | A.  | c  |
| MOTA | 1610 | CA  |     |   | 240   | -15.640 | 94.070  | 21.126 |            |     |     |    |
| ATOM | 1611 | CB  |     |   | 240   | -15.958 | 93.040  | 22.206 | 1.00 50.14 |     | A   | C  |
| MOTA | 1612 | CG  |     |   | 240   | -14.727 | 92.269  | 22.666 | 1.00 49.09 |     | A   | С  |
| MOTA | 1613 | SD  | MET | A | 240   | -14.996 | 91.304  | 24.139 | 1.00 48.50 |     | A   | S  |
| ATOM | 1614 | CE  | MET | A | 240   | -15.826 | 89.948  | 23.430 | 1.00 49.65 | i   | A   | C  |
| MOTA | 1615 | С   | MET | A | 240   | -16.899 | 94.788  | 20.663 | 1.00 50.30 | 1   | A   | С  |
| ATOM | 1616 | 0   | MET | A | 240   | -17.326 | 94.589  | 19.537 | 1.00 51.04 |     | Α.  | 0  |
| ATOM | 1617 | N   | LYS | A | 241   | -17.488 | 95.636  | 21.503 | 1.00 50.16 |     | A   | N  |
| ATOM | 1618 | CA  | LYS |   |       | -18.695 | 96.352  | 21.087 | 1.00 50.55 |     | A   | С  |
| MOTA | 1619 | СВ  |     |   | 241   | -19.152 | 97.339  | 22.155 | 1.00 48.54 |     | A   | С  |
| ATOM | 1620 | CG  |     |   | 241   | -19.685 | 96.717  | 23.415 | 1.00 49.64 |     | A.  | c  |
|      |      |     |     |   |       | -20.019 | 97.791  | 24.438 | 1.00 51.04 |     | A   | č  |
| ATOM | 1621 | CD  |     |   | 241   |         |         |        | 1.00 52.81 |     | A.  | č  |
| MOTA | 1622 | CE  |     |   | 241   | -20.608 | 97.232  | 25.736 |            |     | A.  | N  |
| ATOM | 1623 | NZ  | LYS |   |       | -21.968 | 96.647  | 25.596 | 1.00 54.80 |     |     | Č  |
| ATOM | 1624 | C   |     |   | 241   | -18.462 | 97.130  | 19.795 | 1.00 51.60 |     | A   |    |
| MOTA | 1625 | ٥   | LYS |   |       | ~19.353 | 97.233  | 18.951 | 1.00 51.32 |     | A   | 0  |
| MOTA | 1626 | N   |     |   | 242   | -17.267 | 97.686  | 19.634 | 1.00 52.89 |     | A   | N  |
| MOTA | 1627 | CA  | SER |   |       | -16.995 | 98.467  |        |            |     | A.  | С  |
| ATOM | 1628 | CB  | SER | Α | 242   | -15.696 | 99.252  | 18.595 | 1.00 56.26 | i   | A   | С  |
| MOTA | 1629 | OG  | SER | Α | 242   | -15.901 | 100.602 | 18.213 | 1.00 57.50 | i   | A.  | 0  |
| ATOM | 1630 | С   | SER | Α | 242   | -16.936 | 97.587  | 17.207 | 1.00 55.84 |     | A   | С  |
| MOTA | 1631 | 0   | SER | А | 242   | -17.586 | 97.883  | 16.206 | 1.00 57.65 |     | A   | 0  |
| ATOM | 1632 | N   | TYR |   |       | -16.161 | 96.507  | 17.288 | 1.00 55.46 |     | A   | N  |
| MOTA | 1633 | CA  |     |   | 243   | -16.022 | 95.550  | 16.191 | 1.00 54.27 |     | A   | c  |
|      |      |     |     |   |       | -15.088 | 94.407  | 16.597 | 1.00 54.42 |     | A.  | č  |
| ATOM | 1634 | CB  |     |   | 243   |         | 93.283  |        | 1.00 54.42 |     | A.  | č  |
| MOTA | 1635 | CG  |     |   | 243   | -15.020 |         | 15.593 |            |     |     | c  |
| ATOM | 1636 |     | TYR |   |       | -14.541 | 93.504  | 14.313 | 1.00 55.46 |     | A   |    |
| MOTA | 1637 |     | TYR |   |       | -14.514 | 92.485  | 13.367 | 1.00 56.37 |     | A.  | C  |
| MOTA | 1638 |     | TYR |   |       | -15.469 | 92.006  | 15.913 | 1.00 55.88 |     | A   | C  |
| MOTA | 1639 | CE2 | TYR | A | 243   | -15.446 | 90.974  | 14.972 | 1.00 56.15 |     | A   | С  |
| ATOM | 1640 | CZ  | TYR | Α | 243   | -14.970 | 91.221  | 13.700 | 1.00 56.24 |     | A   | С  |
| MOTA | 1641 | ОН  | TYR |   |       | -14.968 | 90.213  | 12.760 | 1.00 55.65 | 1   | A   | 0  |
| ATOM | 1642 | C   | TYR |   |       | -17.381 | 94.978  | 15.835 | 1.00 54.18 | i   | A   | С  |
| ATOM | 1643 | Ō.  | TYR |   |       | -17.687 | 94.757  | 14.669 | 1.00 54.53 |     | A   | 0  |
| ATOM | 1644 | N.  | ILE |   |       | -18,201 | 94.742  | 16.849 | 1.00 53.69 |     | Α.  | N  |
|      |      |     | ILE |   |       | -19.521 | 94.199  | 16.614 | 1.00 53.32 |     | Ą   | C  |
| ATOM | 1645 | CA  |     |   |       |         | 93.703  | 17.927 | 1.00 52.59 |     | Ą   | č  |
| ATOM | 1646 | CB  | ILE | м | Z 4 4 | -20.167 | JJ. 103 | 11.761 | 1.00 JE.JJ |     | •   | -  |

| ATOM         | 1647 | CG2 | ILE  | A | 244 | -21.595 | 93.249  | 17.666 | 1.00 51.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|--------------|------|-----|------|---|-----|---------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|              |      |     |      |   |     |         |         |        | 1.00 51.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Č  |
| ATOM         | 1648 |     | ILE  |   |     | -19.374 | 92,520  | 18.485 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1649 | CD1 | ILE  | A | 244 | -19.936 | 91.968  | 19.767 | 1.00 52.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1650 | С   | ILE  | Α | 244 | -20.419 | 95.241  | 15.962 | 1.00 54.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
| ATOM         | 1651 | 0   | TIE  | A | 244 | -21.133 | 94.933  | 15.011 | 1.00 55.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
|              |      |     |      |   |     |         |         |        | 1.00 55.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| MOTA         | 1652 | N   |      |   | 245 | -20.385 | 96.475  | 16.464 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1653 | CA  | LEU  | Α | 245 | -21.204 | 97.547  | 15.897 | 1.00 55.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1654 | CB  | LEU  | Α | 245 | -21.025 | 98.828  | 16.708 | 1.00 55.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | C  |
| ATOM         | 1655 | CG  |      |   | 245 | -22.029 | 99.973  | 16.532 | 1.00 55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   |     |         |         |        | 1.00 55.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Č  |
| ATOM         | 1656 |     | LEU  |   |     |         | 100.702 | 15.258 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1657 | CD2 | LEU  | A | 245 | -23.456 | 99.447  | 16.566 | 1.00 55.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Ç  |
| ATOM         | 1658 | С   | LEU  | Α | 245 | -20.751 | 97.746  | 14.452 | 1.00 55.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1659 | 0   | t.EU | A | 245 | -21.534 | 98.119  | 13.584 | 1.00 55.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
|              |      |     |      |   |     |         |         | 14.201 | 1.00 56.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| ATOM         | 1660 | N   |      |   | 246 | -19.480 | 97.462  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1661 | CA  |      |   | 246 | -18.904 | 97.559  | 12.869 | 1.00 58.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1662 | CB  | GLU  | Α | 246 | -17.413 | 97.203  | 12.936 | 1.00 61.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1663 | CG  | GLU  | А | 246 | -16.549 | 97.666  | 11.775 | 1.00 64.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
| ATOM         | 1664 | CD  |      |   | 246 | -15.155 | 97.056  | 11.833 | 1.00 67.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   |     |         |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1665 |     | GLU  |   |     | -14.565 | 97.018  | 12.934 | 1.00 67.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
| ATOM         | 1666 | OE2 | GLU  | Α | 246 | -14.648 | 96.610  | 10.777 | 1.00 70.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
| ATOM         | 1667 | С   | GLU  | Α | 246 | -19.643 | 96.540  | 11.995 | 1.00 57.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
| ATOM         | 1668 | o.  |      |   | 246 | -19.953 | 96.810  | 10.842 | 1.00 57.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
|              |      |     |      |   |     |         |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1669 | N   |      |   | 247 | -19.928 | 95.367  | 12.553 | 1.00 57.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | N  |
| MOTA         | 1670 | CA  | LYS  | A | 247 | -20.628 | 94.326  | 11.806 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A   | C  |
| ATOM         | 1671 | СВ  | LYS  | A | 247 | -20.480 | 92.970  | 12.496 | 1.00 57.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1672 | CG  | T.YS | Δ | 247 | -19.545 | 92.016  | 11.792 | 1.00 57.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   |     | -18.122 |         |        | 1.00 58.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Č  |
| MOTA         | 1673 | CD  |      |   | 247 |         | 92.487  | 11.885 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |
| ATOM         | 1674 | CE  | LY5  | A | 247 | -17.216 | 91.772  | 10.892 | 1.00 59.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1675 | NZ  | LYS  | Α | 247 | -17.083 | 90.318  | 11.161 | 1.00 60.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | N  |
| ATOM         | 1676 | С   | T.YS | Δ | 247 | -22.106 | 94.636  | 11.666 | 1.00 57.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
|              |      |     |      |   |     |         |         |        | 1.00 58 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | ō  |
| MOTA         | 1677 | 0   |      |   | 247 | -22.726 | 94.328  | 10.651 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1678 | N   | VAL  | A | 248 | -22.675 | 95.235  | 12.704 | 1.00 56.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| MOTA         | 1679 | CA  | VAL  | Α | 248 | -24.091 | 95.573  | 12.709 | 1.00 55.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1680 | СВ  |      |   | 248 | -24.465 | 96.323  | 13.960 | 1.00 54.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   |     |         |         |        | 1.00 52.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Ċ  |
| ATOM         | 1681 |     | VAL  |   |     | -25.937 | 96.671  | 13.922 | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |     |    |
| ATOM         | 1682 | CG2 | VAL  | A | 248 | -24.122 | 95.486  | 15.171 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A   | С  |
| ATOM         | 1683 | C   | VAL  | A | 248 | -24:435 | 96.459  | 11.551 | 1.00 56.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
| ATOM         | 1684 | 0   | VAI. | A | 248 | -25.576 | 96.511  | 11.095 | 1.00 56.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
|              |      |     |      |   |     |         | 97.184  | 11.104 | 1.00 57.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| ATOM         | 1685 | N   |      |   | 249 | -23.425 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1686 | CA  | LYS  | A | 249 | -23.559 | 98.108  | 10.001 | 1.00 58.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| MOTA         | 1687 | CB  | LYS  | A | 249 | -22.259 | 98.893  | 9.866  | 1.00 59.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1688 | CG  | LYS  | A | 249 | -22.365 | 100.400 | 10.080 | 1.00 61.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   | 249 |         | 100.798 | 11.454 | 1.00 61.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Ċ  |
| ATOM         | 1689 | CD  |      |   |     |         |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1690 | CE  |      |   | 249 |         | 102.256 | 11.783 | 1.00 64.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1691 | NZ  | LYS  | A | 249 | -22.967 | 103.266 | 10.761 | 1.00 65.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| ATOM         | 1692 | С   | LYS  | A | 249 | -23.833 | 97.315  | 8.735  | 1.00 59.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | C  |
| ATOM         | 1693 | ō   |      |   | 249 | -24.931 | 97.369  | 8.177  | 1.00 59.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
|              |      |     |      |   |     |         |         |        | 1.00 59.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| ATOM         | 1694 | N   |      |   | 250 | -22.822 | 96.566  | 8.305  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1695 | CA  | GLU  | Α | 250 | -22.893 | 95.749  | 7.102  | 1.00 60.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1696 | CB  | GLU  | Α | 250 | -21.730 | 94.763  | 7.082  | 1.00 61.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| MOTA         | 1697 | CG  | GLU  | A | 250 | -20.394 | 95.382  | 7.395  | 1.00 65.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
|              | 1698 | CD  |      |   | 250 | -19.252 | 94.378  | 7.281  | 1.00 68.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
| ATOM         |      |     |      |   |     |         |         |        | 1.00 70.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | ō  |
| ATOM         | 1699 |     | GLU  |   |     | -18.069 | 94.782  | 7.454  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| ATOM         | 1700 | OE2 | GLU  | Α | 250 | -19.539 | 93.182  | 7.019  | 1.00 70.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
| MOTA         | 1701 | С   | GLU  | Α | 250 | -24.199 | 94.979  | 6.958  | 1.00 60.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | C  |
| ATOM         | 1702 | 0   | GLU  | A | 250 | -24.569 | 94.577  | 5.865  | 1.00 61.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | 0  |
|              |      |     |      |   |     |         | 94.768  | 8.057  | 1.00 61.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | N  |
| MOTA         | 1703 | N   |      |   | 251 | -24.904 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1704 | CA  |      |   | 251 | -26.154 | 94.030  | 7.995  | 1.00 62.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | C. |
| ATOM         | 1705 | CB  | HIS  | Α | 251 | -26.438 | 93.383  | 9.349  | 1.00 61.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1706 | CG  | HIS  | A | 251 | -25.752 | 92.068  | 9.529  | 1.00 59.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | С  |
|              |      |     | HIS  |   |     | -26.204 | 90.878  | 9.987  | 1.00 57.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | C  |
| ATOM         | 1707 |     |      |   |     |         |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1708 |     | HIS  |   |     | -24.436 | 91.867  | 9.172  | 1.00 59.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| MOTA         | 1709 | CEl | HIS  | Α | 251 | -24.108 | 90.608  | 9.397  | 1.00 58.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| MOTA         | 1710 |     | HIS  |   |     | -25.164 | 89.986  | 9.892  | 1.00 57.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | N  |
| ATOM         | 1711 | C   |      |   | 251 | -27.331 | 94.873  | 7.549  | 1.00 63.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
|              |      |     |      |   |     |         | 94.364  | 6.902  | 1.00 64.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | ō  |
| ATOM         | 1712 | 0   |      |   | 251 | -28.251 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1713 | N   |      |   | 252 | -27.287 | 96.159  | 7.894  | 1.00 64.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
| ATOM         | 1714 | CA  | GLN  | Α | 252 | -28.338 | 97.100  | 7.533  | 1.00 64.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | С  |
| ATOM         | 1715 | СВ  |      |   | 252 | -28.264 | 98.340  | 8.422  | 1.00 64.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | C  |
|              |      |     |      |   |     | -28.076 |         | 9.898  | 1.00 64.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Ċ  |
| ATOM         | 1716 | CG  | GLN  |   |     |         | 98.053  |        | 1.00 65.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | Č  |
| ATOM         | 1717 | CD  |      |   |     | -28.619 | 99.171  | 10.797 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| MOTA         | 1718 | OE1 | GLN  | Α | 252 | -29.823 | 99.454  | 10.793 | 1.00 65.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | 0  |
| ATOM         | 1719 |     | GLN  |   |     | -27.735 | 99.807  | 11.569 | 1.00 64.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | N  |
|              | 1720 | C   |      |   | 252 | -28.126 | 97.500  | 6.075  | 1.00 65.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ' | С  |
| ATOM<br>ATOM |      |     |      |   |     |         | 97.720  | 5.330  | 1.00 65.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   | ō  |
|              | 1721 | 0   | ULN  | A | 252 | -29.081 | 31.140  | J.JJU  | 2.00 00.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••  | -  |

|   | ATOM | 1722 | N    | GLU | А  | 253 | -26.862  | 97.566  | 5.672  | 1.00 | 67.35 | A  | . N |
|---|------|------|------|-----|----|-----|----------|---------|--------|------|-------|----|-----|
|   | ATOM | 1723 | CA   | GLU |    | -   | -26.507  | 97.934  | 4.307  |      | 69.76 | A  | С   |
|   |      |      |      | GLU |    |     | -24.988  | 98.072  | 4.158  |      | 71.14 | A  | č   |
|   | MOTA | 1724 | CB   |     |    |     |          |         |        |      | 73.16 | A  | Ċ   |
|   | MOTA | 1725 | CG   | GLU |    |     | -24.556  | 98.816  | 2.899  |      |       |    |     |
|   | MOTA | 1726 | CD   | GLU |    |     |          | 100.338 | 3.074  |      | 74.52 | A  | С   |
|   | ATOM | 1727 | OE1  | GLU | A  | 253 | -24.422  | 101.053 | 2.069  |      | 76.10 | Α. | 0   |
|   | ATOM | 1728 | OE2  | GLU | A  | 253 | -24.831  | 100.821 | 4.213  | 1.00 | 74.02 | Α  | 0   |
|   | ATOM | 1729 | С    | GLU | A  | 253 | -26.994  | 96.874  | 3.334  | 1.00 | 70.91 | Α  | Ç   |
|   |      | 1730 | 0    | GLU | А  | 253 | -26.997  | 97.090  | 2.122  | 1.00 | 71.52 | Α  | 0   |
|   | ATOM | 1731 | N    | SER |    | _   | -27.398  | 95.725  | 3.868  |      | 72.24 | A  | N   |
|   |      |      |      | SER |    |     | -27.877  | 94.627  | 3.037  |      | 73.60 | A  | Ċ   |
|   | MOTA | 1732 | CA   |     |    |     |          |         |        |      |       |    |     |
|   | ATOM | 1733 | CB   | SER |    |     | -26.707  | 93.710  |        |      | 73.40 | A  | С   |
|   | MOTA | 1734 | OG   | SER | A  | 254 | -26.066  | 93.147  | 3.774  |      | 73.52 | A  | 0 - |
|   | MOTA | 1735 | С    | SER | Α  | 254 | -28.972  | 93.802  | 3.716  | 1.00 | 74.46 | Α  | C   |
|   | MOTA | 1736 | 0    | SER | A  | 254 | -29.038  | 92.584  | 3.542  | 1.00 | 75.62 | Α  | 0   |
|   | ATOM | 1737 | N    | MET | А  | 255 | -29.830  | 94.462  | 4.486  | 1.00 | 74.80 | Α  | N   |
|   | MOTA | 1738 | ÇA   | MET |    |     | -30.916  | 93.766  | 5.162  |      | 75.49 | A  | С   |
|   |      | 1739 | CB   | MET |    |     | -31.592  | 94.689  | 6.185  |      | 75.95 | A  | č   |
|   | ATOM |      |      |     |    |     |          |         |        |      |       | A  | č   |
|   | ATOM | 1740 | CG   | MET |    |     | -31.110  | 94.490  | 7.619  |      | 75.82 |    |     |
|   | ATOM | 1741 | SD   | MET |    |     | -31,407  | 92.805  | 8.222  |      | 77.15 | A  | S   |
|   | ATOM | 1742 | CE . | MET |    |     | -33.173  | 92.899  | 8.804  |      | 75.86 | A  | С   |
|   | ATOM | 1743 | С    | MET | Α  | 255 | -31.933  | 93.301  | 4.122  | 1.00 | 76.23 | A  | С   |
|   | MOTA | 1744 | 0    | MET | A  | 255 | -32.013  | 93.876  | 3.030  | 1.00 | 76.92 | A  | 0   |
|   | MOTA | 1745 | N    | ASP | Α  | 256 | -32.692  | 92.255  | 4.453  | 1.00 | 76.22 | Α  | N   |
|   | ATOM | 1746 | CA   | ASP |    |     | -33.696  | 91.727  | 3.540  |      | 76.51 | A  | С   |
|   |      |      |      | ASP |    |     | -33.301  | 90.342  | 3.033  |      | 76.57 | A  | Č   |
|   | ATOM | 1747 | СВ   |     |    |     |          |         |        |      |       |    |     |
|   | MOTA | 1748 | CG   | ASP |    |     | -34.130  | 89.893  | 1.822  |      | 76.22 | A  | C   |
|   | ATOM | 1749 | OD1  | ASP | Α  | 256 | -35.369  | 90.077  | 1.817  |      | 74.87 | A  | 0   |
|   | ATOM | 1750 | OD2  | ASP | A  | 256 | -33.530  | 89.338  | 0.872  | 1.00 | 76.70 | A  | 0   |
|   | ATOM | 1751 | C    | ASP | Α  | 256 | -35.063  | 91.624  | 4.173  | 1.00 | 77.63 | Α  | С   |
|   | ATOM | 1752 | ò    | ASP |    |     | -35.206  | 91.253  | 5.337  | 1.00 | 76.88 | Α. | 0   |
|   | ATOM | 1753 | N    | MET |    |     | -36.069  | 91.943  | 3.370  |      | 79.66 | A  | N   |
|   |      |      |      |     |    |     |          |         |        |      |       |    |     |
|   | ATOM | 1754 | CA   | MET |    |     | -37.459  | 91.891  | 3.795  |      | 81.17 | A  | C . |
|   | ATOM | 1755 | CB   | MET |    |     | -38.367  | 92.463  | 2.685  |      | 82.86 | A  | С   |
| • | ATOM | 1756 | CG   | MET |    |     | -37.821  | 93.698  | 1.932  | 1.00 | 84.55 | Α  | С   |
|   | ATOM | 1757 | SD   | MET | Α  | 257 | -37.448  | 95.171  | 2.938  | 1.00 | 87.38 | A  | S   |
|   | ATOM | 1758 | CE   | MET | Α  | 257 | -38.860  | 96.271  | 2.570  | 1.00 | 86.08 | Α  | C · |
|   | MOTA | 1759 | С    | MET |    |     | -37.825  | 90.423  | 4.059  | 1.00 | 79.99 | A  | С   |
|   | MOTA | 1760 | ŏ    | MET |    |     | -37.705  | 89.583  | 3.164  |      | 79.70 | A  | ō   |
|   |      |      |      |     |    |     |          |         |        |      |       |    | N   |
|   | ATOM | 1761 | N    | ASN |    |     | -38.266  | 90.116  | 5.277  |      | 78.36 | A  |     |
|   | MOTA | 1762 | CA   | ASN |    |     | -38.640  | 88.744  | 5.606  |      | 76.90 | A  | С   |
|   | MOTA | 1763 | CB   | ASN | Α  | 258 | -40.005  | 88.393  | 4.989  |      | 79.68 | A  | C   |
|   | ATOM | 1764 | CG   | ASN | A  | 258 | -41.176  | 88.918  | 5.814  | 1.00 | 82.12 | A  | С   |
|   | ATOM | 1765 | OD1  | ASN | Α  | 258 | -41,.282 | 88.633  | 7.017  | 1.00 | 82.00 | Α  | 0   |
|   | ATOM | 1766 |      | ASN |    |     | -42.069  | 89.674  | 5.171  | 1.00 | 84.05 | Α  | N   |
|   | ATOM | 1767 | c    | ASN |    |     | -37.579  | 87.766  | 5.100  |      | 73.82 | Α  | С   |
|   |      |      |      | ASN |    |     | -37.864  | 86.852  | 4.325  |      | 73.38 | A  | ŏ   |
|   | MOTA | 1768 | 0    |     |    |     |          |         |        |      |       |    |     |
|   | MOTA | 1769 | N    | ASN |    |     | -36.346  | 87.974  | 5.532  |      | 70.35 | A  | N   |
|   | MOTA | 1770 | CA   | ASN |    |     | -35.264  | 87.098  | 5.133  |      | 66.80 | A  | C   |
|   | ATOM | 1771 | СВ   | ASN | A  | 259 | -34.904  | 87.338  | 3.672  |      | 68.20 | A  | С   |
|   | MOTA | 1772 | CG   | ASN | A  | 259 | -35.553  | 86.334  | 2.748  | 1.00 | 69.24 | A  | С   |
|   | ATOM | 1773 | OD1  | ASN | Α  | 259 | -35.200  | 85.151  | 2.751  | 1.00 | 69.66 | Α  | 0   |
|   | ATOM | 1774 |      | ASN |    |     | -36.517  | 86.797  | 1.953  |      | 69.60 | Α  | N   |
|   | MOTA | 1775 | c    | ASN |    |     | -34.029  | 87.239  | 5.998  |      | 63.70 | A  | C   |
|   |      |      |      | ASN |    |     | -32.949  | 87.575  | 5.500  |      | 64.00 | A  | õ   |
|   | ATOM | 1776 | 0    |     |    |     |          |         | 7.316  | 1 00 | 50.03 | A  | N   |
|   | ATOM | 1777 | N    | PRO |    |     | -34.177  | 87.013  |        | 1.00 | 39.03 |    |     |
|   | ATOM | 1778 | CD   | PRO |    |     | -35.433  | 87.032  | 8.079  |      | 59.36 | Α  | C   |
|   | MOTA | 1779 | CA   | PRO | Α  | 260 | -33.04B  | 87.111  | 8.232  |      | 57.04 | A  | С   |
|   | ATOM | 1780 | CB   | PRO | Α  | 260 | -33.719  | 87.120  | 9.597  | 1.00 | 57.37 | A  | С   |
|   | MOTA | 1781 | CG   | PRO | Α  | 260 | -35.026  | 87.749  | 9.325  | 1.00 | 57.45 | Α  | С   |
|   | ATOM | 1782 | c    | PRO |    |     | -32.176  | 85.887  | 8.029  | 1.00 | 54.91 | Α  | С   |
|   | ATOM | 1783 | ō    | PRO |    |     | -32.619  | 84.906  | 7.442  |      | 54.39 | A  | ō   |
|   |      |      |      |     |    |     |          |         |        |      | 53.20 | A  | N   |
|   | ATOM | 1784 | N    | GLN |    |     | -30.937  | 85.947  | 8.497  |      |       |    |     |
|   | MOTA | 1785 | CA   | GLN |    |     | -30.037  | 84.821  | 8.353  |      | 52.09 | A  | C   |
|   | MOTA | 1786 | CB   | GLN | A  | 261 | -29.203  | 84.956  | 7.082  |      | 54.11 | A  | С   |
|   | MOTA | 1787 | CG   | GLN | Α  | 261 | -29.999  | 84.878  | 5.786  |      | 57.72 | A  | С   |
|   | ATOM | 1788 | CD   | GLN |    |     | -29.749  | 83.589  | 5.013  | 1.00 | 60.84 | A  | С   |
|   | ATOM | 1789 |      | GLN |    |     | -29.830  | 82.484  | 5.577  |      | 61.87 | A  | 0   |
|   |      |      |      | GLN |    |     | -29.452  | 83.719  | 3.708  |      | 60.36 | A  | N   |
|   | ATOM | 1790 |      |     |    |     |          |         | 9.558  |      | 50.88 | A  | Ċ   |
|   | ATOM | 1791 | С    | GLN |    |     | -29.125  | 84.691  |        |      |       |    |     |
|   | ATOM | 1792 | 0    | GLN |    |     | -28.201  | 83.883  | 9.553  |      | 50.66 | A  | 0   |
|   | MOTA | 1793 | N    | ASP | A  | 262 | -29.373  | 85.496  | 10.585 |      | 49.18 | Α  | N   |
|   | ATOM | 1794 | CA   | ASP | Α  | 262 | -28.577  | 85.422  | 11.799 |      | 47.97 | A  | С   |
|   | MOTA | 1795 | CB   | ASP |    |     | -27.104  | 85.684  | 11.498 | 1.00 | 49.09 | Α  | С   |
|   | ATOM | 1796 | CG   | ASP |    |     | -26.876  | 87.010  | 10.841 |      | 50.50 | A  | С   |
|   | 00   | 2.70 |      |     | ** |     | 20.070   | 5510    |        |      |       | •  | -   |
|   |      |      |      |     |    |     |          |         |        |      |       |    |     |

গুলুর্ভন্ত প্রথমী এই । আর্থন ১৯১১ এই

Figure 1

|              | •              |         |                        |                    | -                |                  |                          |        |        |
|--------------|----------------|---------|------------------------|--------------------|------------------|------------------|--------------------------|--------|--------|
|              | 1202           | 001     | ASP A 262              | -25.762            | 87.228           | 10.316           | 1.00 51.13               | A      | 0      |
| ATOM         | 1797<br>1798   |         | ASP A 262              | -27.811            | 87.838           | 10.859           | 1.00 50.59               | A      | 0      |
| MOTA<br>MOTA | 1799           | C       | ASP A 262              | -29.096            | 86.349           | 12.878           | 1.00 46.89               | A      | С      |
| ATOM         | 1800           | ō       | ASP A 262              | -30.098            | 87.029           | 12.689           | 1.00 46.73               | A      | 0      |
| ATOM         | 1801           | N       | PHE A 263              | -28.414            | 86.366           | 14.016           | 1.00 46.65               | A      | N      |
| ATOM         | 1802           | CA      | PHE A 263              | -28.846            | 87.154           | 15.170           | 1.00 46.66               | A      | C      |
| ATOM         | 1803           | CB      | PHE A 263              | -27.838            | 87.029           | 16.297           | 1.00 44.94<br>1.00 43.83 | A<br>A | c      |
| ATOM         | 1804           | CG      | PHE A 263              | -28.367            | 87.473<br>86.686 | 17.619<br>18.312 | 1.00 44.04               | Ā      | č      |
| MOTA         | 1805           |         | PHE A 263<br>PHE A 263 | -29.275<br>-27.957 | 88.676           | 18.178           | 1.00 44.22               | A      | Č      |
| ATOM<br>ATOM | 1806<br>1807   |         | PHE A 263              | -29.773            | 87.086           | 19.548           | 1.00 44.82               | Α -    | C      |
| ATOM         | 1908           |         | PHE A 263              | -28.448            | 89.091           | 19.416           | 1.00 44.68               | A      | C      |
| ATOM         | 1809           | CZ      | PHE A 263              | -29.357            | 88.292           | 20.103           | 1.00 44.96               | A      | С      |
| MOTA         | 1810           | С       | PHE A 263              | -29.106            | 88.625           | 14.928           | 1.00 47.58               | A      | C      |
| MOTA         | 1811           | 0       | PHE A 263              | -30.169            | 89.153           | 15.265           | 1.00 47.76               | A      | 0      |
| MOTA         | 1812           | N       | ILE A 264              | -28.108            | 89.297           | 14.377           | 1.00 48.39               | A<br>A | N<br>C |
| MOTA         | 1813           | CA      | ILE A 264              | -28.219<br>-26.939 | 90.712<br>91.200 | 14.084<br>13.377 | 1.00 48.20<br>1.00 48.66 | A      | Č.     |
| ATOM '       | 1814           | CB      | ILE A 264<br>ILE A 264 | -27.035            | 92.663           | 13.078           | 1.00 48.00               | A      | Ċ      |
| ATOM<br>ATOM | 1815<br>1816   |         | ILE A 264              | -25.727            | 90.933           | 14.267           | 1.00 47.65               | A      | С      |
| ATOM         | 1817           |         | ILE A 264              | -24.405            | 91.237           | 13.595           | 1.00 48.36               | A      | С      |
| ATOM         | 1818           | C       | ILE A 264              | -29.465            | 90.972           | 13.227           | 1.00 48.17               | A      | C      |
| ATOM         | 1819           | 0       | ILE A 264              | -30.336            | 91.717           | 13.652           | 1.00 48.16               | A      | 0      |
| ATOM         | 1820           | N       | ASP A 265              | -29.568            | 90.343           | 12.053           | 1.00 48.29               | A      | N      |
| MOTA         | 1821           | CA      | ASP A 265              | -30.731            | 90.538           | 11.182           | 1.00 49.47               | A      | C      |
| MOTA         | 1822           |         | ASP A 265              | -30.811            | 89.466           | 10.099<br>9.071  | 1.00 50.71<br>1.00 53.84 | A<br>A | C<br>C |
| ATOM         | 1823           | CG      | ASP A 265              | -29.720<br>-29.086 | 89.596<br>90.672 | 9.039            | 1.00 55.79               | A      | ŏ      |
| MOTA<br>MOTA | 1824:<br>1825: |         | ASP A 265<br>ASP A 265 | -29.499            | 88.637           | 8.286            | 1.00 54.14               | A ·    | ō      |
| ATOM         | 1826           |         | ASP A 265              | -32.032            | 90.509           | 11.957           | 1.00 51.09               | A      | С      |
| ATOM         | 1827           |         | ASP A 265              | -32.788            | 91.478           | 11.952           | 1.00 50.89               | A      | 0      |
|              | 1828=          |         | CYS A 266              | -32.300            | 89.375           | 12.597           | 1.00 52.63               | A      | N      |
| ATOM         | 1829           | CA      | CYS A 266              | -33.510            | 89.196           | 13.392           | 1.00 53.74               | A      | C      |
|              | 1830           |         | CYS A 266              | -33.431            | 87.915           | 14.209           | 1.00 54.13               | A      | C      |
|              | 1831,          |         | CYS A 266              | -33.312            | 86.401           | 13.260           | 1.00 55.93<br>1.00 54.82 | A<br>A | S<br>C |
| ATOM         | 1832<br>1833   |         | CYS A 266              | -33.666            | 90.355<br>90.996 | 14.350<br>14.396 | 1.00 56.42               | Ā      | ō      |
|              | 1833<br>1834   | N O     | CYS A 266<br>PHE A 267 | -34.710<br>-32.621 | 90.613           | 15.126           | 1.00 55.90               | A      | N      |
| MOTA         | 1835           |         | PHE A 267              | -32.641            | 91.706           | 16.090           | 1.00 56.39               | A      | С      |
| ATOM         | 1836           | CB      | PHE A 267              | -31.287            | 91.823           | 16.803           | 1.00 56.98               | A      | С      |
| ATOM         | 1837           | CG      | PHE A 267              | -31.326            | 92.677           | 18.045           | 1.00 57.66               | A      | С      |
| MOTA         | 1838           |         | PHE A 267              | -31.492            | 92.099           | 19.298           | 1.00 58.37               | A      | C      |
| MOTA         | 1839           |         | PHE A 267              | -31.236            | 94.061           | 17.958           | 1.00 58.00               | A      | C      |
| ATOM         | 1840           |         | PHE A 267              | -31.568            | 92.887           | 20.446<br>19.098 | 1.00 58.38<br>1.00 57.80 | A<br>A | c      |
| ATOM         | 1841           |         | PHE A 267              | -31.312<br>-31.478 | 94.855<br>94.266 | 20.343           | 1.00 58.26               | A      | Č      |
| ATOM<br>ATOM | 1842<br>1843   | CZ<br>C | PHE A 267<br>PHE A 267 | -32.929            | 92.991           | 15.329           | 1.00 56.02               | A      | c      |
| ATOM         | 1844           | ŏ       | PHE A 267              | -33.816            | 93.756           | 15.694           | 1.00 55.27               | A      | 0      |
| ATOM         | 1845           | N       | LEU A 268              | -32.177            | 93.205           | 14.256           | 1.00 56.08               | A      | N      |
| ATOM         | 1846           | CA      | LEU A 268              | -32.327            | 94.387           | 13.430           | 1.00 57.81               | A      | c      |
| ATOM         | 1847           | CB      | LEU A 268              | -31.362            | 94.329           | 12.259           | 1.00 56.45               | A      | C      |
| ATOM         | 1848           | CG      | LEU A 268              | -30.342            | 95.456           | 12.159<br>13.525 | 1.00 55.67<br>1.00 55.08 | A<br>A | c      |
| ATOM         | 1849           | -       | LEU A 268<br>LEU A 268 | -29.847<br>-29.197 | 95.907<br>94.942 | 11.302           | 1.00 55.11               | A      | č      |
| ATOM<br>ATOM | 1850<br>1851   | C       | LEU A 268              | -33.728            | 94.589           | 12.897           | 1.00 60.44               | A      | C      |
| ATOM         | 1852           | ŏ       | LEU A 268              | -34.155            | 95.727           | 12.697           | 1.00 61.38               | A      | 0      |
| ATOM         | 1853           | N       | MET A 269              | -34.453            | 93.504           | 12.650           | 1.00 62.83               | A      | N      |
| MOTA         | 1854           | CA      | MET A 269              | -35.796            | 93.676           | 12.127           | 1.00 65.68               | A      | C      |
| ATOM         | 1855           | CB      | MET A 269              | -36.157            | 92.590           | 11.098           | 1.00 66.48               | A      | C      |
| ATOM         | 1856           | CG      | MET A 269              | -36.281            | 91.174           | 11.628           | 1.00 67.97               | A<br>A | C<br>S |
| MOTA         | 1857           | SD      | MET A 269              | -37.218            | 90.074           | 10.511<br>8.899  | 1.00 70.53<br>1.00 69.89 | Ā      | č      |
| ATOM         | 1858           | CE      | MET A 269              | -36.483<br>-36.834 | 90.465<br>93.738 | 13.224           | 1.00 67.56               | A      | Ċ      |
| ATOM         | 1859           | C       | MET A 269<br>MET A 269 | -37.969            | 93.311           | 13.049           | 1.00 68.36               | A      | 0      |
| MOTA<br>MOTA | 1860<br>1861   | O<br>N  | LYS A 270              | -36.436            | 94.267           | 14.372           | 1.00 70.26               | A ·    |        |
| ATOM         | 1862           | CA      | LYS A 270              | -37.372            | 94.434           | 15.467           | 1.00 72.64               | A      | С      |
| ATOM         | 1863           | СВ      | LYS A 270              | -36.689            | 94.185           | 16.803           | 1.00 71.49               | A      | С      |
| ATOM         | 1864           | CG      | LYS A 270              | -36.978            | 92.806           | 17.345           | 1.00 69.76               | A      | C      |
| ATOM         | 1865           | CD      | LYS A 270              | -38.366            | 92.758           | 17.937           | 1.00 68.33               | A      | C      |
| ATOM         | 1866           | CE      | LYS A 270              | -38.580            | 91.468           | 18.687           | 1.00 67.64               | A<br>A | C<br>N |
| ATOM         | 1867           | NZ      | LYS A 270              | -39.928<br>-37.885 | 91.411<br>95.866 | 19.302<br>15.355 | 1.00 67.20               | A.     | Č      |
| ATOM         | 1868           | C       | LYS A 270<br>LYS A 270 | -37.865            | 96.614           | 16.335           | 1.00 75.81               | A      | ō      |
| MOTA<br>MOTA | 1869<br>1870   | O<br>N  | MET A 271              | -38.235            | 96.222           | 14.116           | 1.00 78.50               | A      | N      |
| MOTA         | 1871           | CA      | MET A 271              | -38.775            | 97.529           | 13.756           | 1.00 80.13               | A      | С      |
|              |                |         | · -                    |                    |                  |                  |                          |        |        |

| ATOM   | 1872         | CB  | MET  | A | 271 | -38.726            | 97.716           | 12.246           | 1.00 | 80.90          | 7 | , с |
|--------|--------------|-----|------|---|-----|--------------------|------------------|------------------|------|----------------|---|-----|
| ATOM   | 1873         | CG  | MET  | A | 271 | -37.372            | 97.452           | 11.641           | 1.00 | 82.59          | 7 |     |
| ATOM   | 1874         | SD  | MET  | A | 271 | -37.479            | 97.448           | 9.845            | 1.00 | 85.97          | 7 | S   |
| ATOM   | 1875         | CE  | MET  | A | 271 | -37.388            | 99.226           | 9.490            | 1.00 | 84.51          | 2 | C   |
| ATOM   | 1876         | С   | MET  | A | 271 | -40.224            | 97.556           | 14.224           | 1.00 | 81.24          | 7 | C   |
| ATOM   | 1877         | 0   | MET  | Α | 271 | -40.824            | 98.619           | 14.390           | 1.00 | 81.28          | 7 | . 0 |
| ATOM   | 1878         | N   | GLU  | A | 272 | -40.768            | 96.359           | 14.423           | 1.00 | 82.82          | 7 | N N |
| MOTA   | 1879         | CA  | GLU  | A | 272 | -42.124            | 96.170           | 14.915           | 1.00 | 85.05          | 7 | C   |
| ATOM   | 1880         | CB  | GLU  | Α | 272 | -42.285            | 94.718           | 15.402           | 1.00 | 85.73          | 7 | C   |
| MOTA   | 1881         | CG  | GLU  | A | 272 | -43.642            | 94.345           | 16.010           | 1.00 | 87.59          | 7 | C   |
| ATOM   | 1882         | CD  | GLU  | Α | 272 | -43.627            | 94.246           | 17.542           | 1.00 | 88.78          | 7 | C   |
| ATOM   | 1883         | OE1 | GLU  | A | 272 | -44.548            | 93.608           | 18.102           | 1.00 | 89.56          | 7 | . 0 |
| MOTA   | 1884         | 0E2 | GLU  | Α | 272 | -42.708            | 94.798           | 18.190           | 1.00 | 89.00          | 7 | . 0 |
| ATOM   | 1885         | C   | GLU  | A | 272 | -42.315            | 97.155           | 16.070           | 1.00 | 86.62          | 7 | , c |
| ATOM   | 1886         | ٥   | GLU  | A | 272 | -41.462            | 97.243           | 16.963           | 1.00 | 86.86          | 2 | . 0 |
| ATOM   | 1887         | N   | LYS  | Α | 273 | -43.421            | 97.899           | 16.041           | 1.00 | 88.29          |   | N N |
| ATOM   | 1889         | ÇA  | LYS  | A | 273 | -43.728            | 98.904           | 17.067           | 1.00 | 89.32          | 7 | C   |
| ATOM   | 1889         | СВ  | LYS  | A | 273 | -43.795            | 98.268           | 18.469           | 1.00 | 89.02          | 7 |     |
| ATOM   | 1890         | CG  | LYS  | A | 273 | -44.929            | 97.284           | 18.693           | 1.00 | 88.45          | 7 | , c |
| ATOM   | 1891         | CD  | LYS  | A | 273 | -44.750            | 96:519           | 20.002           | 1.00 | 88.05          | 7 | C   |
| ATOM   | 1892         | CE  | LYS  | A | 273 | -45.786            | 95.400           | 20.143           | 1.00 | 87.87          | 7 | C   |
| ATOM   | 1893         | NZ  | LYS  | A | 273 | -45.429            | 94.383           | 21.178           | 1.00 | 87.63          | 7 | . N |
| ATOM   | 1894         | С   | LYS  | А | 273 | -42.690            | 100.030          | 17.090           | 1.00 | 89.89          |   | C   |
| ATOM   | 1895         | 0   | LYS  | A | 273 | -41.477            | 99.782           | 17.024           | 1.00 | 89.52          | 7 | . 0 |
| ATOM   | 1896         | N   | GLU  | А | 274 | -43.180            | 101.265          | 17.180           | 1.00 | 90.48          | , | N N |
| ATOM   | 1897         | CA  | GLU  | A | 274 | -42.315            | 102.443          | 17.253           | 1.00 | 90.84          | 3 | L C |
| ATOM   | 1898         | CB  |      |   | 274 | -41.808            | 102,603          | 18.701           | 1.00 | 90.64          | 7 | , c |
| ATOM   | 1899         | CG  | GLU  |   | 274 | -41.191            |                  | 19.065           | 1.00 | 89.99          | 7 |     |
| ATOM   | 1900         |     | GLU  |   |     | -40.462            |                  | 20.412           |      | 89.49          | 7 | ı c |
| ATOM   | 1901         |     | GLU  |   |     | -39.384            |                  | 20.495           |      | 90.20          | 3 |     |
| ATOM   | 1902         |     | GLU  |   |     |                    | 104.530          | 21.387           | 1.00 | 88.35          | 2 | . 0 |
| MOTA   | 1903         |     | GLU  |   |     |                    | 102.355          | 16.292           |      | 90.92          | 1 |     |
| ATOM   | 1904         | Ō.  |      |   | 274 |                    | 102.649          | 15.104           |      | 90.64          | , |     |
| ATOM . | 1905         | N   |      |   | 275 |                    | 101.929          |                  |      | 91.29          | 1 |     |
| ATOM   | 1906         | CA  |      |   | 275 |                    | 101.825          | 16.045           |      | 91.78          | 7 |     |
| ATOM   | 1907         |     | LYS  |   |     |                    | 103.028          | 16.361           |      | 91.97          | 1 |     |
| MOTA   | 1908         | CG  | LYS  |   | 275 |                    | 104.385          | 16.232           |      | 91.70          | 7 |     |
| ATOM   | 1909         |     | A 15 |   | 275 |                    | 104.716          | 14.789           |      | 92.50          | 1 |     |
| ATOM   | 1910         |     | LYS  |   |     |                    | 105.047          | 13.929           |      | 92.35          |   | . c |
| ATOM   | 1911         | NZ  |      |   | 275 |                    | 106.300          | 14.347           |      | 91.66          | 7 |     |
| ATOM   | 1912         | C   |      |   | 275 |                    | 100.515          | 16.349           |      | 91.67          | , |     |
| MOTA   | 1913         | Ö   |      |   | 275 | -37.550            | 99.859           | 15.390           |      | 91.56          |   | . 0 |
|        | 1914         |     | LYS  |   |     |                    | 100.167          | 17.544           |      | 91,78          |   |     |
| ATOM   |              | OXI |      |   | 275 | -37.303            | 100.107          | 17.344           | 1.00 | ,,,,           | • |     |
| TER    | 1914<br>1915 | СВ  |      |   | 280 | -39.060            | 99.584           | 23.069           | 1 00 | 74.77          | , | . с |
| ATOM   | 1916         | OG  |      |   | 280 | -39.507            | 99.057           | 24.310           |      | 79.13          | i |     |
| MOTA   |              | C   |      |   | 280 | -36.726            | 99.836           | 23.927           |      | 71.32          |   | Č   |
| MOTA   | 1917         |     |      |   |     |                    | 100.469          | 24.532           |      | 71.13          |   |     |
| MOTA   | 1918         | 0   |      |   | 280 |                    | 101.141          | 21.945           |      | 71.66          |   | A N |
| MOTA   | 1919         | N   |      |   | 280 |                    | 100.560          | 23.260           |      | 72.45          |   | i c |
| MOTA   | 1920         | CA  |      |   | 280 | -36.711            |                  | 23.828           |      | 70.26          |   | A N |
| ATOM   | 1921         | N   |      |   | 281 |                    | 98.509           | 24.417           |      | 69.15          |   | i c |
| MOTA   | 1922         | CA  |      |   | 281 | -35.646            | 97.694           | 25.031           |      | 70.56          |   | Č   |
|        | 1923         | CB  |      |   | 281 | -36.215            | 96.410<br>96.439 | 26.527           |      | 74.65          |   | Č   |
| MOTA   | 1924         | CG  |      |   | 281 | -36.473            |                  |                  |      | 77.89          |   |     |
| MOTA   | 1925         | CD  |      |   | 281 | -37.427<br>-36.969 | 97.535<br>98.688 | 26.937<br>27.070 |      | 80.62          |   | . 0 |
| MOTA   | 1926         |     | GLU  |   |     | -38.637            | 97.254           | 27.117           |      | 79.87          |   | . 0 |
| MOTA   | 1927         |     | GLU  |   | 281 |                    | 97.304           | 23.381           |      | 67.62          |   | i č |
| MOTA   | 1928         | C   |      |   |     | -34.592<br>-33.393 | 97.246           | 23.676           |      | 67.26          |   | . 0 |
| MOTA   | 1929         | 0   |      |   | 281 |                    | 97.037           | 22.159           |      | 65.32          |   | A N |
| MOTA   | 1930         | N   |      |   | 282 | -35.030            |                  | 21.131           |      | 63.49          |   | i c |
| MOTA   | 1931         | CA  |      |   | 282 | -34.093            | 96.627           |                  |      |                |   |     |
| MOTA   | 1932         | CB  |      |   | 282 | -34.799            | 95.749           | 20.097           |      | 61.74<br>59.40 |   | A C |
| MOTA   | 1933         | CG  |      |   | 282 | -35.502            | 94.582           | 20.694           |      |                |   |     |
| MOTA   | 1934         |     | PHE  |   |     | -36.697            | 94.757           | 21.371           |      | 58.85          |   |     |
| ATOM   | 1935         |     | PHE  |   |     | -34.944            | 93.314           | 20.632           |      | 58.91          |   | 4 C |
| ATOM   | 1936         |     | PHE  |   |     | -37.334            | 93.687           | 21.984           |      | 58.78          |   | A C |
| MOTA   | 1937         |     | PHE  |   |     | -35.571            | 92.232           | 21.242           |      | 59.04          |   | A C |
| ATOM   | 1938         | CZ  |      |   | 282 | -36.770            | 92.420           | 21.923           |      | 59.25          |   | , c |
| MOTA   | 1939         | С   |      |   | 282 | -33.388            | 97.778           | 20.439           |      | 62.85          |   | A C |
| ATOM   | 1940         | 0   |      |   | 282 | -33.482            | 97.932           | 19.220           |      | 64.05          |   | 4 0 |
| MOTA   | 1941         | N   |      |   | 283 | -32.673            | 98.588           | 21.210           |      | 61.63          |   | N   |
| ATOM   | 1942         | CA  |      |   | 283 | -31.951            | 99.703           | 20.618           |      | 59.39          |   | , c |
| MOTA   | 1943         | CB  |      |   | 283 |                    | 100.775          | 21.652           |      | 58.79          |   | 4 C |
| ATOM   | 1944         |     | THR  |   |     |                    | 100.366          | 22.396           |      | 59.63          |   | . 0 |
| MOTA   | 1945         | CG2 | THR  | A | 283 | -32.766            | 101.000          | 22.597           | 1.00 | 58.09          |   | 4 C |
|        |              |     |      |   |     |                    |                  |                  |      |                |   |     |

Figure 1

| MOTA | 1946   | С   | THR  | А | 283 | -30.676 | 99.183   | 19.974 | 1.00 | 58.30 | A   | С   |
|------|--------|-----|------|---|-----|---------|----------|--------|------|-------|-----|-----|
| ATOM | 1947   | ō   | THR  |   |     | -30.207 |          | 20.260 | 1.00 | 56.74 | Α   | 0   |
| ATOM | 1948   | N   | ILE  |   | _   | -30.120 |          | 19.087 |      | 58.90 | Α   | N   |
|      |        |     | ILE  |   |     | -28.925 |          | 18.393 |      | 59.17 | A   | C   |
| ATOM | 1949   | CA  |      |   |     |         |          | 17.391 |      | 58.68 | A   | · č |
| ATOM | 1950   | CB  | ILE  |   |     |         | 100.666  |        |      |       |     | č   |
| MOTA | 1951   |     | ILE  |   |     | -27.288 |          | 17.894 |      | 59.86 | A   |     |
| ATOM | 1952   |     | ILE  |   | 284 |         | 100.026  | 16.039 |      | 58.70 | A   | C   |
| MOTA | 1953   | CD1 | ILE  | A | 284 | -27.012 | 99.136   | 16.052 |      | 58.99 | A   | С   |
| MOTA | 1954   | C   | ILE  | A | 284 | -27.771 | 99.249   | 19.340 | 1.00 | 60.12 | A   | С   |
| MOTA | 1955   | 0   | ILE  | А | 284 | -26.881 | 98.478   | 18.986 | 1.00 | 60.71 | A   | 0   |
| ATOM | 1956   | N   | GLU  | А | 285 | -27.776 | 99.818   | 20.544 | 1.00 | 60.72 | A   | N   |
| ATOM | 1957   | CA  | GLU  |   |     | -26.684 | 99.551   | 21.474 | 1.00 | 60.44 | Α   | С   |
| ATOM | 1958   | СВ  | GLU  |   |     |         | 100.809  | 22.247 | 1.00 | 60.85 | A   | С   |
| ATOM | 1959   | CG  | GLU  |   |     |         | 100.929  | 23.613 |      | 63.04 | A   | С   |
|      | 1960   | CD  | GLU  |   |     |         | 101.792  | 24.557 |      | 65.29 | A   | Ċ   |
| ATOM |        |     | GLU  |   |     |         | 101.410  | 24.839 |      | 66.14 | A   | ō   |
| ATOM | 1961   |     | GLU  |   |     |         | 102.849  | 25.016 |      | 66.32 | A   | ŏ   |
| ATOM | 1962   |     |      |   |     |         |          | 22.447 |      | 59.92 | A   | č   |
| ATOM | 1963   | С   | GLU  |   |     | -26.980 |          |        |      |       |     | o   |
| MOTA | 1964   | 0   | GLU  |   |     | -26.063 |          | 23.005 | •    | 61.00 | A   |     |
| ATOM | 1965   | N   | SER  |   |     | -28.255 |          | 22.659 |      | 58.72 | A   | N   |
| ATOM | 1966   | CA  | SER  |   |     | -28.614 |          | 23.556 |      | 56.41 | A   | С   |
| ATOM | 1967   | CB  | SER  | A | 286 | -30.100 | 97.095   | 23.914 |      | 55.84 | A   | C   |
| MOTA | 1968   | OG  | SER  | Α | 286 | -30.900 | 96.713   | 22.812 | 1.00 | 53.06 | A   | 0   |
| MOTA | 1969   | C   | SER. | Α | 286 | -28.317 | 95.768   | 22.797 |      | 56.00 | A   | С   |
| MOTA | 1970   | 0   | SER  | A | 286 | -28.263 | 94.696   | 23.382 | 1.00 | 57.06 | Α   | 0   |
| ATOM | 1971   | N   | LEU  | A | 287 | -28.129 |          | 21.485 | 1.00 | 55.99 | A   | N   |
| MOTA | 1972   | CA  | LEU  |   |     | -27.815 |          | 20.634 | 1.00 | 55.96 | A   | С.  |
| MOTA | 1973   | СВ  | LEU  |   |     | -28.036 |          | 19.158 |      | 56.55 | A   | С   |
| ATOM | 1974   | CG  | LEU  |   |     | -27.269 |          | 18.112 |      | 57.20 | A   | c   |
|      |        |     | LEU  |   |     | -27.625 |          | 18.218 |      | 57.86 | Α   | Č   |
| ATOM | 1975   |     |      |   |     |         |          |        |      | 57.36 | A   | č   |
| ATOM | 1976   |     | LEU  |   |     | -27:589 |          | 16.718 |      |       |     | c   |
| ATOM | 1977   | С   | LEU  |   |     | -26.372 |          | 20.824 |      | 55.79 | A   |     |
| MOTA | 1978   | 0   | LEU  |   |     | -26.081 |          | 21.145 |      | 56.11 | A   | 0   |
| ATOM | 1979   | N   | GLU  | A | 288 | -25.467 | ~ :      | 20.613 |      | 56.08 | A   | N   |
| ATOM | 1980   | CA  | GLU  | Α | 288 | -24.049 | 95.011   | 20.767 | 1.00 | 56.44 | Ά   | C   |
| ATOM | 1981   | CB  | GLU  | Α | 288 | -23.229 | 96.238   | 20.357 | 1.00 | 57.11 | A   | C   |
| MOTA | 1982   | CG  | GLU  | А | 288 | -23.743 | 97.545   | 20.916 | 1.00 | 60.08 | A   | С   |
| ATOM | 1983   | CD  | GLU  | А | 288 | -23.031 | 98.770   | 20.334 | 1.00 | 62.32 | A   | С   |
| ATOM | 1984   |     | GLU  |   |     | -23.151 | 99.867   | 20.940 | 1.00 | 63.81 | A   | 0   |
| ATOM | 1985   |     | GLU  |   |     | -22.36  |          | 19.278 | 1.00 | 61.39 | Α   | 0   |
| ATOM | 1986   | c   | GLU  |   |     | -23.75  |          | 22.208 |      | 55.74 | A   | С   |
|      | 1987   | Ö   |      |   | 288 | -22.690 |          | 22.496 |      | 56.10 | A   | 0   |
| ATOM |        | N   |      |   | 289 | -24.699 |          | 23.116 |      | 53.98 | A   | N   |
| ATOM | 1988   |     |      |   |     | -24.490 |          | 24.487 |      | 52.59 | A   | c   |
| ATOM | 1989   | CA  |      |   | 289 |         |          | 25.456 |      | 53.71 | A   | č   |
| ATOM | 1990   | CB  |      |   | 289 | -25.369 |          |        |      | 54.53 | A   | Ċ   |
| MOTA | 1991   | CG  |      |   | 289 | -24.740 |          | 25.872 |      |       | A   | Ö   |
| ATOM | 1992   |     | ASN  |   |     | -24.57  |          | 25.067 |      | 55.61 |     |     |
| MOTA | 1993   | ND2 | ASN  |   |     | -24.35  |          | 27.146 |      | 56.28 | A   | N   |
| MOTA | 1994   | С   | ASN  | A | 289 | -24.85  |          | 24.554 |      | 50.71 | A   | С   |
| ATOM | 1995   | 0   | ASN  | А | 289 | -24.09  | 92.099   | 25.044 |      | 50.97 | A   | 0   |
| ATOM | 1996   | N   | THR  | Α | 290 | -26.03  | 92.613   | 24.045 |      | 47.74 | A   | N   |
| ATOM | 1997   | CA  | THR  | Α | 290 | -26.47  | 7 91.246 | 24.037 | 1.00 | 45.04 | A   | Ç   |
| ATOM | 1998   | CB  | THR  | Α | 290 | -27.86  | 91.130   | 23.394 | 1.00 | 44.96 | Α   | С   |
| ATOM | 1999   |     | THR  |   |     | -28.82  | 3 91.793 | 24.220 | 1.00 | 43.08 | A   | 0   |
| ATOM | 2000   | CG2 | THR  | Α | 290 | -28.24  | 89.669   | 23.233 | 1.00 | 46.32 | Α   | С   |
| ATOM | 2001   | С   |      |   | 290 | -25.46  |          | 23.250 | 1.00 | 42.77 | A   | С   |
| ATOM | 2002   | ŏ   |      |   | 290 | -25.12  |          | 23.626 |      | 42.63 | Α   | 0   |
|      | . 2003 | N   |      |   | 291 | -24.96  |          | 22.169 |      | 40.93 | Α   | N   |
| ATOM |        |     |      |   | 291 | -24.00  |          | 21.357 |      | 40.35 | A   | C   |
| ATOM | 2004   | CA  |      |   |     |         |          | 20.120 |      | 40.84 | A   | č   |
| ATOM | 2005   | CB  |      |   | 291 | -23.68  |          |        |      | 40.17 | · A | Č   |
| MOTA | 2006   | С   |      |   | 291 | -22.72  |          | 22.135 |      |       |     |     |
| ATOM | 2007   | 0   |      |   | 291 | -22.17  |          | 22.109 |      | 39.39 | Α   | 0   |
| ATOM | 2008   | N   |      |   | 292 | -22.26  |          | 22.826 |      | 39.76 | A   | N   |
| ATOM | 2009   | CA  |      |   | 292 | -21.03  |          | 23.571 |      | 39.50 | A   | C   |
| ATOM | 2010   | CB  |      |   | 292 | -20.54  |          | 23.990 |      | 39.68 | A   | C   |
| ATOM | 2011   | CG1 | VAL  | A | 292 | -21.34  | 92.804   | 25.181 |      | 40.47 | A   | , с |
| ATOM | 2012   |     | VAL  |   |     | -19.03  | 6 92.302 | 24.234 |      | 37.69 | A   | С   |
| ATOM | 2013   | C   |      |   | 292 | -21.22  |          | 24.758 | 1.00 | 39.15 | A   | С   |
| ATOM | 2014   | ŏ   |      |   | 292 | -20.26  |          | 25.220 |      | 39.62 | A   | 0   |
| ATOM | 2015   | N   |      |   | 293 | -22.44  |          | 25.255 |      | 39.93 | A   | N   |
|      | 2015   |     |      |   | 293 | -22.67  |          | 26.354 |      | 39.11 | A   | С   |
| MOTA |        | CA  |      |   |     |         |          | 27.084 |      | 38.92 | A   | Ċ   |
| MOTA | 2017   | CB  |      |   | 293 | -23.97  |          |        |      | 43.01 | A   | č   |
| MOTA | 2018   | CG  |      |   | 293 | -23.82  |          | 28.050 |      |       | A   | ō   |
| MOTA | 2019   |     | ASP  |   |     | -24.74  |          | 28.881 |      | 43.72 |     | 0   |
| ATOM | 2020   | OD2 | ASP  | A | 293 | -22.78  | 3 91.058 | 27.977 | 1.00 | 45.44 | A   | U   |
|      |        |     |      |   |     |         |          |        |      |       |     |     |

|       |      |     |     |   |     | •       |        |        |      |       |        |        |
|-------|------|-----|-----|---|-----|---------|--------|--------|------|-------|--------|--------|
| ATOM  | 2021 | С   | ASP | A | 293 | -22.693 | 87.468 | 25.815 | 1.00 | 38.91 | A      | С      |
| ATOM  | 2022 | 0   | ASP | Α | 293 | -22.116 | 86.574 | 26.427 | 1.00 | 40.44 | Α      | O      |
| ATOM  | 2023 | N   | LEU | Α | 294 | -23.327 | 87.245 | 24.667 | 1.00 | 36.76 | A      | N      |
| MOTA  | 2024 | CA  | LEU | A | 294 | -23.338 | 85.909 | 24.090 | 1.00 | 33.65 | A      | Ç      |
| ATOM  | 2025 | CB  | LEU | Α | 294 | -24.124 | 85.874 | 22.794 | 1.00 | 31.23 | A      | С      |
| MOTA  | 2026 | CG  | LEU | A | 294 | -25.588 | 86.206 | 23.070 | 1.00 | 32.79 | A      | С      |
| MOTA  | 2027 | CD1 | LEU | A | 294 | -26.359 | 86.363 | 21.771 | 1.00 | 33.40 | A      | C      |
| ATOM  | 2028 | CD2 | LEU | A | 294 | -26.184 | 85.131 | 23.939 | 1.00 | 32.34 | A      | С      |
| ATOM  | 2029 | C   | LEU | Α | 294 | -21.928 | 85.426 | 23.825 | 1.00 | 32.99 | A      | С      |
| MOTA  | 2030 | 0   | LEU | A | 294 | -21.653 | 84.241 | 23.958 | 1.00 | 35.78 | A      | 0      |
| MOTA  | 2031 | N   | PHE | A | 295 | -21.026 | 86.327 | 23.449 | 1.00 | 31.27 | A      | N      |
| ATOM  | 2032 | CA  | PHE | Α | 295 | -19.636 | 85.931 | 23.192 | 1.00 | 28.88 | Α      | С      |
| MOTA  | 2033 | CB  | PHE | A | 295 | -18.832 | 87.051 | 22.545 | 1.00 | 29.68 | A      | С      |
| MOTA  | 2034 | CG  | PHE | A | 295 | -18.862 | 87.025 | 21.066 | 1.00 | 29.86 | A      | С      |
| ATOM  | 2035 | CD1 | PHE | Α | 295 | -18.120 | 86.095 | 20.358 | 1.00 | 30.61 | A      | С      |
| ATOM  | 2036 | CD2 | PHE | A | 295 | -19.692 | 87.892 | 20.376 | 1.00 | 30.77 | A      | С      |
| ATOM  | 2037 | CE1 | PHE | A | 295 | -18.207 | 86.027 | 18.970 |      | 31.84 | A      | С      |
| MOTA  | 2038 | CE2 | PHE | A | 295 | -19.791 | 87.835 | 19.000 |      | 32.13 | A      | С      |
| ATOM  | 2039 | CZ  | PHE | A | 295 | -19.047 | 86.900 | 18.291 |      | 32.49 | A      | ¢      |
| MOTA  | 2040 | С   | PHE |   |     | -18.948 | 85.592 | 24.479 |      | 27.53 | A      | С      |
| ATOM  | 2041 | 0   | PHE |   |     | -18.047 | 84.767 | 24.511 |      | 27.35 | A      | 0      |
| ATOM  | 2042 | N   | GLY |   |     | -19.357 | 86.264 | 25.541 |      | 25.49 | A      | N      |
| MOTA  | 2043 | CA  | GLY |   |     | -18.742 | 86.022 | 26.819 |      | 24.78 | A .    | C      |
| MOTA  | 2044 | ¢   | GLY |   |     | -19.309 | 84.797 | 27.475 |      | 25.52 | A      | С      |
| ATOM  | 2045 | 0   | GLY |   |     | -18.567 | 83.962 | 27.979 |      | 27.9B | A      | 0      |
| ATOM  | 2046 | N   | ALA |   |     | -20.628 | 84.686 | 27.476 |      | 25.30 | A      | N      |
| ATOM  | 2047 | CA  | ALA |   |     | -21.271 | 83.546 | 28.094 |      | 26.38 | A      | С      |
| MOTA  | 2048 | CB  | ALA |   |     | -22.727 | 83.857 | 28.355 |      | 24.88 | A      | С      |
| ATOM  | 2049 | С   | ALA |   |     | -21.152 | 82.289 | 27.240 |      | 28.34 | A      | С      |
| ATOM  | 2050 | 0   | ALA |   |     | -21.203 | 81.172 | 27.755 |      | 31.07 | A      | 0      |
| ATOM  | 2051 | N   | GLY |   |     | -20.976 | 82.447 | 25.940 |      | 27.67 | A      | N      |
| ATOM  | 2052 | CA  | GLY |   |     | -20.915 | 81.252 | 25.140 |      | 29.26 | A      | С      |
| ATOM  | 2053 | Ç   | GLY |   |     | -19.555 | 80.793 | 24.695 |      | 31.14 | A      | С      |
| MOTA  | 2054 | 0   | GLY |   |     | -19.446 | 79.959 | 23.798 |      | 34.01 | A      | 0      |
| MOTA  | 2055 | N   | THR |   |     | -18.499 | 81.245 | 25.338 |      | 29.49 | A      | N      |
| MOTA  | 2056 | ÇA  | THR |   |     | -17.228 | 80.861 | 24.800 |      | 26.79 | A      | C      |
| ATOM  | 2057 | CB  | THR |   |     | -16.680 | 82.107 | 24.107 |      | 26.41 | A      | С      |
| ATOM  | 2058 |     | THR |   |     | -15.827 | 81.744 | 23.021 |      |       | A      | 0      |
| ATOM  | 2059 |     | THR |   |     | -15.955 | 82.967 | 25.092 |      | 27.56 | A      | C      |
| MOTA  | 2060 | С   | THR |   |     | -16.263 | 80.242 | 25.804 |      | 26.40 | A      | C.     |
| ATOM  | 2061 | 0   | THR |   |     | -15.626 | 79.223 | 25.533 |      | 25.92 | A      | 0      |
| ATOM  | 2062 | N   | GLU |   |     | -16.182 | 80.827 | 26.985 |      | 26.01 | A      | N      |
| MOTA  | 2063 | CA  | GLU |   |     | -15.297 | 80.323 | 28.020 |      | 26.93 | A      | С      |
| ATOM  | 2064 | CB  | GLU |   |     | -15.236 | 81.356 | 29.142 |      | 31.79 | A      | C      |
| ATOM  | 2065 | CG  | GLU |   |     | -14.662 | 80.829 | 30.419 |      | 37.36 | A      | C      |
| MOTA  | 2066 | CD  | GLU |   |     | -13.246 | 80.347 | 30.233 |      | 42.07 | A      | С      |
| ATOM  | 2067 |     | GLU |   |     | -12.662 | 79.837 | 31.219 |      | 47.59 | A      | 0      |
| ATOM  | 2068 |     | GLU |   |     | -12.705 | 80.471 | 29.106 |      | 42.63 | A      | 0      |
| MOTA  | 2069 | С   | GLU |   |     | -15.699 | 78.949 | 28.571 |      | 25.84 | A      | C      |
| ATOM  | 2070 | 0   | GLU |   |     | -14.999 | 77.971 | 28.351 |      | 24.17 | A      | 0      |
| ATOM  | 2071 |     | THR |   |     | -16.831 | 78.890 | 29.276 |      | 27.08 | A      | N      |
| ATOM  | 2072 | CA  | THR |   |     | -17.360 | 77.652 | 29.890 |      | 27.58 | A      | C      |
| ATOM  | 2073 | CB  | THR |   |     | -18.746 | 77.872 | 30.469 |      | 29.49 | A      | 0      |
| ATOM  | 2074 |     | THR |   |     | -19.536 | 78.607 | 29.522 |      | 34.46 | A      | c      |
| ATOM  | 2075 |     | THR |   |     | -18.660 | 78.628 | 31.781 |      | 32.05 | A<br>n | _      |
| ATOM  | 2076 | C   | THR |   |     | -17.468 | 76.448 | 28.983 |      | 25.76 | A      | 0      |
| ATOM  | 2077 | 0   | THR |   |     | -17.297 | 75.309 | 29.416 |      | 25.40 | A      | N      |
| ATOM  | 2078 | N · |     |   | 302 | -17.780 | 76.691 | 27.724 |      | 24.51 | A      | Ċ      |
| ATOM, | 2079 | CA  | THR |   |     | -17.877 | 75.581 | 26.819 |      | 25.41 | A      | c      |
| ATOM  | 2080 | CB  | THR |   |     | -18.465 | 76.008 | 25.498 |      | 26.05 | A      | Ö      |
| ATOM  | 2081 |     | THR |   |     | -19.859 | 76.292 | 25.658 |      | 31.07 | A      |        |
| ATOM  | 2082 |     | THR |   |     | -18.292 | 74.914 | 24.482 |      | 26.58 | A      | C      |
| ATOM  | 2083 | C   | THR |   |     | -16.470 | 75.051 | 26.594 |      | 25.98 | A      | С      |
| ATOM  | 2084 | 0   | THR |   |     | -16.149 | 73.909 | 26.925 |      | 25.33 | A      | 0      |
| ATOM  | 2085 | N   | SER |   |     | -15.622 | 75.908 | 26.045 |      | 26.68 | A      | N      |
| MOTA  | 2086 | CA  | SER |   |     | -14.243 | 75.552 | 25.755 |      | 27.19 | A      | C      |
| ATOM  | 2087 | CB  | SER |   |     | -13.409 | 76.795 | 25.472 |      | 29.13 | A      | C      |
| ATOM  | 2088 | OG  | SER |   |     | -13.753 | 77.418 | 24.253 |      | 34.34 | A      | 0      |
| ATOM  | 2089 | Ç   | SER |   |     | -13.576 | 74.843 | 26.888 |      | 25.94 | A      | C      |
| MOTA  | 2090 | 0   | SER |   |     | -12.917 | 73.830 | 26.700 |      | 25.33 | A      | 0      |
| ATOM  | 2091 | N   | THR |   |     | -13.705 | 75.409 | 28.076 |      | 26.25 | A      | N      |
| ATOM  | 2092 | CA  | THR |   |     | -13.044 | 74.816 | 29.219 |      | 26.25 | A      | C      |
| ATOM  | 2093 | CB  | THR |   |     | -13.156 | 75.726 | 30.443 |      | 25.12 | A      | c      |
| ATOM  | 2094 |     | THR |   |     | -12.608 | 75.048 | 31.572 |      | 25.84 | A      | O<br>C |
| ATOM  | 2095 | CG2 | THR | A | 304 | -14.602 | 76.129 | 30.691 | 1.00 | 28.20 | A      | ·      |
|       |      |     |     |   |     |         |        |        |      |       |        |        |

| MOTA | 2096 | С   | THR | A | 304 | -13.590 | 73.431 | 29.496   | 1.00 26 | . 31 | P   | 1      | С  |
|------|------|-----|-----|---|-----|---------|--------|----------|---------|------|-----|--------|----|
| ATOM | 2097 |     | THR |   |     | -12.850 | 72.549 | 29.925   | 1.00 25 | .89  | A   |        | 0  |
|      |      | 0   |     |   |     |         |        |          | 1.00 25 |      | A   |        | N  |
| ATOM | 2098 | N   | THR |   |     | -14.884 | 73.246 | 29.217   |         |      |     |        | Ċ  |
| ATOM | 2099 | CA  | THR | A | 305 | -15.537 | 71.955 | 29.400   | 1.00 22 |      | P   |        |    |
| ATOM | 2100 | CB  | THR | Α | 305 | -17.047 | 72.053 | 29.207   | 1.00 23 |      | , A |        | С  |
| MOTA | 2101 | OG1 | THR | A | 305 | -17.595 | 72.888 | 30.222   | 1.00 23 | . 94 | A   |        | 0  |
| ATOM | 2102 |     | THR |   |     | -17.696 | 70.679 | 29.305   | 1.00 22 | . 25 | P   | r .    | С  |
|      |      |     | THR |   |     | -14.975 | 70.938 | 28.403   | 1.00 22 | .27  | P   | ı      | С  |
| MOTA | 2103 | С   |     |   |     |         | 69.806 | 28.780   | 1.00 21 |      | 7   |        | ō  |
| ATOM | 2104 | 0   | THR |   |     | -14.672 |        |          |         |      |     |        | N  |
| MOTA | 2105 | N   | LEU |   |     | -14.838 | 71.321 | 27.136   | 1.00 21 |      | 7   |        |    |
| ATOM | 2106 | CA  | LEU | A | 306 | -14.263 | 70.386 | 26.179   | 1.00 23 |      | F   |        | С  |
| ATOM | 2107 | CB  | LEU | Α | 306 | -14.102 | 71.005 | 24.806   | 1.00 25 | .43  | 7   | ١.     | С  |
| ATOM | 2108 | CG  | LEU | Α | 306 | -15.405 | 71.564 | 24.302   | 1.00 29 | .99  | 2   |        | C  |
| ATOM | 2109 |     | LEU |   | 306 | -15.136 | 72.630 | 23.246   | 1.00 30 | .54  | 7   |        | С  |
|      |      |     | LEU |   |     | -16.235 | 70.403 | 23.753   | 1.00 31 |      | 7   |        | С  |
| ATOM | 2110 |     |     |   |     |         | 70.038 |          | 1.00 22 |      | 7   |        | č  |
| ATOM | 2111 | ·C  | LEU |   |     | -12.884 |        | 26.692   |         |      |     |        | ō  |
| ATOM | 2112 | 0   | LEU |   |     | -12.525 | 68.874 | 26.820   | 1.00 22 |      | 7   |        |    |
| ATOM | 2113 | N   | ARG | Α | 307 | -12.112 | 71.069 | 26.994   | 1.00 22 |      |     |        | N  |
| ATOM | 2114 | CA  | ARG | Α | 307 | -10.761 | 70.894 | 27.484   | 1.00 22 |      | 1   | 1      | С  |
| ATOM | 2115 | CB  | ARG | Α | 307 | -10.230 | 72.211 | 27.997   | 1.00 24 | .53  | 7   | ١.     | С  |
| MOTA | 2116 | CG  | ARG |   |     | -8.902  | 72.585 | 27.398   | 1.00 27 | . 44 | 7   |        | C  |
|      |      |     | ARG |   |     | -8.319  | 73.698 | 28.209   | 1.00 28 |      | ,   |        | С  |
| MOTA | 2117 | CD  |     |   |     |         |        |          | 1.00 32 |      | 1   |        | N  |
| ATOM | 2118 | NE  | ARG |   |     | -9.211  | 74.846 | 28.234   |         |      |     |        |    |
| MOTA | 2119 | CZ  | ARG |   |     | -9.317  | 75.670 | 29.269   | 1.00 34 |      | 7   |        | C  |
| ATOM | 2120 | NH1 | ARG | A | 307 | -8.580  | 75.439 | 30.346   | 1.00 35 | .76  | 2   |        | N  |
| ATOM | 2121 | NH2 | ARG | Α | 307 | -10.142 | 76.723 | 29.223   | 1.00 34 | .04  |     | ١.     | N  |
| ATOM | 2122 | C   | ARG |   |     | -10.720 | 69.883 | 28.599   | 1.00 21 | .78  | 1   | ١.     | С  |
|      | 2123 | ō   |     |   | 307 | -9.936  | 68.937 | 28.567   | 1.00 21 | . 63 | 7   |        | 0  |
| ATOM |      |     |     |   |     | -11.578 | 70.103 | 29.588   | 1.00 20 |      | 7   |        | N. |
| ATOM | 2124 | N   |     |   | 308 | •       |        |          |         |      | ,   |        | C  |
| ATOM | 2125 | CA  | TYR |   |     | -11.679 | 69.224 | 30.734   | 1.00 19 |      |     |        |    |
| ATOM | 2126 | СB  | TYR | A | 308 | -12.681 | 69.783 | 31.736   | 1.00 16 |      | 1   | ٠.     | -  |
| MOTA | 2127 | CG  | TYR | Α | 308 | -12.164 | 69.697 | 33.135   | 1.00 17 | .26  | 1   |        | С  |
| MOTA | 2128 | CD1 | TYR | Α | 308 | -12.329 | 70.759 | 34.028   | 1.00 17 | .03  | 1   | ١ :    | С  |
| ATOM | 2129 |     | TYR |   |     | -11.756 | 70.725 | 35.297   | 1.00 19 | .31  | 1   | 4      | С  |
| ATOM | 2130 |     | TYR |   |     | -11.423 | 68.584 | 33.545   | 1.00 18 | .45  | 1   | ١.     | C. |
|      |      |     |     |   |     |         |        | . 34.801 | 1.00 20 |      |     | ١      | С  |
| ATOM | 2131 |     | TYR |   |     | -10.844 |        |          |         |      | i   |        | ·č |
| ATOM | 2132 | CZ  |     |   | 308 | -11.009 | 69.602 | 35.672   | 1.00 22 |      |     |        |    |
| ATOM | 2133 | ОН  | TYR | A | 308 | -10.402 | 69.534 | 36.902   | 1.00 26 |      | i   |        | 0  |
| ATOM | 2134 | С   | TYR | Α | 308 | -12.111 | 67.835 | 30.301   | 1.00 19 | .96  | 1   | ١.     | C  |
| ATOM | 2135 | 0   | TYR | Α | 308 | -11.685 | 66.834 | 30.882   | 1.00 20 | .87  | ì   | ١.     | 0  |
| ATOM | 2136 | N   |     |   | 309 | -12.966 | 67.771 | 29.285   | 1.00 18 | .00  | 1   | ١.     | N  |
|      | 2137 | CA  |     |   | 309 | -13.415 | 66.485 | 28.812   | 1.00 17 |      | 1   | A      | С  |
| ATOM |      |     |     |   |     | -14.451 | 66.642 | 27.742   | 1.00 16 |      |     | Ā      | С  |
| ATOM | 2138 | СВ  |     |   | 309 |         |        |          |         |      |     | À      | č  |
| ATOM | 2139 | С   |     |   | 309 | -12.241 | 65.672 | 28.286   | 1.00 19 |      |     |        |    |
| ATOM | 2140 | 0   |     |   | 309 | 12.011  | 64.552 | 28.746   | 1.00 18 |      |     | A.     | 0  |
| ATOM | 2141 | N   | LEU | Α | 310 | -11.484 | 66.223 | 27.339   | 1.00 19 |      |     | 4      | N  |
| ATOM | 2142 | CA  | LEU | Α | 310 | -10.351 | 65.487 | 26.787   | 1.00 20 | 1.86 | i   | 4      | С  |
| ATOM | 2143 | СВ  | LEU | A | 310 | -9.619  | 66.318 | 25.741   | 1.00 21 | 51   |     | A      | С  |
| ATOM | 2144 | CG  |     |   | 310 | -10.449 | 66.657 | 24.497   | 1.00 25 | .25  |     | A.     | С  |
|      | 2145 |     | LEU |   |     | -9.696  | 67.711 | 23.720   | 1.00 25 |      |     | A      | С  |
| ATOM |      |     |     |   |     |         | 65.429 | 23.631   | 1.00 25 |      |     | A      | С  |
| ATOM | 2146 |     | LEU |   |     | -10.713 |        |          | 1.00 22 |      |     | A.     | č  |
| MOTA | 2147 | С   |     |   | 310 | -9.374  | 65.037 | 27.867   |         |      |     |        |    |
| ATOM | 2148 | 0   |     |   | 310 | -8.903  | 63.898 | 27.850   | 1.00 23 |      |     | A      | 0  |
| MOTA | 2149 | N   | LEU | A | 311 | -9.069  | 65.909 | 28.820   | 1.00 21 |      |     | A.     | N  |
| ATOM | 2150 | CA  | LEU | Α | 311 | -8.143  | 65.517 | 29.863   | 1.00 20 | 188  |     | A.     | С  |
| MOTA | 2151 | СВ  |     |   | 311 | -7.903  | 66.673 | 30.828   | 1.00 19 | 0.01 |     | A      | С  |
| ATOM | 2152 | CG  |     |   | 311 | -7.154  | 66.352 | 32.129   | 1.00 18 | 3.49 |     | A      | С  |
|      |      |     | LEU |   |     | -5.715  | 65.971 | 31.836   | 1.00 18 |      |     | A      | С  |
| ATOM | 2153 |     |     |   |     | -7.203  | 67.545 | 33.041   | 1.00 1  |      |     | A      | С  |
| MOTA | 2154 |     | LEU |   |     |         |        | 30.621   | 1.00 22 |      |     | A.     | č  |
| MOTA | 2155 | С   |     |   | 311 | -8.679  | 64.309 |          |         |      |     |        |    |
| ATOM | 2156 | 0   |     |   | 311 | -7.913  | 63.442 | 31.024   | 1.00 22 |      |     | A      | 0  |
| MOTA | 2157 | N   | LEU | A | 312 | -9.997  | 64.246 | 30.805   | 1.00 24 |      |     | A      | N  |
| MOTA | 2158 | CA  |     |   | 312 | -10.636 | 63.142 | 31.535   | 1.00 24 |      |     | A      | С  |
| ATOM | 2159 | СВ  |     |   | 312 | -12.027 | 63.546 | 31.991   | 1.00 2  | L.92 |     | A      | С  |
| ATOM | 2160 | CG  |     |   | 312 | -12.079 | 64.347 | 33.278   | 1.00 19 |      |     | A      | С  |
|      |      |     |     |   |     | -13.436 | 64.956 | 33.432   | 1.00 18 |      |     | A      | C  |
| MOTA | 2161 |     |     |   | 312 |         |        |          | 1.00 1  |      |     | A      | č  |
| MOTA | 2162 |     |     |   | 312 | -11.729 | 63.451 | 34.446   |         |      |     |        |    |
| MOTA | 2163 | С   |     |   | 312 | -10.755 | 61.860 | 30.747   | 1.00 2  |      |     | A      | C  |
| ATOM | 2164 | 0   | LEU | A | 312 | -10.806 | 60.778 | 31.328   | 1.00 2  |      |     | A      | 0  |
| ATOM | 2165 | N   | LEU | Α | 313 | -10.852 | 61.992 | 29.430   | 1.00 28 |      |     | A      | N  |
| MOTA | 2166 | CA  |     |   | 313 | -10.948 | 60.835 | 28.573   | 1.00 30 | 0.54 |     | A      | С  |
|      |      |     |     |   | 313 | -11.518 | 61.226 | 27.208   | 1.00 30 |      |     | A      | С  |
| MOTA | 2167 | CB  |     |   |     |         |        | 26.954   | 1.00 2  |      |     | A      | č  |
| MOTA | 2168 | CG  |     |   | 313 | -13.032 | 61.341 |          |         |      |     | A<br>A | č  |
| ATOM | 2169 |     |     |   | 313 | -13.301 | 62.204 | 25.718   | 1.00 2  |      |     |        |    |
| ATOM | 2170 | CD2 | LEU | A | 313 | -13.603 | 59.968 | 26.750   | 1.00 2  | 1.49 |     | A      | С  |
|      |      |     |     |   |     |         |        |          |         |      |     |        |    |

|        |      |     |       |      |     |         |         |        |      |         | _   |    |     |
|--------|------|-----|-------|------|-----|---------|---------|--------|------|---------|-----|----|-----|
| ATOM   | 2171 | С   | LEU 2 | A 31 | 13  | -9.544  | 60.247  | 28.420 | 1.00 | 33.39   | P   | ı. | ,c  |
|        | 2172 | ŏ   | LEU   |      |     | -9.373  | 59.217  | 27.779 | 1.00 | 35.57   | P   |    | . 0 |
| MOTA   |      |     | LEU   |      |     | -8.533  | 60.910  | 28.986 | 1.00 | 35.30   | A   |    | N   |
| MOTA   | 2173 | N   |       |      |     |         | 60.389  | 28.936 |      | 36.01   | A   |    | С   |
| ATOM   | 2174 | CA  | LEU ! |      |     | -7.165  |         |        |      |         | 7   |    | C   |
| ATOM   | 2175 | CB  | LEU ! | A 3: | 14  | -6.117  | 61.503  | 28.917 |      | 35.55   |     |    |     |
| MOTA   | 2176 | CG  | LEU . | A 3: | 14  | -5.901  | 62.382  | 27.682 |      | 36.63   | P   |    | С   |
| ATOM   | 2177 |     | LEU . | A 3  | 14  | -5.037  | 63.570  | 28.051 | 1.00 | 34.59   | P   |    | С   |
|        |      |     | LEU   |      |     | -5.248  | 61.581  | 26.563 | 1.00 | 36.53   | 7   | ١  | С   |
| MOTA   | 2178 |     |       |      |     |         | 59.617  | 30.229 |      | 36.18   | 7   |    | С   |
| MOTA   | 2179 | С   | LEU . |      |     | -7.024  |         |        |      |         | 7   |    | ō   |
| ATOM   | 2180 | 0   | LEU . | A 3  | 14  | -6.675  | 58.448  | 30.248 |      | 37.31   |     |    |     |
| MOTA   | 2181 | N   | LYS   | A 3: | 15  | -7.323  | 60.277  | 31.327 |      | 37.02   | 7   |    | N   |
| MOTA   | 2182 | CA  | LYS   | A 3  | 15  | -7.219  | 59.625  | 32.602 |      | 39.35   | I   | 1  | С   |
|        | 2183 | СВ  | LYS   |      |     | -7.798  | 60.542  | 33.667 | 1.00 | 38.65   | 1   | ١. | С   |
| ATOM   |      |     | LYS   |      |     | -7.557  | 60.069  | 35.064 |      | 38.95   | 7   | ١. | С   |
| ATOM   | 2184 | CG  |       |      |     |         | 60.174  | 35.422 |      | 39.68   | 1   | ١. | C   |
| ATOM   | 2185 | CD  | LYS   |      |     | -6.099  |         |        |      | 40.12   | ,   |    | č   |
| MOTA   | 2186 | CE  | LYS   | A 3  | 15  | -5.910  | 60.037  | 36.915 |      |         |     |    |     |
| MOTA   | 2187 | NZ  | LYS   | A 3: | 15  | -4.474  | 59.945  | 37.233 |      | 39.66   | ,   |    | N   |
| ATOM   | 2188 | C   | LYS   | A 3  | 15  | -7.938  | 58.256  | 32.611 |      | 40.89   |     | 4  | С   |
|        | 2189 | ō   | LYS   |      |     | -7.495  | 57.325  | 33.294 | 1.00 | 42.69   | 1   | ١. | 0   |
| ATOM   |      |     | HIS   |      |     | -9.029  | 58.131  | 31.844 | 1.00 | 40.89   | 1   | 4  | N   |
| ATOM   | 2190 | N   |       |      |     |         |         | 31.780 |      | 39.53   | . 1 | A  | С   |
| MOTA   | 2191 | CA  | HIS   |      |     | -9.828  | 56.890  |        |      |         |     | À  | č   |
| MOTA   | 2192 | СB  | HIS   | A 3  | 16  | -11.213 | 57.117  | 32.333 |      | 38.52   |     |    |     |
| MOTA   | 2193 | CG  | HIS   | A 3  | 16  | -11.220 | 58.001  | 33.520 |      | 36.60   |     | A  | C   |
| ATOM   | 2194 | CD2 | HIS   | A 3  | 16  | -11.739 | 59.232  | 33.709 | 1.00 | 37.63   | i   | A  | С   |
| ATOM   | 2195 |     | HIS   |      |     | -10.577 | 57.665  | 34.684 | 1.00 | 36.13   | 7   | A. | N   |
|        | _    |     | HIS   |      |     | -10.699 | 58.653  | 35.549 | 1.00 | 36.12   | 1   | A  | С   |
| ATOM   | 2196 |     |       |      |     |         |         |        |      | 37.58   | 1   | A  | N   |
| ATOM   | 2197 | NE2 | HIS   |      |     | -11.399 | 59.615  | 34.982 |      |         |     |    | Ċ   |
| ATOM   | 2198 | С   | HIS   | A 3  | 16  | -10.007 | 56.368  | 30.387 |      | 39.50   |     | A  |     |
| ATOM   | 2199 | 0   | HIS   | A 3  | 16  | -11.092 | 56.468  | 29.807 |      | 38.71   |     | A  | 0   |
| ATOM   | 2200 | N   | PRO   | A 3  | 17  | -8.945  | 55.795  | 29.829 | 1.00 | 39.15   | i   | A  | N   |
|        | 2201 | CD  | PRO   |      |     | -7.624  | 55.515  | 30.416 | 1.00 | 38.02   |     | A  | C   |
| ATOM   |      |     |       |      |     | -9.052  | 55.265  | 28.477 |      | 38.68   |     | A  | С   |
| "MOTA" | 2202 | CA  | PRO   |      |     |         |         |        |      | 38.15   |     | A  | Ċ   |
| MOTA   | 2203 | CB  | PRO   |      |     | -7.651  | 54.726  | 28.219 |      |         |     |    | č   |
| ATOM"  | 2204 | CG  | PRO   | A 3  | 17  | -7.168  | 54.368  | 29.594 |      | 38.21   |     | A  |     |
| ATOM . | 2205 | C   | PRO   | A 3  | 17  | -10.148 | 54.206  | 28.354 |      | 38.78   |     | A  | С   |
| ATOM 2 | 2206 | Ó   | PRO   | A 3  | 17  | -10.762 | ·54.082 | 27.309 | 1.00 | 38.80   |     | A  | 0   |
|        | 2207 | N   | GLU   |      |     | -10.409 | 53.463  | 29.424 | 1.00 | 40.00   |     | A  | N   |
| ATOM ? |      |     |       |      |     | -11.439 | 52.429  | 29.390 |      | 42.04   |     | Α  | С   |
| ATOM   | 2208 | CA  | GLU   |      |     |         |         |        |      | 44.80   |     | A  | c   |
| ATOM   | 2209 | CB  | GLU   |      |     | -11.551 | 51.748  | 30.756 |      |         |     |    | č   |
| MOTA   | 2210 | CG  | GLU   | A 3  | 18  | -11.990 | 52.654  | 31.896 |      | 52.02   |     | A  |     |
| MOTA   | 2211 | CD  | GLU   | A 3  | 18  | -10.893 | 53.622  | 32.387 |      | 54.86   |     | A  | С   |
| ATOM   | 2212 |     | GLU   |      |     | -9.789  | 53.676  | 31.788 | 1.00 | 54.45   |     | A  | 0   |
|        | 2213 |     | GLU   |      |     | -11.160 | 54.341  | 33.385 | 1.00 | 57.92   |     | A  | 0   |
| ATOM   |      |     |       |      |     | -12.797 | 52.993  | 28.966 |      | 41.53   |     | A  | С   |
| MOTA   | 2214 | С   | GLU   |      |     |         |         |        |      | 41.67   |     | A  | 0   |
| MOTA   | 2215 | 0   | GLU   |      |     | -13.546 | 52.376  | 28.198 |      |         |     | A  | N   |
| MOTA   | 2216 | N   | VAL   | A 3  | 119 | -13.092 | 54.183  | 29.468 |      | 41.17   |     |    |     |
| ATOM   | 2217 | CA  | VAL   | A 3  | 319 | -14.333 | 54.888  | 29.180 |      | 39.40   |     | A  | С   |
| MOTA   | 2218 | CB  | VAL   | A 3  | 319 | -14.482 | 56.054  | 30.156 | 1.00 | 38.16   |     | A  | C   |
| ATOM   | 2219 |     | VAL   |      |     | -15.581 | 56.996  | 29.705 | 1.00 | 38.47   |     | A  | С   |
|        |      |     |       |      |     | -14.780 | 55.502  | 31.527 | 1.00 | 37.76   |     | A  | С   |
| MOTA   | 2220 |     | VAL   |      |     | -14.760 | 55.410  | 27.746 |      | 38.81   |     | Α  | С   |
| ATOM   | 2221 | С   | VAL   |      |     |         |         |        |      |         |     | A  | ō   |
| ATOM   | 2222 | 0   | VAL   |      |     | -15.364 | 55.381  | 27.067 |      | 38.18   |     |    |     |
| ATOM   | 2223 | N   | THR   | A 3  | 320 | -13.183 | 55.887  | 27.306 |      | 37.70   |     | A  | N   |
| ATOM   | 2224 | CA  | THR   | A 3  | 320 | -13.012 | 56.416  | 25.968 |      | 37.04   |     | Α  | C   |
| ATOM   | 2225 | СВ  | THR   |      |     | -11.563 | 56.915  | 25.757 |      | 37.86   |     | A  | С   |
| ATOM   | 2226 |     | THR   |      |     | -11.244 | 57.885  | 26.755 | 1.00 | 39.12   |     | A  | 0   |
|        |      |     |       |      |     | -11.404 | 57.556  | 24.382 |      | 39.76   |     | A  | C   |
| MOTA   | 2227 |     | THR   |      |     | -13.306 |         | 24.947 |      | 35.65   |     | A  | Ċ   |
| MOTA   | 2228 | С   | THR   |      |     |         |         |        |      |         |     | A  | ŏ   |
| ATOM   | 2229 | 0   | THR   |      |     | -13.960 | 55.561  | 23.932 |      | 35.14   |     |    |     |
| ATOM   | 2230 | N   | ALA   | A 3  | 321 | -12.810 | 54.130  | 25.235 |      | 35.02   |     | Α  | N   |
| ATOM   | 2231 | CA  | ALA   |      |     | -12.996 | 52.989  | 24.360 | 1.00 | 34.76   |     | Α  | C   |
|        |      | CB  | ALA   |      |     | -12.329 |         | 24.945 | 1.00 | 34.30   |     | Α  | C . |
| ATOM   | 2232 |     |       |      |     | -14.473 | 52.728  | 24.169 |      | 34.73   |     | Α  | С   |
| ATOM   | 2233 | C   | ALA   |      |     |         |         | 23.040 |      | 34.36   |     | A  | ō   |
| MOTA   | 2234 | 0   | ALA   |      |     | -14.964 | 52.687  |        |      |         |     | A  | N   |
| ATOM   | 2235 | N   | LYS   |      |     | -15.185 | 52.532  | 25.270 |      | 34.21   |     |    |     |
| ATOM   | 2236 | CA  | LYS   | Α :  | 322 | -16.602 | 52.299  | 25.152 |      | 34.92   |     | A  | C   |
| ATOM   | 2237 | СВ  | LYS   |      |     | -17.271 | 52.277  | 26.521 |      | 36.74   |     | A  | С   |
|        |      |     | LYS   |      |     | -16.791 |         | 27.413 | 1.00 | 39.78   |     | Α  | С   |
| MOTA   | 2238 | CG  | _     |      |     |         |         | 28.599 |      | 42.82   |     | A  | C   |
| MOTA   | 2239 | CD  | LYS   |      |     | -17.719 |         |        |      | 44.46   |     | A  | č   |
| MOTA   | 2240 | CE  | LYS   |      |     | -17.180 |         |        |      |         |     |    | N   |
| ATOM   | 2241 | NZ  | LYS   | Α :  | 322 | -15.914 |         |        |      | 47.27   |     | A  |     |
| ATOM   | 2242 |     | LYS   |      |     | -17.171 | 53.416  |        |      | 34.61   |     | A  | C   |
| ATOM   | 2243 |     | LYS   |      |     | -17.842 |         | 23.310 | 1.00 | 35.70   |     | A  | 0   |
|        |      |     |       |      |     | -16.875 |         |        | 1.00 | 34.05   |     | A  | N   |
| ATOM   | 2244 |     | VAL   |      |     |         |         |        |      | 33.87   |     | A  | С   |
| ATOM   | 2245 | ÇA  | VAL   | A :  | 323 | -17.404 | 55.757  | 23.071 | 1.00 | . 22.01 |     | •• | -   |
|        |      |     |       |      |     |         |         |        |      |         |     |    |     |

Figure 1

| MOTA         | 2246         | СВ        | VAL . | A 323          | -16 | .870         | 57.118           | 24.280           | 1.00 | 32.65          | A      | С   |
|--------------|--------------|-----------|-------|----------------|-----|--------------|------------------|------------------|------|----------------|--------|-----|
| ATOM         | 2247         |           | VAL   |                | -17 | .351         | 58.204           | 23.308           |      | 29.56          | A      |     |
| MOTA         | 2248         |           |       | A 323          |     | .357         | 57.427           | 25.664           |      | 31.83          | A      |     |
| MOTA         | 2249         | C         |       | A 323          |     | .059         | 55.583           | 22.384           |      | 35.24          | A<br>A |     |
| MOTA<br>MOTA | 2250<br>2251 | O<br>N    |       | A 323<br>A 324 |     | .853<br>.874 | 55.910<br>55.074 | 21.510<br>22.107 |      | 35.97<br>36.55 | Ã      |     |
| ATOM         | 2252         | CA        |       | A 324          |     | .499         | 54.901           | 20.724           |      | 38.40          | Α      |     |
| ATOM         | 2253         | СВ        |       | A 324          |     | .995         | 54.654           | 20.602           |      | 38.31          | A      |     |
| ATOM         | 2254         | CG        |       | A 324          | -13 | .310         | 55.760           | 19.819           | 1.00 | 38.75          | A      |     |
| MOTA         | 2255         | CD        |       | A 324          |     | .949         | 56.100           | 20.339           |      | 40.50          | A      |     |
| ATOM         | 2256         |           |       | A 324          |     | .284         | 56.989           | 19.812           |      | 41.82          | A      |     |
| ATOM         | 2257         |           |       | A 324          |     | .520         | 55.406           | 21.387<br>20.081 |      | 41.49<br>39.59 | A      |     |
| MOTA<br>MOTA | 2258<br>2259 | С<br>0    |       | A 324<br>A 324 |     | . 699        | 53.776<br>53.895 | 18.931           |      | 39.35          | A      |     |
| ATOM         | 2260         | N         |       | A 325          |     | .472         | 52.689           | 20.820           |      | 41.11          | A      |     |
| ATOM         | 2261         | CA        |       | A 325          |     | .198         | 51.559           | 20.272           |      | 43.16          | A      |     |
| ATOM         | 2262         | CB        | GLU . | A 325          | -17 | .133         | 50.373           | 21.219           | 1.00 | 46.00          | . У    |     |
| ATOM         | 2263         | CG        |       | A 325          |     | .269         | 49.252           | 20.687           |      | 53.84          | A      |     |
| ATOM         | 2264         | CD        |       | A 325          |     | . 630        | 48.854           | 19.249           |      | 58.16          | Α      |     |
| MOTA         | 2265<br>2266 |           |       | A 325<br>A 325 |     | .842         | 48.664<br>48.725 | 18.959<br>18.414 |      | 59.55<br>60.82 | A<br>A |     |
| MOTA<br>MOTA | 2267         | C         |       | A 325          |     | . 650        | 51.908           | 19.983           |      | 42.89          | A A    |     |
| ATOM         | 2268         | ŏ         |       | A 325          |     | .284         | 51.297           | 19.131           |      | 43.84          | A      |     |
| ATOM         | 2269         | N         |       | A 326          |     | .167         | 52.903           | 20.694           | 1.00 | 42.19          | A      | N   |
| ATOM         | 2270         | CA        | GLU . | A 326          | -20 | .541         | 53.336           | 20.524           | 1.00 | 41.58          | A      |     |
| ATOM         | 2271         | CB        |       | A 326          |     | .004         | 54.115           | 21.756           |      | 41.22          | A      |     |
| ATOM         | 2272         | CG        |       | A 326          |     | .430         | 54.616           | 21.693           |      | 43.37          | A      |     |
| ATOM         | 2273         |           |       | A 326          |     | .076         | 54.746<br>53.838 | 23.058           |      | 45.64<br>47.83 | A<br>A |     |
| MOTA<br>MOTA | 2274<br>2275 |           |       | A-326<br>A-326 |     | .819         | 55.750           | 23.448<br>23.750 |      | 47.03          | Ä      |     |
| ATOM         |              |           |       | A 326          |     | .664         | 54.203           | 19.284           |      | 41.88          | A      |     |
| ATOM         | 2277         |           |       | A 326          |     | .671         | 54.164           | 18.582           |      | 43.06          | A      |     |
| ATOM         | 2278         | N         |       | A -327         |     | .645         | 54.995           | 18.998           | 1.00 | 41.99          | A      | N   |
| ATOM         | 2279         | CA ·      |       | A 327          |     | .705         | 55.853           | 17.822           |      | 42.26          | A      |     |
| ATOM         | 2280         | CB        | -     | A 327          |     | .517         | 56.854           | 17.791           |      | 39.88          | · A    |     |
| ATOM         | 2281         |           |       | A :327         |     | .391         | 57.490           | 16.438           |      | 37.59          | A      |     |
| MOTA         | 2282<br>2283 |           |       | A 327<br>A 327 |     | .758<br>.502 | 57.965<br>58.591 | 18.803<br>19.299 |      | 37.31<br>37.61 | A<br>A |     |
| MOTA<br>MOTA | 2284         | CDI       |       | A::327         |     | .689         | 54.990           | 16.578           |      | 43.90          | A      |     |
| ATOM         | 2285         | ŏ         |       | A 327          |     | .580         | 55.095           | 15.737           |      | 43.21          | A      |     |
| ATOM         | 2286         | N         |       | A 328          |     | .677         | 54.128           | 16.489           |      | 46.50          | A      | N   |
| ATOM         | 2287         | CA        | GLU   | A 328          | -18 | .485         | 53.235           | 15.351           |      | 48.59          | A      |     |
| MOTA         | 2288         | СB        |       | A 328          |     | .276         | 52.345           | 15.591           |      | 50.86          | A      |     |
| MOTA         | 2289         | CG        |       | A 328          |     | .715         | 51.753           | 14.319           |      | 56.96          | A      |     |
| MOTA         | 2290         | CD        |       | A 328<br>A 328 |     | .342         | 51.109<br>51.819 | 14.531<br>15.008 |      | 61.79<br>63.12 | A<br>A |     |
| MOTA<br>MOTA | 2291<br>2292 |           |       | A 328          |     | .202         | 49.891           | 14.223           |      | 64.05          | Ä      |     |
| MOTA         | 2293         | C         |       | A 328          |     | . 690        | 52.367           | 15.038           |      | 48.51          | A      |     |
| ATOM         | 2294         | ŏ         |       | A 328          |     | .862         | 51.903           | 13.911           | 1.00 | 49.71          | A      |     |
| ATOM         | 2295         | N         | ARG   | A 329          | -20 | .528         | 52.144           | 16.039           | 1.00 | 47.66          | A      |     |
| ATOM         | 2296         | CA        |       | A 329          |     | .710         | 51.333           | 15.849           |      | 45.48          | A      |     |
| ATOM         | 2297         | CB        |       | A 329          |     | .047         | 50.613           | 17.148           |      | 43.73          | A      |     |
| ATOM         | 2298<br>2299 | CG<br>CD  |       | A 329<br>A 329 |     | .411         | 49.940<br>48.775 | 17.187<br>18.156 |      | 42.73<br>40.93 | A<br>A |     |
| ATOM<br>ATOM | 2300         | NE        |       | A 329          |     | .862         |                  | 19.428           |      | 39.71          | A      |     |
| ATOM         | 2301         | CZ        |       | A 329          |     | .533         | 50.107           | 20.185           |      | 40.12          | A      |     |
| ATOM         | 2302         |           |       | A 329          |     | .724         | 50.535           | 19.780           | 1.00 | 39.92          | A      | . N |
| ATOM         | 2303         | NH2       | ARG   | A 329          | ~22 | .997         | 50.572           | 21.309           |      | 39.50          | A      |     |
| ATOM         | 2304         | C         |       | A 329          |     | .895         | 52.144           | 15.345           |      | 45.24          | A      |     |
| ATOM         | 2305         | 0         |       | A 329          |     | .468         | 51.799           | 14.325           |      | 46.43          | A      |     |
| ATOM         | 2306         | N         |       | A 330          |     | .265         | 53.224<br>54.007 | 16.025           |      | 44.73          | A<br>A |     |
| ATOM         | 2307         | CA        |       | A 330<br>A 330 |     | .401         | 54.659           | 15.556<br>16.722 |      | 44.16          | A      |     |
| MOTA<br>MOTA | 2308<br>2309 | CB<br>CG1 |       | A 330          |     | .858         | 53.929           | 18.008           |      | 44.51          | A      |     |
| MOTA         | 2310         |           |       | A 330          |     | .849         | 56.131           | 16.823           |      | 45.37          | A      |     |
| ATOM         | 2311         | c         |       | A 330          |     | .047         | 55.088           | 14.546           |      | 44.16          | A      | C   |
| ATOM         | 2312         | 0         | VAL . | A 330          | -24 | .930         | 55.668           | 13.927           |      | 44.73          | A      |     |
| MOTA         | 2313         | N         |       | A 331          |     | .763         | 55.380           | 14.402           |      | 44.44          | A      |     |
| MOTA         | 2314         | CA        |       | A 331          |     | .311         | 56.379           | 13.443           |      | 46.17<br>44.98 | A      |     |
| ATOM         | 2315         | CB        |       | A 331<br>A 331 |     | .780<br>.251 | 57.668<br>58.627 | 14.129<br>13.061 |      | 44.96          | A      |     |
| MOTA<br>MOTA | 2316<br>2317 |           |       | A 331          |     | .875         | 58.315           | 14.995           |      | 45.15          | A      |     |
| ATOM         | 2318         |           |       | A 331          |     | . 384        | 59.315           | 16.052           |      | 41.00          | A      |     |
| ATOM         | 2319         | c         |       | A 331          |     | .144         | 55.717           | 12.738           |      | 49.25          | A      | С   |
| ATOM         | 2320         | 0         |       | A 331          | -20 | . 204        | 55.262           | 13.385           | 1.00 | 51.31          | A      | 0   |
|              |              |           |       |                |     |              |                  |                  |      |                |        |     |

Figure 1

| ATOM | 2321 | N   | GLY | А | 332 |   | -21.173  | 55.652  | 11.418 | 1.00 | 51.20 | Α   | N   |
|------|------|-----|-----|---|-----|---|----------|---------|--------|------|-------|-----|-----|
| MOTA | 2322 | CA  | GLY |   |     |   | -20.056  | 55.008  | 10.746 |      | 55.10 | A   | C   |
|      |      |     |     |   |     |   |          |         | 10.772 |      | 56.81 | A   | č   |
| ATOM | 2323 | С   | GLY |   |     |   | -18.768  | 55.810  |        |      |       |     |     |
| MOTA | 2324 | 0   | GLY |   |     |   | -18.689  | 56.861  | 11.400 |      | 56.88 | A   | 0   |
| ATOM | 2325 | N   | ARG |   |     |   | -17.749  | 55.297  | 10.096 |      | 59.15 | A   | N   |
| ATOM | 2326 | CA  | ARG | A | 333 |   | -16.481  | 55.990  | 10.009 | 1.00 | 61.57 | A · | С   |
| MOTA | 2327 | CB  | ARG | A | 333 |   | -15.368  | 55.033  | 9.565  | 1.00 | 64.06 | A   | С   |
| ATOM | 2328 | ĊĞ  | ARG |   |     |   | -15.358  | 53.712  | 10.311 | 1.00 | 69.84 | A   | С   |
|      |      |     | ARG |   |     |   | -14.569  | 52.627  | 9.564  |      | 74.48 | A   | č   |
| MOTA | 2329 | CD  |     |   |     |   |          |         |        |      |       |     |     |
| ATOM | 2330 | NE  | ARG |   |     |   | -14.892  | 52.593  | 8.136  |      | 78.36 | Α.  | N   |
| MOTA | 2331 | CZ  | ARG |   |     |   | -14.571  | 51.599  | 7.311  |      | 79.81 | Α.  |     |
| ATOM | 2332 | NH1 | ARG | A | 333 |   | -13.917  | 50.539  | 7.775  | 1.00 | 80.76 | Α   | N   |
| ATOM | 2333 | NH2 | ARG | Α | 333 |   | -14.901  | 51.671  | 6.022  | 1.00 | 79.87 | A   | N   |
| ATOM | 2334 | С   | ARG |   |     |   | -16.706  | 57.049  | 8.931  | 1.00 | 61.45 | Α   | С   |
| ATOM | 2335 | ō   | ARG |   |     |   | -15.909  | 57.970  | 8.762  |      | 62.42 | A   | ō   |
|      |      |     |     |   |     |   |          |         |        |      |       |     |     |
| MOTA | 2336 | N   | ASN |   |     |   | -17.815  | 56.919  | 8.210  |      | 60.14 | A   | N   |
| ATOM | 2337 | CA  | ASN | Α | 334 |   | -18.111  | 57.852  | 7.145  |      | 58.78 | A   | С   |
| ATOM | 2338 | CB  | asn | A | 334 |   | -18.932  | 57.161  | 6.064  | 1.00 | 59.38 | A   | С   |
| MOTA | 2339 | CG  | ASN | Α | 334 |   | -18.224  | 55.949  | 5.514  | 1.00 | 61.23 | A   | С   |
| ATOM | 2340 | OD1 | ASN | A | 334 |   | ~17.078  | 55.674  | 5.880  | 1.00 | 62.90 | A   | 0   |
| ATOM | 2341 |     | ASN |   |     |   | -18.891  | 55.214  | 4.635  |      | 62.88 | A   | N.  |
|      |      |     |     |   |     |   |          |         | 7.603  |      | 57.09 | A   | C   |
| ATOM | 2342 | С   | ASN |   |     |   | -18.786  | 59.129  |        |      |       |     |     |
| MOTA | 2343 | 0   | ASN |   |     |   | -18.117  | 60.061  | 8.064  |      | 58.61 | A   | 0   |
| MOTA | 2344 | N   | ARG | Α | 335 |   | -20.105  | 59.178  | 7.488  | 1.00 | 53.76 | A   | N   |
| MOTA | 2345 | CA  | ARG | Α | 335 |   | -20.841  | 60.369  | 7.869  | 1.00 | 50.35 | A   | С   |
| MOTA | 2346 | СВ  | ARG | Α | 335 |   | -22.336  | 60.094  | 7.909  | 1.00 | 49.81 | Α   | С   |
| ATOM | 2347 | CG  | ARG |   |     |   | -22.841  | 59.568  | 9.209  | 1.00 | 48.65 | A   | С   |
|      |      |     |     |   |     |   |          | 59.398  | 9.088  |      | 49.71 | A   | Č   |
| MOTA | 2348 | CD  | ARG |   |     |   | -24.326  |         |        |      |       |     |     |
| MOTA | 2349 | NE  | ARG |   |     | • | -25.020  |         | 10.326 |      | 52.35 | A   | N   |
| MOTA | 2350 | CZ  | ARG | Α | 335 |   | -25.402  | 58.834  | 11.225 | 1.00 | 52.19 | A   | С   |
| MOTA | 2351 | NH1 | ARG | Α | 335 |   | -25.158  | 57.545  | 11.018 | 1.00 | 53.60 | A   | N   |
| ATOM | 2352 | NH2 | ARG | Α | 335 |   | -26.024  | .59.234 | 12.324 | 1.00 | 52.28 | A   | N   |
| ATOM | 2353 | С   | ARG |   |     |   | -20.416  |         | 9.184  |      | 48.36 | A   | С   |
|      |      |     |     |   |     |   |          |         | 9.954  |      | 47.98 | A   | ŏ   |
| ATOM | 2354 | 0   | ARG |   |     |   | -19.639  |         |        |      |       |     |     |
| MOTA | 2355 | N   | SER |   |     |   | -20.946  | 62.181  | 9.430  |      | 46.16 | A   | N   |
| MOTA | 2356 | CA  | SER | Α | 336 |   | :-20.612 | 62.911  | 10.626 | 1.00 | 44.75 | A   | С   |
| ATOM | 2357 | CB  | SER | Α | 336 |   | -20.382  | 64.374  | 10.270 | 1.00 | 47.04 | A   | С   |
| MOTA | 2358 | OG  | SER | Α | 336 |   | -19.308  | .64.481 | 9.351  | 1.00 | 52.24 | A   | 0   |
| ATOM | 2359 | c   | SER |   |     |   |          | 62.793  | 11.687 |      | 42.21 | A   | С   |
|      |      |     |     |   |     |   |          |         | 11.385 |      | 42.75 | A   | ō   |
| ATOM | 2360 | 0   | SER |   |     |   | -22.864  | 62.634  |        |      |       |     |     |
| MOTA | 2361 | N   | PRO |   |     |   | -21.276  | 62.854  | 12.957 |      | 39.33 | A   | N   |
| ATOM | 2362 | CD  | PRO | Α | 337 |   | -19.888  | 62.912  | 13.449 |      | 37.01 | A   | ¢   |
| MOTA | 2363 | CA  | PRO | A | 337 |   | -22.226  | 62.755  | 14.061 | 1.00 | 38.76 | A   | С   |
| ATOM | 2364 | СВ  | PRO |   |     |   | -21.350  | 62.993  | 15.280 | 1.00 | 36.77 | A   | С   |
| ATOM | 2365 | CG  | PRO |   |     |   | -20.023  | 62.444  | 14.868 |      | 36.78 | A   | С   |
|      |      |     |     |   |     |   |          |         |        |      | 39.81 | A   | Č   |
| ATOM | 2366 | C   | PRO |   |     |   | -23.317  | 63.812  | 13.949 |      |       |     |     |
| MOTA | 2367 | 0   | PRO |   |     |   | -23.032  | 64.958  | 13.604 |      | 42.91 | A   | 0   |
| MOTA | 2368 | N   | CYS | A | 338 |   | -24.567  | 63.447  | 14.203 |      | 39.33 | A   | N   |
| ATOM | 2369 | CA  | CYS | Α | 338 |   | -25.625  | 64.454  | 14.180 | 1.00 | 38.63 | A   | C   |
| MOTA | 2370 | СВ  | CYS | Α | 338 |   | -26.646  | 64.212  | 13.062 | 1.00 | 39.85 | A   | С   |
| ATOM | 2371 | SG  | CYS |   |     |   | -27.526  | 62.634  | 13.112 | 1.00 | 46.49 | A   | S   |
|      | 2372 |     | CYS |   |     |   | -26.291  | 64.407  | 15.542 |      | 37.07 | A   | С   |
| ATOM |      | C   |     |   |     |   | -26.049  | 63.490  | 16.321 |      | 36.06 | A   | ŏ   |
| MOTA | 2373 | 0   | CYS |   |     |   |          |         |        |      |       |     |     |
| MOTA | 2374 | N   | MET |   |     |   | -27.113  | 65.395  | 15.852 |      | 36.00 | A   | N   |
| MOTA | 2375 | CA  | MET | Α | 339 |   | -27.740  | 65.401  | 17.153 |      | 35.61 | A   | C   |
| ATOM | 2376 | СВ  | MET | Α | 339 |   | -28.427  | 66.737  | 17.412 | 1.00 | 33.01 | A   | С   |
| ATOM | 2377 | CG  | MET | A | 339 |   | -27.500  | 67.759  | 17.976 | 1.00 | 31.26 | A   | С   |
| ATOM | 2378 | SD  | MET |   |     |   | -26.479  | 67.017  | 19.282 | 1.00 | 33.05 | A   | s   |
| MOTA |      |     | MET |   |     |   | -27.583  | 66.823  | 20.649 |      | 29.13 | A   | Ċ   |
|      | 2379 | CE  |     |   |     |   |          |         |        |      | 37.33 | A   | č   |
| ATOM | 2380 | С   | MET |   |     |   | -28.729  | 64.271  | 17.347 |      |       |     |     |
| ATOM | 2381 | 0   | MET | Α | 339 |   | -29.301  | 64.128  | 18.422 |      | 38.32 | A   | 0   |
| ATOM | 2382 | N   | GLN | A | 340 |   | -28.930  | 63.452  | 16.322 |      | 38.89 | A   | N   |
| ATOM | 2383 | CA  | GLN |   |     |   | -29.880  | 62.359  | 16.439 | 1.00 | 39.34 | A   | С   |
| ATOM | 2384 | СВ  | GLN |   |     |   | -30.551  | 62.096  | 15.100 |      | 40.87 | Α   | С   |
|      | 2385 |     | GLN |   |     |   | -31.865  | 62.814  | 14.884 |      | 44.39 | A   | C   |
| ATOM |      | CG  | -   |   |     |   |          |         | 13.630 |      | 48.35 | A   | . č |
| MOTA | 2386 | CD  | GLN |   |     |   | -32.574  | 62.292  |        |      |       |     |     |
| MOTA | 2387 |     | GLN |   |     |   | -32.755  | 61.074  | 13.466 |      | 50.60 | A   | 0   |
| MOTA | 2388 | NE2 | GLN | A | 340 |   | -32.972  | 63.203  | 12.741 |      | 49.24 | Α   | N   |
| ATOM | 2389 | С   | GLN | A | 340 |   | -29.276  | 61.068  | 16.958 | 1.00 | 39.51 | Α   | С   |
| ATOM | 2390 | ō.  | GLN |   |     |   | -29.994  | 60.134  | 17.273 | 1.00 | 39.63 | Α   | 0   |
| ATOM | 2391 | N   | ASP |   |     |   | -27.960  | 61.002  | 17.062 |      | 41.21 | A   | N   |
|      |      |     |     |   |     |   | -27.338  | 59.778  | 17.542 |      | 42.59 | A   | Ċ   |
| MOTA | 2392 | CA  | ASP |   |     |   |          |         |        |      |       |     |     |
| ATOM | 2393 | СB  | ASP |   |     |   | -25.992  | 59.550  | 16.872 |      | 45.83 | A   | C   |
| MOTA | 2394 | CG  | ASP | A | 341 |   | -26.068  | 59.671  | 15.372 |      | 48.98 | A   | С   |
| MOTA | 2395 | OD1 | ASP | Α | 341 |   | -27.070  | 59.177  | 14.796 | 1.00 | 51.48 | A   | 0   |
|      |      |     |     |   |     |   |          |         |        |      |       |     |     |

Figure 1

| MOTA         | 2396         | OD2      | ASP        | A | 341 | -25.131            | 60.252           | 14.774           | 1.00 | 48.49          | A      | 0      |
|--------------|--------------|----------|------------|---|-----|--------------------|------------------|------------------|------|----------------|--------|--------|
| ATOM         | 2397         | С        | ASP        | A | 341 | -27.107            | 59.756           | 19.022           | 1.00 | 43.09          | A      | C      |
| ATOM         | 2398         | 0        | ASP        | A | 341 | -26.420            | 58.872           | 19.521           | 1.00 | 43.53          | A      | 0      |
| ATOM         | 2399         | N        | ARG        | A | 342 | -27.663            | 60.716           | 19.736           | 1.00 | 43.35          | A      | N      |
| ATOM         | 2400         | CA       | ARG        | A | 342 | -27.445            | 60.738           | 21.164           | 1.00 | 44.11          | A      | С      |
| ATOM         | 2401         | CB       | ARG        | Α | 342 | -27.671            | 62.159           | 21.693           | 1.00 |                | A      | С      |
| MOTA         | 2402         | CG       | ARG        | A | 342 | -27.581            | 62.303           | 23.185           |      | 42.66          | A      | C      |
| MOTA         | 2403         | CD       | ARG        | A | 342 | -26.960            | 63.596           | 23.531           | 1.00 |                | A      | C      |
| ATOM         | 2404         | NE       | ARG        |   |     | -27.755            | 64.744           | 23.108           |      | 50.90          | A      | N      |
| ATOM         | 2405         | CZ       | ARG        |   |     | -28.824            | 65.185           | 23.757           |      | 53.14          | A      | С      |
| MOTA         | 2406         |          | ARG        |   |     | -29.219            | 64.559           | 24.859           |      | 55.08          | A      | N      |
| ATOM         | 2407         |          | ARG        |   |     | -29.481            | 66.257           | 23.324           |      | 53.21          | A      | N      |
| ATOM         | 2408         | С        | ARG        |   |     | -28.320            | 59.708           | 21.888           |      | 45.09          | A      | C      |
| ATOM         | 2409         | 0        | ARG        |   |     | -27.879            | 59.088           | 22.858           |      | 45.40<br>45.20 | A<br>A | O<br>N |
| ATOM         | 2410         | N        | SER        |   |     | -29.550            | 59.524           | 21.419<br>22.024 |      | 46.54          | A      | C      |
| ATOM         | 2411         | CA       | SER        |   |     | -30.440<br>-31.814 | 58.550<br>58.635 | 21.400           |      | 49.88          | - A    | Č      |
| ATOM<br>ATOM | 2412<br>2413 | CB<br>OG | SER<br>SER |   |     | -31.694            | 58.315           | 20.029           |      | 56.25          | A      | ŏ      |
| ATOM         | 2414         | C        | SER        |   |     | -29.900            | 57.142           | 21.806           |      | 45.25          | A      | č      |
| ATOM         | 2415         | ŏ        | SER        |   |     | -30.007            | 56.284           | 22.675           |      | 47.21          | A      | o      |
| ATOM         | 2416         | N        | HIS        |   |     | -29.326            | 56.880           | 20.645           |      | 43.07          | A      | N      |
| ATOM         | 2417         | CA       | HIS        |   |     | -28.793            | 55.547           | 20.413           | 1.00 | 43.16          | A      | С      |
| ATOM         | 2418         | СВ       | HIS        |   |     | -28.761            | 55.229           | 18.922           | 1.00 | 44.79          | A      | С      |
| ATOM         | 2419         | CG       | HIS        |   |     | -30.037            | 55.567           | 18.234           | 1.00 | 48.47          | A      | С      |
| ATOM         | 2420         |          | HIS        | Α | 344 | -31.314            | 55.553           | 18.682           | 1.00 | 49.90          | A      | С      |
| MOTA         | 2421         | ND1      | HIS        | A | 344 | -30.079            | 56.106           | 16.965           | 1.00 | 49.91          | A      | N      |
| MOTA         | 2422         | CEI      | HIS        | A | 344 | -31.327            | 56.419           | 16.667           | 1.00 | 51.06          | Α.     | С      |
| ATOM         | 2423         | NE2      | HIS        | A | 344 | -32.096            | \$6.095          | 17.692           | 1.00 | 51.45          | A      | N      |
| ATOM         | 2424         | С        | HIS        | A | 344 | -27.404            | 55.438           | 20.989           |      | 41.72          | A      | С      |
| ATOM         | 2425         | 0        | HIS        | A | 344 | -26.685            | 54.484           | 20.709           |      |                | · A    | 0      |
| ATOM         | 2426         | N        | MET        | A | 345 | -27.026            | 56.421           | 21.796           |      | 39.61          | A      | N      |
| ATOM         | 2427         | CA       | MET        |   |     | -25.710            | 56.425           | 22.416           |      | 37.78          | A      | C      |
| ATOM         | 2428         | CB       | MET        |   | 345 | -24.780            | 57.365           | 21.670           |      | 34.92          | A      | C      |
| ATOM         | 2429         | CG       | MET        |   |     | -24.493            | 56.916           | 20.285           |      |                | A      | C      |
| ATOM         | 2430         | SD       | MET        |   |     | -23.616            | 58.130           | 19.357           |      |                | A      | S      |
| ATOM         | 2431         | CE       | MET        |   |     | -21.980            | 57.782           | 19.861           |      |                | A      | C<br>C |
| ATOM         | 2432         | C        | MET        |   |     | -25.779            | 56.837           | 23.880           | 1.00 |                | A      |        |
| ATOM         | 2433         | 0        | MET        |   |     | -25.201            | 57.847           | 24.283           | 1.00 |                | A<br>A | N<br>N |
| ATOM         | 2434         | N        | PRO        |   | 346 | -26.470<br>-27.069 | 56.031           | 24.702           |      | 38.34          | Ā      | Ċ      |
| ATOM         | 2435         | CD       | PRO<br>PRO |   | 346 | -26.627            | 54.728<br>56.300 | 26.131           |      | 38.00          | A      | č      |
| ATOM<br>ATOM | 2436<br>2437 | CA<br>CB | PRO        |   | 346 | -27.457            | 55.115           | 26.611           |      | 37.86          | A      | č      |
| ATOM         | 2438         | CG       | PRO        |   | 346 | -27.028            | 54.026           | 25.692           |      | 38.00          | A      | č      |
| ATOM         | 2439         | C        | PRO        |   |     | -25.328            | 56.413           | 26.890           |      | 36.76          | A      | C      |
| ATOM         | 2440         | Ö        | PRO        |   | 346 | -25.232            | 57.176           | 27.851           |      | 37.92          | A      | ō      |
| ATOM         | 2441         | N        | TYR        |   | 347 | -24.325            | 55.658           | 26.466           |      | 34.31          | A      | N      |
| ATOM         | 2442         | CA       | TYR        |   | 347 | -23.067            | 55.699           | 27.179           |      | 32.48          | A      | С      |
| ATOM         | 2443         | СВ       | TYR        |   | 347 | -22.189            | 54.545           | 26.762           | 1.00 | 31.22          | A      | С      |
| ATOM         | 2444         | CG       | TYR        |   | 347 | -20.948            | 54.472           | 27.589           | 1.00 | 31.44          | A      | С      |
| ATOM         | 2445         |          | TYR        |   | 347 | -20.962            | 53.884           | 28.843           | 1.00 | 31.31          | A      | С      |
| ATOM         | 2446         | CEI      | TYR        | A | 347 | -19.824            | 53.856           | 29.628           |      | 32.58          | A      | С      |
| ATOM         | 2447         | CD2      | TYR        | Α | 347 | -19.767            | 55.031           | 27.137           |      | 31.92          | A      | С      |
| ATOM         | 2448         | CE2      | TYR        | A | 347 | -18.627            | 55.010           | 27.911           |      | 33.53          | A      | C      |
| ATOM         | 2449         | CZ       | TYR        | A | 347 | -18.655            | 54.421           | 29.157           |      | 33.11          | A      | c      |
| MOTA         | 2450         | OH       | TYR        |   |     | -17.506            | 54.383           | 29.919           |      | 33.32          | A      | 0      |
| MOTA         | 2451         | С        | TYR        |   |     | -22.324            | 57.013           | 26.963           |      | 31.71          | A      | С      |
| MOTA         | 2452         | 0        |            |   | 347 | -21.775            | 57.595           | 27.907           |      | 31.15          | A      | 0      |
| ATOM         | 2453         | N        | THR        |   |     | -22.295            | 57.465           | 25.713           |      | 30.20          | A      | N      |
| MOTA         | 2454         | CA       | THR        |   |     | -21.630            | 58.714           | 25.369           |      | 28.31          | A<br>A | C .    |
| ATOM         | 2455         | CB       | THR        |   |     | -21.644            | 58.947           | 23.880           |      | 26.89<br>30.47 | A      | C<br>O |
| ATOM         | 2456         |          | THR        |   |     | -20.993            | 57.852           | 23.234           |      | 22.83          | A      | Č      |
| ATOM         | 2457         |          | THR        |   |     | -20.940            | 60.233           |                  |      | 28.63          | Ä      | č      |
| ATOM         | 2458         | C        | THR        |   |     | -22.401            | 59.839           | 26.025<br>26.689 |      | 29.24          | A      | Ö      |
| ATOM         | 2459         | 0        | THR        |   |     | -21.835<br>-23.711 | 60.709<br>59.814 | 25.834           |      | 28.11          | A      | N      |
| ATOM         | 2460         | N        | ASP<br>ASP |   |     | -23.711            | 60.811           | 26.436           |      | 26.94          | . A    | č      |
| ATOM         | 2461<br>2462 | CA       | ASP        |   |     | -24.336            | 60.452           | 26.298           |      | 28.71          | A      | č      |
| ATOM<br>ATOM | 2462         | CB<br>CG | ASP        |   |     | -26.950            | 61.652           | 26.527           |      | 31.24          | A      | č      |
| ATOM         | 2463         |          | ASP        |   |     | -26.501            | 62.637           | 27.158           |      | 31.78          | A      | ŏ      |
| ATOM         | 2465         |          | ASP        |   |     | -28.130            | 61.610           | 26.084           |      | 32.29          | A      | ŏ      |
| ATOM         | 2466         | C        |            |   | 349 | -24.187            | 60.789           | 27.898           |      | 26.55          | A      | č      |
| ATOM         | 2467         | Ö        |            |   | 349 | -24.111            | 61.836           | 28.533           |      | 27.03          | A      | ō      |
| ATOM         | 2468         | N        |            |   | 350 | -23.929            | 59.606           | 28.445           |      | 25.81          | A      | N      |
| ATOM         | 2469         | CA       |            |   | 350 | -23.578            | 59.553           | 29.863           |      | 26.75          | A      | С      |
| ATOM         | 2470         | СВ       |            |   | 350 | -23.459            | 58.138           | 30.330           | 1.00 | 27.09          | A      | С      |
|              |              |          |            |   |     |                    |                  |                  |      |                |        |        |

Figure 1

| ATOM         | 2471         | С        | ALA | A | 350 | -22.305            | 60.297           | 30.203           | 1.00 | 26.95          |       | A      | С      |
|--------------|--------------|----------|-----|---|-----|--------------------|------------------|------------------|------|----------------|-------|--------|--------|
| ATOM         | 2472         | ō        | ALA |   |     | -22.284            | 61.088           | 31.144           | 1.00 | 25.94          |       | Α      | 0      |
| ATOM         | 2473         | N        | VAL |   |     | -21.243            | 60.039           | 29.447           | 1.00 | 26.06          |       | A      | N      |
| ATOM         | 2474         | CA       | VAL | A | 351 | -19.983            | 60.699           | 29.720           | 1.00 | 24.87          |       | A      | С      |
| ATOM         | 2475         | CB       | VAL | A | 351 | -18.935            | 60.353           | 28.681           |      | 25.78          |       | A      | C      |
| ATOM         | 2476         | CG1      | VAL | A | 351 | -17.689            | 61.209           | 28.906           |      | 26.61          |       | A      | С      |
| ATOM         | 2477         | CG2      | VAL | A | 351 | -18.583            | 58.886           | 28.789           |      | 26.54          |       | A      | ¢      |
| ATOM         | 2478         | С        | VAL | A | 351 | -20.109            | 62.206           | 29.774           |      | 24.60          |       | A      | С      |
| MOTA         | 2479         | 0        | VAL |   |     | -19.666            | 62.843           | 30.741           |      | 24.32          |       | A      | 0      |
| ATOM         | 2480         | N        | VAL |   |     | -20.717            | 62.776           | 28.738           |      | 21.28          |       | A      | N      |
| ATOM         | 2481         | CA       | VAL |   |     | -20.872            | 64.216           | 28.686           |      | 18.55          |       | A      | C      |
| ATOM         | 2482         | СВ       | VAL |   |     | -21.672            | 64.626           | 27.485           |      | 17.26          |       | A      | C      |
| ATOM         | 2483         |          | VAL |   |     | -21.809            | 66.142           | 27.442           |      | 13.51<br>16.99 |       | A<br>A | C      |
| MOTA         | 2484         |          | VAL |   |     | -20.995            | 64.090           | 26.252<br>29.944 |      | 18.84          |       | A      | c      |
| ATOM         | 2485         | C        | VAL |   |     | -21.519<br>-21.030 | 64.755<br>65.716 | 30.538           |      | 19.12          |       | A      | Ö      |
| ATOM<br>ATOM | 2486<br>2487 | И        | HIS |   |     | -22.618            | 64.144           | 30.360           |      | 18.05          |       | A      | N      |
| ATOM         | 2488         | CA       | HIS |   |     | -23.272            | 64.582           | 31.583           |      | 18.26          |       | A      | Ċ      |
| ATOM         | 2489         | СВ       | HIS |   |     | -24.474            | 63.699           | 31.882           |      | 15.92          |       | A      | Ċ      |
| ATOM         | 2490         | CG       | HIS |   |     | -25.655            | 64.011           | 31.033           | _    | 15.03          |       | A      | C      |
| ATOM         | 2491         |          | HIS |   |     | -25.869            | 63.827           | 29.710           | 1.00 | 16.27          |       | A      | С      |
| ATOM         | 2492         |          | HIS |   |     | -26.735            | 64.724           | 31.503           | 1.00 | 14.53          |       | A      | N      |
| ATOM         | 2493         | CE1      | HIS | A | 353 | -27.556            | 64.976           | 30.501           | 1.00 | 17.38          |       | A      | С      |
| MOTA         | 2494         | NE2      | HIS | A | 353 | -27.052            | 64.445           | 29.400           | 1.00 | 16.37          |       | A      | N      |
| MOTA         | 2495         | С        | HIS | A | 353 | -22.279            | 64.503           | 32.734           | 1.00 | 20.12          |       | A      | C      |
| ATOM         | 2496         | 0        | HIS | A | 353 | -22.063            | 65.487           | 33.439           | 1.00 | 20.35          |       | A      | Ο.     |
| MOTA         | 2497         | N        | GLU | A | 354 | -21.655            | 63.331           | 32.893           |      | 21.58          |       | A      | N      |
| ATOM         | 2498         | CA       | GLU |   |     | -20.682            | 63.093           | 33.968           |      | 22.01          |       | A      | С      |
| ATOM         | 2499         | CB       | GLU |   |     | -20.084            | 61.663           | 33.889           |      | 22.14          | · · · | Α      | Ç      |
| ATOM         | 2500         | CG       | GLU |   |     | -19.168            | 61.230           | 35.086           |      | 20.91          |       | Α      | -      |
| ATOM         | 2501         | CD       | GLU |   |     | -19.850            | 61.364           | 36.428           |      | 22.70          |       | A      |        |
| ATOM         | 2502         |          | GLU |   |     | -21.046            | 61.652           | 36.404           |      |                | f     | A      | 0      |
| ATOM         | 2503         |          | GLU |   |     | -19.218            | 61.191           | 37.503           |      | 23.82          |       | A<br>A | 0      |
| ATOM         | 2504         | C        | GLU |   |     | -19.556            | 64.120           | 34.015           |      | 22.30          |       |        | C.     |
| ATOM         | 2505         | 0        | GLU |   |     | -19.048            | 64.420           | 35.100           |      | 23.86          |       | A      | N<br>N |
| ATOM         | 2506         | N<br>Cr  | VAL |   |     | -19.159<br>-18.109 | 64.657           | 32.864<br>32.859 |      | 20.22          |       | A:     | ·C     |
| ATOM         | 2507<br>2508 | CA<br>CB | VAL |   | 355 | -17.629            | 65.666<br>65.953 | 31.430           |      | 19.23          |       | A      | C      |
| MOTA<br>MOTA | 2509         |          | VAL |   |     | -16.570            | 67.026           | 31.458           |      | 20.32          |       | ·A     | č      |
| ATOM         | 2510         |          | VAL |   |     | -17.084            | 64.687           | 30.824           |      | 18.88          |       | A.     | č      |
| ATOM         | 2511         | C        |     |   | 355 | -18.689            | 66.942           | 33.505           |      | 19.51          |       | Α      | č      |
| ATOM         | 2512         | ŏ        | VAL |   |     | -18.198            | 67.429           | 34.525           |      | 18.69          |       | A      | ō      |
| ATOM         | 2513         | N        | GLN |   |     | -19.765            | 67.448           | 32.925           |      | 18.09          |       | A      | N      |
| ATOM .       | 2514         | CA       | GLN |   |     | -20.411            | 68.615           | 33.459           |      | 18.35          |       | A      | C      |
| ATOM         | 2515         | CB       | GLN |   |     | -21.747            | 68.834           | 32.752           | 1.00 | 18.58          |       | A      | С      |
| ATOM         | 2516         | CG       | GLN | A | 356 | -21.556            | 69.163           | 31.290           | 1.00 | 18.28          |       | A      | С      |
| MOTA         | 2517         | CD       | GLN | A | 356 | -22.723            | 69.873           | 30.686           | 1.00 | 19.53          |       | A      | С      |
| MOTA         | 2518         | OE1      | GLN | A | 356 | -23.478            | 69.290           | 29.924           | 1.00 | 22.44          |       | A      | 0      |
| ATOM         | 2519         | NE2      | GLN | A | 356 | -22.878            | 71.146           | 31.013           | 1.00 | 16.13          |       | A      | N      |
| ATOM         | 2520         | C        | GLN | A | 356 | -20.632            | 68.528           | 34.969           |      | 18.52          |       | A      | С      |
| ATOM         | 2521         | 0        | GLN |   |     | -20.402            | 69.496           | 35.687           |      | 19.07          |       | A      | 0      |
| ATOM         | 2522         | N        |     |   | 357 | -21.073            | 67.372           | 35.450           |      | 18.88          |       | A      | N      |
| ATOM         | 2523         | CA       | ARG |   |     | -21.336            | 67.185           | 36.872           |      | 20.61          |       | A      | C      |
| ATOM         | 2524         | CB       | ARG |   |     | -22.145            | 65.906           | 37.105           |      | 20.39          |       | A      | С      |
| ATOM         | 2525         | CG       | ARG |   |     | -22.581            | 65.727           | 38.558           |      | 18.60<br>16.56 |       | A      | C      |
| ATOM         | 2526         | CD       | ARG |   |     | -22.658<br>-21.339 | 64.282           | 38.926           |      | 19.70          |       | A<br>A | N      |
| ATOM         | 2527         | NE       | ARG |   |     | -20.503            | 63.655<br>63.630 | 38.923<br>39.958 |      | 21.07          |       | A      | C      |
| ATOM         | 2528         | CZ       | ARG |   | 357 | -19.320            | 63.027           | 39.837           |      | 18.02          |       | A      | N      |
| MOTA<br>MOTA | 2529<br>2530 |          | ARG |   |     | -20.855            | 64.199           | 41.108           |      | 22.37          |       | A      | N      |
| ATOM         | 2531         | C        |     |   | 357 | -20.033            | 67.097           | 37.704           |      | 22.06          |       | A      | Ċ      |
| ATOM         | 2532         | Ö        | ARG |   |     | -20.029            | 67.582           | 38.828           |      | 22.77          |       | A      | ō      |
| ATOM         | 2533         | N        |     |   | 358 | -19.067            | 66.447           | 37.149           |      | 23.97          |       | A      | N      |
| ATOM         | 2534         | CA       |     |   | 358 | -17.822            | 66.257           | 37.857           |      | 25.69          |       | A      | C      |
| ATOM         | 2535         | СВ       |     |   | 358 | -16.987            | 65.179           | 37.158           | 1.00 | 25.51          |       | Α      | C      |
| MOTA         | 2536         | CG       |     |   | 358 | -15.600            | 65.014           | 37.727           |      | 27.13          |       | A      | č      |
| ATOM         | 2537         |          | TYR |   |     | -14.528            | 65.704           | 37.181           |      | 28.47          |       | A      | С      |
| ATOM         | 2538         |          | TYR |   |     | -13.252            | 65.576           | 37.697           |      | 28.33          |       | A      | С      |
| ATOM         | 2539         |          | TYR |   |     | -15.358            | 64.186           | 38.815           |      | 27.13          |       | A      | С      |
| ATOM         | 2540         |          | TYR |   |     | -14.076            | 64.052           | 39.343           |      | 27.59          |       | A      | С      |
| MOTA         | 2541         | CZ       |     |   | 358 | -13.034            | 64.753           | 38.775           |      | 28.41          |       | A      | С      |
| MOTA         | 2542         | ОН       |     |   | 358 | -11.760            | 64.649           | 39.280           |      | 31.05          |       | Α      | 0      |
| MOTA         | 2543         | С        |     |   | 358 | -17.048            | 67.549           | 37.975           |      | 25.71          |       | A      | С      |
| ATOM         | 2544         | 0        |     |   | 358 | -16.709            | 67.977           | 39.076           |      | 26.05          |       | A      | 0      |
| MOTA         | 2545         | N        | ILE | A | 359 | -16.811            | 68.194           | 36.839           | 1.00 | 25.69          |       | Α      | N      |

| ATOM | 2546  | CA  | ILE | Α | 359  | -16.030 | 69.423             | 36.822 | 1.00 | 25.38 |   | A | С   |
|------|-------|-----|-----|---|------|---------|--------------------|--------|------|-------|---|---|-----|
| MOTA | 2547  | СВ  | ILE | А | 359  | -15.702 | 69.850             | 35.401 | 1.00 | 24.89 |   | Α | С   |
| ATOM | 2548  |     | ILE |   |      | -15.209 | 68.642             | 34.641 | 1.00 | 26.83 |   | Α | С   |
|      |       |     |     |   |      |         | 70.507             |        |      | 24.77 |   | A | Č   |
| ATOM | 2549  |     | ILE |   |      | -16.920 |                    | 34.735 |      |       |   |   |     |
| ATOM | 2550  | CDI | ILE | A | 359  | -16.673 | 70.941             | 33.278 |      | 21.25 |   | A | С   |
| ATOM | 2551  | С   | ILE | Α | 359  | -16.648 | 70.591             | 37.539 | 1.00 | 25.68 |   | A | С   |
| MOTA | 2552  | 0   | ILE | A | 359  | -15.960 | 71.410             | 38.133 | 1.00 | 27.67 |   | A | 0   |
|      | 2553  | N   | ASP |   | 360  | -17.955 | 70.695             | 37.471 |      | 25.88 |   | Α | N   |
| ATOM |       |     |     |   |      |         |                    |        |      |       |   |   | Ċ   |
| MOTA | 2554  | CA  | ASP |   | 360  | -18.615 | 71.783             | 38.152 |      | 24.83 |   | A |     |
| MOTA | 2555  | CB  | ASP | Α | 360  | -18.676 | 71.472             | 39.624 | 1.00 | 25.20 |   | A | С   |
| ATOM | 2556  | CG  | ASP | A | 360  | -19.372 | 72.543             | 40.371 | 1.00 | 29.82 |   | A | С   |
| MOTA | 2557  |     | ASP | Α | 360  | -19.341 | 72.532             | 41.632 | 1.00 | 29.12 |   | A | 0   |
|      | 2558  |     | ASP |   |      | -19.953 | 73.412             | 39.662 |      | 29.97 |   | A | 0   |
| ATOM |       |     |     |   |      |         |                    |        |      |       |   |   | č   |
| ATOM | 2559  | С   | ASP |   | 360  | -17.942 | 73.141             | 37.945 |      | 22.66 |   | A |     |
| ATOM | 2560  | 0   | ASP | Α | 360  | -17.342 | 73.683             | 38.852 |      | 24.04 |   | A | 0   |
| ATOM | 2561  | N   | LEU | Α | 361  | -18.082 | 73.687             | 36.745 | 1.00 | 22.58 |   | A | N   |
| MOTA | 2562  | CA  | LEU | Α | 361  | -17.496 | 74.964             | 36.350 | 1.00 | 20.37 |   | Α | С   |
| ATOM | 2563  | CB  | LEU |   | 361  | -17.687 | 75.132             | 34.850 |      | 16.71 | • | A | С   |
|      |       |     |     |   |      |         |                    |        |      |       |   |   | č   |
| ATOM | 2564  | CG  | LEU |   |      | -16.424 | 74.804             | 34.042 |      | 18.53 |   | A |     |
| MOTA | 2565  | CD1 | LEU | A | 361  | -15.647 | 73.690             | 34.725 | 1.00 | 16.78 |   | A | С   |
| ATOM | 2566  | CD2 | LEU | Α | 361. | -16.778 | 74.471             | 32.589 | 1.00 | 16.10 |   | A | С   |
| ATOM | 2567  | Ċ   | LEU | A | 3'61 | -17.928 | 76.241             | 37.069 | 1.00 | 20.79 |   | A | С   |
| ATOM | 2568  | ō   | LEU |   |      | -17.144 | 77.167             | 37.180 |      | 22.24 |   | A | 0   |
|      |       |     |     |   |      |         |                    |        |      | 21.92 |   |   | N   |
| ATOM | 2569  | N   | LEU |   |      | -19.174 | 76.291             | 37.523 |      |       |   | A |     |
| ATOM | 2570  | CA  | LEU | Α | 362  | -19.727 | 77.435             | 38.238 |      | 22.97 |   | A | С   |
| ATOM | 2571  | CB  | LEU | Α | 362  | -20.890 | 78.03 <del>9</del> | 37.455 | 1.00 | 21.35 |   | A | С   |
| ATOM | 2572  | CG  | LEU |   |      | -20.575 | 78.660             | 36.105 | 1.00 | 20.42 |   | Α | C   |
|      |       |     | LEU |   |      | -19.106 | 78.928             | 36.044 |      | 23.19 |   | A | Ċ   |
| ATOM | 2573  |     |     |   |      |         |                    |        |      |       |   |   |     |
| ATOM | 2574  |     | LEU |   | 362  | -20.958 | 77.729             | 34,985 |      | 22.71 |   | A | C   |
| ATOM | 2575  | С   | LEU | Α | 362  | -20.263 | 76.979             | 39.606 | 1.00 | 25.55 |   | A | С   |
| ATOM | 257.6 | 0   | LEU | Α | 362  | -21.470 | 77.047             | 39.847 | 1.00 | 25.88 |   | A | 0   |
| MOTA | 2577  | N   | PRO | A | 363  | -19.377 | 76.528             | 40.520 | 1.00 | 26.02 |   | Α | N   |
|      | 2578  | CD  | PRO |   |      | -17.912 | 76.635             | 40.484 |      | 26.25 |   | A | С   |
| ATOM |       |     |     |   |      |         |                    |        |      |       |   |   |     |
| MOTA | 2579  | CA  | PRO |   |      | -19.813 | 76.069             | 41.839 |      | 26.66 |   | A | С   |
| MOTA | 2580  | CB  | PRO | A | 363  | ~18.520 | 76.054             | 42.649 | 1.00 | 26.82 |   | A | C   |
| ATOM | 2581  | CG  | PRO | Α | 363  | -17.612 | 76.992             | 41.904 | 1.00 | 27.65 |   | A | C · |
| ATOM | 2582  | С   | PRO | A | 363  | -20.933 | 76.878             | 42.490 | 1.00 | 27.85 |   | A | C   |
| ATOM | 2583  | ō   | PRO |   | 363  | -21.547 | 76.441             | 43.473 |      | 27.91 |   | A | ο.  |
|      |       |     |     |   |      |         |                    |        |      |       |   | A | N   |
| ATOM | 2584  | N   | THR |   |      | -21.172 | 78.070             | 41.960 |      | 29.09 |   |   |     |
| ATOM | 2585  | CA  | THR | Α | 364  | -22.264 | 78.950             | 42.399 |      | 31.60 |   | A | С.  |
| ATOM | 2586  | CB  | THR | Α | 364  | -21.822 | 79.949             | 43.488 | 1.00 | 31.15 |   | A | С   |
| MOTA | 2587  | OG1 | THR | A | 364  | -20.532 | 80.469             | 43.177 | 1.00 | 34.37 |   | Α | 0   |
| ATOM | 2588  |     | THR |   |      | -21.769 | 79.282             | 44.836 |      | 31.76 |   | A | С   |
|      |       |     |     |   |      |         |                    |        |      | 33.11 |   | A | č   |
| ATOM | 2589  | С   | THR |   |      | -22.571 | 79.692             | 41.111 |      |       |   |   |     |
| ATOM | 2590  | 0   | THR | Α | 364  | -21.807 | 80.566             | 40.712 |      | 38.84 |   | A | 0   |
| ATOM | 2591  | N   | SER | Α | 365  | -23.645 | 79.336             | 40.419 | 1.00 | 31.72 |   | Α | N   |
| ATOM | 2592  | CA  | SER | Α | 365  | -23.928 | 79.999             | 39.150 | 1.00 | 31.29 |   | A | С   |
| ATOM | 2593  | СВ  | SER |   |      | -25.284 | 79.514             | 38.606 |      | 30.31 |   | A | С   |
|      |       |     |     |   |      |         |                    | 38.996 |      | 29.75 |   | A | ŏ   |
| ATOM | 2594  | OG  | SER |   |      | -26.356 | 80.346             |        |      |       |   |   |     |
| ATOM | 2595  | С   | SER |   |      | -23.907 | 81.523             | 39.360 |      | 31.52 |   | Α | C   |
| ATOM | 2596  | 0   | SER | Α | 365  | -23.773 | 81.980             | 40.495 | 1.00 | 35.37 |   | Α | 0   |
| MOTA | 2597  | N   | LEU | Α | 366  | -24.024 | 82.317             | 38.301 | 1.00 | 29.61 |   | A | N   |
| ATOM | 2598  | CA  | LEU |   | 366  | -24.022 | 83.776             | 38.463 | 1.00 | 28.76 |   | Α | С   |
|      | 2599  | CB  | LEU |   |      | -24.446 | 84.465             | 37.149 |      | 28.55 |   | A | С   |
| ATOM |       |     |     |   |      |         |                    |        |      | 27.30 |   | A | Č   |
| MOTA | 2600  | CG  | LEU |   |      | -23.663 | 84.124             | 35.868 |      |       |   |   | c   |
| ATOM | 2601  |     | LEU |   |      | -23.996 | 85.070             | 34.718 |      | 27.44 |   | A | -   |
| ATOM | 2602  | CD2 | LEU | Α | 366  | -22.204 | 84.198             | 36.176 |      | 27.91 |   | A | С   |
| MOTA | 2603  | С   | LEU |   |      | -25.012 | 84.129             | 39.590 | 1.00 | 28.35 |   | A | С   |
| ATOM | 2604  | ō   |     |   | 366  | -26.017 | 83.442             | 39.744 | 1.00 | 29.01 |   | A | 0   |
|      |       |     |     |   |      |         |                    | 40.397 |      | 26.71 |   | A | N   |
| ATOM | 2605  | N   | PRO |   |      | -24.729 | 85.183             |        |      |       |   |   |     |
| MOTA | 2606  | CD  | PRO |   |      | -23.508 | 85.988             | 40.284 |      | 25.97 |   | Α | С   |
| MOTA | 2607  | CA  | PRO | A | 367  | -25.529 | 85.679             | 41.521 |      | 26.25 |   | A | С   |
| ATOM | 2608  | CB  | PRO | Α | 367  | -24.760 | 86.903             | 41.985 | 1.00 | 24.20 |   | Α | С   |
| ATOM | 2609  | CG  | PRO |   |      | -23.391 | 86.587             | 41.666 | 1.00 | 23.29 |   | Α | С   |
|      |       |     | PRO |   |      | -26.940 | 86.053             | 41.142 |      | 27.98 |   | A | Ċ   |
| ATOM | 2610  | C   |     |   |      |         |                    |        |      |       |   |   |     |
| MOTA | 2611  | 0   | PRO |   |      | -27.189 | 86.474             | 40.021 |      | 27.89 |   | A | 0   |
| MOTA | 2612  | N   | HIS | A | 368  | -27.853 | 85.916             | 42.098 |      | 29.89 |   | Α | N   |
| MOTA | 2613  | CA  | HIS | A | 368  | -29.256 | 86.242             | 41.898 | 1.00 | 31.37 |   | Α | С   |
| MOTA | 2614  | СВ  | HIS |   |      | -30.128 | 85.008             | 42.172 | 1.00 | 31.05 |   | Α | С   |
| ATOM | 2615  | CG  | HIS |   |      | -30.040 | 83.932             | 41.121 |      | 30.63 |   | A | č   |
|      |       |     |     |   |      |         |                    |        |      | 29.68 |   |   |     |
| MOTA | 2616  |     | HIS |   |      | -29.099 | 82.984             | 40.879 |      |       |   | A | C   |
| ATOM | 2617  | NDl | HIS | Α | 368  | -31.018 | 83.743             | 40.167 |      | 30.15 |   | Α | N   |
| MOTA | 2618  | CE1 | HIS | Α | 368  | -30.680 | 82.733             | 39.384 | 1.00 | 27.57 |   | Α | C   |
| MOTA | 2619  |     | HIS |   |      | -29.521 | 82.254             | 39.794 | 1.00 | 25.29 |   | Α | N   |
| ATOM | 2620  | C   | HIS |   |      | -29.616 | 87.371             | 42.873 |      | 33.69 |   | A | Ċ   |
| HIOM | 2020  | -   | ura | ~ | 200  | -23.010 | 31.311             |        |      |       |   | - | _   |

| MOTA         | 2621         | 0        | HIS        | Α | 368        | -28.752            | 87.912           | 43.563           | 1.00 | 34.02          | A      | 0      |
|--------------|--------------|----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|--------|--------|
| MOTA         | 2622         | N        | ALA        | A | 369        | -30.894            | 87.723           | 42.929           | 1.00 | 35.79          | A      | N      |
| MOTA         | 2623         | CA       |            |   | 369        | -31.365            | 88.778           | 43.819           |      | 37.21          | A      | C      |
| ATOM         | 2624         | СВ       |            |   | 369        | -30.875            | 90.133           | 43.322           |      | 35.38          | A      | C      |
| MOTA<br>MOTA | 2625<br>2626 | 0        |            |   | 369<br>369 | -32.891<br>-33.503 | 88.727<br>88.753 | 43.811<br>42.742 |      | 39.20<br>40.02 | A<br>A | C<br>O |
| MOTA         | 2627         | N        |            |   | 370        | -33.506            | 88.633           | 44.988           |      | 41.55          | A      | N      |
| ATOM         | 2628         | CA       |            |   | 370        | -34.969            | 88.588           | 45.064           |      | 44.82          | Α      | Ċ      |
| ATOM         | 2629         | СВ       | VAL        |   | 370        | -35.455            | 88.325           | 46.496           | 1.00 | 44.24          | A      | С      |
| ATOM         | 2630         |          | VAL        |   |            | -34.939            | 86.976           | 46.979           |      | 43.13          | A      | С      |
| MOTA         | 2631         |          | VAL        |   |            | -34.983            | 89.427           | 47.409           |      | 44.26          | A      | C      |
| MOTA         | 2632         | C        | VAL        |   | 370        | -35.575            | 89.900           | 44.579           |      | 46.76          | A      | C      |
| MOTA<br>MOTA | 2633<br>2634 | о<br>И   | VAL        |   | 371        | -34.945<br>-36.794 | 90.945<br>89.843 | 44.679<br>44.054 |      | 47.48          | A<br>A | O<br>N |
| ATOM         | 2635         | CA       |            |   | 371        | -37.470            | 91.040           | 43.544           |      | 52.61          | A      | č      |
| ATOM         | 2636         | СВ       | THR        |   |            | -38.089            | 90.777           | 42.177           |      | 53.22          | A      | Č      |
| MOTA         | 2637         | OG1      | THR        | A | 371        | -37.765            | 89.441           | 41.761           | 1.00 | 52.18          | A      | 0      |
| MOTA         | 2638         | CG2      |            |   |            | -37.594            | 91.815           | 41.159           |      | 54.60          | A      | C      |
| MOTA         | 2639         | C        | THR        |   |            | -38.613            | 91.479           | 44.436           |      | 54.39          | A      | C      |
| MOTA<br>MOTA | 2640<br>2641 | O<br>N   | THR        |   |            | -39.418<br>-38.681 | 92.322<br>90.882 | 44.054<br>45.614 |      | 53.90<br>57.58 | A<br>A | O<br>N |
| MOTA         | 2642         | CA       |            |   | 372        | -39.739            | 91.151           | 46.562           |      | 61.26          | A      | č      |
| ATOM         | 2643         | CB       | CYS        |   |            | -40.893            | 90.174           | 46.366           |      | 62.07          | A      | Č      |
| MOTA         | 2644         | SG       | CYS        |   |            | -41.784            | 90.268           | 44.816           | 1.00 | 66.07          | A      | ·s     |
| ATOM         | 2645         | С        |            |   | 372        | -39.189            | 90.893           | 47.933           |      | 63.31          | A      | С      |
| MOTA         | 2646         | 0        | CYS        |   | -          | -38.034            | 90.507           | 48.088           |      | 64.75          | A      | 0      |
| MOTA         | 2647         | N        |            |   | 373        | -40.037            | 91.062           | 48.933           |      | 64.45          | A      | N<br>C |
| MOTA<br>MOTA | 2648<br>2649 | CA<br>CB | ASP        |   | 373<br>373 | -39.601<br>-40.192 | 90.804<br>91.832 | 50.281<br>51.230 |      | 66.44          | A<br>A | c      |
| ATOM .       |              | CG       |            |   | 373        | -39.449            | 93.130           | 51.184           |      | 67.17          | A      | č      |
| ATOM.        | 2651         |          | ASP        |   |            | -39.015            | 93.508           | 50.079           |      | 67.20          | A      | Ö      |
| ATOM         | 2652         | OD2      | ASP        | A | 373        | -39.294            | 93.769           | 52.245           | 1.00 | 69.25          | A      | 0      |
| ATOM         | 2653         | C:       | ASP        | A | 373        | -40.024            | 89.413           | 50.684           |      | 65.78          | A      | С      |
| ATOM :       | 2654         | Ο.       | ASP        |   |            | -40.512            | 89.209           | 51.793           |      | 67.57          | A      | 0      |
| ATOM ,       | •            | N ·      | ILE        |   |            | -39.820            | 88.446           | 49.797           |      | 64.68          | A<br>A | N<br>C |
| MOTA<br>MOTA | 2656<br>2657 | CA<br>CB | ILE        |   | 374        | -40.209<br>-39.773 | 87.078<br>86.096 | 50.107<br>48.987 |      | 62.54          | A      | c      |
| ATOM         | 2658         |          | ILE        |   |            | -40.358            | 86.523           | 47.669           |      | 62.77          | A      | č      |
| MOTA         | 2659         |          | ILE        |   | 374        | -38.257            | 86.074           | 48.846           |      | 61.31          | Α      | С      |
| MOTA         | 2660         | CD1      | ILE        | A | 374        | -37.582            | 85.110           | 49.753           |      | 61.00          | A      | С      |
| ATOM         | 2661         | С        | ILE        |   |            | -39.639            | 86.594           | 51.442           |      | 65.35          | A      | C      |
| ATOM         | 2662         | 0        | ILE        |   |            | -38.630            | 87.110           | 51.933           |      | 65.09          | A<br>A | O<br>N |
| MOTA<br>MOTA | 2663<br>2664 | N<br>CA  | LYS        |   |            | -40.320<br>-39.882 | 85.620<br>85.032 | 52.037<br>53.293 |      | 65.89          | A      | C      |
| ATOM         | 2665         | CB       |            |   | 375        | -40.947            | 85.182           | 54.391           |      | 67.20          | A      | Č      |
| ATOM         | 2666         | CG       | LYS        |   |            | -42.383            | 84.963           | 53.927           |      | 69.15          | Α      | С      |
| ATOM         | 2667         | CD       | LYS        | A | 375        | -42.899            | 86.154           | 53.111           |      | 70.92          | A      | С      |
| ATOM         | 266B         | CE       | LYS        |   | 375        | -43.100            | 87.389           | 54.007           |      | 72.48          | Α      | C      |
| MOTA         | 2669         | NZ       | LYS        |   |            | -43.509            | 88.634           | 53.269           |      | 72.49<br>66.05 | A<br>A | Ŋ      |
| ATOM<br>ATOM | 2670<br>2671 | С<br>0   | LYS<br>LYS |   | 375        | -39.599<br>-40.356 | 83.562<br>82.687 | 53.041<br>53.439 |      | 68.24          | A      | 0      |
| ATOM         | 2672         | N        |            |   | 376        | -38.503            | 83.294           | 52.358           |      | 64.23          | A      | N      |
| ATOM         | 2673         | CA       |            |   | 376        | -38.137            | 81.930           | 52.057           |      | 62.63          | A      | С      |
| ATOM         | 2674         | СВ       |            |   | 376        | -36.793            | 81.918           | 51.352           |      | 59.42          | A      | С      |
| MOTA         | 2675         | CG       | PHE        |   |            | -36.400            | 80.586           | 50.843           |      | 55.85          | Α      | Ċ      |
| ATOM         | 2676         |          | PHE        |   |            | -37.135            | 79.970           | 49.844           |      | 55.27          | A      | C      |
| MOTA         | 2677         |          | PHE        |   |            | -35.291<br>-36.766 | 79.944<br>78.728 | 51.359<br>49.368 |      | 54.53<br>55.27 | A<br>A | C      |
| ATOM<br>MOTA | 2678<br>2679 |          | PHE        |   |            | -34.914            | 78.726           | 50.896           |      | 53.88          | A      | č      |
| ATOM         | 2680         | CZ       |            |   | 376        | -35.649            | 78.100           | 49.898           |      | 55.99          | A      | Ċ      |
| ATOM         | 2681         | c        | PHE        |   |            | -38.062            | 81.091           | 53.329           |      | 63.77          | A      | С      |
| ATOM         | 2682         | 0        |            |   | 376        | -37.437            | 81.497           | 54.312           |      | 63.38          | Α      | 0      |
| MOTA         | 2683         | N        | ARG        |   |            | -38.693            | 79.918           | 53.300           |      | 65.04          | A      | N      |
| MOTA         | 2684         | CA       | ARG        |   |            | -38.701            | 79.024           | 54.451           |      | 65.51<br>63.50 | A<br>A | C<br>C |
| ATOM         | 2685         | CB       | ARG        |   |            | -37.270<br>-36.596 | 78.646<br>77.687 | 54.825<br>53.848 |      | 61.32          | A      | c      |
| ATOM<br>ATOM | 2686<br>2687 | CG<br>CD | ARG<br>ARG |   |            | -36.948            | 76.263           | 54.207           |      | 58.82          | A      | c      |
| MOTA         | 2688         | NE       | ARG        |   |            | -35.901            | 75.282           | 53.938           |      | 55.06          | A      | N      |
| ATOM         | 2689         | CZ       | ARG        |   |            | -35.612            | 74.810           | 52.733           |      | 53.84          | A      | C      |
| ATOM         | 2690         |          | ARG        |   |            | -36.286            | 75.237           | 51.679           |      | 54.33          | A      | N      |
| ATOM         | 2691         |          | ARG        |   |            | -34.674            | 73.888           | 52.585           |      | 53.97          | Α      | N      |
| MOTA         | 2692         | С        | ARG        |   |            | -39.394            | 79.721           | 55.615           |      | 67.10          | A      | С      |
| ATOM         | 2693         | 0        | ARG        |   |            | -40.573<br>-30.669 | 79.486           | 55.885<br>56.305 |      | 68.79<br>67.34 | A<br>A | О<br>И |
| ATOM         | 2694<br>2695 | N<br>CA  | ASN<br>ASN |   |            | -38.668<br>-39.257 | 80.586<br>81.310 | 57.413           |      | 67.66          | A      | C      |
| ATOM         | 2023         | CA       | NGN        | ^ | - / 0      | 37.231             |                  |                  |      |                | •      | _      |

37/514

Figure 1

| MOTA | 2696 | CB  | ASN  | A | 378  | -39.658 | 80.331 | 58.517   | 1.00 | 68.64 | A | С  |
|------|------|-----|------|---|------|---------|--------|----------|------|-------|---|----|
| MOTA | 2697 | CG  | ASN  | A | 378  | -40.937 | 80.749 | 59.230   | 1.00 | 70.93 | A | С  |
| ATOM | 2698 | OD1 | ASN  | A | 378  | -40.946 | 80.929 | 60.455   | 1.00 | 72.31 | A | 0  |
| ATOM | 2699 |     | ASN  |   |      | -42.026 | 80.902 | 58.468   |      | 70.66 | A |    |
| ATOM | 2700 | C   | ASN  |   |      | -38.236 | B2.314 | 57.924   |      | 67.57 | A |    |
| MOTA | 2701 | ŏ   | ASN  |   |      | -38.225 | 82.663 | 59.105   |      | 67.52 | A |    |
|      |      | N   |      |   |      |         |        |          |      |       | A |    |
| ATOM | 2702 |     | TYR  |   |      | -37.379 | 82.778 | 57.016   |      | 67.16 |   |    |
| ATOM | 2703 | CA  | TYR  |   |      | -36.328 | 83.723 | 57.363   |      | 65.23 | A |    |
| MOTA | 2704 | CB  | TYR  |   |      | -34.982 | 83.170 | 56.932   |      | 64.54 | A |    |
| ATOM | 2705 | CG  | TYR  | A | 379  | -34.532 | 82.012 | 57.777   | 1.00 | 64.45 | A |    |
| ATOM | 2706 | CD1 | TYR  | A | 379  | -34.108 | 82.212 | 59.079   | 1.00 | 64.40 | A | С  |
| ATOM | 2707 | CE1 | TYR  | Α | 379  | -33.692 | 81.158 | 59.870   | 1.00 | 64.90 | A | С  |
| ATOM | 2708 | CD2 | TYR  | А | 379  | -34.535 | 80.714 | 57.277   | 1.00 | 64.82 | A | Ç  |
| ATOM | 2709 |     | TYR  |   |      | -34.121 | 79.645 | 58.063   |      | 65.18 | A |    |
| ATOM | 2710 | CZ  | TYR  |   |      | -33.699 | 79.877 | 59.362   |      | 65.33 | A |    |
| ATOM | 2711 | ОH  | TYR  |   |      | -33.281 | 78.831 | 60.162   |      | 66.76 | A |    |
|      |      |     | TYR  |   |      | -36.519 |        |          |      |       | Â |    |
| MOTA | 2712 | C   |      |   |      |         | 85.127 | 56.811   |      | 65.32 |   |    |
| MOTA | 2713 | 0   | TYR  |   |      | -35.795 | 86.050 | 57.198   |      | 66.83 | A |    |
| ATOM | 2714 | N   | LEU  |   |      | -37.477 | 85.293 | 55.903   |      | 63.55 | A |    |
| ATOM | 2715 | CA  | LEU  | A | 380  | -37.775 | 86.616 | 55.355   | 1.00 | 61.98 | A |    |
| MOTA | 2716 | CB  | LEU  | A | 380  | -38.416 | 87.482 | 56.440   | 1.00 | 61.61 | A |    |
| ATOM | 2717 | .CG | LEU  | Α | 380  | -38.699 | 88.959 | 56.192   | 1.00 | 61.77 | A | С  |
| ATOM | 2718 | CD1 | LEU  | A | 380  | -39.576 | 89.161 | 54.957   | 1.00 | 62.33 | A | С  |
| ATOM | 2719 |     | LEU  |   |      | -39.383 | 89.499 | 57.427   | 1.00 | 62.30 | A | С  |
| ATOM | 2720 | C   | LEU  |   |      | -36.579 | 87.366 | 54.777   |      | 61.24 | A |    |
| MOTA | 2721 | Ö   | LEU  |   |      | -35.835 | 88.029 | 55.505   |      | 61.52 | A |    |
|      |      |     |      |   |      | -36.415 | 87.275 |          |      |       |   |    |
| MOTA | 2722 | N   | ILE  |   |      |         |        | 53.460   |      | 60.09 | A |    |
| MOTA | 2723 | CA  | ILE  |   |      | -35.331 | 87.952 | 52.770   |      | 57.67 | A |    |
| ATOM | 2724 | CB  | ILE  |   |      | -34.674 | 87.052 | 51.718   |      | 57.13 | A |    |
| ATOM | 2725 | CG2 | ILE  | Α | 381  | -33.376 | 87.693 | 51.242   | 1.00 | 56.08 | A |    |
| ATOM | 2726 | CG1 | ILE  | A | 381  | -34.419 | 85.662 | 52.300   | 1.00 | 56.63 | A |    |
| ATOM | 2727 | CD1 | ILE  | Α | 381  | -33.917 | 84.653 | 51.283   | 1.00 | 56.68 | A | С  |
| ATOM | 2728 | C   | ILE  |   |      | -35.898 | 89.170 | 52.054   | 1.00 | 56.74 | A | С  |
| MOTA | 2729 | ŏ   | ILE  |   |      | -36.803 | 89.049 | 51.218   |      | 55.80 | A |    |
| ATOM | 2730 | N   | PRO  |   |      | -35.371 | 90.366 | 52.380   |      | 55.87 | A |    |
|      |      |     |      |   |      |         |        |          |      |       | A |    |
| ATOM | 2731 | CD  | PRO  |   |      | -34.321 | 90.580 | 53.391   |      | 54.93 |   |    |
| MOTA | 2732 | CA  | PRO  |   | ,    | -35.790 | 91.644 | 51.795   |      | 54.53 | A |    |
| MOTA | 2733 | CB  | PRO  | Α | 382  | -35.048 | 92.664 | 52.644   |      | 53.78 | A |    |
| ATOM | 2734 | ÇG  | PRO  | A | 382  | -33.810 | 91.933 | 53.023   | 1.00 | 54.61 | A | С  |
| ATOM | 2735 | С   | PRO  | A | 382  | -35.483 | 91.786 | 50.304   | 1.00 | 54.13 | A | С  |
| ATOM | 2736 | 0   | PRO  | А | 382  | -34.531 | 91.203 | 49.783   | 1.00 | 53.18 | A | 0  |
| ATOM | 2737 | N   | LYS  |   |      | -36.312 | 92.567 | 49.621   | 1.00 | 54.37 | A | N  |
| ATOM | 2738 | CA  | LYS  |   |      | -36.148 | 92.787 | 48.191   |      | 54.48 | A |    |
| ATOM |      |     | LYS  |   |      | -37.227 | 93.732 | 47.668   |      | 56.00 | A |    |
|      | 2739 | CB  |      |   |      |         |        |          |      |       | A |    |
| ATOM | 2740 | CG  | LYS  |   |      | -37.094 | 94.040 | 46.183   |      | 59.08 |   |    |
| MOTA | 2741 | CĐ  | LYS  |   |      | -38.123 | 95.055 | 45.710   |      | 61.92 | A |    |
| ATOM | 2742 | CE  | LYS  |   |      | -37.968 | 96.381 | 46.449   |      | 64.65 | A |    |
| MOTA | 2743 | NZ  | LYS. | A | 383. | -38.959 | 97.420 | 46.017   | 1.00 | 67.40 | A |    |
| MOTA | 2744 | С   | LYS  | Α | 383  | -34.783 | 93.344 | 47.833   | 1.00 | 52.99 | A | C  |
| ATOM | 2745 | 0   | LYS  | Α | 383  | -34.230 | 94.165 | 48.555   | 1.00 | 54.31 | A | Ö  |
| ATOM | 2746 | N   | GLY  | Α | 384  | -34.246 | 92.885 | 46.709   | 1.00 | 51.34 | A | N  |
| ATOM | 2747 | CA  | GLY  |   | 384  | -32.953 | 93.356 | 46.261   | 1.00 | 49.14 | A | C  |
| ATOM | 2748 | c   | GLY  |   |      | -31.762 | 92.581 | 46.791   | 1.00 | 48.48 | A |    |
| ATOM | 2749 | ŏ   | GLY  |   |      | -30.678 | 92.670 | 46.213   |      | 49.09 | A |    |
| ATOM | 2750 | N   | THR  |   |      | -31.951 | 91.822 | 47.873   |      | 47.00 | A |    |
|      |      |     |      |   |      |         |        |          |      |       |   |    |
| MOTA | 2751 | CA  | THR  |   |      | -30.869 | 91.034 | 48.487   |      | 44.87 | A |    |
|      | 2752 | СВ  | THR  |   |      | -31.363 | 90.197 | 49.685   |      | 45.93 | A | C  |
| ATOM | 2753 | OG1 | THR  | A | 385  | -32.150 | 91.009 | 50.557   |      | 47.57 | A |    |
| ATOM | 2754 | CG2 | THR  | Α | 385  | -30.165 | 89.630 | . 50.457 |      | 46.50 | A |    |
| ATOM | 2755 | С   | THR  | Α | 385  | -30.207 | 90.044 | 47.535   | 1.00 | 42.49 | A | С  |
| ATOM | 2756 | 0   | THR  | А | 385  | -30.877 | 89.241 | 46.888   | 1.00 | 41.81 | A | 0  |
| ATOM | 2757 | N   | THR  |   |      | -28.883 | 90.079 | 47.473   |      | 39.80 | A |    |
| ATOM | 2758 | CA  | THR  |   |      | -28.180 | 89.157 | 46.602   |      | 37.10 | A | Ċ  |
|      |      |     |      |   |      | -26.721 | 89.561 | 46.451   |      | 37.22 | A |    |
| MOTA | 2759 | CB  | THR  |   |      |         |        |          |      | 38.65 |   |    |
| ATOM | 2760 |     | THR  |   |      | -26.639 | 90.646 | 45.516   |      |       | A | 0  |
| ATOM | 2761 |     | THR  |   |      | -25.898 | 88.404 | 45.948   |      | 36.65 | A | C  |
| ATOM | 2762 | С   | THR  |   |      | -28.281 | 87.712 | 47.070   |      | 34.29 | A | Ç  |
| ATOM | 2763 | 0   | THR  | A | 386  | -28.170 | 87.413 | 48.251   |      | 33.82 | A | 0  |
| ATOM | 2764 | N   | ILE  |   |      | -28.497 | 86.814 | 46.120   | 1.00 | 32.63 | A | N  |
| ATOM | 2765 | CA  | ILE  |   |      | -28.645 | 85.410 | 46.442   | 1.00 | 30.30 | A | С  |
| ATOM | 2766 | СВ  | ILE  |   |      | -30.031 | 84.897 | 46.055   |      | 29.55 | A | С  |
| ATOM | 2767 |     | ILE  |   |      | -30.150 | 83.442 | 46.435   |      | 28.60 | A | č  |
|      |      |     | ILE  |   |      | -31.111 | 85.741 | 46.721   |      | 30.52 | A | č. |
| ATOM | 2768 |     |      |   |      |         |        | 48.221   |      | 29.87 | Ä | c  |
| ATOM | 2769 |     | ILE  |   |      | -31.054 | 85.721 |          |      |       |   | c  |
| MOTA | 2770 | С   | ILE  | A | 187  | -27.665 | 84.578 | 45.675   | 1.00 | 29.54 | A | C  |
|      |      |     |      |   |      |         |        |          |      |       |   |    |

Figure 1

|      |      | _   |     | _ |     |         |         |         |      | 20 40 |    | _ |
|------|------|-----|-----|---|-----|---------|---------|---------|------|-------|----|---|
| MOTA | 2771 | 0   | ILE |   |     | -27.646 | 84.635  | 44.448  |      | 30.48 | A  | 0 |
| ATOM | 2772 | N   | LEU | Α | 388 | -26.844 | 83.804  | 46.369  | 1.00 | 28.10 | Α  | N |
| MOTA | 2773 | CA  | LEU | Α | 388 | -25.933 | 82.958  | 45.629  | 1.00 | 28.73 | Α  | С |
| ATOM | 2774 | CB  | LEU | А | 388 | -24.475 | 83.315  | 45.938  | 1.00 | 27.75 | Α  | С |
| ATOM | 2775 | CG  | LEU |   |     | -23.673 | 82.687  | 47.049  | 1.00 | 30.91 | Α  | С |
|      |      |     | LEU |   |     | -23.533 | 81.208  | 46.760  |      | 31.57 | A  | č |
| MOTA | 2776 |     |     |   |     |         |         |         |      |       |    |   |
| ATOM | 2777 |     | LEU |   |     | -22.280 | 83.348  | 47.110  |      | 30.66 | A  | C |
| ATOM | 2778 | С   | LEU | А | 388 | -26.313 | 81.508  | 45.925  | 1.00 | 28.56 | Α  | С |
| ATOM | 2779 | 0   | LEU | A | 388 | -26.479 | 81.107  | 47.082  | 1.00 | 28.77 | Α  | 0 |
| ATOM | 2780 | N   | ILE | Α | 389 | -26.532 | 80.756  | 44.849  | 1.00 | 27.53 | A  | N |
| ATOM | 2781 | CA  | ILE |   |     | -26.951 | 79.366  | 44.932  | 1.00 | 27.30 | A  | С |
|      | 2782 | CB  | ILE |   |     | -28.098 | 79.060  | 43.947  |      | 29.70 | A  | Č |
| ATOM |      |     |     |   |     |         |         |         |      |       |    |   |
| MOTA | 2783 |     | ILE |   |     | -29.355 | 79.865  | 44.301  |      | 28.10 | A. | C |
| ATOM | 2784 |     | ILE |   |     | -27.694 | 79.472  | 42.550  |      | 30.35 | A  | С |
| ATOM | 2785 | CD1 | ILE | Α | 389 | -28.841 | 79.399  | 41.611  | 1.00 | 35.27 | A  | С |
| ATOM | 2786 | С   | ILE | Α | 389 | -25.835 | 78.391  | 44.648  | 1.00 | 26.15 | A  | С |
| ATOM | 2787 | 0   | ILE |   |     | -25.082 | 78.543  | 43.707  | 1.00 | 27.24 | A  | 0 |
| ATOM | 2788 | N   | SER |   |     | -25.742 | 77.370  | 45.482  |      | 27.13 | A  | N |
|      |      |     | SER |   |     | -24.705 | 76.379  | 45.324  |      | 26.28 | A  | c |
| MOTA | 2789 | CA  |     |   |     |         |         |         |      |       |    |   |
| MOTA | 2790 | СВ  | SER |   |     | -24.347 | 75.763  | 46.661  |      | 24.70 | A  | C |
| MOTA | 2791 | OG  | SER |   |     | -23.428 | 74.707  | 46.457  |      | 27.02 | Α  | 0 |
| MOTA | 2792 | C.  | SER | Α | 390 | -25.098 | 75.273  | 44.364  | 1.00 | 25.78 | Α  | С |
| ATOM | 2793 | 0   | SER | Α | 390 | ~25.940 | 74.439  | 44.673  | 1.00 | 27.07 | Α  | 0 |
| ATOM | 2794 | N   | LEU |   |     | -24.482 | 75.272  | 43.192  | 1.00 | 24.11 | Α  | N |
| ATOM | 2795 | CA  | LEU |   |     | -24.762 | 74.239  | 42.227  |      | 23.14 | A  | C |
|      |      |     |     |   |     |         |         |         |      |       | A  | č |
| ATOM | 2796 | CB  | LEU |   |     | -24.312 | 74.664  | 40.841  |      | 19.67 |    |   |
| MOTA | 2797 | CG  | LEU |   |     | -25.009 | 75.883  | 40.275  |      | 17.20 | A  | С |
| MOTA | 2798 | CD1 | LEU | Α | 391 | -24.983 | 75.809  | 38.773  | 1.00 | 14.78 | Α  | С |
| ATOM | 2799 | CD2 | LEU | A | 391 | -26.432 | 75.948  | 40.777  | 1.00 | 17.48 | Α  | С |
| ATOM | 2800 | С   | LEU | A | 391 | -23.994 | .73.000 | 42.652  | 1.00 | 24.16 | Α  | С |
| MOTA | 2801 | ō   | LEU |   |     | -24.503 |         |         |      | 25.84 | A  | 0 |
|      |      |     |     |   |     |         |         |         |      |       | Ä  | N |
| ATOM | 2802 | N   | THR |   |     | -22.758 |         |         |      | 23.62 |    |   |
| ATOM | 2803 | CA  | THR |   |     | -21.965 |         |         |      | 24.60 | A  | С |
| ATOM | 2804 | CB  | THR | A | 392 | -20.612 | 72.517  | 44.029  |      | 26.21 | A  | С |
| MOTA | 2805 | OG1 | THR | Α | 392 | -20.162 | 71.559  | 44.994  | 1.00 | 30.28 | Α  | 0 |
| MOTA | 2806 | CG2 | THR | A | 392 | -20.706 | 73.886  | -44.662 | 1.00 | 26.59 | Α  | C |
| ATOM | 2807 | c   | THR |   |     | -22.656 |         | 44.567  |      | 23.90 | A  | С |
|      |      |     |     |   |     |         | 70.070  | 44.697  |      | 23.26 | A  | ō |
| MOTA | 2808 | 0   | THR |   |     | -22.415 |         |         |      |       |    | N |
| MOTA | 2809 | N   | SER |   |     | -23.515 | 71.906  | 45.345  |      | 24.33 | A  |   |
| MOTA | 2810 | CA  | SER | A | 393 | -24.192 | 71.173  | 46.402  |      | 25.79 | A  | С |
| ATOM | 2811 | CB  | SER | Α | 393 | -24.950 | 72.119  | 47.315  | 1.00 | 23.75 | Α  | С |
| ATOM | 2812 | OG  | SER | Α | 393 | -26.053 | 72.631  | 46.609  | 1.00 | 24.10 | Α  | 0 |
| ATOM | 2813 | С   | SER |   |     | -25.178 | 70.216  | 45.757  | 1.00 | 26.70 | Α  | С |
| ATOM | 2814 | ŏ   | SER |   |     | -25.584 | 69.214  | 46.344  |      | 29.91 | A  | Ó |
|      |      |     |     |   |     |         |         |         |      | 25.79 | A  | N |
| ATOM | 2815 | N   | VAL |   |     | -25.582 | 70.541  | 44.545  |      |       |    |   |
| MOTA | 2816 | CA  | VAL | A | 394 | -26.502 | 69.683  | 43.852  |      | 25.26 | A  | C |
| ATOM | 2817 | CB  | VAL | Α | 394 | -27.496 | 70.507  | 43.043  | 1.00 | 25.72 | A  | С |
| ATOM | 2818 | CG1 | VAL | A | 394 | ~28.370 | 69.596  | 42.208  | 1.00 | 24.22 | A  | С |
| ATOM | 2819 | CG2 | VAL | А | 394 | -28.338 | 71.353  | 43.995  | 1.00 | 23.12 | Α  | С |
| ATOM | 2820 | C   | VAL |   |     | -25.697 | 68.756  | 42.949  | 1.00 | 26.36 | A  | С |
|      | 2821 | ŏ   | VAL |   |     | -25.794 | 67.539  | 43.067  |      | 27.11 | A  | ō |
| ATOM |      |     |     |   |     |         |         |         |      |       | A  | N |
| ATOM | 2822 | N   | LEU |   |     | -24.884 | 69.330  | 42.067  |      | 26.31 |    |   |
| MOTA | 2823 | CA  | LEU |   |     | -24.078 | 68.527  | 41.166  |      | 26.40 | A  | С |
| ATOM | 2824 |     | LEU |   |     | -23.145 | 69.417  | 40.341  |      | 25.71 | A  | C |
| MOTA | 2825 | CG  | LEU | Α | 395 | -23.601 | 69.802  | 38.920  |      | 26.08 | Α  | С |
| ATOM | 2826 | CD1 | LEU | Α | 395 | -24.806 | 70.715  | 38.902  | 1.00 | 23.15 | A  | С |
| MOTA | 2827 |     | LEU |   |     | -22.443 | 70.488  | 38.256  | 1.00 | 25.01 | Α  | С |
| ATOM | 2828 | c   | LEU |   |     | -23.277 | 67.488  | 41.937  | 1.00 | 27.26 | Α  | С |
|      |      |     | LEU |   |     | -22.830 | 66.484  | 41.378  |      | 27.40 | A  | Ó |
| MOTA | 2829 | 0   |     |   |     |         |         |         |      | 27.29 |    | N |
| MOTA | 2830 | N   | HIS |   |     | -23.102 | 67.710  | 43.230  |      |       | A  |   |
| MOTA | 2831 | CA  | HIS | A | 396 | -22.351 | 66.749  | 44.010  |      | 27.55 | A. | С |
| ATOM | 2832 | CB  | HIS | A | 396 | -21.073 | 67.372  | 44.506  |      |       | A  | С |
| ATOM | 2833 | CG  | HIS |   |     | ~20.050 | 67.531  | 43.436  | 1.00 | 23.32 | Α  | С |
| ATOM | 2834 |     | HIS |   |     | -20.100 | 68.159  | 42.238  |      | 21.94 | Α  | С |
|      |      |     | HIS |   |     | -18.811 | 66.943  | 43.515  |      | 23.38 | A  | N |
| ATOM | 2835 |     |     |   |     |         |         |         |      | 23.24 |    | Ċ |
| ATOM | 2836 |     | HIS |   |     | -18.138 | 67.199  | 42.405  |      |       | A  |   |
| ATOM | 2837 | NE2 | HIS |   |     | -18.899 | 67.932  | 41.614  |      | 20.91 | A  | N |
| ATOM | 2838 | С   | HIS | Α | 396 | -23.111 | 66.193  | 45.160  |      | 29.B2 | A  | С |
| ATOM | 2839 | 0   | HIS | Α | 396 | -22.514 | 65.801  | 46.162  | 1.00 | 30.11 | A  | 0 |
| ATOM | 2840 | N   | ASP |   |     | -24.430 | 66.138  | 45.021  |      | 31.84 | Α  | N |
| ATOM | 2841 | CA  | ASP |   |     | -25.223 | 65.611  | 46.104  |      | 34.60 | A  | C |
|      |      |     |     |   |     | -26.704 | 65.612  | 45.779  |      | 36.60 | A  | č |
| MOTA | 2842 | CB  | ASP |   |     |         |         |         |      |       |    |   |
| ATOM | 2843 | CG  | ASP |   |     | -27.524 | 64.986  | 46.889  |      | 40.95 | A  | C |
| MOTA | 2844 |     | ASP |   |     | -27.385 | 63.758  | 47.088  |      | 43.36 | A  | 0 |
| MOTA | 2845 | OD2 | ASP | A | 397 | -28.285 | 65.712  | 47.580  | 1.00 | 42.73 | A  | 0 |

Figure 1

|   | ATOM | 2846 | С   | ASP | А | 397 | -24.753 | 64.212 | 46.446 | 1.00 | 37.10   | A       | С   |
|---|------|------|-----|-----|---|-----|---------|--------|--------|------|---------|---------|-----|
|   | ATOM | 2847 | Ó   |     |   | 397 | -24.579 | 63.353 | 45.586 | 1.00 | 37.38   | A       | 0   |
|   | ATOM | 2848 | N   |     |   | 398 | -24.551 | 63.998 | 47.733 |      | 40.38   | A       | N   |
|   | ATOM | 2849 | CA  |     |   | 398 | -24.040 | 62.746 | 48.238 |      | 42.71   | A       | C   |
|   | ATOM | 2850 | CB  |     |   | 398 | -23.845 | 62.850 | 49,729 |      | 45.67   | A       | C   |
|   | ATOM | 2851 | CG  |     |   | 398 | -22.637 | 62.126 | 50.162 |      | 48.59   | A       | č   |
|   | ATOM | 2852 |     | ASN |   |     | -22.345 | 61.043 | 49.638 |      | 51.96   | A       | ŏ   |
|   | ATOM | 2853 |     | ASN |   |     | -21.896 | 62.704 | 51.106 |      | 50.01   | A       | N   |
|   | ATOM | 2854 | C   |     |   | 398 | -24.819 | 61.492 | 47.971 |      | 43.00   | <br>A   | Ċ   |
|   | ATOM | 2855 | ŏ   |     |   | 398 | -24.237 | 60.429 | 47.787 |      | 44.07   | A       | ŏ   |
|   | ATOM | 2856 | N   |     |   | 399 | -26.136 | 61.609 | 47.991 |      | 43.47   | A.      | N   |
|   | ATOM | 2857 | CA  |     |   | 399 | -27.004 | 60.467 | 47.778 |      | 44.09   | A       | č   |
|   | ATOM | 2858 | CB  |     |   | 399 | -28.324 | 60.671 | 48.511 |      | 45.90   | A       | č   |
|   | ATOM | 2859 | CG  |     |   | 399 | -28.285 | 60.384 | 49.983 |      | 48.97   | n<br>A  | Ċ   |
|   | ATOM | 2860 | CD  | LYS |   |     | -29.702 | 60.314 | 50.532 |      | 54.83   | n<br>A  | č   |
|   | ATOM | 2861 | CE  |     |   | 399 | -30.354 | 61.700 | 50.704 |      | 58.21   | n<br>A  | č   |
|   | ATOM | 2862 | NZ  |     |   | 399 | -30.522 | 62.515 | 49.449 |      | 59.71   | n<br>A  | N   |
|   | ATOM | 2863 | C   |     |   | 399 | -27.295 | 60.181 | 46.317 |      | 43.59   | A<br>A  | C   |
|   |      |      |     |     |   |     |         |        |        |      |         |         | Ö   |
|   | ATOM | 2864 | 0   |     |   | 399 | -27.253 | 59.033 | 45.901 |      | 44.72   | A       |     |
|   | ATOM | 2865 | N   |     |   | 400 | -27.610 | 61.216 | 45.543 |      | 42.23   | A       | N   |
|   | ATOM | 2866 | CA  |     |   | 400 | -27.903 | 61.027 | 44.126 |      | 40.78   | A       | C   |
|   | ATOM | 2867 | CB  |     |   | 400 | -28.369 | 62.328 | 43.490 |      | 40.94   | A       | C   |
|   | ATOM | 2868 | CG  |     |   | 400 | -28.724 | 62.187 | 42.026 |      | 43.63   | A       | С   |
|   | ATOM | 2869 | CD  |     |   | 400 | -30.085 | 61.571 | 41.809 |      | 45.59   | A       | С   |
|   | ATOM | 2870 |     | GLU |   |     | -30.562 | 61.549 | 40.648 |      | 46.73   |         | 0   |
|   | MOTA | 2871 | OE2 | GLU |   |     | -30.683 | 61.112 | 42.803 | 1.00 | 46.25   | A       | 0   |
|   | MOTA | 2872 | С   |     |   | 400 | -26.678 | 60.532 | 43.382 | 1.00 | 39.57   | A       | С   |
|   | ATOM | 2873 | 0   | GLU | A | 400 | -26.794 | 59.888 | 42.341 | 1.00 | 39.03   | A       | 0   |
|   | ATOM | 2874 | N   | PHE | A | 401 | -25.505 | 60.846 | 43.922 | 1.00 | -38.29  | A.      | N   |
|   | ATOM | 2875 | CA  | PHE | A | 401 | -24.254 | 60.448 | 43.308 | 1.00 | 38.21 - | Α.      | С   |
|   | ATOM | 2876 | CB  | PHE | A | 401 | -23.623 | 61.628 | 42.571 | 1.00 | 34.63   | A       | С   |
|   | MOTA | 2877 | CG  | PHE | Α | 401 | -24.516 | 62.241 | 41.530 | 1.00 | 28:.85  | A       | С   |
|   | ATOM | 2878 | CD1 | PHE | A | 401 | -25.199 | 63.425 | 41.788 |      | 27.04   | A       | C   |
|   | ATOM | 2879 |     | PHE |   |     | -24.690 | 61.623 | 40.301 |      | 25.71   | A       | Ċ   |
|   | ATOM | 2880 |     | PHE |   |     | -26.041 | 63.977 | 40.833 |      | 24.62   | A       | Č   |
|   | ATOM | 2881 |     | PHE |   |     | -25.526 | 62.168 | 39.351 |      | 24.17   | A       | č   |
|   | ATOM | 2882 | CZ  | PHE |   |     | -26.203 | 63.346 | 39.616 |      | 23.08   | A.      | č   |
|   | ATOM | 2883 | c   | PHE |   |     | -23.284 | 59.930 | 44.336 |      | 40.57   | A.      | Ċ   |
|   | ATOM | 2884 | ŏ   | PHE |   |     | -22.469 | 60.683 | 44.852 |      | 42.37   | n.<br>A | Ö   |
|   | ATOM | 2885 |     | PRO |   |     |         |        |        |      |         |         |     |
|   |      |      | N   |     |   |     | -23.344 | 58.623 | 44.628 |      | 43.09   | A       | N   |
|   | MOTA | 2886 | CD  | PRO |   |     | -24.183 | 57.683 | 43.876 |      | 43.30   | A       | С   |
|   | ATOM | 2887 | CA  | PRO |   | 402 | -22.529 | 57.880 | 45.586 |      | 45.06   | A       | С   |
|   | ATOM | 2888 | CB  | PRO |   |     | -22.567 | 56.487 | 45.023 |      | 43.73   | A       | С   |
|   | ATOM | 2889 | CG  | PRO |   |     | -24.002 | 56.400 | 44.656 |      | 43.34   | A.      | С   |
|   | ATOM | 2890 | С   | PRO |   |     | -21.120 | 58.368 | 45.903 |      | 47.45   | A.      | C   |
|   | ATOM | 2891 | 0   | PRO |   |     | -20.741 | 58.439 | 47.074 |      | 50.99   | A.      | 0   |
|   | ATOM | 2892 | N   | ASN |   |     | -20.322 | 58.686 | 44.901 |      | 47.48   | A       | N   |
|   | ATOM | 2893 | CA  | ASN |   | -   | -18.997 | 59.204 | 45.199 |      | 48.17   | A       | С   |
|   | MOTA | 2894 | CB  | ASN |   |     | -17.928 | 58.176 | 44.902 |      | 51.95   | A       | С,  |
|   | MOTA | 2895 | CG  | ASN |   |     | -18.025 | 56.980 | 45.813 | 1.00 | 55.27   | A,      | С   |
|   | MOTA | 2896 | OD1 | ASN | Α | 403 | -18.066 | 55.834 | 45.347 | 1.00 | 57.13   | A.      | 0   |
|   | ATOM | 2897 | ND2 | ASN | A | 403 | -18.061 | 57.232 | 47.125 |      | 55.98   | A.      | N   |
|   | ATOM | 2898 | С   | ASN | A | 403 | -18.825 | 60.398 | 44.325 |      | 47.70   | A       | С   |
|   | MOTA | 2899 | 0   | ASN | A | 403 | -18.159 | 60.338 | 43.290 | 1.00 | 49.21   | A       | 0   |
|   | MOTA | 2900 | N   | PRO | А | 404 | -19.442 | 61.508 | 44.726 | 1.00 | 45.41   | Α.      | . N |
|   | ATOM | 2901 | CD  | PRO | Α | 404 | -20.090 | 61.686 | 46.034 | 1.00 | 44.44   | A       | С   |
|   | ATOM | 2902 | CA  | PRO | Α | 404 | -19.401 | 62.770 | 44.003 | 1.00 | 44.73   | A       | C   |
|   | MOTA | 2903 | CB  | PRO | Α | 404 | -19.900 | 63.763 | 45.034 | 1.00 | 46.08   | A       | С   |
|   | ATOM | 2904 | CG  | PRO |   |     | -20.846 | 62.958 | 45.846 |      | 45.10   | A       | С   |
|   | ATOM | 2905 | c   | PRO |   |     | -18.048 | 63.180 | 43.454 |      | 44.81   | A.      | C   |
|   | ATOM | 2906 | Ö   | PRO |   |     | -17.948 | 63.610 | 42.313 |      | 44.80   | A       | ō   |
|   | ATOM | 2907 | N   | GLU |   |     | -17.009 | 63.063 | 44.268 |      | 45.08   | A       | N   |
|   | ATOM | 2908 | CA  | GLU |   |     | -15.688 | 63.481 | 43.845 |      | 45.94   | A.      | Č   |
|   |      |      |     | GLU |   |     | -14.770 | 63.618 | 45.053 |      | 50.24   | A.      | c   |
|   | ATOM | 2909 | CB  |     |   |     |         |        |        |      | 56.29   |         | c   |
|   | ATOM | 2910 | CG  | GLU |   |     | -15.337 | 64.520 | 46.163 |      |         | A.      |     |
|   | ATOM | 2911 | CD  | GLU |   |     | -15.917 | 65.818 | 45.627 |      | 57.58   | A       | C   |
|   | ATOM | 2912 |     | GLU |   |     | -15.317 | 66.394 | 44.690 |      | 59.53   | A       | 0   |
|   | MOTA | 2913 |     | GLU |   |     | -16.967 | 66.256 | 46.147 |      | 57.78   | A       | 0   |
|   | ATOM | 2914 | С   | GLU |   |     | -15.063 | 62.549 | 42.845 |      | 44.26   | A       | C   |
|   | ATOM | 2915 | 0   | GLU |   |     | -13.907 | 62.715 | 42.472 |      | 45.69   | A       | 0   |
|   | ATOM | 2916 | N   | MET |   |     | -15.840 | 61.589 | 42.369 |      | 15.00   | A       |     |
|   | MOTA | 2917 | CA  | MET |   |     | -15.259 | 60.614 | 41.453 |      | 15.00   | A.      |     |
|   | ATOM | 2918 | CB  | MET |   |     | -15.360 | 59.206 | 42.042 |      | 15.00   | A.      |     |
|   | ATOM | 2919 | CG  | MET | A | 406 | -14.525 | 58.997 | 43.295 |      | 15.00   | A       |     |
| • | ATOM | 2920 | SD  | MET |   |     | -12.752 | 59.069 | 42.968 | 1.00 | 15.00   | A       |     |
|   |      |      |     |     |   |     |         |        |        |      |         |         |     |

| ATOM | 2921 | CE  | MET  | A | 406 | -12.532 | 57.602 | 41.965 | 1.00 | 15.00 | · A | k .   |
|------|------|-----|------|---|-----|---------|--------|--------|------|-------|-----|-------|
| ATOM | 2922 | C   | MET  |   |     | -15.955 | 60.658 | 40.096 | 1.00 | 15.00 | P   |       |
|      |      |     | MET  |   |     | -17.175 | 60.729 | 39.943 |      | 39.21 | P   |       |
| ATOM | 2923 | 0   |      |   |     |         |        |        |      |       | 2   |       |
| ATOM | 2924 | N   | PHE  |   |     | -15.118 | 60.592 | 39.044 |      | 36.59 |     |       |
| ATOM | 2925 | CA  | PHE  | A | 407 | -15.619 | 60.606 | 37.684 |      | 33.99 | P   |       |
| ATOM | 2926 | CB  | PHE  | Α | 407 | -14.496 | 60.971 | 36.719 | 1.00 | 31.78 | P   | , с   |
| ATOM | 2927 | CG  | PHE  |   |     | -14.968 | 61.240 | 35.340 | 1.00 | 29.39 | P   | · c   |
|      |      |     | PHE  |   |     | -15.681 | 62.391 | 35.057 |      | 30.10 | P   |       |
| ATOM | 2928 |     |      |   | 407 |         |        |        |      |       |     |       |
| ATOM | 2929 | CDZ | PHE  | A | 407 | -14.744 | 60.329 | 34.326 |      | 29.45 |     |       |
| MOTA | 2930 | CE1 | PHE  | Α | 407 | -16.163 | 62.634 | 33.780 | 1.00 | 28.19 | P   |       |
| ATOM | 2931 | CE2 | PHE  | A | 407 | -15.222 | 60.558 | 33.041 | 1.00 | 26.69 | P   | A C   |
|      | 2932 | cz  | PHE  |   |     | -15.934 | 61.712 | 32.773 | 1.00 | 26.73 | 7   | v c   |
| ATOM |      |     |      |   |     | -16.174 | 59.229 | 37.337 |      | 33.36 | P   |       |
| MOTA | 2933 | С   | PHE: |   |     |         |        |        |      |       |     |       |
| ATOM | 2934 | 0   | PHE  |   |     | -15.422 | 58.253 | 37.245 |      | 33.62 | P   |       |
| ATOM | 2935 | N   | ASP  | A | 408 | -17.489 | 59.148 | 37.146 | 1.00 | 34.15 | F   | N N   |
| ATOM | 2936 | CA  | ASP  | A | 408 | -18.120 | 57.872 | 36.817 | 1.00 | 34.39 | 7   | , c   |
| ATOM | 2937 | СВ  | ASP  |   | 408 | -18.463 | 57.115 | 38.099 | 1.00 | 36.91 | F   | . с   |
|      |      |     |      |   |     |         | 55.738 | 37.827 |      | 39.65 | 2   |       |
| ATOM | 2938 | CG  | ASP  |   |     | -19.033 |        |        |      |       |     |       |
| ATOM | 2939 | OD1 | ASP  | A | 408 | -19.415 | 55.058 | 38.808 |      | 41.57 | 7   |       |
| ATOM | 2940 | OD2 | ASP  | A | 408 | -19.094 | 55.337 | 36.640 | 1.00 | 40.48 | 7   |       |
| ATOM | 2941 | С   | ASP  | Α | 408 | -19.370 | 57.928 | 35.940 | 1.00 | 32.96 | 7   | A C   |
| ATOM | 2942 | Ō   | ASP  |   |     | -20.465 | 58.205 | 36.432 | 1.00 | 30.59 | 7   | A 0   |
|      |      |     |      |   |     | -19.222 | 57.615 | 34.632 |      | 32.59 | 7   | A N   |
| MOTA | 2943 | N   | PRO  |   | 409 |         |        |        |      |       | 7   |       |
| MOTA | 2944 | CD  | PRO  |   |     | -18.033 | 57.022 | 33.993 |      | 30.10 |     |       |
| MOTA | 2945 | CA  | PRO  | A | 409 | -20.350 | 57.629 | 33.695 |      | 33.10 | I   |       |
| ATOM | 2946 | CB  | PRO  | A | 409 | -19.826 | 56.845 | 32.499 | 1.00 | 30.79 | 7   | 4 . C |
| ATOM | 2947 | CG  | PRO  |   |     | -18.376 | 57.082 | 32.541 | 1.00 | 28.86 | 7   | A C   |
|      |      |     |      |   |     |         | 56.930 | 34.289 |      | 34.11 | 7   |       |
| ATOM | 2948 | С   | PRO  |   |     | -21.555 |        |        |      |       |     |       |
| ATOM | 2949 | 0   | PRO  |   |     | -22.697 | 57.344 | 34.094 |      | 34.16 | 7   |       |
| MOTA | 2950 | N   | HIS  | Α | 410 | -21.305 | 55.855 | 35.017 |      | 34.36 | . 7 |       |
| ATOM | 2951 | CA  | HIS  | Α | 410 | -22.418 | 55.125 | 35.569 | 1.00 | 35.21 | I   | A C   |
| ATOM | 2952 | СВ  | HIS  |   |     | -21.922 | 53.865 | 36.277 | 1.00 | 35.58 | 1   | A C   |
|      |      |     |      |   |     |         | 52.888 | 35.342 |      | 35.15 |     | A C   |
| ATOM | 2953 | CG  |      |   |     | -21.285 |        |        |      |       |     |       |
| ATOM | 2954 |     | HIS  |   |     | -19.998 | 52.497 | 35.208 |      | 35.40 |     | A C   |
| ATOM | 2955 | ND1 | HIS  | Α | 410 | -21.968 | 52.318 | 34.289 | 1.00 | 35.21 | 7   |       |
| ATOM | 2956 | CE1 | HIS  | Α | 410 | -21.128 | 51.631 | 33.539 | 1.00 | 34.36 | 7   | A C   |
| ATOM | 2957 |     | HIS  |   |     | -19.924 | 51.726 | 34.074 | 1.00 | 35.70 | 2   | A N   |
|      |      |     |      |   |     |         | 55.939 | 36.454 |      | 34.90 |     | A C   |
| MOTA | 2958 | C   | HIS  |   |     | -23.326 |        |        |      |       |     |       |
| MOTA | 2959 | 0   | HIS  | A | 410 | -24.390 | 55.456 | 36.842 |      | 36.78 |     | A 0   |
| ATOM | 2960 | N   | HIS  | A | 411 | -22.923 | 57.170 | 36.773 | 1.00 | 34.37 | . 1 | A N   |
| MOTA | 2961 | CA  | HIS  | Α | 411 | -23.774 | 58.043 | 37.597 | 1.00 | 33.51 | 7   | A C   |
| ATOM | 2962 | CB  | HIS  |   |     | -23.070 | 59.355 | 37.965 | 1.00 | 33.36 | 1   | A C   |
|      |      |     |      |   |     |         |        | 39.163 |      | 34.19 |     | A C   |
| ATOM | 2963 | CG  | HIS  |   |     | -22.172 | 59.272 |        |      |       |     |       |
| MOTA | 2964 | CD2 | HIS  | A | 411 | -20.981 | 59.868 | 39.413 |      | 34.60 |     | A C   |
| ATOM | 2965 | ND1 | HIS  | Α | 411 | -22.515 | 58.606 | 40.319 | 1.00 | 34.87 | 1   | A N   |
| ATOM | 2966 | CE1 | HIS  | Α | 411 | -21.577 | 58.796 | 41.233 | 1.00 | 34.81 | 1   | A C   |
| ATOM | 2967 |     | HIS  |   |     | -20.636 | 59.559 | 40.707 | 1.00 | 35.97 | 1   | A N   |
|      |      |     |      |   |     | -25.027 | 58.386 | 36.775 |      | 32.36 |     | A C   |
| MOTA | 2968 | C   | HIS  |   |     |         |        |        |      |       |     |       |
| MOTA | 2969 | 0   | HIS  |   |     | -26.062 | 58.777 | 37.324 |      | 31.63 |     |       |
| ATOM | 2970 | N   | PHE  | Α | 412 | -24.920 | 58.250 | 35.454 |      | 30.97 |     | A N   |
| ATOM | 2971 | ÇA  | PHE  | Α | 412 | -26.039 | 58.544 | 34.575 | 1.00 | 31.12 | 1   | A C   |
| ATOM | 2972 | СВ  | PHE  | Α | 412 | -25.726 | 59.760 | 33.668 | 1.00 | 27.98 | 2   | A C   |
|      |      |     |      |   | 412 | -25.487 | 61.034 | 34.428 |      | 23.26 |     | A C   |
| ATOM | 2973 | CG  |      |   |     |         |        | 34.959 |      | 22.56 |     | A C   |
| ATOM | 2974 |     | PHE  |   |     | -24.239 | 61.312 |        |      |       |     |       |
| ATOM | 2975 | CD2 | PHE  | A | 412 |         | 61.914 | 34.687 |      | 21.86 |     |       |
| MOTA | 2976 | CEl | PHE  | Α | 412 | -24.032 | 62.447 | 35.743 |      | 23.70 |     | A C   |
| ATOM | 2977 |     | PHE  |   |     | -26.342 | 63.052 | 35.468 | 1.00 | 21.30 |     | A C   |
| ATOM | 2978 | CZ  |      |   | 412 | -25.085 | 63.321 | 36.001 |      | 22.88 |     | A C   |
|      |      |     |      |   |     | -26.430 |        | 33.732 |      | 33.25 |     | A C   |
| ATOM | 2979 | С   |      |   | 412 |         | 57.333 |        |      |       |     |       |
| MOTA | 2980 | 0   | PHE  | A | 412 | -26.892 | 57.471 | 32.594 |      | 33.77 |     | A 0   |
| ATOM | 2981 | N   | LEU  | A | 413 | -26.235 | 56.143 | 34.293 |      | 35.15 |     | A N   |
| ATOM | 2982 | CA  |      |   | 413 | -26.606 | 54.893 | 33.626 | 1.00 | 37.01 |     | A C   |
| ATOM | 2983 | СВ  |      |   | 413 | -25.400 | 54.237 | 32.949 |      | 32.56 |     | A C   |
|      |      |     |      |   |     |         |        |        |      | 31.71 |     | A C   |
| ATOM | 2984 | CG  |      |   | 413 | -24.789 | 54.961 | 31.749 |      |       |     |       |
| MOTA | 2985 | CD1 | LEU  | Α | 413 | -23.676 | 54.122 | 31.119 |      | 27.45 |     | A C   |
| ATOM | 2986 | CD2 | LEU  | Α | 413 | -25.867 | 55.274 | 30.727 | 1.00 | 30.78 |     | A C   |
| ATOM | 2987 | c   |      |   | 413 | -27.220 | 53.912 | 34.627 | 1.00 | 41.25 |     | A C   |
|      |      |     |      |   |     | -26.792 |        | 35.795 |      | 43.43 |     | A 0   |
| ATOM | 2988 | 0   |      |   | 413 |         | 53,828 |        |      |       |     |       |
| MOTA | 2989 | N   |      |   | 414 | -28.217 | 53.158 | 34.173 |      | 44.14 |     | A N   |
| ATOM | 2990 | CA  | ASP  | A | 414 | -28.855 | 52.199 | 35.054 |      | 48.24 |     | A C   |
| ATOM | 2991 | CB  |      |   | 414 | -30.351 | 52.086 | 34.726 | 1.00 | 48.68 |     | A C   |
| ATOM | 2992 | CG  |      |   | 414 | -30.613 | 51.560 | 33.337 | 1.00 | 51.40 |     | A C   |
|      |      |     |      |   |     | -31.758 | 51.704 | 32.849 |      | 52.91 |     | A 0   |
| MOTA | 2993 |     | ASP  |   |     |         |        |        |      |       |     |       |
| ATOM | 2994 | OD2 | ASP  |   |     | -29.679 | 50.998 | 32.727 |      | 53.88 |     | A 0   |
| MOTA | 2995 | Ç   | ASP  | Α | 414 | -28.144 | 50.848 | 34.973 | 1.00 | 51.52 |     | A C   |

Figure 1

|     | MOTA | 2996 | 0   | ASP | a | 414 | -27.260 | 50.654 | 34.131 | 1 00 | 50.66   | Α          | 0  |
|-----|------|------|-----|-----|---|-----|---------|--------|--------|------|---------|------------|----|
|     | ATOM | 2997 | N   |     |   | 415 |         | 49.928 | 35.872 |      | 55.28   | A          | N  |
|     |      |      |     |     |   | -   | -28.506 |        |        |      |         |            |    |
|     | MOTA | 2998 | CA  | GLU |   | -   | -27.890 | 48.597 | 35.910 |      | 56.26   | A          | G  |
|     | ATOM | 2999 | CB  | GLU |   | -   | -28.523 | 47.753 | 37.023 |      | 60.24   | A          | С  |
|     | MOTA | 3000 | CG  | GLU |   |     | -27.677 | 46.550 | 37.518 |      | 66.98   | A          | С  |
| i   | MOTA | 3001 | CD  | GLU |   |     | -26.355 | 46.952 | 38.218 | 1.00 | 70.27   | A          | С  |
| i   | MOTA | 3002 | OE1 | GLU | Α | 415 | -25.47B | 47.548 | 37.543 | 1.00 | 72.39   | A          | 0  |
| - 1 | MOTA | 3003 | OE2 | GLU | А | 415 | -26.197 | 46.665 | 39.441 | 1.00 | 71.02   | A          | 0  |
| - 1 | MOTA | 3004 | С   | GLU | Α | 415 | -28.143 | 47.971 | 34.557 | 1.00 | 55.37   | A          | С  |
|     | MOTA | 3005 | 0   | GLU | A | 415 | -27.287 | 47.280 | 34.005 |      | 53.76   | A          | ō  |
|     | ATOM | 3006 | N   | GLY |   |     | -29.328 | 48.267 | 34.030 |      | 56.17   | A          | N  |
|     | MOTA | 3007 | CA  | GLY |   |     | -29.763 | 47.776 | 32.734 |      | 57.68   | A          | c  |
|     |      |      |     |     |   |     |         |        |        |      |         |            |    |
|     | MOTA | 3008 | Ç   | GLY |   |     | -28.777 | 48.016 | 31.615 |      | 57.35   | A          | C  |
|     | MOTA | 3009 | 0   | GLY |   |     | -29.084 | 47.820 | 30.443 |      | 58.27   | A          | 0  |
|     | MOTA | 3010 | N   | GLY |   |     | -27.578 | 48.437 | 31.972 |      | 57.30   | A          | N  |
| i   | MOTA | 3011 | CA  | GLY |   |     | -26.586 | 48.659 | 30.952 |      | 57.49   | A          | С  |
| - 2 | MOTA | 3012 | С   | GLY | Α | 417 | -26.320 | 50.127 | 30.756 | 1.00 | 56.77   | A          | С  |
| - 2 | MOTA | 3013 | 0   | GLY | Α | 417 | -25.721 | 50.785 | 31.604 | 1.00 | 57.35   | . <b>A</b> | Q  |
| - 1 | MOTA | 3014 | N   | ASN | A | 418 | -26.781 | 50.657 | 29.641 | 1.00 | 54.87   | A          | N  |
| - 1 | MOTA | 3015 | CA  | ASN |   |     | -26.529 | 52.042 | 29.368 | 1.00 | 54.30   | A          | C  |
|     | MOTA | 3016 | CB  | ASN |   |     | -25.635 | 52.164 | 28.136 |      | 52.86   | A          | C  |
|     | ATOM | 3017 | CG  | ASN |   |     | -24.280 | 51.486 | 28.318 |      | 53.20   | A          | č  |
|     | ATOM | 3018 |     | ASN |   |     | -23.969 | 50.932 | 29.385 |      | 53.46   |            | ŏ  |
|     |      |      |     |     |   |     |         |        |        |      |         | A          |    |
|     | MOTA | 3019 |     | ASN |   |     | -23.460 | 51.538 | 27.273 |      | 52.59   | A          | N  |
|     | ATOM | 3020 | С   | ASN |   |     | -27.837 | 52.762 | 29.144 |      | 55.10   | A          | C  |
| - 2 | MOTA | 3021 | 0   | ASN |   |     | -28.451 | 52.619 | 28.098 | 1.00 | 57.00   | A          | ٥  |
| 1   | MOTA | 3022 | N   | PHE | Α | 419 | -28.290 | 53.524 | 30.128 | 1.00 | 54.14   | A          | N  |
| 7   | MOTA | 3023 | CA  | PHE | Α | 419 | -29.529 | 54.245 | 29.943 | 1.00 | 52.23   | A          | С  |
| - 7 | MOTA | 3024 | CB  | PHE | A | 419 | -30.703 | 53.360 | 30.340 | 1.00 | 55.91   | Α          | С  |
| 1   | MOTA | 3025 | CG  | PHE |   |     | -30.849 | 52.138 | 29.490 |      | 58.64   | A          | С  |
|     | MOTA | 3026 |     | PHE |   |     | -30.451 | 50.900 | 29.964 |      | 60.39   | A          | Ċ  |
|     |      | 3027 |     | PHE |   |     |         |        |        |      |         |            | ·č |
|     | ATOM |      |     |     |   |     | -31.367 | 52.232 | 28.203 |      | 60.43   |            |    |
|     | MOTA | 3028 |     | PHE |   |     | -30.564 | 49.767 | 29.170 |      | 62.91   | A          | C  |
|     | MOTA | 3029 |     | PHE |   |     | -31.483 | 51.107 | 27.402 |      | 62.07   | A          | С  |
| 1   | MOTA | 3030 | CZ  | PHE | A | 419 | -31.080 | 49.870 | 27.888 | 1.00 | 63.11   | A          | C  |
| ī   | MOTA | 3031 | С   | PHE | Α | 419 | -29.545 | 55.539 | 30.732 | 1.00 | 49.46   | A          | С  |
| - 1 | MOTA | 3032 | 0   | PHE | A | 419 | -29.405 | 55.546 | 31.947 | 1.00 | 49.57   | Α          | 0. |
| 1   | MOTA | 3033 | N   | LYS | Α | 420 | -29.726 | 56.648 | 30.039 | 1.00 | 46.00 , | A :        | N  |
|     | MOTA | 3034 | CA  | LYS |   |     | -29.731 | 57.930 | 30.725 |      | 43.52   | A          | C  |
|     | ATOM | 3035 | СВ  | LYS |   |     | -30.048 | 59.065 | 29.747 |      | 36.54   | Α .        | č  |
|     | ATOM | 3036 | CG  | LYS |   |     | -28.852 | 59.557 | 28.959 |      | 29.16   | A          | ç  |
|     |      |      |     |     |   |     |         |        |        |      |         |            | č  |
|     | MOTA | 3037 | CD  | LYS |   |     | -27.682 | 60.024 | 29.845 |      | 23.37   | A          |    |
|     |      | 3038 | CE  | LYS |   |     | -28.084 | 60.971 | 30.939 |      | 17.15   | A          | С  |
|     | MOTA | 3039 | NZ  | LYS |   |     | -29.453 | 61.465 | 30.812 |      | 15.74   | A          | N  |
| 2   | MOTA | 3040 | С   | LYS | A | 420 | -30.714 | 58.014 | 31.895 | 1.00 | 44.10   | A          | С  |
| 7   | MOTA | 3041 | 0   | LYS | A | 420 | -31.760 | 57.364 | 31.879 | 1.00 | 45.33   | A          | 0  |
| 7   | MOTA | 3042 | N   | LYS | A | 421 | -30.376 | 58.835 | 32.890 | 1.00 | 42.46   | A          | N  |
|     | MOTA | 3043 | CA  | LYS |   |     | -31.237 | 59.035 | 34.028 | 1.00 | 41.92   | А          | С  |
|     | MOTA | 3044 | СВ  | LYS |   |     | -30.711 | 58.193 | 35.190 |      | 43.82   | A          | С  |
|     | ATOM | 3045 | CG  | LYS |   |     | -30.543 | 56.691 | 34.850 |      | 42.14   | A          | č  |
|     | ATOM | 3046 | CD  | LYS |   |     | -29.704 | 55.962 | 35.891 |      | 43.52   | A          | č  |
|     | -    |      |     |     |   |     |         |        |        |      |         |            | c  |
|     | MOTA | 3047 | CE  | LYS |   | 421 | -30.108 | 56.322 | 37.307 |      | 43.94   | A          |    |
|     | ATOM | 3048 | NZ  | LYS |   | 421 | -29.105 | 55.755 | 38.254 |      | 46.97   | A          | N  |
| •   | MOTA | 3049 | Ç   | LYS |   | _   | -31.280 | 60.523 | 34.388 |      | 41.39   | A          | С  |
| 7   | MOT  | 3050 | 0   | LYS | Α | 421 | -32.070 | 61.287 | 33.839 | 1.00 | 39.18   | A          | 0  |
| 7   | MOTA | 3051 | N   | SER | Α | 422 | -30.424 | 60.889 | 35.341 |      | 44.31   | A          | N  |
| 7   | MOTA | 3052 | CA  | SER | Α | 422 | -30.210 | 62.251 | 35.881 | 1.00 | 45.78   | A          | С  |
|     | MOTA | 3053 | CB  | SER | A | 422 | -29.464 | 63.125 | 34.825 | 1.00 | 48.18   | A          | С  |
|     | MOTA | 3054 | ŌĞ  | SER |   |     | -30.316 | 63.958 | 34.050 |      | 47.92   | A          | 0  |
|     | MOTA | 3055 | c   | SER |   |     | -31.423 | 63.002 | 36.432 |      | 43.60   | A          | č  |
|     |      | 3056 |     |     |   |     |         |        | 36.166 |      | 45.23   | Ä          | ō  |
|     | MOTA |      | 0   | SER |   |     | -32.557 | 62.617 |        |      |         |            |    |
|     | MOTA | 3057 | N   | LYS |   |     | -31.176 | 64.045 | 37.228 |      | 40.28   | A          | N  |
|     | MOTA | 3058 |     | LYS |   |     | -32.262 | 64.859 | 37.783 |      | 40.83   | A          | C  |
| 7   | MOTA | 3059 | CB  | LYS | A | 423 | -33.267 | 64.012 | 38.570 |      | 43.89   | A          | С  |
| 1   | MOTA | 3060 | CG  | LYS | Α | 423 | -34.496 | 64.836 | 39.008 |      | 45.52   | A          | С  |
|     | MOTA | 3061 |     | LYS |   |     | -34.339 | 65.541 | 40.349 | 1.00 | 46.54   | A          | С  |
|     | TOM  | 3062 | CE  | LYS |   |     | -35.167 | 64.853 | 41.455 |      | 50.35   | A          | Ċ. |
|     | MOTA | 3063 |     | LYS |   |     | -36.513 | 65.467 | 41.778 |      | 52.30   | A          | N  |
|     |      |      |     |     |   |     | -31.774 | 65.958 | 38.702 |      | 40.61   | A          | c  |
|     |      | 3064 |     | LYS |   |     |         |        |        |      | 40.70   | A          |    |
|     |      | 3065 |     | LYS |   |     | -32.456 | 66.963 | 38.930 |      |         |            | 0  |
|     |      | 3066 |     | TYR |   |     | -30.596 | 65.710 | 39.257 | -    | 39.74   | A          | N  |
|     |      | 3067 |     | TYR |   |     | -29.875 |        | 40.162 |      | 34.83   | A          | С  |
| P   | MOT  | 3068 | CB  | TYR | A | 424 | -29.152 | 65.763 | 41.208 |      | 35.11   | A          | С  |
| P   | MOT  | 3069 | CG  | TYR | Α | 424 | -29.871 | 65.592 | 42.495 | 1.00 | 35.28   | A          | С  |
|     |      | 3070 |     | TYR |   |     | -29.452 | 66.276 | 43.626 | 1.00 | 37.09   | A          | С  |
|     |      | -    | _   |     |   |     |         |        |        |      |         |            |    |

| MOTA | 3071 | CE1 | TYR | А | 424  | -30.108 | 66.133 | 44.832          | 1.00 37.81 | A        | С     |
|------|------|-----|-----|---|------|---------|--------|-----------------|------------|----------|-------|
| ATOM | 3072 |     | TYR |   |      | -30.967 | 64.756 | 42.594          | 1.00 35.33 | A        | С     |
| ATOM | 3073 |     | TYR |   |      | -31.637 | 64.603 | 43.799          | 1.00 37.01 | A        | c     |
|      |      |     | TYR |   |      |         |        | 44.918          | 1.00 37.93 | A        | č     |
| ATOM | 3074 | CZ  |     |   |      | -31.201 | 65.294 |                 |            |          |       |
| MOTA | 3075 | OH  | TYR |   |      | -31.842 | 65.146 | 46.121          | 1.00 37.86 | A        | 0     |
| MOTA | 3076 | С   | TYR | Α | 424  | -28.819 | 67.250 | 39.274          | 1.00 32.31 | A        | С     |
| ATOM | 3077 | 0   | TYR | Α | 424  | -27.771 | 67.655 | 39.753          | 1.00 33.78 | A        | 0     |
| ATOM | 3078 | N   | PHE | А | 425  | -29.092 | 67.271 | 37.972          | 1.00 28.40 | A        | N     |
| ATOM | 3079 | CA  | PHE |   |      | -28.200 | 67.827 | 36.961          | 1.00 25.80 | A        | С     |
|      |      |     |     |   |      |         |        | 35.656          | 1.00 24.41 | A        | č     |
| ATOM | 3080 | CB  | PHE |   |      | -28.352 | 67.023 |                 |            |          |       |
| MOTA | 3081 | CG  | PHE |   |      | -27.233 | 67.216 | 34.649          | 1.00 21.49 | A        | С     |
| ATOM | 3082 | CD1 | PHE | A | 425  | -25.965 | 66.700 | 34.899          | 1.00 20.11 | A        | С     |
| MOTA | 3083 | CD2 | PHE | A | .425 | -27.455 | 67.885 | 33.441          | 1.00 18.81 | A        | С     |
| ATOM | 3084 | CE1 | PHE | Α | 425  | -24.927 | 66.844 | 33.966          | 1.00 19.00 | A        | С     |
| ATOM | 3085 |     | PHE |   |      | -26.422 | 68.034 | 32.500          | 1.00 18.75 | A        | С     |
|      |      | CZ  | PHE |   |      | -25.156 | 67.513 | 32.766          | 1.00 18.83 | Ä        | č     |
| ATOM | 3086 |     |     |   |      |         |        |                 |            | A        | č     |
| ATOM | 3087 | С   | PHE |   |      | -28.560 | 69.290 | 36.721          | 1.00 25.39 |          |       |
| ATOM | 3088 | 0   | PHE |   |      | -29.504 | 69.585 | 36.006          | 1.00 25.85 | A        | 0     |
| MOTA | 3089 | N   | MET | Α | 426  | -27.817 | 70.200 | 37.341          | 1.00 26.01 | A        | N     |
| ATOM | 3090 | CA  | MET | Α | 426  | -28.047 | 71.633 | 37.180          | 1.00 25.95 | A        | C     |
| ATOM | 3091 | СВ  | MET | A | 426  | -28.599 | 72.223 | 38.462          | 1.00 25.03 | A        | С     |
| ATOM | 3092 | CG  | MET |   |      | -29.949 | 71.706 | 38.857          | 1.00 27.34 | A        | С     |
|      |      |     | MET |   |      | -30.488 | 72.602 | 40.317          | 1.00 31.46 | A        | S     |
| ATOM | 3093 | SD  |     |   |      |         |        |                 |            |          |       |
| MOTA | 3094 | CE  | MET |   |      | -32.224 | 72.153 | 40.401          | 1.00 31.79 | A        | С     |
| ATOM | 3095 | С   | MET | A | 426  | -26.764 | 72.399 | 36.800          | 1.00 27.22 | A        | С     |
| ATOM | 3096 | Ο.  | MET | A | 426  | -26.456 | 73.449 | 37.379          | 1.00 28.24 | A        | 0     |
| ATOM | 3097 | N   | PRO | A | 427  | -25.982 | 71.873 | 35.844          | 1.00 26.64 | A        | N     |
| ATOM | 3098 | CD  | PRO |   |      | -26.028 | 70.619 | 35.082          | 1.00 26.04 | Α.       | С     |
|      |      | CA  | PRO |   |      | -24.790 | 72.624 | 35.504          | 1.00 26.08 | A.       | C #   |
| ATOM | 3099 |     |     |   |      |         |        |                 | 1.00 25.46 |          | - Č . |
| ATOM | 3100 | CB  | PRO |   |      | -24.080 | 71.695 | 34.536          |            |          |       |
| MOTA | 3101 | CG  | PRO | Α | 427  | -25.192 | 70.942 | 33.897          | 1.00 24.59 | A        | C     |
| ATOM | 3102 | С   | PRO | Α | 427  | -25.195 | 73.956 | 34.867          | 1.00 26.95 | <b>A</b> | С.    |
| ATOM | 3103 | 0   | PRO | Α | 427  | -24.559 | 74.979 | 35.097          | 1.00 27.72 | A        | 0 %   |
| ATOM | 3104 | N   | PHE |   |      | -26.259 | 73.939 | 34.068          | 1.00 27.30 | Α.       | N     |
| ATOM | 3105 | CA  | PHE |   |      | -26.747 | 75.152 | 33.407          | 1.00 26.23 | A        |       |
|      |      |     |     |   |      |         |        | 32.089          | 1.00 24.32 | A        | Č.    |
| ATOM | 3106 | CB  | PHE |   |      | -27.474 | 74.800 |                 |            |          |       |
| MOTA | 3107 | CG  | PHE |   |      | -26.591 | 74.131 | 31.065          | 1.00 20.68 | A        | . C - |
| ATOM | 3108 | CDl | PHE | A | 428  | -26.389 | 72.766 | 31.081          | 1.00 18.91 | A        | : C · |
| ATOM | 3109 | CD2 | PHE | Α | 428  | -25.917 | 74.884 | 30.117          | 1.00 22.91 | A        | С     |
| MOTA | 3110 | CE1 | PHE | A | 428  | -25.527 | 72.153 | 30.170          | 1.00 19.20 | A        | С     |
| ATOM | 3111 |     | PHE |   |      | -25.054 | 74.284 | 29.198          | 1.00 20.57 | A        | C     |
|      |      |     |     |   |      |         |        |                 | 1.00 19.26 | A        | č     |
| MOTA | 3112 | CZ  |     |   | 428  | -24.859 | 72.917 | 29.229          |            |          |       |
| MOTA | 3113 | С   |     |   | 428  | -27.704 | 75.914 | 34.33B          | 1.00 26.94 | A        | С     |
| MOTA | 3114 | 0   | PHE | A | 428  | -28.406 | 76.834 | 33.914          | 1.00 28.66 | A        | 0     |
| ATOM | 3115 | N   | SER | A | 429  | -27.690 | 75.552 | 35. <b>6</b> 1B | 1.00 26.15 | A        | N     |
| MOTA | 3116 | CA  | SER | A | 429  | -28.566 | 76.122 | 36.643          | 1.00 24.25 | A        | С     |
| ATOM | 3117 | СВ  |     |   | 429  | -28.515 | 77.638 | 36.676          | 1.00 25.14 | A        | С     |
|      |      |     |     |   |      | -29.234 | 78.126 | 37.808          | 1.00 26.23 | A        | 0     |
| ATOM | 3118 | OG  |     |   | 429  |         |        |                 | 1.00 25.03 | A        | č     |
| ATOM | 3119 | C   |     |   | 429  | -29.981 | 75.675 | 36.375          |            |          |       |
| MOTA | 3120 | 0   | SER | A | 429  | -30.201 | 74.709 | 35.645          | 1.00 28.29 | A        | . 0   |
| ATOM | 3121 | N   | ALA | A | 430  | -30.940 | 76.385 | 36.955          | 1.00 25.12 | A        | N     |
| ATOM | 3122 | CA  | ALA | Α | 430  | -32.368 | 76.066 | 36.840          | 1.00 23.22 | A        | С     |
| ATOM | 3123 | СВ  |     |   | 430  | -32.749 | 75.084 | 37.916          | 1.00 20.30 | A        | С     |
| ATOM | 3124 | c   |     |   | 430  | -33.201 | 77.318 | 36.993          | 1.00 23.29 | A        | С     |
|      |      | ò   |     |   | 430  | -32.698 | 78.354 | 37.422          | 1.00 26.79 | A        | ō     |
| ATOM | 3125 |     |     |   |      |         |        |                 | 1.00 22.27 | <br>A    | N     |
| ATOM | 3126 | N   |     |   | 431  | -34.473 | 77.234 | 36.631          |            |          |       |
| ATOM | 3127 | CA  |     |   | 431  | -35.356 | 78.382 | 36.791          | 1.00 22.99 | A        | C     |
| MOTA | 3128 | С   |     |   | 431  | -35.482 | 79.379 | 35.655          | 1.00 23.72 | A        | C     |
| ATOM | 3129 | 0   | GLY | A | 431  | -35.130 | 79.077 | 34.518          | 1.00 22.41 | A        | 0     |
| ATOM | 3130 | N   | LYS | A | 432  | -35.979 | 80.577 | 35.982          | 1.00 25.42 | A        | N     |
| ATOM | 3131 | CA  |     |   | 432  | -36.200 | 81.657 | 35.004          | 1.00 26.31 | A        | С     |
|      |      |     |     |   |      | -36.941 | 82.832 | 35.646          | 1.00 26.29 | A        | č     |
| MOTA | 3132 | CB  |     |   | 432  |         |        |                 | 1.00 31.08 | A        | č     |
| MOTA | 3133 | CG  |     |   | 432  | -38.215 | 82.498 | 36.382          |            |          |       |
| MOTA | 3134 | CD  |     |   | 432  | -39.287 | 81.948 | 35.455          | 1.00 36.76 | A        | C     |
| MOTA | 3135 | CE  | LYS | A | 432  | -40.535 | 81.489 | 36.213          | 1.00 38.87 | A        | С     |
| ATOM | 3136 | NZ  | LYS | Α | 432  | -40.294 | 80.292 | 37.103          | 1.00 43.71 | A        | N     |
| ATOM | 3137 | C   |     |   | 432  | -34.916 | 82.210 | 34.403          | 1.00 27.10 | A        | С     |
|      | 3138 | Ö   |     |   | 432  | -34.935 | 82.821 | 33.335          | 1.00 28.38 | A        | ō     |
| ATOM |      |     |     |   |      | -33.812 | 82.005 | 35.110          | 1.00 27.86 | Ä        | N     |
| MOTA | 3139 | N   |     |   | 433  |         |        |                 | 1.00 27.41 | A        | C     |
| MOTA | 3140 | CA  |     |   | 433  | -32.505 | 82.496 | 34.701          |            |          |       |
| MOTA | 3141 | СВ  |     |   | 433  | -31.804 | 83.130 | 35.907          | 1.00 27.50 | A        | С     |
| MOTA | 3142 | CG  | ARG | Α | 433  | -32.274 | 84.539 | 36.238          | 1.00 27.54 | A        | С     |
| ATOM | 3143 | CD  | ARG | Α | 433  | -31.626 | 85.566 | 35.333          | 1.00 26.49 | A        | С     |
| ATOM | 3144 | NE  |     |   | 433  | -32.050 | 86.930 | 35.663          | 1.00 26.00 | A        | N     |
|      |      | CZ  |     |   | 433  | -31.489 | 88.033 | 35.166          | 1.00 26.34 | A        | С     |
| MOTA | 3145 | Çű  | ~~~ | ^ | 733  | 31.703  | 00.055 |                 |            | ••       | -     |
|      |      |     |     |   |      |         |        |                 |            |          |       |

| MOTA     | 3146  | NH1  | ARG        | A | 433          | -30.469            | 87.973           | 34.317           | 1.00 | 23.44          | Α      | N      |
|----------|-------|------|------------|---|--------------|--------------------|------------------|------------------|------|----------------|--------|--------|
| MOTA     | 3147  |      | ARG        |   |              | -31.969            | 89.208           | 35.499           | 1.00 | 27.30          | A      | N      |
| ATOM     | 3148  | С    | ARG        | A | 433          | -31.658            | 81.379           | 34.152           | 1.00 | 26.60          | A      | С      |
| MOTA     | 3149  | 0    | ARG        |   |              | -30.445            | 81.517           | 34.010           | 1.00 | 28.79          | A      | 0      |
| ATOM     | 3150  | N    | ILE        | A | 434          | -32.288            | 80.257           | 33.846           | 1.00 | 26.20          | Α      | N      |
| ATOM     | 3151  | CA   | ILE        |   |              | -31.532            | 79.125           | 33.322           | 1.00 | 25.67          | Α      | С      |
| ATOM     | 3152  | СB   | ILE        |   | 434          | -32.445            | 77.884           | 33.060           | 1.00 | 22.89          | A      | С      |
| ATOM     | 3153  |      | ILE        |   |              | -33.499            | 78.168           | 32.030           | 1.00 | 21.04          | A      | C      |
| ATOM     | 3154  | CG1  |            |   | <b>`</b> ;34 | -31.598            | 76.758           | 32.499           | 1.00 | 21.96          | A      | C ·    |
| ATOM     | 3155  |      | ILE        |   |              | -32.023            | 75.428           | 32.978           | 1.00 | 20.46          | A      | С      |
| ATOM     | 3156  | C    | ILE        |   |              | -30.760            | 79.479           | 32.057           | 1.00 | 24.22          | A      | С      |
| ATOM     | 3157  | ò    | ILE        |   |              | -31.243            | 80.201           | 31.200           | 1.00 | 23.88          | A      | 0      |
| ATOM     | 3158  | N    | CYS        | Α | 435          | -29.543            | 78.972           | 31.978           | 1.00 | 24.87          | A      | N      |
| ATOM     | 3159  | CA   | CYS        |   |              | -28.698            | 79.205           | 30.835           | 1.00 | 28.11          | A      | С      |
| ATOM     | 3160  | CB   | CYS        | Α | 435          | -27.647            | 78.094           | 30.730           | 1.00 | 27.77          | A      | С      |
| ATOM     | 3161  | SG   | CYS        | A | 435          | -26.619            | 78.207           | 29.223           | 1.00 | 33.28          | Α      | S      |
| ATOM     | 3162  | C    | CYS        | Α | 435          | -29.542            | 79.252           | 29.562           | 1.00 | 27.75          | A      | С      |
| ATOM     | 3163  | 0    | CYS        | A | 435          | -30.474            | 78.473           | 29.388           | 1.00 | 29.13          | A      | 0      |
| ATOM     | 3164  | N    | VAL        | A | 436          | -29.205            | 80.191           | 28.692           |      | 27.07          | A      | N      |
| ATOM     | 3165  | CA   | VAL        | Α | 436          | -29.894            | 80.389           | 27.441           | 1.00 | 26.13          | A.     | С      |
| ATOM     | 3166  | CB   | VAL        | A | 436          | -29.691            | 81.823           | 26.967           | 1.00 | 27.40          | A      | С      |
| ATOM     | 3167  | CG1  | VAL        | A | 436          | -30.180            | 81.987           | 25.554           |      | 27.43          | A      | C      |
| ATOM     | 3168  | CG2  | VAL        | A | 436          | -30.400            | 82.780           | 27.904           |      | 27.30          | A      | С      |
| ATOM     | 3169  | Ç    | VAL        | A | 436          | -29.308            | 79.449           | 26.406           | 1.00 | 27.24          | A      | С      |
| ATOM     | 3170  | 0    | VAL        | A | 436          | -29.966            | 79.059           | 25.433           |      | 29.06          | A      | 0      |
| ATOM     | 3171  | N    | GLY        | A | 437          | -28.052            | 79.085           | 26.625           | 1.00 | 26.95          | A      | N      |
| ATOM     | 3172  | CA   | GLY        | A | 437          | -27.360            | 78.206           | 25.702           | 1.00 | 25.63          | A      | С      |
| ATOM     | 3173  | С    | GLY        | Α | 437          | -27.308            | 76.777           | 26.181           | 1.00 | 25.25          | A      | С      |
| MOTA     | 3174  | 0.   | GLY        | A | 437          | -26.354            | 76.056           | 25.906           |      | 25.33          | A      | 0      |
| ATOM     | 3175  | N    | GLU        | A | 438          | -28.335            | 76.368           | 26.911           |      | 24.74          | A      | N      |
| ATOM:    | 3176  | CA   | GLU        | Α | 438          | -28.384            | 75.009           | 27.404           | 1.00 | 24.84          | A      | С      |
| ATOM:    | 3177. | CB   | GLU        | A | 438          | -29.612            | 74.812           | 28.261           |      | 25.64          | A      | С      |
| ATOM     | 3178  | CG   | GLU        | A | 438          | -29.636            | 73.488           | 28.947           |      | 29.03          | A      | С      |
| ATOM:    | 3179  | CD   | GLU        | A | 438          | -30.926            | 73.301           | 29.728           |      | 31.59          | A      | С      |
| of ATOM: | 3180  | OE1  | GLU        | A | 438          | -31.065            | 72.261           | 30.423           |      | 34.61          | A      | 0      |
| ATOM:    | 3181  | QE2  | GLU        | A | 438          | -31.795            | 74.201           | 29.645           |      | 29.23          | A      | 0      |
| ATOM     | 3182  | C    | GŁU        |   | 438          | -28.404            | 74.043           | 26.222           |      | 24.25          | A      | С      |
| ATOM .   | 3183  | 0    | GLU        |   | 438          | -27.696            | 73.049           | 26.221           |      | 25.24          | A      | 0      |
| · ATOM   | 3184  | N    | ALA        |   |              | -29.193            | 74.336           | 25.198           |      | 23.20          | A      | N      |
| ATOM     | 3185  | CA   | ALA        |   |              | -29.230            | 73.447           | 24.056           |      | 23.25          | A      | С      |
| ATOM     | 3186  | CB   | ALA        |   |              | -30.406            | 73.773           | 23.171           |      | 22.22          | A      | С      |
| MOTA     | 3187  | С    | ALA        |   |              | -27.942            | 73.520           | 23.248           |      | 25.34          | A      | C      |
| ATOM     | 3188  | 0    | ALA        |   |              | -27.277            | 72.501           | 23.032           |      | 28.78          | A      | 0      |
| MOTA     | 3189  | N    | LEU        |   | 440          | -27.598            | 74.722           | 22.788           |      | 25.62          | A      | N      |
| ATOM     | 3190  | CA   | LEU        |   |              | -26.393            | 74.940           | 21.980           |      | 24.03          | A      | c      |
| MOTA     | 3191  | CB   | LEU        |   |              | -26.166            | 76.431           | 21.729           |      | 23.43          | A      | C      |
| ATOM     | 3192  | CG   | LEU        |   |              | -24.814            | 76.850           | 21.142           |      | 21.87          | A      | C      |
| MOTA     | 3193  |      | LEU        |   | 440          | -24.628            | 76.246           | 19.760           |      | 21.87          | A      | C      |
| ATOM     | 3194  |      | LEU        |   | 440          | -24.752            | 78.357           | 21.064           |      | 22.15          | A      | C      |
| ATOM     | 3195  | C    | LEU        |   | 440          | -25.179            | 74.394           | 22.674           |      | 23.79          | A      | C      |
| ATOM     | 3196  | 0    | LEU        |   |              | -24.288            | 73.852           | 22.052           |      | 23.59          | A      | 0      |
| MOTA     | 3197  | N    | ALA        |   |              | -25.131            | 74.552           | 23.977           |      | 23.46          | A      | N      |
| ATOM     | 3198  | CA   | ALA        |   | 441          | -23.990            | 74.058           | 24.672           |      | 24.13          | A      | c<br>c |
| ATOM     | 3199  | CB · | ALA        |   |              | -24.045            | 74.485<br>72.559 | 26.128<br>24.562 |      | 25.20<br>24.60 | A<br>A | c      |
| ATOM     | 3200  | C    |            |   | 441          | -23.992            |                  |                  |      | 25.46          |        | _      |
| MOTA     | 3201  | 0    |            |   | 441          | -22.970            |                  | 24.236           |      | 24.78          | A      | N      |
| ATOM     | 3202  | N    | GLY        |   |              | -25.137            | 71.937           | 24.797           |      | 24.78          | A      | Č      |
| ATOM     | 3203  | CA   | GLY        |   |              | -25.225            | 70.482           | 23.419           |      | 24.02          | A      | c      |
| ATOM     | 3204  | C    | GLY        |   |              | -24.908            | 69.947<br>68.875 | 23.244           |      | 25.31          | A      | ŏ      |
| ATOM     | 3205  | 0    | GLY        |   |              | -24.335            | 70.738           | 22.432           |      | 24.75          | A      | N      |
| ATOM     | 3206  | N    | MET        |   |              | -25.284            |                  | 21.043           |      | 25.46          | A      | Ċ      |
| ATOM     | 3207  | CA   | MET        |   |              | -25.084            | 70.419<br>71.421 | 20.201           |      | 28.41          | A      | c      |
| ATOM     | 3208  | CB   | MET        |   |              | -25.854            |                  | 18.867           |      | 33.22          | A      | Č      |
| ATOM     | 3209  | CG   | MET        |   |              | -26.245            | 70.870           | 17.808           |      | 41.26          | Α      | s      |
| ATOM     | 3210  | SD   | MET        |   |              | -27.152            | 72.029           | 18.767           |      | 36.17          | A      | C      |
| ATOM     | 3211  | CE   | MET        |   |              | -28.732            | 72.423<br>70.452 | 20.661           |      | 25.19          | A      | c      |
| ATOM     | 3212  | C    | MET        |   |              | -23.613            | 69.634           | 19.889           |      | 25.49          | A      | Ö      |
| ATOM     | 3213  | 0    | MET        |   |              | -23.163            | 71.388           | 21.208           |      | 26.73          | A      | N      |
| ATOM     | 3214  | N    | GLU        |   |              | -22.851            | 71.388           | 20.849           |      | 27.79          | A      | Č      |
| ATOM     | 3215  | CA   | GLU        |   |              | -21.442<br>-20.901 | 72.865           | 21.220           |      | 28.33          | A      | c      |
| ATOM     | 3216  | CB   |            |   |              |                    | 74.041           | 20.655           |      | 33.19          | A      | c      |
| ATOM     | 3217  | CG   | GLU        |   |              | -21.632<br>-20.973 | 75.320           | 21.067           |      | 37.10          | A      | C      |
| ATOM     | 3218  | CD   | GLU<br>GLU |   |              | -19.729            | 75.346           | 21.021           |      | 42.19          | A      | Ö      |
| ATOM     | 3219  |      |            |   |              | -21.669            | 76.293           | 21.429           |      | 38.63          | A      | Ö      |
| MOTA     | 3220  | UEZ  | GLU        | A | 777          | -21.003            | 10.233           | 22.723           | 2.00 | 30.03          |        | 5      |
|          |       |      |            |   |              |                    |                  |                  |      |                |        |        |

Figure 1

| MOTA         | 3221 | С   | GLU | Δ | 444 | -20.625            | 70.429           | 21.569           | 1.00 | 28.02          | A      | С  |
|--------------|------|-----|-----|---|-----|--------------------|------------------|------------------|------|----------------|--------|----|
| ATOM         | 3222 | ō   | GLU |   |     | -19.724            | 69.829           | 20.987           |      | 29.38          | A      | 0  |
|              |      |     |     |   |     |                    |                  |                  |      | 26.91          | A      | N  |
| ATOM         |      | . N | LEU |   |     | -20.929            | 70.211           | 22.845           |      |                |        |    |
| MOTA         | 3224 | CA  | LEU | A | 445 | -20.222            | 69.215           | 23.620           |      | 26.03          | A      | С  |
| ATOM         | 3225 | CB  | LEU | Α | 445 | -20.764            | 69.139           | 25.030           | 1.00 | 24.84          | A      | С  |
| ATOM         | 3226 | CG  | LEU | Α | 445 | -20.271            | 70.274           | 25.914           | 1.00 | 26.40          | A      | С  |
| MOTA         | 3227 |     | LEU |   |     | -20.966            | 70.239           | 27.274           | 1.00 | 23.95          | A      | С  |
|              |      |     |     |   |     | -18.756            | 70.136           | 26.067           |      | 24.66          | A      | č  |
| ATOM         | 3228 |     | LEU |   |     |                    |                  |                  |      |                |        |    |
| ATOM         | 3229 | С   | LEU |   |     | -20.383            | 67.875           | 22.963           |      | 25.99          | A      | C  |
| MOTA         | 3230 | 0   | LEU | A | 445 | -19.401            | 67.168           | 22.714           |      | 28.13          | A      | 0  |
| ATOM         | 3231 | N   | PHE | A | 446 | -21.626            | 67.522           | 22.670           | 1.00 | 24.19          | A      | N  |
| ATOM         | 3232 | CA  | PHE | А | 446 | -21.912            | 66.238           | 22.057           | 1.00 | 21.97          | A      | C  |
|              | 3233 | СВ  | PHE |   | 446 | -23.417            | 66.020           | 21.923           |      | 20.59          | A      | C  |
| ATOM'        |      |     |     |   |     |                    | 64.714           | 21.273           |      | 18.18          | A      | č  |
| MOTA         | 3234 | CG  | PHE |   | 446 | -23.772            |                  |                  |      |                |        |    |
| ATOM         | 3235 | CD1 | PHE | A | 446 | -24.125            | 64.662           | 19.930           |      | 17.53          | A      | Ç  |
| ATOM         | 3236 | CD2 | PHE | Α | 446 | -23.729            | 63.523           | 22.000           | 1.00 | 15.18          | A      | С  |
| MOTA         | 3237 | CEl | PHE | A | 446 | -24.434            | 63.436           | 19.320           | 1.00 | 16.42          | A      | С  |
| ATOM         | 3238 |     | PHE |   | 446 | -24.034            | 62.312           | 21.398           | 1.00 | 14.16          | A      | С  |
| ATOM         | 3239 | CZ  | PHE |   | 446 | -24.385            | 62.264           | 20.058           |      | 13:49          | A      | С  |
|              |      |     |     |   |     |                    |                  | 20.700           |      | 21.47          | A      | č  |
| MOTA         | 3240 | C   | PHE |   |     | -21.273            | 66.091           |                  |      |                |        |    |
| MOTA         | 3241 | 0   | PHE |   |     | -20.558            | 65.118           | 20.455           |      | 21.99          | A      | 0  |
| ATOM         | 3242 | N   | LEU | Α | 447 | -21.543            | 67.062           | 19.829           | 1.00 | 19.85          | A      | Ŋ  |
| ATOM         | 3243 | CA  | LEU | A | 447 | -21.027            | 67.084           | 18.468           | 1.00 | 18.25          | A      | C  |
| MOTA         | 3244 | CB  | LEU | А | 447 | -21.704            | 68.213           | 17.658           | 1.00 | 17.10          | A      | С  |
| ATOM         | 3245 | CG  | LEU |   |     | -23.190            | 68.025           | 17.294           |      | 18.05          | A      | С  |
|              |      |     |     |   |     |                    |                  | 16.498           |      | 17.51          | A      | Č. |
| MOTA         | 3246 |     | LEU |   |     | -23.743            | 69.221           |                  |      |                |        |    |
| ATOM         | 3247 | CD2 | LEU | A | 447 | -23.352            | 66.765           | 16.518           |      | 16.62          | A      | C  |
| ATOM         | 3248 | С   | LEU | A | 447 | -19.500            | 67.193           | 18.360           | 1.00 | 18.18          | A      | С  |
| MOTA         | 3249 | 0   | LEU | А | 447 | -18.915            | 66.570           | 17.486           | 1.00 | 18.00          | A      | 0  |
| ATOM         | 3250 | N   | PHE |   |     | -18.838            | 67.969           | 19.215           | 1.00 | 19.18          | A      | N  |
|              |      |     |     |   |     | -17.388            | 68.051           | 19.092           |      | 20.90          | A      | C  |
| ATOM         | 3251 | CA  | PHE |   | 448 |                    |                  |                  |      |                |        |    |
| MOTA         | 3252 | CB  | PHE |   |     | -16.776            | 69.257           | 19.832           |      | 18.05          | A      | C  |
| ATOM         | 3253 | CG  | PHE | Α | 448 | -17.106            | 70.591           | 19.233           | 1.00 | 17.28          | A      | C  |
| ATOM         | 3254 | CD1 | PHE | A | 448 | -17.801            | 70.693           | 18.047           | 1.00 | 17.20          | A      | С  |
| ATOM         | 3255 | CD2 | PHE | Δ | 448 | -16.816            | 71.757           | 19.925           | 1.00 | 20.87          | A      | С  |
|              | 3256 |     | PHE |   | 448 | -18.227            | 71.926           | 17.557           |      | 16.45          | A      | С  |
| ATOM         |      |     |     |   |     |                    |                  |                  |      |                | A      | č  |
| ATOM         | 3257 |     | PHE |   | 448 | -17.240            | 73.020           | 19.444           |      | 19.79          |        |    |
| ATOM         | 3258 | CZ  | PHE | Α | 448 | -17.949            | 73.092           | 18.257           |      | 18.83          | A      | C  |
| ATOM         | 3259 | С   | PHE | A | 448 | -16.819            | 66.770           | 19.687           | 1.00 | 24.23          | A      | С  |
| ATOM         | 3260 | 0   | PHE | А | 448 | -16.222            | 65.961           | 18.982           | 1.00 | 25.03          | A      | 0  |
| ATOM         | 3261 | N   | LEU |   | 449 | -17.036            | 66.551           | 20.978           | 1.00 | 27.27          | A      | N  |
|              |      |     |     |   |     | -16.488            | 65.362           | 21.606           |      | 29.13          | A      | Ċ  |
| ATOM         | 3262 | CA  | LEU |   |     |                    |                  |                  |      |                |        | č  |
| ATOM         | 3263 | CB  | LEU |   | 449 | -17.205            | 65.083           | 22.930           |      | 30.56          | A      |    |
| ATOM         | 3264 | CG  | LEU | Α | 449 | -16.762            | 66.002           | 24.067           |      | 32.31          | A      | C  |
| ATOM         | 3265 | CD1 | LEU | Α | 449 | -17.539            | 65.653           | 25.323           | 1.00 | 32.19          | A      | С  |
| ATOM         | 3266 | CD2 | LEU | A | 449 | -15.238            | 65.839           | 24.310           | 1.00 | 33.10          | A      | С  |
| ATOM         | 3267 | C   | LEU |   | 449 | -16.570            | 64.146           | 20.701           | 1.00 | 28.98          | A      | С  |
| ATOM         |      |     | LEU |   | 449 | -15.598            | 63.425           | 20.522           |      | 28.26          | A      | Ó  |
|              | 3268 | 0   |     |   |     |                    |                  |                  |      |                |        | N  |
| MOTA         | 3269 | N   | THR |   | 450 | -17.726            | 63.962           | 20.085           |      | 30.03          | A      |    |
| ATOM         | 3270 | CA  | THR | А | 450 | -17.977            | 62.806           | 19.243           |      | 30.53          | A      | С  |
| ATOM         | 3271 | CB  | THR | Α | 450 | -19.499            | 62.724           | 19.009           | 1.00 | 30.B3          | Α      | С  |
| ATOM         | 3272 | OG1 | THR | А | 450 | -19.842            | 61.440           | 18.490           | 1.00 | 34.66          | Α      | 0  |
| ATOM         | 3273 |     | THR |   | 450 | -19.948            | 63.834           | 18.078           | 1.00 | 31.02          | A      | С  |
|              |      |     | THR |   |     | -17.160            | 62.817           | 17.946           |      | 29.25          | A      | С  |
| ATOM         | 3274 | C   |     |   | 450 |                    |                  |                  |      | 27.72          | A      | ŏ  |
| ATOM         | 3275 | 0   | THR |   | 450 | -16.557            | 61.816           | 17.574           |      |                |        |    |
| MOTA         | 3276 | N   | SER |   |     | -17.113            | 63.964           | 17.284           |      | 30.12          | A      | N  |
| MOTA         | 3277 | CA  | SER | Α | 451 | -16.341            | 64.108           | 16.058           |      | 30.44          | A      | С  |
| ATOM         | 3278 | CB  | SER |   |     | -16.608            | 65.471           | 15.426           | 1.00 | 28.64          | A      | С  |
| MOTA         | 3279 | OG  | SER |   |     | -17.998            | 65.672           | 15.241           |      | 28.87          | A      | ٥  |
|              |      |     |     |   |     | -14.848            | 63.975           | 16.352           |      | 32.16          | A      | С  |
| ATOM         | 3280 | C   | SER |   |     |                    |                  |                  |      | 33.03          | Ä      | ŏ  |
| MOTA         | 3281 | 0   | SER |   |     | -14.082            | 63.496           | 15.521           |      |                |        |    |
| MOTA         | 3282 | N   |     |   | 452 | -14.403            | 64.377           | 17.531           |      | 32.71          | A      | N  |
| ATOM         | 3283 | CA  | ILE | A | 452 | -12.980            | 64.243           | 17.750           |      | 33.65          | A      | С  |
| ATOM         | 3284 | CB  | ILE | Α | 452 | -12.489            | 65.154           | 18.870           | 1.00 | 33.44          | A      | С  |
| ATOM         | 3285 |     | ILE |   |     | -13.381            | 66.373           | 18.980           | 1.00 | 31.19          | Α      | С  |
|              |      |     |     |   |     | -12.436            | 64.381           | 20.176           |      | 35.91          | A      | č  |
| ATOM         | 3286 |     | ILE |   |     |                    |                  |                  |      |                |        | č  |
| MOTA         | 3287 |     | ILE |   |     | -11.040            | 63.961           | 20.560           |      | 37.38          | A      |    |
| ATOM         | 3288 | С   | ILE | A | 452 | -12.552            | 62.813           | 18.043           |      | 35.55          | A      | C  |
| MOTA         | 3289 | 0   | ILE | Α | 452 | -11.452            | 62.414           | 17.679           | 1.00 | 36.47          | A      | 0  |
| ATOM         | 3290 | N   |     |   | 453 | -13.421            | 62.043           | 18.693           | 1.00 | 37.34          | Α      | N  |
| ATOM         | 3291 | CA  | LEU |   |     | -13.113            | 60.661           | 19.031           |      | 38.07          | A      | С  |
|              |      |     |     |   |     |                    | 60.222           | 20.258           |      | 37.57          | A      | č  |
| ATOM         | 3292 | CB  | LEU |   |     | -13.924            |                  |                  |      |                |        |    |
| ATOM         | 3293 | CG  | LEU | Α | 453 | -13.516            | 60.713           | 21.655           |      | 36.97          | A      | С  |
|              |      |     |     |   |     |                    |                  |                  |      |                |        |    |
| ATOM         | 3294 |     | LEU | A | 453 | -14.548            | 60.265           | 22.687           |      | 36.61          | A      | С  |
| ATOM<br>ATOM |      | CD1 |     |   |     | -14.548<br>-12.158 | 60.265<br>60.177 | 22.687<br>22.021 |      | 36.61<br>36.88 | A<br>A | c  |

Figure 1

| ATOM   | 3296 | С   | LEU | A | 453 | -13.410 | 59.736 | 17.855 | 1.00 38.53 | A   | С |
|--------|------|-----|-----|---|-----|---------|--------|--------|------------|-----|---|
| ATOM   | 3297 | 0   | LEU | Α | 453 | -13.021 | 58.565 | 17.859 | 1.00 38.54 | A   | 0 |
| ATOM   | 3298 | N   | GLN | A | 454 | -14.114 | 60.255 | 16.857 | 1.00 37.97 | A   | N |
| ATOM   | 3299 | CA  | GLN | A | 454 | -14.431 | 59.448 | 15.694 | 1.00 38.91 | A   | С |
| ATOM   | 3300 | СВ  | GLN | А | 454 | -15.665 | 59.982 | 14.977 | 1.00 35.81 | A   | C |
| MOTA   | 3301 | CG  |     |   | 454 | -15.999 | 59.255 | 13.700 | 1.00 34.13 | · A | c |
| ATOM   | 3302 | CD  |     |   | 454 | -17.070 | 59.975 | 12.906 | 1.00 36.28 | A   | Č |
| ATOM   | 3303 |     | GLN | А | 454 | -17.945 | 59.358 | 12.297 | 1.00 36.86 | A   | ŏ |
| ATOM   | 3304 | NE2 | GLN | А | 454 | -17.000 | 61.295 | 12.902 | 1.00 37.55 | A   | N |
| ATOM   | 3305 | С   |     |   | 454 | -13.256 | 59.495 |        | 1.00 40.95 | A   | Ċ |
| ATOM   | 3306 | 0   | GLN | Α | 454 | -13.029 | 58.566 | 13.973 | 1.00 43.10 | A   | ō |
| ATOM   | 3307 | N   | ASN | А | 455 | -12.498 | 60.581 | 14.795 | 1.00 42.29 | A   | N |
| ATOM   | 3308 | CA  |     |   | 455 | -11.374 | 60.749 | 13.893 | 1.00 41.61 | A   | C |
| ATOM   | 3309 | CB  | ASN | А | 455 | -11.466 | 62.129 | 13.261 | 1.00 39.71 | A   | c |
| ATOM   | 3310 | CG  | ASN | Α | 455 | -12.718 | 62.288 | 12.429 | 1.00 40.00 | A   | Ċ |
| ATOM   | 3311 |     | ASN | Α | 455 | -12.754 | 61.891 | 11.276 | 1.00 43.17 | A   | Ö |
| ATOM   | 3312 |     | ASN |   |     | -13.757 | 62.846 | 13.015 | 1.00 38.24 | A   | N |
| ATOM . | 3313 | С   | ASN | Α | 455 | -10.014 | 60.532 | 14.520 | 1.00 42.70 | A   | C |
| ATOM   | 3314 | 0   |     |   | 455 | -9.060  | 60.203 | 13.821 | 1.00 44.74 | A   | 0 |
| ATOM   | 3315 | N   |     |   | 456 | -9.922  | 60.693 | 15.835 | 1.00 42.92 | A   | N |
| ATOM   | 3316 | CA  |     |   | 456 | -8.650  | 60.517 | 16.513 | 1.00 43.43 | A   | c |
| ATOM   | 3317 | CB  | PHE | A | 456 | -8.064  | 61.870 | 16.896 | 1.00 42.60 | A   | С |
| ATOM   | 3318 | CG  | PHE | А | 456 | -8.102  | 62.883 | 15.797 | 1.00 41.05 | A   | С |
| ATOM   | 3319 |     | PHE |   |     | -7.183  | 62.840 | 14.759 | 1.00 39.70 | A   | С |
| MOTA   | 3320 |     | PHE |   |     | -9.065  | 63.884 | 15.799 | 1.00 39.82 | A   | С |
| ATOM   | 3321 |     | PHE |   |     | -7.225  | 63.780 | 13.741 | 1.00 39.52 | A   | c |
| ATOM   | 3322 | CE2 | PHE | Α | 456 | -9.114  | 64.825 | 14.787 | 1.00 39.13 | ` A | Ċ |
| ATOM   | 3323 | CZ  |     |   | 456 | -8.193  | 64.775 | 13.754 | 1.00 38.68 | A   | c |
| ATOM   | 3324 | C   |     |   | 456 | -8.717  | 59.682 | 17.775 | 1.00 45.04 | A   | Ċ |
| ATOM   | 3325 | Ó   |     |   | 456 | -9.791  | 59.339 | 18.278 | 1.00 44.44 | A   | 0 |
| ATOM   | 3326 | N   |     |   | 457 | -7.554  | 59.336 | 18.228 | 1.00 15.00 | Α   |   |
| ATOM   | 3327 | CA  | ASN | Α | 457 | -7.298  | 58.661 | 19.494 | 1.00 15.00 | A   |   |
| ATOM   | 3328 | СВ  |     |   | 457 | -6.601  | 57,320 | 19.250 | 1.00 15.00 | A   |   |
| ATOM   | 3329 | CG  |     |   | 457 | -7.527  | 56.282 | 18.649 | 1.00 15.00 | A   |   |
| MOTA   | 3330 |     | ASN | Α | 457 | -8.671  | 56.131 | 19.079 | 1.00 15.00 | A   |   |
| ATOM   | 3331 |     | ASN |   |     | -7.036  | 55.557 | 17.652 | 1.00 15.00 | A   |   |
| ATOM   | 3332 | С   |     |   | 457 | -6.445  | 59.528 | 20.414 | 1.00 15.00 | A   |   |
| ATOM   | 3333 | 0   | ASN | Α | 457 | -5.460  | 60.059 | 19.888 | 1.00 50.60 | A   |   |
| ATOM   | 3334 | N   |     |   | 458 | -6.B50  | 59.713 | 21.596 | 1.00 52.02 | A   | N |
| ATOM   | 3335 | CA  |     |   | 458 | -6.125  | 60.599 | 22.472 | 1.00 54.10 | A   | С |
| ATOM   | 3336 | СВ  |     |   | 458 | -7.101  | 61.165 | 23.503 | 1.00 52.43 | A   | С |
| ATOM   | 3337 | CG  |     |   | 458 | -8.454  | 61.629 | 22.943 | 1.00 50.99 | A   | С |
| ATOM   | 3338 |     | LEU |   |     | -9.311  | 62.155 | 24.088 | 1.00 50.86 | A   | С |
| ATOM   | 3339 |     | LEU |   |     | -8.266  | 62.692 | 21.881 | 1.00 49.00 | A   | С |
| ATOM   | 3340 | Ċ   |     |   | 458 | -4.924  | 59.958 | 23.166 | 1.00 56.41 | A   | С |
| MOTA   | 3341 | 0   | LEU |   |     | -5.087  | 59.239 | 24.147 | 1.00 57.85 | A   | 0 |
| MOTA   | 3342 | N   | LYS | Α | 459 | -3.710  | 60.207 | 22.649 | 1.00 15.00 | A   |   |
| ATOM   | 3343 | CA  | LYS | Α | 459 | -2.519  | 59.671 | 23.294 | 1.00 15.00 | A   |   |
| ATOM   | 3344 | СВ  | LY5 | Α | 459 | -1.474  | 59.289 | 22.243 | 1.00 15.00 | A   |   |
| ATOM   | 3345 | CG  | LYS | Α | 459 | -1.848  | 58.075 | 21.408 | 1.00 15.00 | A   |   |
| MOTA   | 3346 | CD  | LYS | А | 459 | -0.757  | 57.738 | 20.405 | 1.00 15.00 | A.  |   |
| ATOM   | 3347 | CE  | LYS | A | 459 | -1.132  | 56.525 | 19.569 | 1.00 15.00 | A   |   |
| ATOM   | 3348 | NZ  | LYS | Α | 459 | -0.072  | 56.182 | 18.581 | 1.00 15.00 | A   |   |
| MOTA   | 3349 | С   | LYS | A | 459 | -1.923  | 60.681 | 24.270 | 1.00 15.00 | A   |   |
| MOTA   | 3350 | Ο.  | LYS | A | 459 | -1.859  | 61.869 | 23.964 | 1.00 61.44 | A   |   |
| ATOM   | 3351 | N   | SER | A | 460 | -1.500  | 60.188 | 25.424 | 1.00 64.04 | A   | N |
| ATOM   | 3352 | CA  | SER | A | 460 | -0.912  | 61.024 | 26.470 | 1.00 66.10 | A   | С |
| ATOM   | 3353 | CB  | SER | A | 460 | -1.271  | 60.464 | 27.845 | 1.00 65.18 | A   | С |
| MOTA   | 3354 | OG  | SER | A | 460 | -0.739  | 61.274 | 28.875 | 1.00 65.17 | A   | 0 |
| ATOM   | 3355 | C   | SER | A | 460 | 0.605   | 61.113 | 26.352 | 1.00 68.11 | A   | С |
| MOTA   | 3356 | 0   | SER | Α | 460 | 1.220   | 60.363 | 25.598 | 1.00 68.86 | A   | 0 |
| ATOM   | 3357 | N   | LEU | Α | 461 | 1.213   | 62.034 | 27.095 | 1.00 70.83 | A   | N |
| ATOM   | 3358 | CA  | LEU |   |     | 2.667   | 62.175 | 27.059 | 1.00 73.31 | A   | С |
| ATOM   | 3359 | CB  | LEU | A | 461 | 3.069   | 63.653 | 27.079 | 1.00 72.85 | A   | С |
| MOTA   | 3360 | CG  | LEU |   |     | 2.487   | 64.527 | 25.960 | 1.00 73.20 | A   | С |
| ATOM   | 3361 |     | LEU |   |     | 3.036   | 65.950 | 26.066 | 1.00 73.51 | A   | С |
| ATOM   | 3362 |     | LEU |   |     | 2.833   | 63.925 | 24.612 | 1.00 73.48 | A   | С |
| ATOM   | 3363 | С   | LEU |   |     | 3.269   | 61.437 | 28.251 | 1.00 74.86 | A   | С |
| ATOM   | 3364 | 0   | LEU |   |     | 4.271   | 60.733 | 28.116 | 1.00 75.81 | A   | 0 |
| ATOM   | 3365 | N   | VAL |   |     | 2.648   | 61.587 | 29.415 | 1.00 76.31 | A   | N |
| ATOM   | 3366 | CA  | VAL |   |     | 3.119   | 60.911 | 30.615 | 1.00 78.64 | A   | С |
| ATOM   | 3367 | CB  | VAL |   |     | 3.170   | 61.880 | 31.822 | 1.00 79.03 | A   | C |
| ATOM   | 3368 |     | VAL |   |     | 1.758   | 62.265 | 32.249 | 1.00 76.93 | A   | C |
| MOTA   | 3369 |     | VAL |   |     | 3.934   | 61.233 | 32.977 | 1.00 79.18 | · А | С |
| ATOM   | 3370 | С   | VAL |   |     | 2.160   | 59.767 | 30.944 | 1.00 80.12 | A   | С |
|        |      |     |     |   |     |         |        |        |            |     |   |

|   | MOTA         | 3371         | 0        | VAL | A | 462        | 1.073           | 59.685           | 30.381           | 1.00 80.84 | A   | 0      |
|---|--------------|--------------|----------|-----|---|------------|-----------------|------------------|------------------|------------|-----|--------|
|   | ATOM         | 3372         | N        | ASP |   |            | 2.583           | 58.878           | 31.836           | 1.00 15.00 | A   |        |
|   | ATOM         | 3373         | CA       | ASP | A | 463        | 1.716           | 57.784           | 32.260           | 1.00 15.00 | A   |        |
|   | ATOM         | 3374         | СВ       | ASP | A | 463        | 2.396           | 56.968           | 33.362           | 1.00 15.00 | A   |        |
|   | MOTA         | 3375         | CG       | ASP | A | 463        | 3.575           | 56.165           | 32.848           | 1.00 15.00 |     |        |
|   | MOTA         | 3376         | OD1      | ASP | A | 463        | 3.538           | 55.735           | 31.677           | 1.00 15.00 |     |        |
|   | ATOM         | 3377         | OD2      | ASP | A | 463        | 4.539           | 55.965           | 33.617           | 1.00 15.00 |     |        |
|   | ATOM         | 3378         | С        | ASP | Α | 463        | 0.376           | 58.312           | 32.761           | 1.00 15.00 |     |        |
|   | ATOM         | 3379         | 0        | ASP | A | 463        | 0.392           | 59.180           | 33.645           | 1.00 83.23 |     |        |
|   | ATOM         | 3380         | N        | PRO | A | 464        | -0.737          | 57.858           | 32.206           | 1.00 82.35 | A   | N      |
|   | ATOM         | 3381         | CD       | PRO | A | 464        | -0.902          | 56.943           | 31.063           | 1.00 82.04 |     | С      |
|   | MOTA         | 3382         | CA       | PRO | A | 464        | -2.040          | 58.348           | 32.665           | 1.00 82.19 |     | С      |
|   | MOTA         | 3383         | CB       | PRO |   |            | -3.016          | 57.395           | 31.988           | 1.00 81.60 |     | C      |
|   | MOTA         | 3384         | CG       | PRO |   |            | -2.358          | 57.164           | 30.673           | 1.00 81.26 |     | Ç      |
|   | MOTA         | 3385         | С        | PRO |   |            | -2.107          | 58.269           | 34.186           | 1.00 82.02 |     | C      |
|   | MOTA         | 3386         | 0        | PRO |   | 464        | -2.811          | 59.040           | 34.836           | 1.00 81.65 |     | 0      |
|   | ATOM         | 3387         | N        | LYS |   |            | -1.358          | 57.322           | 34.739           | 1.00 82.36 |     | N      |
|   | MOTA         | 3388         | CA       | LYS |   |            | -1.293          | 57.131           | 36.178           | 1.00 83.12 |     | C      |
|   | ATOM         | 3389         | СВ       | LYS |   |            | -0.226          | 56.084           | 36.530           | 1.00 84.14 |     | C      |
|   | ATOM         | 3390         | CG       | LYS |   |            | -0.655          | 54.624           | 36.361           | 1.00 85.05 |     | C      |
|   | ATOM         | 3391         | CD       | LYS |   |            | -1.877          | 54.313           | 37.223           | 1.00 86.12 |     | C      |
|   | ATOM         | 3392         | CE       | LYS |   |            | -1.953          | 52.837           | 37.574           | 1.00 87.52 |     | C      |
|   | MOTA         | 3393         | NZ       | LYS |   |            | -0.825          | 52.426           | 38.468           | 1.00 88.59 |     | N      |
|   | ATOM         | 3394         | C        | LYS |   |            | -0.954          | 58.443           | 36.876           |            |     | C<br>O |
|   | ATOM         | 3395         | 0        |     |   | 465        | -1.235          | 58.608           | 38.065           | 1.00 83.47 |     | U      |
|   | ATOM         | 3396         | N        |     |   | 466        | -0.378          | 59.395           | 36.124           | 1.00 15.00 |     |        |
|   | ATOM         | 3397         | CA       |     |   | 466        | 0.048           | 60.667           | 36.695<br>36.578 |            |     |        |
|   | ATOM         | 3398         | CB       |     |   | 466<br>466 | 1.566           | 60.820           |                  | 1.00 15.00 |     | : .    |
|   | ATOM         | 3399         | CG       |     |   |            | 2.319           | 59.909           | 37.526<br>38.697 | 1.00 15.00 |     | ٠.     |
|   |              | 3400         |          | ASN |   |            | 1.961           | 59.780<br>59.273 | 37.026           | 1.00 15.00 |     |        |
|   | ATOM         | 3401<br>3402 |          | ASN |   |            | 3.371<br>-0.646 | 61.836           | 36.004           | 1.00 15.00 |     |        |
|   | ATOM<br>ATOM |              | C        |     |   | 466<br>466 | -0.023          |                  | 35.188           | 1.00 81.63 |     | ٠.     |
|   |              | 3403<br>3404 | 0        |     |   | 467        | -1.890          | 62.534<br>62.134 |                  | 1.00 79.45 |     | N      |
|   | ATOM         | 3404         | N        |     |   | 467        | -2.610          | 63.253           | 35.763           | 1.00 78.10 |     | c      |
|   | ATOM         |              | CA<br>CB |     |   | 467        | -3.398          | 62.757           | 34.544           | 1.00 76.1  |     | č      |
|   | ATOM<br>ATOM | 3406<br>3407 | CG       |     |   | 467        | -2.624          | 62.499           | 33.249           | 1.00 73.50 |     |        |
|   | ATOM         | 3408         |          | LEU |   |            | -3.515          | 61.856           | 32.211           | 1.00 72.28 |     | · c    |
|   | ATOM         | 3409         |          | LEU |   |            | -2.085          | 63.809           | 32.729           | 1.00 72.42 |     | Č      |
|   | ATOM         | 3410         | C        |     |   | 467        | -3.561          | 63.926           | 36.755           | 1.00 78.5  |     | č      |
|   | ATOM         | 3411         | Ö        |     |   | 467        | -4.132          | 63.193           | 37.590           | 1.00 79.49 |     | ŏ      |
|   | ATOM         | 3412         |          | LEU |   |            | -3.745          | 65.168           | 36.678           | 1.00 77.72 |     | ō      |
|   | TER          | 3412         | ···      |     |   | 467        | 317.10          | 00.200           |                  |            |     | -      |
|   | ATOM         | 3413         | ÇВ       |     |   | 470        | -5.830          | 68.305           | 40.707           | 1.00 70.9  | i A | С      |
|   | ATOM         | 3414         |          | THR |   |            | -6.386          | 68.819           | 41.922           | 1.00 70.80 |     | 0      |
|   | ATOM         | 3415         |          | THR |   |            | -4.821          | 69.315           | 40.154           | 1.00 71.4  |     | C      |
|   | ATOM         | 3416         | C        |     |   | 470        | -7.743          | 69.366           | 39.557           | 1.00 70.73 | . A | С      |
|   | ATOM         | 3417         | 0        |     |   | 470        | -7.180          | 70.408           | 39.210           | 1.00 69.89 | ) A | 0      |
|   | ATOM         | 3418         | N '      | THR | A | 470        | -6.465          | 67.553           | 38.384           | 1.00 70.82 | 2 A | N      |
|   | ATOM         | 3419         | CA       |     |   | 470        | -6.971          | 68.062           | 39.700           | 1.00 70.94 | l A | С      |
|   | ATOM         | 3420         | N        | PRO | Α | 471        | -9.050          | 69.329           | 39.843           | 1.00 71.0  | 7 A | N      |
|   | ATOM         | 3421         | CD       | PRO | А | 471        | -9.853          | 68.161           | 40.243           | 1.00 70.60 | 5 A | С      |
|   | ATOM         | 3422         | CA       | PRQ | A | 471        | -9.890          | 70.525           | 39.734           | 1.00 71.75 | 5 A | С      |
|   | MOTA         | 3423         | СВ       | PRO | Α | 471        | -11.268         | 70.019           | 40.166           | 1.00 71.1  | ) A | С      |
| • | ATOM         | 3424         | CG       | PRO | Α | 471        | -11.228         | 68.563           | 39.782           | 1.00 70.30 | ) A | С      |
|   | MOTA         | 3425         | С        | PRO | A | 471        | -9.421          | 71.720           | 40.560           | 1.00 72.6  | l A | С      |
|   | ATOM         | 3426         | 0        | PRO | Α | 471        | -9.084          | 71.587           | 41.745           | 1.00 72.9  |     | 0      |
|   | MOTA         | 3427         | N        | VAL | Α | 472        | -9.399          | 72.888           | 39.923           | 1.00 73.1  | A A | N      |
|   | ATOM         | 3428         | CA       | VAL | A | 472        | -8.999          | 74.115           | 40.601           | 1.00 74.5  |     | С      |
|   | MOTA         | 3429         | CB       | VAL | A | 472        | -7.553          | 74.534           | 40.204           | 1.00 73.5  |     | С      |
|   | ATOM         | 3430         | CG1      | VAL | A | 472        | -6.590          | 73.417           | 40.547           | 1.00 73.7  |     | С      |
|   | MOTA         | 3431         | CG2      | VAL | A | 472        | -7.467          | 74.863           | 38.728           | 1.00 73.6  |     | С      |
|   | MOTA         | 3432         | С        |     |   | 472        | -9.987          | 75.257           | 40.327           | 1.00 75.9  |     | C      |
|   | MOTA         | 3433         | 0        |     |   | 472        | -10.352         | 75.533           | 39.177           | 1.00 75.6  |     | 0      |
|   | MOTA         | 3434         | N        |     |   | 473        | -10.434         | 75.905           | 41.400           | 1.00 77.6  |     | N      |
|   | MOTA         | 3435         | CA-      |     |   | 473        | -11.388         | 77.002           | 41.279           | 1.00 79.1  |     | C      |
|   | MOTA         | 3436         | СВ       |     |   | 473        | -12.176         | 77.220           | 42.587           | 1.00 79.3  |     | c      |
|   | MOTA         | 3437         |          | VAL |   |            | -13.148         | 78.379           | 42.413           | 1.00 79.6  |     | C      |
|   | ATOM         | 3438         |          | VAL |   |            | -12.926         | 75.956           | 42.958           | 1.00 78.9  |     | C      |
|   | MOTA         | 3439         | С        |     |   | 473        | -10.720         | 78.317           | 40.909           | 1.00 79.7  |     | C      |
|   | MOTA         | 3440         | 0        |     |   | 473        | -10.251         | 79.060           | 41.777           | 1.00 79.6  |     | 0      |
|   | MOTA         | 3441         | N        |     |   | 474        | -10.695         | 78.608           | 39.614           | 1.00 80.6  |     | N      |
|   | MOTA         | 3442         | CA       |     |   | 474        | -10.083         | 79.837           | 39.128           | 1.00 81.6  |     | C      |
|   | MOTA         | 3443         | CB       |     |   | 474        | -10.035         | 79.822           | 37.601           | 1.00 82.0  |     | C      |
|   | MOTA         | 3444         | CG       | ASN | Α | 474        | -8.814          | 80.526           | 37.060           | 1.00 83.5  | 5 A | С      |
|   |              |              |          |     |   |            |                 |                  |                  |            |     |        |

Figure 1

| ATOM         | 3445         | OD1 | ASN        | A | 474        | -8.716           | 80.798           | 35.858           | 1.00 | 84.28 | Α      | 0      |
|--------------|--------------|-----|------------|---|------------|------------------|------------------|------------------|------|-------|--------|--------|
| ATOM         | 3446         |     | ASN        |   |            | -7.862           | 80.825           | 37.951           | 1.00 | 84.46 | Α      | N      |
| ATOM         | 3447         | C   | ASN        |   |            | -10.861          | 81.069           | 39.613           | 1.00 | 81.45 | Α      | С      |
| ATOM         | 3448         | ō   | ASN        |   |            | -11.609          | 81.689           | 38.847           | 1.00 | 81.39 | A      | 0      |
| ATOM         | 3449         | N   | GLY        |   |            | -10.685          | 81.420           | 40.883           | 1.00 | 80.40 | A      | N      |
| ATOM         | 3450         | CA  | GLY        |   |            | -11.392          | 82.563           | 41.422           | 1.00 | 79.03 | A      | С      |
| ATOM         | 3451         | С   | GLY        |   |            | -12.875          | 82.265           | 41.484           | 1.00 | 78.19 | A      | С      |
| ATOM         | 3452         | ō   | GLY        |   |            | -13.328          | 81.517           | 42.355           | 1.00 | 78.06 | A      | Q      |
| ATOM         | 3453         | N   | PHE        |   |            | -13.636          | 82.828           | 40.548           | 1.00 | 15.00 | A      |        |
| ATOM         | 3454         | CA  | PHE        |   |            | -15.079          | 82.621           | 40.527           | 1.00 | 15.00 | Α      |        |
| ATOM         | 3455         | СВ  | PHE        | A | 476        | -15.750          | 83.665           | 39.631           | 1.00 | 15.00 | Α      |        |
| MOTA         | 3456         | CG  | PHE        | A | 476        | -15.392          | 83.536           | 38.177           | 1.00 | 15.00 | A      |        |
| ATOM         | 3457         | CDI | PHE        | Α | 476        | -16.136          | 82.725           | 37.336           | 1.00 | 15.00 | A      |        |
| ATOM         | 3458         | CD2 | PHE        | Α | 476        | -14.312          | 84.226           | 37.652           | 1.00 | 15.00 | A      |        |
| MOTA         | 3459         | CEl | PHE        | A | 476        | -15.810          | 82.603           | 35.999           | 1.00 | 15.00 | A      |        |
| ATOM         | 3460         | CE2 | PHE        | A | 476        | -13.981          | 84.108           | 36.316           |      | 15.00 | Α      |        |
| MOTA         | 3461         | CZ  | PHE        | A | 476        | ~14.731          | 83.297           | 35.489           | 1.00 | 15.00 | A      |        |
| ATOM         | 3462         | С   | PHE        | Α | 476        | -15.424          | 81.220           | 40.036           |      | 15.00 | A      |        |
| MOTA         | 3463         | 0   | PHE        | Α | 476        | -15.936          | 80.391           | 40.806           |      | 75.02 | A      |        |
| MOTA         | 3464         | N   | ALA        | Α | 477        | -15.185          | 80.955           | 38.753           |      | 72.73 | A      | N      |
| ATOM         | 3465         | CA. | ALA        | А | 477        | -15.488          | 79.659           | 38.154           |      | 70.22 | A      | C.     |
| ATOM         | 3466         | CB  | ALA        | A | 477        | -15.602          | 79.806           | 36.640           |      | 70.23 | A      | С      |
| MOTA         | 3467         | С   | ALA        | Α | 477        | -14.424          | 78.607           | 38.505           |      | 68.40 | A      | C      |
| ATOM         | 3468         | 0   | ALA        | A | 477        | -13.802          | 78.674           | 39.568           |      | 67.12 | A      | 0      |
| MOTA         | 3469         | N   | SER        | A | 478        | -14.241          | 77.627           | 37.619           |      | 66.38 | A      | N      |
| ATOM         | 3470         | CA  | SER        | A | 478        | -13.250          | 76.567           | 37.811           |      | 64.51 | A      | С      |
| ATOM-        | 3471         | CB  | SER        | A | 478        | -13.898          | 75.303           | 38.375           |      | 65.14 | A      | С      |
| ATOM         | 3472         | OG  | SER        | A | 478        | -14.406          | 75.524           | 39.678           |      | 67.68 | A      | 0      |
| ATOM         | 3473         | С   | SER        |   |            | -12.577          | 76.228           | 36.485           |      | 62.38 | A      | C      |
| ATOM         | 3474         | 0   | SER        |   |            | -13.104          | 76.537           | 35.408           |      | 62.65 | A      | 0      |
| MOTA         | 3475         | N   | VAL        | A | 479        | -11.417          | 75.584           | 36.572           |      | 58.42 | A      | N      |
| MOTA         | 3476         | CA  | VAL        | A | 479        | -10.655          | 75.217           | 35.389           |      | 55.01 | A      | C      |
| ATOM         | 3477         | CB  | VAL        |   |            | -9.758           | 76.360           | 34.926           |      | 54.19 | A      | C      |
| MOTA         | 3478         |     | VAL        |   |            | -10.598          | 77.517           | 34.442           |      | 53.72 | A      | C      |
| MOTA         | 3479         | CG2 | VAL        |   |            | -8.859           | 76.785           | 36.072           |      | 53.45 | A      | Ç      |
| ATOM         | 3480         | С   |            |   | 479        | -9.744           | 74.049           | 35.690           |      | 53.16 | A      | C      |
| ATOM         | 3481         | 0   |            |   | 479        | -9.306           | 73.875           | 36.825           |      | 53.94 | A      | 0      |
| MOTA         | 3482         | N   |            |   | 480        | -9.442           | 73.235           | 34.667           |      | 50.40 | A      | N      |
| MOTA         | 3483         | CD  | PRO        |   | 480        | -10.015          | 73.299           | 33.308           |      | 48.44 | A      | С      |
| MOTA         | 3484         | CA  |            |   | 480        | -8.570           | 72.067           | 34.803           |      | 47.37 | A      | С      |
| ATOM         | 3485         | CB  |            |   | 480        | -8.975           | 71.218           | 33.606           |      | 46.21 | A      | C      |
| MOTA         | 3486         | ÇG  |            |   | 480        | -9.208           | 72.257           | 32.562           |      | 46.36 | A      | C      |
| ATOM         | 3487         | С   |            |   | 480        | -7.091           | 72.477           | 34.751           |      | 44.85 | A      | C      |
| ATOM         | 3488         | 0   |            |   | 480        | -6.772           | 73.645           | 34.496           |      | 43.82 | A      | 0      |
| ATOM         | 3489         | N   |            |   | 481        | -6.182           | 71.522           | 35.023           |      | 41.97 | A      | N      |
| ATOM         | 3490         | CD  |            |   | 481        | -6.532           | 70.267           | 35.696           |      | 41.52 | A      | C      |
| ATOM         | 3491         | CA  |            |   | 481        | -4.731           | 71.687           | 35.018           |      | 40.82 | A      | c<br>c |
| ATOM         | 3492         | СВ  |            |   | 481        | -4.233           | 70.421           | 35.710           |      | 40.33 | A      | c      |
| MOTA         | 3493         | CG  |            |   | 481        | -5.353           | 70.058           | 36.591           |      | 40.92 | A<br>A | c      |
| MOTA         | 3494         | С   |            |   | 481        | -4.235           | 71.739           | 33.578<br>32.646 |      | 40.26 | A      | Ö      |
| ATOM         | 3495         | 0   |            |   | 481        | -4.987           | 71.441           |                  |      | 38.33 | A      | N      |
| ATOM         | 3496         | N   |            |   | 482        | -2.970           | 72.114           | 33.409<br>32.098 |      | 36.65 | A      | Ċ      |
| ATOM         | 3497         | CA  |            |   | 482        | -2.358           | 72.168           | 32.138           |      | 34.94 | A      | Ċ      |
| ATOM         | 3498         | CB  |            |   | 482        | -1.099<br>-0.267 | 73.019<br>72.914 | 30.900           |      | 33.41 | A      | Ċ      |
| MOTA         | 3499         | CG  |            |   | 482        | 0.730            | 71.943           | 30.791           |      | 33.31 | A      | č      |
| ATOM         | 3500         |     | PHE        |   |            | -0.512           | 73.748           | 29.820           |      | 30.54 | A      | Č      |
| MOTA         | 3501         |     | PHE        |   |            |                  | 71.809           | 29.612           |      | 32.29 | A      | č      |
| MOTA         | 3502         |     | PHE        |   |            | 1.462<br>0.212   | 73.620           | 28.644           |      | 30.15 | A      | č      |
| ATOM         | 3503         |     |            |   |            | 1.199            | 72.650           | 28.535           |      | 30.57 | A      | č      |
| ATOM         | 3504         | CZ  |            |   | 482        | -1.993           | 70.750           | 31.712           |      | 36.97 | A      | Č      |
| ATOM         | 3505         | C   |            |   | 482        | -1.688           | 69.947           | 32.578           |      | 37.93 | A      | ō      |
| ATOM         | 3506         | 0   |            |   | 482<br>483 | -2.032           | 70.438           | 30.421           |      | 37.53 | A      | N      |
| ATOM         | 3507         | N   |            |   | 483        | -1.677           | 69.107           | 29.961           |      | 38.43 | Ä      | č      |
| ATOM         | 3508         | CA  |            |   |            | -2.701           | 68.076           | 30.473           |      | 39.48 | A      | č      |
| ATOM         | 3509         | CB  |            |   | 483<br>483 | -3.962           | 67.973           | 29.637           |      | 40.38 | A      | č      |
| ATOM         | 3510         | CG  |            |   |            | -3.985           | 67.212           | 28.465           |      | 39.49 | A      | č      |
| ATOM         | 3511         |     | TYR<br>TYR |   |            | -5.099           | 67.212           | 27.632           |      | 39.39 | A      | Ċ      |
| ATOM         | 3512         |     | TYR        |   |            | -5.099           | 68.717           | 29.962           |      | 40.56 | A      | Č      |
| ATOM         | 3513         |     |            |   |            | -6.214           | 68.717           | 29.136           |      | 39.33 | A      | č      |
| ATOM         | 3514         | CEZ | TYR        |   | 483        | -6.204           | 67.965           | 27.971           |      | 40.65 | A      | č      |
| MOTA<br>MOTA | 3515<br>3516 | OH  |            |   | 483        | -7.274           | 68.024           | 27.108           |      | 42.74 | A      | ŏ      |
| ATOM         | 3517         | C   |            |   | 483        | -1.618           | 69.109           | 28.440           |      | 39.29 | A      | Č      |
| ATOM         | 3518         | Ö   |            |   | 483        | -2.039           | 70.062           | 27.800           |      | 39.17 | A      | ō      |
| ATOM         | 3518         | N   |            |   | 484        | -1.092           | 68.039           | 27.864           |      | 41.65 | A      | N      |
| ATOM         | 2213         | .,  | CHIN       | ~ | -01        | 2.002            |                  |                  |      | _     |        |        |
|              |              |     |            |   |            |                  |                  |                  |      |       |        |        |

Figure 1

| ATOM         | 3520         | CA       | GLN A          | 484 | -0.970             | 67.937           | 26.418           | 1.00 4 |                | A      | C      |
|--------------|--------------|----------|----------------|-----|--------------------|------------------|------------------|--------|----------------|--------|--------|
| MOTA         | 3521         | CB       | GLN A          | 484 | 0.466              | 68.227           | 25.980           | 1.00 4 |                | A      | C<br>C |
| MOTA         | 3522         | CG       | GLN A          |     | 1.187              | 69.327           | 26.719           | 1.00 5 |                | A<br>A | c      |
| ATOM         | 3523         | CD       | GLN A          |     | 2.660              | 69.387<br>69.671 | 26.345<br>25.202 | 1.00   |                | A      | ŏ      |
| ATOM         | 3524<br>3525 | NE2      | GLN A<br>GLN A |     | 3.010<br>3.530     | 69.108           | 27.313           | 1.00   |                | A      | N      |
| ATOM<br>ATOM | 3526         | C        | GLN A          |     | -1.280             | 66.520           | 25.947           | 1.00 4 |                | A      | С      |
| ATOM         | 3527         | ŏ        | GLN A          |     | -1.062             | 65.543           | 26.669           | 1.00 4 | 16.05          | A      | 0      |
| ATOM         | 3528         | N        | LEU A          | 485 | -1.765             | 66.398           | 24.723           | 1.00 4 |                | A      | N      |
| ATOM         | 3529         | ÇA       | LEU A          | 485 | -2.009             | 65.079           | 24.179           | 1.00   |                | A      | C ·    |
| ATOM         | 3530         | СВ       | LEU A          |     | -3.426             | 64.602           | 24.493           | 1.00   |                | A      | C.     |
| MOTA         | 3531         | CG       | LEU A          |     | -4.578             | 65.129           | 23.650<br>23.654 | 1.00 ! |                | A<br>A | c      |
| MOTA         | 3532         |          | LEU A          |     | ~5.656<br>-5.089   | 64.073<br>66.473 | 24.176           | 1.00   |                | A      | č      |
| MOTA         | 3533<br>3534 | CDZ      | LEU A          |     | -1.778             | 65.138           | 22.673           | 1.00   |                | A      | č      |
| MOTA<br>MOTA | 3535         | Ö        | LEU A          |     | -1.526             | 66.214           | 22.115           | 1.00   |                | A      | 0      |
| ATOM         | 3536         | N        | CYS A          |     | -1.867             | 63.984           | 22.019           | 1.00   |                | А      | N      |
| ATOM         | 3537         | CA       | CYS A          | 486 | -1.655             | 63.912           | 20.580           | 1.00   |                | A      | C      |
| ATOM         | 3538         | CB       | CYS A          |     | -0.413             | 63.071           | 20.289           | 1.00   |                | A      | C      |
| ATOM         | 3539         | SG       | CYS A          |     | 0.979              | 63.513           | 21.342           | 1.00   |                | A<br>A | s<br>C |
| MOTA         | 3540         | C        | CYS A          |     | -2.877<br>-3.300   | 63.300<br>62.204 | 19.920<br>20.280 | 1.00   |                | Â      | Ö      |
| MOTA         | 3541         | O<br>N   | CYS A<br>PHE A |     | -3.457             | 64.019           | 18.968           | 1.00   |                | A      | . N    |
| MOTA<br>MOTA | 3542<br>3543 | CA       | PHE A          |     | -4.626             | 63.515           | 18.278           | 1.00   |                | A      | С      |
| ATOM         | 3544         | CB       | PHE A          |     | -5.445             | 64.673           | 17.697           | 1.00   | 48.21          | A      | С      |
| ATOM         | 3545         | CG       | PHE A          |     | -6.048             | 65.570           | 18.742           | 1.00   | 46.12          | A      | С      |
| ATOM         | 3546         |          | PHE A          | 487 | -5.247             | 66.400           | 19.514           | 1.00   |                | A      | С      |
| ATOM         | 3547         |          | PHE A          |     | -7.419             | 65.553           | 18.987           | 1.00   |                | A      | C      |
| MOTA         | 35'4B        |          | PHE A          |     | -5.799             | 67.204           | 20.517           | 1.00   |                | A      | C      |
| MOTA         | 3549         |          | PHE A          |     | -7.981             | 66.354           | 19.991           | 1.00   |                | A<br>A | C      |
| MOTA         | 3550         | CZ       | PHE A          |     | -7.168<br>-4.156   | 67.177<br>62.578 | 20.755<br>17.182 | 1.00   |                | A      | Ċ      |
| MOTA         | 3551<br>3552 | C<br>O   | PHE A          |     | -3.858             | 63.008           | 16.067           | 1.00   |                | A      | ŏ      |
| ATOM<br>ATOM | 3553         | N        | ILE A          |     | -4.071             | 61.294           | 17.511           | 1.00   |                | A      | N      |
| ATOM         | 3554         | CA       | ILE A          |     | -3.627             | 60.284           | 16.554           | 1.00   | 56.15          | A      | С      |
| ATOM         | 3555         | CB       | ILE A          |     | -3.108             | 59.031           | 17.265           | 1.00   | 55.49          | A      | С      |
| MOTA         | 3556         | CG2      | ILE A          | 488 | -2.576             | 58.047           | 16.250           | 1.00   |                | A      | C      |
| MOTA         | 3557         | CG1      | ILE A          |     | -2.008             | 59.398           | 18.244           | 1.00   |                | A      | C      |
| ATOM         | 3558         | CD1      | ILE A          |     | -1.544             | 58.218           | 19.052           | 1.00   |                | A<br>A | c      |
| ATOM.        | 3559         | C        | ILE A          |     | -4.769<br>-5.831   | 59.846<br>59.461 | 15.649<br>16.132 | 1.00   |                | A      |        |
| ATOM<br>ATOM | 3560<br>3561 | О<br>И   | ILE A<br>PRO A |     | -4.571             | 59.900           | 14.323           | 1.00   |                | A      | N      |
| ATOM         | 3562         | CD       | PRO A          |     | -3.470             | 60.534           | 13.586           |        | 60.25          | A      |        |
| ATOM         | 3563         | CA       | PRO A          |     | -5.629             | 59.487           | 13.400           | 1.00   | 62.54          | A      |        |
| ATOM         | 3564         | СВ       | PRO A          |     | -5.054             | 59.839           | 12.035           | 1.00   | 61.66          | A      |        |
| MOTA         | 3565         | CG       | PRO A          |     | -4.162             | 60.991           | 12.331           |        | 60.78          | · A    |        |
| MOTA         | 3566         | C        | PRO A          |     | -5.915             | 57.993           | 13.523           |        | 65.24          | A      |        |
| MOTA         | 3567         | 0        | PRO A          |     | -5.236             | 57.280           | 14.265<br>12.787 |        | 64.90<br>15.00 | A<br>A |        |
| ATOM         | 3568         | N        | VAL A          |     | -6.899<br>-7.269   | 57.530<br>56.120 | 12.707           |        | 15.00          | A      |        |
| MOTA<br>MOTA | 3569<br>3570 | CA<br>CB |                |     | -8.397             | 55.861           | 13.835           |        | 15.00          | A      |        |
| ATOM         | 3571         | CG1      |                |     | -8.882             | 54.423           | 13.724           |        | 15.00          | A      |        |
| ATOM         | 3572         | CG2      |                |     | -7.911             | 56.156           | 15.245           | 1.00   | 15.00          | A      |        |
| ATOM         | 3573         | С        | VAL A          | 490 | -7.729             | 55.646           | 11.442           |        | 15.00          | A      |        |
| MOTA         | 3574         | 0        | VAL A          |     | -8.456             | 56.375           | 10.761           |        | 77.97          | A      |        |
| ATOM         | 3575         | N        | HIS A          |     | -7.289             | 54.471           | 11.027           |        | 80.83          | A<br>A |        |
| ATOM         | 3576         | CA       | HIS A          |     | -7.673             | 53.950<br>54.893 | 9.714<br>8.608   |        | 83.82<br>86.47 | Ā      |        |
| ATOM         | 3577         | CB<br>CG | HIS A          |     | -7.186<br>-8.014   | 54.840           | 7.361            |        | 89.34          | A      |        |
| ATOM<br>ATOM | 3578<br>3579 |          | HIS A          |     | -7.752             | 54.334           | 6.131            |        | 90.97          | A      |        |
| MOTA         | 3580         |          | HIS A          |     | -9.291             | 55.355           | 7.298            |        | 90.84          | A      |        |
| ATOM         | 3581         |          | HIS A          |     | -9.780             | 55.171           | 6.083            |        | 90.92          | A      |        |
| ATOM         | 3582         |          | HIS A          | 491 | -8.866             | 54.554           | 5.356            |        | 91.43          | A      |        |
| MOTA         | 3583         | С        | HIS A          |     | -7.095             | 52.556           | 9.471            |        | 84.02          | A      |        |
| MOTA         | 3584         | 0        | HIS A          |     | -6.441             | 52.017           | 10.393           |        | 83.96          | A      |        |
| ATOM         | 3585         | OXT      | HIS A          |     | -7.294             | 52.034           | 8.352            | 1.00   | 83.06          | A      | . 0    |
| TER          | 3585         |          | HIS A          |     | _24 567            | 79.789           | 29.820           | 1 00   | 23.53          | A      | F      |
| MOTA         | 3586         |          | HEM A          |     | -24.567<br>-24.980 | 79.789           | 31.902           | 1.00   | 5.13           | Ā      |        |
| MOTA<br>MOTA | 3587<br>3588 | N2<br>N3 | HEM A          |     | -23.137            | 78.282           | 30.133           | 1.00   | 2.23           | A      |        |
| ATOM         | 3589         | N 4      | HEM A          |     | -24.101            | 79.837           | 27.679           | 1.00   | 9.11           | A      |        |
| ATOM         | 3590         | N5       | HEM A          |     | -25.550            | 81.796           | 29.523           | 1.00   | 6.04           | A      |        |
| ATOM         | 3591         | C6       | HEM A          |     | -25.684            | 80.878           | 32.552           | 1.00   | 8.09           | P      |        |
| ATOM         | 3592         | C7       | HEM A          |     | -25.797            | 80.495           | 33.960           | 1.00   | 9.05           | P      |        |
| MOTA         | 3593         | C8       | нем а          | 501 | -25.150            | 79.322           | 34.131           | 1.00   | 6.44           | P      | , с    |

Figure 1

| ATOM         | 3594         | C9      | HEM        | A | 501      | -24.559            | 78.896           | 32.847           | 1.00 | 5.45           | A      | С      |
|--------------|--------------|---------|------------|---|----------|--------------------|------------------|------------------|------|----------------|--------|--------|
| MOTA         | 3595         | C10     | HEM        | A | 501      | -23.129            | 77.448           | 31.250           | 1.00 | 3.49           | A      | С      |
| MOTA         | 3596         | C11     | HEM        | A | 501      | -22.311            | 76.249           | 30.909           | 1.00 | 1.28           | A      | С      |
| MOTA         | 3597         | C12     | HEM        | A | 501      | -22.043            | 76.239           | 29.593           | 1.00 | 1.82           | A      | С      |
| MOTA         | 3598         |         | HEM        | A | 501      | -22.619            | 77.499           | 28.986           | 1.00 | 3.62           | A      | С      |
| ATOM         | 3599         |         | HEM        |   |          | -23.453            | 78.880           | 26.999           | 1.00 | 8.99           | A      | C      |
| MOTA         | 3600         |         | HEM        |   |          | -23.567            | 79.153           | 25.545           |      | 10.03          | A      | C      |
| ATOM         | 3601         |         | HEM        |   |          | -24.190            | BO.370           | 25.409           |      | 12.02          | A      | c      |
| ATOM         | 3602         |         | HEM        |   |          | -24.570            | 80.852           | 26.761           |      | 11.41          | . A    | C      |
| ATOM         | 3603         |         | HEM        |   |          | -25.703            | 82.508           | 28.390           | 1.00 | 8.52<br>7.61   | A<br>A | c<br>c |
| ATOM         | 3604         |         | HEM        |   |          | -26.432<br>-26.786 | 83.756<br>83.701 | 28.712<br>30.016 | 1.00 | 10.04          | A      | c      |
| MOTA<br>MOTA | 3605<br>3606 |         | HEM        |   |          | -26.190            | 82.483           | 30.617           | 1.00 | 5.94           | A      | č      |
| ATOM         | 3607         |         | HEM        |   |          | -26.246            | 82.125           | 31.913           | 1.00 | 5.96           | A      | č      |
| ATOM         | 3608         |         | HEM        |   |          | -23.774            | 77.751           | 32.585           | 1.00 | 3.48           | A      | č      |
| ATOM         | 3609         |         | HEM        |   |          | -22.755            | 77.774           | 27.633           | 1.00 | 6.77           | A      | č      |
| ATOM         | 3610         |         | HEM        |   |          | -25.195            | 82.029           | 27.033           |      | 11.27          | A      | С      |
| ATOM         | 3611         |         | HEM        |   |          | -24.750            | 78.615           | 35.412           | 1.00 | 4.02           | A      | С      |
| ATOM         | 3612         | C27     | HEM        | A | 501      | -26.794            | 81.272           | 34.840           | 1.00 | 13.87          | A      | C      |
| ATOM         | 3613         | C28     | HEM        | A | 501      | -26.796            | 81.240           | 36.366           |      | 21.34          | A      | ¢      |
| ATOM         | 3614         | C29     | HEM        | A | 501      | -28.168            | 81.767           | 36.856           |      | 23.77          | A      | C      |
| ATOM         | 3615         |         | HEM        |   |          | -28.134            | 83.092           | 37.147           |      | 28.61          | A      | 0      |
| MOTA         | 3616         |         | HEM        |   |          | -29.126            | 81.125           | 36.896           |      | 23.82          | A      | 0      |
| ATOM         | 3617         |         | HEM        |   |          | -22.191            | 75.094           | 31.870           | 1.00 | 1.81           | A      | C      |
| ATOM         | 3618         |         | HEM        |   |          | -21.098            | 75.452           | 28.782           | 1.00 | 2.16           | A      | C      |
| ATOM         | 3619         |         | HEM        |   |          | -21.216            | 73.942           | 28.974           | 1.00 | 5.15           | A<br>A | C C    |
| MOTA         | 3620         |         | HEM        |   | -        | -22.830<br>-24.787 | 78.354<br>81.093 | 24.500<br>24.212 |      | 11.14          | A      | c      |
| MOTA<br>MOTA | 3621<br>3622 |         | HEM        |   |          | -25.985            | 80.483           | 23.489           |      | 16.82          |        | č      |
| ATOM         | 3623         |         | HEM        |   |          | -26.895            | 84.775           | 27.665           | 1.00 | 4.37           | A      | č      |
| ATOM         | 3624         |         | HEM        |   |          | -27.523            |                  | 30.849           |      | 11.58          | A      | č      |
| ATOM         | 3625         |         | HEM        |   |          | -28.771            | 84.210           | 31.514           |      | 18:63          | A      | C      |
| ATOM         | 3626         |         | HEM        |   |          | -29.608            | 85.299           | 32.141           | 1.00 | 22.42          | A      | С      |
| ATOM         | 3627         |         | HEM        |   |          | -30.604            | 85.691           | 31.674           |      | 28.62          | A      | 0      |
| ATOM         | 3628         | 043     | HEM        | Α | 501      | -29.083            | 85.746           | 33.282           | 1.00 | 24.93          | A      | 0      |
| ATOM         | 3629         | СВ      | PRO        | В | 30       | -48.276            | 33.697           | 51.534           | 1.00 | 76.79          | В      | C      |
| MOTA         | 3630         | CG      | PRO        | В | 30       | -46.968            | .33.033          | 51.080           |      | 77.60          | В      | С      |
| MOTA         | 3631         | С       | PRO        | В | 30       | -49.363            | 34.507           | 49.401           |      | 73.52          | В      | С      |
| MOTA         | 3632         | 0       | PRO        |   | 30       | -48.432            | 35.276           | 49.209           |      | 73.18          | В      | 0      |
| ATOM         | 3633         | N       | PRO        |   | 30       | -48.679            | 32.105           | 49.760           |      | 77.30          | В      | N      |
| ATOM         | 3634         | CD      | PRO        |   | 30       | -47.414            | 31.719           | 50.415           |      | 77.81          | В      | C      |
| ATOM         | 3635         | CB      | PRO        |   | 30       | -49.220            | 33.338           | 50.388           |      | 75.82          | B<br>B | C<br>N |
| ATOM         | 3636<br>3637 | N<br>CD | PRO<br>PRO |   | 31<br>31 | -50.540<br>-51.667 | 34.641<br>33.698 | 48.766<br>48.892 |      | 71.70          | В      | Ċ      |
| ATOM<br>ATOM | 3638         | CB      | PRO        |   | 31       | -50.868            | 35.688           | 47.794           |      | 70.15          | В      | č      |
| MOTA         | 3639         | CB      | PRO        |   | 31       | -52.363            | 35.481           | 47.557           |      | 71.10          | В      |        |
| ATOM         | 3640         | CG      | PRO        |   | 31       | -52.505            | 34.014           | 47.655           |      | 72.05          | В      | č      |
| ATOM         | 3641         | c       | PRO        |   | 31       | -50.575            | 37.077           | 48.332           |      | 67.98          | В      | С      |
| ATOM         | 3642         | 0       | PRO        |   | 31       | -50.697            | 37.314           | 49.527           | 1.00 | 67.76          | В      | 0      |
| ATOM         | 3643         | N       | GLY        | В | 32       | -50.193            | 37.990           | 47.445           | 1.00 | 65.66          | В      | N      |
| MOTA         | 3644         | CB      | GLY        | В | 32       | -49.892            | 39.340           | 47.876           |      | 63.13          | В      | С      |
| MOTA         | 3645         | С       | GLY        | В | 32       | -51.004            | 39.955           | 48.707           |      | 61.36          | В      | С      |
| atom         | 3646         | 0       | GLY        |   | 32       | -52.159            | 39.553           | 48.565           |      | 62.17          | В      | 0      |
| ATOM         | 3647         | N       | PRO        |   | 33       | -50.689            | 40,920           | 49.590           |      | 59.37          | В      | N      |
| ATOM         | 3648         | CD      | PRO        |   | 33       | -49.302            | 41.342           | 49.837           |      | 58.87          | В      | c      |
| ATOM         | 3649         | CB      | PRO        |   | 33       | -51.608            | 41.642           | 50.478           |      | 58.22<br>58.60 | B<br>B | C<br>C |
| ATOM         | 3650         | CB      | PRO        |   | 33       | -50.747<br>-49.420 | 42.782<br>42.138 | 50.997<br>51.117 |      | 59.87          | В      | Č      |
| ATOM         | 3651         | CG      | PRO        |   | 33<br>33 | -52.850            | 42.138           | 49.748           |      | 57.40          | В      | č      |
| ATOM<br>ATOM | 3652<br>3653 | 0       | PRO<br>PRO |   | 33       | -52.820            | 42.146           | 48.532           |      | 57.48          | B.     | ő      |
| MOTA         | 3654         | N       | THR        |   | 34       | -53.931            | 42.377           | 50.486           |      | 56.01          | В.     | N      |
| ATOM         | 3655         | CB      | THR        |   | 34       | -55.172            | 42.831           | 49.868           |      | 56.18          | В      | c      |
| ATOM         | 3656         | СB      | THR        |   | 34       | -55.892            | 41.647           | 49.142           |      | 59.00          | В      | č      |
| ATOM         | 3657         |         | THR        |   | 34       | -57.205            | 42.055           | 48.732           |      | 60.40          | В      | Q      |
| ATOM         | 3658         |         | THR        |   | 34       | -56.040            | 40.433           | 50.082           |      | 59.99          | В      | С      |
| ATOM         | 3659         | С       | THR        |   | 34       | -56.186            | 43.427           | 50.820           |      | 53.95          | В      | С      |
| ATOM         | 3660         | 0       | THR        |   | 34       | -56.293            | 43.017           | 51.966           |      | 55.62          | В      | 0      |
| MOTA         | 3661         | N       | PRO        |   | 35       | -56.956            | 44.407           | 50.355           |      | 51.24          | В      | N      |
| MOTA         | 3662         | CD      | PRO        |   | 35       | -56.939            | 45.180           | 49.107           |      | 50.33          | В      | С      |
| MOTA         | 3663         | CB      | PRO        |   | 35       | -57.929            | 44.934           | 51.299           |      | 50.88          | В      | C      |
| ATOM         | 3664         | СВ      | PRO        |   | 35       | -58.433            | 46.199           | 50.609           |      | 48.93          | B      | C      |
| ATOM         | 3665         | CG      | PRO        |   | 35       | -58.274            | 45.889           | 49.141           |      | 49.16<br>51.60 | В      | c<br>c |
| ATOM         | 3666         | C       | PRO        |   | 35       | -59.017            | 43.871           | 51.479<br>50.518 |      | 52.24          | B<br>B | 0      |
| ATOM         | 3667         | 0       | PRO        |   | 35       | -59.710            | 43.529           | 52.698           |      | 52.24          | В      | N      |
| ATOM         | 3668         | N       | LEU        | Ħ | 36       | -59.150            | 43.341           | JE. 030          | 1.00 | 52.00          |        | **     |

|              |              |         |            |   |          |                    |                  | •                |      |                |        |        |
|--------------|--------------|---------|------------|---|----------|--------------------|------------------|------------------|------|----------------|--------|--------|
| MOTA         | 3669         | СВ      | LEU        | В | 36       | -60.148            | 42.317           | 53.004           | 1.00 | 52.00          | В      | С      |
| ATOM         | 3670         | CB      | LEU        |   | 36       | -60.410            | 42.218           | 54.505           |      | 53.80          | В      | С      |
| MOTA         | 3671         | CG      | LEU        | В | 36       | ~59.254            | 41.682           | 55.329           |      | 55.78          | В      | C      |
| MOTA         | 3672         | CD1     | LEU        | В | 36       | -59.726            | 41.441           | 56.759           |      | 57.16          | B<br>- | C      |
| ATOM         | 3673         | CD2     | LEU        |   | 36       | -58.739            | 40.390           | 54.698           |      | 55.66          | B      | C      |
| MOTA         | 3674         | С       | LEU        | В | 36       | -61.473            | 42.544           | 52.324           |      | 50.83          | В      | C      |
| ATOM         | 3675         | 0       |            | В | 36       | -62.108            | 43.599           | 52.486           |      | 50.33          | В      | 0      |
| ATOM         | 3676         | N       | PRO        |   | 37       | -61.911            | 41.540           | 51.557           |      | 49.37          | В      | N      |
| ATOM         | 3677         | CD      | PRO        |   | 37       | -61.076            | 40.358           | 51.281           |      | 48.29          | B      | C .    |
| ATOM         | 3678         | CB      | PRO        |   | 37       | -63.147            | 41.484           | 50.790           |      | 49.26          | B<br>B | c .    |
| MOTA         | 3679         | CB      | PRO        |   | 37       | -62.837            | 40.437           | 49.737           |      | 48.32<br>47.64 | B      | c      |
| ATOM         | 3680         | CG      | PRO        |   | 37       | -61.984            | 39.486           | 50.481<br>51.666 |      | 51.09          | B      | Č      |
| ATOM         | 3681         | C       | PRO        |   | 37<br>37 | -64.310<br>-64.275 | 41.091           | 52.348           |      | 51.17          | В      | ŏ      |
| ATOM         | 3682         | 0       | PRO<br>VAL |   | 38       | -65.327            | 41.931           | 51.683           |      | 53.50          | В      | N      |
| MOTA<br>MOTA | 3683<br>3684 | N<br>CB |            | В | 38       | -66.482            | 41.620           | 52.475           |      | 56.11          | В      | Ċ      |
| ATOM         | 3685         | СВ      | VAL        |   | 38       | -67.407            | 42.841           | 52.568           |      | 55.60          | В      | С      |
| ATOM         | 3686         |         | VAL        |   | 38       | -68.240            | 42.972           | 51.303           |      | 54.50          | В      | С      |
| ATOM         | 3687         |         | VAL        |   | 38       | -68.268            | 42.719           | 53.802           | 1.00 | 57.08          | В      | С      |
| ATOM         | 3688         | C       | VAL        |   | 38       | -67.099            | 40.486           | 51.648           | 1.00 | 58.12          | В      | С      |
| ATOM         | 3689         | ō       | VAL        |   | 38       | -66.914            | 40.434           | 50.429           | 1.00 | 57.75          | В      | 0      |
| ATOM         | 3690         | N       |            | В | 39       | -67.785            | 39.556           | 52.300           | 1.00 | 60.26          | В      | N      |
| ATOM         | 3691         | СВ      | ILE        | В | 39       | -68.348            | 38.432           | 51.567           | 1.00 | 62.14          | В      | C      |
| ATOM         | 3692         | CB      | ILE        | В | 39       | -68.991            | 37.413           | 52.502           |      | 64.13          | В      | С      |
| ATOM         | 3693         | CG2     | ILE        | В | 39       | -69.047            | 36.055           | 51.792           | 1.00 | 65.47          | В      | С      |
| MOTA         | 3694         | CG1     | ILE        | В | 39       | -68.181            | 37.308           | 53.804           |      | 66.46          | В      | С      |
| ATOM         | 3695         | CD1     | ILE        | В | 39       | -68.750            | 36.296           | 54.827           |      | 69.35          | В      | С      |
| MOTA         | 3696         | С       | ILE        |   | 39       | -69.370            | 38.835           |                  |      | 61.66          | В      | С      |
| MOTA         | 3697         | 0       | ILE        |   | 39       | -70.316            | 39.566           | 50.805           |      | 62.26          | 8      | 0      |
| ATOM         | 3698         | N       | GLY        |   | 40       | -69.167            | 38.347           | 49.303           |      |                | В      | N      |
| MOTA         | 3699         | CB      | GLY        |   | 40       | -70.073            | 38.661           | 48.220           |      | 61.48          | В      | C      |
| MOTA         | 3700         | C       | GLY        |   | 40       | -69.473            | 39.593           | 47.189           |      | 60.99          | В      | C<br>O |
| ATOM         | 3701         | 0       | GLY        |   | 40       | -69.811            | 39.472           | 46.011           |      | 60.73          | В      | N      |
| ATOM         | 3702         | N       | ASN        |   | 41       | -68.584            | 40.502           |                  |      | 59.93          | B<br>B | C      |
| ATOM         | 3703         | CB      | ASN        |   | 41       | -67.953            | 41.469           | 46.703<br>46.336 |      | 59.44<br>58.18 | В      | c      |
| ATOM         | 3704         | CB      | ASN        |   | 41       | -68.977            | 42.538<br>42.461 |                  |      | 57.75          | В      | c      |
| ATOM         | 3705         | CG      | ASN        |   | 41       | -70.239<br>-70.181 | 42.529           | 48.415           |      | 57.04          | В      | ŏ      |
| ATOM         | 3706         |         | ASN        |   | 41<br>41 | -70.181            | 42.312           | 46.545           |      | 57.26          | B      | N      |
| ATOM<br>ATOM | 3707<br>3708 | C C     | ASN<br>ASN |   | 41       | -66.708            | 42.156           | 47.271           |      | 60.68          | В      | Ċ      |
| ATOM         | 3709         | ò       | ASN        |   | 41       | -66.114            | 41.696           | 48.239           |      | 62.04          | В      | ō      |
| ATOM         | 3710         | N       | ILE        |   | 42       | -66.314            | 43.259           | 46.637           |      | 62.47          | В      | N      |
| MOTA         | 3711         | СВ      | ILE        |   | 42       | -65.188            | 44.114           | 47.077           |      | 62.55          | В      | c      |
| ATOM         | 3712         | CB      | ILE        |   | 42       | -63.808            | 43.622           | 46.601           |      | 61.21          | В      | С      |
| ATOM         | 3713         |         | ILE        |   | 42       | -63.575            | 44.083           | 45.164           |      | 63.41          | В      | С      |
| ATOM         | 3714         |         | ILE        |   | 42       | -62.709            | 44.232           | 47.494           | 1.00 | 59.37          | В      | С      |
| ATOM         | 3715         |         | ILE        |   | 42       | -61.347            | 43.559           | 47.402           | 1.00 | 55.41          | В      | С      |
| ATOM         | 3716         | c       | ILE        |   | 42       | -65.475            | 45.479           | 46.428           | 1.00 | 63.22          | В      | С      |
| MOTA         | 3717         | 0       |            | В | 42       | -64.715            | 46.438           | 46.567           | 1.00 | 61.16          | В      | 0      |
| ATOM         | 3718         | N       | LEU        | В | 43       | -66.607            | 45.511           | 45.725           | 1.00 | 65.03          | В      | N      |
| ATOM         | 3719         | CB      | LEU        | В | 43       | -67.138            | 46.660           | 45.012           | 1.00 | 66.62          | В      | С      |
| ATOM         | 3720         | CB      | LEU        | В | 43       | -68.607            | 46.388           | 44.674           | 1.00 | 66.27          | В      | С      |
| ATOM         | 3721         | CG      | LEU        | В | 43       | -69.124            | 46.915           | 43.338           | 1.00 | 66.48          | В      | С      |
| MOTA         | 3722         | CD1     | LEU        | В | 43       | -68.571            | 46.031           | 42.235           |      | 68.25          | В      | C      |
| ATOM         | 3723         | CD2     | LEU        | В | 43       | -70.642            | 46.915           | 43.300           |      | 66.70          | В      | C      |
| ATOM         | 3724         | ¢       | LEU        |   | 43       | -67.048            | 47.966           | 45.801           |      | 68.15          | В      | C      |
| ATOM         | 3725         | 0       | LEU        |   | 43       | -66.861            | 49.038           | 45.224           |      | 68.49          | B<br>B | 0      |
| ATOM         | 3726         | N       | GLN        |   | 44       | -67.196            | 47.873           | 47.120           |      | 69.83<br>70.78 | В      | N<br>C |
| ATOM         | 3727         | CB      | GLN        |   | 44       | -67.157            | 49.044           | 47.987           |      | 71.59          | В      | c      |
| ATOM         | 3728         | СВ      | GLN        |   | 44       | -67.455            | 48.638           | 49.428           |      | 74.67          | В      | č      |
| ATOM         | 3729         | CG      | GLN        |   | 44       | -68.900            | 48.301<br>49.406 | 49.664<br>49.185 |      | 76.78          | В      | č      |
| ATOM         | 3730         | CD      | GLN        |   | 44       | -69.821<br>-69.723 | 50.551           | 49.636           |      | 78.74          | В      | ŏ      |
| ATOM         | 3731         |         | GLN        |   | 44       | -70.723            | 49.070           | 48.260           |      | 77.42          | В      | N      |
| ATOM         | 3732         | NE2     |            |   | 44       | -65.840            | 49.792           | 47.949           |      | 70.99          | В      | Ċ      |
| ATOM         | 3733         | C       | GLN        |   | 44       | -65.576            | 50.641           | 48.796           |      | 71.64          | В      | ŏ      |
| ATOM         | 3734         | O<br>N  | GLN<br>ILE |   | 44       | -65.015            | 49.493           | 46.959           |      | 71.87          | В      | N      |
| ATOM<br>ATOM | 3735<br>3736 | N<br>CB | ILE        |   | 45       | -63.727            | 50.145           | 46.872           |      | 72.31          | В      | Ċ      |
| ATOM         | 3737         | СВ      | ILE        |   | 45       | -62.702            | 49.314           | 47.643           |      | 72.40          | В      | č      |
| ATOM         | 3738         |         | ILE        |   | 45       | -62.313            | 48.098           | 46.829           |      | 73.06          | В      | č      |
| ATOM         | 3739         |         | ILE        |   | 45       | -61.504            | 50.176           | 48.015           |      | 73.99          | В      | Ċ      |
| ATOM         | 3740         |         | ILE        |   | 45       | -60.746            | 49.627           | 49.214           |      | 75.32          | В      | č      |
| ATOM         | 3741         | C       | ILE        |   | 45       | -63.277            | 50.382           | 45.427           |      | 72.34          | В      | C      |
| ATOM         | 3742         | ŏ       | ILE        |   | 45       | -62.089            | 50.354           | 45.116           |      | 72.08          | В      | 0      |
| ATOM         | 3743         | Ŋ       | GLY        |   | 46       | -64.251            | 50.622           | 44.551           |      | 72.70          | В      | N      |
|              |              |         |            |   |          |                    |                  |                  |      |                |        |        |

| ATOM | 3744 | ÇВ  | GLY | R | 46 | -63.952 | 50.897 | 43.162 | 1.00 72.66 | В          | С   |
|------|------|-----|-----|---|----|---------|--------|--------|------------|------------|-----|
|      |      |     | GLY |   | 46 | -65.127 | 50.809 | 42.195 | 1.00 73.12 | В          | С   |
| ATOM | 3745 | C   |     |   |    |         | 49.941 | 42.315 | 1.00 72.03 | В          | 0   |
| MOTA | 3746 | 0   | GLY |   | 46 | -65.998 |        |        | 1.00 74.22 | В          | N   |
| ATOM | 3747 | N   | ILE |   | 47 | -65.144 | 51.727 | 41.229 |            | В          | Ċ   |
| MOTA | 3748 | CB  | ILĒ | В | 47 | -66.170 | 51.774 | 40.176 | 1.00 75.49 |            |     |
| ATOM | 3749 | CB  | ILE | В | 47 | -67.600 | 51.986 | 40.743 | 1.00 74.62 | В          | C   |
| MOTA | 3750 | CG2 | ILE | В | 47 | -67.689 | 53.320 | 41.480 | 1.00 75.70 | В          | С   |
| MOTA | 3751 |     | ILE |   | 47 | -68.612 | 51.921 | 39.595 | 1.00 73.61 | В          | С   |
|      |      |     | ILE |   | 47 | -68.571 | 50.602 | 38.843 | 1.00 72.77 | В          | С   |
| ATOM | 3752 |     |     |   |    |         | 52.873 | 39.132 | 1.00 76.34 | В          | С   |
| ATOM | 3753 | С   | ILE |   | 47 | -65.901 |        |        | 1.00 75.82 | В          | ŏ   |
| ATOM | 3754 | 0   | ILE |   | 47 | -65.831 | 54.064 | 39.463 |            |            |     |
| ATOM | 3755 | N   | LYS | В | 48 | -65.764 | 52.460 | 37.872 | 1.00 76.96 | В          | N   |
| ATOM | 3756 | CB  | LYS | В | 48 | -65.504 | 53.387 | 36.776 | 1.00 77.61 | В          | C   |
| MOTA | 3757 | CB  | LYS | В | 48 | -66.449 | 54.599 | 36.870 | 1.00 77.92 | В          | С   |
| ATOM | 3758 | CG  | LYS |   | 48 | -67.943 | 54.223 | 36.861 | 1.00 78.44 | В          | С   |
|      | 3759 | CD  | LYS |   | 48 | -68.872 | 55.418 | 37.110 | 1.00 79.15 | В          | С   |
| ATOM |      |     |     |   |    | -68.838 | 56.447 | 35.990 | 1.00 79.92 | В          | С   |
| MOTA | 3760 | CE  | LYS |   | 48 |         |        |        | 1.00 79.66 | В          | N   |
| MOTA | 3761 | NZ  | LYS |   | 48 | -69.666 | 57.635 | 36.368 |            |            |     |
| MOTA | 3762 | С   | LYS | В | 48 | -64.041 | 53.834 | 36.817 | 1.00 77.53 | В          | C   |
| MOTA | 3763 | 0   | LYS | В | 48 | -63.236 | 53.404 | 35.991 | 1.00 77.94 | В          | 0   |
| ATOM | 3764 | N   | ASP | В | 49 | -63.695 | 54.680 | 37.784 | 1.00 77.06 | В          | N   |
| ATOM | 3765 | СВ  | ASP |   | 49 | -62.327 | 55.179 | 37.918 | 1.00 76.51 | В          | С   |
|      | 3766 | СВ  | ASP |   | 49 | -62.334 | 56.462 | 38.764 | 1.00 78.75 | В          | С   |
| ATOM |      |     | ASP |   | 49 | -61.714 | 57.649 | 38.039 | 1.00 81.36 | • в        | С   |
| ATOM | 3767 | CG  |     |   |    |         |        |        | 1.00 83.26 | В          | ō   |
| ATOM | 3768 |     | ASP |   | 49 | -60.532 | 57.537 | 37.627 |            |            | ŏ   |
| ATOM | 3769 | OD2 | ASP | В | 49 | -62.397 | 58.691 | 37.883 | 1.00 82.23 | В          |     |
| ATOM | 3770 | С   | ASP | В | 49 | -61.404 | 54.118 | 38.544 | 1.00 75.08 | В          | С   |
| ATOM | 3771 | 0   | ASP | В | 49 | -60.444 | 54,444 | 39.255 | 1.00 74.35 | В          | 0   |
| ATOM | 3772 | N   | ILE |   | 50 | -61.711 | 52.851 | 38.257 | 1.00 72.60 | В.         | Ŋ   |
|      | 3773 | СВ  | ILE |   | 50 | -60.958 | 51.696 | 38.761 | 1.00 69.88 | . <b>B</b> | C . |
| ATOM |      |     |     |   |    | -61.237 | 50.421 | 37.919 | 1.00 70.44 | В          | C   |
| ATOM | 3774 | CB  | ILE |   | 50 |         |        |        |            | В          | Č.  |
| MOTA | 3775 |     | ILE |   | 50 | -60.459 | 49.237 | 38.480 | 1.00 68.21 |            |     |
| ATOM | 3776 | CG1 | ILE | В | 50 | -62.742 | 50.134 | 37.898 | 1.00 70.26 | .В         | C,  |
| ATOM | 3777 | CD1 | ILE | В | 50 | -63.358 | 49.937 | 39.266 | 1.00 70.37 | . В        | С   |
| ATOM | 3778 | С   | ILE | В | 50 | -59.449 | 51.902 | 38.796 | 1.00 67.93 | В          | . C |
| ATOM | 3779 | ō   | ILE |   | 50 | -58.778 | 51.435 | 39.714 | 1.00 67.54 | В          | 0 . |
|      |      |     |     |   | 51 | -58.914 | 52.581 | 37.789 | 1.00 66.24 | В          | N   |
| ATOM | 3780 | N   | SER |   |    |         |        | 37.740 | 1.00 65.71 | В          | С.  |
| ATOM | 3781 | CB  | SER |   | 51 | -57.480 | 52.841 |        |            | В          | Č : |
| ATOM | 3782 | CB  | SER | В | 51 | -57.101 | 53.485 | 36.402 | 1.00 65.57 |            |     |
| MOTA | 3783 | OG  | SER | В | 51 | -55.777 | 53.994 | 36.432 | 1.00 65.19 | В          | 0   |
| MOTA | 3784 | С   | SER | В | 51 | -57.032 | 53.749 | 38.888 | 1.00 65.07 | В          | C   |
| ATOM | 3785 | 0   | SER | В | 51 | -55.925 | 53.602 | 39.406 | 1.00 65.15 | В          | 0   |
| ATOM | 3786 | N   | LYS |   | 52 | -57.892 | 54.684 | 39.285 | 1.00 63.99 | В          | N   |
|      | 3787 | СB  | LYS |   | 52 | -57.558 | 55.618 |        | 1.00 62.29 | В          | С   |
| ATOM |      |     |     |   | 52 | -58.577 | 56.747 | 40.419 | 1.00 65.11 | В          | С   |
| ATOM | 3788 | CB  | LYS |   |    |         |        |        | 1.00 68.49 | В          | .c  |
| MOTA | 3789 | CG  | LYS |   | 52 | -58.174 | 57.882 | 41.364 |            |            |     |
| ATOM | 3790 | CD  | LYS | В | 52 | -59.067 | 59.096 | 41.134 | 1.00 71.15 | В          | C   |
| ATOM | 3791 | CE  | LYS | В | 52 | -58.455 | 60.373 | 41.677 | 1.00 72.63 | В          | ¢   |
| MOTA | 3792 | NZ  | LYS | В | 52 | -59.149 | 61.571 | 41.109 | 1.00 74.71 | В          | N   |
| ATOM | 3793 | С   | LYS | В | 52 | -57.485 | 54.961 | 41.722 | 1.00 59.70 | В          | С   |
| ATOM | 3794 | ō   | LYS |   | 52 | -56.574 | 55.225 | 42.507 | 1.00 59.00 | В          | 0   |
|      | 3795 | N   | SER |   | 53 | -58.469 | 54.120 | 42.008 | 1.00 56.11 | В          | N   |
| ATOM |      |     |     |   |    |         | 53.415 | 43.272 | 1.00 51.68 | В          | С   |
| ATOM | 3796 | CB  | SER |   | 53 | -58.515 |        |        | 1.00 51.19 | В          | č   |
| MOTA | 3797 | CB  | SER |   | 53 | -59.784 | 52.610 | 43.362 |            |            | ò   |
| MOTA | 3798 | OG  | SER | В | 53 | -59.835 | 51.730 | 42.263 | 1.00 52.51 | В          |     |
| ATOM | 3799 | С   | SER | В | 53 | -57.338 | 52.479 | 43.360 | 1.00 49.74 | В          | C   |
| ATOM | 3800 | 0   | SER | В | 53 | -56.965 | 52.053 | 44.447 | 1.00 50.16 | В          | 0   |
| ATOM | 3801 | N   | LEU |   | 54 | -56.753 | 52.147 | 42.213 | 1.00 47.87 | В          | N   |
| ATOM | 3802 | CB  | LEU |   | 54 | -55.601 | 51.257 | 42.205 | 1.00 45.22 | В          | С   |
|      |      |     |     |   |    | -55.392 | 50.649 | 40.820 | 1.00 44.58 | В          | С   |
| ATOM | 3803 | CB  | LEU |   | 54 |         |        | 40.276 | 1.00 44.49 | В          | č   |
| MOTA | 3804 | CG  | LEU |   | 54 | -56.389 |        |        |            | В          | Č   |
| MOTA | 3805 |     | LEU |   | 54 | -55.782 |        | 39.010 | 1.00 43.80 |            |     |
| ATOM | 3806 | CD2 | LEU | В | 54 | -56.689 |        | 41.288 | 1.00 43.31 | В          | С   |
| ATOM | 3807 | С   | LEU |   | 54 | -54.327 |        | 42.636 | 1.00 43.50 | В          | С   |
| ATOM | 3808 | ō   | LEU |   | 54 | -53,476 |        | 43.290 | 1.00 41.88 | В          | 0   |
|      | 3809 | N   | THR |   | 55 | -54.195 |        | 42.271 | 1.00 42.59 | В          | N   |
| ATOM |      |     |     |   |    | -53.007 |        | 42.639 | 1.00 42.97 | В          | С   |
| ATOM | 3810 | CB  | THR |   | 55 |         |        |        | 1.00 44.28 | B          | č   |
| MOTA | 3811 | CB  | THR |   | 55 | -52.990 |        | 41.948 |            | В          |     |
| MOTA | 3812 | OG1 | THR |   | 55 | -52.966 |        | 40.529 | 1.00 48.33 |            | 0   |
| MOTA | 3813 | CG2 | THR | В | 55 | -51.768 |        | 42.365 | 1.00 43.17 | В          | C   |
| ATOM | 3814 | С   | THR |   | 55 | -52.955 | 54.165 | 44.149 | 1.00 42.22 | В          | C   |
| ATOM | 3815 | ō   | THR |   | 55 | -51.887 |        | 44.753 | 1.00 43.28 | В          | 0   |
|      | 3816 |     | ASN |   | 56 | -54.118 |        | 44.755 | 1.00 40.31 | В          | N   |
| ATOM |      |     |     |   |    |         |        | 46.184 | 1.00 38.01 | В          | Ċ   |
| MOTA | 3817 | СВ  | ASN |   | 56 | -54.196 |        |        | 1.00 37.49 | В          | c   |
| MOTA | 3818 | CB  | ASN | В | 56 | -55.521 | 55.151 | 46.562 | 1.00 37.49 | 8          | _   |

Figure 1

| ATOM   | 3819  | CG  | ASN | В | 56 | -55.552  | 56.629 | 46.231 | 1.00 | 38.76 | В  | С  |
|--------|-------|-----|-----|---|----|----------|--------|--------|------|-------|----|----|
| MOTA   | 3820  | OD1 | ASN | В | 56 | ~56.606  | 57.208 | 46.020 | 1.00 | 39.50 | В  | 0  |
| MOTA   | 3821  |     | ASN |   | 56 | -54.381  | 57.248 | 46.189 | 1.00 | 38.71 | В  | N  |
|        |       |     | ASN |   | 56 | -54.021  | 53.169 | 46.889 |      | 37.06 | В  | C  |
| MOTA   | 3822  | C   |     |   |    |          |        |        |      |       |    | ŏ  |
| MOTA   | 3823  | 0   | ASN |   | 56 | -53.412  | 53.107 | 47.939 |      | 38.49 | В  |    |
| ATOM   | 3824  | N   | LEU | В | 57 | -54.521  | 52.085 | 46.328 |      | 35.61 | В  | N  |
| ATOM   | 3825  | CB  | LEU | В | 57 | -54.336  | 50.818 | 47.004 | 1.00 | 36.02 | В  | C  |
| ATOM   | 3826  | CB  | LEU | В | 57 | -55.105  | 49.713 | 46.292 | 1.00 | 37.02 | В  | С  |
| ATOM   | 3827  | CG  | LEU |   | 57 | -56.604  | 49.656 | 46.541 | 1.00 | 38.86 | В  | С  |
| ATOM   | 3828  |     | LEU |   | 57 | -57.210  | 48.765 | 45.504 |      | 39.91 | В  | С  |
|        |       |     |     |   |    |          |        |        |      | 37.65 | В  | č  |
| MOTA   | 3829  |     | LEU |   | 57 | -56.904  | 49.160 | 47.963 |      |       |    |    |
| MOTA   | 3830  | С   | LEU |   | 57 | -52.870  | 50.417 | 47.077 |      | 35.97 | В  | С  |
| MOTA   | 3831  | 0   | LEU | В | 57 | -52.419  | 49.865 | 48.071 | -    | 36.48 | В  | 0  |
| ATOM   | 3832  | N   | SER | В | 58 | -52.126  | 50.679 | 46.011 | 1.00 | 35.81 | В  | N  |
| ATOM   | 3833  | CB  | SER | В | 58 | -50.708  | 50.329 | 45.934 | 1.00 | 33.52 | В  | С  |
| MOTA   | 3834  | СВ  | SER |   | 58 | -50.179  | 50.699 | 44.574 | 1.00 | 32.60 | В  | С  |
| ATOM   | 3835  | OG  | SER |   | 58 | -50.294  | 52.102 | 44.442 |      | 33.25 | В  | 0  |
|        |       |     | SER |   | 58 | -49.932  | 51.122 | 46.942 |      | 33.06 | В  | č  |
| ATOM   | 3836  | C   |     |   |    |          |        |        |      |       | В  |    |
| MOTA   | 3837  | 0   | SER |   | 58 | -48.815  | 50.771 | 47.313 |      | 32.92 |    | 0  |
| ATOM   | 3838  | N   | LYS |   | 59 | -50.529  | 52.232 | 47.342 |      | 33.47 | В  | N  |
| ATOM   | 3839  | CB  | LYS | В | 59 | -49.918  | 53.128 | 48.295 | 1.00 | 34.07 | В  | С  |
| ATOM   | 3840  | СВ  | LYS | В | 59 | -50.606  | 54.483 | 48.241 | 1.00 | 35.04 | В  | С  |
| MOTA   | 3841  | CG  | LYS | В | 59 | -49.664  | 55.584 | 47.835 | 1.00 | 37.82 | В  | С  |
| ATOM   | 3842  | CD  | LYS |   | 59 | -50.355  | 56.920 | 47.670 |      | 40.93 | В  | C  |
|        |       |     | LYS |   | 59 | -51.103  | 56.994 | 46.344 |      | 42.79 | В  | Č  |
| MOTA   | 3843  | CE  |     |   |    |          |        |        |      |       |    | N  |
| ATOM   | 3844  | NZ  | LYS |   | 59 | -51.708  | 58.340 | 46.059 |      | 44.17 | В. |    |
| ATOM   | 3845  | С   | LYS |   | 59 | -50.032  | 52.550 | 49.673 |      | 34.10 | В  | C  |
| ATOM   | 3846  | 0   | LYS | В | 59 | -49.379. | 53.011 | 50.599 | 1.00 | 36.05 | В  | 0  |
| ATOM   | 3847  | N   | VAL | В | 60 | -50.855  | 51.517 | 49.802 | 1.00 | 34.12 | В  | N  |
| ATOM   | 3848  | CB  | VAL | В | 60 | -51.064  | 50.886 | 51.088 | 1.00 | 32.76 | В  | С  |
| ATOM   | 3849  | СВ  | VAL |   | 60 | -52.512  | 50.962 | 51.513 |      | 31.28 | В. | C  |
|        | 3850  |     |     |   |    |          |        | 52.927 | 1.00 | 32.90 | В. | č  |
|        |       |     | VAL |   | 60 | -52.636  | 50.453 |        |      |       |    |    |
| ATOM   | 3851  |     | VAL |   | 60 | -53.017  | 52.375 | 51.394 |      | 28.64 | В  | С  |
| ATOM : | 3852  | С   | VAL | В | 60 | -50.685  | 49.434 | 51.118 |      | 32.78 | В  | С  |
| ATOM   | 3853  | 0   | VAL | В | 60 | -50.397  | 48.903 | 52.180 | 1.00 | 34.72 | В  | 0  |
| ATOM   | 3854  | N   | TYR | В | 61 | -50.703  | 48.770 | 49.976 | 1.00 | 32.62 | ₿  | N  |
| ATOM   | 3855  | СВ  | TYR |   | 61 | -50.359  | 47.369 | 49.994 | 1.00 | 34.23 | В  | Ç  |
| ATOM   | 3856  | СВ  | TYR |   | 61 | -51.503  | 46.543 | 49.432 |      | 34.62 | В  | С  |
| 1.     |       |     |     |   |    |          | 46.686 | 50.254 |      | 37.04 | В  | č  |
| ATOM   | 3857. | CG  | TYR |   | 61 | -52.755  |        |        |      |       |    |    |
| ATOM   | 3858  |     | TYR |   | 61 | -52.902  | 46.000 | 51.451 |      | 36.49 | В  | C  |
| ATOM   | 3859  | CE1 | TYR | В | 61 | -54.022  | 46.171 | 52.233 | 1.00 | 38.31 | В  | С  |
| ATOM   | 3860  | CD2 | TYR | В | 61 | -53.773  | 47.553 | 49.862 | 1.00 | 37.25 | В  | С  |
| ATOM   | 3861  | CE2 | TYR | В | 61 | -54.897  | 47.730 | 50.640 | 1.00 | 37.77 | В  | С  |
| ATOM   | 3862  | CZ  | TYR |   | 61 | -55.012  | 47.032 | 51.830 | 1.00 | 38.91 | В  | С  |
| ATOM   | 3863  | OH  | TYR |   | 61 | -56.113  | 47.177 | 52.642 |      | 42.77 | В  | ō  |
|        |       |     |     |   |    |          |        |        |      | 35.77 | В  | č  |
| MOTA   | 3864  | С   | TYR |   | 61 | -49.097  | 47.073 | 49.246 |      |       |    |    |
| MOTA   | 3865  | 0   | TYR |   | 61 | -48.529  | 46.001 | 49.413 | 1.00 | 39.48 | В  | 0  |
| ATOM   | 3866  | N   | GLY | В | 62 | -48.649  | 48.014 | 48.422 |      | 35.52 | В  | N  |
| ATOM   | 3867  | CB  | GLY | В | 62 | -47.433  | 47.793 | 47.662 | 1.00 | 34.04 | В  | С  |
| ATOM   | 3868  | С   | GLY | В | 62 | -47.652  | 47.723 | 46.163 | 1.00 | 34.90 | В  | С  |
| ATOM   | 3869  | 0   | GLY | В | 62 | -48.756  | 47.951 | 45.690 | 1.00 | 34.87 | В  | 0  |
| ATOM   | 3870  | N   | PRO |   | 63 | -46.603  | 47.407 | 45.383 | 1.00 | 35.94 | В  | N  |
| ATOM   | 3871  | CD  | PRO |   | 63 | -45.208  | 47.221 | 45.831 | 1.00 | 34.83 | В  | C  |
|        |       |     |     |   |    |          |        | 43.926 |      | 35.67 | В  | č  |
| MOTA   | 3872  | CB  | PRO |   | 63 | -46.667  | 47.304 |        |      | 36.44 | В  | c  |
| MOTA   | 3873  | CB  | PRO | В | 63 | -45.199  | 47.389 | 43.542 |      |       |    |    |
| MOTA   | 3874  | CG  | PRO |   | 63 | -44.549  | 46.613 | 44.624 |      | 32.77 | В  | C  |
| ATOM   | 3875  | С   | PRO | В | 63 | -47.287  | 45.996 | 43.455 |      | 35.56 | В  | С  |
| ATOM   | 3876  | 0   | PRO |   | 63 | -47.406  | 45.756 | 42.255 | 1.00 | 36.44 | В  | 0  |
| ATOM   | 3877  | N   | VAL |   | 64 | -47.651  | 45.132 | 44.397 | 1.00 | 35.99 | В  | ·N |
| ATOM   | 3878  | СВ  | VAL |   | 64 | -48.227  | 43.836 | 44.040 |      | 34.49 | В  | C  |
|        |       |     |     |   |    |          | 42.779 | 43.900 |      | 32.22 | В  | č  |
| ATOM   | 3879  | CB  | VAL |   | 64 | -47.139  |        |        |      |       |    | c  |
| ATOM   | 3880  |     | VAL |   | 64 | -47.764  | 41.443 | 43.650 |      | 32.63 | В  |    |
| ATOM   | 3881  | CG2 | VAL |   | 64 | -46.229  | 43.137 | 42.770 |      | 32.93 | В  | С  |
| MOTA   | 3882  | С   | VAL | В | 64 | -49.259  | 43.330 | 45.028 |      | 34.65 | В  | С  |
| ATOM   | 3883  | 0   | VAL | В | 64 | -48.955  | 42.508 | 45.877 | 1.00 | 33.50 | В  | 0  |
| ATOM   | 3884  | N   | PHE |   | 65 | -50.497  | 43.786 | 44.879 | 1.00 | 35.99 | В  | N  |
| ATOM   | 3885  | СВ  | PHE |   | 65 | -51.558  | 43.383 | 45.797 |      | 38.42 | В  | c  |
|        |       |     |     |   |    |          | 44.602 | 46.527 |      | 35.64 | В  | č  |
| MOTA   | 3886  | CB  | PHE |   | 65 | -52.052  |        |        |      |       |    |    |
| ATOM   | 3887  | CG  | PHE |   | 65 | -52.628  | 45.633 | 45.626 |      | 32.42 | В  | C  |
| MOTA   | 3888  |     | PHE |   | 65 | -53.988  | 45.655 | 45.360 |      | 31.25 | В  | С  |
| ATOM   | 3889  | CD2 | PHE | В | 65 | ~51.813  | 46.605 | 45.064 |      | 30.81 | В  | С  |
| ATOM   | 3890  | CE1 | PHE | В | 65 | -54.533  | 46.642 | 44.553 | 1.00 | 31.87 | В  | Ç  |
| ATOM   | 3891  |     | PHE |   | 65 | -52.345  | 47.595 | 44.256 | 1.00 | 29.62 | В  | С  |
| ATOM   | 3892  | CZ  | PHE |   | 65 | -53.706  | 47.616 | 43.999 |      | 31.13 | В  | Č  |
|        |       |     |     |   |    |          | 42.716 | 45.126 |      | 40.64 | B  | č  |
| MOTA   | 3893  | С   | PHE | 5 | 65 | -52.747  | 74./10 |        | 1.00 |       | -  | -  |
|        |       |     |     |   |    |          |        |        |      |       |    |    |

| ATOM | 3894 | 0   | PHE | Þ  | 65   | -53.034 | 42.962 | 43.953 | 1.00 | 42.20 | В | 0 |
|------|------|-----|-----|----|------|---------|--------|--------|------|-------|---|---|
|      |      |     |     |    |      |         |        | 45.879 |      | 41.29 | В | N |
| ATOM | 3895 | N   | THR |    | 66   | -53.462 | 41.891 |        |      | _     |   |   |
| MOTA | 3896 | CB  | THR | В  | 66   | -54.610 | 41.220 | 45.301 | _    | 42.21 | В | С |
| ATOM | 3897 | CB  | THR | В  | 66   | -54.746 | 39.796 | 45.840 | 1.00 | 42.73 | В | С |
| ATOM | 3898 |     | THR |    | 66   | -54.660 | 39.819 | 47.263 |      | 44.68 | В | 0 |
|      |      |     |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3899 | CG2 | THR | В  | 66   | -53.637 | 38.920 | 45.296 |      | 43.37 | В | С |
| ATOM | 3900 | С   | THR | В  | 66   | -55.917 | 41.984 | 45.514 | 1.00 | 42.03 | В | С |
|      |      |     | THR |    | 66   | -56.091 | 42.705 | 46.484 | 1 00 | 41.81 | В | 0 |
| ATOM | 3901 | 0   |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3902 | N · | LEU | В  | 67   | -56.824 | 41.854 | 44.561 |      | 41.92 | В | N |
| ATOM | 3903 | CB  | LEU | В  | 67   | -58.112 | 42.513 | 44.635 | 1.00 | 40.87 | В | С |
|      |      |     | LEU |    | 67   | -58.178 | 43.642 | 43.607 |      | 39.57 | В | C |
| ATOM | 3904 | CB  |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3905 | CG  | LEU | В  | 67   | -58.568 | 45.025 | 44.129 | 1.00 | 38.82 | В | С |
| ATOM | 3906 | CD1 | LEU | В  | 67   | -57.890 | 45.310 | 45.460 | 1.00 | 38.76 | В | С |
|      |      |     |     |    | 67   | -58.194 | 46.086 | 43.095 |      | 37.38 | В | С |
| ATOM | 3907 |     | LEU |    |      |         |        |        |      |       |   |   |
| ATOM | 3908 | C   | LEU | В  | 67   | -59.145 | 41.434 | 44.322 | 1.00 | 42.22 | В | С |
| ATOM | 3909 | 0   | LEU | В  | 67   | -58.926 | 40.581 | 43.444 | 1.00 | 42.13 | В | 0 |
|      |      |     | TYR |    | 68   | -60.262 | 41.457 | 45.049 |      | 42.85 | В | N |
| ATOM | 3910 | N   |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3911 | CB  | TYR | В  | 68   | -61.320 | 40.472 | 44.827 | 1.00 | 42.05 | В | С |
| ATOM | 3912 | CB  | TYR | В  | 68   | -61.908 | 39.970 | 46.150 | 1.00 | 40.59 | В | C |
|      | 3913 | CG  | TYR |    | 68   | -61.120 | 38.851 | 46.746 | 1 00 | 40.19 | В | С |
| ATOM |      |     |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3914 | CD1 | TYR | В  | 68   | -59.938 | 39.099 | 47.423 |      | 41.94 | В | С |
| ATOM | 3915 | CEl | TYR | В  | 68.  | -59.134 | 38.054 | 47.863 | 1.00 | 43.96 | В | С |
| ATOM | 3916 |     | TYR |    | 68   | -61.494 | 37.532 | 46.530 | 1 00 | 40.51 | В | С |
|      |      |     |     |    |      |         |        |        |      |       | В | Ċ |
| ATOM | 3917 | CE2 | TYR | В  | 68   | -60.705 | 36.479 | 46.960 |      | 41.58 |   |   |
| ATOM | 3918 | CZ  | TYR | В  | 68   | -59.523 | 36.744 | 47.621 | 1.00 | 43.34 | В | С |
| ATOM | 3919 | OH  | TYR |    | 68   | -58.696 | 35.709 | 48.003 | 1 00 | 46.10 | В | 0 |
|      |      |     |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3920 | С   | TYR | В  | 68   | -62.444 | 41.025 | 43.976 |      | 42.18 | В | С |
| ATOM | 3921 | 0   | TYR | В  | 68   | -63.272 | 41.776 | 44.455 | 1.00 | 42.14 | В | 0 |
| ATOM | 3922 | N   | PHE | R  | 69   | -62.467 | 40.661 | 42.703 | 1.00 | 43.35 | В | N |
|      |      |     |     |    |      |         |        |        |      |       |   |   |
| MOTA | 3923 | CB  | PHE | В  | 69   | -63.534 | 41.109 | 41.823 |      | 43.71 | В | С |
| ATOM | 3924 | CB  | PHE | В  | 69   | -63.072 | 41.161 | 40.368 | 1.00 | 46.53 | ₿ | С |
|      | 3925 | ĊG  | PHE |    | 69   | -62.247 | 42.363 | 40.042 | 1 00 | 49.69 | В | С |
| ATOM |      |     |     |    |      |         |        |        |      |       |   |   |
| MOTA | 3926 | CDI | PHE | В  | 69   | -60.945 | 42.477 | 40.516 |      | 51.37 | В | С |
| MOTA | 3927 | CD2 | PHE | В, | 69   | -62.775 | 43.389 | 39.268 | 1.00 | 50.66 | В | С |
|      |      |     | PHE |    | 69   | -60.175 | 43.593 | 40.225 |      | 52.28 | В | С |
| ATOM | 3928 |     |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3929 | CE2 | PHE | В  | 69   | -62.015 | 44.514 | 38.969 | 1.00 | 52.12 | В | C |
| MOTA | 3930 | CZ  | PHE | В  | 69   | -60.711 | 44.617 | 39.448 | 1.00 | 52.97 | В | С |
|      |      |     | PHE |    | 69   | -64.584 | 40.031 | 41.991 |      | 42.86 | В | С |
| MOTA | 3931 | С   |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3932 | 0   | PHE | В  | 69   | -64.427 | 38.918 | 41.484 |      | 42.04 | В | 0 |
| ATOM | 3933 | N   | GLY | В  | 70 - | -65.639 | 40.362 | 42.726 | 1.00 | 41.78 | В | N |
|      |      |     |     |    | 70   |         |        | 42.985 |      | 41.41 | В | С |
| MOTA | 3934 | CB  | GLY |    |      | -66.685 | 39.401 |        |      |       |   |   |
| MOTA | 3935 | С   | GLY | В  | 70   | -66.083 | 38.352 | 43.890 | 1.00 | 42.27 | В | С |
| ATOM | 3936 | 0   | GLY | В  | 70   | -65.698 | 38.639 | 45.022 | 1.00 | 41.45 | В | 0 |
|      |      |     |     |    | 71   |         | 37.124 | 43.405 |      | 43.98 | В | N |
| ATOM | 3937 | N   | LEU |    |      | -65.993 |        |        |      |       |   |   |
| ATOM | 3938 | CB  | LEU | В  | 71   | -65.388 | 36.088 | 44.218 | 1.00 | 45.66 | В | C |
| ATOM | 3939 | СВ  | LEU | В  | 71   | -66.241 | 34.838 | 44.242 | 1.00 | 47.11 | В | С |
|      |      |     |     |    |      |         |        | 45.375 |      | 48.48 | В | С |
| ATOM | 3940 | CG  | LEU |    | 71   | -67.248 | 34.711 |        |      |       |   |   |
| MOTA | 3941 | CD1 | LEU | В  | 71   | -68.566 | 35.408 | 45.003 | 1.00 | 49.74 | В | С |
| MOTA | 3942 | CD2 | LEU | В  | 71   | -67.468 | 33.238 | 45.614 | 1.00 | 48.94 | В | Ċ |
|      |      |     |     |    |      |         |        |        |      | 46.91 | В | С |
| ATOM | 3943 | С   | LEU |    | 71   | -64.027 | 35.724 | 43.683 |      |       |   |   |
| ATOM | 3944 | 0   | LEU | В  | 71   | -63.226 | 35.122 | 44.397 | 1.00 | 46.85 | В | 0 |
| ATOM | 3945 | N   | LYS | В  | 72   | -63.773 | 36.078 | 42.422 | 1.00 | 48.57 | В | N |
|      | 3946 |     | LYS |    | 72   | -62.492 | 35.781 | 41.791 |      | 49.18 | В | C |
| MOTA |      | CB  |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3947 | CB  | LYS | В  | 72   | -62.569 | 35.866 | 40.255 |      | 51.15 | В | Ç |
| ATOM | 3948 | CG  | LYS | В  | 72   | -63.165 | 34.617 | 39.547 |      | 57.01 | В | C |
|      |      |     |     | _  | 72   | -62.208 | 33.399 | 39.470 |      | 59.46 | В | c |
| ATOM | 3949 | CD  | LYS |    |      |         |        |        | 1.00 | 61 14 |   |   |
| ATOM | 3950 | CE  | LYS | В  | 72   | -62.834 | 32.224 | 38.690 |      | 61.14 | В | С |
| ATOM | 3951 | NZ  | LYS | В. | 72   | -61.840 | 31.197 | 38.242 | 1.00 | 64.01 | В | N |
| ATOM | 3952 | c   | LYS |    | 72   | -61.410 | 36.708 | 42.287 |      | 48.27 | В | С |
|      |      |     |     |    |      |         |        |        |      |       |   |   |
| ATOM | 3953 | 0   | LYS | В  | 72   | -61.619 | 37.911 | 42.475 |      | 47.85 | В | 0 |
| ATOM | 3954 | N   | PRO | В  | 73   | -60.230 | 36.144 | 42.533 | 1.00 | 47.60 | В | N |
| ATOM |      |     |     |    | 73   | -59.973 | 34.696 | 42.649 |      | 47.17 | В | С |
|      | 3955 | CD  | PRO |    |      |         |        |        |      |       |   |   |
| ATOM | 3956 | CB  | PRO | В  | 73   | -59.091 | 36.915 | 43.012 |      | 46.60 | В | С |
| MOTA | 3957 | СВ  | PRO |    | 73   | -58.384 | 35.917 | 43.907 | 1.00 | 46.28 | В | С |
|      |      |     |     |    |      | -58.539 | 34.648 | 43.117 |      | 47.65 | В | c |
| MOTA | 3958 | CG  | PRO |    | 73   |         |        |        |      |       |   |   |
| ATOM | 3959 | Ç   | PRO | В  | 73   | -58.231 | 37.342 | 41.826 |      | 45.81 | В | С |
| ATOM | 3960 | ō   | PRO |    | 73   | -57.989 | 36.549 | 40.912 | 1.00 | 46.17 | В | 0 |
|      |      |     |     |    |      |         |        |        |      | 15.00 | В |   |
| ATOM | 3961 | N   | ILE |    | 74   | -57.826 | 38.589 | 41.810 |      |       |   | N |
| ATOM | 3962 | CB  | ILE | В  | 74   | -56.933 | 39.082 | 40.768 | 1.00 | 15.00 | В | С |
| ATOM | 3963 | СВ  | ILE |    | 74   | -57.694 | 39.947 | 39.743 | 1.00 | 15.00 | В | С |
|      |      |     |     |    |      |         | 40.528 | 38.726 |      | 15.00 | В | č |
| MOTA | 3964 |     | ILE |    | 74   | -56.725 |        |        |      |       |   |   |
| ATOM | 3965 | CG1 | ILE | В  | 74   | -58.767 | 39.113 | 39.043 |      | 15.00 | В | С |
| ATOM | 3966 |     | ILE |    | 74   | -59.819 | 39.938 | 38.333 | 1.00 | 15.00 | В | С |
|      |      |     |     |    |      |         |        |        |      |       |   |   |
| MOTA | 3967 | С   | ILE |    | 74   | -55.799 | 39.909 | 41.362 |      | 15.00 | В | С |
| MOTA | 3968 | 0   | ILE | В  | 74   | -56.047 | 40.715 | 42.270 | 1.00 | 42.66 | В | 0 |

| MOTA   | 3969 | N   | VAL | В | 75     | -54.563 | 39.622 | 40.990 | 1.00 40.5 | 5   | В | N   |
|--------|------|-----|-----|---|--------|---------|--------|--------|-----------|-----|---|-----|
| ATOM   | 3970 | СВ  | VAL | В | 75     | ~53.430 | 40.355 | 41.554 | 1.00 38.3 | 88  | В | С   |
| ATOM   | 3971 | СВ  | VAL |   | 75     | -52.190 | 39.429 | 41.761 | 1.00 37.7 | 71  | В | С   |
| ATOM   | 3972 |     | VAL |   | 75     | -52.617 | 37.985 | 41.826 | 1.00 37.1 |     | В | · C |
|        |      |     |     |   | 75     | -51.183 | 39.631 | 40.674 | 1.00 40.4 |     | В | Ċ   |
| ATOM   | 3973 |     | VAL |   |        |         |        |        | 1.00 36.2 |     | В | Č   |
| MOTA   | 3974 | С   | VAL |   | 75     | -53.094 | 41.518 | 40.617 |           |     |   |     |
| ATOM   | 3975 | 0   | VAL |   | 75     | -53.236 | 41.395 | 39.406 | 1.00 36.0 |     | В | 0   |
| MOTA   | 3976 | N   | VAL | В | 76     | -52.670 | 42.645 | 41.184 | 1.00 34.7 |     | В | N   |
| MOTA   | 3977 | СВ  | VAL | В | 76     | -52.315 | 43.838 | 40.399 | 1.00 33.2 | 20  | В | С   |
| MOTA   | 3978 | СВ  | VAL | В | 76     | -53.116 | 45.086 | 40.893 | 1.00 31.1 | 13  | В | С   |
| ATOM   | 3979 | CG1 | VAL |   | 76     | -52.653 | 46.335 | 40.175 | 1.00 28.6 | 37  | В | С   |
| ATOM   | 3980 |     | VAL |   | 76     | -54.598 | 44.876 | 40.673 | 1.00 30.  |     | В | С   |
|        |      |     | VAL |   | 76     | -50.811 | 44.167 | 40.474 | 1.00 33.5 |     | В | č   |
| ATOM   | 3981 | C   |     |   |        |         |        | 41.479 | 1.00 35.0 |     | В | ŏ   |
| ATOM   | 3982 | 0   | VAL |   | 76     | -50.162 | 43.912 |        |           |     |   |     |
| MOTA   | 3983 | N   | LEU |   | 77     | -50.260 | 44.726 | 39.402 | 1.00 32.9 |     | В | N   |
| ATOM   | 3984 | CB  | LEU | В | 77     | -48.849 | 45.112 | 39.368 | 1.00 31.1 |     | В | С   |
| ATOM   | 3985 | CB  | LEU | В | 77     | -48.160 | 44.465 | 38.177 | 1.00 30.8 | 35  | В | С   |
| MOTA   | 3986 | CG  | LEU | В | 77     | -48.289 | 42.948 | 38.046 | 1.00 30.9 | 92  | В | С   |
| ATOM   | 3987 | CD1 | LEU | В | 77     | -47.680 | 42.522 | 36.741 | 1.00 29.3 | 17  | В | C.  |
| ATOM   | 3988 |     | LEU |   | 77     | -47.625 | 42.240 | 39.217 | 1.00 32.0 | )3  | В | С   |
| ATOM   | 3989 | c   | LEU |   | <br>לל | -48.886 | 46.623 | 39.185 | 1.00 30.7 |     | В | C   |
|        |      |     |     |   |        |         |        | 38.252 | 1.00 30.3 |     | В | ŏ   |
| ATOM   | 3990 | 0   | LEU |   | 77     | -49.523 | 47.125 |        |           |     |   |     |
| MOTA   | 3991 | N   | HIS |   | 78     | -48.194 | 47.364 | 40.037 | 1.00 29.8 |     | В | N   |
| ATOM   | 3992 | CB  | HIS | В | 78     | -48.309 | 48.798 | 39.896 | 1.00 30.1 |     | В | С   |
| ATOM   | 3993 | CB  | HIS | В | 78     | -48.888 | 49.388 | 41.180 | 1.00 29.3 | 33  | В | С   |
| ATOM   | 3994 | CG  | HIS | В | 78     | -49.522 | 50.730 | 40.993 | 1.00 27.4 | 17  | В | С   |
| ATOM   | 3995 | CD2 | HIS | В | 78     | -50.774 | 51.078 | 40.616 | 1.00 27.8 | 37  | В | С   |
| ATOM   | 3996 |     |     | В | 78     | -48.834 | 51.908 | 41.170 | 1.00 28.2 | 24  | В | N   |
| ATOM   | 3997 |     | HIS |   | 78     | -49.634 | 52.928 | 40.909 | 1.00 29.  |     | В | С   |
|        |      |     |     |   | 78     | -50.817 | 52.451 |        | 1.00 29.  |     | В | N   |
| ATOM   | 3998 |     | HIS |   |        |         |        |        |           |     |   | Ĉ   |
| MOTA   | 3999 | C   | HIS |   | 78     | -47.067 | 49.554 | 39.468 | 1.00 30.9 |     | В |     |
| ATOM   | 4000 | 0   | HIS |   | 78     | -47:121 | 50.441 | 38.610 | 1.00 27.0 |     | В | 0   |
| ATOM   | 4001 | N   | GLY | В | 79     | -45.937 | 49.221 | 40.047 | 1.00 32.2 | 22  | В | N   |
| MOTA   | 4002 | CB  | GLY | В | 79     | -44.766 | 49.932 | 39.613 | 1.00 36.3 | LO. | В | С   |
| ATOM   | 4003 | С   | GLY | В | 79     | -44.425 | 49.574 | 38.183 | 1.00 36.0 | 59  | В | С   |
| ATOM   | 4004 | ō   | GLY |   | 79     | -45.101 | 48.765 | 37.541 | 1.00 36.4 | 16  | В | 0   |
| ATOM   | 4005 | N   | TYR |   | 80     | -43.365 | 50.221 | 37.711 | 1.00 38.  |     | В | N   |
|        | 4006 | СВ  | TYR |   | 80     | -42.777 | 50.022 |        | 1.00 38.3 |     | В | Ċ   |
| ATOM   |      |     |     |   |        |         |        |        | 1.00 37.  |     | В | č   |
| ATOM   | 4007 | CB  | TYR |   | 80     | -41.875 | 51.202 | 36.017 |           |     |   |     |
| ATOM   | 4008 | CG  | TYR |   | 80     | -40.954 | 50.861 | 34.868 | 1.00 37.0 |     | В | C   |
| ATOM   | 4009 | CD1 | TYR | В | 80     | -41.456 | 50.732 | 33.577 | 1.00 38.0 |     | В | С   |
| ATOM   | 4010 | CE1 | TYR | В | 80     | -40.669 | 50.230 | 32.536 | 1.00 36.  |     | В | С   |
| MOTA   | 4011 | CD2 | TYR | В | 80     | -39.627 | 50.501 | 35.085 | 1.00 35.  | 77  | В | С   |
| ATOM   | 4012 | CE2 | TYR | В | 80     | -38.835 | 49.996 | 34.045 | 1.00 34.5 | 53  | В | С   |
| ATOM   | 4013 | CZ  | TYR |   | 80     | -39.366 | 49.856 | 32.786 | 1.00 34.0 | 66  | В | C   |
| MOTA   | 4014 | OH  | TYR |   | 80     | -38.629 | 49.264 | 31.798 | 1.00 34.4 |     | В | 0   |
|        |      |     |     |   | 80     | -41.886 | 48.829 | 36.668 | 1.00 38.  |     | В | Č   |
| MOTA   | 4015 | c   | TYR |   |        |         |        |        | 1.00 38.3 |     | В | ŏ   |
| MOTA   | 4016 | 0   | TYR |   | 80     | -41.735 | 47.959 | 35.832 |           |     |   |     |
| ATOM   | 4017 | N   | GLU |   | 81     | -41.288 | 48.801 | 37.854 | 1.00 41.  |     | В | N   |
| ATOM   | 4018 | CB  | GLU | В | 81     | -40.415 | 47.704 | 38.207 | 1.00 44.3 |     | В | С   |
| ATOM   | 4019 | CB  | GLU | В | 81     | -39.703 | 47.966 | 39.523 | 1.00 47.  |     | В | С   |
| ATOM   | 4020 | CG  | GLU | В | 81     | -39.002 | 49.285 | 39.615 | 1.00 53.  | 37  | В | С   |
| ATOM   | 4021 | CD  | GLU | В | 81     | -38.344 | 49.488 | 40.983 | 1.00 59.  | 14  | В | С   |
| ATOM   | 4022 | OE1 |     |   | 81     | -37.311 | 48.814 | 41.267 | 1.00 62.  | 35  | В | 0   |
| ATOM   | 4023 |     | GLU |   | 81     | -38.865 | 50.317 | 41.782 | 1.00 61.  |     | В | o   |
| MOTA   | 4024 | C   | GLU |   | 81     | -41.249 | 46.456 | 38.346 | 1.00 44.  |     | В | Č   |
|        |      |     |     |   |        |         |        |        | 1.00 45.  |     | В | ŏ   |
| ATOM . |      | 0   | GLU |   | 81     | -40.754 | 45.358 | 38.141 |           |     | В | N   |
| ATOM   | 4026 | N   | ALB |   | 82     | -42.520 | 46.613 | 38.688 | 1.00 44.  |     |   |     |
| MOTA   | 4027 | CB  | ALB |   | 82     | -43.365 | 45.439 | 38.853 | 1.00 43.  |     | В | C   |
| ATOM   | 4028 | CB  | ALB | В | 82     | -44.501 | 45.739 | 39.788 | 1.00 45.  | 87  | В | С   |
| ATOM   | 4029 | С   | ALB |   | 82     | -43.899 | 44.971 | 37.523 | 1.00 44.  | 00  | В | С   |
| ATOM   | 4030 | ō   | ALB |   | 82     | -43.972 | 43.779 | 37.267 | 1.00 43.  | 01  | В | 0   |
| ATOM   | 4031 | N   | VAL |   | 83     | -44.274 | 45.915 | 36.672 | 1.00 44.  |     | В | N   |
|        | 4032 | СВ  | VAL |   | 83     | -44.797 | 45.558 | 35.370 | 1.00 46.  |     | В | c   |
| ATOM   |      |     |     |   |        | -45.450 | 46.773 | 34.677 | 1.00 46.  |     | B | č   |
| MOTA   | 4033 | CB  | VAL |   | 83     |         |        |        |           |     | В | c   |
| MOTA   | 4034 |     | VAL |   | 83     | -46.003 | 46.375 | 33.320 | 1.00 47.  |     |   |     |
| MOTA   | 4035 | CG2 |     |   | 83     | -46.563 |        | 35.543 | 1.00 45.  |     | В | C   |
| ATOM   | 4036 | С   | VAL | В | 83     | -43.666 | 45.023 | 34.503 | 1.00 47.  |     | В | С   |
| ATOM   | 4037 | 0   | VAL | В | 83     | -43.791 | 43.960 | 33.886 | 1.00 47.  |     | В | 0   |
| ATOM   | 4038 | N   | LYS |   | 84     | -42.559 | 45.758 | 34.475 | 1.00 49.  | 80  | В | N   |
| ATOM   | 4039 | СВ  | LYS |   | 84     | -41.393 | 45.381 | 33.682 | 1.00 51.  | 22  | В | С   |
| ATOM   | 4040 | СВ  | LYS |   | 84     | -40.284 | 46.428 | 33.866 | 1.00 53.  |     | В | C   |
| MOTA   | 4041 | CG  | LYS |   | 84     | -38.856 | 45.903 | 33.907 | 1.00 56.  |     | В | č   |
|        |      |     |     |   |        | -38.356 | 45.303 | 32.601 | 1.00 58.  |     | В | Ċ   |
| ATOM   | 4042 | CD  | LYS |   | 84     |         |        |        |           |     |   | c   |
| MOTA   | 4043 | CE  | LYS | В | 84     | -37.024 | 44.550 | 32.861 | 1.00 61.  | , , | В | _   |
|        |      |     |     |   |        |         |        |        |           |     |   |     |

| ATOM 4073 CGI ILE B 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM 4045 C LYS B 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C C C C C C C C C C C C C C C C C C C     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| ATOM 4045 C LYS B 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM 4045 C LYS B 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                         |
| ATOM 4046 O LYS B 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM 4046 O LYS B 84 -40.693 43.156 33.142 1.00 51.75  ATOM 4047 N GLU B 85 -40.660 43.752 35.311 1.00 50.76 E ATOM 4048 CB GLU B 85 -40.154 42.465 35.766 1.00 51.17  ATOM 4049 CB GLU B 85 -40.136 42.423 37.291 1.00 52.54  ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78  ATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.01  ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 E ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66  ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59  ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.59  ATOM 4057 CB ALB B 86 -44.575 40.666 35.979 1.00 48.53  ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44  ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14  ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20  ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68  ATOM 4065 CD1 LEU B 87 -44.618 42.643 31.172 1.00 47.61  ATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 47.61  ATOM 4066 CD2 LEU B 87 -46.681 42.766 31.593 1.00 47.61  ATOM 4068 O LEU B 87 -46.681 42.766 31.593 1.00 47.61  ATOM 4068 O LEU B 87 -46.681 42.766 31.593 1.00 47.61  ATOM 4068 O LEU B 87 -46.681 41.486 31.236 1.00 48.20  ATOM 4068 O LEU B 87 -46.681 41.486 31.236 1.00 48.33  ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33  ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33  ATOM 4060 CB LEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4067 C BLEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33  ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00  ATOM 4070 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00  ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00                                                                                                                                                                                                                                                                                                                                 | 3                                         |
| ATOM   4047   N   CIU   B   85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATOM 4047 N GLU B 85 -40.660 43.752 35.311 1.00 50.76  ATOM 4048 CB GLU B 85 -40.154 42.465 35.766 1.00 51.17 E ATOM 4049 CB GLU B 85 -40.136 42.423 37.291 1.00 52.54  ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78  ATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.01  ATOM 4053 OE2 GLU B 85 -39.147 42.272 40.000 1.00 58.09  ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66  ATOM 4055 O GLU B 85 -41.014 41.322 35.251 1.00 50.59  ATOM 4055 O GLU B 85 -40.537 40.408 34.550 1.00 50.59  ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32  ATOM 4057 CB ALB B 86 -42.298 41.401 35.578 1.00 50.32  ATOM 4059 C ALB B 86 -43.289 40.399 35.213 1.00 48.53  ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.53  ATOM 4060 N LEU B 87 -43.584 41.409 33.016 1.00 48.91  ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91  ATOM 4062 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68  ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 43.63  ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01  ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 43.63  ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 48.33  ATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 45.00  ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00  ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00  ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                         |
| ATOM 4048 CB GLU B 85 -40.154 42.465 35.766 1.00 51.78 ATOM 4049 CB GLU B 85 -40.136 42.435 37.841 1.00 55.78 ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78 ATOM 4051 CD GLU B 85 -39.368 41.255 37.841 1.00 55.78 ATOM 4052 CB1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 ATOM 4053 CB2 GLU B 85 -39.147 42.272 40.000 1.00 58.09 ATOM 4054 C GLU B 85 -39.147 42.272 40.000 1.00 58.09 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4056 N ALB B 86 -40.537 40.408 34.580 1.00 50.59 ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 50.59 ATOM 4058 CB ALB B 86 -43.592 40.291 33.732 1.00 48.54 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.54 ATOM 4050 CD ALB B 86 -43.592 40.291 33.732 1.00 48.54 ATOM 4061 N EUB B 87 -43.584 41.409 33.016 1.00 48.54 ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.54 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4065 CD LEU B 87 -46.691 41.366 31.593 1.00 47.61 ATOM 4066 CD LEU B 87 -46.691 41.366 31.593 1.00 47.61 ATOM 4067 CB LEU B 87 -46.691 41.466 31.236 1.00 40.01 ATOM 4068 CD LEU B 87 -46.691 41.466 31.236 1.00 40.01 ATOM 4067 CB LEU B 87 -42.726 41.125 30.672 1.00 48.34 ATOM 4068 CD LEU B 87 -42.726 41.125 30.672 1.00 48.34 ATOM 4067 CB LEU B 87 -42.726 41.125 30.672 1.00 48.34 ATOM 4067 CB LEU B 88 -41.515 41.264 31.201 1.00 15.00 ATOM 4070 CB LE B 88 -39.474 39.922 30.991 1.00 15.00 ATOM 4071 CB LE B 88 -39.474 39.922 30.991 1.00 15.00 ATOM 4070 CB LE B 88 -39.474 39.922 30.991 1.00 15.00 ATOM 4070 CB LE B 88 -39.474 39.922 30.991 1.00 15.00 ATOM 4080 CG ASP B 89 -39.173 33.931 32.213 1.00 55.84 ATOM 4081 CD LEU B 87 -42.516 41.264 31.201 1.00 55.58 ATOM 4082 CD LEU B 87 -42.516 41.264 31.200 1.00 55.58 ATOM 4080 CG ASP B 89 -39.474 39.922 30.991 1.00 15.00 ATOM 4081 CD LEU B 88 -39.474 39.922 30.991 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.922 30.991 1.00 55.68 ATOM 4080 CG ASP B 89 -39.474 39.922 30.991 1.00 55.68 ATOM 4081 CD LEU B 90 -42.265 36.382 31.991 1.00 55.84 ATOM 4089 CD LEU B 90 -42.265 36.382 31.991 1.00 55.73 ATOM 4080 CG GLU B | ATOM 4048 CB GLU B 85 -40.154 42.465 35.766 1.00 51.17  ATOM 4049 CB GLU B 85 -40.136 42.423 37.291 1.00 52.54  ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78  ATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.01  ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09  ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66  ATOM 4055 O GLU B 85 -41.014 41.322 35.251 1.00 50.59  ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59  ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32  ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53  ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44  ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14  ATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91  ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20  ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68  ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82  ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82  ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82  ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25  ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4069 N LLE B 88 -42.376 31.206 1.00 48.25  ATOM 4060 CB LEU B 87 -42.726 41.125 30.672 1.00 48.25  ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.33  ATOM 4069 N LLE B 88 -41.515 41.264 31.200 1.00 45.00  ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00  ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00  ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                         |
| ATOM 4049 CB CJU B 85 -40.136 42.423 37.291 1.00 52.54 ATOM 4050 CG GJU B 85 -39.368 41.255 37.891 1.00 55.56 ATOM 4051 CD GJU B 85 -39.361 41.210 39.362 1.00 58.01 ATOM 4052 OE1 GJU B 85 -39.361 41.210 39.362 1.00 58.01 ATOM 4053 OE2 GJU B 85 -39.558 40.103 39.920 1.00 59.66 ATOM 4055 C GJU B 85 -40.537 40.408 34.580 1.00 59.56 ATOM 4055 C GJU B 85 -40.537 40.408 34.580 1.00 59.57 ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 59.57 ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 59.57 ATOM 4057 CB ALB B 86 -43.289 40.999 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -43.592 40.291 33.732 1.00 48.53 ATOM 4058 CB ALB B 86 -43.592 40.291 33.732 1.00 48.54 ATOM 4050 C ALB B 86 -43.593 40.291 33.732 1.00 48.54 ATOM 4060 C ALB B 86 -43.593 40.291 33.732 1.00 48.54 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.26 ATOM 4062 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.693 42.756 31.607 1.00 43.63 ATOM 4066 CG LEU B 87 -46.693 42.756 31.607 1.00 43.63 ATOM 4066 CG LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CG LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4067 C LEU B 87 -46.891 42.275 31.607 1.00 45.68 ATOM 4071 CB LLE B 88 -39.218 42.047 29.469 1.00 41.82 ATOM 4071 CB LLE B 88 -39.404 42.275 31.607 1.00 45.50 ATOM 4071 CB LLE B 88 -39.404 42.277 30.672 1.00 15.00 ATOM 4071 CB LLE B 88 -39.404 42.277 30.262 1.00 15.00 ATOM 4071 CB LLE B 88 -39.404 42.277 30.262 1.00 15.00 ATOM 4070 CB ASP B 89 -31.579 39.931 30.115 1.00 55.08 ATOM 4071 CB LLE B 88 -39.404 42.277 30.262 1.00 15.00 ATOM 4071 CB LLE B 88 -39.404 42.277 30.262 1.00 15.00 ATOM 4070 CB ASP B 89 -39.708 40.827 29.815 1.00 15.00 ATOM 4070 CB ASP B 89 -39.708 40.827 29.815 1.00 15.00 ATOM 4070 CB ASP B 89 -39.708 40.827 29.815 1.00 15.00 ATOM 4070 CB ASP B 89 -39.708 40.827 29.815 1.00 55.80 ATOM 4080 CB ASP B 89 -39.708 40.827 29.815 1.00 55.80 ATOM 4080 CB ASP  | ATOM 4049 CB GLU B 85 -40.136 42.423 37.291 1.00 52.54 BATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78 BATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.09 BATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 BATOM 4053 OE2 GLU B 85 -39.147 42.272 40.000 1.00 59.66 BATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 BATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 BATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.57 BATOM 4057 CB ALB B 86 -42.298 41.401 35.578 1.00 50.57 BATOM 4059 C BALB B 86 -44.575 40.666 35.979 1.00 48.53 BATOM 4050 O ALB B 86 -43.592 40.291 33.732 1.00 48.53 BATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 BATOM 4061 N LEU B 87 -43.592 40.291 33.732 1.00 48.91 BATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 BATOM 4063 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 BATOM 4066 CD2 LEU B 87 -44.618 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 BATOM 4066 CD2 LEU B 87 -46.681 43.976 30.924 1.00 41.82 BATOM 4066 CD2 LEU B 87 -46.681 41.186 31.236 1.00 40.01 BATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 40.01 BATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 15.00 BATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 BATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 BATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 BATOM 4072 CG2 ILE B  | 3                                         |
| ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78 ATOM 4051 CD GLU B 85 -39.147 42.272 40.000 1.00 58.01 ATOM 4052 OEI GLU B 85 -39.147 42.272 40.000 1.00 58.01 ATOM 4055 C GLU B 85 -39.147 42.272 40.000 1.00 58.06 ATOM 4055 C GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4055 C GL B B 86 -42.298 41.401 35.578 1.00 50.32 ATOM 4057 CB ALB B 86 -42.298 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -43.589 40.409 35.278 1.00 47.44 ATOM 4060 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.036 1.00 58.04 ATOM 4065 CB LEU B 87 -43.584 41.409 33.036 1.00 47.64 ATOM 4066 CC LEU B 87 -44.618 42.643 31.172 1.00 48.20 ATOM 4065 CD LEU B 87 -46.691 41.3976 30.924 1.00 45.68 ATOM 4066 CC LEU B 87 -46.691 41.3976 30.924 1.00 45.68 ATOM 4066 CC LEU B 87 -46.691 41.3976 30.924 1.00 41.82 ATOM 4066 CC LEU B 87 -46.691 41.3976 30.924 1.00 41.82 ATOM 4066 CC LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.23 ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4075 C LILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4075 C LILE B 88 -93.484 42.327 30.262 1.00 15.00 ATOM 4075 C LILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4076 C LILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4076 C LILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4076 C LILE B 88 -39.494 42.327 30.262 1.00 15.00 ATOM 4070 CB ILE B 88 -39.494 42.327 30.262 1.00 15.00 ATOM 4070 CB ILE B 88 -39.494 42.327 30.262 1.00 15.00 ATOM 4070 CB ILE B 88 -39.494 42.327 30.262 1.00 15.00 ATOM 4070 CB ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4070 CB ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4070 CB ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4070 CB ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4070 CB ILE B 89 -39.474 39.922 30.919 1.00 15.00 ATOM 4070 CB  | ATOM 4050 CG GLU B 85 -39.368 41.255 37.841 1.00 55.78 ATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.01 E ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 E ATOM 4053 OE2 GLU B 85 -39.588 40.103 39.920 1.00 59.66 E ATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 E ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.57 E ATOM 4057 CB ALB B 86 -42.298 41.401 35.578 1.00 50.32 E ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 E ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.53 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 E ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 E ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 47.61 E ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68 E ATOM 4065 CD1 LEU B 87 -46.083 42.566 31.607 1.00 43.63 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82 E ATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 E ATOM 4066 CD2 LEU B 87 -46.681 42.643 31.172 1.00 45.68 E ATOM 4066 CD2 LEU B 87 -46.681 41.486 31.236 1.00 40.01 E ATOM 4069 N ILE B 88 -46.691 43.976 30.924 1.00 44.82 E ATOM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 E ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 | C C C C C C C C C C C C C C C C C C C     |
| ATOM   4051   CD   GLU B   85   -39.361   41.210   39.362   1.00   58.09   ATOM   4052   OEI   GLU B   85   -39.147   42.272   40.000   1.00   59.66   ATOM   4055   OE   GLU B   85   -41.014   41.322   35.251   1.00   50.59   ATOM   4055   OEI   GLU B   85   -41.014   41.322   35.251   1.00   50.59   ATOM   4055   OEI   AEB   86   -42.298   41.401   35.578   1.00   50.57   ATOM   4057   CB   ALB B   86   -42.298   41.401   35.578   1.00   50.57   ATOM   4057   CB   ALB B   86   -43.289   40.399   35.213   1.00   48.53   ATOM   4059   C   ALB B   86   -43.594   40.399   35.213   1.00   48.53   ATOM   4069   C   ALB B   86   -43.595   40.291   31.732   1.00   48.53   ATOM   4060   O   ALB B   86   -43.594   41.409   33.236   1.00   48.51   ATOM   4060   O   ALB B   86   -43.594   41.409   33.216   1.00   48.51   ATOM   4060   CB   LEU B   87   -43.594   41.409   33.016   1.00   48.51   ATOM   4065   CB   LEU B   87   -44.618   42.643   31.172   1.00   45.68   ATOM   4066   CG   LEU B   87   -46.683   42.756   31.593   1.00   43.63   ATOM   4066   CC   LEU B   87   -46.691   43.976   30.924   1.00   43.63   ATOM   4066   CC   LEU B   87   -46.691   43.976   30.924   1.00   43.63   ATOM   4066   CC   LEU B   87   -42.726   41.125   30.672   1.00   48.23   ATOM   4067   C   LEU B   87   -42.726   41.125   30.672   1.00   48.23   ATOM   4066   CC   LEU B   87   -42.726   41.125   30.672   1.00   48.23   ATOM   4067   C   LEU B   88   -40.340   41.048   30.365   1.00   15.00   ATOM   4071   CB   LE B   88   -39.474   39.223   30.915   1.00   15.00   ATOM   4071   CB   LE B   88   -39.474   39.223   30.915   1.00   15.00   ATOM   4073   CG   LE B   88   -39.474   39.223   30.915   1.00   15.00   ATOM   4073   CG   LE B   88   -39.474   39.223   30.915   1.00   15.00   ATOM   4079   CB   ASP   89   -39.179   39.911   32.213   1.00   55.46   ATOM   4079   CB   ASP   89   -39.179   39.911   30.156   1.00   55.46   ATOM   4079   CB   ASP   89   -39.179   39.911   30.156   1.00   55.46   ATOM   4090   CB   CLU B   90   -4   | ATOM 4051 CD GLU B 85 -39.361 41.210 39.362 1.00 58.01 E   ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 E   ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66 E   ATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E   ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 E   ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 E   ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 E   ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 E   ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 E   ATOM 4060 O ALB B 86 -43.592 40.291 33.332 1.00 48.14 E   ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 E   ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 E    ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 43.63 E   ATOM 4066 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E   ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E   ATOM 4067 C LEU B 87 -46.851 41.486 31.236 1.00 40.01 E   ATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4069 N ILE B 88 -42.910 40.800 29.500 1.00 48.25 E   ATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E    ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42 | C O O C O N C C O N C C C C               |
| ATOM 4052 OEL GLU B 85 -39.147 42.272 40.000 1.00 58.09 ATOM 4053 OE2 GLU B 85 -41.014 41.322 35.251 1.00 50.59 ATOM 4055 O GLU B 85 -41.014 41.322 35.251 1.00 50.59 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.32 ATOM 4057 CB ALB B 86 -42.298 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -43.592 40.291 33.732 1.00 48.91 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.91 ATOM 4069 C ALB B 86 -43.592 40.291 33.732 1.00 48.91 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.691 43.976 30.924 1.00 45.68 ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.891 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -42.726 41.125 30.672 1.00 48.21 ATOM 4066 CD LEU B 87 -42.726 41.125 30.672 1.00 48.23 ATOM 4069 N LLE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4070 CB LLE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB LLE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4072 CG2 LLE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4073 CG1 LLE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C LLE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4077 N ASP 8 89 -39.373 38.869 32.806 1.00 55.01 ATOM 4078 CB ASP 8 89 -39.373 38.869 32.806 1.00 55.01 ATOM 4080 CG ASP 8 89 -39.179 39.931 30.156 1.00 55.01 ATOM 4080 CG ASP 8 89 -39.373 40.447 32.278 1.00 58.43 ATOM 4081 CD LEU B 90 -41.221 36.357 31.080 1.00 55.01 ATOM 4097 N GLU B 90 -41.221 36.357 31.080 1.00 55.01 ATOM 4090 CG GLU B 90 -41.221 36.357 31.080 1.00 55.01 ATOM 4090 CG GLU B 90 -41.221 36.357 31.080 1.00 55.01 ATOM 4090 CG GLU B 90 -41.221 36.357 31.00 56.81 ATOM 4090 CG GLU B 90 -41.221 36.357 31.00 56.81 ATOM 4090 CG GLU B 90 -41.221 36.357 31.00 56.81 ATOM 4090 CG GLU B 90 -41.221 36.357 31.00 57.35 ATOM 4090 CG GLU B 90 -41.221 36.357 31.00 57.00 57.35 ATOM 4090 CG GLU B 90 -41.221 36.357 31. | ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 E ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66 E ATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 44.82 ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 44.82 ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 44.82 ATOM 4069 N LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4069 N LE B 88 -42.726 41.125 30.672 1.00 48.33 E ATOM 4069 N LE B 88 -42.726 41.125 30.672 1.00 48.33 E ATOM 4069 N LE B 88 -42.726 41.125 30.672 1.00 48.33 E ATOM 4069 N LE B 88 -42.726 41.125 30.672 1.00 48.35 E ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |
| ATOM 4052 OEZ GLU B 85 -39.147 42.272 40.000 1.00 58.09 6 ATOM 4053 OEZ GLU B 85 -41.014 41.322 35.251 1.00 59.66 ATOM 4055 O GLU B 85 -41.014 41.322 35.251 1.00 59.56 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 30.57 MTOM 4056 N ALB B 86 -42.298 41.040 35.578 1.00 50.32 ATOM 4055 CB ALB B 86 -42.298 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -43.589 40.599 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4065 CD LEU B 87 -46.691 43.976 30.241 1.00 45.68 ATOM 4065 CD LEU B 87 -46.691 43.976 30.241 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.241 1.00 48.20 ATOM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.33 ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.33 ATOM 4067 C LEU B 88 -41.515 41.246 31.236 1.00 40.01 5.00 ATOM 4070 CB LEE B 88 -40.340 41.048 30.365 1.00 1.50 0.00 ATOM 4071 CB LEE B 88 -40.340 41.048 30.365 1.00 1.50 0.00 ATOM 4072 CG2 LEE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4073 CG1 LEE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4075 C LEE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 CB LEE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4077 N ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4080 CG ASP B 89 -37.034 40.447 33.278 1.00 58.43 ATOM 4090 CG LEU B 90 -41.242 53.535 33.082 1.00 55.01 ATOM 4090 CG LEU B 90 -41.242 53.535 33.082 1.00 55.01 ATOM 4090 CG LEU B 90 -41.242 53.535 33.082 1.00 55.03  | ATOM 4052 OE1 GLU B 85 -39.147 42.272 40.000 1.00 58.09 E ATOM 4053 OE2 GLU B 85 -39.558 40.103 39.920 1.00 59.66 E ATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 E ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 ILL ATOM 4069 N ILE B 88 -42.726 41.125 30.662 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 4 | 0 C C C C C C C C C C C C C C C C C C C   |
| ATOM 4053 0E2 GLU B 85 -39.558 40.103 39.920 1.00 59.56 ATOM 4054 C GLU B 85 -40.537 40.408 34.580 1.00 50.59 ATOM 4055 N ALB B 86 -40.537 40.408 34.580 1.00 50.57 ATOM 4057 CB ALB B 86 -42.298 41.401 35.578 1.00 50.57 ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 47.44 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 31.206 1.00 48.20 ATOM 4061 N LEU B 87 -43.584 41.409 31.206 1.00 48.20 ATOM 4062 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.6891 42.765 31.607 1.00 43.63 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4069 N ILE B 88 -41.515 41.264 31.206 1.00 48.20 ATOM 4069 N ILE B 88 -41.515 41.264 31.206 1.00 48.30 ATOM 4069 CD LEU B 87 -42.910 40.800 25.500 1.00 48.30 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4075 C ILE B 88 -39.478 44.327 30.309 1.00 15.00 ATOM 4076 CDI ILE B 88 -39.478 44.327 30.309 1.00 15.00 ATOM 4076 CDI ILE B 88 -39.478 44.327 30.309 1.00 15.00 ATOM 4078 CB ASP B 89 -39.179 39.911 32.213 1.00 55.38 ATOM 4080 CG ASP B 89 -39.179 39.911 32.213 1.00 55.38 ATOM 4081 CDI ASP B 89 -39.474 41.112 33.328 1.00 55.38 ATOM 4081 CDI ASP B 89 -39.474 41.112 33.328 1.00 55.38 ATOM 4080 CG ASP B 89 -39.474 41.112 33.328 1.00 55.38 ATOM 4080 CG ASP B 89 -39.473 33.869 32.806 1.00 55.38 ATOM 4080 CG ASP B 89 -39.473 33.869 32.806 1.00 55.38 ATOM 4080 CG ASP B 89 -39.473 35.595 32.806 1.00 55.38 ATOM 4080 CG GLU B 90 -41.221 36.357 30.800 1.00 55.46 ATOM 4090  | ATOM 4053 0E2 GLU B 85 -39.558 40.103 39.920 1.00 59.66 RATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.59 E ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 RATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 RATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 E ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 RATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 RATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 RATOM 4063 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 RATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68 RATOM 4065 CD1 LEU B 87 -46.083 42.756 31.607 1.00 43.63 RATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 RATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 RATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 RATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 RATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 44.82 RATOM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.25 RATOM 4069 N LLE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4070 CB ILE B 88 -41.515 41.264 31.200 1.00 48.33 RATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 RATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 RATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 C O O O O O O O O O O O O O O O O O O   |
| ATOM 4055 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 ATOM 4055 CB ALB B 86 -42.298 40.399 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 47.44 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 47.44 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.54 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.54 ATOM 4062 CB LEU B 87 -44.688 42.643 31.172 1.00 45.68 ATOM 4063 CB LEU B 87 -44.688 42.643 31.172 1.00 45.68 ATOM 4065 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4066 CD LEU B 87 -42.726 41.125 30.672 1.00 48.33 ATOM 4067 C LEU B 87 -42.910 40.800 29.500 1.00 48.25 ATOM 4067 C LEU B 87 -42.910 40.800 29.500 1.00 48.25 ATOM 4067 C LEU B 88 -40.3340 41.048 30.652 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4072 CGZ ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.237 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4075 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4076 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4078 CB ASP B 89 -39.179 39.931 30.156 1.00 53.28 ATOM 4080 CG ASP B 89 -39.474 39.922 30.919 1.00 15.00 ATOM 4079 CB ASP B 89 -39.474 39.922 30.919 1.00 15.00 ATOM 4079 CB ASP B 89 -39.474 39.922 30.919 1.00 15.00 ATOM 4079 CB ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4079 CB ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.923 30.919 1.00 15.00 ATOM 4080 CG ASP B 89 -39.474 39.923 30.919 1.00 55.93 ATOM 4080 CG ASP B 8 | ATOM 4054 C GLU B 85 -41.014 41.322 35.251 1.00 50.59 E ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 E ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 E ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 E ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 E ATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91 E ATOM 4061 N LEU B 87 -43.837 39.198 33.236 1.00 48.91 E ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 E ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 E ATOM 4065 CD1 LEU B 87 -46.083 42.756 31.607 1.00 43.63 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4069 N ILE B 88 -41.515 41.264 31.206 1.00 40.01 E ATOM 4069 N ILE B 88 -41.515 41.264 31.206 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.206 1.00 45.60 E ATOM 4070 CB ILE B 88 -40.340 41.048 30.355 1.00 15.00 E ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 C O O O O O O O O O O O O O O O O O O   |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM 4055 O GLU B 85 -40.537 40.408 34.580 1.00 50.57 RATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 RATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 RATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 RATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 RATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91 RATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 RATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 RATOM 4063 CB LEU B 87 -43.694 42.643 31.172 1.00 45.68 RATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.68 RATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 43.63 RATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 RATOM 4067 C LEU B 87 -46.851 41.486 31.236 1.00 40.01 RATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.25 RATOM 4069 N ILE B 88 -42.726 41.125 30.672 1.00 48.33 RATOM 4069 N ILE B 88 -42.726 41.125 30.662 1.00 48.33 RATOM 4067 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 RATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 RATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 O N S S S S S S S S S S S S S S S S S S |
| ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4058 CB ALB B 86 -43.575 40.666 35.979 1.00 47.44 ATOM 4060 O ALB B 86 -43.575 40.666 35.979 1.00 48.14 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 47.61 ATOM 4062 CB LEU B 87 -44.618 42.643 31.572 1.00 45.68 ATOM 4065 CD1 LEU B 87 -46.681 42.756 31.607 1.00 43.63 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.03 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.00 41.61 ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.23 ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.23 ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4072 CG ILE B 88 -39.404 42.237 30.262 1.00 15.00 ATOM 4073 CG1 ILE B 88 -40.2407 29.469 1.00 15.00 ATOM 4075 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.709 33.406 29.601 1.00 15.00 ATOM 4076 C B ASP B 89 -38.373 38.869 32.2806 1.00 55.38 ATOM 4080 C G ASP B 89 -38.373 38.869 32.2806 1.00 55.240 ATOM 4080 C G ASP B 89 -38.373 38.869 32.806 1.00 55.240 ATOM 4080 C G ASP B 89 -38.546 36.483 32.551 1.00 55.08 ATOM 4080 C G ASP B 89 -38.540 32.551 1.00 55.08 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.61 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.61 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.61 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.61 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.61 ATOM 4080 C G BUB B 90 -41.221 36.357 30.800 1.00 56.81 ATOM 4090 C C BUB B 90 -41.221 36.357 30.800 1.00 56.81 ATOM 4090 C C BUB B 90 -41.221 36.357 30.800 1.00 56.81 ATOM 4090 C C BUB B 90 -41.221 36.357 30.800 1.00 56.81 ATOM 4090 C C BUB B 91 -44.298 31.313 30.931 1.00 59.97 ATOM 4 | ATOM 4056 N ALB B 86 -42.298 41.401 35.578 1.00 50.32 B ATOM 4057 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 B ATOM 4058 CB ALB B 86 -44.575 40.666 35.979 1.00 47.44 B ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 B ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 B ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 B ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 B ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 B ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 43.63 B ATOM 4065 CD1 LEU B 87 -46.083 42.756 31.607 1.00 43.63 B ATOM 4066 CD2 LEU B 87 -46.081 43.976 30.224 1.00 41.82 B ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 B ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 B ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.33 B ATOM 4069 N ILE B 88 -42.340 40.800 29.500 1.00 48.33 B ATOM 4069 N ILE B 88 -42.340 41.048 30.365 1.00 15.00 B ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 B ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 B ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 B ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N C C C C C C C C C C C C C C C C C C C   |
| ATOM 4058 CB ALB B 86 -43.289 40.399 35.213 1.00 48.53 ATOM 4059 C ALB B 86 -44.575 40.666 35.979 1.00 47.44 ATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91 ATOM 4061 N EUB B 87 -43.837 39.198 33.236 1.00 48.91 ATOM 4061 N EUB B 87 -43.837 39.198 33.236 1.00 48.91 ATOM 4062 CB LEU B 87 -44.618 42.643 31.172 1.00 45.63 ATOM 4064 CG LEU B 87 -44.618 42.643 31.172 1.00 45.63 ATOM 4065 CD1 LEU B 87 -46.691 43.976 31.607 1.00 43.63 ATOM 4066 CD2 LEU B 87 -46.691 43.976 31.294 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 31.294 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 41.25 30.672 1.00 48.25 ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CG1 ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4076 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4076 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4077 N ASP B 89 -39.474 39.922 30.919 1.00 15.00 ATOM 4076 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.707 39.031 30.156 1.00 53.28 ATOM 4080 CG ASP B 89 -39.173 39.931 32.131 1.00 53.28 ATOM 4080 CG ASP B 89 -39.173 39.931 32.131 1.00 53.28 ATOM 4080 CG ASP B 89 -39.173 39.831 30.156 1.00 55.01 ATOM 4080 CG ASP B 89 -39.173 39.831 32.2806 1.00 55.01 ATOM 4080 CG ASP B 89 -39.173 39.831 32.2806 1.00 55.01 ATOM 4080 CG ASP B 89 -39.173 39.831 32.2806 1.00 55.01 ATOM 4080 CG ASP B 89 -39.173 37.585 33.080 1.00 55.07 ATOM 4080 CG ASP B 89 -39.133 37.542 29.800 1.00 55.07 ATOM 4080 CG ASP B 89 -39.133 37.542 29.800 1.00 55.07 ATOM 4080 CG ASP B 89 -36.834 41.112 33.238 1.00 59.05 ATOM 4080 CG ASP B 89 -36.834 41.112 33.238 1.00 59.05 ATOM 4080 CG BLU B 90 -40.331 37.190 36.086 1.00 58.41 ATOM 4090 CG GLU B 90 -40.331 37.190 36.086 1.00 56.91 ATOM 4090 CG GLU B 90 -40.331 37.190 36.086 1.00 55.91 ATOM 4090 CG GL | ATOM 4057 CB ALB B 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 C C S C C C C C C C C C C C C C C C C   |
| ATOM 4058 CB ALB B 86 -443.592 40.291 33.732 1.00 47.44 ATOM 4060 O ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4062 CB LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4067 C LEU B 87 -46.691 43.976 30.924 1.00 48.20 ATOM 4068 O LEU B 87 -42.266 41.125 30.672 1.00 48.25 ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 ATOM 4067 C LEU B 88 -40.340 41.048 30.365 1.00 40.01 ATOM 4070 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CG1 ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4075 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 O ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.709 43.446 29.601 1.00 15.00 ATOM 4076 C B ASP B 89 -39.779 39.931 30.156 1.00 52.40 ATOM 4076 C B ASP B 89 -39.779 39.931 30.2213 1.00 53.28 ATOM 4081 OD1 ASP B 89 -39.794 39.220 30.919 1.00 15.00 ATOM 4080 C ASP B 89 -39.795 39.31 30.2213 1.00 55.38 ATOM 4081 OD1 ASP B 89 -39.795 39.31 30.2213 1.00 55.38 ATOM 4083 C ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4080 C ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.40 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.40 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.97 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.97 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.91 ATOM 4080 C B LEU B 90 -40.424 37.585 33.062 1.00 55.91 ATOM 4090 C B LEU B 90 -40.427 35.95 33.062 1.00 55.91 ATOM 4090 C B LEU B 90 -40.437 35.378 1.00 50.93 ATOM 4090 C B LEU B 90 -40.439 33.333 31.400 50.55.91 ATOM 4090 C B LEU B 90 -40.439 33.333 31.000 50.55.91 ATOM 4090 C B GLU B 92 -44.798 33.333 31.001 50.00 59.97 ATOM 4090 C  | ATOM 4058 CB ALB B 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 C<br>3 C<br>3 N<br>3 C<br>3 C           |
| ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.91 ATOM 4063 CB LEU B 87 -43.900 41.366 31.593 1.00 47.61 ATOM 4063 CB LEU B 87 -46.681 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.681 42.643 31.172 1.00 45.68 ATOM 4065 CD1 LEU B 87 -46.691 43.976 31.204 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 31.204 1.00 40.820 ATOM 4066 CD2 LEU B 87 -46.691 41.25 30.672 1.00 48.25 ATOM 4067 C LEU B 87 -42.910 40.800 29.500 1.00 48.25 ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.25 ATOM 4069 N ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.404 42.327 30.262 1.00 15.00 ATOM 4071 CB ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.9708 44.827 29.815 1.00 15.00 ATOM 4075 C ILE B 88 -39.9708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.9708 44.827 29.815 1.00 15.00 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28 ATOM 4078 CB ASP B 89 -39.179 39.931 30.156 1.00 55.38 ATOM 4080 CG ASP B 89 -39.179 39.931 30.156 1.00 55.38 ATOM 4080 CG ASP B 89 -37.944 39.223 30.4226 1.00 55.03 ATOM 4080 CG ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4080 CG ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4080 CG ASP B 89 -37.934 40.447 34.278 1.00 56.46 ATOM 4080 CG ASP B 89 -37.934 37.585 33.062 1.00 55.37 ATOM 4080 CG B LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4080 CG B LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4080 CG B LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4080 CG B LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD GG LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4090 CD GG LEU B 90 -40.442 37.585 33.062 1.00 57. | ATOM 4059 C ALB B 86 -43.592 40.291 33.732 1.00 48.14 ATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91 B ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 ATOM 4062 CB LEU B 87 -44.518 42.643 31.172 1.00 47.61 ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 B ATOM 4070 CB ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 C<br>3 N<br>3 C<br>3 C                  |
| ATOM 4060 N LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM 4060 O ALB B 86 -43.837 39.198 33.236 1.00 48.91 ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 B ATOM 4062 CB LEU B 87 -43.900 41.366 31.593 1.00 47.61 B ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ATOM 4064 CG LEU B 87 -46.691 43.976 30.924 1.00 43.63 ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 B ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.25 B ATOM 4069 N ILE B 88 -42.910 40.800 29.500 1.00 48.33 B ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 O<br>3 N<br>6 C<br>3 C                  |
| ATOM 4062 CB LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4061 N LEU B 87 -43.584 41.409 33.016 1.00 48.20 E   ATOM 4062 CB LEU B 87 -43.900 41.366 31.593 1.00 47.61 E   ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 E   ATOM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 E   ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E   ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 E   ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 E   ATOM 4068 0 LEU B 87 -42.910 40.800 29.500 1.00 48.33 E   ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 E   ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 N<br>3 C<br>3 C                         |
| ATOM 4062 CB LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4062 CB LEU B 87 -43.900 41.366 31.593 1.00 47.61 B ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 B ATOM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 B ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 B ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 B ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 B ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 B ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 B ATOM 4070 CB ILE B 88 -41.515 41.264 31.200 1.00 15.00 B ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 B ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 C<br>3 C                                |
| ATOM 4062 CB LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4062 CB LEU B 87 -43.900 41.366 31.593 1.00 47.61 E ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 E ATOM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 E ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 E ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4068 0 LEU B 87 -42.910 40.800 29.500 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 45.33 E ATOM 4070 CB ILE B 88 -41.515 41.264 31.200 1.00 15.00 E ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 C                                       |
| ATOM 4064 CG LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4063 CB LEU B 87 -44.618 42.643 31.172 1.00 45.68 ROM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 E ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ROM 4066 CD2 LEU B 87 -46.691 43.976 30.924 1.00 41.82 ROM 4066 CD2 LEU B 87 -42.726 41.125 30.672 1.00 48.25 ROM 4068 0 LEU B 87 -42.726 41.125 30.672 1.00 48.25 ROM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 48.33 ROM 4070 CB ILE B 88 -41.515 41.264 31.200 1.00 15.00 ROM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4071 CB ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ROM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 C                                       |
| ATOM 4064 CG LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4064 CG LEU B 87 -46.083 42.756 31.607 1.00 43.63 E ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 E ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4068 O LEU B 87 -42.726 41.125 30.672 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 E ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 C                                       |
| ATOM 4066 CD1 LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM 4065 CD1 LEU B 87 -46.691 43.976 30.924 1.00 41.82 E ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 E ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| ATOM 4067 C LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM 4066 CD2 LEU B 87 -46.851 41.486 31.236 1.00 40.01 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |
| ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4075 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4075 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4075 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4077 N ASP B 89 -39.179 39.931 30.156 1.00 52.40 ATOM 4077 N ASP B 89 -38.373 38.869 32.806 1.00 55.38 ATOM 4078 CB ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4080 CG ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4080 CG ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4081 DD1 ASP B 89 -36.509 40.737 35.378 1.00 58.43 ATOM 4082 OD2 ASP B 89 -36.509 40.737 35.378 1.00 56.43 ATOM 4083 C ASP B 89 -38.536 36.483 32.651 1.00 58.54 ATOM 4084 O ASP B 89 -38.546 36.483 32.651 1.00 58.54 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.841 ATOM 4089 CD1 LEU B 90 -41.904 36.165 34.434 1.00 57.40 ATOM 4089 CD2 LEU B 90 -41.914 35.966 32.143 1.00 56.841 ATOM 4099 CD2 LEU B 90 -42.265 36.382 31.974 1.00 58.43 ATOM 4099 CD2 LEU B 90 -42.265 36.382 31.974 1.00 58.43 ATOM 4099 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4099 CD3 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4099 CD3 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4099 CD3 LEU B 90 -43.893 33.6946 30.835 1.00 57.35 ATOM 4099 CD3 LEU B 90 -44.930 33.895 29.005 1.00 57.40 ATOM 4099 CD3 LEU B 90 -42.265 36.382 31.974 1.00 56.99 ATOM 4090 CD2 LEU B 90 -44.930 33.893 30.993 21.00 57.35 ATOM 4099 CD3 LEU B 90 -44.930 33.893 30.993 21.00 57.35 ATOM 4090 CD3 LEU B 92 -44.930 33.893 30.993 21.00 57.35 ATOM 4090 CD3 LEU B 92 -44.930 33.893 30.993 21.00 5 | ATOM 4067 C LEU B 87 -42.726 41.125 30.672 1.00 48.25 E ATOM 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 E ATOM 4069 N ILE B 88 -41.515 41.264 31.200 10.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |
| ATOM 4068 O LEU B 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATON 4068 O LEU B 87 -42.910 40.800 29.500 1.00 48.33 E   ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 E   ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 E   ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 E   ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| ATOM 4009 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4073 CG1 ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.072 39.031 30.156 1.00 15.00 ATOM 4075 C ILE B 88 -39.072 39.031 30.156 1.00 55.00 ATOM 4077 N ASP B 89 -39.072 39.031 30.156 1.00 55.38 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28 ATOM 4078 CB ASP B 89 -38.373 38.869 32.806 1.00 55.38 ATOM 4079 CB ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 58.43 ATOM 4081 OD1 ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4082 OD2 ASP B 89 -38.573 37.542 32.830 1.00 56.46 ATOM 4083 C ASP B 89 -38.546 36.403 32.651 1.00 56.57 ATOM 4084 O ASP B 89 -38.546 36.403 32.651 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4087 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4089 CD LEU B 90 -41.019 35.905 35.661 1.00 58.05 ATOM 4090 CD2 LEU B 90 -41.019 35.905 35.661 1.00 58.43 ATOM 4090 CD2 LEU B 90 -41.883 36.946 30.835 1.00 59.73 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 58.43 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4090 CD2 LEU B 90 -42.256 36.382 31.974 1.00 56.89 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 57.73 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 57.73 ATOM 4096 CB GLU B 92 -43.089 33.447 29.217 1.00 57.73 ATOM 4096 CB GLU B 92 -44.798 33.982 29.005 1.00 57.73 ATOM 4097 N GLU B 92 -44.798 33.183 34.029 1.00 57.44 ATOM 4090 CB GLU B 92 -44.798 33.183 34.029 1.00 57.44 ATOM 4090 CB GLU B 92 -44.798 33.183 34.029 1.00 57.54 ATOM 4091 C GLU B 92 -44.798 33.183 34.029 1.00 57.54 ATOM 4100 CG GLU B 92 -44.798 33.183 34.029 1.00 57.54 ATOM 4101 CD GLU B 92 -44.998 33.183 34.029 1.00 57.55 ATOM 4102 CB GLU B 93 -44.298 33.183 34.029 1.00 57.54 ATOM 4101 | ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 B ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 B ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 B ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4073 CGI ILE B 88 -39.708 44.827 29.469 1.00 15.00 ATOM 4074 CDI ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 52.40 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 55.38 ATOM 4078 CB ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4079 CB ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4080 CG ASP B 89 -36.850 40.737 35.378 1.00 60.43 ATOM 4081 ODI ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4083 C ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4084 O ASP B 89 -38.546 36.483 32.651 1.00 56.43 ATOM 4086 CB LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4087 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4089 CDI LEU B 90 -41.019 35.905 35.661 1.00 58.54 ATOM 4090 CD2 LEU B 90 -41.024 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.031 37.190 36.086 1.00 57.40 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 58.43 ATOM 4092 C LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4093 C B GLU B 91 -42.781 37.045 29.696 1.00 57.71 ATOM 4094 C B GLY B 91 -42.781 37.045 29.696 1.00 58.43 ATOM 4099 CB GLU B 92 -43.382 35.896 32.143 1.00 56.89 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 57.73 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 57.74 ATOM 4092 C B GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4096 CB GLU B 92 -44.798 35.966 32.143 1.00 57.74 ATOM 4097 N GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4096 CB GLU B 92 -44.798 35.965 32.401 1.00 57.74 ATOM 4097 CB GLU B 92 -44.798 33.183 34.029 1.00 57.94 ATOM 4101 CD GLU B 92 -44.798 33.183 31.601 1.00 57.44 ATOM 4102 CB GLU B 92 -44.798 33.183 34.029 1.00 57.94 ATOM 4103 CE GLU B 92 -44.798 33.183 34.029 1.00 57.94 ATOM 4104 CB GLU B 93 -44.298 33.183 34.029 1.00 57.54 ATOM 4105  | ATOM 4069 N ILE B 88 -41.515 41.264 31.200 1.00 15.00 B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 0                                       |
| ATOM 4071 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4074 CD1 ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4075 C ILE B 88 -39.708 44.827 29.815 1.00 15.00 ATOM 4076 O ILE B 88 -39.072 39.031 30.156 1.00 52.40 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28 ATOM 4077 CB ASP B 89 -39.179 39.931 32.213 1.00 55.38 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 56.01 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 58.43 ATOM 4081 OD1 ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4082 OD2 ASP B 89 -39.135 37.542 32.830 1.00 56.46 ATOM 4084 O ASP B 89 -39.135 37.542 32.830 1.00 56.57 ATOM 4086 CB LEU B 90 -40.442 37.585 33.062 1.00 56.74 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4086 CB LEU B 90 -41.21 36.357 33.080 1.00 56.80 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 57.40 ATOM 4090 CD2 LEU B 90 -41.304 36.165 34.434 1.00 56.80 ATOM 4090 CD2 LEU B 90 -41.304 35.366 36.807 1.00 56.80 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.80 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 56.80 ATOM 4090 CD2 LEU B 90 -43.382 35.896 32.143 1.00 56.80 ATOM 4090 CD2 LEU B 90 -42.265 36.382 31.974 1.00 57.37 ATOM 4090 CD LEU B 90 -43.889 33.447 29.217 1.00 57.37 ATOM 4090 CD LEU B 90 -44.980 36.986 32.143 1.00 56.80 ATOM 4090 CD LEU B 90 -44.980 36.986 32.143 1.00 56.80 ATOM 4090 CD LEU B 90 -44.980 36.986 32.143 1.00 57.34 ATOM 4090 CD GLU B 92 -44.798 35.982 29.005 1.00 57.73 ATOM 4090 CD GLU B 92 -44.798 35.982 29.005 1.00 57.73 ATOM 4000 CD GLU B 92 -44.798 33.134 30.392 1.00 57.37 ATOM 4100 CD GLU B 92 -44.798 33.134 30.392 1.00 57.37 ATOM 4100 CD GLU B 92 -44.798 33.134 30.392 1.00 57.35  | ATOM 4070 CB ILE B 88 -40.340 41.048 30.365 1.00 15.00 B ATOM 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 B ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 N                                       |
| ATOM 4071 CB ILE B 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATCH 4071 CB ILE B 88 -39.484 42.327 30.262 1.00 15.00 E ATCH 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 C                                       |
| ATOM 4072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATOM 4072 CG2 ILE B 88 -38.218 42.047 29.469 1.00 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| ATOM 4073 CG1 ILE B 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| ATOM 4074 CD1 ILE B 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. C                                      |
| ATOM 4075 C ILE B 88 -39.474 39.922 30.919 1.00 15.00 ATOM 4076 O ILE B 88 -39.072 39.031 30.156 1.00 52.40 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.280 ATOM 4078 CB ASP B 89 -38.373 38.869 32.806 1.00 .55.38 ATOM 4079 CB ASP B 89 -37.946 39.230 34.226 1.00 .56.01 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 58.43 ATOM 4081 ODI ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4082 OD2 ASP B 89 -36.509 40.737 35.378 1.00 59.05 ATOM 4083 C ASP B 89 -39.135 37.542 32.830 1.00 59.05 ATOM 4084 O ASP B 89 -39.135 37.542 32.830 1.00 56.46 ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.57 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4087 CB LEU B 90 -41.019 35.905 35.661 1.00 58.05 ATOM 4089 CDI LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4090 CDI LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4090 CDI LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4090 CDI LEU B 90 -41.874 35.366 36.807 1.00 57.40 ATOM 4091 C LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 58.41 ATOM 4090 CDI LEU B 90 -42.265 36.382 31.974 1.00 57.11 ATOM 4090 CDI LEU B 90 -42.265 36.382 31.974 1.00 58.45 ATOM 4090 CDI LEU B 90 -42.265 36.382 31.974 1.00 58.45 ATOM 4090 CDI LEU B 90 -43.382 35.896 32.143 1.00 56.89 ATOM 4090 CDI LEU B 90 -43.382 35.896 32.143 1.00 56.89 ATOM 4090 CDI LEU B 90 -43.382 35.896 32.143 1.00 56.89 ATOM 4090 CDI LEU B 90 -43.382 35.896 32.143 1.00 56.89 ATOM 4090 CDI LEU B 90 -42.781 37.045 29.696 1.00 57.90 ATOM 4090 CDI LEU B 90 -42.781 37.045 29.696 1.00 57.73 ATOM 4090 CDI LEU B 90 -42.781 37.045 29.696 1.00 59.77 ATOM 4090 CDI LEU B 90 -44.798 35.992 29.005 1.00 59.77 ATOM 4090 CDI LEU B 90 -44.798 35.992 29.005 1.00 59.77 ATOM 4000 CDI LEU B 90 -44.798 33.134 30.392 1.00 57.25 ATOM 4000 CDI LEU B 90 -44.798 33.134 30.392 1.00 57.25 ATOM 4000 CDI LEU B 92 -44.750 30.713 27.030 1.00 61.50 61.30 ATOM 4100 CDI GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4100 CDI GLU B 92 -44.798 33.183 34.029 1.00 56.89 ATOM 4100 CDI GLU B 93 -44.298 33.183 34.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4076 O ILE B 88 -39.072 39.031 30.156 1.00 52.40 ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28 ATOM 4078 CB ASP B 89 -39.179 39.931 32.213 1.00 55.38 ATOM 4079 CB ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 58.43 ATOM 4081 OD1 ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4082 OD2 ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4083 C ASP B 89 -38.546 36.483 32.651 1.00 56.46 ATOM 4084 O ASP B 89 -38.546 36.483 32.651 1.00 56.57 ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.57 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4087 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4088 CG LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.255 36.382 31.974 1.00 57.11 ATOM 4092 O LEU B 90 -42.255 36.382 31.974 1.00 57.31 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 57.35 ATOM 4095 C GLY B 91 -42.781 37.045 29.696 1.00 58.43 ATOM 4096 CB GLU B 92 -43.889 33.447 29.217 1.00 57.79 ATOM 4099 CB GLU B 92 -43.889 33.447 29.217 1.00 57.79 ATOM 4099 CB GLU B 92 -43.889 33.447 29.217 1.00 57.79 ATOM 4099 CB GLU B 92 -44.028 31.975 27.427 1.00 59.77 ATOM 4090 CB GLU B 92 -44.028 33.193 32.031 1.00 57.35 ATOM 4101 CD GLU B 92 -44.798 33.1961 32.031 1.00 57.75 ATOM 4102 OE1 GLU B 92 -44.028 33.1975 27.427 1.00 59.10 ATOM 4103 OE2 GLU B 92 -44.798 33.1963 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.1963 25.642 1.00 58.37 ATOM 4105 O GLU B 92 -44.798 33.1963 25.642 1.00 58.37 ATOM 4106 CB GLU B 92 -44.798 33.1963 25.642 1.00 57.75 ATOM 4106 CB GLU B 93 -44.298 33.183 31.021 1.00 57.25 ATOM 4106 CB GLU B 93 -44.298 33.183 31.022 1.00 55.91 ATOM 4107 CB GLU B 93 -44.298 33.183 31.022 1.00 56.89 ATOM 4108 CB GLU B 93 -44.298 33.183 31.022 1.00 56.89 ATOM 4106 CB GLU B 93 -44.298 33.183 31.022 1.00 56.89 ATOM 4107 CB GLU B 93 -44.298 33.183 31.022 1.00 56.89 ATOM 4108 CB GLU B 93 -44.298 33.183 31.022 1.00 56.89                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28 ATOM 4078 CB ASP B 89 -38.373 38.869 32.806 1.00 55.38 ATOM 4080 CG ASP B 89 -37.946 39.230 34.226 1.00 55.38 ATOM 4081 OD1 ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4082 OD2 ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4083 C ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4084 O ASP B 89 -38.546 36.483 32.651 1.00 56.46 ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4087 CB LEU B 90 -41.019 35.905 35.661 1.00 58.05 ATOM 4089 CD1 LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4092 O LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4094 CB GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4095 C GLY B 91 -42.781 37.045 29.696 1.00 56.73 ATOM 4096 O GLY B 91 -41.883 36.946 30.835 1.00 57.73 ATOM 4097 N GLU B 92 -43.089 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.099 33.4626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.099 33.4626 29.501 1.00 57.73 ATOM 4099 CB GLU B 92 -44.798 35.982 29.005 1.00 59.77 ATOM 4090 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4091 CD GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4092 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4090 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4091 CB GLU B 92 -44.798 33.347 29.217 1.00 57.73 ATOM 4092 CB GLU B 92 -44.798 33.341 30.392 1.00 59.77 ATOM 4104 CB GLU B 92 -44.798 33.341 30.392 1.00 57.74 ATOM 4105 O GLU B 92 -44.798 33.343 31.601 1.00 57.44 ATOM 4106 N GLU B 93 -44.798 33.381 31.601 1.00 57.54 ATOM 4106 N GLU B 93 -44.298 33.381 31.601 1.00 57.54 ATOM 4106 CB GLU B 93 -44.298 33.381 31.601 1.00 57.54 ATOM 4106 CB GLU B 93 -44.298 33.183 34.029 1.00 57.54 ATOM 4106 CB GLU B 93 -44.298 33.183 34.029 1.00 56.15 ATOM 4106 CB GLU B 93 -44.298 33.183 34.029 1.00 56.99 ATOM 4100 CD GLU B 93 -44.298 33.183 34.029 1.00 56.99 ATOM 4100 CD GLU B 93 -44.298 33.183 34.029 1.00 56.99                   | Alon 1010 0 200 D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| ATOM 4078 CB ASP B 89 -38.373 38.869 32.806 1.00 55.38 ATOM 4079 CB ASP B 89 -37.946 39.230 34.226 1.00 56.01 ATOM 4080 CG ASP B 89 -37.034 40.447 34.278 1.00 58.43 ATOM 4081 OD1 ASP B 89 -36.509 40.737 35.378 1.00 60.43 ATOM 4082 OD2 ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4083 C ASP B 89 -36.841 41.112 33.238 1.00 59.05 ATOM 4084 O ASP B 89 -39.135 37.542 32.830 1.00 56.79 ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.57 ATOM 4086 CB LEU B 90 -41.201 36.357 33.080 1.00 56.57 ATOM 4086 CB LEU B 90 -41.019 35.905 35.661 1.00 56.57 ATOM 4089 CD1 LEU B 90 -41.019 35.905 35.661 1.00 58.41 ATOM 4080 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4092 O LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4093 N GLY B 91 -42.813 35.896 32.143 1.00 56.81 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 567.35 ATOM 4095 C GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -43.641 35.829 29.005 1.00 57.35 ATOM 4097 N GLU B 92 -43.092 34.626 29.505 1.00 57.74 ATOM 4099 CB GLU B 92 -43.092 34.626 29.505 1.00 57.74 ATOM 4099 CB GLU B 92 -43.092 34.626 29.505 1.00 57.74 ATOM 4090 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4090 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4090 CB GLU B 92 -44.798 33.447 29.217 1.00 57.73 ATOM 4101 CD GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4102 CB GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.73 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.74 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.75 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.75 ATOM 4104 C GLU B 92 -44.798 33.1975 27.427 1.00 57.75 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 57.26 ATOM 4104 C GL | ATOM 4076 O ILE B 88 -39.072 39.031 30.156 1.00 52.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | з О                                       |
| ATOM 4078 CB ASP B 89 -38.373 38.869 32.806 1.00 55.38 ATOM 4080 CG ASP B 89 -37.946 39.230 34.226 1.00 56.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATOM 4077 N ASP B 89 -39.179 39.931 32.213 1.00 53.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BN.                                       |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4080 CG ASP B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4084 O ASP B 89 -38.546 36.483 32.651 1.00 58.54 ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.79 ATOM 4086 CB LEU B 90 -41.221 36.357 33.080 1.00 56.79 ATOM 4087 CB LEU B 90 -41.2904 36.165 34.434 1.00 57.40 ATOM 4088 CG LEU B 90 -41.019 35.905 35.661 1.00 58.05 ATOM 4089 CD1 LEU B 90 -40.331 37.190 36.086 1.00 58.41 ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4092 O LEU B 90 -43.382 35.896 32.143 1.00 56.81 ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.43 ATOM 4096 O GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4097 N GLU B 92 -43.641 35.829 29.382 1.00 58.23 ATOM 4098 CB GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.093 33.447 29.217 1.00 57.73 ATOM 4090 CB GLU B 92 -43.093 33.447 29.217 1.00 57.73 ATOM 4100 CG GLU B 92 -44.798 35.982 29.005 1.00 59.77 ATOM 4101 CD GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 58.37 ATOM 4106 N GLU B 92 -44.798 33.134 30.392 1.00 58.37 ATOM 4107 CB GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4107 CB GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 57.25 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 59.97 ATOM 4106 N GLU B 93 -44.298 33.183 34.029 1.00 56.15 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 56.98 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.98 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 56.99 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.59                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВО                                        |
| ATOM 4085 N LEU B 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВС                                        |
| ATOM 4086 CB LEU B 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Atom 1001 0 mor by bottom control control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | в О                                       |
| ATOM 4086 CB LEU B 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM 4085 N LEU B 90 -40.442 37.585 33.062 1.00 56.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B N                                       |
| ATOM 4087 CB LEU B 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в С                                       |
| ATOM 4088 CG LEU B 90 -41.019 35.905 35.661 1.00 58.05 ATOM 4089 CD1 LEU B 90 -40.331 37.190 36.086 1.00 58.41 ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.41 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4092 O LEU B 90 -43.382 35.896 32.143 1.00 56.81 ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.97 ATOM 4101 CD GLU B 92 -44.798 35.982 29.005 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4106 CB GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4106 CB GLU B 93 -44.298 32.681 30.213 1.00 57.25 ATOM 4106 CB GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4107 CB GLU B 93 -44.298 32.681 30.213 1.00 57.25 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4106 CD GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4108 CB GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в С                                       |
| ATOM 4089 CD1 LEU B 90 -40.331 37.190 36.086 1.00 58.41 ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.81 ATOM 4092 O LEU B 90 -43.382 35.896 32.143 1.00 56.81 ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.798 35.982 29.005 1.00 57.99 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4105 O GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 57.74 ATOM 4107 CB GLU B 93 -44.320 33.381 31.601 1.00 57.74 ATOM 4108 CB GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4107 CB GLU B 93 -44.228 33.183 34.029 1.00 55.91 ATOM 4108 CB GLU B 93 -44.228 33.183 34.029 1.00 59.84 ATOM 4109 CG GLU B 93 -44.228 33.183 34.029 1.00 59.84 ATOM 4100 CD GLU B 93 -44.228 33.183 34.029 1.00 59.84 ATOM 4107 CB GLU B 93 -44.228 33.183 34.029 1.00 59.84 ATOM 4108 CB GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4090 CD2 LEU B 90 -41.874 35.366 36.807 1.00 57.11 ATOM 4091 C LEU B 90 -42.265 36.382 31.974 1.00 56.89 ATOM 4092 O LEU B 90 -43.382 35.896 32.143 1.00 56.89 ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.73 ATOM 4098 CB GLU B 92 -43.899 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.899 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4100 CG GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4101 CD GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 57.44 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.59 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4100 CD GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4100 CD GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4100 CD GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4106 CD GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 56.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В С.                                      |
| ATOM         4091         C         LEU B         90         -42.265         36.382         31.974         1.00 56.89           ATOM         4092         O         LEU B         90         -43.382         35.896         32.143         1.00 56.81           ATOM         4093         N         GLY B         91         -41.883         36.946         30.835         1.00 57.84           ATOM         4094         CB         GLY B         91         -42.781         37.045         29.696         1.00 58.46           ATOM         4095         C         GLY B         91         -42.781         37.045         29.696         1.00 58.46           ATOM         4096         O         GLY B         91         -44.798         35.982         29.382         1.00 57.73           ATOM         4097         N         GLU B         92         -43.092         34.626         29.501         1.00 57.73           ATOM         4099         CB         GLU B         92         -43.008         32.227         28.915         1.00 57.73           ATOM         4100         CG         GLU B         92         -44.028         31.661         26.644         1.00 57.90 <tr< td=""><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4092 O LEU B 90 -43.382 35.896 32.143 1.00 56.81 ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.23 ATOM 4095 C GLY B 91 -42.781 37.045 29.696 1.00 58.23 ATOM 4096 O GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4097 N GLU B 92 -43.692 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.73 ATOM 4090 CG GLU B 92 -42.752 31.975 27.427 1.00 57.90 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4106 CB GLU B 93 -44.298 32.681 30.213 1.00 57.25 ATOM 4106 CB GLU B 93 -44.298 33.087 32.763 1.00 55.91 ATOM 4107 CB GLU B 93 -44.298 33.183 34.029 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4100 CD GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4093 N GLY B 91 -41.883 36.946 30.835 1.00 57.35 ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.466 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.798 35.982 19.005 1.00 59.97 ATOM 4102 OEI GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4107 CB GLU B 93 -44.298 32.681 30.213 1.00 57.44 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 55.91 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4109 CG GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВС                                        |
| ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.79 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4106 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4109 CG GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в О                                       |
| ATOM 4094 CB GLY B 91 -42.781 37.045 29.696 1.00 58.46 ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4099 CB GLU B 92 -43.093 33.447 29.217 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.798 35.861 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.24 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 59.14 ATOM 4107 CB GLU B 93 -44.320 33.381 31.601 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 55.91 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4109 CG GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATOM 4093 N GLY B 91 ~41.883 36.946 30.835 1.00 57.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B N                                       |
| ATOM 4095 C GLY B 91 -43.641 35.829 29.382 1.00 58.23 ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.73 ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.83 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.83 ATOM 4100 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.207 32.420 33.280 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в С                                       |
| ATOM 4096 O GLY B 91 -44.798 35.982 29.005 1.00 59.77 ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.90 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 57.44 ATOM 4106 CB GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.087 32.763 1.00 55.91 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.15 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.124 32.550 32.040 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4097 N GLU B 92 -43.092 34.626 29.501 1.00 57.74 ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.73 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -44.298 32.681 30.213 1.00 57.44 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 55.91 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.55 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4100 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в О                                       |
| ATOM 4098 CB GLU B 92 -43.889 33.447 29.217 1.00 57.73 ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.90 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 0E1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 0E2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 55.15 ATOM 4106 CB GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4100 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B N                                       |
| ATOM 4099 CB GLU B 92 -43.008 32.227 28.915 1.00 57.90 ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.91 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4109 CG GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIGH TON I ONE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF  | ВС                                        |
| ATOM 4100 CG GLU B 92 -42.752 31.975 27.427 1.00 59.10 ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4106 N GLU B 93 -44.798 33.134 30.392 1.00 57.44 ATOM 4107 CB GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.91 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 56.84 ATOM 4109 CG GLU B 93 -42.073 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 200 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВС                                        |
| ATOM 4101 CD GLU B 92 -44.028 31.661 26.644 1.00 59.97 ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -44.298 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.91 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.124 32.550 32.040 1.00 61.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50 ATOM 4103 OE2 GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.91 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4103 OE2 GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4109 CG GLU B 93 -42.207 32.420 33.280 1.00 61.30 ATOM 4110 CD GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в С                                       |
| ATOM 4103 OE2 GLU B 92 -44.303 32.363 25.642 1.00 58.37 ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25 ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.45 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATOM 4102 OE1 GLU B 92 -44.750 30.713 27.030 1.00 61.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | в о                                       |
| ATOM 4104 C GLU B 92 -44.798 33.134 30.392 1.00 57.25<br>ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.44<br>ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.59<br>ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91<br>ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89<br>ATOM 4109 CG GLU B 93 -42.237 32.105 34.113 1.00 59.84<br>ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30<br>ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в О                                       |
| ATOM 4105 O GLU B 92 -45.928 32.681 30.213 1.00 57.44 ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.81 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4109 CG GLU B 93 -44.298 33.183 34.029 1.00 59.84 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4106 N GLU B 93 -44.320 33.381 31.601 1.00 56.15 ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.84 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO. 1101 1 100 ET AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ВО                                        |
| ATOM 4107 CB GLU B 93 -45.135 33.087 32.763 1.00 55.91 ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89 ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84 ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30 ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B N                                       |
| ATOM 4108 CB GLU B 93 -44.298 33.183 34.029 1.00 56.89<br>ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84<br>ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30<br>ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7100 1 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ATOM 4109 CG GLU B 93 -43.237 32.105 34.113 1.00 59.84<br>ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30<br>ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30<br>ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в с                                       |
| ATOM 4110 CD GLU B 93 -42.007 32.420 33.280 1.00 61.30<br>ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R1011 1107 00 020 2 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | в с                                       |
| ATOM 4111 OE1 GLU B 93 -42.124 32.550 32.040 1.00 62.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в С                                       |
| Alon IIII oba dae a sa ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 101 10 100 10 000 1 00 00 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в о                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | в о                                       |
| 200 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 7117 0 020 0 00 00 00 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в с                                       |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B C                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alon ille de line e la company de la company | B C<br>B O<br>B N                         |
| NOW 4117 CB BUE B 94 -46 680 37 542 33 049 1.00 51.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alon 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111 ob 111  | B C<br>B O<br>B N<br>B C                  |
| Alon 111, ob 1112 b 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM 4118 CG PHE B 94 -46.625 37.514 34.553 1.00 50.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B C<br>B O<br>B N<br>B C                  |

| MOTA | 4119 | CD1 | PHE E | 94  | -47.769            | 37.759           | 35.302 | 1.00 | 48.70 | F   |       |
|------|------|-----|-------|-----|--------------------|------------------|--------|------|-------|-----|-------|
| MOTA | 4120 | CD2 | PHE E | 94  | -45.433            | 37.243           | 35.219 |      | 49.37 | E   | -     |
| MOTA | 4121 | CE1 | PHE E | 94  | -47.730            | 37.736           | 36.693 | 1.00 | 48.96 | F   |       |
| ATOM | 4122 | CE2 | PHE E | 94  | -45.384            | 37.217           | 36.610 | 1.00 | 48.23 | 1   | 3 C   |
| ATOM | 4123 | CZ  | PHE E | 94  | -46.534            | 37.464           | 37.348 | 1.00 | 48.49 | 1   | 3 C   |
| MOTA | 4124 | С   | PHE E | 94  | -47.700            | 36.537           | 31.012 | 1.00 | 53.14 | F   | 3 C   |
| MOTA | 4125 | 0   | PHE E | 94  | -47.385            | 37.576           | 30.462 | 1.00 | 54.57 | E   | 3 0   |
| MOTA | 4126 | N   | SER E | 95  | -48.474            | 35.639           | 30.418 | 1.00 | 53.67 | E   | 3 N   |
| MOTA | 4127 | СВ  | SER E | 95  | -48.960            | 35.894           | 29.069 | 1.00 | 54.25 | I   | 3 C   |
| ATOM | 4128 | CB  | SER E | 95  | -47.983            | 35.316           | 28.060 | 1.00 | 52.74 | F   | 3 C   |
| ATOM | 4129 | OG  | SER E | 95  | -47.630            | 34.003           | 28.429 | 1.00 | 53.09 | E   | 3 0   |
| ATOM | 4130 | С   | SER E | 95  | -50.364            | 35.372           | 28.790 | 1.00 | 55.98 | E   | 3 C   |
| ATOM | 4131 | 0   | SER E | 95  | -50.710            | 35.100           | 27.639 | 1.00 | 55.73 | E   | 3 0   |
| ATOM | 4132 | N   | GLY F | 96  | -51.174            | 35.264           | 29.841 | 1.00 | 57.52 | E   | 3 N   |
| ATOM | 4133 | CB  | GLY E | 96  | -52.536            | 34.793           | 29.686 | 1.00 | 59.25 | E   |       |
| ATOM | 4134 | С   | GLY F | 96  | -53.528            | 35.922           | 29.455 | 1.00 | 60.80 | E   | 3 C   |
| ATOM | 4135 | 0   | GLY E | 96  | -53.135            | 37.016           | 29.067 | 1.00 | 60.60 | E   | 3 0   |
| ATOM | 4136 | N   | ARG E | 97  | -54.814            | 35.659           | 29.701 | 1.00 | 61.73 | E   |       |
| ATOM | 4137 | CB  | ARG E | 97  | -55.862            | 36.650           | 29.499 | 1.00 | 62.05 | E   |       |
| MOTA | 4138 | CB  | ARG E | 97  | -56.641            | 36.319           | 28.227 | 1.00 | 62.87 | F   |       |
| ATOM | 4139 | CG  | ARG E | 97  | -55.776            | 36.034           | 27.007 | 1.00 | 62.95 | I   |       |
| MOTA | 4140 | CD  | ARG E | 97  | -55.019            | 34.684           | 27.098 | 1.00 | 65.51 | E   | 3 C   |
| ATOM | 4141 | NE  | ARG E | 97  | -55.920            | 33.529           | 27.225 | 1.00 | 65.59 | E   | 3 N   |
| MOTA | 4142 | CZ  | ARG E | 97  | -55.604            | 32.268           | 26.930 | 1.00 | 63.42 | E   | 3 C   |
| MOTA | 4143 | NH1 | ARG E | 97  | -54.395            | 31.948           | 26.479 | 1.00 | 60.91 | I   | 3 N   |
| ATOM | 4144 | NH2 | ARG E | 97  | -56.517            | 31.325           | 27.079 | 1.00 | 63.25 | I   | 3 N   |
| ATOM | 4145 | С   | ARG E | 97  | -56.806            | 36.660           | 30.703 | 1.00 | 62.86 | . 1 | зс    |
| MOTA | 4146 | 0   | ARG E | 97  | -56.805            | 37.597           | 31.504 | 1.00 | 62.89 | I   | 3 0   |
| ATOM | 4147 | N   | GLY E | 98  | -57.632            | 35.621           | 30.807 | 1.00 | 64.88 | I   | 3 · N |
| MOTA | 4148 | CB  | GLY E | 98  | -58.545            | 35.488           | 31.934 | 1.00 | 66.10 | , I | 3 С   |
| ATOM | 4149 | С   | GLY F |     | -59.945            | 36.065           | 31.879 | 1.00 | 66.56 |     | з с   |
| ATOM | 4150 | 0   | GLY E | 98  | -60.315            | 36.800           | 32.783 | 1.00 | 68.28 |     | 3 0   |
| ATOM | 4151 | N   | ILE E |     | -60.743            | 35.730           | 30.869 | 1.00 | 65.66 | 1   | з и.  |
| ATOM | 4152 | СВ  | ILE E |     | -62.094            | 36.271           | 30.811 | 1.00 | 63.38 |     | з с   |
| ATOM | 4153 | СВ  | ILE E |     | -62.048            | 37.830           | 31.087 | 1.00 | 64.27 |     | 3 °C  |
| ATOM | 4154 |     | ILE E |     | -62.425            | 38.658           | 29.834 |      | 62.63 | I   |       |
| ATOM | 4155 |     | ILE E |     | -62.909            | 38.157           | 32.319 |      | 61.57 |     | з. с  |
| ATOM | 4156 |     | ILE E |     | -64.368            | 37.771           | 32.228 |      | 61.14 |     | 3 C   |
| ATOM | 4157 | c   | ILE E |     | -62.802            | 35.937           | 29.491 |      | 61.40 |     | s c   |
| ATOM | 4158 | ō   | ILE É |     | -62.155            | 35.616           | 28.483 |      | 62.17 | I   |       |
| ATOM | 4159 | N   | PHE E |     | -64.136            | 35.984           | 29.520 |      | 59.26 |     | 3 N   |
| ATOM | 4160 | СВ  | PHE E |     | -64.954            | 35.686           | 28.340 |      | 60.28 |     | 3 C   |
| ATOM | 4161 | СВ  | PHE E |     | -65.957            | 34.523           | 28.615 |      | 58.70 | ī   |       |
| ATOM | 4162 | CG  | PHE E |     | -65.413            | 33.421           | 29.492 |      | 58.62 |     | s c   |
| ATOM | 4163 |     | PHE E |     | -65.439            | 33.534           | 30.884 |      | 56.04 | Ī   |       |
| ATOM | 4164 |     | PHE E |     | -64.816            | 32.299           | 28.926 |      | 58.09 | 1   |       |
| ATOM | 4165 |     | PHE E |     | -64.870            | 32.532           | 31.701 |      | 57.49 |     | s c   |
| ATOM | 4166 |     | PHE E |     | -64.243            | 31.292           | 29.728 |      | 59.49 | i   |       |
| ATOM | 4167 | CZ  | PHE E |     | -64.267            | 31.412           | 31.120 |      | 59.34 |     | 3 C   |
| ATOM | 4168 | c   | PHE E |     | -65.739            | 36.933           | 27.906 |      | 60.52 |     | 3 C   |
| ATOM | 4169 | ŏ   | PHE E |     | -66.898            | 36.762           | 27.449 |      | 63.21 |     |       |
| MOTA | 4170 |     | PHE E |     | -65.181            | 38.050           | 28.023 |      | 61.69 |     | 3 0   |
| ATOM | 4171 | CB  | PHE E |     | -60.462            | 31.235           | 17.637 |      | 68.08 |     | 3 C   |
| MOTA | 4172 | CG  | PHE E |     | -60.211            | 29.775           | 17.811 |      | 71.17 |     | . c   |
| ATOM | 4173 |     | PHE E |     | -59.122            | 29.328           | 18.558 |      | 71.98 | 1   |       |
| MOTA | 4174 |     | PHE E |     | -61.058            | 28.840           | 17.222 |      | 71.46 |     | 3 C   |
| ATOM | 4175 |     | PHE E |     | -58.878            | 27.968           | 18.716 |      | 72.74 |     | 3 C   |
| MOTA | 4176 |     | PHE E |     | -60.823            | 27.483           | 17.372 |      | 72.95 |     | a c   |
| MOTA | 4177 | CZ  | PHE E |     | -59.731            | 27.042           | 18.122 |      | 73.51 |     | s c   |
| MOTA | 4178 | c   | PHE E |     | -60.070            | 33.430           | 18.665 |      | 65.80 |     | S C   |
| MOTA | 4179 | Ö   | PHE E |     | -60.432            | 34.369           | 19.385 |      | 67.80 |     | 3 0   |
| ATOM | 4180 | N   | PHE E |     | -61.850            | 31.923           | 19.575 |      | 66.06 |     | 3 N   |
| ATOM | 4181 | СВ  | PHE E |     | -60.500            | 32.011           | 18.947 |      | 66.01 |     | a c   |
| MOTA | 4182 | N   | GLY E |     | -59.287            | 33.579           | 17.605 |      | 64.08 |     | S N   |
| ATOM | 4183 | СВ  | GLY E |     | -58.800            | 34.887           | 17.227 |      | 62.26 |     | 3 C   |
| ATOM | 4184 | C   | GLY E |     | -57.420            | 35.108           | 17.804 |      | 60.73 |     | 3 C   |
| ATOM | 4185 | 0   | GLY E |     | -56.833            | 34.213           | 18.416 |      | 60.39 |     | 3 0   |
| ATOM |      | N   | ILE E |     | -56.887            | 36.301           | 17.589 |      | 59.19 |     | BN    |
|      | 4186 |     |       |     | -55.574            | 36.620           | 18.105 |      | 57.54 |     | 3 C   |
| ATOM | 4187 | CB  | ILE E |     | -54.998            | 37.869           | 17.445 |      | 57.93 |     | 3 C   |
| ATOM | 4188 | CB  | ILE E |     | -54.998<br>-53.698 | 38.238           |        |      | 58.78 |     | 3 C   |
| ATOM | 4189 |     | ILE E |     |                    | 37.627           | 15.951 |      | 58.37 |     | 3 C   |
| ATOM | 4190 |     | ILE E |     | -54.782<br>-54.313 |                  | 15.198 |      | 59.83 |     | 3 C   |
| ATOM | 4191 |     | ILE E |     | -54.313<br>-55.703 | 38.863           | 19.599 |      | 56.31 |     | 3 C   |
| MOTA | 4192 | C   | ILE E |     | -55.703            | 36.862<br>36.321 | 20.387 |      | 56.32 |     | 3 0   |
| ATOM | 4193 | 0   | ILE E | 112 | -54.930            | 20.321           | 20.307 | 1.00 | JJ.JL |     | - 0   |
|      |      |     |       |     |                    |                  |        |      |       |     |       |

| ATOM   | 4194 | N   | VAL | Ŕ | 113 | -56.667 | 37.686 | 19.995 | 1.00 54.82 | В | N   |
|--------|------|-----|-----|---|-----|---------|--------|--------|------------|---|-----|
| ATOM   | 4195 | СВ  | VAL |   | 113 | -56.861 | 37.944 | 21.416 | 1.00 53.44 | В | С   |
| MOTA   | 4196 | СВ  | VAL |   | 113 | -57.412 | 39.366 | 21.721 | 1.00 51.44 | В | Ċ   |
|        |      |     |     |   |     | -58.657 | 39.656 | 20.931 | 1.00 47.97 | В | . č |
| MOTA   | 4197 | CG1 |     |   |     |         |        |        | 1.00 50.28 | B | Č   |
| ATOM   | 4198 | CG2 | VAL |   |     | -57.693 | 39.487 | 23.210 |            |   |     |
| ATOM   | 4199 | С   | VAL |   |     | -57.830 | 36.942 | 21.982 | 1.00 54.92 | В | C   |
| ATOM   | 4200 | 0   | VAL |   |     | -58.494 | 36.224 | 21.239 | 1.00 57.43 | В | 0   |
| ATOM   | 4201 | N   | PHE | В | 114 | -57.917 | 36.896 | 23.303 | 1.00 55.01 | В | N   |
| ATOM   | 4202 | CB  | PHÉ | В | 114 | ~58.821 | 35.976 | 23.965 | 1.00 54.91 | В | C   |
| MOTA   | 4203 | СВ  | PHE | В | 114 | -60.271 | 36.285 | 23.611 | 1.00 51.81 | В | С   |
| ATOM   | 4204 | CG  | PHE |   |     | -60.749 | 37.576 | 24.126 | 1.00 50.25 | В | С   |
| ATOM   | 4205 |     | PHE |   | 114 | -61.330 | 38.503 | 23.275 | 1.00 50.28 | В | С   |
| ATOM   | 4206 |     | PHE |   |     | -60.600 | 37.882 | 25.463 | 1.00 50.54 | В | č   |
|        | 4207 |     | PHE |   |     | -61.749 | 39.726 | 23.753 | 1.00 50.20 | В | č   |
| ATOM   |      |     |     |   |     | -61.010 | 39.094 | 25.958 | 1.00 51.24 | В | č   |
| MOTA   | 4208 |     | PHE |   |     |         |        |        | 1.00 52.11 | В | c   |
| ATOM   | 4209 | CZ  | PHE |   |     | -61.588 | 40.026 | 25.102 |            |   |     |
| MOTA   | 4210 | С   | PHE |   |     | -58.556 | 34.566 | 23.526 | 1.00 56.67 | В | C   |
| MOTA   | 4211 | 0   | PHE | В | 114 | -59.502 | 33.822 | 23.33B | 1.00 58.74 | В | 0   |
| ATOM   | 4212 | N   | SER | В | 115 | -57.307 | 34.167 | 23.335 | 1.00 58.18 | В | N   |
| ATOM   | 4213 | CB  | SER | В | 115 | -57.115 | 32.794 | 22.906 | 1.00 60.31 | В | Ç   |
| MOTA   | 4214 | СВ  | SER | В | 115 | -56.866 | 32.747 | 21,393 | 1.00 59.40 | В | С   |
| ATOM   | 4215 | OG  |     |   | 115 | -55.501 | 32.576 | 21.089 | 1.00 61.82 | В | 0   |
| MOTA   | 4216 | c   | SER |   |     | -56.060 | 31.992 | 23.663 | 1.00 62.32 | В | Ċ   |
|        |      | . 0 |     |   | 115 | -55.031 | 32.524 | 24.065 | 1.00 60.79 | В | ŏ   |
| MOTA   | 4217 |     |     |   |     |         |        |        | 1.00 66.51 | В | N   |
| MOTA   | 4218 | N   |     |   | 116 | -56.359 | 30.704 | 23.868 |            |   |     |
| ATOM   | 4219 | СВ  |     |   | 116 | -55.482 | 29.765 | 24.581 | 1.00 69.32 | В | C   |
| ATOM   | 4220 | CB  | ASN | В | 116 | -56.006 | 28.313 | 24.445 | 1.00 70.77 | В | С   |
| ATOM   | 4221 | CG  | ASN | В | 116 | -55.726 | 27.445 | 25.690 | 1.00 72.73 | В | С   |
| ATOM - | 4222 | ODl | ASN | В | 116 | -54.627 | 27.476 | 26.267 | 1.00 73.36 | В | 0   |
| ATOM   | 4223 | ND2 | ASN | В | 116 | -56.723 | 26.652 | 26.088 | 1.00 73.16 | В | N   |
| ATOM   | 4224 | C . |     |   | 116 | -54.096 | 29.866 | 23.964 | 1.00 69.09 | В | С   |
| ATOM   | 4225 | ō.  |     |   | 116 | -53.938 | 29.777 | 22.753 | 1.00 67.03 | В | 0   |
| ATOM   | 4226 | N   | GLY |   |     | -53.083 | 30.036 | 24.784 | 1.00 15.00 | В | N   |
|        |      |     |     |   |     | -51.705 |        |        | 1.00 15.00 | В | c : |
| MOTA   | 4227 | CB  | GLY |   |     |         | 30.201 | 24.364 |            |   |     |
| ATOM   | 4228 | Ç.  | GLY |   |     | -51.345 | 29.311 | 23.189 | 1.00 15.00 | В | c   |
| ATOM   | 4229 | 0   | GLY |   |     | -50.742 | 29.811 | 22.202 | 1.00 71.45 | В | 0   |
| ATOM   | 4230 | N   | ALB | В | 118 | -51.589 | 28.005 | 23.225 | 1.00 62.90 | В | N   |
| ATOM   | 4231 | CB  | ALB | В | 118 | -51.217 | 27.093 | 22.138 | 1.00 61.34 | В | С   |
| MOTA   | 4232 | CB  | ALB | В | 118 | -51.74B | 25.691 | 22.441 | 1.00 61.29 | В | С   |
| ATOM   | 4233 | Ċ   |     |   | 118 | -51.725 | 27.571 | 20.766 | 1.00 61.36 | В | С   |
| ATOM   | 4234 | ŏ   | ALB |   | -   | -50.940 | 27.795 | 19.850 | 1.00 64.60 | В | 0   |
| ATOM   | 4235 | N   |     |   | 119 | -53.064 | 27.6B0 | 20.626 | 1.00 15.00 | В | N   |
|        |      |     |     |   |     |         |        |        | 1.00 15.00 | В | Ĉ   |
| ATOM   | 4236 | CB  |     |   | 119 | -53.648 | 28.198 | 19.396 |            |   |     |
| ATOM   | 4237 | CB  |     |   | 119 | -55.176 | 28.146 | 19.472 | 1.00 15.00 | В | c   |
| ATOM   | 4238 | CG  |     |   | 119 | -55.753 | 26.741 | 19.427 | 1.00 15.00 | В | C   |
| ATOM   | 4239 | CD  | LYS | В | 119 | -57.272 | 26.766 | 19.482 | 1.00 15.00 | В | С   |
| ATOM   | 4240 | CE  | LYS | В | 119 | -57.850 | 25.360 | 19.437 | 1.00 15.00 | В | С   |
| ATOM   | 4241 | NZ  | LYS | В | 119 | -59.338 | 25.369 | 19.489 | 1.00 15.00 | В | N   |
| ATOM   | 4242 | С   | LYS | В | 119 | -53.193 | 29.629 | 19.133 | 1.00 15.00 | В | С   |
| ATOM   | 4243 | ō   |     |   | 119 | -53.046 | 30.063 | 18.024 | 1.00 62.88 | В | 0   |
| ATOM   | 4244 | N   | TRP |   | 120 | -53.029 | 30.320 | 20.265 | 1.00 59.37 | В | N   |
|        |      |     |     |   |     |         | 31.714 | 20.238 | 1.00 54.99 | В | Ċ   |
| ATOM   | 4245 | CB  | TRP |   | 120 | -52.635 |        |        | 1.00 51.94 | В | č   |
| MOTA   | 4246 | CB  |     |   | 120 | -52.593 | 32.240 | 21.665 |            |   | č   |
| ATOM   | 4247 | CG  |     |   | 120 | -52.041 | 33.598 | 21.782 | 1.00 49.03 | В |     |
| MOTA   | 4248 | CD2 | TRP |   |     | -50.821 | 33.961 | 22.434 | 1.00 47.45 | В | c   |
| ATOM   | 4249 |     | TRP |   |     | -50.658 | 35.353 | 22.272 | 1.00 46.75 | В | C   |
| ATOM   | 4250 | CE3 | TRP | В | 120 | -49.850 | 33.248 | 23.149 | 1.00 45.26 | В | С   |
| ATOM   | 4251 | CD1 | TRP | В | 120 | -52.557 | 34.744 | 21.263 | 1.00 47.88 | В | С   |
| ATOM   | 4252 |     | TRP |   |     | -51.733 | 35.804 | 21.549 | 1.00 48.19 | В | N   |
| ATOM   | 4253 |     | TRP |   |     | -49.560 | 36.043 | 22.783 | 1.00 45.87 | В | С   |
| ATOM   | 4254 |     | TRP |   |     | -48.763 | 33.931 | 23.656 | 1.00 45.11 | В | С   |
|        |      |     |     |   |     | -48.626 | 35.317 | 23.475 | 1.00 45.90 | В | č   |
| ATOM   | 4255 |     | TRP |   |     |         |        |        |            |   | c   |
| ATOM   | 4256 | C   |     |   | 120 | -51.299 | 31.916 | 19.547 | 1.00 55.50 | В |     |
| MOTA   | 4257 | Ò   |     |   | 120 | -51.200 | 32.661 | 18.562 | 1.00 54.26 | В | 0   |
| MOTA   | 4258 | N   |     |   | 121 | -50.277 | 31.246 | 20.068 | 1.00 55.08 | В | N   |
| ATOM   | 4259 | CB  | LYS | В | 121 | -48.927 | 31.320 | 19.526 | 1.00 55.97 | В | С   |
| ATOM   | 4260 | CB  |     |   | 121 | -48.106 | 30.126 | 20.012 | 1.00 57.28 | В | С   |
| ATOM   | 4261 | CG  |     |   | 121 | -47.464 | 30.308 | 21.379 | 1.00 60.42 | В | С   |
| ATOM   | 4262 | CD  |     |   | 121 | -46.284 | 31.289 | 21.303 | 1.00 65.13 | В | Ċ   |
| ATOM   | 4263 | CE  |     |   | 121 | -45.580 | 31.483 | 22.660 | 1.00 67.60 | В | č.  |
|        |      |     |     |   |     | -44.397 | 32.417 | 22.592 | 1.00 69.23 | В | N   |
| MOTA   | 4264 | ΝZ  |     |   | 121 |         |        |        | 1.00 56.27 |   |     |
| MOTA   | 4265 | C   |     |   | 121 | -48.933 | 31.345 | 18.011 |            | В | c   |
| ATOM   | 4266 | 0   |     |   | 121 | -48.445 | 32.289 | 17.384 | 1.00 56.64 | В | 0   |
| MOTA   | 4267 | N   |     |   | 122 | -49.499 | 30.306 | 17.422 | 1.00 55.63 | В | N   |
| ATOM   | 4268 | CB  | GLU | В | 122 | -49.538 | 30.222 | 15.983 | 1.00 55.87 | В | С   |
|        |      |     |     |   |     |         |        |        |            |   |     |

| MOTA | 4269 | СВ  | GLU | В | 122 |    | -50.161 | 28.901 | 15.571 |      | 57.51 | В | С   |
|------|------|-----|-----|---|-----|----|---------|--------|--------|------|-------|---|-----|
| MOTA | 4270 | CG  | GLU | В | 122 |    | -49.509 | 27.745 | 16.278 | 1.00 | 59.95 | В | С   |
| ATOM | 4271 | CD  | GLU | В | 122 |    | -49.461 | 26.500 | 15.431 | 1.00 | 62.13 | В | С   |
| ATOM | 4272 | OE1 |     |   | 122 |    | -49.088 | 25.436 | 15.974 | 1.00 | 64.25 | В | 0.  |
| ATOM | 4273 | OE2 | GLU |   |     |    | -49.786 | 26.583 | 14.224 | 1.00 | 62.31 | В | 0   |
| ATOM | 4274 | c   | GLU |   |     |    | -50.256 | 31.380 | 15.316 | 1.00 | 55.35 | В | C   |
|      | 4275 | Ö   | GLU |   |     |    | -49.649 | 32.094 | 14.520 |      | 56.73 | В | ō   |
| ATOM |      |     |     |   |     |    |         |        |        |      | 53.02 | B | N   |
| ATOM | 4276 | N   | ILE |   | 123 |    | -51.529 | 31.586 | 15.646 |      |       |   |     |
| MOTA | 4277 | CB  |     |   | 123 |    | -52.298 | 32.662 | 15.025 |      | 50.76 | В | C   |
| MOTA | 4278 | CB  |     |   | 123 |    | -53.750 | 32.704 | 15.538 |      | 51.04 | В | С   |
| ATOM | 4279 | CG2 | ILE | В | 123 |    | -54.584 | 33.659 | 14.673 |      | 48.91 | В | C   |
| MOTA | 4280 | CG1 | ILE | В | 123 |    | -54.376 | 31.317 | 15.447 | 1.00 | 50.62 | В | С   |
| ATOM | 4281 | CD1 | ILE | В | 123 |    | -54.581 | 30.857 | 14.030 | 1.00 | 50.22 | В | С   |
| MOTA | 4282 | С   | ILE | ₿ | 123 |    | -51.697 | 34.045 | 15.218 | 1.00 | 50.27 | В | С   |
| ATOM | 4283 | 0   |     |   | 123 |    | -51.868 | 34.921 | 14.374 | 1.00 | 50.92 | В | 0   |
| ATOM | 4284 | Ň   | ARG |   |     |    | -51.003 | 34.267 | 16.325 | 1.00 | 48.30 | В | N   |
| ATOM | 4285 | СВ  | ARG |   |     |    | -50.403 | 35.576 | 16.541 |      | 46.31 | В | С   |
| MOTA | 4286 | СВ  | ARG |   |     |    | -49.978 | 35.753 | 17.995 |      | 46.92 | В | Č   |
|      |      |     |     |   |     |    |         | 37.026 | 18.236 |      | 45.73 | В | Č   |
| MOTA | 4287 | CG  | ARG |   |     |    | -49.190 |        |        |      |       | В | Č   |
| ATOM | 4288 | CD  | ARG |   | 124 |    | -48.669 | 37.074 | 19.656 |      | 46.80 |   |     |
| ATOM | 4289 | NE  | ARG |   |     |    | -47.859 | 38.269 | 19.896 |      | 46.78 | В | N   |
| MOTA | 4290 | CZ  |     |   | 124 |    | -48.348 | 39.466 | 20.216 |      | 45.67 | В | Ç   |
| MOTA | 4291 | NH1 | ARG | В | 124 |    | -49.658 | 39.638 | 20.355 |      | 45.03 | В | N   |
| ATOM | 4292 | NH2 | ARG | В | 124 |    | -47.526 | 40.496 | 20.365 | 1.00 | 42.11 | В | N   |
| ATOM | 4293 | С   | ARG | В | 124 |    | -49.177 | 35.686 | 15.672 | 1.00 | 45.52 | В | С   |
| MOTA | 4294 | 0   | ARG | В | 124 |    | -48.942 | 36.708 | 15.040 | 1.00 | 43.86 | В | 0   |
| ATOM | 4295 | N   | ARG |   |     |    | -48.401 | 34.608 | 15.648 |      | 46.96 | В | N   |
| MOTA | 4296 | CB  |     |   | 125 |    | -47.170 | 34.554 | 14.875 |      | 48.34 | В | c   |
|      | 4297 |     |     |   |     | .: | -46.523 | 33.173 | 14.995 |      | 51.76 | В | č   |
| ATOM |      | CB  | ARG |   |     |    |         |        |        |      |       |   |     |
| MOTA | 4298 | CG  | ARG |   |     |    | -45.173 | 33.054 | 14.287 |      | 56.56 | В | C   |
| ATOM | 4299 | CD  |     |   | 125 | ٠. | -45.240 | 32.141 | 13.058 |      | 62.17 | B | С   |
| ATOM | 4300 | NE  | ARG |   | 125 |    | -44.121 | 32.355 | 12.124 |      | 67.17 | В | N   |
| ATOM | 4301 | CZ  | ARG | В | 125 |    | -43.144 | 31.479 | 11.881 |      | 69.41 | В | С   |
| ATOM | 4302 | NH1 | ARG | В | 125 |    | -42.182 | 31.777 | 11.007 | 1.00 | 69.86 | В | N   |
| ATOM | 4303 | NH2 | ARG | В | 125 |    | -43.125 | 30.305 | 12.507 | 1.00 | 70.46 | В | N   |
| ATOM | 4304 | C   |     |   | 125 |    | -47.445 | 34.860 | 13.419 |      | 47.60 | В | С   |
| ATOM | 4305 | ō   |     |   | 125 |    | -46.758 | 35.662 | 12.808 |      | 47.93 | В | 0   |
| ATOM | 4306 | N   |     |   | 126 |    | -48.461 | 34.216 | 12.870 |      | 46.76 | B | N   |
| ATOM | 4307 | СB  |     |   | 126 |    | -48.831 | 34.408 | 11.484 |      | 45.50 | В | Ċ   |
|      |      |     |     |   |     |    |         |        |        |      | 46.21 | В | č   |
| MOTA | 4308 | CB  |     |   | 126 |    | -49.926 | 33.414 |        |      |       |   |     |
| ATOM | 4309 | CG  |     |   | 126 |    | -50.603 | 33.722 | 9.830  |      | 45.92 | B | C   |
| MOTA | 4310 |     |     |   | 126 |    | -51.648 | 34.637 | 9.782  |      | 46.34 | В | С   |
| ATOM | 4311 | CD2 | PHE | В | 126 |    | -50.153 | 33.148 | 8.654  |      | 44.48 | В | C   |
| ATOM | 4312 | CE1 | PHE | В | 126 |    | -52.228 | 34.977 | 8.579  | 1.00 | 47.70 | В | C   |
| MOTA | 4313 | CE2 | PHE | В | 126 |    | -50.722 | 33.478 | 7.450  | 1.00 | 44.86 | В | С   |
| ATOM | 4314 | CZ  | PHE | В | 126 |    | -51.761 | 34.395 | 7.405  | 1.00 | 46.97 | B | С   |
| MOTA | 4315 | С   |     |   | 126 |    | -49.310 | 35.820 | 11.200 | 1.00 | 45.10 | В | С   |
| ATOM | 4316 | ō   |     |   | 126 |    | -48.940 | 36.421 | 10.196 |      | 45.58 | В | 0   |
| ATOM | 4317 | N   | SER |   | 127 |    | -50.155 | 36.333 | 12.087 |      | 44.90 | В | N   |
|      |      |     |     |   |     |    |         | 37.672 | 11.957 |      | 43.69 | В | c   |
| ATOM | 4318 | CB  |     |   | 127 |    | -50.713 |        |        |      |       | В | č   |
| ATOM | 4319 | CB  |     |   | 127 |    | -51.616 | 37.979 | 13.150 |      | 43.27 |   |     |
| ATOM | 4320 | OG  |     |   | 127 |    | -52.721 | 37.097 | 13.198 |      | 41.41 | В | 0   |
| ATOM | 4321 | Ç   |     |   | 127 |    | -49.619 | 38.715 | 11.878 |      | 43.64 | B | C   |
| ATOM | 4322 | 0   |     |   | 127 |    | -49.639 | 39.589 | 11.012 |      | 43.64 | В | 0   |
| ATOM | 4323 | N   | LEU | В | 128 |    | ~48.663 | 38.626 | 12.790 |      | 43.63 | В | N   |
| ATOM | 4324 | ÇВ  | LEU | В | 128 |    | -47.571 | 39.574 | 12.805 | 1.00 | 45.47 | В | С   |
| MOTA | 4325 | CB  | LEU | В | 128 |    | -46.678 | 39.314 | 14.006 | 1.00 | 43.12 | В | С   |
| ATOM | 4326 | CG  | LEU | В | 128 |    | -47.206 | 39.995 | 15.270 | 1.00 | 41.00 | В | С   |
| ATOM | 4327 |     | LEU |   |     |    | -46.345 | 39.573 | 16.422 |      | 39.88 | В | ` C |
| ATOM | 4328 |     | LEU |   |     |    | -47.222 | 41.522 | 15.112 |      | 38.44 | В | C   |
|      |      |     |     |   |     |    |         |        | 11.532 |      | 48.12 | В | č   |
| ATOM | 4329 | C   |     |   | 128 |    | -46.741 | 39.597 |        |      |       |   |     |
| MOTA | 4330 | 0   |     |   | 128 |    | -46.417 | 40.675 | 11.033 |      | 49.59 | В | 0   |
| ATOM | 4331 | N   |     |   | 129 |    | -46.397 | 38.427 | 10.996 |      | 50.88 | В | N   |
| ATOM | 4332 | CB  |     |   | 129 |    | -45.601 | 38.369 | 9.772  |      | 52.84 | В | С   |
| MOTA | 4333 | CB  |     |   | 129 |    | -45.003 | 36.980 | 9.580  |      | 55.20 | В | С   |
| ATOM | 4334 | CG  | MET | В | 129 |    | -44.102 | 36.567 | 10.729 |      | 60.77 | В | C   |
| ATOM | 4335 | SD  |     |   | 129 |    | -42.951 | 35.218 | 10.324 | 1.00 | 66.89 | В | \$  |
| ATOM | 4336 | CE  |     |   | 129 |    | -44.082 | 33.944 | 9.661  | 1.00 | 65.46 | В | С   |
| ATOM | 4337 | C   |     |   | 129 |    | -46.375 | 38.771 | 8.529  |      | 52.57 | В | č   |
|      |      |     |     |   | 129 |    | -45.835 | 38.768 | 7.432  |      | 53.90 | В | ŏ   |
| ATOM | 4338 | 0   |     |   |     |    | -47.643 | 39.118 | 8.698  |      | 52.46 | В | N   |
| MOTA | 4339 | N   |     |   | 130 |    |         |        |        |      |       |   |     |
| MOTA | 4340 | CB  |     |   | 130 |    | -48.450 | 39.551 | 7.569  |      | 52.38 | В | C   |
| MOTA | 4341 | CB  |     |   | 130 |    | -49.830 | 38.851 | 7.528  |      | 53.59 | В | С   |
| MOTA | 4342 | OG1 | THR | В | 130 |    | -50.597 | 39.233 | 8.680  |      | 55.82 | В | 0   |
| MOTA | 4343 | CG2 | THR | В | 130 |    | -49.665 | 37.331 | 7.497  | 1.00 | 53.91 | В | С   |
|      |      |     |     |   |     |    |         |        |        |      |       |   |     |

Figure 1

| ATOM         | 4344         | С        | THR        | В | 130        | -48.68           | 3 41.041  | 7.706            | 1.00 5 | 51.33 |   | В      | С      |
|--------------|--------------|----------|------------|---|------------|------------------|-----------|------------------|--------|-------|---|--------|--------|
| ATOM         | 4345         | 0        | THR        |   | 130        | -48.94           |           | 6.721            | 1.00 5 |       |   | В      | 0      |
| ATOM         | 4346         | N        | LEU        | B | 131        | -48.61           | 7 41.532  | 8.942            | 1.00 4 |       |   | В      | N      |
| ATOM         | 4347         | CB       | LEU        | В | 131        | -48.83           | 2 42.946  | 9.235            | 1.00 4 |       |   | В      | С      |
| ATOM         | 4348         | CB       | LEU        | В | 131        | -49.32           | 3 43.118  | 10.666           | 1.00 4 |       |   | В      | c      |
| MOTA         | 4349         | CG       | LEU        |   | 131        | -50.83           |           | 10.840           | 1.00 4 |       |   | В      | C      |
| ATOM         | 4350         |          | LEU        |   | 131        | -51.19           |           | 12.303           | 1.00 4 |       |   | В      | C      |
| MOTA         | 4351         |          | LEU        |   | 131        | -51.48           |           | 10.266           | 1.00 4 |       |   | В      | C      |
| ATOM         | 4352         | C        | LEU        |   |            | -47.56           |           | 9.036            | 1.00 4 |       |   | B<br>B | 0      |
| ATOM         | 4353         | 0        | LEU        |   |            | -47.48           |           | 9.411<br>8.454   | 1.00 4 |       |   | В      | Ŋ      |
| MOTA         | 4354         | N        | ARG        |   |            | -46.56<br>-45.29 |           | 8.177            | 1.00   |       |   | В      | Č      |
| ATOM<br>ATOM | 4355<br>4356 | CB<br>CB | ARG<br>ARG |   | 132        | -44.24           |           | 7.833            | 1.00   |       |   | В      | č      |
| ATOM         | 4357         | CG       | ARG        |   |            | -44.18           |           | 8.791            | 1.00   |       |   | В      | č      |
| ATOM         | 4358         | CD       | ARG        |   |            | -43.13           |           | 8.309            | 1.00   |       |   | В      | č      |
| ATOM         | 4359         | NE       | ARG        |   | 132        | -43.17           |           | 6.848            | 1.00   |       |   | В      | N      |
| ATOM         | 4360         | CZ       | ARG        |   |            | -42.80           |           | 6.153            | 1.00   | 64.60 |   | В      | С      |
| ATOM         | 4361         |          | ARG        |   |            | -42.89           | 39.331    | 4.829            | 1.00   | 55.17 |   | В      | N      |
| ATOM         | 4362         |          | ARG        |   | 132        | -42.38           | 5 38.228  | 6.778            | 1.00   | 65.96 |   | В      | N      |
| ATOM         | 4363         | С        | ARG        | В | 132        | -45.54           | 0 .44.625 | 6.970            | 1.00   |       |   | В      | С      |
| MOTA         | 4364         | 0        | ARG        | В | 132        | -46.30           |           | 6.088            | 1.00   |       | • | В      | 0      |
| MOTA         | 4365         | N        | ASN        |   |            | -44.89           |           | 6.911            |        | 46.88 |   | В      | N      |
| MOTA         | 4366         | CB       | ASN        |   |            | -45.09           |           | 5.789            | 1.00   |       |   | В      | C      |
| MOTA         | 4367         | СВ       | ASN        |   |            | -44.05           |           | 5.814            | 1.00   |       |   | В      | С      |
| MOTA         | 4368         | CG       | ASN        |   | 133        | -44.52           |           | 5.119            | 1.00   |       |   | В      | C      |
| ATOM         | 4369         |          | ASN        |   |            | -43.72           |           | 4.752            | 1.00   |       |   | B<br>B | О<br>И |
| ATOM         | 4370         |          | ASN        |   |            | -45.83           |           | 4.947<br>4.407   | 1.00   |       |   | В      | C      |
| MOTA         | 4371<br>4372 | C        | ASN<br>ASN |   |            | -45.08<br>-45.63 |           | 3.450            | 1.00   |       |   | В      | ŏ      |
| ATOM<br>ATOM | 4372         | N<br>O   | PHE        |   |            | -44.45           |           | 4.314            | 1.00   |       |   | В      | N      |
| ATOM         | 4374         | СВ       | PHE        |   |            | -44.36           |           | 3.065            | 1.00   |       |   | В      | Ċ      |
| MOTA         | 4375         | CB       | PHE        |   | 134        | -42.98           |           | 2.420            | 1.00   |       |   | В      | С      |
| ATOM         | 4376         | CG       | PHE        |   |            | -42.70           |           | 1.972            | 1.00   |       |   | В      | С      |
| ATOM         | 4377         |          | PHE        |   |            | -43.22           |           | 0.774            | 1.00   | 49.32 |   | В      | С      |
| ATOM         | 4378         | CD2      | PHE        | В | 134        | -41.99           |           | 2.795            | 1.00   | 48.67 |   | В      | С      |
| ATOM         | 4379         | CE1      | PHE        | В | 134        | -43.05           | 2 47.477  | 0.410            | 1.00   | 48.88 |   | В      | С      |
| MOTA         | 4380         | CE2      | PHE        | В | 134        | -41.82           | 6 47.866  | 2.439            | 1.00   | 46.13 |   | В      | С      |
| ATOM         | 4381         | CZ       | PHE        | В | 134        | -42.35           | 4 48.337  | 1.250            | 1.00   | 47.35 |   | В      | С      |
| MOTA         | 4382         | С        | PHE        | В | 134        | -44.59           |           | 3.326            | 1.00   |       |   | В      | С      |
| ATOM         | 4383         | 0        | PHE        |   |            | -44.21           |           | 2.510            | 1.00   |       |   | В      | 0      |
| ATOM         | 4384         | N        | GLY        |   |            | -45.20           |           | 4.462            | 1.00   |       |   | В      | N      |
| ATOM         | 4385         | CB       | GLY        |   |            | -45.44           |           | 4.797            | 1.00   |       |   | В      | C      |
| ATOM         | 4386         | С        | GLY        |   |            | -46.42           |           | 3.875            | 1.00   |       |   | B<br>B | C<br>O |
| ATOM         | 4387         | 0        | GLY        |   |            | -46.82           |           | 4.138<br>2.794   | 1.00   |       |   | В      | N      |
| MOTA         | 4388         | N<br>CB  | MET        |   |            | -46.83<br>-47.76 |           | 1.840            | 1.00   |       |   | В      | č      |
| ATOM .       | 4389<br>4390 | CB       | MET        |   |            | -49.13           |           | 2.506            | 1.00   |       |   | В      | Ċ      |
| ATOM         | 4391         | CG       | MET        |   |            | -49.72           |           | 3:245            | 1.00   |       |   | В      | Ċ      |
| MOTA         | 4392         | SD       | MET        | - | 136        | -51.28           |           | 4.143            | 1.00   |       |   | В      | s      |
| ATOM         | 4393         | CE       | MET        |   |            | -52.17           |           | 3.776            | 1.00   | 54.57 |   | В      | C      |
| ATOM         | 4394         | С        | MET        | В | 136        | -47.94           |           | 0.602            | 1.00   | 61.93 |   | В      | С      |
| ATOM         | 4395         | 0        | MET        | В | 136        | -47.68           | 7 42.334  | 0.644            |        | 62.78 |   | В      | 0      |
| ATOM         | 4396         | N        | GLY        | В | 137        | -48.35           | 5 40.519  | -0.503           | 1.00   |       |   | В      | N      |
| ATOM         | 4397         | CB       |            |   | 137        | -48.56           |           | -1.737           |        | 64.09 |   | В      | C      |
| ATOM         | 4398         | С        |            |   | 137        | -47.38           |           | -2.268           | 1.00   |       |   | В      | C      |
| MOTA         | 4399         | 0        |            |   | 137        | -46.21           |           | -1.969           | 1.00   |       |   | В      | 0      |
| ATOM         | 4400         | N        |            |   | 138        | -47.69           |           | -3.087           | 1.00   |       |   | B<br>B | N      |
| ATOM         | 4401         | СВ       |            |   | 138        | -46.70           |           | -3.689           | 1.00   | 65.76 |   | В      | C      |
| MOTA         | 4402         | СВ       |            |   | 138        | -46.77           |           | -5.230           | 1.00   |       |   | В      | Č      |
| ATOM         | 4403         | CG       |            |   | 138        | -46.07           |           | -5.863<br>-7.305 | 1.00   |       |   | В      | c      |
| ATOM         | 4404         | CD       |            |   | 138        | -45.60<br>-46.75 |           | -8.255           | 1.00   |       |   | В      | č      |
| ATOM<br>ATOM | 4405<br>4406 | CE<br>NZ |            |   | 138<br>138 | -46.28           |           | -9.647           | 1.00   |       |   | В      | N      |
|              | 4407         | C        |            |   | 138        | -47.05           |           | -3.224           | 1.00   |       |   | В      | Ċ      |
| MOTA<br>MOTA | 4407         | 0        |            |   | 138        | -46.39           |           | -3.571           | 1.00   |       |   | В      | ŏ      |
| ATOM         | 4409         | N        |            |   | 139        | -48.11           |           | -2.439           | 1.00   |       |   | В      | N      |
| ATOM         | 4410         | СВ       |            |   | 139        | -48.59           |           | -1.904           | 1.00   |       |   | В      | С      |
| ATOM         | 4411         | CB       |            |   | 139        | -50.11           |           | -2.057           | 1.00   |       |   | В      | С      |
| ATOM         | 4412         | CG       |            |   | 139        | -50.73           |           | -1.787           | 1.00   |       |   | В      | С      |
| ATOM         | 4413         | CD       |            |   | 139        | -52.18           |           | -2.262           |        | 58.90 |   | В      | Ç      |
| ATOM         | 4414         | NE       |            |   | 139        | -52.85           |           | -2.017           | 1.00   |       |   | В      | N      |
| MOTA         | 4415         | ÇZ       |            |   | 139        | -52.41           |           | -2.419           | 1.00   |       |   | В      | C      |
| MOTA         | 4416         |          | ARG        |   |            | -53.11           |           | -2.142           | 1.00   |       |   | В      | N      |
| MOTA         | 4417         |          | ARG        |   |            | -51.26           |           | -3.084           |        | 61.00 |   | В      | N      |
| MOTA         | 4418         | С        | ARG        | В | 139        | -48.17           | 4 46.690  | -0.433           | 1.00   | 56.35 |   | В      | С      |

| MOTA         | 4419         | 0        | ARG I      | B 139          | ~48.250            | 45.668           | 0.241          | 1.00 | 56.84          | В      | 0   |
|--------------|--------------|----------|------------|----------------|--------------------|------------------|----------------|------|----------------|--------|-----|
| ATOM         | 4420         | N        | SER I      | B 140          | -47.717            | 47.837           | 0.058          | 1.00 |                | В      |     |
| ATOM         | 4421         | CB       |            | B 140          | -47.272            | 47.961           | 1.445          | 1.00 |                | В      |     |
| MOTA         | 4422         | CB       |            | B 140          | -46.096            | 48.909           | 1.525          | 1.00 |                | В<br>В |     |
| MOTA         | 4423         | OG       |            | 3 140          | -46.564<br>-48.344 | 50.211<br>48.535 | 1.217<br>2.348 | 1.00 |                | В      |     |
| MOTA<br>MOTA | 4424<br>4425 | C<br>O   |            | B 140<br>B 140 | -49.176            | 49.327           | 1.913          | 1.00 |                | В      |     |
| ATOM         | 4425         | N        |            | B 141          | -48.285            | 48.166           | 3.620          | 1.00 |                | В      |     |
| ATOM         | 4427         | СВ       |            | B 141          | -49.221            | 48.678           | 4.603          | 1.00 |                | В      |     |
| ATOM         | 4428         | ÇВ       | ILE I      |                | -48.834            | 48.174           | 5.989          | 1.00 | 41.15          | В      |     |
| MOTA         | 4429         |          | ILE        |                | -49.594            | 48.904           | 7.085          | 1.00 |                | В      |     |
| ATOM         | 4430         |          | ILE I      |                | -49.109            | 46.689           | 6.040          | 1.00 |                | 8      |     |
| ATOM         | 4431         |          | ILE I      |                | -48.735            | 46.094           | 7.322<br>4.585 | 1.00 |                | В      | C   |
| ATOM         | 4432         | C        |            | B 141<br>B 141 | -49.190<br>-50.206 | 50.198<br>50.857 | 4.802          | 1.00 |                | В      |     |
| MOTA<br>MOTA | 4433<br>4434 | O<br>N   | GLU !      |                | -48.016            | 50.752           | 4.326          | 1.00 |                | -<br>B |     |
| ATOM         | 4435         | СВ       |            | B 142          | -47.896            | 52.181           | 4.292          | 1.00 |                | В      |     |
| MOTA         | 4436         | CB       |            | B 142          | -46.441            | 52.591           | 4.241          | 1.00 | 37.54          | В      |     |
| MOTA         | 4437         | CG       | GLU !      | B 142          | -46.280            | 54.064           | 4.496          | 1.00 |                | В      |     |
| MOTA         | 4438         | CD       |            | B 142          | -44.855            | 54.494           | 4.536          | 1.00 |                | В      |     |
| MOTA         | 4439         |          | GLU !      |                | -44.028            | 53.760           | 5.108          | 1.00 |                | B<br>B |     |
| MOTA         | 4440         |          | GLU        |                | -44.561<br>-48.619 | 55.579<br>52.753 | 4.005<br>3.090 | 1.00 |                | В      |     |
| ATOM<br>ATOM | 4441<br>4442 | С<br>0   |            | B 142<br>B 142 | -49.141            | 53.868           | 3.131          | 1.00 |                | 9      |     |
| ATOM         | 4443         | N        |            | B 143          | -48.630            | 52.000           | 2.002          | 1.00 |                | В      |     |
| ATOM         | 4444         | СВ       |            | B 143          | -49.315            | 52.461           | 0.815          |      | 38.35          | В      | C   |
| ATOM         | 4445         | СВ       | ASP        | B 143          | -49.085            | 51.510           | -0.339         | 1.00 | 41.42          | В      |     |
| ATOM         | 4446         | CG       | ASP :      | в 143          | -48.028            | 52.013           | -1.272         |      | 45.89          | В      |     |
| MOTA         | 4447         |          | ASP        |                | -47.944            | 53.261           | -1.420         |      | 47.43          |        |     |
| ATOM         | 4448         |          | ASP        |                | -47.300            | 51.172           | -1.856         | 1.00 | 47.48          | . B    |     |
| ATOM         | 4449         | C        |            | B 143<br>B 143 | -50.789<br>-51.477 | 52.571<br>53.411 | 0.509          | 1.00 |                | . E    |     |
| ATOM<br>ATOM | 4450<br>4451 | N<br>N   | ARG        |                | -51.259            | 51.695           | 1.957          | 1.00 |                | _      |     |
| ATOM         | 4452         | CB       |            | B 144          | -52.649            | 51.635           | 2.345          | 1.00 |                | В      | C   |
| ATOM         | 4453         | СВ       |            | B 144          | -52.924            | 50.325           | 3.051          |      | 35.22.         | E      |     |
| ATOM         | 4454         | CG       | ARG        |                | -52.418            | 49.178           | 2.273          | 1.00 |                | 8      |     |
| ATOM         | 4455         | CD       | ARG        |                | -53.074            | 47.872           | 2.648          |      | 36.64<br>37.59 | . E    |     |
| ATOM         | 4456<br>4457 | NE<br>CZ | ARG        | B 144<br>B 144 | -53.287<br>-53.083 | 47.121<br>45.822 | 1.417          |      | 38.39          |        |     |
| ATOM<br>ATOM | 4458         |          | ARG        |                | -52.653            | 45.092           | 2.296          | 1.00 |                | E      |     |
| ATOM         | 4459         |          | ARG        |                |                    | 45.263           | 0.097          | 1.00 |                | E      | N N |
| ATOM         | 4460         | С        | ARG        | B 144          | -52.983            | 52.779           | 3.265          | 1.00 |                | E      |     |
| ATOM         | 4461         | 0        |            | B 144          |                    | 53.480           | 3.064          | 1.00 |                | E      |     |
| ATOM         | 4462         | N        |            | B 145          |                    | 52.932           | 4.286          | 1.00 |                | E      |     |
| ATOM         | 4463<br>4464 | CB<br>CB | VAL        | B 145<br>B 145 |                    | 54.046<br>54.015 | 5.198<br>6.378 | 1.00 |                | E      |     |
| MOTA<br>MOTA | 4465         |          | VAL        |                |                    | 55.276           | 7.215          | 1.00 |                | E      |     |
| ATOM         | 4466         |          | VAL        |                |                    | 52.777           | 7.228          |      | 15.00          | E      | s c |
| ATOM         | 4467         | С        | VAL        | B 145          | -52.246            | 55.381           | 4.474          |      | 15.00          | E      |     |
| MOTA         | 4468         | 0        |            | B 145          |                    | 56.266           | 4.643          | 1.00 |                | E      |     |
| ATOM         | 4469         | N        | GLN        |                |                    | 55.409           | 3.634          |      | 34.18<br>35.76 | E      |     |
| ATOM         | 4470         | CB       | GLN<br>GLN |                |                    | 56.613<br>56.489 | 2.861 2.026    |      | 36.99          | E      |     |
| MOTA<br>MOTA | 4471<br>4472 | CB<br>CG | GLN        |                |                    | 57.111           | 2.678          |      | 39.76          | Ē      |     |
| ATOM         | 4473         | CD       |            | B 146          |                    | 56.619           | 2.100          |      | 41.26          | , E    | 3 C |
| ATOM         | 4474         | OE1      | GLN        | B 146          | -46.191            | 57.139           | 2.423          |      | 44.85          | F      |     |
| ATOM         | 4475         | NE2      | GLN        |                |                    | 55.614           | 1.245          |      | 41.78          | _ I    |     |
| ATOM         | 4476         | C        |            | B 146          |                    | 56.851           | 1.960          |      | 35.69<br>34.57 | I      | 3 C |
| ATOM         | 4477         | 0        |            | B 146          |                    | 57.992<br>55.772 | 1.730<br>1.459 |      | 36.94          |        | 3 N |
| MOTA<br>MOTA | 4478<br>4479 | N<br>CB  |            | B 147<br>B 147 |                    | 55.913           | 0.561          |      | 38.92          |        | 3 C |
| MOTA         | 4480         | CB       |            | B 147          |                    | 54.620           | -0.153         |      | 39.06          |        | 3 C |
| ATOM         | 4481         | CG       |            | B 147          |                    | 54.871           | -1.356         |      | 42.53          |        | 3 C |
| ATOM         | 4482         | CĐ       | GLU        | B 147          | -56.057            | 53.794           | -1.575         |      | 44.76          |        | 3 C |
| MOTA         | 4483         |          | GLU        |                |                    | 52.713           | -0.973         |      | 46.09          |        | 3 0 |
| MOTA         | 4484         |          | GLU        |                |                    | 54.023           | -2.356         |      | 47.73<br>40.05 |        | 3 O |
| MOTA         | 4485         | С        |            | B 147          |                    | 56.320<br>57.053 | 1.286<br>0.756 |      | 40.05          |        | 3 0 |
| MOTA<br>MOTA | 4486<br>4487 | O<br>N   |            | B 147<br>B 148 |                    | 55.808           | 2.501          |      | 40.90          |        | 3 N |
| ATOM         | 4488         | СВ       |            | B 148          |                    | 56.088           | 3.318          |      | 40.72          |        | 3 C |
| ATOM         | 4489         | CB       |            | B 148          |                    | 55.096           | 4.471          |      | 41.46          |        | 3 C |
| ATOM         | 4490         | ÇG       | GLU        | B 148          | -57.847            | 55.019           | 5.142          |      | 4.4.00         |        | 3 C |
| ATOM         | 4491         | CD       |            | B 148          |                    | 54.530           | 4.197          |      | 44.92          |        | 3 C |
| ATOM         | 4492         |          | GLU        |                |                    | 53.397<br>55.290 | 3.668<br>3.994 |      | 43.26<br>44.21 |        | 30  |
| MOTA         | 4493         | ŲE2      | GLU        | D 146          | -59.933            | 33.230           | 3.374          |      |                |        | . • |
|              |              |          |            |                |                    |                  |                |      |                |        |     |

| ATOM         | 4494         | С        | GT.D       | R | 148        | -56.321            | 57.512           | 3.835           | 1 00 | 40.38          |   | В      | С      |
|--------------|--------------|----------|------------|---|------------|--------------------|------------------|-----------------|------|----------------|---|--------|--------|
| MOTA         | 4495         | ō        |            |   | 148        | -57.323            | 58.189           | 4.014           |      | 40.91          |   | В      | ō      |
| ATOM         | 4496         | N        |            |   | 149        | -55.090            | 57.965           | 4.060           |      | 40.56          |   | В      | N      |
| ATOM         | 4497         | СВ       | ALB        |   |            | -54.818            | 59.314           | 4.565           |      | 40.37          |   | В      | Ċ      |
| ATOM         | 4498         | СВ       |            |   | 149        | -53.346            | 59.439           | 4.938           |      | 38.08          |   | В      | č      |
| ATOM         | 4499         | C        |            |   | 149        | -55.177            | 60.360           | 3.537           |      | 40.96          |   | В      | č      |
| ATOM         | 4500         | 0        | ALB        |   | 149        | -55.650            | 61.444           | 3.877           |      | 40.04          |   | В      | ō      |
| MOTA         | 4501         | N        | ARG        |   | 150        | -54.927            | 60.028           | 2.273           | 1.00 | 44.44          |   | В      | N      |
| ATOM         | 4502         | CB       | ARG        | В | 150        | -55.211            | 60.919           | 1.144           | 1.00 | 45.97          |   | В      | С      |
| ATOM         | 4503         | CB       | ARG        | В | 150        | -54.668            | 60.300           | -0.152          | 1.00 | 49.29          |   | В      | С      |
| MOTA         | 4504         | CG       | ARG        | В | 150        | -54.637            | 61.236           | -1.368          | 1.00 | 54.67          |   | В      | C      |
| ATOM         | 4505         | CD       |            |   | 150        | -55.094            | 60.519           | -2.668          | 1.00 | 57.99          |   | В      | С      |
| ATOM         | 4506         | NE       |            |   | 150        | -56.555            | 60.450           | -2.751          |      | 61.38          |   | В      | N      |
| ATOM         | 4507         | CZ       |            |   | 150        | -57.239            | 59.588           | -3.497          |      | 62.75          |   | В      | С      |
| ATOM         | 4508         |          | ARG        |   |            | -56.599            | 58.699           | -4.248          |      | 64.70          |   | В      | N      |
| MOTA         | 4509         | NH2      |            |   |            | -58.567            | 59.608           | -3.472          |      | 62.86          |   | В      | N      |
| ATOM<br>ATOM | 4510<br>4511 | C        |            |   | 150<br>150 | -56.729            | 61.110           | 1.059           |      | 44.34          |   | B      | C      |
| ATOM         | 4512         | O<br>N   | CYS        |   |            | -57.202<br>-57.483 | 62.206<br>60.045 | 0.794<br>1.322  |      | 42.95          |   | B<br>B | N      |
| ATOM         | 4513         | СВ       | CYS        |   |            | -58.940            | 60.093           | 1.274           |      | 42.58          |   | В      | Ċ      |
| ATOM         | 4514         | CB       | CYS        |   |            | -59.494            | 58.686           | 1.148           |      | 42.73          |   | В      | č      |
| ATOM         | 4515         | SG       | CYS        |   |            | -58.775            | 57.851           | -0.264          |      | 50.77          |   | В      | s      |
| ATOM         | 4516         | С        | CYS        | В | 151        | -59.540            | 60.770           | 2.495           |      | 41.82          |   | В      | С      |
| ATOM         | 4517         | 0        | CYS        | В | 151        | -60.572            | 61.424           | 2.408           | 1.00 | 41.84          |   | В      | 0      |
| ATOM         | 4518         | · N      | LEU        | В | 152        | -58.892            | 60.603           | 3.637           | 1.00 | 41.86          |   | В      | N      |
| ATOM         | 4519         | CB       | LEU        | В | 152        | -59.351            | 61.213           | 4.865           | 1.00 | 41.07          |   | В      | С      |
| ATOM         | 4520         | CB       | LEU        |   |            | -58.440            | 60.810           | 6.015           | 1.00 | 41.54          |   | В      | С      |
| ATOM         | 4521         | CG       | LEU        |   | 152        | -58.978            | 60.866           | 7.451           |      | 42.23          |   | В      | С      |
| ATOM         | 4522         | -        | LEU        |   |            | -57.883            | 60.390           | 8.390           |      | 43.20          |   | В      | С      |
| MOTA         | 4523         |          | LEU        |   |            | -59.416            | 62.253           | 7.831           |      | 42.24          |   | В      | C      |
| ATOM         | 4524         | C        | LEU        |   | 152        | -59.280            | 62.714           | 4.665           |      | 42.07          |   | В      | C      |
| ATOM         | 4525         | 0        | LEU        |   |            | -60.089            | 63.461           | 5.201           |      | 41.27          |   | В      | 0      |
| ATOM<br>ATOM | 4526<br>4527 | N<br>CB  | VAL<br>VAL |   |            | -58.312<br>-58.149 | 63.159<br>64.588 | 3.875<br>3.633  |      | 44.27          |   | B<br>B | N<br>C |
| ATOM         | 4528         | СВ       | VAL        |   |            | -56.761            | 64.906           | 3.097           |      | 43.71          |   | В      | c      |
| ATOM         | 4529         |          | VAL        |   |            | -56.648            | 66.400           | 2.827           |      | 41.95          |   | В      | č      |
| MOTA         | 4530         |          | VAL        |   |            | -55.724            | 64.458           | 4.079           |      | 41.54          |   | В      | č      |
| ATOM         | 4531         | c        | VAL        |   |            | -59.168            | 65.148           | 2.658           |      | 48.74          |   | В      | č      |
| ATOM         | 4532         | ō        | VAL        |   |            | -59.526            | 66.324           | 2.730           |      | 49.05          |   | В      | ō      |
| ATOM         | 4533         | N        | GLU        |   |            | -59.635            | 64.305           | 1.746           | 1.00 | 51.96          |   | В      | N      |
| ATOM         | 4534         | CB       | GLU        | В | 154        | -60.609            | 64.743           | 0.760           | 1.00 | 54.68          |   | В      | С      |
| ATOM         | 4535         | CB       | GLU        |   |            | -60.684            | 63.740           | -0.386          |      | 56.49          |   | В      | С      |
| ATOM         | 4536         | CG       | GLU        |   |            | -59.333            | 63.306           | -0.880          |      | 61.13          |   | В      | С      |
| ATOM         | 4537         | CD       | GLU        |   |            | -59.251            | 63.226           | -2.394          |      | 64.38          |   | В      | C      |
| ATOM         | 4538         |          | GLU        |   |            | -58.260            | 62.656           | -2.913          |      | 64.26          |   | В      | 0      |
| ATOM<br>ATOM | 4539<br>4540 | C        | GLU<br>GLU |   |            | -60.174<br>-61.973 | 63.736<br>64.884 | -3.072<br>1.416 |      | 67.83<br>55.02 |   | B<br>B | 0      |
| MOTA         | 4541         | 0        | GLU        |   |            | -62.673            | 65.872           | 1.207           |      | 56.40          |   | В      | Ö      |
| ATOM         | 4542         | N        | GLU        |   |            | -62.349            | 63.898           | 2.220           |      | 54.50          |   | В.     | N      |
| ATOM         | 4543         | СВ       | ĠĿŪ        |   |            | -63.638            | 63.940           | 2.887           | 1.00 |                |   | В      | c      |
| ATOM         | 4544         | СВ       | GLU        |   |            | -63.925            | 62.625           | 3.600           | 1.00 |                |   | В      | Č.     |
| ATOM         | 4545         | CG       | GLU        |   |            | -65.047            | 61.841           | 2.948           | 1.00 | 61.17          | 1 | В      | С      |
| MOTA         | 4546         | CD       | GLU        | В | 155        | -66.433            | 62.233           | 3.458           | 1.00 | 64.74          | 1 | В      | C      |
| MOTA         | 4547         | OE1      | GLU        | В | 155        | -66.677            | 63.446           | 3.683           | 1.00 | 66.30          | 1 | В      | 0      |
| ATOM         | 4548         | OE2      | GLU        | В | 155        | -67.283            | 61.321           | 3.629           | 1.00 |                |   | В      | 0      |
| ATOM         | 4549         |          |            | _ | -          |                    | 65.084           |                 |      |                |   | В      | С      |
| ATOM         | 4550         | 0        | GLU        |   |            | -64.770            | 65.674           | 4.031           | 1.00 |                |   | В      | 0      |
| MOTA         | 4551         | N        | LEU        |   |            | -62.615            | 65.402           | 4.531           | 1.00 |                |   | 3      | N      |
| MOTA         | 4552         | CB       | LEU        |   |            | -62.610            | 66.511           | 5.485           | 1.00 |                |   | 3      | C      |
| ATOM         | 4553         | CB<br>CG | LEU        |   |            | -61.278<br>-60.995 | 66.607<br>65.671 | 6.203<br>7.375  | 1.00 |                |   | 8<br>8 | C      |
| ATOM<br>ATOM | 4554<br>4555 |          | LEU        |   |            | -59.536            | 65.796           | 7.819           |      | 47.99          |   | В      | c      |
| ATOM         | 4556         |          | LEU        |   |            | -61.936            | 66.022           | 8.509           | 1.00 |                |   | 3      | c      |
| ATOM         | 4557         | c        | LEU        |   |            | -62.821            | 67.797           | 4.747           | 1.00 |                |   | 3      | c      |
| ATOM         | 4558         | ō        | LEU        |   |            | -63.305            | 68.774           | 5.306           | 1.00 |                |   | 3      | ō      |
| ATOM         | 4559         | N ·      | ARG        |   |            | -62.432            | 67.806           | 3.480           | 1.00 |                |   | 3      | N      |
| ATOM         | 4560         | СВ       | ARG        |   |            | -62.566            | 69.003           | 2.674           | 1.00 |                | 1 | 3      | С      |
| ATOM         | 4561         | СВ       | ARG        |   |            | -61.697            | 68.882           | 1.435           | 1.00 | 49.80          | 1 | 3      | С      |
| ATOM         | 4562         | CG       | ARG        |   |            | -61.350            | 70.214           | 0.816           | 1.00 |                |   | 3      | С      |
| ATOM         | 4563         | CD       | ARG        |   |            | -60.614            | 70.008           | -0.504          | 1.00 |                |   | 3      | С      |
| ATOM         | 4564         | NE       | ARG        |   |            | -59.312            | 69.376           | -0.315          | 1.00 |                |   | 3      | Ν.     |
| ATOM         | 4565         | CZ       | ARG        |   |            | -58.265            | 69.983           | 0.236           | 1.00 |                |   | 3      | C      |
| ATOM         | 4566         |          | ARG        |   |            | -58.359            | 71.235           | 0.654           | 1.00 |                |   | 3      | N      |
| ATOM         | 4567         |          | ARG        |   |            | -57.118<br>-64.025 | 69.340           | 0.364<br>2.303  | 1.00 |                |   | 3      | N<br>C |
| ATOM         | 4568         | С        | ARG        | D | 137        | -04.023            | 33.203           | 2.303           | 1.00 | J2.U2          | • | •      | •      |
|              |              |          |            |   |            |                    |                  |                 |      |                |   |        |        |

Figure 1

| ATOM         | 4569          | 0        | ARG        | В | 157        | -64.420            | 70.291           | 1.874            | 1.00 | 52.55          | 1      | 3 0 |  |
|--------------|---------------|----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|--------|-----|--|
| ATOM         | 4570          | N        | LYS        |   | 158        | -64.822            | 68.165           | 2.502            |      | 52.73          |        | 3 N |  |
| ATOM<br>ATOM | 4571<br>4572  | CB<br>CB | LYS        |   | 158<br>158 | -66.238<br>-66.773 | 68.202<br>66.794 | 2.200            |      | 54.42<br>55.76 |        | 3 C |  |
| ATOM         | 4573          | CG       | LYS        |   | 158        | -66.182            | 66.072           | 0.896            |      | 58.77          |        | s c |  |
| MOTA         | 4574          | CD       | LYS        | В | 158        | -66.786            | 64.702           | 0.805            |      | 60.65          | 1      |     |  |
| ATOM         | 4575          | CE       | LYS        |   | 158        | -66.241            | 63.958           | -0.379           | 1.00 |                |        | 3 C |  |
| MOTA<br>MOTA | 4576<br>4577  | NZ<br>C  | LYS        |   | 158        | -67.031            | 62.710           | -0.504           |      | 66.32          | i      |     |  |
| ATOM         | 4578          | Ö        | LYS        |   | 158<br>158 | -67.062<br>-68.122 | 68.916<br>69.454 | 3.245<br>2.938   |      | 55.37<br>56.64 | 1      |     |  |
| ATOM         | 4579          | N        | THR        |   | 159        | -66.585            | 68.924           | 4.481            |      | 56.23          | Ī      |     |  |
| ATOM         | 4580          | СВ       | THR        |   | 159        | -67.324            | 69.583           | 5.545            |      | 57.27          | i      |     |  |
| ATOM         | 4581          | CB       |            | _ | 159        | -66.613            | 69.440           | 6.899            |      | 57.46          | E      |     |  |
| MOTA<br>MOTA | 4582<br>4583  |          | THR<br>THR |   |            | -65.449<br>-66.208 | 70.277<br>67.995 | 6.916<br>7.141   |      | 58.33<br>55.51 | E      | _   |  |
| ATOM         | 4584          | C        | THR        |   |            | -67.512            | 71.073           | 5.259            |      | 57.87          | E      |     |  |
| ATOM         | 4585          | 0        | THR        | В | 159        | -68.298            | 71.741           | 5.925            | 1.00 | 58.38          | F      |     |  |
| ATOM         | 4586          | N        | LYS        |   | 160        | -66.780            | 71.592           | 4.280            |      | 59.21          | 5      |     |  |
| ATOM<br>ATOM | 4587<br>4588  | CB<br>CB | LYS        |   | 160<br>160 | -66.880<br>-68.295 | 73.000<br>73.309 | 3.895<br>3.366   |      | 61.25          | E      |     |  |
| ATOM         | 4589          | CG       | LYS        |   | 160        | -68.619            | 72.700           | 1.993            | 1.00 | 63.14          |        |     |  |
| ATOM         | 4590          | CD       | LYS        |   | 160        | -69.896            | 73.290           | 1.394            | 1.00 | 67.20          | E      |     |  |
| MOTA         | 4591          | CE       | LYS        |   | 160        | -69.759            | 74.806           | 1.149            | 1.00 | 68.22          | E      | _   |  |
| ATOM         | 4592          | N2       | LYS        |   | 160        | -70.997            | 75.469           | 0.589            | 1.00 | 68.99          | E      |     |  |
| ATOM<br>ATOM | 4593<br>4594  | С<br>0   | LYS        |   | 160        | -66.502<br>-67.057 | 74.008<br>75.111 | 4.996<br>5.073   |      | 61.38          | E      |     |  |
| ATOM         | 4595          | N        | ALB        |   | 161        | -65.559            | 73.619           | 5.846            |      | 62.02          | E      |     |  |
| ATOM         | 4596          | СВ       | ALB        |   | 161        | -65.072            | 74.484           | 6.917            |      | 62.73          | E      |     |  |
| ATOM         | 4597          | СВ       | ALB        |   |            | -64.505            | 75.758           | 6.328            |      | 63.17          | E      |     |  |
| ATOM         | 4598          |          | ALB        |   | 161        | -66.116            | 74.829           | 7.960            |      | 63.30          | E      |     |  |
| ATOM<br>ATOM | 4599<br>4600  | И·       | ALB<br>SER |   |            | -65.914<br>-67.233 | 75.730<br>74.116 | 8.785<br>7.926   |      | 63.14          | E      |     |  |
| ATOM         | 4601          | СВ       | SER        |   |            | -68.292            | 74.370           | 8.885            |      | 63.72          | Ē      |     |  |
| ATOM         | 4602          | CB       | SER        | В | 162        | -69.656            | 74.142           | 8.240            |      | 65.98          | E      | C   |  |
| ATOM         | 4603          | OG       | SER        |   |            | -70.685            | 74.617           | 9.093            |      | 70.53          | E      |     |  |
| ATOM<br>ATOM | 4604<br>4605. | 0        | SER<br>SER |   | 162<br>162 | -68.121<br>-67.662 | 73.445<br>72.313 | 10.073<br>9.923  |      | 61.86          | E      | - C |  |
| ATOM         | 4606          |          | PRO        |   | 163        | -68.492            | 73.909           | 11.271           |      | 59.84          | E      |     |  |
| ATOM         | 4607          | CD       | PRO        |   | 163        | -69.160            | 75.188           | 11.556           |      | 59.37          | E      |     |  |
| ATOM         | 4608          | СВ       | PRO        |   | 163        | -68.367            | 73.100           | 12.487           |      | 58.88          | E      |     |  |
| ATOM         | 4609          | CB       | PRO        |   | 163        | -69.250            | 73.843           | 13.480           |      | 59.46          | E      |     |  |
| ATOM<br>ATOM | 4610<br>4611  | CG<br>C  | PRO<br>PRO |   | 163<br>163 | -69.069<br>-68.807 | 75.271<br>71.649 | 13.064<br>12.284 |      | 60.18<br>57.56 | £      |     |  |
| ATOM         | 4612          | ŏ        | PRO        |   | 163        | -69.648            | 71.371           | 11.430           |      | 57.25          | E      |     |  |
| ATOM         | 4613          | N        | CYS        | B | 164        | -68.237            | 70.730           | 13.065           | 1.00 | 56.25          | Ē      | N   |  |
| ATOM         | 4614          | CB       | CYS        |   | 164        | -68.592            | 69.319           | 12.949           |      | 54.65          | B      |     |  |
| ATOM<br>ATOM | 4615<br>4616  | CB<br>SG | CYS        |   | 164<br>164 | -68.100<br>-66.449 | 68.760<br>68.039 | 11.619<br>11.738 |      | 54.58          | E<br>B |     |  |
| ATOM         | 4617          | C        | CYS        |   | 164        | -68.007            | 68.434           | 14.042           |      | 54.07          | В      |     |  |
| MOTA         | 4618          | 0        | CYS        | В | 164        | -67.091            | 68.827           | 14.768           | 1.00 | 55.17          | 8      |     |  |
| ATOM         | 4619          | N        | ASP        |   | 165        | -68.540            | 67.218           | 14.120           |      | 51.86          | 8      |     |  |
| ATOM<br>ATOM | 4620<br>4621  | CB<br>CB | ASP<br>ASP |   | 165<br>165 | -68.073<br>-69.245 | 66.214<br>65.408 | 15.060<br>15.639 |      | 49.08<br>50.98 | . £    |     |  |
| ATOM         | 4622          | CG       | ASP        |   | 165        | -68.830            | 64.490           | 16.793           |      | 52.42          | B      |     |  |
| ATOM         | 4623          |          | ASP        |   |            | -69.669            | 63.690           | 17.263           | 1.00 | 52.79          | В      |     |  |
| ATOM         | 4624          |          | ASP        |   |            | -67.671            | 64.563           | 17.242           |      | 54.94          | В      |     |  |
| MOTA<br>MOTA | 4625<br>4626  | C        | ASP<br>ASP |   |            | -67.185<br>-67.622 | 65.303<br>64.747 | 14.224<br>13.200 |      | 46.84<br>48.17 | B<br>B |     |  |
| ATOM         | 4627          | O<br>N   | PRO        |   |            | -65.913            | 65.166           | 14.623           |      | 43.29          | В      |     |  |
| MOTA         | 4628          | CD       | PRO        |   |            | -65.217            | 66.043           | 15.576           |      | 41.41          | В      |     |  |
| ATOM         | 4629          | СВ       | PRO        | В | 166        | -64.951            | 64.324           | 13.920           |      | 40.20          | В      | С   |  |
| ATOM         | 4630          | CB       | PRO        |   |            | -63.630            | 64.743           | 14.528           |      | 41.09          | В      |     |  |
| ATOM<br>ATOM | 4631<br>4632  | CG<br>C  | PRO<br>PRO |   |            | -63.875<br>-65.201 | 66.138<br>62.849 | 14.973<br>14.153 |      | 41.02<br>37.68 | B<br>B |     |  |
| ATOM         | 4633          | 0        | PRO        |   |            | -64.838            | 62.007           | 13.335           |      | 37.11          | В      |     |  |
| ATOM         | 4634          | N        | THR        |   |            | -65.B33            | 62.539           | 15.274           |      | 35.02          | В      |     |  |
| ATOM         | 4635          | CB       | THR        | B | 167        | -66.060            | 61.156           | 15.623           | 1.00 | 34.99          | В      | ¢   |  |
| ATOM         | 4636          | CB       | THR        |   |            | -67.197            | 61.010           | 16.593           |      | 34.19          | В      |     |  |
| ATOM<br>ATOM | 4637<br>4638  |          | THR<br>THR |   |            | -67.094<br>-67.116 | 62.018<br>59.645 | 17.605<br>17.257 |      | 35.21<br>32.68 | B<br>8 |     |  |
| ATOM         | 4639          | C        | THR        |   |            | -66.285            | 60.161           | 14.494           |      | 35.64          | В      |     |  |
| ATOM         | 4640          | ŏ        | THR        |   |            | -65.608            | 59.141           | 14.437           |      | 38.31          | В      |     |  |
| ATOM         | 4641          | N        | PHE        | В | 168        | -67.216            | 60.443           | 13.592           |      | 34.81          | В      | N   |  |
| ATOM         | 4642          | CB       | PHE        |   |            | -67.510            | 59.517           | 12.502           |      | 33.50          | В      |     |  |
| ATOM         | 4643          | CB       | PHE        | Ħ | Tpg        | -68.861            | 59.859           | 11.869           | 1.00 | J4.64          | В      | С   |  |
|              |               |          |            |   |            |                    |                  |                  |      |                |        |     |  |

| ATOM | 4644 | CG  | PHE  | В | 168  |   | -69.213 | 59.002 | 10.682 | 1.00 | 34.39 | В | С   |
|------|------|-----|------|---|------|---|---------|--------|--------|------|-------|---|-----|
| MOTA | 4645 | CD1 | PHE  | В | 168  |   | -69.020 | 59.469 | 9.380  | 1.00 | 33.49 | В | С   |
| ATOM | 4646 |     | PHE  |   | 168  |   | -69.683 | 57.707 | 10.866 |      | 33.63 | В | Ċ   |
| ATOM | 4647 |     | PHE  |   | 168  |   | -69.285 | 58.651 | 8.284  | 1.00 | 33.33 | В | č   |
|      |      |     |      |   |      |   |         |        |        |      |       |   |     |
| ATOM | 4648 |     | PHE  |   | 168  |   | -69.949 | 56.880 | 9.772  | 1.00 | 34.22 | В | C   |
| ATOM | 4649 | CZ  | PHE  | В | 168  |   | -69.747 | 57.355 | 8.479  | 1.00 | 33.81 | В | C   |
| ATOM | 4650 | С   | PHE  |   | 168  |   | -66.448 | 59.448 | 11.422 | 1.00 | 33.77 | В | С   |
| ATOM | 4651 | 0   | PHE  | В | 168  |   | -66.053 | 58.351 | 11.010 | 1.00 | 34.04 | В | 0   |
| MOTA | 4652 | И   | ILE  | В | 169  |   | -66.005 | 60.607 | 10.931 | 1.00 | 33.04 | В | N   |
| ATOM | 4653 | СB  | ILE  | В | 169  |   | -64.966 | 60.631 | 9.900  | 1.00 | 31.16 | В | C   |
| ATOM | 4654 | СВ  | ILE  |   | 169  |   | -64.562 | 62.073 | 9.521  | 1.00 | 29.19 | В | Ċ   |
| ATOM | 4655 | CG2 |      |   | 169  |   | -63.305 | 62.043 | 8.681  |      | 31.04 | В | č   |
| MOTA | 4656 |     | ILE  |   | 169  |   | -65.710 | 62.761 | 8.773  |      | 29.06 | B | č   |
|      |      |     |      |   | 169  |   | -65.362 | 64.136 | 8.157  |      |       |   |     |
| ATOM | 4657 |     | ILE  |   |      |   |         |        |        |      | 23.45 | В | C   |
| ATOM | 4658 | С   |      |   | 169  |   | -63.762 | 59.906 | 10.490 |      | 31.16 | В | C   |
| atom | 4659 | 0   | ILE  |   | 169  |   | -63.325 | 58.869 | 9.978  |      | 30.18 | В | 0   |
| MOTA | 4660 | N   | LEU  |   | 170  |   | -63.262 | 60.450 | 11.592 |      | 30.66 | В | N   |
| ATOM | 4661 | CB  | LEU  | В | 170  |   | -62.136 | 59.886 | 12.294 |      | 33.01 | В | С   |
| ATOM | 4662 | CB  | LEU  | В | 170  |   | -61.922 | 60.618 | 13.603 | 1.00 | 32.78 | В | С   |
| ATOM | 4663 | CG  | LEU  | В | 170  |   | -60.689 | 61.493 | 13.689 | 1.00 | 34.59 | В | С   |
| ATOM | 4664 | CD1 | LEU  | В | 170  |   | -60.394 | 62.191 | 12.348 | 1.00 | 34.12 | В | С   |
| ATOM | 4665 |     | LEU  |   |      |   | -60.938 | 62.501 | 14.802 |      | 33.75 | В | Ċ   |
| ATOM | 4666 | c   | LEU  |   | 170  |   | -62.329 | 58.412 | 12.595 |      | 36.23 | В | Č   |
| ATOM |      |     | LEU  |   |      |   | -61.360 | 57.686 | 12.811 |      | 38.84 | В | ŏ   |
|      | 4667 | 0   |      |   |      |   |         |        |        |      |       |   |     |
| ATOM | 4668 | N   |      |   | 171  |   | -63.574 | 57.960 | 12.640 |      | 36.68 | В | N   |
| ATOM | 4669 | CB  | GLY  |   | 171  |   | -63.815 | 56.556 | 12.912 |      | 36.55 | В | C   |
| MOTA | 4670 | C   | GLY  | В | 171  |   | -63.700 | 55.707 | 11.660 | 1.00 | 37.28 | В | · C |
| MOTA | 4671 | 0   | GLY  | В | 171  |   | -63.329 | 54.538 | 11.721 | 1.00 | 37.69 | В | 0   |
| ATOM | 4672 | N   | CYS  | В | 172  |   | -63.995 | 56.299 | 10.512 | 1.00 | 37.14 | В | N   |
| ATOM | 4673 | CB  | CYS  | В | 172  |   | -63.935 | 55.557 | 9.270  | 1.00 | 37.77 | В | С   |
| ATOM | 4674 | СВ  | CYS  |   | 172  |   | -64.661 | 56.324 | 8.170  | 1.00 | 38.28 | В | С   |
| ATOM | 4675 | SG  | CYS  |   | 172  |   | -66.414 | 56.510 | 8.462  |      | 39.93 | В | Š   |
| ATOM | 4676 | C   | CYS  |   | 172  |   | -62.518 | 55.291 | 8.824  |      | 37.68 | В | č   |
|      |      |     |      |   |      |   |         |        |        |      | 38.54 |   |     |
| ATOM | 4677 | 0   | CYS  |   | 172  |   | -62.176 | 54.195 | 8.382  |      |       | В | 0   |
| MOTA | 4678 | N   | ALB  |   | 173  | • | -61.694 | 56.319 | 8.935  |      | 36.49 | В | N   |
| MOTA | 4679 | СВ  | ALB  | В | 173  |   | -60.319 | 56.222 | 8.507  |      | 34.61 | В | С   |
| MOTA | 4680 | CB  | ALB  | В | .173 |   | -59.549 | 57.442 | 8.987  | 1.00 | 36.10 | В | С   |
| ATOM | 4681 | С   | ALB  | В | 173  |   | -59.667 | 54.946 | 8.990  | 1.00 | 33.15 | В | С   |
| ATOM | 4682 | 0   | ALB  | В | 173  |   | -59.354 | 54.073 | 8.191  | 1.00 | 33.82 | В | 0   |
| ATOM | 4683 | N   | PRO  |   | 174  |   | -59.497 | 54.802 | 10.314 |      | 32.21 | В | N   |
| ATOM | 4684 | CD  | PRO  |   | 174  |   | -60.059 | 55.645 | 11.384 |      | 30.78 | В | Ċ   |
| ATOM | 4685 | CB  | PRO  |   | 174  |   | -58.864 | 53.616 | 10.895 |      | 30.68 | В | č   |
|      |      |     |      |   |      |   |         |        |        |      |       |   | c   |
| ATOM | 4686 | CB  | PRO  |   | 174  |   | -58.998 | 53.861 | 12.390 |      | 30.41 | В |     |
| MOTA | 4687 | CG  | PRO  |   | 174  |   | -59.133 | 55.346 | 12.504 |      | 30.71 | В | C   |
| MOTA | 4688 | С   | PRO  |   | 174  |   | -59.494 | 52.297 | 10.481 |      | 31.02 | В | С   |
| MOTA | 4689 | 0   | PRO  | В | 174  |   | -58.799 | 51.338 | 10.158 | 1.00 | 31.28 | В | 0   |
| ATOM | 4690 | N   | CYS  | В | 175  |   | -60.819 | 52.261 | 10.508 | 1.00 | 31.91 | В | N   |
| MOTA | 4691 | CB  | CY\$ | В | 175  |   | -61.580 | 51.076 | 10.156 | 1.00 | 32.91 | В | С   |
| MOTA | 4692 | СВ  | CYS  |   | 175  |   | -63.061 | 51.354 | 10.381 | 1.00 | 34.54 | В | С   |
| ATOM | 4693 | SG  | CYS  |   | 175  |   | -64.140 | 49.943 | 10.032 |      | 43.98 | В | s   |
| ATOM | 4694 | c   |      |   | 175  |   | -61.327 | 50.664 | 8.705  | 1.00 |       | В | č   |
|      |      |     |      |   |      |   |         |        |        |      | 31.12 | В | ō   |
| ATOM | 4695 | 0   | CYS  |   | 175  |   | -61.154 | 49.482 | 8.393  |      | 31.75 |   | N   |
| ATOM | 4696 | N   | ASN  |   | 176  |   | -61.282 | 51.662 | 7.830  |      |       | В |     |
| ATOM | 4697 | СВ  | ASN  |   | 176  |   | -61.051 | 51.447 | 6.413  |      | 31.54 | В | C   |
| ATOM | 4698 | CB  | ASN  | В | 176  |   | -61.184 | 52.776 | 5.661  |      | 31.58 | В | C   |
| ATOM | 4699 | CG  | ASN  | В | 176  |   | -62.100 | 52.666 | 4.442  | 1.00 | 32.62 | В | С   |
| ATOM | 4700 | OD1 | ASN  | В | 176  |   | -62.046 | 51.694 | 3.711  | 1.00 | 30.16 | В | 0   |
| ATOM | 4701 | ND2 | ASN  | В | 176  |   | -62.942 | 53.668 | 4.229  | 1.00 | 34.48 | B | N   |
| ATOM | 4702 | С   | ASN  |   |      |   | -59.682 | 50.804 | 6.151  | 1.00 | 30.78 | В | С   |
| ATOM | 4703 | ō   | ASN  |   |      |   | -59.528 | 50.011 | 5.222  |      | 29.78 | В | 0   |
| ATOM | 4704 | N   | VAL  |   |      |   | -58.690 | 51.141 | 6.970  |      | 30.56 | В | N   |
|      |      |     |      |   |      |   |         |        |        |      | 29.05 |   |     |
| ATOM | 4705 | CB  | VAL  |   |      |   | -57.354 | 50.567 | 6.822  |      |       | В | C   |
| MOTA | 4706 | CB  | VAL  |   |      |   | -56.356 | 51.131 | 7.875  |      | 28.06 | В | C   |
| MOTA | 4707 |     | VAL  |   |      |   | -55.131 | 50.240 | 7.961  |      | 29.47 | В | C   |
| ATOM | 4708 | CG2 | VAL  |   |      |   | -55.930 | 52.540 | 7.508  |      | 25.39 | В | С   |
| ATOM | 4709 | С   | VAL  | В | 177  |   | -57.406 | 49.049 | 6.982  |      | 29.46 | В | С   |
| ATOM | 4710 | 0   | VAL  | В | 177  |   | -56.895 | 48.327 | 6.135  | 1.00 | 28.88 | В | 0   |
| ATOM | 4711 | N   | ILE  |   |      |   | -58.020 | 48.566 | 8.064  | 1.00 | 30.19 | В | N   |
| MOTA | 4712 | СВ  | ILE  |   |      |   | -58.111 | 47.125 | 8.310  |      | 31.36 | В | C   |
| MOTA | 4713 | CB  | ILE  |   |      |   | -58.848 | 46.828 | 9.639  |      | 30.60 | В | č   |
|      |      |     |      |   |      |   | -59.149 | 45.357 | 9.757  |      | 31.81 | В | č   |
| ATOM | 4714 |     | ILE  |   |      |   |         |        |        |      |       |   |     |
| ATOM | 4715 |     | ILE  |   |      |   | -57.947 | 47.148 | 10.833 |      | 31.09 | В | С   |
| ATOM | 4716 |     | ILE  |   |      |   | -57.611 | 48.594 | 11.026 |      | 29.91 | В | С   |
| MOTA | 4717 | С   | ILE  |   |      |   | -58.772 | 46.359 | 7.155  |      | 33.20 | В | С   |
| ATOM | 4718 | 0   | ILE  | В | 178  |   | -58.429 | 45.203 | 6.901  | 1.00 | 31.56 | В | 0   |

Figure 1

| ATOM  | 4719 | N   | CYS   | B 179 | -59.711  | 47.011 | 6.465  | 1.00 35.80 | В   | N |
|-------|------|-----|-------|-------|----------|--------|--------|------------|-----|---|
| ATOM  | 4720 | СВ  |       | B 179 | -60.424  | 46.432 | 5.319  | 1.00 38.59 | В   | Ċ |
| ATOM  | 4721 | СВ  |       | B 179 |          | 47.355 | 4.886  | 1.00 37.92 | В   | Č |
|       |      | SG  |       | B 179 |          |        |        | 1.00 44.53 | . B | s |
| ATOM  | 4722 |     |       |       | -62.994  | 47.314 | 5.931  |            |     |   |
| ATOM  | 4723 | C · |       | B 179 | -59.512  | 46.213 | 4.116  | 1.00 41.01 | В   | C |
| MOTA  | 4724 | 0   | CYS   | B 179 | -59.593  | 45.204 | 3.419  | 1.00 41.99 | В   | 0 |
| ATOM  | 4725 | N   | SER   | B 180 | -58.653  | 47.190 | 3.864  | 1.00 43.69 | В   | N |
| ATOM  | 4726 | СВ  | SER   | B 180 | -57.725  | 47,146 | 2.750  | 1.00 44.63 | В   | С |
| MOTA  | 4727 | СВ  |       | B 180 | -57.092  | 48.539 | 2.576  | 1.00 45.23 | В   | C |
| ATOM  | 4728 | OG  |       | B 180 | -56.302  | 48.619 | 1.400  | 1.00 47.67 | В   | ŏ |
|       |      |     |       |       |          |        |        |            |     |   |
| MOTA  | 4729 | Ç   |       | B 180 | -56.652  | 46.107 | 3.062  | 1.00 44.98 | .B  | С |
| MOTA  | 4730 | 0   |       | B 180 | -55.915  | 45.673 | 2.179  | 1.00 46.29 | В   | 0 |
| MOTA  | 4731 | N   | ILE   | B 181 | -56.580  | 45.707 | 4.326  | 1.00 43.92 | В   | N |
| ATOM  | 4732 | CB  | ILE   | B 181 | -\$5.577 | 44.754 | 4.765  | 1.00 43.46 | В   | С |
| MOTA  | 4733 | СВ  | ILE   | B 181 | -55.015  | 45.164 | 6.130  | 1.00 43.02 | В   | С |
| ATOM  | 4734 |     | ILE   |       | -53.998  | 44.155 | 6.597  | 1.00 42.15 | В   | С |
| ATOM  | 4735 | CG1 |       | B 181 | -54.401  | 46.558 | 6.047  | 1.00 41.93 | В   | c |
|       |      |     |       |       |          |        |        | 1.00 40.49 | B   | č |
| MOTA  | 4736 |     | ILE   |       | -54.074  | 47.131 | 7.404  |            |     |   |
| ATOM  | 4737 | С   |       | B 181 | -56.098  | 43.337 | 4.874  | 1.00 44.20 | В   | С |
| MOTA  | 4738 | 0   | ILE   | B 181 | -55.333  | 42.401 | 5.063  | 1.00 45.43 | В   | 0 |
| ATOM  | 4739 | N   | ILE   | B 182 | -57.403  | 43.173 | 4.749  | 1.00 46.04 | В   | N |
| ATOM  | 4740 | CB  | ILE   | B 182 | -58.011  | 41.850 | 4.857  | 1.00 46.87 | В   | С |
| .ATOM | 4741 | СВ  | TLE   | B 182 | -58.954  | 41.784 | 6.099  | 1.00 46.79 | В   | С |
| ATOM  | 4742 |     |       | B 182 | -59.410  | 40.358 | 6.342  | 1.00 45.98 | В   | Č |
|       | 4743 |     |       | B 182 |          |        | 7.355  | 1.00 45.55 | В   | ç |
| ATOM  |      |     |       |       | -58.205  | 42.230 |        |            |     |   |
| ATOM  | 4744 |     |       | B 182 | -59.042  | 42.154 |        | 1.00 46.20 | B   | С |
| MOTA  | 4745 | С.  |       | B 182 | -58.805  | 41.555 | 3.588  | 1.00 47.28 | В   | С |
| ATOM  | 4746 | 0   | ILE   | B 182 | -58.834  | 40.428 | 3.102  | 1.00 46.28 | В   | 0 |
| ATOM  | 4747 | N   | PHE   | B 183 | -59.424  | 42.598 | 3.052  | 1.00 48.09 | В   | N |
| ATOM  | 4748 | СВ  | PHE   | В 183 | -60.227  | 42.500 | 1.847  | 1.00 49.83 | . В | С |
| ATOM  | 4749 | CB  |       | B 183 | -61.509  | 43.299 | 2.027  | 1.00 47.78 | В   | Č |
|       |      |     |       | B 183 | -62.275  |        |        | 1.00 45.09 | В   | č |
| ATOM  | 4750 | CG  |       |       |          | 42.939 | 3.252  |            |     |   |
| ATOM  | 4751 |     |       | B 183 | -63.305  | 43.744 | 3.690  | 1.00 44.50 | В   | C |
| ATOM  | 4752 | CD2 | PHE   | B 183 | -61.976  | 41.788 | 3.961  | 1.00 45.88 | В   | С |
| ATOM  | 4753 | CE1 | PHE : | B 183 | -64.030  | 43.409 | 4.819  | 1.00 46.27 | В   | С |
| ATOM  | 4754 | CE2 | PHE : | B 183 | -62.694  | 41.440 | 5.097  | 1.00 46.50 | В   | С |
| ATOM  | 4755 | CZ  |       | B 183 | -63.724  | 42.250 | 5.529  | 1.00 46:15 | В   | С |
| ATOM  | 4756 | c   |       | B 183 | -59.431  | 43.071 | 0.679  | 1.00 51.99 | В   | Č |
|       |      |     |       |       |          |        |        |            |     | ŏ |
| ATOM  | 4757 | 0   |       | B 183 | -59.887  | 43.072 | -0.467 | 1.00 51.93 | В.  |   |
| ATOM  | 4758 | N   |       | B 184 | -58.243  | 43.574 | 0.986  | 1.00 54.26 | В   | N |
| ATOM  | 4759 | СВ  | HIS   | B 184 | -57.368  | 44.153 | -0.022 | 1.00 57.04 | В   | С |
| ATOM  | 4760 | CB  | HIS   | B 184 | -57.116  | 43.150 | -1.147 | 1.00 58.34 | В   | С |
| ATOM  | 4761 | CG  | HIS   | B 184 | -56.149  | 43.636 | -2.179 | 1.00 61.20 | В   | С |
| ATOM  | 4762 | CD2 | HIS I | B 184 | -56.300  | 43.879 | -3.504 | 1.00 62.06 | В   | С |
| ATOM  | 4763 |     | HIS   |       | -54.835  | 43.928 | -1.884 | 1.00 61.93 | В   | N |
| ATOM  | 4764 |     | HIS   |       | -54.216  | 44.329 | -2.979 | 1.00 62.15 | В   | c |
|       |      |     |       |       |          |        |        |            |     |   |
| ATOM  | 4765 |     | HIS   |       | -55.082  | 44.309 | -3.976 | 1.00 62.55 | В   | N |
| MOTA  | 4766 | С   | HIS   | B 184 | -57.947  | 45.425 | -0.622 | 1.00 57.30 | В   | С |
| MOTA  | 4767 | 0   | HIS   | B 184 | -57.212  | 46.261 | -1.149 | 1.00 58.94 | В   | 0 |
| ATOM  | 4768 | N   | LYS ! | B 185 | ~59.261  | 45.582 | -0.539 | 1.00 56.65 | В   | N |
| ATOM  | 4769 | СВ  | LYS   | B 185 | -59.901  | 46.754 | -1.113 | 1.00 56.03 | В   | С |
| ATOM  | 4770 | СВ  | LYS   |       | -60.966  | 46.302 | -2.135 | 1.00 58.53 | В   | С |
| ATOM  | 4771 | CG  |       | B 185 | -61.574  | 47.422 | -2.997 | 1.00 60.06 | В   | č |
|       |      |     |       |       |          | 46.920 |        | 1.00 59.90 | В   | č |
| ATOM  | 4772 | CD  |       | B 185 | -62.714  |        | -3.879 |            | В   | c |
| ATOM  | 4773 | CE  |       | B 185 | -64.076  | 47.409 | -3.374 | 1.00 60.83 |     |   |
| ATOM  | 4774 | NZ  |       | B 185 | -64.326  | 46.992 | -1.964 | 1.00 60.91 | В   | N |
| ATOM  | 4775 | С   | LYS 1 | B 185 | -60.550  | 47.615 | -0.038 | 1.00 54.45 | В   | С |
| ATOM  | 4776 | 0   | LYS ! | B 185 | -61.293  | 47.108 | 0.800  | 1.00 55.44 | В   | 0 |
| ATOM  | 4777 | N   | ARG I | B 186 | -60.270  | 48.913 | -0.053 | 1.00 52.11 | В   | N |
| ATOM  | 4778 | СВ  |       | B 186 | -60.880  | 49.818 | 0.917  | 1.00 50.12 | В   | С |
| ATOM  | 4779 | СВ  |       | B 186 | -60.042  | 51.087 | 1.089  | 1.00 49.38 | В   | Ċ |
|       |      |     |       |       |          |        | -0.015 | 1.00 48.39 |     |   |
| ATOM  | 4780 | CG  |       | B 186 | -60.214  | 52.107 |        |            | В   | C |
| MOTA  | 4781 | CD  |       | B 186 | -59.448  | 53.400 | 0.250  | 1.00 49.08 | В   | С |
| MOTA  | 4782 | NE  |       | B 186 | -60.051  | 54.303 | 1.239  | 1.00 48.59 | В   | N |
| MOTA  | 4783 | CZ  | ARG I | B 186 | -60.969  | 55.233 | 0.971  | 1.00 48.23 | В   | С |
| MOTA  | 4784 | NH1 | ARG I | B 186 | -61.435  | 55.409 | -0.255 | 1.00 45.39 | В   | N |
| ATOM  | 4785 |     | ARG I |       | -61.382  | 56.039 | 1.928  | 1.00 50.19 | В   | N |
| ATOM  | 4786 | c   |       | B 186 | -62.261  | 50.193 | 0.384  | 1.00 50.52 | В   | Ċ |
| ATOM  | 4787 | 0   |       | B 186 | -62.591  | 49.897 | -0.758 | 1.00 50.42 | В   | ō |
|       |      |     |       |       |          |        |        | 1.00 50.42 |     |   |
| ATOM  | 4788 | N   |       | B 187 | -63.071  | 50.841 | 1.207  |            | В   | N |
| ATOM  | 4789 | СВ  |       | B 187 | -64.412  | 51.233 | 0.789  | 1.00 53.53 | В   | С |
| ATOM  | 4790 | CB  |       | B 187 | -65.483  | 50.638 | 1.716  | 1.00 53.37 | В   | С |
| MOTA  | 4791 | CG  | PHE I | 8 187 | -65.464  | 49.149 | 1.785  | 1.00 53.65 | В   | С |
| ATOM  | 4792 | CD1 | PHE I | B 187 | -64.665  | 48.496 | 2.707  | 1.00 54.23 | В   | С |
| ATOM  | 4793 |     | PHE I |       | -66.207  | 48.397 | 0.890  | 1.00 54.26 | В   | С |
|       |      |     |       |       |          |        |        | _          |     |   |

| ATOM         | 4794         | CE1      | PHE        | В | 187        | -64.599            | 47.105           | 2.740            | 1.00 | 56.45          |   | В       | С      |
|--------------|--------------|----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|---|---------|--------|
| ATOM         | 4795         |          | PHE        |   | 187        | -66.152            | 47.00B           | 0.908            |      | 56.87          |   | В       | C      |
| ATOM         | 4796         | CZ       | PHE        |   | 187        | -65.343            | 46.355           | 1.836            |      | 57.29<br>54.85 |   | B<br>B  | C      |
| ATOM<br>ATOM | 4797<br>4798 | C        |            |   | 187<br>187 | -64.567<br>-63.811 | 52.738<br>53.444 | 0.805<br>1.473   |      | 55.43          |   | 8       | 0      |
| ATOM         | 4799         | N        | ASP        |   |            | -65.561            | 53.219           | 0.063            |      | 57.10          |   | В       | N      |
| ATOM         | 4800         | CB       | ASP        |   |            | -65.879            | 54.636           | -0.010           |      | 58.85          |   | В       | c      |
| ATOM         | 4801         | CB       | ASP        |   | _          | -66.781            | 54.928           | -1.229           | 1.00 | 60.34          |   | В       | С      |
| ATOM         | 4802         | CG       | ASP        |   |            | -67.067            | 56.433           | -1.432           |      | 62.29          |   | В       | С      |
| ATOM         | 4803         |          | ASP        |   |            | -67.700            | 57.064           | -0.550           |      | 62.15          |   | В       | 0      |
| MOTA         | 4804         |          | ASP        |   | 188        | -66.661<br>-66.630 | 56.981<br>54.923 | -2.486<br>1.281  |      | 62.26<br>59.68 |   | B<br>B  | C      |
| ATOM<br>ATOM | 4805<br>4806 | С<br>0   |            | _ | 188        | -67,375            | 54.081           | 1.786            |      | 59.52          | ~ | В       | ŏ      |
| MOTA         | 4807         | N        |            |   | 189        | -66.414            | 56.112           | 1.820            |      | 60.70          |   | В       | N      |
| ATOM         | 4808         | CB       | TYR        |   |            | -67.068            | 56.519           | 3.042            | 1.00 | 61.22          |   | В       | С      |
| MOTA         | 4809         | CB       |            |   | 189        | -66.585            | 57.928           | 3.432            |      | 61.01          |   | В       | С      |
| MOTA         | 4810         | CG       | TYR        |   |            | -65.151            | 57.942           | 3.941            |      | 60.56          |   | B<br>B  | C<br>C |
| ATOM<br>ATOM | 4811<br>4812 |          | TYR<br>TYR |   |            | -64.549<br>-63.235 | 59.115<br>59.097 | 4.405<br>4.904   |      | 59.75<br>59.10 |   | В       | c      |
| ATOM         | 4813         |          | TYR        |   | 189        | -64.406            | 56.763           | 3.988            |      | 60.47          |   | В       | č      |
| ATOM         | 4814         |          | TYR        |   |            | -63.112            | 56.739           | 4.479            |      | 59.24          |   | 8       | C      |
| ATOM         | 4815         | CZ       | TYR        | В | 189        | -62.531            | 57.897           | 4.934            |      | 58.53          |   | В       | С      |
| MOTA         | 4816         | OH       | TYR        |   |            | -61.248            | 57.825           | 5.407            |      | 58.88          |   | В       | 0      |
| ATOM         | 4817         | Ç.       | TYR        |   |            | -68.587            | 56.468           | 2.914            |      | 61.69          |   | В       | C      |
| ATOM<br>ATOM | 4818<br>4819 | O<br>N   | TYR        |   |            | -69.294<br>-69.095 | 56.851<br>55.987 | 3.836<br>1.781   |      | 62.67          |   | B<br>B  | O<br>N |
| MOTA         | 4820         | СВ       | LYS        |   |            | -70.544            | 55.903           | 1.584            |      | 63.95          |   | В       | Ċ      |
| ATOM         | 4821         | СВ       | LYS        |   |            | -70.978            | 56.759           | 0.394            |      | 66.52          |   | В.      | C      |
| ATOM         | 4822         | CG       | LYS        | В | 190        | -71.116            | 58.257           | 0.697            | 1.00 | 70.33          |   | ₿ …     | C ·    |
| ATOM         | 4823         | CD       | LYS        |   |            | -69.922            | 59.064           | 0.169            |      | 73.18          |   | В       | С      |
| ATOM         | 4824         | CE       | LYS        |   |            | -69.801            | 58.960           | -1.350           |      | 73.73          |   | В       | C      |
| ATOM<br>ATOM | 4825<br>4826 | NZ<br>C  | LYS        |   |            | -68.443<br>-71.056 | 59.368<br>54.480 | -1.829<br>1.384  |      | 63.06          |   | B<br>B  |        |
| ATOM         | 4827         | Ö        | LYS        |   |            | -72.206            | 54.172           | 1.699            |      | 62.20          |   | В       | ŏ      |
| ATOM         | 4828         | 'n       | ASP        |   |            | -70.203            | 53.624           | 0.838            |      | 62.75          |   | В.      |        |
| ATOM         | 4829         | CB       | ASP        | В | 191        | -70.545            | 52.233           |                  |      | 62.69          |   | В.      | С      |
| ATOM         | 4830         | CB       | ASP        |   |            | -69.257            | 51.451           | 0.339            | -    | 64.65          |   | B;      | C      |
| ATOM         | 4831         | CG       | ASP        |   |            | -69.508            | 50.048           | -0.156           |      | 66.31          |   | В       | . C    |
| ATOM<br>ATOM | 4832<br>4833 |          | ASP<br>ASP |   |            | -68.536<br>-70.661 | 49.411<br>49.577 | -0.614<br>-0.083 |      | 67.27<br>68.68 |   | B·<br>B | 0      |
| ATOM         | 4834         | C        | ASP        |   |            | -71.303            | 51.668           | 1.789            |      | 62.47          |   | В       | č      |
| ATOM         | 4835         | ō        | ASP        |   |            | -70.865            | 51.779           | 2.931            |      | 62.44          |   | В       | 0      |
| MOTA         | 4836         | N        | GLN        | В | 192        | -72.440            | 51.058           | 1.526            |      | 15.00          |   | В       | N      |
| ATOM         | 4837         | CB       | GLN        |   |            | -73.315            | 50.507           | 2.554            |      | 15.00          |   | В       | C      |
| ATOM         | 4838         | CB<br>CG | GLN        |   |            | -74.598<br>-75.447 | 49.964           | 1.924<br>1.235   |      | 15.00<br>15.00 |   | B<br>B  | C<br>C |
| MOTA<br>MOTA | 4839<br>4840 | CD       | GLN<br>GLN |   |            | -76.686            | 51.019<br>50.437 | 0.581            |      | 15.00          |   | В       | c      |
| ATOM         | 4841         |          | GLN        |   |            | -76.893            | 49.223           | 0.590            |      | 15.00          |   | В       | ō      |
| MOTA         | 4842         |          | GLN        |   |            | -77.516            | 51.302           | 0.011            |      | 15.00          |   | В       | N      |
| MOTA         | 4843         | С        | GLN        |   |            | -72.611            | 49.399           | 3.333            |      | 15.00          |   | В       | C      |
| ATOM         | 4844         | 0        | GLN        | _ |            | -72.718            | 49.347           | 4.574            |      | 65.61          |   | В       | 0      |
| ATOM<br>ATOM | 4845<br>4846 | N<br>CB  | GLN<br>GLN |   |            | -71.921<br>-71.191 | 48.498<br>47.410 | 2.644<br>3.287   |      | 63.99<br>63.01 |   | B<br>B  | N<br>C |
| ATOM         | 4847         | CB       | GLN        |   |            | ~70.220            | 46.757           | 2.306            |      | 65.19          |   | В       | c      |
| ATOM         | 4848         | CG       | GLN        |   |            | -70.876            | 46.089           | 1.122            |      | 68.69          |   | В       | С      |
| ATOM         | 4849         | CD       | GLN        |   |            | -69.865            | 45.420           | 0.206            |      | 70.19          |   | В       | C      |
| ATOM         | 4850         |          | GLN        |   |            | -69.066            | 44.579           | 0.641            |      | 68.27          |   | В       | 0      |
| MOTA         | 4851         |          | GLN<br>GLN |   |            | -69.895<br>-70.380 | 45.791<br>48.000 | -1.073<br>4.423  |      | 72.11<br>61.09 |   | B<br>B  | N<br>C |
| ATOM<br>ATOM | 4852<br>4853 | C<br>0   | GLN        |   |            | -70.380<br>-70.376 | 48.000           | 5.540            |      | 61.23          |   | В       | Ö      |
| ATOM         | 4854         | N        | PHE        |   |            | -69.688            | 49.084           | 4.113            |      | 58.88          |   | В       | N      |
| ATOM         | 4855         | СВ       | PHE        |   |            | -68.857            | 49.760           | 5.087            | 1.00 | 56.78          |   | В       | С      |
| ATOM         | 4856         | СВ       | PHE        | В | 194        | -68.101            | 50.895           | 4.418            |      | 55.24          |   | В       | c      |
| ATOM         | 4857         | CG       | PHE        |   |            | -66.975            | 51.431           | 5.231            |      | 53.90          |   | В       | C      |
| ATOM         | 4858         |          | PHE        |   |            | -66.808            | 52.800           | 5.381<br>5.794   |      | 54.07<br>54.82 |   | B<br>B  | C<br>C |
| ATOM<br>ATOM | 4859<br>4860 |          | PHE        |   |            | -66.040<br>-65.720 | 50.574<br>53.314 | 6.071            |      | 53.76          |   | В       | c      |
| MOTA         | 4861         |          | PHE        |   |            | -64.944            | 51.074           | 6.490            |      | 55.32          |   | В       | c      |
| ATOM         | 4862         | CZ       | PHE        |   |            | -64.783            | 52.450           | 6.627            |      | 55.56          |   | В       | Č      |
| MOTA         | 4863         | C        | PHE        |   |            | -69.703            | 50.322           | 6.209            |      | 57.13          |   | В       | С      |
| MOTA         | 4864         | 0        | PHE        |   |            | -69.419            | 50.095           | 7.385            |      | 58.32          |   | В       | 0      |
| MOTA         | 4865         | N        | LEU        |   |            | ~70.745            | 51.060           | 5.839<br>6.813   |      | 55.88<br>54.01 |   | B       | N      |
| ATOM<br>ATOM | 4866<br>4867 | CB<br>CB | LEU        |   |            | -71.636<br>-72.768 | 51.677<br>52.379 | 6.098            |      | 54.24          |   | B<br>B  | C<br>C |
| MOTA         | 4868         | CG       | LEU        |   |            | -72.700            | 53.587           | 5.325            |      | 54.86          |   | В       | c      |
| 7.1.01       |              |          | 250        | ٠ | 173        |                    |                  |                  | 3    |                |   | -       | -      |

| MOTA | 4869  | CD1 | LEU | В | 195 | -73.366 | 53.966 | 4.344  | 1.00 | 57.10 |   | В          | С   |
|------|-------|-----|-----|---|-----|---------|--------|--------|------|-------|---|------------|-----|
| ATOM | 4870  | CD2 | LEU | B | 195 | -71.988 | 54.734 | 6.273  | 1.00 | 55.28 |   | В          | С   |
|      | 4871  | C   |     |   | 195 | -72.226 | 50.713 | 7.821  |      | 52.83 |   | В          | Č   |
| ATOM |       |     |     |   |     |         |        | 8.950  |      | 52.98 |   | В          | ŏ   |
| ATOM | 4872  | 0   |     |   | 195 | -72.517 | 51.095 |        |      |       |   |            |     |
| MOTA | 4873  | N   |     |   | 196 | -72.416 | 49.466 | 7.420  |      | 51.86 |   | В          | N   |
| ATOM | 4874  | CB  | ASN | В | 196 | -72.990 | 48.480 | 8.324  | 1.00 | 51.70 |   | В          | С   |
| MOTA | 4875  | CB  | ASN | В | 196 | -73.562 | 47.305 | 7.539  | 1.00 | 52.23 |   | В          | C   |
| ATOM | 4876  | CG  |     |   | 196 | -74.756 | 47.693 | 6.702  | 1.00 | 52.06 |   | В          | c   |
|      |       |     | ASN |   | -   | -75.116 | 46.986 | 5.764  |      | 53.69 |   | В          | ō   |
| MOTA | 4877  |     |     |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4878  |     | ASN |   |     | -75.383 | 48.818 | 7.035  |      | 50.27 |   | В          | N   |
| ATOM | 4879  | С   | ASN | В | 196 | -71.977 | 47.963 | 9.321  | 1.00 | 50.85 |   | В          | С   |
| ATOM | 4880  | 0   | ASN | В | 196 | -72.295 | 47.825 | 10.502 | 1.00 | 52.16 |   | В          | 0   |
| ATOM | 4681  | N   | LEU | В | 197 | -70.770 | 47.666 | 8.837  | 1.00 | 49.68 |   | В          | N   |
| ATOM | 4882  | CB  | LEU |   | 197 | -69.679 | 47.158 | 9.675  |      | 47.99 |   | В          | С   |
|      |       |     |     |   | 197 | -68.405 | 46.979 | 8.852  |      | 47.91 |   | В          | Č   |
| ATOM | 4883  | СВ  |     |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4884  | CG  |     |   | 197 | -67.629 | 45.678 | 9.041  |      | 48.91 |   | В          | С   |
| ATOM | 4885  | CD1 | LEU | В | 197 | -66.364 | 45.704 | 8.178  |      | 49.94 |   | В          | С   |
| MOTA | 4886  | CD2 | LEU | В | 197 | -67.289 | 45.485 | 10.494 | 1.00 | 48.21 |   | В          | С   |
| ATOM | 4887  | С   | LEU | В | 197 | -69.417 | 48.192 | 10.746 | 1.00 | 47.15 |   | В          | . C |
| ATOM | 4888  | ō   | LEU |   | 197 | -69.189 | 47.879 | 11.909 |      | 45.95 |   | B .        | 0   |
|      |       |     |     |   |     |         |        |        |      | 46.15 |   | В          |     |
| ATOM | 4889  | N   |     |   | 198 | -69.442 | 49.441 | 10.328 |      |       |   |            | N   |
| ATOM | 4890  | CB  |     |   | 198 | -69.220 | 50.514 | 11.243 |      | 46.70 |   | В          | С   |
| MOTA | 4891  | СВ  | MET | В | 198 | -69.340 | 51.820 | 10.497 | 1.00 | 49.05 |   | , <b>B</b> | С   |
| ATOM | 4892  | CG  | MET | В | 198 | -68.243 | 51.989 | 9.480  | 1.00 | 52.11 |   | В          | С   |
| ATOM | 4893  | SD  | MET | В | 198 | -66.715 | 52.422 | 10.308 | 1.00 | 57.49 |   | В          | S   |
| MOTA | 4894  | CE  | MET | _ | 198 | -66.989 | 54.245 | 10.533 |      | 54.82 |   | В          | C   |
|      |       |     |     |   |     |         |        |        |      |       |   |            |     |
| ATOM | 4895  | С   |     |   | 198 | -70.245 | 50.433 | 12.358 |      | 46.81 |   | В          | С   |
| MOTA | 4896  | ٥   |     |   | 198 | -69.894 | 50.335 | 13.526 |      | 46.02 |   | В          | 0   |
| ATOM | 4897  | N   | GLU | В | 199 | -71.519 | 50.462 | 11.983 | 1.00 | 48.48 |   | В          | N   |
| ATOM | 4898  | СВ  | GLU | В | 199 | -72.625 | 50.405 | 12.932 | 1.00 | 49.71 |   | В          | С   |
| MOTA | 4899  | СВ  | GLH | R | 199 | -73.944 | 50.200 | 12.173 | 1 00 | 51.45 |   | В          | С   |
|      |       |     |     |   |     | -75.222 | 50.361 |        |      | 54.58 |   | В          | č   |
| MOTA | 4900  | CG  | GLU |   | 199 |         |        |        |      |       |   |            |     |
| ATOM | 4901  | CD  |     |   | 199 | -75.929 | 49.029 | 13.299 |      | 56.73 | • | В          | С   |
| ATOM | -4902 | OE1 | GLU | В | 199 | -76.311 | 48.311 | 12.339 | 1.00 | 57.97 |   | В          | 0   |
| ATOM | 4903  | OE2 | GLU | В | 199 | -76.102 | 48.707 | 14.502 | 1.00 | 54.14 |   | В          | . 0 |
| ATOM | 4904  | С   | GLU | В | 199 | -72.430 | 49.276 | 13.924 | 1.00 | 49.24 |   | В          | С   |
| ATOM | 4905  | ō   |     |   | 199 | -72.426 | 49.478 | 15.140 |      | 49.47 |   | В          | ō   |
|      |       |     |     |   |     |         |        |        |      | 48.27 |   | В          | N   |
| ATOM | 4906  | N   |     |   | 200 | -72.262 | 48.077 | 13.400 |      |       |   |            |     |
| MOTA | 4907  | CB  |     |   | 200 | -72.104 | 46.928 | 14.251 |      | 48.22 |   | В          | С   |
| MOTA | 4908  | CB  | LYS | В | 200 | -72.124 | 45.665 | 13.383 | 1.00 | 48.78 |   | В          | С   |
| MOTA | 4909  | CG  | LYS | В | 200 | -73.029 | 44.551 | 13.924 | 1.00 | 50.73 |   | В          | С   |
| ATOM | 4910  | CD  |     |   | 200 | -74.464 | 45.003 | 14.215 | 1.00 | 52.94 |   | В          | С   |
| ATOM | 4911  | CE  |     |   | 200 | -75.220 | 45.444 | 12.964 |      | 54.46 |   | В          | Ċ   |
|      |       |     |     |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4912  | NZ  |     |   | 200 | -76.659 | 45.748 | 13.306 |      | 56.57 |   | В          | N   |
| ATOM | 4913  | С   | LYS | В | 200 | -70.844 | 47.034 | 15.125 | 1.00 | 47.84 |   | B          | C   |
| MOTA | 4914  | 0   | LYS | В | 200 | -70.748 | 46.369 | 16.159 | 1.00 | 46.65 |   | В          | 0   |
| ATOM | 4915  | N   | LEU | В | 201 | -69.897 | 47.886 | 14.717 | 1.00 | 48.23 |   | В          | N   |
| ATOM | 4916  | СВ  | LEU |   |     | -68.654 | 48.123 | 15.476 | 1.00 | 47.14 |   | В          | С   |
| ATOM | 4917  | СВ  | LEU |   |     | -67.514 | 48.565 | 14.553 |      | 45.38 |   | В          | č   |
|      |       |     |     |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4918  | CG  | LEU |   | 201 | -66.591 | 47.485 | 13.977 |      | 44.55 |   | В          | C   |
| MOTA | 4919  | CD1 | LEU | В | 201 | -65.529 | 48.116 | 13.080 |      | 43.84 |   | В          | С   |
| MOTA | 4920  | CD2 | LEU | В | 201 | -65.944 | 46.727 | 15.103 | 1.00 | 42.83 |   | ₿          | С   |
| ATOM | 4921  | С   | LEU | В | 201 | -68.844 | 49.185 | 16.553 | 1.00 | 47.37 |   | В          | С   |
| ATOM | 4922  | 0   | LEU | В | 201 | -68.406 | 48.999 | 17.677 | 1.00 | 47.30 |   | В          | 0   |
| MOTA | 4923  | N   |     |   | 202 | -69.478 | 50.304 | 16.215 |      | 49.17 |   | В          | N   |
|      |       |     |     |   |     | -69.681 | 51.331 | 17.219 |      | 50.88 |   | В          | Ċ   |
| ATOM | 4924  | CB  | ASN |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4925  | CB  | ASN |   |     | -70.047 | 52.684 | 16.603 |      | 53.37 |   | В          | C   |
| MOTA | 4926  | CG  | ASN | В | 202 | -70.489 | 53.708 | 17.674 |      | 57.37 |   | В          | ¢   |
| MOTA | 4927  | OD1 | ASN | В | 202 | -69.757 | 53.968 | 18.648 | 1.00 | 58.56 |   | В          | 0   |
| MOTA | 4928  |     | ASN |   |     | -71.690 | 54.276 | 17.505 | 1.00 | 58.93 |   | В          | N   |
| MOTA | 4929  | C   |     |   | 202 | -70.740 | 50.941 | 18.242 |      | 51.77 |   | В          | C   |
|      |       |     | ASN |   |     |         | 51.572 | 19.289 |      | 51.84 |   | В          | ō   |
| ATOM | 4930  | 0   |     |   |     | -70.833 |        |        |      |       |   |            |     |
| ATOM | 4931  | N   |     |   | 203 | -71.544 | 49.916 | 17.955 |      | 53.14 |   | В          | N   |
| ATOM | 4932  | CB  | GLU | В | 203 | -72.558 | 49.476 | 18.922 |      | 53.99 |   | В          | С   |
| MOTA | 4933  | CB  | GLU | В | 203 | -73.692 | 48.695 | 18.245 | 1.00 | 57.58 |   | В          | С   |
| ATOM | 4934  | CG  |     |   | 203 | -74.757 | 49.557 | 17.561 | 1.00 | 63.64 |   | В          | С   |
| MOTA | 4935  | CD  | GLU |   |     | -76.118 | 48.847 | 17.451 |      | 65.85 |   | В          | Ċ   |
|      |       |     |     |   |     |         |        |        |      |       |   | В          | ŏ   |
| MOTA | 4936  |     | GLU |   |     | -76.161 | 47.680 | 16.985 |      | 67.69 |   |            |     |
| ATOM | 4937  | QE2 | GLU |   |     | -77.141 | 49.467 | 17.834 |      | 67.2B |   | В          | 0   |
| ATOM | 4938  | С   | GLU | В | 203 | -71.910 | 48.589 | 19.985 |      | 52.30 |   | В          | С   |
| MOTA | 4939  | 0   | GLU | В | 203 | -72.112 | 48.788 | 21.184 | 1.00 | 50.38 |   | В          | 0   |
| ATOM | 4940  | N   | ASN |   |     | -71.121 | 47.619 | 19.527 |      | 51.66 |   | В          | N   |
|      |       | СВ  | ASN |   |     | -70.430 | 46.704 | 20.415 |      | 52.29 |   | В          | Ċ   |
| ATOM | 4941  |     |     |   |     |         |        |        |      |       |   |            |     |
| MOTA | 4942  | CB  | ASN |   |     | -69.584 | 45.715 | 19.613 |      | 52.54 |   | В          | С   |
| MOTA | 4943  | CG  | ASN | В | 204 | -70.320 | 44.415 | 19.308 | 1.00 | 53.58 |   | В          | С   |
|      |       |     |     |   |     |         |        |        |      |       |   |            |     |

Figure 1

| ATOM | 4944 | OD1 | ASN   | B 204  | -70.051        | 43.762 | 18.301 | 1.00 54.12 | В   | 0  |
|------|------|-----|-------|--------|----------------|--------|--------|------------|-----|----|
| ATOM | 4945 |     |       | B 204  | -71.238        | 44.031 | 20.180 | 1.00 53.94 | В   |    |
| ATOM | 4946 | С   |       | B 204  | -69.540        | 47.451 | 21.402 | 1.00 53.02 | В   |    |
| ATOM | 4947 | Ó   |       | B 204  | -69.397        | 47.027 | 22.553 | 1.00 53.52 | В   |    |
| MOTA | 4948 | N   |       | B 205  | -68.942        | 48.556 | 20.959 | 1.00 52.58 | В   |    |
| ATOM | 4949 | СВ  |       | B 205  | -68.073        | 49.326 | 21.837 | 1.00 52.48 | В   |    |
| MOTA | 4950 | СВ  |       | B 205  | -67.107        | 50.251 | 21.077 | 1.00 52.82 | . B |    |
| ATOM | 4951 |     |       | B 205  | -66.342        | 49.467 | 20.028 | 1.00 52.62 | В   |    |
| MOTA | 4952 | CG1 |       | B 205  | -67.885        | 51.390 | 20.438 | 1.00 54.84 | В   |    |
| ATOM | 4953 |     |       | B 205  | -67.116        | 52.675 | 20.410 | 1.00 56.22 | В   |    |
| ATOM | 4954 | C   |       | B 205  | -68.877        | 50.200 | 22.774 | 1.00 52.07 | В   |    |
| ATOM | 4955 | ō   |       | B 205  | -68.312        | 50.858 | 23.643 | 1.00 51.76 | В   |    |
| ATOM | 4956 | N   |       | B 206  | -70.033        | 49.928 | 22.691 | 1.00 15.00 | В   |    |
| ATOM | 4957 | CA  |       | B 206  | -70.774        | 50.714 | 23.669 | 1.00 15.00 | В   |    |
| MOTA | 4958 | СВ  |       | B 206  | -71.706        | 51.700 | 22.961 | 1.00 15.00 | В   |    |
| ATOM | 4959 | CG  |       | B 206  | -70.984        | 52.780 | 22.171 | 1.00 15.00 |     |    |
| MOTA | 4960 | CD  |       | B 206  | -71.937        | 53.707 | 21.445 | 1.00 15.00 | В   |    |
| ATOM | 4961 | OE1 | GLU   | B 206  | -71.466        | 54.704 | 20.854 | 1.00 15.00 | 8   | ō  |
| MOTA | 4962 |     |       | B 206  | -73.157        | 53.442 | 21.464 | 1.00 15.00 | · B | ō  |
| ATOM | 4963 | С   |       | B 206  | -71.583        | 49.814 | 24.597 | 1.00 15.00 | В   | č  |
| ATOM | 4964 | 0 - |       | B 206  | -71.805        | 50.437 | 25.646 | 1.00 52.36 | В   | ō  |
| ATOM |      | N   |       | B 207  | -72.189        | 48.953 | 24.031 | 1.00 52.43 | В   | N  |
| ATOM | 4966 | ÇВ  |       | B 207  | -72.800        | 48.056 | 24.995 | 1.00 52.34 | В   |    |
| ATOM | 4967 | CB  |       | B 207  | -73.537        | 46.896 | 24.332 | 1.00 51.96 | В   |    |
| ATOM | 4968 | CG2 |       | B 207  | -74.571        | 47.420 | 23.379 | 1.00 51.22 | В   | Č  |
| ATOM | 4969 |     |       | B 207  | -72.562        | 45.996 | 23.590 | 1.00 52.16 | В   |    |
| ATOM | 4970 |     |       | B 207  | -73.278        | 44.955 | 22.804 | 1.00 54.91 | В   | č  |
| ATOM | 4971 | c   |       | B 207  | -71.645        | 47.470 | 25.779 | 1.00 52.23 | В   | č  |
| ATOM | 4972 | ō   |       | B 207  | -71.841        | 46.851 | 26.816 | 1.00 53.42 | В   | ŏ  |
| MOTA | 4973 | N   |       | B 208  | -70.434        | 47.674 | 25.269 | 1.00 51.14 | 8   | N  |
| ATOM | 4974 | СВ  |       | B 208  | -69.244        | 47.140 | 25.906 | 1.00 48.95 | В   | Ċ  |
| ATOM | 4975 | СВ  |       | B 208  | -68.200        | 46.796 | 24.853 | 1.00 48.64 | В   | č  |
| MOTA | 4976 | CG  |       | B 208  | -67.446        | 45.480 | 25.010 | 1.00 49.84 | В   | č  |
| ATOM | 4977 |     | LEU   |        | -68.411        | 44.311 | 25.123 | 1.00 50.40 | B   | ·č |
| ATOM | 4978 |     | LEU   |        | -66.535        | 45.301 | 23.797 | 1.00 51.62 | B   | č  |
| ATOM | 4979 | c   |       | B 208  | -68.693        | 48.171 | 26.856 | 1.00 47.52 | В   | č  |
| ATOM | 4980 | ō   |       | B :208 | -67.941        | 47.860 | 27.774 | 1.00 48.03 | . в | ŏ  |
| MOTA | 4981 | N · |       | B 209  | -69.072        | 49.418 | 26.653 | 1.00 46.74 | В   | N  |
| ATOM | 4982 | СВ  |       | B 209  | -68.561        | 50.488 | 27.510 | 1.00 45.53 | В   | č  |
| MOTA | 4983 | CB  |       | B 209  | -68.260        | 51.716 | 26.662 | 1.00 42.89 | В   | č  |
| ATOM | 4984 | OG  |       | B 209  | -69.474        | 52.380 | 26.392 | 1.00 37.96 | В   | ő  |
| MOTA | 4985 | C   |       | B 209  | -69.629        | 50.863 | 28.508 | 1.00 45.79 | В   | č  |
| ATOM | 4986 | ō   |       | B 209  | -70.604        | 50.122 | 28.703 | 1.00 48.55 | В   | ŏ  |
| ATOM | 4987 | N   |       | B 210  | -69.461        | 52.005 | 29.156 | 1.00 44.94 | В   | N  |
| ATOM | 4988 | CB  |       | B 210  | -70.517        | 52.415 | 30.038 | 1.00 45.52 | В   | Č  |
| ATOM | 4989 | СВ  |       | B 210  | -71.808        | 52.356 | 29.234 | 1.00 48.08 | В   | Č  |
| ATOM | 4990 | OG  |       | B 210  | -71.545        | 52.843 | 27.923 | 1.00 51.50 | В   | ō  |
| ATOM | 4991 | c   |       | B 210  | -70.654        | 51.604 | 31.326 | 1.00 43.84 | В   | č  |
| ATOM | 4992 | 0   |       | 3 210  | -70.894        | 50.381 | 31.307 | 1.00 40.94 | В   | ō  |
| ATOM | 4993 | N   |       | 3 211  | -70.539        | 52.313 | 32.466 | 1.00 44.30 | В   | N  |
| ATOM | 4994 | CD  | PRO I |        | -70.597        | 53.782 | 32.361 | 1.00 44.10 | В   | Ċ  |
| ATOM | 4995 | CB  | PRO E |        | -70.603        | 51.935 | 33.872 | 1.00 43.60 | . В | č  |
| ATOM | 4996 | СВ  | PRO E | 3 211  | -71.569        | 52.949 | 34.430 | 1.00 44.52 | В   | c  |
| MOTA | 4997 | CG  | PRO E |        | -71.113        | 54.199 | 33.730 | 1.00 44.91 | В   | Ċ  |
| ATOM | 4998 | С   | PRO E |        | -70.985        | 50.514 | 34.195 | 1.00 42.83 | В   | С  |
| ATOM | 4999 | ō   | PRO E |        | -70.126        | 49.694 | 34.471 | 1.00 44.21 | В   | ō  |
| ATOM | 5000 | N   | TRP 6 |        | -72.244        | 50.215 | 34.189 | 1.00 15.00 | В   | N  |
| ATOM | 5001 | CB  | TRP E |        | -72.576        | 48.830 | 34.498 | 1.00 15.00 | В   | С  |
| MOTA | 5002 | СВ  | TRP E |        | -74.093        | 48.630 | 34.466 | 1.00 15.00 | В   | C  |
| MOTA | 5003 | CG  | TRP E |        | -74.522        | 47.238 | 34.820 | 1.00 15.00 | В   | č  |
| ATOM | 5004 |     | TRP E |        | -74.857        | 46.185 | 33.908 | 1.00 15.00 | В   | Ċ  |
| ATOM | 5005 |     | TRP E |        | -75.199        | 45.058 | 34.682 | 1.00 15.00 | В   | č  |
| ATOM | 5006 |     | TRP E |        | -74.841        | 46.066 | 32.515 | 1.00 15.00 | В   | č  |
| MOTA | 5007 |     | TRP E |        | -74.670        | 46.721 | 36.075 | 1.00 15.00 | В   | č  |
| ATOM | 5008 |     | TRP E |        | -75.078        | 45.412 | 36.000 | 1.00 15.00 | В   | N  |
| ATOM | 5009 |     | TRP E |        | -75.523        | 43.828 | 34.110 | 1.00 15.00 | В   | Ċ  |
| ATOM | 5010 |     | TRP E |        | -75.161        | 44.846 | 31.949 | 1.00 15.00 | В   | č  |
| ATOM | 5011 |     | TRP E |        | -75.499        | 43.743 | 32.745 | 1.00 15.00 | В   | č  |
| ATOM | 5012 |     | TRP B |        | -71.907        | 47.875 | 33.515 | 1.00 15.00 | В   | č  |
| ATOM | 5013 |     | TRP B |        | -71.871        | 48.143 | 32.299 | 1.00 43.70 | В   | Ö  |
| ATOM | 5014 | N   | ILE B |        | -71.290        | 46.874 | 33.991 | 1.00 15.00 | В   | N  |
| ATOM | 5015 |     | ILE B |        | -70.524        | 45.816 | 33.343 | 1.00 15.00 | В   | č  |
| ATOM | 5016 | CB  | ILE B |        | -69.741        | 46.355 | 32.130 | 1.00 15.00 | В   | c  |
| ATOM | 5017 |     | ILE B |        | -68.875        | 45.256 | 31.534 | 1.00 15.00 | В   | č  |
| ATOM | 5018 |     | ILE B |        | -70.710        | 46.900 | 31.080 | 1.00 15.00 | В   | c  |
|      |      |     |       |        | <del>-</del> . |        |        |            | _   | -  |

Figure 1

| ATOM                                                         | 5019                                                                                                                         | CD1                                                 | ILE                                                                              |                                         | 213                                                                | -70.057                                                                                                         | 47.804                                                                                                                                             | 30.055                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|
|                                                              |                                                                                                                              | C                                                   |                                                                                  |                                         | 213                                                                | -69.540                                                                                                         | 45.178                                                                                                                                             | 34.318                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | c                                         |
| ATOM                                                         | 5020                                                                                                                         |                                                     |                                                                                  |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    | 34.342                                                                                                                                                                 | 1.00 45.                                                                                                                                     |                                                                                              | В                                       | ŏ                                         |
| MOTA                                                         | 5021                                                                                                                         | 0                                                   | ILE                                                                              |                                         |                                                                    | -69.225                                                                                                         | 44.039                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                              |                                                                                              | В                                       | N                                         |
| ATOM                                                         | 5022                                                                                                                         | N                                                   | GLN                                                                              |                                         |                                                                    | -69.191                                                                                                         | 46.109                                                                                                                                             | 35.244                                                                                                                                                                 | 1.00 45.                                                                                                                                     |                                                                                              |                                         |                                           |
| ATOM                                                         | 5023                                                                                                                         | CB                                                  | GLN                                                                              |                                         |                                                                    | -68.369                                                                                                         | 45.714                                                                                                                                             | 36.350                                                                                                                                                                 | 1.00 45.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| MOTA                                                         | 5024                                                                                                                         | CB                                                  | GLN                                                                              |                                         |                                                                    | -67.381                                                                                                         | 46.826                                                                                                                                             | 36.701                                                                                                                                                                 | 1.00 46.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| MOTA                                                         | 5025                                                                                                                         | CG                                                  | GLN                                                                              | В                                       | 214                                                                | -66.132                                                                                                         | 46.730                                                                                                                                             | 35.886                                                                                                                                                                 | 1.00 46.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5026                                                                                                                         | CD                                                  | GLN                                                                              | В                                       | 214                                                                | -65.450                                                                                                         | 45.368                                                                                                                                             | 36.094                                                                                                                                                                 | 1.00 48.                                                                                                                                     | 41                                                                                           | В                                       | С                                         |
| MOTA                                                         | 5027                                                                                                                         | OE1                                                 | GLN                                                                              | В                                       | 214                                                                | -65.315                                                                                                         | 44.560                                                                                                                                             | 35.146                                                                                                                                                                 | 1.00 48.                                                                                                                                     | 25                                                                                           | В                                       | 0                                         |
| ATOM                                                         | 502B                                                                                                                         | NE2                                                 | GLN                                                                              | В                                       | 214                                                                | -65.032                                                                                                         | 45.101                                                                                                                                             | 37.344                                                                                                                                                                 | 1.00 47.                                                                                                                                     | 05                                                                                           | В                                       | N                                         |
| ATOM                                                         | 5029                                                                                                                         | C                                                   | GLN                                                                              |                                         |                                                                    | -69.436                                                                                                         | 45.533                                                                                                                                             | 37.420                                                                                                                                                                 | 1.00 45.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5030                                                                                                                         | ō                                                   | GLN                                                                              |                                         |                                                                    | -69.519                                                                                                         | 46.263                                                                                                                                             | 38.414                                                                                                                                                                 | 1.00 47.                                                                                                                                     |                                                                                              | В                                       | Ó                                         |
|                                                              |                                                                                                                              | N                                                   | VAL                                                                              |                                         |                                                                    | -70.242                                                                                                         | 44.693                                                                                                                                             | 37.175                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | N                                         |
| ATOM                                                         | 5031                                                                                                                         |                                                     |                                                                                  |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                        | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | Ċ                                         |
| ATOM                                                         | 5032                                                                                                                         | CB                                                  | VAL                                                                              |                                         |                                                                    | -71.374                                                                                                         | 44.221                                                                                                                                             | 37.965                                                                                                                                                                 |                                                                                                                                              |                                                                                              |                                         |                                           |
| MOTA                                                         | 5033                                                                                                                         | CB                                                  | VAL                                                                              |                                         |                                                                    | -72.535                                                                                                         | 45.236                                                                                                                                             | 37.940                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| ATOM                                                         | 5034                                                                                                                         |                                                     | VAL                                                                              |                                         |                                                                    | -73.759                                                                                                         | 44.648                                                                                                                                             | 38.623                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | c                                         |
| ATOM                                                         | 5035                                                                                                                         | CG2                                                 | VAL                                                                              | В                                       | 215                                                                | -72.114                                                                                                         | 46.532                                                                                                                                             | 38.614                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| MOTA                                                         | 5036                                                                                                                         | С                                                   | VAL                                                                              | В                                       | 215                                                                | -71.883                                                                                                         | 42.881                                                                                                                                             | 37.447                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5037                                                                                                                         | 0                                                   | VAL                                                                              | В                                       | 215                                                                | -72.684                                                                                                         | 42.235                                                                                                                                             | 37.813                                                                                                                                                                 | 1.00 43.                                                                                                                                     | 08                                                                                           | В                                       | 0                                         |
| MOTA                                                         | 5038                                                                                                                         | N                                                   | TYR                                                                              | В                                       | 216                                                                | -71.080                                                                                                         | 42.701                                                                                                                                             | 36.351                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | N                                         |
| ATOM                                                         | 5039                                                                                                                         | CB                                                  | TYR                                                                              | В                                       | 216                                                                | -71.174                                                                                                         | 41.445                                                                                                                                             | 35.618                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5040                                                                                                                         | CB                                                  | TYR                                                                              | В                                       | 216                                                                | -71.548                                                                                                         | 41.711                                                                                                                                             | 34.158                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5041                                                                                                                         | CG                                                  |                                                                                  |                                         | 216                                                                | -71.715                                                                                                         | 40.457                                                                                                                                             | 33.330                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5042                                                                                                                         |                                                     | TYR                                                                              |                                         |                                                                    | -72.832                                                                                                         | 39.647                                                                                                                                             | 33.480                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5043                                                                                                                         |                                                     | TYR                                                                              |                                         |                                                                    | -72.990                                                                                                         | 38.499                                                                                                                                             | 32.725                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
|                                                              |                                                                                                                              |                                                     |                                                                                  |                                         |                                                                    | -70.755                                                                                                         | 40.084                                                                                                                                             | 32.398                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | Ċ                                         |
| ATOM                                                         | 5044                                                                                                                         |                                                     | TYR                                                                              |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                              |                                                                                              | В                                       | č                                         |
| ATOM                                                         | 5045                                                                                                                         |                                                     | TYR                                                                              |                                         |                                                                    | -70.905                                                                                                         | 38.938                                                                                                                                             | 31.640                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              |                                         |                                           |
| MOTA                                                         | 5046                                                                                                                         | CZ                                                  |                                                                                  |                                         | 216                                                                | -72.023                                                                                                         | 38.150                                                                                                                                             | 31.807                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| MOTA                                                         | 5047                                                                                                                         | OH                                                  |                                                                                  |                                         | 216                                                                | -72.176                                                                                                         | 37.009                                                                                                                                             | 31.053                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | 0                                         |
| MOTA                                                         | 5048                                                                                                                         | C.                                                  | TYR                                                                              | В                                       | 216                                                                | -69.861                                                                                                         | 40.674                                                                                                                                             | 35.682                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5049                                                                                                                         | 0                                                   | TYR                                                                              | В                                       | 216                                                                | -69.816                                                                                                         | 39.499                                                                                                                                             | 35.841                                                                                                                                                                 | 1.00 40.                                                                                                                                     | 31                                                                                           | В                                       | 0                                         |
| ATOM                                                         | 5050                                                                                                                         | N                                                   | ASN                                                                              | В                                       | 217                                                                | -68.792                                                                                                         | 41.534                                                                                                                                             | 35.623                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | N                                         |
| ATOM                                                         | 5051                                                                                                                         | CB                                                  | ASN                                                                              |                                         |                                                                    | -67.491                                                                                                         | 40.921                                                                                                                                             | 35.862                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5052                                                                                                                         | СВ                                                  |                                                                                  |                                         | 217                                                                | -66.378                                                                                                         | 41.959                                                                                                                                             | 35.697                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       |                                           |
| ATOM                                                         | 5053                                                                                                                         | CG                                                  |                                                                                  |                                         | 217                                                                | -66.156                                                                                                         | 42.353                                                                                                                                             | 34.251                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | Ċ                                         |
| ATOM                                                         | 5054                                                                                                                         |                                                     | ASN                                                                              |                                         |                                                                    | -66.122                                                                                                         | 41.500                                                                                                                                             | 33.363                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | ō                                         |
|                                                              |                                                                                                                              |                                                     |                                                                                  |                                         |                                                                    | -66.000                                                                                                         |                                                                                                                                                    | 34.006                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | N                                         |
| ATOM                                                         | 5055                                                                                                                         |                                                     | ASN                                                                              |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                              |                                                                                              | В                                       | č                                         |
| ATOM                                                         | 5056                                                                                                                         | C                                                   |                                                                                  |                                         | 217                                                                | -67.424                                                                                                         | 40.308                                                                                                                                             | 37.255                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              |                                         |                                           |
| ATOM                                                         | 5057                                                                                                                         | 0                                                   |                                                                                  |                                         | 217                                                                | -67.568                                                                                                         | 39.148                                                                                                                                             | 37.408                                                                                                                                                                 | 1.00 36.                                                                                                                                     |                                                                                              | В                                       | 0                                         |
| MOTA                                                         | 5058                                                                                                                         | N                                                   |                                                                                  |                                         | 218                                                                | -67.359                                                                                                         | 41.242                                                                                                                                             | 38.196                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | N                                         |
| ATOM                                                         | 5059                                                                                                                         | СВ                                                  | ASN                                                                              | В                                       | 218                                                                | -67.613                                                                                                         | 40.708                                                                                                                                             | 39.528                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | . С                                       |
| ATOM                                                         | 5060                                                                                                                         | CB                                                  | ASN                                                                              | В                                       | 218                                                                | -67.408                                                                                                         | 41.796                                                                                                                                             | 40.584                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| MOTA                                                         | 5061                                                                                                                         | CG                                                  | ASN                                                                              | В                                       | 218                                                                | -65.947                                                                                                         | 42.148                                                                                                                                             | 40.782                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5062                                                                                                                         | OD1                                                 | ASN                                                                              | В                                       | 218                                                                | -65.089                                                                                                         | 41.269                                                                                                                                             | 40.858                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | 0                                         |
| ATOM                                                         | 5063                                                                                                                         |                                                     | ASN                                                                              |                                         |                                                                    | -65.657                                                                                                         | 43.440                                                                                                                                             | 40.870                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | N                                         |
| ATOM                                                         | 5064                                                                                                                         | С                                                   |                                                                                  |                                         | 218                                                                | -69.027                                                                                                         | 40.146                                                                                                                                             | 39.631                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5065                                                                                                                         | ŏ                                                   |                                                                                  |                                         | 218                                                                | -69.720                                                                                                         | 40.363                                                                                                                                             | 38.535                                                                                                                                                                 | 1.00 38.                                                                                                                                     |                                                                                              | В                                       | 0                                         |
| ATOM                                                         | 5066                                                                                                                         | N                                                   |                                                                                  |                                         | 219                                                                | -69.461                                                                                                         | 39.522                                                                                                                                             | 40.579                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | N                                         |
|                                                              |                                                                                                                              |                                                     |                                                                                  |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                        | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | c                                         |
| ATOM                                                         | 5067                                                                                                                         | CB                                                  |                                                                                  |                                         | 219                                                                | -70.837                                                                                                         | 39.078                                                                                                                                             | 40.763                                                                                                                                                                 |                                                                                                                                              |                                                                                              |                                         |                                           |
| ATOM                                                         | 5068                                                                                                                         | CB                                                  |                                                                                  |                                         | 219                                                                | -71.649                                                                                                         | 40.157                                                                                                                                             | 41.483                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| MOTA                                                         | 5069                                                                                                                         | CG                                                  |                                                                                  |                                         | 219                                                                | -71.829                                                                                                         | 41.415                                                                                                                                             | 40.682                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | C                                         |
| ATOM                                                         | 5070                                                                                                                         |                                                     | PHE                                                                              |                                         |                                                                    | -72.904                                                                                                         | 41.557                                                                                                                                             | 39.820                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5071                                                                                                                         | CD2                                                 | PHE                                                                              | В                                       | 219                                                                | -70.922                                                                                                         | 42.456                                                                                                                                             | 40.790                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| MOTA                                                         | 5072                                                                                                                         | CEl                                                 | PHE                                                                              | В                                       | 219                                                                | -73.071                                                                                                         | 42.713                                                                                                                                             | 39.081                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| MOTA                                                         | 5073                                                                                                                         | ÇE2                                                 | PHE                                                                              | В                                       | 219                                                                | -71.085                                                                                                         | 43.615                                                                                                                                             | 40.054                                                                                                                                                                 | 1.00 15.                                                                                                                                     |                                                                                              | В                                       | С                                         |
| ATOM                                                         | 5074                                                                                                                         | CZ                                                  | PHE                                                                              | В                                       | 219                                                                | -72.160                                                                                                         | 43.744                                                                                                                                             | 39.201                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
| ATOM                                                         | 5075                                                                                                                         | С                                                   |                                                                                  |                                         | 219                                                                | -71.489                                                                                                         | 38.747                                                                                                                                             | 39.425                                                                                                                                                                 | 1.00 15.                                                                                                                                     | 00                                                                                           | В                                       | С                                         |
|                                                              |                                                                                                                              |                                                     |                                                                                  |                                         |                                                                    |                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                              |                                                                                              |                                         | 0                                         |
|                                                              |                                                                                                                              |                                                     |                                                                                  |                                         | 219                                                                | -72.641                                                                                                         | 39.246                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                              |                                                                                              | В                                       |                                           |
| ATOM                                                         | 5076                                                                                                                         | 0                                                   | PHE                                                                              | В                                       | 219                                                                | -72.641<br>-70.981                                                                                              | 39.246                                                                                                                                             | 39.134                                                                                                                                                                 | 1.00 39.                                                                                                                                     | 04                                                                                           | B<br>B                                  |                                           |
| ATOM                                                         | 5076<br>5077                                                                                                                 | O<br>N                                              | PHE<br>PRO                                                                       | B<br>B                                  | 220                                                                | -70.981                                                                                                         | 37.813                                                                                                                                             | 39.134<br>38.561                                                                                                                                                       | 1.00 39.<br>1.00 39.                                                                                                                         | 04<br>53                                                                                     | В                                       | N                                         |
| ATOM<br>ATOM                                                 | 5076<br>5077<br>5078                                                                                                         | 0<br>N<br>CD                                        | PHE<br>PRO<br>PRO                                                                | B<br>B                                  | 220<br>220                                                         | -70.981<br>-69.817                                                                                              | 37.813<br>36.955                                                                                                                                   | 39.134<br>38.561<br>38.821                                                                                                                                             | 1.00 39.<br>1.00 39.<br>1.00 39.                                                                                                             | 04<br>53<br>41                                                                               | B<br>B                                  | И<br>С                                    |
| MOTA<br>MOTA<br>MOTA                                         | 5076<br>5077<br>5078<br>5079                                                                                                 | O<br>N<br>CD<br>CB                                  | PHE<br>PRO<br>PRO<br>PRO                                                         | B<br>B<br>B                             | 220<br>220<br>220                                                  | -70.981<br>-69.817<br>-71.602                                                                                   | 37.813<br>36.955<br>37.414                                                                                                                         | 39.134<br>38.561<br>38.821<br>37.286                                                                                                                                   | 1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 40.                                                                                                 | 04<br>53<br>41<br>20                                                                         | B<br>B<br>B                             | N<br>C<br>C                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM                                 | 5076<br>5077<br>5078<br>5079<br>5080                                                                                         | O<br>N<br>CD<br>CB<br>CB                            | PHE<br>PRO<br>PRO<br>PRO<br>PRO                                                  | B<br>B<br>B<br>B                        | 220<br>220<br>220<br>220                                           | -70.981<br>-69.817<br>-71.602<br>-70.556                                                                        | 37.813<br>36.955<br>37.414<br>36.501                                                                                                               | 39.134<br>38.561<br>38.821<br>37.286<br>36.665                                                                                                                         | 1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.                                                                                     | 04<br>53<br>41<br>20<br>40                                                                   | B<br>B<br>B                             | N<br>C<br>C                               |
| MOTA<br>MOTA<br>MOTA<br>MOTA                                 | 5076<br>5077<br>5078<br>5079<br>5080<br>5081                                                                                 | O<br>N<br>CD<br>CB<br>CB                            | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                           | B<br>B<br>B<br>B<br>B                   | 220<br>220<br>220<br>220<br>220<br>220                             | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058                                                             | 37.813<br>36.955<br>37.414<br>36.501<br>35.793                                                                                                     | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841                                                                                                               | 1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.                                                                                     | 04<br>53<br>41<br>20<br>40<br>30                                                             | B<br>B<br>B<br>B                        | и<br>С<br>С                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082                                                                         | O<br>N<br>CD<br>CB<br>CB<br>CG                      | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                    | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 220<br>220<br>220<br>220<br>220<br>220<br>220                      | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921                                                  | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673                                                                                           | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458                                                                                                     | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.                                                                         | 04<br>53<br>41<br>20<br>40<br>30<br>68                                                       | B<br>B<br>B<br>B                        | и<br>С<br>С<br>С                          |
| MOTA<br>MOTA<br>MOTA<br>MOTA                                 | 5076<br>5077<br>5078<br>5079<br>5080<br>5081                                                                                 | O<br>N<br>CD<br>CB<br>CB                            | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                    | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>220               | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921<br>-73.262                                       | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793                                                                                 | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668                                                                                           | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.                                                             | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59                                                 | B<br>B<br>B<br>B<br>B                   | и<br>С<br>С<br>С<br>С                     |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082                                                                         | O<br>N<br>CD<br>CB<br>CB<br>CG                      | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                    | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 220<br>220<br>220<br>220<br>220<br>220<br>220                      | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921                                                  | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673                                                                                           | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507                                                                                 | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.                                                             | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59                                                 | B<br>B<br>B<br>B<br>B                   | й<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>О |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM         | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084                                                         | O<br>N<br>CD<br>CB<br>CB<br>CC                      | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB                             | 8 8 8 8 8 8 8 8 8                       | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>220               | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921<br>-73.262                                       | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793                                                                                 | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668                                                                                           | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.                                                             | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59                                                 | B<br>B<br>B<br>B<br>B                   | и<br>С<br>С<br>С<br>С                     |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085                                                 | O<br>N<br>CD<br>CB<br>CG<br>C<br>O<br>N<br>CB       | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB<br>ALB                      | 8 8 8 8 8 8 8 8 8                       | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>221<br>221        | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921<br>-73.262<br>-73.655                            | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998                                                                       | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730                                                                       | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.                                                             | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86                                     | B<br>B<br>B<br>B<br>B                   | й<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>О |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086                                         | O<br>N<br>CD<br>CB<br>CG<br>C<br>O<br>N<br>CB<br>CB | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB<br>ALB                      | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221 | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.055<br>-72.921<br>-73.262<br>-73.655<br>-74.930<br>-75.567      | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875                                                   | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008                                                             | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 44.<br>1.00 43.<br>1.00 45.                         | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60                               | B<br>B<br>B<br>B<br>B<br>B<br>B         | иссссоисс                                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087                                 | O N CD CB CG O N CB CB C                            | PHE PRO PRO PRO PRO PRO ALB ALB ALB ALB                                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221 | -70.981<br>-69.817<br>-71.602<br>-70.556<br>-70.058<br>-72.921<br>-73.262<br>-73.655<br>-74.930<br>-75.567      | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875<br>36.642                                         | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008<br>37.535                                                   | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 44.                                                 | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51                         | B B B B B B B B B B B                   | N C C C C C O N C C C                     |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087                                 | O N CD CB CG C O N CB CC C                          | PHE PRO PRO PRO PRO PRO ALB ALB ALB ALB                                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.262 -73.655 -74.930 -75.567 -75.819 -76.506                 | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.875<br>36.844<br>36.875<br>36.642<br>35.751                               | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008<br>37.535<br>37.050                                         | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 44.<br>1.00 43.<br>1.00 43.                         | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21                   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | N C C C C C O N C C C O                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087<br>5088                         | O N C B C G C O N C B C C O N                       | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB<br>ALB<br>ALB<br>ALB        | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.262 -73.655 -74.930 -75.567 -75.819 -76.506                 | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875<br>36.642<br>35.751<br>37.879                     | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008<br>37.535<br>37.050<br>37.035                               | 1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 44.<br>1.00 44.<br>1.00 43.<br>1.00 45.<br>1.00 43.<br>1.00 43.                         | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21                   | 8 8 8 8 8 8 8 8 8 8 8 8                 | N C C C C C O N C C C O N                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5086<br>5087<br>5088                 | ON CB CB CC ON CB CC ON CB                          | PHE PRO PRO PRO PRO PRO ALB ALB ALB ALB LEU LEU                                  | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.655 -74.930 -75.567 -75.819 -76.506 -75.800 -76.645         | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875<br>36.642<br>35.751<br>37.879<br>38.255           | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008<br>37.535<br>37.050<br>37.035<br>35.907                     | 1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 43. | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21<br>00<br>00       | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | N C C C C C O N C C C O N C               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087<br>5088<br>5089<br>5090<br>5091 | ON CD CB CC ON CB CC ON CB CB                       | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB<br>ALB<br>ALB<br>ALB<br>LEU<br>LEU | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.262 -73.655 -74.930 -75.819 -76.506 -75.800 -76.645 -76.400 | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875<br>36.642<br>35.751<br>37.879<br>38.255<br>39.718 | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.507<br>40.008<br>37.535<br>37.035<br>37.035<br>35.907<br>35.527           | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 15.<br>1.00 15. | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21<br>00<br>00       | 8 B B B B B B B B B B B B B B B B B B B | N C C C C C O N C C C O N C C             |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087<br>5088<br>5089<br>5090<br>5091 | O N CB CG C O N CB CB CG CG                         | PHE PRO PRO PRO PRO ALB ALB ALB ALB LEU LEU LEU LEU                              | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.262 -73.655 -74.930 -75.567 -75.819 -76.506 -75.600 -76.645 | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.844<br>36.875<br>36.642<br>35.751<br>37.879<br>38.255<br>39.718<br>40.761 | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.730<br>40.008<br>37.535<br>37.050<br>37.035<br>35.907<br>35.527<br>36.600 | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 43.<br>1.00 43.<br>1.00 15.<br>1.00 15.<br>1.00 15.             | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21<br>00<br>00<br>00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | и с с с с с о и с с с о и с с с           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 5076<br>5077<br>5078<br>5079<br>5080<br>5081<br>5082<br>5083<br>5084<br>5085<br>5086<br>5087<br>5088<br>5089<br>5090<br>5091 | O N CB CG C O N CB CB CG CG                         | PHE<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>ALB<br>ALB<br>ALB<br>ALB<br>LEU<br>LEU | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 220<br>220<br>220<br>220<br>220<br>220<br>221<br>221<br>221<br>221 | -70.981 -69.817 -71.602 -70.556 -70.058 -72.921 -73.262 -73.655 -74.930 -75.819 -76.506 -75.800 -76.645 -76.400 | 37.813<br>36.955<br>37.414<br>36.501<br>35.793<br>36.673<br>35.793<br>36.998<br>36.344<br>36.875<br>36.642<br>35.751<br>37.879<br>38.255<br>39.718 | 39.134<br>38.561<br>38.821<br>37.286<br>36.665<br>37.841<br>37.458<br>36.668<br>38.507<br>38.507<br>40.008<br>37.535<br>37.035<br>37.035<br>35.907<br>35.527           | 1.00 39.<br>1.00 39.<br>1.00 40.<br>1.00 39.<br>1.00 42.<br>1.00 44.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 43.<br>1.00 15.<br>1.00 15. | 04<br>53<br>41<br>20<br>40<br>30<br>68<br>59<br>49<br>86<br>60<br>51<br>21<br>00<br>00<br>00 | 8 B B B B B B B B B B B B B B B B B B B | N C C C C C O N C C C O N C C             |

Figure 1

| ATOM | 5094 | CD2 | LEU | R | 222 | -78.227 | 40.809 | 36.834              | 1.00  | 15.00 | E      | C   |
|------|------|-----|-----|---|-----|---------|--------|---------------------|-------|-------|--------|-----|
| ATOM | 5095 | c   |     |   | 222 | -76.381 | 37.358 | 34.703              | -     | 15.00 | £      |     |
|      |      |     |     |   |     |         |        |                     |       | 47.42 | E      |     |
| MOTA | 5096 | 0   |     |   | 222 | -75.448 | 37.563 | 33.903              |       |       |        |     |
| ATOM | 5097 | N   |     |   | 223 | -77.084 | 36.406 | 34.617              |       | 15.00 | E      |     |
| MOTA | 5098 | СB  | LEU | В | 223 | -77.476 | 35.550 | 33.502              | 1.00  | 15.00 | 2      |     |
| ATOM | 5099 | CB  | LEU | В | 223 | -77.133 | 34.090 | 33.809              | 1.00  | 15.00 | 8      | C   |
| ATOM | 5100 | CG  | LEU | В | 223 | -75.649 | 33.772 | 34.016              | 1.00  | 15.00 | E      | C   |
| ATOM | 5101 |     | LEU |   |     | -75.493 | 32.357 | 34.549              |       | 15.00 | E      |     |
|      |      |     |     |   |     |         |        | 32.706              |       | 15.00 |        |     |
| ATOM | 5102 |     | LEU |   |     | -74.898 | 33.939 |                     |       | _     | 9      |     |
| ATOM | 5103 | С   |     |   | 223 | -78.969 | 35.680 | 33.213              |       | 15.00 | E      |     |
| ATOM | 5104 | 0   | LEU | В | 223 | -79.663 | 35.017 | 32.615              | 1.00  | 54.92 | 2      | •   |
| MOTA | 5105 | N   | ASP | В | 224 | -79.422 | 36.654 | 34.239              | 1.00  | 15.00 | 2      | N   |
| ATOM | 5106 | CB  | ASP | В | 224 | -80.547 | 37.549 | 33.992              | 1.00  | 15.00 | Е      | С   |
| ATOM | 5107 | CB  |     |   | 224 | -80.894 | 38.326 | 35.265              |       | 15.00 |        |     |
|      |      |     |     |   |     |         |        |                     |       |       |        |     |
| ATOM | 5108 | CG  |     |   | 224 | -81.509 | 37.443 | 36.334              |       | 15.00 | Е      |     |
| MOTA | 5109 |     | ASP |   |     | -82.208 | 36.472 | 35.977              |       | 15.00 | Е      |     |
| ATOM | 5110 | OD2 | ASP | В | 224 | -81.292 | 37.722 | 37.532              | 1.00  | 15.00 | 8      | 0   |
| ATOM | 5111 | С   | ASP | В | 224 | -80.232 | 38.524 | 32.863              | 1.00  | 15.00 | В      | C   |
| ATOM | 5112 | 0 - | ASP | В | 224 | ~79.093 | 39.140 | 33.032              | 1.00  | 15.00 | 8      | 0   |
| ATOM | 5113 | N   |     |   | 225 | -80.420 | 38.151 | 31.610              |       | 15.00 | В      |     |
|      |      |     |     |   |     |         |        |                     |       |       |        |     |
| ATOM | 5114 |     | TYR |   |     | -79.604 | 38.286 | 30.410              |       | 15.00 | В      |     |
| ATOM | 5115 | CB  | TYR | В | 225 | -80.232 | 37.507 | 29.251              | 1.00  | 15.00 | B      |     |
| ATOM | 5116 | CG  | TYR | В | 225 | -80.290 | 36.013 | 29.477              | 1.00  | 15.00 | В      | C   |
| MOTA | 5117 | CD1 | TYR | В | 225 | -81.474 | 35.394 | 29.856              | 1.00  | 15.00 | В      | C   |
| ATOM | 5118 |     | TYR |   |     | -81.532 | 34.029 | 30.062              |       | 15.00 | 2      |     |
|      |      |     | TYR |   |     |         |        |                     |       |       | -<br>E |     |
| ATOM | 5119 |     |     |   |     | -79.161 | 35.223 | 29.313              |       | 15.00 |        |     |
| ATOM | 5120 | CE2 |     |   |     | -79.210 | 33.856 | 29.517              |       | 15.00 | В      |     |
| MOTA | 5121 | CZ  | TYR | В | 225 | -80.397 | 33.265 | 29.892              | 1.00  | 15.00 | B      | С   |
| ATOM | 5122 | OH  | TYR | В | 225 | -80.449 | 31.906 | 30.0 <del>9</del> 7 | 1.00  | 15.00 | B      | 0   |
| MOTA | 5123 | С   | TYR | В | 225 | -79.443 | 39.751 | 30.019              | 1.00  | 15.00 | В      | С.  |
| ATOM | 5124 | ō   | TYR |   |     | -78.418 |        | 29.308              |       |       | В      |     |
|      |      |     |     |   |     | -80.344 |        |                     |       |       | B      |     |
| MOTA | 5125 | N   |     |   | 226 |         | 40.498 | 30.571              |       |       |        |     |
| MOTA | 5126 | CB  |     |   | 226 | -80.193 | 41.891 | 30.727.             |       |       | B      |     |
| MOTA | 5127 | CB  | PHE | В | 226 | -78.900 | 42.369 | 31.361              | 1.00  | 84.50 | В      |     |
| ATOM | 5128 | CG  | PHE | В | 226 | -78.990 | 43.606 | 32.193              | 1.00  | 84.75 | B      | C   |
| ATOM | 5129 | CDI | PHE | В | 226 | -78.905 | 44.858 | 31.619              | 1.00  | 85.57 | ₽      | С   |
| ATOM | 5130 |     | PHE |   |     | -79.194 |        | 33.565              |       |       | В      |     |
|      |      |     |     |   |     |         |        |                     |       |       |        |     |
| MOTA | 5131 |     |     |   | 226 | -79.025 | 45.993 | 32.402              |       |       | B      |     |
| MOTA | 5132 | CE2 | PHE | В | 226 | -79.320 | 44.617 | 34.341              | -1.00 | 83.59 | В      |     |
| MOTA | 5133 | CZ  | PHE | В | 226 | -79.230 | 45.863 | 33.756              | 1.00  | 83.07 | 8      | C   |
| MOTA | 5134 | С   | PHE | В | 226 | -80.624 | 42.765 | 29.588              | 1.00  | 84.91 | B      | C   |
| ATOM | 5135 | 0   | PHE | R | 226 | -81.227 | 43.818 | 29.742              | 1.00  | 84.55 | 2      | . 0 |
| ATOM | 5136 | N   | PRO |   |     | -80.390 | 42.416 | 28.321              |       | 82.22 | 8      |     |
|      |      |     |     |   |     |         |        |                     |       |       | 2      |     |
| ATOM | 5137 | CD  | PRO |   |     | -81.460 | 42.904 | 27.435              |       | 81.81 |        |     |
| ATOM | 5138 | CB  | PRO | В | 227 | -79.776 | 41.216 | 27.725              | 1.00  | 80.08 | В      |     |
| ATOM | 5139 | CB  | PRO | В | 227 | -80.828 | 40.754 | 26.703              | 1.00  | 80.60 | 8      | C   |
| ATOM | 5140 | CG  | PRO | В | 227 | -82.092 | 41.613 | 27.026              | 1.00  | 81.08 | В      | C   |
| ATOM | 5141 | С   | PRO | B | 227 | -78.425 | 41.552 | 27.080              | 1.00  | 80.26 | В      | C   |
| ATOM | 5142 | ō   | PRO |   |     | -78.327 | 41.798 | 25.874              |       | 78.06 | В      |     |
|      |      |     |     |   |     |         |        |                     |       |       |        |     |
| ATOM | 5143 | N   | GLY |   |     | -77.383 | 41.566 | 27.911              |       | 80.12 | В      |     |
| ATOM | 5144 | CB  | GLY |   |     | -76.033 | 41.898 | 27.459              |       | 79.49 | B      |     |
| MOTA | 5145 | С   | GLY | ₿ | 228 | -75.335 | 40.934 | 26.513              | 1.00  | 79.54 | В      |     |
| ATOM | 5146 | 0   | GLY | В | 228 | -75.303 | 41.179 | 25.313              | 1.00  | 79.62 | В      | . 0 |
| MOTA | 5147 | N   | THR | В | 229 | -75.649 | 39.933 | 27.077              | 1.00  | 15.00 | В      | N   |
| ATOM | 5148 | СВ  | THR |   |     | -74.955 | 38.938 | 26.269              |       | 15.00 | Е      |     |
|      |      |     |     | _ |     |         |        |                     |       | 15.00 | В      |     |
| ATOM | 5149 | CB  | THR |   |     | -74.397 | 37.799 | 27.143              |       | 15.00 |        |     |
| ATOM | 5150 |     | THR |   |     | -73.455 | 38.332 | 28.082              |       |       | В      |     |
| MOTA | 5151 | CG2 | THR |   |     | -73.708 | 36.755 | 26.278              |       | 15.00 | В      |     |
| MOTA | 5152 | С   | THR | В | 229 | -75.886 | 38.340 | 25.220              | 1.00  | 15.00 | В      | С   |
| ATOM | 5153 | 0   | THR | В | 229 | -75.692 | 38.476 | 24.019              | 1.00  | 80.84 | В      | 0   |
| ATOM | 5154 | N   | HIS |   |     | -75.972 | 37.529 | 25.711              | 1.00  | 81.54 | Ē      | N   |
|      |      | СВ  | HIS |   |     | -76.952 | 36.823 | 24.905              |       | 80.85 | B      |     |
| ATOM | 5155 |     |     |   |     |         |        |                     |       |       |        |     |
| ATOM | 5156 | СВ  | HIS |   |     | -77.963 | 36.099 | 25.802              |       | 82.82 | В      |     |
| MOTA | 5157 | CG  | HIS |   |     | -78.670 | 34.977 | 25.105              |       | 85.21 | В      |     |
| ATOM | 5158 | CD2 | HIS | В | 230 | -79.975 | 34.799 | 24.786              | 1.00  | 86.94 | В      | С   |
| ATOM | 5159 | ND1 | HIS | В | 230 | -78.004 | 33.882 | 24.599              | 1.00  | 86.71 | В      | N   |
| ATOM | 5160 |     | HIS |   |     | -78.862 | 33.075 | 24.000              |       |       | B      |     |
|      |      |     |     |   |     | -80.066 |        | 24.100              |       | 87.71 |        |     |
| MOTA | 5161 |     | HIS |   |     |         | 33.608 |                     |       |       | В      |     |
| ATOM | 5162 | C   | HIS |   |     | -77.718 | 37.674 | 23.914              |       | 79.02 | В      |     |
| ATOM | 5163 | 0   | HIS |   |     | -78.827 | 37.307 | 23.539              |       | 78.82 | В      |     |
| MOTA | 5164 | N   | ASN | В | 231 | -77.172 | 38.822 | 23.490              | 1.00  | 15.00 | В      | N   |
| ATOM | 5165 | СВ  | ASN | В | 231 | -77.988 | 39.555 | 22.531              | 1.00  | 15.00 | В      | С   |
| ATOM | 5166 | СВ  | ASN |   |     | -78.955 | 40.491 | 23.261              |       | 15.00 | В      |     |
| ATOM | 5167 | CG  | ASN |   |     | -80.077 | 39.744 | 23.955              |       | 15.00 | В      |     |
|      |      |     |     |   |     |         |        |                     |       |       |        |     |
| MOTA | 5168 | ODI | ASN | В | 231 | -80.669 | 38.825 | 23.387              | 1.00  | 15.00 | В      | 0   |

| ATOM | 5169 | ND2 | ASN | В | 231 | -80.378 | 40.137 | 25.186 | 1.00 | 15.00 | В    | N     |
|------|------|-----|-----|---|-----|---------|--------|--------|------|-------|------|-------|
|      |      |     | ASN |   |     | -77.116 | 40.359 | 21.573 | 1 00 | 15.00 | В    | С     |
| ATOM | 5170 | С   |     |   |     |         |        |        |      |       |      |       |
| MOTA | 5171 | 0   | ASN | В | 231 | -76.411 | 39.765 | 20.759 | 1.00 | 71.12 | В    | 0     |
| ATOM | 5172 | N   | LYS | R | 232 | -77.543 | 41.548 | 22.091 | 1.00 | 15.00 | В    | N     |
|      |      |     |     |   |     |         |        |        |      |       | В    | C     |
| MOTA | 5173 | CB  | LYS |   | 232 | -76.863 | 42.418 | 21.141 |      | 15.00 |      |       |
| ATOM | 5174 | CB  | LYS | В | 232 | -76.969 | 43.879 | 21.590 | 1.00 | 15.00 | В    | С     |
|      |      |     |     |   |     | -78.367 | 44.463 | 21.478 | 1 00 | 15.00 | В    | С     |
| ATOM | 5175 | CG  | LYS |   |     |         |        |        |      |       |      |       |
| ATOM | 5176 | CD  | LYS | В | 232 | -78.393 | 45.919 | 21.916 | 1.00 | 15.00 | В    | Ç     |
|      |      |     | LYS |   |     | -79.792 | 46.502 | 21.805 | 1 00 | 15.00 | В    | С     |
| ATOM | 5177 | CE  |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5178 | NZ  | LYS | В | 232 | -79.834 | 47.930 | 22.232 | 1.00 | 15.00 | В    | N     |
| ATOM | 5179 | С   | LYS | n | 232 | -75.396 | 42.029 | 20.994 | 1.00 | 15.00 | В    | С     |
|      |      |     |     |   |     |         |        |        |      |       |      |       |
| MOTA | 5180 | 0   | LYS | В | 232 | -74.853 | 42.041 | 19.859 |      | 64.62 | В    | 0     |
| ATOM | 5181 | N   | LEU | В | 233 | -74.378 | 41.762 | 21.614 | 1.00 | 60.06 | 8    | N     |
|      |      |     |     | _ |     |         | 41.354 | 21.595 |      | 55.48 | В    | С     |
| MOTA | 5182 | CB  | LEU |   |     | -72.978 |        |        |      |       |      |       |
| ATOM | 5183 | CB  | LEU | В | 233 | -72.507 | 41.033 | 23,012 | 1.00 | 54.82 | В    | ¢     |
| ATOM | 5184 | CG  | LEU | B | 233 | -71.681 | 42.136 | 23.679 | 1.00 | 52.33 | В    | С     |
|      |      |     |     |   |     |         |        |        |      |       |      | č     |
| ATOM | 5185 | CD1 | LEU | В | 233 | -71.156 | 41.684 | 25.024 |      | 51.29 | В    |       |
| ATOM | 5186 | CD2 | LEU | В | 233 | -70.542 | 42.484 | 22.765 | 1.00 | 51.85 | В    | С     |
|      |      |     | LEU |   |     | -72.778 | 40.127 | 20.715 | 1 00 | 53.90 | В    | С     |
| ATOM | 5187 | C   |     |   |     |         |        |        |      |       |      |       |
| MOTA | 5188 | 0   | LEU | В | 233 | -72.143 | 40.192 | 19.665 | 1.00 | 53.05 | В    | 0     |
| ATOM | 5189 | N   | LEU | R | 234 | -73.341 | 39.008 | 21.156 | 1.00 | 53.45 | . В  | N     |
|      |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5190 | CB  | LEU | В | 234 | -73.233 | 37.748 | 20.442 |      | 51.59 | В    | С     |
| ATOM | 5191 | CB  | LEU | В | 234 | -73.993 | 36.642 | 21.187 | 1.00 | 50.95 | В    | С     |
|      | 5192 | CG  | LEU |   |     | -73.203 | 35.410 | 21.628 |      | 50.06 | В    | С     |
| MOTA |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5193 | CD1 | LEU | В | 234 | -71.942 | 35.292 | 20.785 | 1.00 | 51.42 | В    | С     |
| ATOM | 5194 |     | LEU |   |     | -72.859 | 35.509 | 23.094 | 1.00 | 49.03 | В    | С     |
| •    |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5195 | C . | LEU | В | 234 | -73.733 | 37.819 | 19.013 | 1.00 | 51.24 | В    | С     |
| ATOM | 5196 | 0   | LEU | R | 234 | ~73.137 | 37.218 | 18.124 | 1.00 | 51.48 | В    | 0     |
|      |      |     |     |   |     |         |        |        |      |       |      | N     |
| MOTA | 5197 | N   | LYS |   |     | -74.825 | 38.546 | 18.786 |      | 51.05 |      | -     |
| ATOM | 5198 | CB  | LYS | В | 235 | -75.315 | 38.584 | 17.414 | 1.00 | 51.65 | : B  | C     |
|      |      |     | LYS |   |     | -76.780 | 39.031 | 17.387 | 1 00 | 54.50 | В    | C     |
| ATOM | 5199 | СB  |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5200 | CG  | LYS | В | 235 | -77.054 | 40.201 | 16.457 | 1.00 | 59.35 | В    | C.    |
| ATOM | 5201 | CD  | LYS | R | 235 | -78.523 | 40.591 | 16.480 | 1.00 | 63.07 | • В  | С     |
|      |      |     |     | _ |     |         |        |        |      |       |      |       |
| ATOM | 5202 | CE  | LYS | В | 235 | -78.797 | 41.761 | 15.549 | 1.00 | 65.70 | , В  | С     |
| ATOM | 5203 | NZ  | LYS | В | 235 | -80.234 | 42.155 | 15.561 | 1.00 | 65.87 | B    | N.    |
|      |      |     |     |   |     |         |        |        |      | 50.30 | - В  | . Ç   |
| ATOM | 5204 | С   | LYS | В | 235 | -74.473 | 39.522 | 16.558 |      |       |      |       |
| ATOM | 5205 | 0   | LYS | В | 235 | -74.111 | 39.150 | 15.455 | 1.00 | 50.44 | ∵.Bj | : 0,5 |
| ATOM | 5206 | N   | ASN |   |     | -74.109 | 40.688 | 17.069 | 1 00 | 49.30 | В    | , N   |
|      |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5207 | CB  | ASN | В | 236 | -73.273 | 41.576 | 16.276 | 1.00 | 48.34 | ·B   | ; C   |
| ATOM | 5208 | СВ  | ASN | B | 236 | -72.979 | 42.869 | 17.025 | 1.00 | 49.19 | В    | С     |
|      |      |     |     |   |     |         |        |        |      |       |      | С     |
| ATOM | 5209 | CG  | ASN | В | 236 | -74.214 | 43.713 | 17.213 |      | 50.75 | В    |       |
| ATOM | 5210 | OD1 | ASN | В | 236 | -74.149 | 44.838 | 17.696 | 1.00 | 51.34 | В    | 0     |
|      |      |     |     |   |     | -75.356 |        | 16.833 | 1 00 | 52.82 | В    | N     |
| ATOM | 5211 |     | ASN |   |     |         | 43.167 |        |      |       |      |       |
| ATOM | 5212 | C   | ASN | В | 236 | -71.974 | 40.870 | 15.928 | 1.00 | 47.92 | В    | С     |
| ATOM | 5213 | 0   | ASN | • | 236 | -71.510 | 40.949 | 14.796 | 1.00 | 47.43 | В    | 0     |
|      |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5214 | N   | VAL | В | 237 | -71.397 | 40.192 | 16.900 | 1.00 | 15.00 | В    | N     |
| ATOM | 5215 | CB  | VAL | R | 237 | -70.163 | 39.479 | 16.601 | 1.00 | 15.00 | В    | С     |
|      |      |     |     |   |     |         |        |        |      | 15.00 | В    | С     |
| ATOM | 5216 | СВ  | VAL | Ħ | 237 | -69.561 | 38.844 | 17.871 |      |       |      |       |
| ATOM | 5217 | CG1 | VAL | В | 237 | -68.375 | 37.966 | 17.506 | 1.00 | 15.00 | В    | C     |
| ATOM |      |     | VAL |   |     | -69.145 | 39.928 | 18.852 | 1 00 | 15.00 | В    | С     |
|      | 5218 |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5219 | С   | VAL | В | 237 | -70.402 | 38.381 | 15.570 | 1.00 | 15.00 | В    | С     |
| ATOM | 5220 | 0   | VAL | В | 237 | -69.520 | 37.700 | 15.117 | 1.00 | 47.86 | В    | 0     |
|      |      |     |     |   |     |         |        | 14.115 |      | 15.00 | В    | С     |
| ATOM | 5221 | CB  | ALB |   |     | -73.437 | 36.795 |        |      |       |      |       |
| ATOM | 5222 | С   | ALB | В | 238 | -72.276 | 38.169 | 12.379 |      | 15.00 | В    | С     |
| ATOM | 5223 | 0   | ALB | В | 238 | -71.715 | 37.773 | 11.394 | 1.00 | 51.74 | В    | 0     |
|      |      |     |     |   |     |         |        |        |      | 15.00 | В    | N     |
| ATOM | 5224 | N   | ALB |   |     | -71.705 |        |        | •    |       |      |       |
| ATOM | 5225 | CB  | ALB | В | 238 | -72.127 | 37.465 | 13.723 | 1.00 | 15.00 | В    | С     |
| ATOM | 5226 | Ŋ   | PHE |   |     | -73.004 | 39.109 | 12.858 | 1.00 | 50.57 | В    | N     |
|      |      |     |     |   |     |         |        |        |      |       | В    |       |
| ATOM | 5227 | CB  | PHE |   |     | -73.206 | 39.877 | 11.644 |      | 50.13 |      | C     |
| MOTA | 5228 | CB  | PHE | В | 239 | -73.907 | 41.188 | 11.933 | 1.00 | 49.83 | В    | Ç     |
|      |      |     |     |   |     |         |        | 10.724 |      | 51.21 | В    | ¢     |
| MOTA | 5229 | CG  | PHE |   |     | -74.077 | 42.047 |        |      |       |      |       |
| ATOM | 5230 | CD1 | PHE | В | 239 | -73.916 | 43.416 | 10.813 | 1.00 | 53.04 | В    | С     |
| ATOM | 5231 |     | PHE |   |     | -74.415 | 41.493 | 9.495  |      | 51.74 | В    | С     |
|      |      |     |     |   |     |         |        |        |      |       |      |       |
| ATOM | 5232 | CEl | PHE | В | 239 | -74.087 | 44.229 | 9.697  |      | 53.55 | В    | С     |
| ATOM | 5233 |     | PHE |   |     | -74.590 | 42.293 | 8.374  | 1.00 | 52.66 | В    | С     |
|      |      |     |     |   |     |         |        | 8.475  |      | 53.31 | • в  | c     |
| MOTA | 5234 | CZ  | PHE |   |     | -74.426 | 43.666 |        |      |       |      |       |
| MOTA | 5235 | С   | PHE | В | 239 | -71.871 | 40.179 | 11.004 | 1.00 | 50.44 | В    | С     |
|      |      |     |     |   |     | -71.774 | 40.306 | 9.792  |      | 52.03 | В    | 0     |
| MOTA | 5236 | 0   | PHE |   |     |         |        |        |      |       |      |       |
| ATOM | 5237 | N   | MET | В | 240 | -70.837 | 40.310 | 11.824 | 1.00 | 51.45 | В    | N     |
| MOTA | 5238 | СВ  | MET |   |     | -69.511 | 40.588 | 11.305 | 1.00 | 50.48 | В    | С     |
|      |      |     |     |   |     |         |        |        |      |       | В    |       |
| ATOM | 5239 | CB  | MET | В | 240 | -68.640 | 41.218 | 12.388 |      | 50.14 |      | С     |
| MOTA | 5240 | CG  | MET | В | 240 | -69.199 | 42.541 | 12.898 | 1.00 | 49.09 | В    | С     |
|      |      |     |     |   |     |         | 43.135 | 14.374 |      | 48.50 | В    | s     |
| MOTA | 5241 | SD  | MET |   |     | -68.398 |        |        |      |       |      |       |
| ATOM | 5242 | CE  | MET | В | 240 | -66.955 | 43.792 | 13.657 | 1.00 | 49.65 | В    | С     |
|      |      |     |     |   |     | -68.899 | 39.293 | 10.792 | 1.00 | 50.30 | В    | С     |
| ATOM | 5243 | C   | MET |   | 270 | 00.000  |        |        |      |       | _    | -     |

| ATOM  | 5244             | 0   | мет |   | 240 | -68.456             | 39.245  | 9.655  | 1 00 | 51.04            | 1  | 3   | 0  |
|-------|------------------|-----|-----|---|-----|---------------------|---------|--------|------|------------------|----|-----|----|
|       |                  |     |     |   |     |                     |         |        |      |                  |    |     |    |
| ATOM  | 5245             | N   |     |   | 241 | -68.886             | 38.236  | 11.601 |      | 50.16            |    | 3   | N  |
| ATOM  | 5246             | CB  | LYS | В | 241 | -68.314             | 36.971  | 11.137 |      | 50.55            |    | 3   | C, |
| ATOM  | 5247             | CB  | LYS | В | 241 | -68.484             | 35.869  | 12.176 | 1.00 | 48.54            | 1  | 3   | С  |
| MOTA  | 5248             | CG  | LYS | В | 241 | -67.668             | 36.037  | 13.426 | 1.00 | 49.64            | 1  | 3   | С  |
| ATOM  | 5249             | CD  | LYS |   |     | -67.990             | 34.935  | 14.423 | 1.00 | 51.04            | 1  | 3   | С  |
| ATOM  |                  | CE  | LYS |   |     |                     |         | 15.709 |      | 52.81            |    | 3   | č  |
|       | 5250             |     |     |   |     | -67.163             | 35.018  |        |      |                  |    |     |    |
| ATOM  | 5251             | ΝZ  |     |   | 241 | -65.716             | 34.724  | 15.533 |      | 54.80            |    | 3   | N  |
| ATOM  | 5252             | С   | LYS | В | 241 | -68.975             | 36.504  | 9.842  | 1.00 | 51.60            | 1  | 3   | Ç  |
| .ATOM | 5253             | 0   | LYS | В | 241 | -68.319             | 35.935  | 8.969  | 1.00 | 51.32            | 1  | 3   | 0  |
| MOTA  | 5254             | N   |     |   | 242 | -70.275             | 36.737  | 9.713  |      | 52.89            | 1  |     | N  |
| ATOM  | 5255             | СВ  |     |   | 242 | -70.968             | 36.287  | 8.519  |      | 54.93            |    |     |    |
|       |                  |     |     |   |     |                     |         |        |      |                  |    |     | C  |
| MOTA  | 5256             | CB  |     |   | 242 | -72.479             | 36.382  | 8.704  |      | 56.26            |    | 3   | С  |
| MOTA  | 5257             | OG  | SER | В | 242 | -73.091             | 35.170  | 8.297  | 1.00 | 57.50            | 1  | 3   | 0  |
| MOTA  | 5258             | Ç   | SER | В | 242 | -70.536             | 37.079  | 7.299  | 1.00 | 55.84            | 1  | 3   | С  |
| ATOM  |                  | 0   | SER | В | 242 | -70.191             | 36.494  | 6.274  | 1.00 | 57.65            | 1  | 3   | 0  |
| ATOM  | 5260             | N   |     |   | 243 | -70.551             | 38.405  | 7,420  |      | 55.46            |    | 3   | N  |
|       |                  |     |     |   |     |                     |         |        |      |                  |    |     |    |
| MOTA  | 5261             | CB  |     |   | 243 | -70.138             | 39.301  | 6.341  |      | 54.27            | I  |     | С  |
| ATOM  | 5262             | CB  | TYR |   | 243 | -70.241             | 40.761  | 6.792  |      | 54.42            |    |     | С  |
| ATOM  | 5263             | CG  | TYR | В | 243 | <del>-</del> 69.672 | 41.751  | 5.806  | 1.00 | 54.85            | 1  | 3   | С  |
| MOTA  | 5264             | CD1 | TYR | В | 243 | -70.215             | 41.881  | 4.539  | 1.00 | 55.46            | 1  | 3   | С  |
| MOTA  | 5265             |     | TYR |   |     | -69.672             | 42.760  | 3.608  | 1.00 | 56.37            | E  | 3   | С  |
| ATOM  |                  |     | TYR |   |     |                     | 42.531  | 6.128  |      | 55.88            | Ē  |     | č  |
|       | 5266             |     |     |   |     | ~68.567             |         |        |      |                  |    |     |    |
| MOTA  | 5267             |     | TYR |   |     | -68.013             | 43.418  | 5.202  |      | 56.15            | I  |     | С  |
| MOTA  | 5268             | CZ  | TYR | В | 243 | -68.568             | 43.525  | 3.943  | 1.00 | 56.24            | F  | 3   | C  |
| ATOM  | 5269             | OH  | TYR | В | 243 | -68.010             | 44.381  | 3.017  | 1.00 | 55.65            | E  | 3   | 0  |
| ATOM  | 5270             | C   |     |   | 243 | -68.703             | 39.004  | 5.949  | 1.00 | 54.18            | E  | 3   | С  |
|       |                  |     | TYR |   |     | -68.347             | 39.044  | 4.776  |      | 54.53            | Ē  |     | ŏ  |
| ATOM  | 5271             | 0   |     |   | 243 |                     |         |        |      |                  |    |     |    |
| MOTA: | 5272             | N   |     |   | 244 | -67.877             | 38.698  | 6.939  |      | 53.69            | I  |     | N  |
| ATOM  | 5273             | CB  | ILE | В | 244 | -66.488             | 38.395  | 6.669  | 1.00 | 53.32            | F  | 3   | С  |
| MOTA  | 5274             | СВ  | ILE | В | 244 | -65.650             | 38.394  | 7.967  | 1.00 | 52.59            | 1  | 3   | C  |
| ATOM  | 5275             |     | ILE |   |     | -64.225             | 37.957  | 7.666  |      | 51.66            | í  | 3   | С  |
|       |                  |     |     |   |     |                     | 39.800  | 8.566  |      | 51.93            | Ī  |     | Č  |
| ATOM  | 5276             |     | ILE |   |     | -65.612             |         |        |      |                  |    |     |    |
| ATOM  | 5277             | CD1 | ILE |   | 244 | -64.811             | 39.894  | 9.836  |      | 52.01            | I  |     | ¢  |
| ATOM  | 5278             | С   | ILE | В | 244 | -66.361             | 37.047  | 5.974  | 1.00 | 54.63            | E  | 3   | Ç  |
| ATOM  | 5279             | 0   | ILE | В | 244 | -65.617             | 36.919  | 5.005  | 1.00 | 55.12            | F  | 3   | 0  |
| MOTA  | 5280             | N   | LEU |   | 245 | -67.086             | 36.040  | 6.460  | 1.00 | 55.14            | ī  | 3   | N  |
|       |                  |     |     |   |     | -67.039             | 34.709  | 5.853  |      | 55.40            | Ī  |     | C  |
| ATOM  | 5281             | CB  |     |   | 245 |                     |         |        |      |                  |    |     |    |
| MOTA  | 5282             | CB  | LEU |   | 245 | -67.904             | 33.738  | 6.652  |      | 55.36            | I  |     | С  |
| ATOM  | 5283             | CG  | LEU | В | 245 | -67.740             | 32.230  | 6.428  | 1.00 | 55.00            | F  | 3   | С  |
| ATOM  | 5284             | CD1 | LEU | В | 245 | -68.407             | 31.827  | 5.154  | 1.00 | 55.06            | I  | 3   | С  |
| ATOM  | 5285             |     | LEU |   |     | -66.268             | 31.844  | 6.423  | 1.00 | 55.99            | F  | 3   | С  |
| ATOM  | 5286             | c   | LEU |   | 245 | ~67.551             | 34.848  | 4.421  |      | 55.87            | Ε  |     | Ċ  |
|       |                  |     |     |   |     |                     |         |        |      |                  |    |     |    |
| MOTA  | 5287             | 0   |     |   | 245 | -67.139             |         | 3.523  |      | 55.71            | E  |     | 0  |
| MOTA  | 5288             | N   | GLU | В | 246 | -68.435             | 35.815  | 4.215  |      | 56.97            | E  |     | N  |
| MOTA  | 528 <del>9</del> | CB  | GLU | В | 246 | -68.988             | 36.104  | 2.901  | 1.00 | 58.41            | I  | 3   | С  |
| MOTA  | 5290             | CB  | GLU | В | 246 | -70.005             | 37.247  | 3.020  | 1.00 | 61.24            | F  | 3   | С  |
| ATOM  | 5291             | CG  | GLU |   | 246 | -71.000             | 37.396  | 1.882  |      | 64.45            | E  | 3   | С  |
|       |                  | CD  | GLU |   | _   | -71.792             | 38.691  | 1.993  |      | 67.57            | E  |     | Č  |
| MOTA  | 5292             |     |     |   | 246 |                     |         |        |      |                  |    |     |    |
| ATOM  | 5293             |     | GLU |   | 246 | -72.233             | 39.027  | 3.113  |      | 67.23            | E  |     | 0  |
| ATOM  | 5294             | OE2 | GLU | ₿ | 246 | <del>-</del> 71.972 | 39.378  | 0.960  |      | 70.46            | E  |     | 0  |
| ATOM  | 5295             | С   | GLU | В | 246 | -67.815             | 36.543  | 2.017  | 1.00 | 57.77            | E  | 3   | С  |
| MOTA  | 5296             | 0   | GLU | В | 246 | -67.737             | 36.178  | 0.851  | 1.00 | 57.83            | E  | 3   | 0  |
| ATOM  | 5297             | N   | LYS | _ | 247 | -66.899             | 37.325  | 2.581  |      | 57.51            | E  | 3   | N  |
|       |                  | СВ  | LYS |   |     | -65.744             | 37.800  | 1.826  |      | 57.29            | Ē  |     | c  |
| MOTA  | 5298             |     |     |   |     |                     |         |        |      |                  |    |     |    |
| ATOM  | 5299             | CB  |     |   | 247 | -65.076             | 38.976  | 2.539  |      | 57.37            | Σ  |     | С  |
| ATOM  | 5300             | CG  | LYS | В | 247 | -65.309             | 40.313  | 1.878  |      | 57.43            | E  | 3   | С  |
| ATOM  | 5301             | CD  |     |   | 247 | -66.743             | 40.738  | 2.011  | 1.00 | 58.58            | E  | 3   | С  |
| ATOM  | 5302             | CE  |     |   | 247 | -67.095             | 41.872  | 1.057  |      | 59.89            | E  | 3   | С  |
|       | 5303             |     |     |   | 247 |                     | 43.132  | 1.350  |      | 60.46            | E  |     | N  |
| ATOM  |                  | NZ  |     |   |     | -66.367             |         |        |      |                  |    |     |    |
| MOTA  | 5304             | С   | LYS |   |     | -64.712             | 36.704  | 1.634  |      | 57.41            | 9  |     | С  |
| ATOM  | 5305             | 0   |     |   | 247 | -64.047             | 36.632  | 0.604  |      | 58.07            | E  |     | 0  |
| ATOM  | 5306             | N   | VAL | В | 248 | -64.569             | 35.857  | 2.645  | 1.00 | 56.82            | E  | 3 - | N  |
| ATOM  | 5307             | СВ  | VAL |   |     | -63.602             | 34.770  | 2.600  | 1.00 | 55.55            | E  | 3   | С  |
| ATOM  | 5308             | СВ  |     |   | 248 | -63.702             | 33.905  | 3.828  |      | 54.39            | 5  |     | Ċ  |
|       |                  |     |     |   |     |                     |         |        |      | 52.73            | E  |     | c  |
| ATOM  | 5309             |     | VAL |   |     | -62.695             | 32.779  | 3.738  |      |                  |    |     |    |
| ATOM  | 5310             |     | VAL |   |     | -63.481             | 34.751  | 5.061  |      | 54.55            | E  |     | С  |
| MOTA  | 5311             | С   | VAL | В | 248 | -63.849             | 33.881  | 1.420  | 1.00 | 56.37            | E  | 3   | С  |
| MOTA  | 5312             | 0   | VAL |   |     | -62.952             | 33.200  | 0.927  | 1.00 | 56.51            | E  | 3   | 0  |
| ATOM  | 5313             | N   | LYS |   |     | -65.101             | 33.878  | 0.996  |      | 57.80            | E  |     | N  |
|       |                  |     | LYS |   |     | -65.541             | 33.076  | -0.123 |      | 58.67            | Ξ. |     | Ċ  |
| MOTA  | 5314             | СВ  |     |   |     |                     |         |        |      |                  |    |     |    |
| MOTA  | 5315             | CB  | LYS |   |     | -67.058             | 33.180  | -0.227 |      | 59.70            | E  |     | С  |
| ATOM  | 5316             | ÇĢ  | LYS | В | 249 | -67.830             | 31.878  | -0.037 |      | 61.09            | E  |     | С  |
| MOTA  | 5317             | CD  | LYS | В | 249 | -67.603             | 31.211  | 1.314  | 1.00 | 61.95            | E  | 3   | С  |
| ATOM  | 5318             | CE  | LYS |   |     | -68.730             | 30.215  | 1.635  | 1.00 | 64.07            | Ē  | 3   | Ċ  |
| VII   | 3310             |     |     | ٥ | 273 | 50.750              | JU. 643 |        |      | , <del>.</del> . |    |     | -  |
|       |                  |     |     |   |     |                     |         |        |      |                  |    |     |    |

| ATOM   | 5319 | NZ         | LYS  | В | 249 | -68.965 | 29.164 | 0.586  | 1.00 65.47 | В   | N |
|--------|------|------------|------|---|-----|---------|--------|--------|------------|-----|---|
| ATOM   | 5320 | С          | LYS  |   |     | -64.886 | 33.607 | -1.387 | 1.00 59.04 | В   |   |
| ATOM   | 5321 | 0          | LYS  | В | 249 | -64.027 | 32.951 | -1.980 | 1.00 59.06 | В   |   |
| ATOM   | 5322 | N          | GLU  |   |     | -65.294 | 34.812 | -1.774 | 1.00 59.41 | В   |   |
| ATOM   | 5323 | СВ         | GLU  |   |     | -64.790 | 35.476 | -2.967 | 1.00 60.48 | В   |   |
| ATOM   | 5324 | СВ         |      |   | 250 | -65.179 | 36.951 | -2.936 | 1.00 61.75 | В   | _ |
| ATOM   | 5325 | CG         | GLU  |   | *   | -66.623 | 37.198 | -2.589 | 1.00 65.17 | В   |   |
| ATOM   | 5326 | CD         | GLU  |   | 250 | -66.986 | 38.678 | -2.652 | 1.00 68.59 | В   |   |
| ATOM   | 5327 |            |      |   |     | -68.184 | 39.018 | -2.447 | 1.00 70.41 | В   | ō |
| ATOM   | 5328 |            | GLU  |   |     | -66.071 | 39.502 | -2.907 | 1.00 70.14 | . В | ŏ |
| ATOM   | 5329 | C          | GLU  |   | 250 | -63.282 | 35.365 | -3.143 | 1.00 60.67 | В   | Č |
| ATOM   | 5330 | ō          |      |   | 250 | -62.769 | 35.515 | -4.242 | 1.00 61.19 | В   | ő |
| ATOM   | 5331 | N          | HIS  |   | 251 | -62.562 | 35.102 | -2.064 | 1.00 61.40 | В   | N |
| ATOM   | 5332 | CB         | HIS  |   | 251 | -61.116 | 34.994 | -2.157 | 1.00 62.36 | В   | Ċ |
| ATOM   | 5333 | СВ         |      |   | 251 | -60.488 | 35.322 | -0.804 | 1.00 61.00 | В   | č |
| ATOM   | 5334 | CG         | HIS  |   | 251 | -60.294 | 36.787 | -0.584 | 1.00 59.13 | В   | č |
| ATOM   | 5335 |            | HIS  |   | 251 | -59.233 | 37.491 | -0.125 | 1.00 57.69 | В   | č |
| ATOM   | 5336 |            | HIS  |   |     | -61.264 | 37.715 | -0.896 | 1.00 59.08 | В   | N |
| ATOM   | 5337 |            | HIS  |   | 251 | -60.808 | 38.928 | -0.644 | 1.00 58.34 | В   | Ċ |
| ATOM   | 5338 |            | HIS  |   |     | -59.577 | 38.820 | -0.175 | 1.00 57.79 | В   |   |
| ATOM   | 5339 | С          |      |   | 251 | -60.643 | 33.643 | -2.652 | 1.00 63.76 | В   | c |
| ATOM   | 5340 | ō          | HIS  |   | 251 | -59.609 | 33.553 | -3.321 | 1.00 64.61 | В   | ō |
| ATOM   | 5341 | N          | GLN  |   | 252 | -61.409 | 32.604 | -2.323 | 1.00 64.48 | В   | N |
| ATOM   | 5342 | ÇВ         |      |   | 252 | -61.093 | 31.242 | -2.730 | 1.00 64.84 | В   | Ċ |
| ATOM   | 5343 | ÇВ         |      |   | 252 | -61.847 | 30.242 | -1.856 | 1.00 64.69 | В   | č |
| ATOM   | 5344 | ÇG         |      |   | 252 | -61.809 | 30.541 | -0.371 | 1.00 64.67 | 8   | č |
| ATOM   | 5345 | CD         |      |   | 252 | -61.987 | 29.287 | 0.495  | 1.00 65.10 | В   | č |
| ATOM   | 5346 |            | GLN  |   |     | -61.162 | 28.367 | 0.448  | 1.00 65.05 | В   | ő |
| ATOM   | 5347 |            | GLN  |   |     | -63.061 | 29.249 | 1.286  | 1.00 64.27 | . в | N |
| MOTA   | 5348 | C.         |      |   | 252 | -61.523 | 31.078 | -4.186 | 1.00 65.86 | . В | Ċ |
| ATOM   | 5349 |            | GLN  |   |     | -60.880 | 30.374 | -4.964 | 1.00 65.78 | В   | ŏ |
| MOTA   | 5350 | N          |      |   | 253 | -62.604 | 31.759 | -4.549 | 1.00 67.35 | В   | N |
| ATOM   | 5351 | СВ         |      |   | 253 | -63.131 | 31.701 | -5.906 | 1.00 69.76 | В   | Ċ |
| ATOM   | 5352 | СВ         |      |   | 253 | -64.458 | 32.461 | -6.008 | 1.00 71.14 | В   |   |
| ATOM   | 5353 | CG         |      |   | 253 | -65.262 | 32.135 | ~7.263 | 1.00 73.16 | В   | č |
| ATOM   | 5354 | CD.        |      |   | 253 | -66.085 | 30.851 | -7.110 | 1.00 74.52 | В   | č |
| ATOM   | 5355 |            | GLU  |   | 253 | -66.668 | 30.402 | -8.118 | 1.00 76.10 | В   | ŏ |
| ATOM   | 5356 |            | GLU  |   |     | -66.160 | 30.295 | -5.985 | 1.00 74.02 | В   | ŏ |
| ATOM   | 5357 | C.         |      |   | 253 | -62.144 | 32.320 | -6.880 | 1.00 70.91 | В   | č |
| ATOM   | 5358 | ŏ          | GLU  |   | 253 | -62.288 | 32.177 | -8.095 | 1.00 71.52 | B   | ŏ |
| ATOM   | 5359 | N          |      |   | 254 | -61.145 | 33.015 | -6.344 | 1.00 72.24 | В   | N |
| ATOM   | 5360 | CB         | SER  |   | 254 | -60.139 | 33.666 | -7.175 | 1.00 73.60 | В   | Ċ |
| ATOM   | 5361 | CB         |      |   | 254 | -60.580 | 35.000 | -7.522 | 1.00 73.40 | В   | č |
| ATOM   | 5362 | OG         |      |   | 254 | -60.762 | 35.893 | -6.361 | 1.00 73.52 | В   | ŏ |
| MOTA   | 5363 | c          |      |   | 254 | -58.756 | 33.695 | -6.521 | 1.00 74.46 | В   | č |
| ATOM   | 5364 | ŏ          |      |   | 254 | -58.008 | 34.661 | -6.681 | 1.00 75.62 | В   | ō |
| MOTA   | 5365 | N          | MET  |   | 255 | -58.416 | 32.641 | -5.788 | 1.00 74.80 | 8   | N |
| ATOM   | 5366 | СВ         |      | В | 255 | -57.115 | 32.571 | -5.138 | 1.00 75.49 | B   | Ċ |
| ATOM   | 5367 | СВ         | MET  |   | 255 | -57.070 | 31.397 | -4.150 | 1.00 75.95 | В   | č |
| MOTA   | 5368 | CG         |      |   | 255 | -57.325 | 31.794 | -2.699 | 1.00 75.82 | В   | č |
| ATOM   | 5369 | SD         | MET  |   | 255 | -56.105 | 32.987 | -2.083 | 1.00 77.15 | В   | s |
| ATOM   | 5370 | CE         | MET  |   | 255 | -54.700 | 31.883 | -1.560 | 1.00 75.86 | В   | č |
| ATOM   | 5371 | c          | MET  |   | 255 | -56.035 | 32.401 | -6.204 | 1.00 76.23 | В   | č |
| MOTA   | 5372 | ŏ          | MET  |   |     | -56.319 | 31.916 | -7.306 | 1.00 76.92 | В   | ŏ |
| MOTA   | 5373 | N          |      |   | 256 | -54.808 | 32.814 | -5.884 | 1.00 76.22 | В   | N |
| ATOM   | 5374 | СВ         |      |   | 256 | -53.700 | 32.700 | -6.821 | 1.00 76.51 | В   | c |
| ATOM   | 5375 | СВ         | ASP  |   |     | -53.240 | 34.076 | -7.297 | 1.00 76.57 | В   | С |
| MOTA   | 5376 | CG         |      |   | 256 | -52.326 | 34.006 | -8.528 | 1.00 76.22 | В   | С |
| ATOM   | 5377 |            | ASP  |   |     | -51.416 | 33.146 | -8.575 | 1.00 74.87 | В   | 0 |
| ATOM   | 5378 |            | ASP  |   |     | -52.518 | 34.832 | -9.450 | 1.00 76.70 | В   | 0 |
| ATOM   | 5379 | C          |      |   | 256 | -52.508 | 31.984 | -6.232 | 1.00 77.63 | В   | С |
| ATOM   | 5380 | ō          | ASP  |   |     | -52.157 | 32.172 | -5.068 | 1.00 76.88 | В   | ō |
| ATOM   | 5381 | N          | MET  |   |     | -51.881 | 31.171 | -7.071 | 1.00 79.66 | В   | N |
| ATOM   | 5382 | СВ         | MET  |   |     | -50.704 | 30.406 | -6.690 | 1.00 81.17 | В   | c |
| ATOM   | 5383 | СВ         | MET  |   |     | -50.308 | 29.450 | -7.837 | 1.00 82.86 | . В | č |
| ATOM   | 5384 | CG         | MET  |   |     | -51.477 | 28.772 | -8.588 | 1.00 84.55 | В   | č |
| ATOM   | 5385 | SD         | MET  |   |     | ~52.607 | 27.748 | -7.590 | 1.00 B7.38 | В   | s |
| ATOM   | 5386 | CE         | MET  |   |     | -52.087 | 26.050 | -8.019 | 1.00 86.08 | В   | c |
| ATOM   | 5387 | C          | MET  |   |     | -49.559 | 31.392 | -6.418 | 1.00 79.99 | В   | c |
| ATOM   | 5388 | 0          | MET. |   |     | -49.193 | 32.176 | -7.298 | 1.00 79.70 | B   | 0 |
| ATOM   | 5389 | N          | ASN  |   |     | -48.999 | 31.355 | -5.211 | 1.00 78.36 | В   | N |
| ATOM   | 5390 | CB         | ASN  |   |     | -47.901 | 32.257 | -4.876 | 1.00 76.90 | B   | C |
| ATOM   | 5391 | CB         | ASN  |   |     | -46.592 | 31.782 | -5.532 | 1.00 79.68 | В   | c |
| MOTA   | 5392 | CG         | ASN  |   |     | -45.918 | 30.657 | -4.752 | 1.00 82.12 | В   | c |
| ATOM   | 5393 |            | ASN  |   |     | -45.645 | 30.795 | -3.550 | 1.00 82.00 | B   | Ö |
| H 1 OU | 5555 | <b>451</b> | 7011 | د | 200 | 43.043  | 30.733 | 5,555  |            | •   | J |

Figure 1

| ATOM         | 5394         | ND2      | ASN   | B 258          | -45.631            | 29.546 | -5.434           | 1.00 84.05               | В   | N   |
|--------------|--------------|----------|-------|----------------|--------------------|--------|------------------|--------------------------|-----|-----|
| ATOM         | 5395         | c        |       | B 258          | -48.220            | 33.680 | -5.334           | 1.00 73.82               | В   | Ċ   |
| ATOM         | 5396         | ō        |       | B 258          | -47.477            | 34.289 | -6.106           | 1:00 73.38               | • В | ō   |
| ATOM         | 5397         | N        |       | B 259          | -49.341            | 34.202 | -4.866           | 1.00 70.35               | В   | N   |
| ATOM         | 5398         | СВ       |       | B 259          | -49.734            | 35.551 | -5.218           | 1.00 66.80               | . В | Ċ   |
| ATOM         | 5399         | СВ       |       | B 259          | -50.194            | 35.603 | -6.669           | 1.00 68.20               | В   | Ċ   |
| ATOM         | 5400         | CG       |       | B 259          | -49.105            | 36.082 | -7.600           | 1.00 69.24               | В   | č   |
| ATOM         | 5401         |          |       | B 259          | -48.716            | 37.254 | -7.570           | 1.00 69.66               | В   | . 0 |
| ATOM         | 5402         |          |       | B 259          | -48.594            | 35.175 | -8.432           | 1.00 69.60               | В   | N   |
| MOTA         | 5403         | C        |       | B 259          | -50.811            | 36.116 | -4.315           | 1.00 63.70               | В   | Ċ   |
| MOTA         | 5404         | ò        |       | B 259          | -51.898            | 36.473 | -4.783           | 1.00 64.00               | В   | Ö   |
| ATOM         | 5405         | N        |       | B 260          | -50.535            | 36.178 | -3.000           | 1.00 59.83               | В   | N   |
| ATOM         | 5406         | CD       |       | B 260          | -49.503            | 35.421 | -2.278           | 1.00 59.36               | В   |     |
|              | 5407         | CB       |       | B 260          | -51.500            | 36.716 | -2.049           | 1.00 57.04               | В   | C   |
| ATOM<br>ATOM |              |          |       | B 260          | -50.929            | 36.285 | -0.707           | 1.00 57.04               | В   | c   |
| ATOM         | 5408<br>5409 | CB<br>CG |       | B 260          | -50.223            | 35.030 | -1.029           | 1.00 57.45               | В   | c   |
| ATOM         | 5410         | C        |       | B 260          | -51.517            | 38.224 | -2.208           | 1.00 54.91               | В   | c   |
| ATOM         | 5411         | ō        |       | B 260          | -50.604            | 38.792 | -2.795           | 1.00 54.39               | В   | Ö   |
| ATOM         | 5412         | N        |       | B 261          | -52.559            | 38.870 | -1.701           | 1.00 53.20               | В   | N   |
| ATOM         | 5413         | CB       |       | B 261          |                    |        |                  | 1.00 52.09               | 8   | Č   |
| MOTA         | 5414         | CB       |       | B 261          | -52.654<br>-53.439 | 40.312 | -1.800<br>-3.046 | 1.00 54.11               |     | c   |
| ATOM         | 5415         | CG       |       | B 261          | -52.766            | 40.363 | -4.365           | 1.00 57.72               | B . |     |
| MOTA         |              | CD       |       |                |                    |        |                  |                          | В   | C   |
| ATOM         | 5416<br>5417 |          |       | B 261<br>B 261 | -52.248            | 41.585 | -5.113           | 1.00 60.84<br>1.00 61.87 | В   | Ö   |
| ATOM         | 5418         |          |       | B 261          | -51.538<br>-52.590 | 41.687 | -4.537<br>-6.409 | 1.00 60.36               | В   |     |
|              |              |          |       | B 261          |                    |        | -0.565           |                          | В   | N   |
| ATOM         | 5419         | C        |       | B 261          | -53.305            | 40.905 | -0.529           | 1.00 50.88               |     | C   |
| ATOM         | 5420         | 0        |       |                | -53.600<br>-53.543 | 42.096 |                  | 1.00 50.66               | В   | 0   |
| ATOM         | 5421         | И        |       | B 262          |                    | 40.073 | 0.443            | 1.00 49.18               | В   | N   |
| MOTA         | 5422         | CB       |       | B 262          | -54.130            | 40.553 | 1.682            | 1.00 47.97               | В   | C   |
| ATOM         | 5423         | CB       |       | B 262<br>B 262 | -55.493            | 41.189 |                  | 1.00 49.09               | . В | C   |
| ATOM         | 5424         | CG       |       |                | -56.452            | 40.252 | 0.759            | 1.00 50.50               | В   | C   |
| ATOM         | 5425         |          |       | B 262          | -57.500            | 40.726 | 0.267            | 1.00 51.13               | В   | 0   |
| ATOM         | 5426         |          |       | B 262          | -56:159            | 39.038 | 0.735            | 1.00 50.59               | В   | 0   |
| ATOM         | 5427         | Ç        |       | B 262          | -54.216            | 39.464 | 2.732            | 1.00 46.89               | В   | С   |
| ATOM         | 5428         | 0        |       | B 262          |                    | 38.339 | 2.501            | 1.00 46.73               | В   | 0   |
| ATOM         | 5429         | N        |       | B 263          | -54.763            | 39.807 | 3.891            | 1.00 46.65               | B   | N   |
| ATOM         | 5430         | СВ       |       | B 263          | -54.838            | 38.880 | 5.019            | 1.00 46.66               | В   | С   |
| ATOM         | 5431         | CB       |       | B 263          | -55:572            | 39.525 | 6.180            | 1.00 44.94               | В   | С   |
| ATOM         | 5432         | CG       |       | B 263          | -55.368            | 38.820 | 7.478            | 1.00 43.83               | В   | C   |
| ATOM         | 5433         |          |       | B 263          | -54.160            | 38.925 | 8.152            | 1.00 44.04               | В   | Ç   |
| MOTA         | 5434         |          |       | B 263          | -56.382            | 38.052 | 8.034            | 1.00 44.22               | В   | С   |
| ATOM         | 5435         |          |       | B 263          | -53.957            | 38.276 | 9.366            | 1.00 44.82               | В   | С   |
| ATOM         | 5436         |          |       | B 263          | -56.194            | 37.394 | 9.250            | 1.00 44.68               | В   | С   |
| ATOM         | 5437         | CZ       |       | B 263          | -54.979            | 37.509 | 9.918            | 1.00 44.96               | В   | С   |
| MOTA         | 5438         |          |       | B 263          | -55.472            | 37.532 | 4.749            | 1.00 47.58               | В   | С   |
| ATOM         | 5439         | 0        |       | B 263          | -54.897            |        | 5.045            | 1.00 47.76               | В   | 0   |
| ATOM         | 5440         | N        |       | B 264          | -56.685            | 37.568 | 4.222            | 1.00 48.39               | В   | N   |
| ATOM         | 5441         | CB       |       | B 264          | -57.410            | 36.353 | 3.906            | 1.00 48.20               | В   | С   |
| MOTA         | 5442         | СВ       |       | B 264          | -58.752            | 36.706 | 3.235            | 1.00 48.66               | В   | С   |
| ATOM         | 5443         | CG2      | ILE   | B 264          | -59.516            | 35.461 | 2.913            | 1.00 48.00               | В   | С   |
| ATOM         | 5444         |          |       | B 264          | -59.575            | 37.592 | 4.167            | 1.00 47.65               | В   | С   |
| MOTA         | 5445         | CD1      | ILE   | B 264          | -60.846            | 38.119 | 3.534            | 1.00 48.36               | В   | С   |
| ATOM         | 5446         | С        |       | B 264          | -56.553            | 35.453 | 3.006            | 1.00 48.17               | В   | С   |
| ATOM         | 5447         | 0        | ILE   | B 264          | -56.258            | 34.332 | 3.393            | 1.00 48.16               | В   | 0   |
| ATOM         | 5448         | N        |       | B 265          | -56.131            | 35.944 | 1.838            |                          | В   | N   |
| MOTA         | 5449         | СВ       | ASP : | B 265          | -55.306            | 35.145 | 0.928            | 1.00 49.47               | В   | С   |
| ATOM         | 5450         | СB       | ASP : | B 265          | -54.647            | 36.010 | -0.143           | 1.00 50.71               | В   | C   |
| ATOM         | 5451         | CG       | ASP : | B 265          | -55.635            | 36.558 | -1.137           | 1.00 53.84               | В   | С   |
| ATOM         | 5452         | OD1      | ASP : | B 265          | -56.771            | 36.039 | -1.163           | 1.00 55.79               | В   | 0   |
| ATOM         | 5453         | OD2      | ASP : | B 265          | -55.281            | 37.493 | -1.901           | 1.00 54.14               | В   | 0   |
| ATOM         | 5454         | С        | ASP   | B 265          | -54.208            | 34.402 | 1.660            | 1.00 51.09               | В   | С   |
| MOTA         | 5455         | 0        |       | В 265          | -54.143            | 33.175 | 1.618            | 1.00 50.89               | В   | 0   |
| ATOM         | 5456         | N        | CYS   | B 266          | -53.327            | 35.159 | 2.307            | 1.00 52.63               | В   | N   |
| ATOM         | 5457         | CB       | CYS : | B 266          | -52.218            | 34.590 | 3.065            | 1.00 53.74               | В   | С   |
| ATOM         | 5458         | СВ       |       | в 266          | -51.534            | 35.662 | 3.901            | 1.00 54.13               | В   | C   |
| ATOM         | 5459         | SG       |       | B 266          | -50.783            | 36.999 | 2.977            | 1.00 55.93               | В   | s   |
| ATOM         | 5460         | c        |       | B 266          | -52.736            | 33.523 | 4.001            | 1.00 54.82               | В   | č   |
| ATOM         | 5461         | ŏ        |       | B 266          | -52.246            | 32.399 | 4.005            | 1.00 56.42               | В   | ŏ   |
| ATOM         | 5462         | N        |       | B 267          | -53.725            | 33.886 | 4.807            | 1.00 55.90               | В   | N   |
| ATOM         | 5463         | СВ       |       | B 267          | -54.317            | 32.950 | 5.755            | 1.00 56.39               | В   | Ċ   |
| ATOM         | 5464         | СВ       |       | B 267          | -55.480            | 33.608 | 6.510            | 1.00 56.98               | В   | č   |
| ATOM         | 5465         | CG       |       | B 267          | -55.914            | 32.849 | 7.738            | 1.00 57.66               | В   | č   |
| ATOM         | 5466         |          |       | B 267          | -55.423            | 33.191 | 8.993            | 1.00 58.37               | В   | c   |
| ATOM         | 5467         |          |       | B 267          | -56.782            | 31.768 | 7.636            | 1.00 58.00               | В   | č   |
| ATOM         | 5468         |          |       | B 267          | -55.791            | 32.467 | 10.127           | 1.00 58.38               | В   | Č   |
|              | 5.40         |          |       |                | 5551               |        |                  |                          | -   | •   |

| MOTA | 5469   | CE2 | PHE | В | 267 | -57.153 | 31.040 | 8.762  | 1.00 | 57.80  |   | В  | С |
|------|--------|-----|-----|---|-----|---------|--------|--------|------|--------|---|----|---|
| ATOM | 5470   | CZ  | PHE | В | 267 | -56.656 | 31.391 | 10.009 | 1.00 | 58.26  |   | В  | С |
| ATOM | 5471   | C   |     |   | 267 | -54.831 | 31.755 | 4.968  | 1.00 | 56.02  |   | В  | С |
| MOTA | 5472   | ō   |     |   | 267 | -54.535 | 30.609 | 5.294  | 1.00 | 55.27  |   | В  | o |
| MOTA | 5473   | N   |     |   | 268 | -55.590 | 32.041 | 3.917  |      | 56.08  |   | В  | N |
|      |        | СВ  | LEU |   | 268 | -56.159 | 31.011 | 3.071  |      | 57.81  |   | В  | Ċ |
| ATOM | 5474 . |     |     |   |     |         |        |        |      | 56.45  |   | В  | Ċ |
| MOTA | 5475   | CB  |     |   | 268 | -56.939 | 31.645 | 1.933  |      |        |   |    |   |
| MOTA | 5476   | CG  |     |   | 268 | -58.422 | 31.307 | 1.850  |      | 55.67  |   | В  | С |
| MOTA | 5477   |     | LEU |   | _   | -59.060 | 31.180 | 3.225  |      | 55.08  |   | В  | С |
| MOTA | 5478   | CD2 | LEU | В | 268 | -59.082 | 32.409 | 1.038  | 1.00 | 55.11  |   | В  | С |
| ATOM | 5479   | С   | LEU | В | 268 | -55.136 | 30.059 | 2.490  | 1.00 | 60.44  |   | В  | С |
| ATOM | 5480   | 0   | LEU | В | 268 | -55.442 | 28.888 | 2.261  | 1.00 | 61.38  |   | В  | 0 |
| MOTA | 5481   | N   | MET | В | 269 | -53.926 | 30.541 | 2.235  | 1.00 | 62.83  |   | В  | N |
| ATOM | 5482   | СВ  |     |   | 269 | -52.933 | 29.648 | 1.666  | 1.00 | 65.68  |   | В  | С |
| ATOM | 5483   | СВ  |     |   | 269 | -52.035 | 30.362 | 0.641  |      | 66.48  |   | В  | Č |
| ATOM | 5484   | CG  |     |   | 269 | -51.112 | 31.436 | 1.186  |      | 67.97  |   | В  | č |
|      |        |     |     |   | 269 | -49.736 | 31.835 | 0.054  |      | 70.53  |   | В  | š |
| ATOM | 5485   | SD  |     |   |     |         |        |        |      | 69.89  |   | В  | c |
| ATOM | 5486   | CE  | MET |   | 269 | -50.592 | 31.982 | -1.539 |      |        |   |    |   |
| MOTA | 5487   | С   | MET |   | 269 | -52.097 | 28.971 | 2.728  |      | 67.56  |   | В  | C |
| MOTA | 5488   | 0   | Met |   | 269 | -50.926 | 28.677 | 2.523  |      | 68.36  |   | В  | 0 |
| MOTA | 5489   | N   | LYS | В | 270 | -52.705 | 28.731 | 3.881  |      | 70.26  |   | В  | N |
| ATOM | 5490   | CB  | LYS | В | 270 | -52.013 | 28.026 | 4.943  | 1.00 | 72.64  |   | В  | С |
| ATOM | 5491   | CB  | LYS | В | 270 | -52.405 | 28.582 | 6.304  | 1.00 | 71.49  |   | В  | С |
| ATOM | 5492   | CG  | LYS | В | 270 | -51.36B | 29.531 | 6.855  | 1.00 | 69.76  |   | В  | С |
| ATOM | 5493   | CD  |     |   | 270 | -50.192 | 28.759 | 7.402  | 1.00 | 68.33  |   | В  | С |
| ATOM | 5494   | CE  |     | _ | 270 | -49.264 | 29.672 | 8.162  |      | 67.64  |   | В  | C |
| ATOM | 5495   | NZ  | LYS |   | 270 | -48.115 | 28.930 | 8.734  |      | 67.20  |   | В. | N |
|      |        |     |     |   | 270 | ~52.414 | 26.562 | 4.796  |      | 75.73  |   | В  | Ċ |
| ATOM | 5496   | C   |     | _ |     |         |        |        |      | 75.81  |   |    |   |
| ATOM | 5497   | 0   |     |   | 270 | -52.776 | 25.887 | 5.763  |      |        |   | В  | 0 |
| ATOM | 5498   | N   | MET |   | 271 | -52.354 | 26.107 | 3.541  |      | 78.50  |   | В  | N |
| ATOM | 5499   | CB  |     |   | 271 | -52.667 | 24.737 | 3.146  |      | 80.13  |   | В  | C |
| MOTA | 5500   | CB  | MET | В | 271 | -52.842 | 24.657 | 1.636  | 1.00 | 80.90  |   | В  | С |
| MOTA | 5501   | CG  | MET | В | 271 | -53.812 | 25.665 | 1.079  | 1.00 | 82.59  |   | В  | С |
| ATOM | 5502   | SD  | MET | В | 271 | -53.756 | 25.660 | -0.719 | 1.00 | 85.97  |   | В  | S |
| ATOM | 5503   | CE  | MET | В | 271 | -54.855 | 24.265 | -1.095 | 1.00 | 84.51  |   | В  | С |
| ATOM | 5504   | c   |     |   | 271 | -51.486 | 23.873 | 3.567  |      | 81.24. |   | В  | С |
| ATOM | 5505   | ō   |     |   | 271 | -51.600 | 22.653 | 3.699  |      | 81.28  |   | В  | ō |
|      |        |     |     |   | 272 | -50.351 | 24.537 |        |      | 82.82  |   | В  | N |
| ATOM | 5506   | N   |     |   |     |         |        |        |      |        |   | B  | Č |
| ATOM | 5507   | СВ  |     |   | 272 | -49.122 | 23.902 | 4.215  |      | 85.05  |   |    |   |
| ATOM | 5508   | CB  | GLU |   |     | -48.150 | 24.986 | 4.716  |      | 85.73  |   | В  | C |
| ATOM | 5509   | CG  |     |   | 272 | -46.812 | 24.497 | 5.285  |      | 87.59  |   | В  | С |
| ATOM | 5510   | CD  |     |   | 272 | -46.739 | 24.542 | 6.818  |      | 88.78  |   | В  | С |
| ATOM | 5511   | OE1 | GLU | В | 272 | -45.608 | 24.522 | 7.356  | 1.00 | 89.56  | • | В  | 0 |
| ATOM | 5512   | OE2 | GLU | В | 272 | -47.796 | 24.596 | 7.488  | 1.00 | 89.00  |   | В  | 0 |
| ATOM | 5513   | С   | GLU | В | 272 | -49.508 | 22.951 | 5.350  | 1.00 | 86.62  |   | В  | С |
| ATOM | 5514   | 0 . | GLΰ | В | 272 | -50.240 | 23.340 | 6.269  | 1.00 | 86.86  |   | В  | 0 |
| ATOM | 5515   | N   |     |   | 273 | -49.028 | 21.709 | 5.275  |      | 88.29  |   | В  | N |
| ATOM | 5516   | СВ  |     |   | 273 | -49.332 | 20.680 | 6.277  |      | 89.32  |   | В  | C |
|      | 5517   |     | LYS |   | 273 | -48.887 | 21.121 | 7.685  |      | 89.02  |   | В  | č |
| ATOM |        | CB  |     |   |     |         |        | 7.885  |      | 88.45  |   | В  | Č |
| ATOM | 5518   | CG  |     |   | 273 | -47.390 | 21.273 |        |      |        |   |    | c |
| MOTA | 5519   | CD  |     |   | 273 | -47.074 | 21.964 | 9.209  |      | 88.05  |   | B  |   |
| MOTA | 5520   | CE  | LYS |   |     | -45.581 | 22.284 | 9.332  |      | 87.87  |   | B  | C |
| ATOM | 5521   | NZ  |     |   | 273 | -45.272 | 23.292 | 10.392 |      | 87.63  |   | В  | N |
| ATOM | 5522   | С   |     |   | 273 | -50.827 | 20.350 | 6.318  |      | 89.89  |   | В  | С |
| ATOM | 5523   | 0   | LYS | В | 273 | -51.681 | 21.249 | 6.295  | 1.00 | 89.52  |   | В  | 0 |
| ATOM | 5524   | N   | GLU | В | 274 | -51.131 | 19.054 | 6.376  | 1.00 | 90.48  |   | В  | N |
| ATOM | 5525   | CB  |     |   | 274 | -52.513 | 18.581 | 6.461  | 1.00 | 90.84  |   | В  | С |
| ATOM | 5526   | CB  |     |   | 274 | -52.993 | 18.697 | 7.922  |      | 90.64  |   | В  | С |
| ATOM | 5527   | CG  |     |   | 274 | -54.268 | 17.929 | 8.288  |      | 89.99  |   | В  | С |
|      |        |     |     |   |     |         |        |        |      | 89.49  |   | В  | Ċ |
| ATOM | 5528   | CD  |     |   | 274 | -54.825 | 18.328 | 9.658  |      |        |   |    |   |
| MOTA | 5529   |     | GLU |   |     | -55.347 | 19.457 | 9.784  |      | 90.20  |   | В  | 0 |
| ATOM | 5530   |     | GLU |   |     | -54.738 | 17.521 | 10.608 |      | 88.35  |   | В  | 0 |
| MOTA | 5531   | С   |     |   | 274 | -53.457 | 19.363 | 5.540  |      | 90.92  |   | В  | С |
| MOTA | 5532   | 0   | GLU | В | 274 | -53.555 | 19.092 | 4.345  |      | 90.64  |   | В  | 0 |
| ATOM | 5533   | N   | LYS | В | 275 | -54.138 | 20.348 | 6.114  |      | 91.29  |   | В  | N |
| ATOM | 5534   | CB  |     |   | 275 | -55.097 | 21.158 | 5.377  | 1.00 | 91.78  |   | В  | С |
| ATOM | 5535   | CB  |     |   | 275 | -56.519 | 20.678 | 5.705  | 1.00 | 91.97  |   | В  | С |
| ATOM | 5536   | CG  |     |   | 275 | -56.724 | 19.168 | 5.536  |      | 91.70  |   | В  | Ċ |
| MOTA | 5537   | CD  |     |   | 275 | -56.630 | 18.723 | 4.077  |      | 92.50  |   | В  | č |
|      | 5538   |     |     |   |     | -57.839 | 19.177 | 3.253  |      | 92.35  |   | В  | č |
| ATOM |        | CE  |     |   | 275 |         |        | 3.676  |      | 91.66  |   | В  | N |
| ATOM | 5539   | NZ  |     |   | 275 | -59.116 | 18.534 |        |      |        |   |    |   |
| ATOM | 5540   | С   |     |   | 275 | -54.947 | 22.645 | 5.722  |      | 91.67  |   | В  | C |
| ATOM | 5541   | 0   |     |   | 275 | -54.974 | 23.480 | 4.788  |      | 91.56  |   | В  | 0 |
| ATOM | 5542   | OXT | LYS |   |     | -54.819 | 22.961 | 6.925  |      | 91.78  |   | В  | 0 |
| ATOM | 5543   | CB  | SER | В | 280 | -53.435 | 22.615 | 12.417 | 1.00 | 74.77  |   | В  | С |
|      |        |     |     |   |     |         |        |        |      |        |   |    |   |

| ATOM | 5544 | OG  | SER | В | 280 | -52.744              | 22.755 | 13.650 | 1.00 | 79.13 |        | В    | 0    |
|------|------|-----|-----|---|-----|----------------------|--------|--------|------|-------|--------|------|------|
| ATOM | 5545 | c   |     |   | 280 | -55.476              | 23.718 | 13.346 |      | 71.32 |        | В    | c    |
|      |      |     |     |   |     |                      |        |        |      |       |        | _    | _    |
| MOTA | 5546 | 0   |     |   | 280 | -56.536              | 23.676 | 13.970 |      | 71.13 |        |      |      |
| MOTA | 5547 | N   | SER | В | 280 | -55.630              | 22.267 | 11.323 |      | 71.66 |        | В    | N    |
| ATOM | 5548 | CB  | SER | В | 280 | -54.943              | 22.474 | 12.632 | 1.00 | 72.45 |        | В    | С    |
| ATOM | 5549 | N   | GLU | В | 281 | -54.731              | 24.817 | 13.266 | 1.00 | 70.26 |        | В    | N    |
| ATOM | 5550 | CB  | GLU | В | 281 | ~55.126              | 26.077 | 13.900 | 1.00 | 69.15 |        | В    | С    |
| ATOM | 5551 |     | GLU |   |     | -53.913              | 26.786 | 14.512 |      | 70.56 |        | В    | С    |
|      |      |     |     |   |     |                      |        |        |      |       |        | В    | č    |
| ATOM | 5552 | CG  | GLU |   |     | -53.690              | 26.571 | 15.999 |      | 74.65 |        |      |      |
| ATOM | 5553 | CD  | GLU |   |     | -53.528              | 25.115 | 16.363 |      | 77.89 |        | В    | C    |
| ATOM | 5554 | QE1 | GLU | В | 281 | -54.561              | 24.428 | 16.495 | 1.00 | 80.62 |        | В    | 0    |
| ATOM | 5555 | OE2 | GLU | В | 281 | -52.372              | 24.648 | 16.507 | 1.00 | 79.87 |        | В    | 0    |
| ATOM | 5556 | С   | GLU |   |     | -55.786              | 27.030 | 12.904 | 1.00 | 67.62 |        | В    | С    |
| ATOM | 5557 | ō   | GLU |   |     | -56.730              | 27.755 | 13.238 |      | 67.26 |        | В    | 0    |
|      |      |     |     |   |     |                      |        | 11.672 |      | 65.32 |        | В    | N    |
| ATOM | 5558 | N   | PHE |   |     | -55.297              | 27.035 |        |      |       |        |      |      |
| ATOM | 5559 | CB  |     |   | 282 | -55.850              | 27.937 | 10.680 |      | 63.49 |        | В    | С    |
| MOTA | 5560 | CB  | PHE | В | 282 | -54.788              | 28.284 | 9.636  |      | 61.74 |        | В    | С    |
| MOTA | 5561 | CG  | PHE | В | 282 | -53.532              | 28.821 | 10.225 | 1.00 | 59.40 |        | В    | С    |
| ATOM | 5562 | CD1 | PHE | В | 282 | -52.640              | 27.974 | 10.861 | 1.00 | 58.85 |        | В    | С    |
| ATOM | 5563 | CD2 | PHE |   |     | -53.265              | 30.181 | 10.199 |      | 58.91 |        | В    | С    |
|      |      |     | PHE |   |     | -51.494              | 28.468 | 11.468 |      | 58.78 |        | В    | č    |
| MOTA | 5564 |     |     |   |     |                      |        |        |      |       |        |      |      |
| ATOM | 5565 |     | PHE |   |     | -52.120              | 30.691 | 10.802 |      | 59.04 |        | В    | C    |
| ATOM | 5566 | CZ  | PHE | В | 282 | -51.232              | 29.831 | 11.442 | 1.00 | 59.25 |        | В    | С    |
| ATOM | 5567 | С   | PHE | В | 282 | -57.0 <del>9</del> 9 | 27.417 | 9.996  | 1.00 | 62.85 |        | В    | С    |
| MOTA | 5568 | 0   | PHE | В | 282 | ~57.133              | 27.273 | 8.772  | 1.00 | 64.05 |        | В    | 0    |
| ATOM | 5569 | N   |     |   | 283 | -58.135              | 27.139 | 10.778 | 1.00 | 61.63 |        | В    | N    |
|      | 5570 | СВ  |     |   | 283 | -59.376              |        | 10.195 |      | 59.39 |        | В    | C    |
| ATOM |      |     |     |   |     |                      |        |        |      |       |        |      |      |
| ATOM | 5571 | СВ  | THR |   |     | -60.264              | 25.951 | 11.226 |      | 58.79 |        | В .  |      |
| ATOM | 5572 | QG1 | THR | В | 283 | -60.959              | 26.923 | 12.012 |      | 59.63 |        | В    | _    |
| ATOM | 5573 | CG2 | THR | В | 283 | -59.414              | 25.06B | 12.129 | 1.00 | 58.09 | 1. 337 | В.   | · C  |
| MOTA | 5574 | C   | THR | В | 283 | -60.135              | 27.830 | 9.600  | 1.00 | 58.30 |        | В "  | С    |
| ATOM | 5575 | Ō   | THR |   |     | -59.885              | 28.991 | 9.915  | 1.00 | 56.74 |        | В    | 0    |
| ATOM | 5576 |     | ILE |   |     | -61.065              | 27.519 | 8.720  |      | 58.90 |        | В.   |      |
|      |      | N   |     |   |     |                      |        |        |      |       |        |      |      |
| ATOM | 5577 | СВ  | ILE |   |     | -61.825              | 28.556 | 8.071  |      | 59.17 |        | B :: |      |
| MOTA | 5578 | CB  | ILE | В | 284 | -62.809              | 27.930 | 7.068  |      | 58.68 |        | В.,  |      |
| MOTA | 5579 | CG2 | ILE | В | 284 | -64.235              | 27.992 | 7.600  | 1.00 | 59.86 |        | В    | · C  |
| ATOM | 5580 | CG1 | ILE | В | 284 | -62.705              | 28.660 | 5.735  | 1.00 | 58.70 | *14    | В    | C    |
| ATOM | 5581 |     | ILE |   |     | -63.185              | 30.080 | 5.799  | 1.00 | 58.99 |        | B :  | ., с |
| ATOM | 5582 | c   | ILE |   |     | -62.566              | 29.456 | 9.059  |      | 60.12 |        | В.,  |      |
|      |      |     |     |   |     |                      |        |        |      | 60.71 |        | В    | ō    |
| MOTA | 5583 | 0   | ILE |   |     | -62.861              | 30.608 | 8.744  |      |       |        |      |      |
| MOTA | 5584 | N   | GLU |   |     | -62.865              | 28.952 | 10.254 |      | 60.72 |        | В    | N    |
| MOTA | 5585 | CB  | GLU | В | 285 | -63.590              | 29.768 | 11.223 | 1.00 | 60.44 |        | В    | С    |
| ATOM | 5586 | CB  | GLU | В | 285 | -64.615              | 28.936 | 11.991 | 1.00 | 60.85 |        | В    | С    |
| MOTA | 5587 | CG  | GLU | В | 285 | -64.149              | 28.442 | 13.334 | 1.00 | 63.04 |        | В    | С    |
| ATOM | 5588 | CD  | GLU |   |     | -65.315              | 28.188 | 14.293 | -    | 65.29 |        | В    | С    |
|      |      |     |     |   |     |                      |        |        |      | 66.14 |        | В    | ō    |
| ATOM | 5589 |     | GLU |   |     | -66.045              | 29.159 | 14.618 |      |       |        |      |      |
| ATOM | 5590 |     | GLU |   |     | -65.500              | 27.021 | 14.722 |      | 66.32 |        | В    | 0    |
| ATOM | 5591 | .C  | GLU | В | 285 | -62.685              | 30.493 | 12.201 |      | 59.92 |        | В    | С    |
| ATOM | 5592 | 0   | GLU | В | 285 | -63.082              | 31.493 | 12.796 | 1.00 | 61.00 |        | В    | 0    |
| ATOM | 5593 | N   | SER | В | 286 | -61.468              | 29.997 | 12.375 | 1.00 | 58.72 |        | В    | N    |
| ATOM | 5594 | CB  |     |   | 286 | -60.535              | 30.656 | 13.275 | 1.00 | 56.41 |        | В    | С    |
| ATOM | 5595 |     |     |   | 286 | -59.338              | 29.755 | 13.584 |      | 55.84 |        | В    | С    |
|      |      | CB  |     |   |     | -58.484              |        | 12.462 |      | 53.04 |        | В    | ŏ    |
| MOTA | 5596 | OG  |     |   | 286 |                      | 29.643 |        |      |       |        |      | Č    |
| ATOM | 5597 | С   |     |   | 286 | -60.061              | 31.896 | 12.543 |      | 56.00 |        | В    |      |
| MOTA | 5598 | 0   | SER | В | 286 | -59.480              | 32.788 | 13.144 |      | 57.06 |        | В    | 0    |
| MOTA | 5599 | N   | LEU |   |     | -60.313              | 31.943 | 11.236 |      | 55.99 |        | В    | N    |
| ATOM | 5600 | CB  | LEU | В | 287 | -59.927              | 33.086 | 10.411 | 1.00 | 55.96 |        | В    | С    |
| MOTA | 5601 | СВ  |     |   | 287 | -59.965              | 32.729 | 8.925  | 1.00 | 56.55 |        | В    | С    |
| ATOM | 5602 | CG  |     |   | 287 | -60.137              | 33.880 | 7.915  |      | 57.20 |        | В    | C    |
|      |      |     | LEU |   |     | -59.001              | 34.879 | 8.029  |      | 57.86 |        | В    | Ċ    |
| MOTA | 5603 |     |     |   |     |                      |        |        |      |       |        |      |      |
| ATOM | 5604 |     | LEU |   |     | -60.200              | 33.310 | 6.505  |      | 57.36 |        | В    | C    |
| ATOM | 5605 | С   | LEU |   |     | -60.870              | 34.244 | 10.653 |      | 55.79 |        | В    | C    |
| MOTA | 5606 | 0   | LEU | В | 287 | -60.443              | 35.344 | 10.999 |      | 56.11 |        | В    | 0    |
| MOTA | 5607 | N   | GLU | В | 288 | -62.158              | 33.990 | 10.459 | 1.00 | 56.08 |        | В    | N    |
| ATOM | 5608 | CB  |     |   | 288 | -63.164              | 35.017 | 10.662 | 1.00 | 56.44 |        | В    | С    |
| ATOM | 5609 | CB  | GLU |   |     | -64.546              | 34.493 | 10.262 |      | 57.11 |        | В    | Ċ    |
|      |      |     |     |   |     |                      |        |        |      | 60.08 |        | В    | č    |
| ATOM | 5610 | CG  | GLU |   |     | -64.863              | 33.111 | 10.787 |      |       |        |      |      |
| MOTA | 5611 | CD  | GLU |   |     | -66.159              | 32.531 | 10.212 |      | 62.32 |        | В    | C    |
| ATOM | 5612 | OE1 | GLU | В | 288 | -66.677              | 31.545 | 10.799 |      | 63.81 |        | В    | 0    |
| MOTA | 5613 | QE2 | GLU | В | 288 | -66.649              | 33.050 | 9.180  | 1.00 | 61.39 |        | В    | 0    |
| ATOM | 5614 | C   | GLU |   |     | -63.136              | 35.491 | 12.117 | 1.00 | 55.74 |        | В    | С    |
| ATOM | 5615 | ō   | GLU |   |     | -63.690              | 36.539 | 12.447 |      | 56.10 |        | В.   | 0    |
| ATOM | 5616 | N   | ASN |   |     | -62.484              | 34.730 | 12.991 |      | 53.98 |        | В    | N    |
|      |      |     |     |   |     |                      |        |        |      | 52.59 |        | В    | c    |
| MOTA | 5617 | CB  |     |   | 289 | -62.377              | 35.164 | 14.374 |      |       |        |      |      |
| MOTA | 5618 | CB  | ASN | В | 289 | -62.085              | 34.000 | 15.304 | 1.00 | 53.71 | **     | В    | С    |

Figure 1

| ATOM         | 5619         | CG     | ASN | в 289 | -63.325 | 33.293 | 15.722           | 1.00 54.53               | В      | Ç   |
|--------------|--------------|--------|-----|-------|---------|--------|------------------|--------------------------|--------|-----|
| ATOM         | 5620         | OD1    |     | B 289 | -64.002 | 32.664 | 14.911           | 1.00 55.61               | В      | 0   |
| ATOM         | 5621         |        | ASN |       | -63.660 | 33.412 | 17.007           | 1.00 56.28               | В      | N   |
| ATOM         | 5622         | C      |     | B 289 | -61.239 | 36.153 | 14.449           | 1.00 50.71               | В      | С   |
| ATOM         | 5623         | ō      |     | B 289 | -61.379 | 37.253 | 14.974           | 1.00 50.97               | В      | 0   |
| ATOM         | 5624         | N      | THR |       | -60.103 | 35.752 | 13.906           | 1.00 47.74               | В      | N   |
| ATOM         | 5625         | СВ     |     | B 290 | -58.957 | 36.619 | 13.902           | 1.00 45.04               | В      | С   |
| ATOM         | 5626         | СВ     |     | B 290 | -57.769 | 35.942 | 13.217           | 1.00 44.96               | В      | c   |
| ATOM         | 5627         |        | THR |       | -57.344 | 34.823 | 14.002           | 1.00 43.08               | В      | 0   |
| ATOM         | 5628         |        |     | B 290 | -56.621 | 36.925 | 13.063           | 1.00 46.32               | В      | C   |
| ATOM         | 5629         | c      |     | B 290 | -59.330 | 37.893 | 13.160           | 1.00 42.77               | В      | С   |
| ATOM         | 5630         | ŏ      |     | B 290 | -58.969 | 38.985 | 13.561           | 1.00 42.63               | В      | 0   |
| ATOM         | 5631         | N      |     | B 291 | -60.084 | 37.748 | 12.088           | 1.00 40.93               | В      | N   |
| ATOM         | 5632         | СВ     |     | B 291 | -60.485 | 38.902 | 11.317           | 1.00 40.35               | В      | C   |
| ATOM         | 5633         | CB     | ALB |       | -61.230 | 38.457 | 10.080           | 1.00 40.84               | В      | C   |
| ATOM         | 5634         | c      |     | B 291 | -61.370 | 39.812 | 12.139           | 1.00 40.17               | В      | Č   |
| ATOM         | 5635         | ŏ      |     | B 291 | -61.200 | 41.026 | 12.145           | 1.00 39.39               | В      | 0   |
| ATOM         | 5636         | N      |     | B 292 | -62.329 | 39.219 | 12.831           | 1.00 39.76               | В      | N   |
| ATOM         | 5637         | СВ     |     | B 292 | -63.243 | 40.009 | 13.617           | 1.00 39.50               | В      | C   |
| ATOM         | 5638         | CB     |     | B 292 | -64.438 | 39.134 | 14.032           | 1.00 39.68               | В      | C   |
| ATOM         | 5639         | CG1    | VAL |       | -64.037 | 38.245 | 15.190           | 1.00 40.47               | В      | c   |
| ATOM         | 5640         |        |     | B 292 | -65.657 | 40.003 | 14.325           | 1.00 37.69               | В      | Č   |
| MOTA         | 5641         | C      |     | B 292 | -62.522 | 40.648 | 14.810           | 1.00 39.15               | В      | c   |
| ATOM         | 5642         | ŏ      | VAL |       | -62.945 | 41.683 | 15.310           | 1.00 39.62               | • в    | ō   |
| ATOM         | 5643         | N      |     | B 293 | -61.426 | 40.048 | 15.269           | 1.00 39.93               | В      | N   |
| MOTA         | 5644         | CB     |     | B 293 | -60.678 | 40.652 | 16.372           | 1.00 39.11               | В      | c   |
| ATOM         | 5645         | CB     |     | B 293 | -59.777 | 39.633 | 17.056           | 1.00 38.92               | В      | č   |
| ATOM         | 5646         | CG     |     | B 293 | -60.546 | 38.740 | 18.010           | 1.00 43.01               | В      | č   |
| ATOM         | 5647         |        |     | B 293 | -59.902 | 38.008 | 18.808           | 1.00 43.72               | В      | ō   |
| ATOM         | 5648         | OD2    |     | B 293 | -61.803 | 38.769 | 17.962           | 1.00 45.44               | В      | ŏ   |
|              | 5649         | Ç      |     | B 293 | -59.862 | 41.827 | 15.852           | 1.00 38.91               | В      | Č   |
|              |              |        |     | B 293 | -59.811 | 42.872 | 16.494           | 1.00 40.44               | В      | ō   |
| ATOM<br>ATOM | 5650<br>5651 | O<br>N | LEU |       | -59.236 | 41.681 | 14.687           | 1.00 36.76               | В      | N   |
|              | 5652         | СВ     |     | B 294 | -58.473 | 42.787 | 14.128           | 1.00 33.65               | В      | Ċ   |
| ATOM         |              |        |     |       | -57.833 | 42.405 | 12.808           | 1.00 31.23               | В      | č   |
| ATOM         | 5653         | CB     | LEU |       |         |        | 13.032           | 1.00 32.79               | В      | č   |
| ATOM         | 5654         | CG     | LEU |       | -56.818 | 41.287 |                  | 1.00 32.79               | В      | č   |
| ATOM         | 5655         |        | LEU |       | -56.300 | 40.756 | 11.707           | 1.00 33.40               | В      | Ċ   |
| ATOM         | 5656         |        | LEU |       | -55.698 | 41.802 | 13.896           | 1.00 32.34               | В      | Ċ   |
| MOTA         | 5657         | C      |     | B 294 | -59.357 | 43.998 | 13.916<br>14.073 | 1.00 35.78               | В.     | _   |
| ATOM         | 5658         | 0      |     | B 294 | -58.901 | 45.122 |                  | 1.00 33.78               | В.     | N   |
| MOTA         | 5659         | N      |     | B 295 | -60.619 | 43.786 | 13.557           | 1.00 31.27               | В      | Ç   |
| MOTA         | 5660         | CB     |     | B 295 | -61.537 | 44.913 | 13.350           | 1.00 29.68               | В      | c   |
| ATOM         | 5661         | CB     |     | B 295 | -62.849 | 44.474 | 12.714           | 1.00 29.86               | В      | c   |
| ATOM         | 5662         | CG     |     | B 295 | -62.837 | 44.522 | 11.236           |                          | В      | c   |
| MOTA         | 5663         |        |     | B 295 | -62.926 | 45.729 | 10.565           | 1.00 30.61               |        | c   |
| ATOM         | 5664         |        |     | B 295 | -62.666 | 43.357 | 10.508           | 1.00 30.77               | B<br>B | c   |
| MOTA         | 5665         |        |     | В 295 | -62.842 | 45.776 | 9.175            | 1.00 31.84               | В      | c   |
| MOTA         | 5666         |        |     | B 295 | -62.578 | 43.387 | 9.130            | 1.00 32.13               | В      | c   |
| MOTA         | 5667         | CZ     |     | B 295 | -62.666 | 44.600 | 8.458            | 1.00 32.49               | В      | c   |
| ATOM         | 5668         | C      |     | B 295 | -61.882 | 45.547 | 14.663           |                          | В      | Ö   |
| ATOM         | 5669         | 0      |     | B 295 | -62.148 | 46.737 | 14.735           | 1.00 27.35               | В      | N   |
| ATOM         | 5670         | N      |     | B 296 | -61.912 | 44.731 | 15.702           | 1.00 25.49               | В      | Ċ   |
| ATOM         | 5671         | СВ     |     | B 296 | -62.253 | 45.243 | 17.002           | 1.00 24.78<br>1.00 25.52 | В      | c   |
| ATOM         | 5672         | c      |     | B 296 | -61.075 | 45.904 | 17.656           | 1.00 23.32               | В      | Ö   |
| MOTA         | 5673         | 0      |     | B 296 | -61.196 | 46.998 | 18.195           | 1.00 27.98               | В      | N   |
| ATOM         | 5674         | N      |     | B 297 | -59.930 | 45.240 | 17.616           |                          | В      |     |
| ATOM         | 5675         | CB     |     | B 297 | -58.739 | 45.789 | 18.228<br>18.438 | 1.00 26.38<br>1.00 24.88 | В      | C   |
| MOTA         | 5676         | CB     |     | B 297 | -57.719 | 44.693 |                  |                          |        |     |
| ATOM         | 5677         | C      |     | B 297 | -58.133 | 46.912 | 17.396           | 1.00 28.34               | B<br>B | C   |
| MOTA         | 5678         | 0      |     | B 297 | -57.442 | 47.784 | 17.924           |                          |        |     |
| MOTA         | 5679         | N      |     | В 298 | -58.392 | 46.922 | 16.100           | 1.00 27.67               | B<br>B | N   |
| MOTA         | 5680         | СВ     |     | B 298 | -57.773 | 47.960 | 15.319           | 1.00 29.26               |        | C   |
| MOTA         | 5681         | С      |     | B 298 | -58.633 | 49.127 | 14.924           | 1.00 31.14               | В      | C   |
| MOTA         | 5682         | 0      |     | B 298 | -58.262 | 49.900 | 14.042           | 1.00 34.01               | В      | .0  |
| ATOM         | 5683         | N      |     | B 299 | -59.745 | 49.342 | 15.594           | 1.00 29.49               | В      | N   |
|              | 5684         | СВ     |     | B 299 | -60.577 | 50.399 | 15.103           | 1.00 26.79               | В      | C   |
| MOTA         | 5685         | CB     |     | B 299 | -61.753 | 49.712 | 14.411           | 1.00 26.41               | В      | C · |
| MOTA         | 5686         |        |     | B 299 | -62.265 | 50.529 | 13.358           | 1.00 27.57               | В      | 0   |
| MOTA         | 5687         |        |     | B 299 | -62.821 | 49.392 | 15.408           | 1.00 27.56               | В      | C   |
| MOTA         | 5688         | С      |     | B 299 | -60.995 | 51.429 | 16.146           | 1.00 26.40               | В      | c   |
| MOTA         | 5689         | 0      |     | B 299 | -60.939 | 52.637 | 15.909           | 1.00 25.92               | В      | 0   |
| MOTA         | 5690         | N      |     | B 300 | -61.374 | 50.961 | 17.321           | 1.00 26.01               | В      | N   |
| ATOM         | 5691         | CB     |     | B 300 | -61.792 | 51.850 | 18.391           | 1.00 26.93               | В      | C   |
| MOTA         | 5692         | CB     |     | B 300 | -62.412 | 51.005 | 19.500           | 1.00 31.79               | В      | C   |
| ATOM         | 5693         | CG     | GLU | B 300 | -62.557 | 51.727 | 20.802           | 1.00 37.36               | В      | С   |
|              |              |        |     |       |         |        |                  |                          |        |     |

Figure 1

| ATOM         | 5694         | CD       | GLU        | В | 300        | -63.445            | 52.938           | 20.668           | 1.00 | 42.07          |   | В      | С      |
|--------------|--------------|----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|---|--------|--------|
| MOTA         | 5695         |          | GLU        |   | 300        | -63.613            | 53.661           | 21.679           |      | 47.59          |   | В      | 0      |
| ATOM         | 5696         |          | GLU        |   | 300        | -63.981            | 53.179           | 19.558           |      | 42.63          |   | В      | 0      |
| ATOM         | 5697         | С<br>0   | GLU<br>GLU |   | 300<br>300 | -60.665<br>-60.683 | 52.730<br>53.938 | 18.947<br>18.763 |      | 25.84<br>24.17 |   | B<br>B | 0      |
| ATOM<br>ATOM | 5698<br>5699 | N        | THR        |   | 301        | -59.690            | 52.110           | 19.616           |      | 27.08          |   | В      | N      |
| ATOM         | 5700         | CB       | THR        |   |            | -58.536            | 52.804           | 20.229           |      | 27.58          |   | . В    | c      |
| ATOM         | 5701         | CB       | THR        |   | 301        | -57.515            | 51.814           | 20.760           | 1.00 | 29.49          |   | В      | С      |
| ATOM         | 5702         |          | THR        |   | 301        | -57.306            | 50.788           | 19.778           |      | 34.46          |   | В      | 0      |
| MOTA         | 5703         |          | THR        |   |            | -57.994            | 51.205           | 22.064           |      | 32.05          |   | В      | C      |
| ATOM         | 5704         | C        | THR        |   |            | -57.776            | 53.756<br>54.775 | 19.335<br>19.789 |      | 25.76<br>25.40 |   | B<br>B | C<br>0 |
| ATOM<br>ATOM | 5705<br>5706 | N<br>O   | THR        |   |            | -57.255<br>-57.683 | 53.416           | 18.063           |      | 24.51          |   | В      | n      |
| ATOM         | 5707         | СВ       | THR        |   |            | -56.984            | 54.297           | 17.171           |      | 25.41          |   | В      | Ċ      |
| ATOM         | 5708         | СВ       | THR        |   |            | -56.772            | 53.649           | 15.826           | 1.00 | 26.05          |   | В      | C      |
| ATOM         | 5709         |          | THR        |   |            | -55.789            | 52.615           | 15.937           |      | 31.07          |   | В      | 0      |
| MOTA         | 5710         | CG2      | THR        |   | 302        | -56.306            | 54.675           | 14.831           |      | 26.58          |   | В      | C      |
| ATOM<br>ATOM | 5711<br>5712 | С<br>0   | THR        |   |            | -57.838<br>-57.442 | 55.543<br>56.653 | 16.998<br>17.355 |      | 25.98<br>25.33 |   | B<br>B | . 0    |
| ATOM         | 5713         | N        | SER        |   |            | -59.035            | 55.341           | 16.466           |      | 26.68          |   | В      | N      |
| ATOM         | 5714         | СВ       | SER        |   |            | -59.966            | 56.430           | 16.225           |      | 27.19          |   | В      | С      |
| ATOM         | 5715         | СВ       | SER        |   |            | -61.367            | 55.897           | 15.952           |      | 29.13          |   | В      | С      |
| ATOM         | 5716         | OG       | SER        |   |            | -61.465            | 55.225           | 14.715           |      | 34.34          |   | В      | 0      |
| ATOM         | 5717         | C        | SER        |   |            | -60.086            | 57.360           | 17.388<br>17.235 |      | 25.94<br>25.33 |   | B<br>B | С<br>0 |
| ATOM<br>ATOM | 5718<br>5719 | O<br>N   | SER<br>THR |   |            | -60.050<br>-60.282 | 58.573<br>56.787 | 18.564           |      | 26.25          |   | В      | N      |
| ATOM         | 5720         | СВ       | THR        |   |            | -60.463            | 57.617           | 19.736           |      | 26.25          |   | В      | Ċ      |
| ATOM         | 5721         | СВ       | THR        |   |            | -60.869            | 56.771           | 20.943           | 1.00 | 25.12          |   | В      | С      |
| MOTA         | 5722         | OG1      | THR        | В | 304        | -60.909            | 57.607           | 22.098           |      | 25.84          |   | В      | 0      |
|              | 5723         |          | THR        |   |            | -59.910            | 55.607           | 21.139           |      | 28.20          |   | В      | C      |
| ATOM         | 5724         | .C .     | THR        |   |            | ~59.217            | 58.432           | 20.013           |      | 26.31 25.89    |   | B<br>B | С<br>О |
| ATOM ATOM    | 5725<br>5726 | O<br>N   | THR        |   |            | -59.311<br>-58.056 | 59.566<br>57.852 | 20.478<br>19.695 |      | 25.66          |   | В      | N      |
| ATOM         | 5727         | СВ       | THR        |   |            | -56.778            | 58.532           | 19.875           |      | 22.79          |   | В      | Ċ      |
| ATOM         | 5728         | СВ       | THR        |   |            | -55.600            | 57.593           | 19.632           | 1.00 | 23.12          |   | В      | С      |
| ATOM         | 5729         | OG1      | THR        | В | 305        | -55.610            | 56.565           | 20.617           |      | 23.94          |   | В      | 0      |
| ATOM         | 5730         |          | THR        |   |            | -54.280            | 58.346           | 19.727           |      | 22.25          |   | В      | C      |
| MOTA         | 5731         | C        | THR        |   |            | -56.675            | 59.716           | 18.910<br>19.312 |      | 22.27          |   | B<br>B | C<br>O |
| ATOM<br>ATOM | 5732<br>5733 | O<br>N   | THR        |   |            | -56.268<br>-57.030 | 60.806<br>59.518 | 17.643           |      | 21.59          |   | В      | N      |
| ATOM         | 5734         | СВ       | LEU        |   |            | -56.984            | 60.641           | 16.718           |      | 23.20          |   | В      | Ċ      |
| ATOM         | 5735         | CB       |            |   | 306        | -57.496            | 60.267           | 15.342           | 1.00 | 25.43          |   | В      | С      |
| ATOM         | 5736         | CG       |            |   | 306        | -56,758            | 59.078           | 14.789           |      | 29.99          |   | В      | С      |
| ATOM         | 5737         |          | LEU        |   |            | -57.609            | 58.389           | 13.728           |      | 30.54          |   | В      | C<br>C |
| MOTA         | 5738         |          | LEU        |   |            | -55.423<br>-57.906 | 59.571<br>61.700 | 14.229<br>17.280 |      | 31.99          |   | B<br>B | C      |
| ATOM<br>ATOM | 5739<br>5740 | С<br>0   | LEU        |   | 306        | -57.531            | 62.856           | 17.435           |      | 22.83          |   | В      | ŏ      |
| ATOM         | 5741         | N        | ARG        |   | 307        | -59.123            | 61.288           | 17.592           |      | 22.93          |   | В      | N      |
| MOTA         | 5742         | CB       | ARG        | В | 307        | -60.121            | 62.189           | 18.128           |      | 22.85          |   | В      | С      |
| MOTA         | 5743         | CB       | ARG        |   | 307        | -61.301            | 61.398           | 18.640           |      | 24.53          |   | В      | C      |
| ATOM         | 5744         | CG       | ARG        |   | 307        | -62.615            | 61.869           | 18.079<br>18.894 |      | 27.44          |   | B<br>B | C      |
| MOTA<br>MOTA | 5745<br>5746 | CD<br>NE | ARG        |   | 307<br>307 | -63.714<br>-63.640 | 61.266<br>59.814 | 18.874           |      | 32.35          |   | В      | N      |
| ATOM         | 5747         | CZ       | ARG        |   | 307        | -64.006            | 59.048           | 19.894           |      | 34.22          |   | В      | С      |
| ATOM         | 5748         | NH1      |            |   | 307        | -64.457            | 59.627           | 20.998           |      | 35.76          |   | В      | N      |
| ATOM         | 5749         | NH2      | ARG        |   |            | -63.933            | 57.714           | 19.808           |      | 34.04          |   | В      | N      |
| MOTA         | 5750         | С        |            |   | 307        | -59.555            | 63.009           | 19.257           |      | 21.78          |   | B<br>B | С<br>0 |
| MOTA         | 5751         | 0        |            |   | 307<br>308 | -59.656<br>-58.959 | 64.234<br>62.309 | 19.263<br>20.215 |      | 20.38          |   | B      | N      |
| MOTA<br>MOTA | 5752<br>5753 | N<br>CB  |            |   | 308        | -58.352            | 62.938           | 21.369           |      | 19.20          |   | В      | Ċ      |
| ATOM         | 5754         | СВ       |            |   | 308        | -57.831            | 61.877           | 22.330           |      | 16.80          |   | В      | С      |
| ATOM         | 5755         | CG       |            |   | 308        | -58.180            | 62.202           | 23.746           |      | 17.26          | · | В      | С      |
| MOTA         | 5756         | CD1      | TYR        | В | 308        | -58.636            | 61.210           | 24.619           |      | 17.03          |   | В      | C      |
| MOTA         | 5757         |          | TYR        |   |            | -59.062            | 61.528           | 25.906           |      | 19.31          |   | В      | C      |
| ATOM         | 5758         |          | TYR        |   |            | -58.142            | 63.526<br>63.865 | 24.195<br>25.470 |      | 18.45<br>20.48 |   | B<br>B | . c    |
| ATOM         | 5759<br>5760 | CE2      | TYR        |   | 308        | -58.562<br>-59.024 | 62.865           | 26.320           |      | 22.48          | • | В      | c      |
| ATOM<br>ATOM | 5761         | OH       |            |   | 308        | -59.460            | 63.232           | 27.570           |      | 26.26          |   | В      | ŏ      |
| ATOM         | 5762         | c.       |            |   | 308        | -57.210            | 63.842           | 20.941           | 1.00 | 19.96          |   | В      | С      |
| ATOM         | 5763         | 0        | TYR        | В | 308        | -56.975            | 64.889           | 21.549           |      | 20.87          |   | В      | 0      |
| ATOM         | 5764         | N        |            |   | 309        | -56.492            | 63.435           | 19.899           |      | 18.00          |   | В      | N      |
| ATOM         | 5765         | CB       |            |   | 309        | -55.396<br>-54.657 | 64.247<br>63.557 | 19.429<br>18.324 |      | 17.75<br>16.62 |   | B<br>B | C<br>C |
| ATOM<br>ATOM | 5766<br>5767 | CB<br>C  |            |   | 309<br>309 | -54.657            | 65.600           | 18.324           |      | 19.19          |   | В      | c      |
| MOTA<br>MOTA | 5768         | 0        |            |   | 309        | -55.442            | 66.636           | 19.434           |      | 18.53          |   | В      | ŏ      |
| a. on        | J. 00        | -        |            | _ |            |                    |                  |                  |      |                |   |        | -      |

| ATOM | 5769 | N   | LEU | В | 310   | -56.857 | 65.609 | 18.023 | 1.00 | 19.81 | В     | N |
|------|------|-----|-----|---|-------|---------|--------|--------|------|-------|-------|---|
| MOTA | 5770 | СВ  | LEU | В | 310   | -57.374 | 66.877 | 17.517 | 1.00 | 20.86 | В     | С |
| ATOM | 5771 | СВ  | LEU |   |       | -58.470 | 66.645 | 16.484 | 1.00 | 21.51 | В     | С |
|      | 5772 | CG  | LEU |   |       | -58.007 | 65.929 | 15.210 |      | 25.25 | В     | Č |
| ATOM |      |     |     |   |       |         |        |        |      |       |       |   |
| MOTA | 5773 |     | LEU |   |       | -59.242 | 65.519 | 14.443 |      | 25.53 | В     | С |
| ATOM | 5774 | CD2 | LEU | В | 310   | -57.104 | 66.811 | 14.352 | 1.00 | 25.87 | В     | С |
| MOTA | 5775 | С   | LEU | В | 310   | -57.897 | 67.773 | 18.634 | 1.00 | 22.30 | В     | С |
| ATOM | 5776 | 0   | LEU |   |       | -57.632 | 68.976 | 18.648 | 1.00 | 23.37 | В     | 0 |
|      |      |     |     |   |       |         | 67.204 | 19.585 |      | 21.44 | В     | N |
| MOTA | 5777 | N   | LEU |   |       | -58.629 |        |        |      |       |       |   |
| MOTA | 5778 | СВ  | LEU | В | 311   | -59.144 | 68.024 | 20.662 | 1.00 | 20.88 | В     | С |
| MOTA | 5779 | ÇB  | LEU | В | 311   | -59.984 | 67.186 | 21.619 | 1.00 | 19.01 | В     | С |
| MOTA | 5780 | CG  | LEU | В | 311   | -60.390 | 67.839 | 22.948 | 1.00 | 18.49 | В     | C |
| ATOM | 5781 |     | LEU |   |       | -61.357 | 68.983 | 22.706 |      | 18.00 | В     | C |
|      |      |     |     |   |       |         |        |        |      |       | В     | č |
| MOTA | 5782 |     | LEU |   |       | -61.016 | 66.806 | 23.841 |      | 16.88 |       |   |
| ATOM | 5783 | С   | LEU |   |       | -57.998 | 68.686 | 21.419 |      | 22.48 | В     | С |
| ATOM | 5784 | 0   | LEU | В | 311   | -58.122 | 69.823 | 21.858 | 1.00 | 22.48 | В     | 0 |
| ATOM | 5785 | N   | LEU | В | 312   | -56.879 | 67.978 | 21.561 | 1.00 | 24.25 | В     | N |
| ATOM | 5786 | CB  | LEU |   |       | -55.709 | 68.496 | 22.285 | 1.00 | 24.91 | В     | С |
| ATOM | 5787 | CB  | LEU |   |       | -54.792 | 67.356 | 22.690 |      | 21.92 | В     | Ċ |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| MOTA | 5788 | CG  | LEU |   |       | -55.184 | 66.632 | 23.964 |      | 19.90 | В     | C |
| ATOM | 5789 | CD1 | LEU | В | 312   | -54.417 | 65.352 | 24.066 | 1.00 | 18.64 | В     | С |
| ATOM | 5790 | CD2 | LEU | В | 312   | -54.936 | 67.532 | 25.155 | 1.00 | 19.07 | В     | С |
| ATOM | 5791 | С   | LEU | В | 312   | -54.892 | 69.502 | 21.511 | 1.00 | 27.14 | <br>В | С |
| ATOM | 5792 | ō   | LEU |   |       | -54.220 | 70.343 | 22.104 |      | 28.40 | В     | ō |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| MOTA | 5793 | N   | LEU |   |       | -54.913 | 69.378 | 20.190 |      | 28.19 | В     | N |
| MOTA | 5794 | CB  | LEU |   |       | -54.188 | 70.296 | 19.346 | 1.00 | 30.54 | В     | С |
| MOTA | 5795 | CB  | LEU | В | 313   | -53.970 | 69.690 | 17.958 | 1.00 | 30.59 | В     | С |
| ATOM | 5796 | CG  | LEU | В | 313   | -52.800 | 68.737 | 17.654 | 1.00 | 28.96 | В     | С |
| ATOM | 5797 |     | LEU |   |       | -53.097 | 67.912 | 16.398 |      | 27.46 | В     | č |
|      |      |     |     |   |       |         |        |        |      |       |       | č |
| ATOM | 5798 |     | LEU |   |       | -51.550 | 69.542 | 17.450 |      | 27.44 | В     |   |
| MOTA | 5799 | С   | LEU | В | 313   | -55.005 | 71.586 | 19.246 | 1.00 | 33.39 | В     | С |
| ATOM | 5800 | 0   | LEU | В | 313   | -54.568 | 72.547 | 18.625 | 1.00 | 35.57 | ₿     | 0 |
| MOTA | 5801 | N   | LEU | В | 314   | -56.203 | 71.604 | 19.835 | 1.00 | 35.30 | В     | N |
| ATOM | 5802 | СВ  | LEU |   |       | -57.027 | 72.815 | 19.836 |      | 36.01 | В     | Ċ |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| ATOM | 5803 | CB  | LEU |   |       | -58.524 | 72.502 | 19.836 |      | 35.55 | В     | С |
| MOTA | 5804 | CG  | LEU | В | 314   | -59.227 | 71.941 | 18.597 | 1.00 | 36.63 | В     | С |
| ATOM | 5805 | CD1 | LEU | В | 314   | -60.609 | 71.450 | 18.978 | 1.00 | 34.59 | В     | С |
| MOTA | 5806 | CD2 | LEU | В | 314   | -59.325 | 73.004 | 17.511 | 1.00 | 36.53 | В     | С |
| ATOM | 5807 | c   | LEU |   |       | -56.676 |        | 21.144 |      | 36.18 | В     | č |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| ATOM | 5808 | Ο,  | LEU |   |       | -56.292 | 74.648 | 21.190 |      | 37.31 | В     | 0 |
| MOTA | 5809 | N   | LYS | В | 315   | -56.788 | 72.746 | 22.222 | 1.00 | 37.02 | В     | N |
| ATOM | 5810 | CB  | LYS | В | 315   | -56.476 | 73.302 | 23.509 | 1.00 | 39.35 | В     | С |
| ATOM | 5811 | ÇВ  | LYS | В | 315   | -56.507 | 72.188 | 24.542 | 1.00 | 38.65 | В     | С |
| ATOM | 5812 | ÇG  | LYS |   |       | -56.407 | 72.672 | 25.952 |      | 38.95 | В     | Ċ |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| MOTA | 5813 | CD  | LYS |   |       | -57.656 | 73.410 | 26.356 |      | 39.68 | В     | С |
| MOTA | 5814 | CE  | LYS | В | 315 . | -57.704 | 73.586 | 27.856 | 1.00 | 40.12 | В     | С |
| ATOM | 5815 | NZ. | LYS | В | 315   | -58.822 | 74.473 | 28.221 | 1.00 | 39.66 | В     | N |
| ATOM | 5816 | С   | LYS | В | 315   | -55.103 | 74.013 | 23.513 | 1.00 | 40.89 | 8     | С |
| ATOM | 5817 | 0   | LYS |   |       | -54.920 | 75.009 | 24.222 |      | 42.69 | В     | 0 |
|      |      |     |     |   |       |         |        |        |      |       |       |   |
| ATOM | 5818 | N   | HIS |   |       | -54.151 | 73.514 | 22.713 |      | 40.89 | В     | N |
| MOTA | 5819 | СВ  | HIS | В | 316   | -52.787 | 74.076 | 22.640 |      | 39.53 | В     | С |
| MOTA | 5820 | CB  | HIS | В | 316   | -51.772 | 73.082 | 23.145 | 1.00 | 38.52 | В     | С |
| ATOM | 5821 | CG  | HIS | В | 316   | -52.250 | 72.31B | 24.319 | 1.00 | 36.60 | В     | С |
| ATOM | 5822 | CD2 | HIS |   | 316   | -52.526 | 71.007 | 24.475 | 1.00 | 37.63 | В     | С |
| ATOM | 5823 |     | HIS |   |       | -52.563 | 72.927 | 25.508 |      | 36.13 | В     | N |
|      |      |     |     |   |       |         |        |        |      |       |       | Ċ |
| ATOM | 5824 |     | HIS |   |       | -53.012 | 72.022 | 26.355 |      | 36.12 | В     | - |
| ATOM | 5825 | NE2 | HIS | В | 316   | -53.000 | 70.849 | 25.753 | 1.00 | 37.58 | В     | N |
| ATOM | 5826 | С   | HIS | В | 316   | -52.368 | 74.443 | 21.249 | 1.00 | 39.50 | В     | С |
| ATOM | 5827 | 0   | HIS |   |       | -51.547 | 73.757 | 20.633 | 1.00 | 38.71 | В     | 0 |
| ATOM | 5828 | N   | PRO |   |       | -52.921 | 75.536 | 20.733 |      | 39.15 | В     | N |
|      |      |     |     |   |       |         |        |        |      | 38.02 | В     | Ċ |
| ATOM | 5829 | CD  | PRO |   |       | -53.832 | 76.504 | 21.366 |      |       |       |   |
| ATOM | 5830 | CB  | PRO |   |       | -52.555 | 75.950 | 19.386 |      | 38.68 | B     | С |
| MOTA | 5831 | CB  | PRO | В | 317   | -53.399 | 77.200 | 19.180 |      | 38.15 | В     | С |
| ATOM | 5832 | CG  | PRO |   |       | -53.565 | 77.730 | 20.575 | 1.00 | 38.21 | В     | С |
| ATOM | 5833 | c   | PRO |   |       | -51.052 | 76.195 | 19.242 |      | 38.78 | В     | c |
|      |      |     |     |   |       |         |        |        |      | 38.80 |       |   |
| MOTA | 5834 | 0   | PRO |   |       | -50.498 | 75.976 | 18.179 |      |       | В     | 0 |
| ATOM | 5835 | N   | GLU |   |       | -50.393 | 76.623 | 20.313 |      | 40.00 | В     | N |
| ATOM | 5836 | CB  | GLU | В | 318   | -48.957 | 76.882 | 20.259 | 1.00 | 42.04 | В     | С |
| ATOM | 5837 | CB  | GLU |   |       | -48.450 | 77.336 | 21.630 | 1.00 | 44.80 | В     | С |
| MOTA | 5838 | CG  | GLU |   |       | -48.588 | 76.309 | 22.743 |      | 52.02 | В     | C |
|      | 5839 |     |     |   |       |         |        |        |      | 54.86 | В     | č |
| ATOM |      | CD  | GLU |   |       | -50.032 | 76.128 | 23.256 |      |       |       |   |
| MOTA | 5840 |     | GLU |   |       | -50.979 | 76.733 | 22.692 |      | 54.45 | В     | 0 |
| ATOM | 5841 | OE2 | GLU | В | 318   | -50.206 | 75.357 | 24.235 | 1.00 | 57.92 | В     | 0 |
| ATOM | 5842 | С   | GLU |   |       | -48.175 | 75.656 | 19.784 | 1.00 | 41.53 | В     | С |
| MOTA | 5843 | ō   | GLU |   |       | -47.222 | 75.756 | 19.001 |      | 41.67 | В     | 0 |
| ALOR | 3043 | -   | 220 |   | -10   |         |        | 22.001 |      |       | -     | - |

| ATOM | 5844 | N   | VAL  | В | 319 | -48.605 | 74.497 | 20.260 | 1.00 | 41.17 | В  | N   |
|------|------|-----|------|---|-----|---------|--------|--------|------|-------|----|-----|
| ATOM | 5845 | CB  | VAL  | В | 319 | -47.997 | 73.217 | 19.923 | 1.00 | 39.40 | В  | С   |
| ATOM | 5846 | СВ  |      |   | 319 | -48.524 |        | 20.878 | 1.00 | 38.16 | В  | С   |
|      |      |     |      |   |     |         |        |        |      | 38.47 | В  | č   |
| MOTA | 5847 |     | VAL  |   |     | -48.171 |        | 20.379 |      |       |    |     |
| MOTA | 5848 |     | VAL  |   | 319 | -47.938 |        | 22.246 |      | 37.76 | В  | С   |
| MOTA | 5849 | С   | VAL  | В | 319 | -48.316 | 72.827 | 18.483 | 1.00 | 38.81 | В  | С   |
| ATOM | 5850 | 0   | VAL  | В | 319 | -47.474 | 72.286 | 17.771 | 1.00 | 38.18 | В  | 0   |
| ATOM | 5851 | N   | THR  |   | 320 | -49.547 |        | 18.074 | 1.00 | 37.70 | В  | N   |
| ATOM | 5852 | СВ  |      |   | 320 | -50.015 |        | 16.735 |      | 37.04 | В  | Ċ   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5853 | СВ  |      |   | 320 | -51.492 |        | 16.564 |      | 37.86 | В  | С   |
| ATOM | 5854 | OG1 | THR  | В | 320 | -52.291 | 72.599 | 17.559 | 1.00 | 39.12 | В  | 0   |
| ATOM | 5855 | CG2 | THR  | В | 320 | -52.016 | 72.847 | 15.187 | 1.00 | 39.76 | В  | С   |
| ATOM | 5856 | С   | THR  | В | 320 | -49.169 | 73.571 | 15.720 | 1.00 | 35.65 | В  | С   |
| ATOM | 5857 | ō   |      |   | 320 | -48.787 |        | 14,681 |      | 35.14 | В  | ŏ   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5858 | N   |      | _ | 321 | -48.886 |        | 16.040 |      | 35.02 | В  | N   |
| ATOM | 5859 | CB  |      |   | 321 | -48.096 |        | 15.175 | 1.00 | 34.76 | В  | С   |
| ATOM | 5860 | CB  | ALB  | В | 321 | -47.933 | 77.046 | 15.797 | 1.00 | 34.30 | В  | С   |
| ATOM | 5861 | С   | ALB  | В | 321 | -46.740 | 75.056 | 14.940 | 1.00 | 34.73 | В  | С   |
| ATOM | 5862 | ō   |      |   | 321 | -46.335 |        | 13.796 |      | 34.36 | В  | 0   |
|      |      | -   | LYS  |   | 322 |         |        |        |      | 34.21 | В  | N   |
| ATOM | 5863 | N   |      |   |     | -46.023 |        | 16.020 |      |       |    |     |
| ATOM | 5864 | CB  |      |   | 322 | -44.731 |        | 15.859 |      | 34.92 | В  | С   |
| MOTA | 5865 | CB  | LY\$ | В | 322 | -44.144 | 73,756 | 17.206 | 1.00 | 36.74 | В  | С   |
| ATOM | 5866 | CG  | LYS  | В | 322 | -43.870 | 74.936 | 18.128 | 1.00 | 39.78 | В  | C   |
| MOTA | 5867 | CD  | LYS  |   | 322 | -42.996 |        | 19.286 | 1.00 | 42.82 | В  | С   |
| MOTA | 5868 | CE  |      |   | 322 | -42.858 |        | 20.342 |      | 44.46 | В  | c   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5869 | NZ  |      |   | 322 | -44.161 |        | 21.021 |      | 47.27 | В  | N   |
| ATOM | 5870 | С   | LYS  | В | 322 | -44.920 | 72.945 | 14.969 | 1.00 | 34.61 | В  | С   |
| ATOM | 5871 | 0   | LYS  | В | 322 | -44.238 | 72.805 | 13.967 | 1.00 | 35.70 | ₿  | 0   |
| ATOM | 5872 | N   | VAL  | В | 323 | -45.870 | 72.082 | 15.300 | 1.00 | 34.05 | В  | N   |
| ATOM | 5873 | СВ  | VAL  |   |     | -46.078 |        | 14.477 |      | 33.87 | В  | Ċ   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5874 | CB  |      |   | 323 | -47.286 |        | 14.914 |      | 32.65 | B  | С   |
| ATOM | 5875 | CG1 | VAL  | В | 323 | -47.532 |        | 13.913 | 1.00 | 29.56 | В  | · C |
| ATOM | 5876 | CG2 | VAL  | В | 323 | -47.038 | 69.510 | 16.277 | 1.00 | 31.83 | В  | С   |
| ATOM | 5877 | С   | VAL  | В | 323 | -46.288 | 71.289 | 13.034 | 1.00 | 35.24 | В  | С   |
| ATOM | 5878 | ō   |      |   | 323 | -45.841 |        | 12.130 |      | 35.97 | В  | 0   |
| ATOM |      |     | GLN  |   |     |         |        |        |      | 36.55 | В  | N   |
|      | 5879 | N   |      |   |     | -46.973 |        | 12.802 |      |       |    |     |
| ATOM | 5880 | CB  | GLN  |   |     | -47.208 |        | 11.434 |      | 38.40 | В  | С   |
| ATOM | 5881 | CB  | GLN  | В | 324 | -48.301 | 73.856 | 11.364 | 1.00 | 38.31 | В  | С   |
| ATOM | 5882 | CG  | GLN  | В | 324 | -49.511 | 73.364 | 10.589 | 1.00 | 38.75 | В  | С   |
| ATOM | 5883 | CD  | GLN  | R | 324 | -50.811 |        | 11.148 | 1.00 | 40.50 | В  | С   |
| ATOM | 5884 |     | GLN  |   | 324 | -51.875 |        |        |      | 41.82 | В  | ō   |
|      |      |     |      |   |     |         |        | 10.631 |      |       |    |     |
| MOTA | 5885 |     | GLN  |   | 324 | -50.746 |        | 12.219 |      | 41.49 | В  | . N |
| MOTA | 5886 | С   | GLN  | В | 324 | -45.940 | 73.287 | 10.782 | 1.00 | 39.59 | В  | C   |
| ATOM | 5887 | 0   | GLN  | В | 324 | -45.682 | 72.981 | 9.617  | 1.00 | 39.35 | В  | 0   |
| ATOM | 5888 | N   | GLU  |   |     | -45.142 |        | 11.529 |      | 41.11 | В  | N   |
| ATOM | 5889 | CB  | GLU  |   | 325 | -43.910 |        | 10.973 |      | 43.16 | В  | Ċ   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5890 | CB  | GLU  |   | 325 | -43.266 |        | 11.937 |      | 46.00 | В  | С   |
| ATOM | 5891 | CG  | GLU  | В | 325 | -43.343 | 76.981 | 11.449 |      | 53.84 | В  | С   |
| ATOM | 5892 | CD  | GLU  | В | 325 | -42.846 | 77.143 | 10.005 | 1.00 | 58.16 | В  | С   |
| ATOM | 5893 | OE1 | GLU  | В | 325 | -41.749 | 76.614 | 9.679  | 1.00 | 59.55 | В  | O   |
| ATOM | 5894 |     | GLU  |   | 325 | -43.553 |        | 9.203  |      | 60.82 | В  | ò   |
| ATOM | 5895 | c   | GLU  |   | 325 | -42.925 |        | 10.632 |      | 42.89 | В  | č   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5896 | 0   | GLU  |   | 325 | -42.072 |        | 9.769  |      | 43.84 | В  | 0   |
| MOTA | 5897 | N   | GLU  |   |     | -43.058 |        | 11.313 |      | 42.19 | В  | N   |
| ATOM | 5898 | CB  | GLÜ  | В | 326 | -42.183 | 71.194 | 11.093 | 1.00 | 41.58 | В  | С   |
| ATOM | 5899 | CB  | GLÜ  | В | 326 | -42.226 | 70.255 | 12.299 | 1.00 | 41.22 | В  | С   |
| ATOM | 5900 | CG  | GLU  |   |     | -41.345 |        | 12.183 |      | 43.37 | В  | С   |
| ATOM | 5901 | CD  | GLU  |   |     | -40.865 |        | 13.525 |      | 45.64 | В. | Č   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5902 |     | GLU  |   |     | -39.708 |        | 13.902 |      | 47.83 | B  | 0   |
| ATOM | 5903 | OE2 | GLU  | В | 326 | -41.637 | 67.817 | 14.211 |      | 47.03 | В  | 0   |
| ATOM | 5904 | С   | GLU  | В | 326 | -42.601 | 70.450 | 9.838  | 1.00 | 41.88 | В  | С   |
| ATOM | 5905 | ō   | GLU  |   |     | -41.767 |        | 9.105  | 1.00 | 43.06 | В  | 0   |
| ATOM | 5906 | N   | ILE  |   |     | -43.896 |        | 9.574  |      | 41.99 | В  | N   |
|      |      |     |      |   |     |         |        |        |      |       |    |     |
| ATOM | 5907 | СВ  | ILE  |   |     | -44.360 |        | 8.386  |      | 42.26 | В  | C   |
| MOTA | 5908 | СB  | ILE  |   |     | -45.907 |        | 8.380  |      | 39.88 | В  | С   |
| ATOM | 5909 | CG2 | ILE  | В | 327 | -46.400 | 69.139 | 7.023  | 1.00 | 37.59 | В  | С   |
| ATOM | 5910 |     | ILE  |   |     | -46.327 | 68.470 | 9.368  | 1.00 | 37.31 | В  | c.  |
| MOTA | 5911 |     | ILE  |   |     | -47.705 |        | 9.896  |      | 37.61 | В  | č   |
|      |      |     |      |   |     | -43.902 |        | 7.155  |      | 43.90 | В  | č   |
| ATOM | 5912 | C   | ILE  |   |     |         |        |        |      |       |    |     |
| ATOM | 5913 | 0   | ILE  |   |     | -43.248 |        | 6.284  |      | 43.21 | В  | 0   |
| MOTA | 5914 | N   | GLU  | В | 328 | -44.240 | 71.730 | 7.110  |      | 46.50 | В  | N   |
| MOTA | 5915 | CB  | GLU  | В | 328 | -43.907 | 72.606 | 5.991  | 1.00 | 48.59 | В  | С   |
| ATOM | 5916 | СВ  | GLU  |   |     | -44.384 |        | 6.282  |      | 50.86 | В  | С   |
|      |      |     |      |   |     | -44.529 |        | 5.036  |      | 56.96 | В  | Č   |
| ATOM | 5917 | CG  | GLU  |   |     |         |        |        |      |       |    |     |
| ATOM | 5918 | CD  | GLU  | В | 328 | -45.281 | 76.170 | 5.301  | 1.00 | 61.79 | В  | С   |

| ATOM   | 5919  | OE1 | GLU | В | 328 | -46.444 | 76.108 | 5.799  | 1.00 63.12 | в о        | )  |
|--------|-------|-----|-----|---|-----|---------|--------|--------|------------|------------|----|
| ATOM   | 5920  | OE2 | GLU | В | 328 | -44.705 | 77.258 | 5.014  | 1.00 64.05 | ВО         | )  |
| MOTA   | 5921  | С   | GLU | В | 328 | -42.428 | 72.637 | 5.651  | 1.00 48.51 | в с        | ;  |
| ATOM   | 5922  | 0   | GLU | В | 328 | -42.043 | 72.952 | 4.525  | 1.00 49.71 | ВО         | )  |
| ATOM   | 5923  | N   | ARG | В | 329 | -41.595 | 72.311 | 6.627  | 1.00 47.66 | B N        | J  |
| ATOM   | 5924  | СB  | ARG | В | 329 | -40.165 | 72.306 | 6.410  | 1.00 45.48 | в с        |    |
| ATOM   | 5925  | CB  | ARG | В | 329 | -39.453 | 72.665 | 7.707  | 1.00 43.73 | ВС         | :  |
| ATOM   | 5926  | CG  | ARG | В | 329 | -37.948 | 72.435 | 7.711  | 1.00 42.73 | ВС         | :  |
| ATOM   | 5927  | CD  | ARG | В | 329 | -37.306 | 73.391 | 8.697  | 1.00 40.93 | в с        |    |
| ATOM   | 5928  | NE  | ARG | В | 329 | -37.964 | 73.245 | 9.978  | 1.00 39.71 | B N        |    |
| ATOM ' | 5929  | CZ  | ARG | В | 329 | -37.888 | 72.140 | 10.701 | 1.00 40.12 | ВС         |    |
| ATOM   | 5930  | NH1 | ARG | В | 329 | -37.164 | 71.120 | 10.252 | 1.00 39.92 | B N        |    |
| ATOM   | 5931  | NH2 | ARG | В | 329 | -38.572 | 72.032 | 11.835 | 1.00 39.50 | B N        | 1  |
| ATOM   | 5932  | С   | ARG | В | 329 | -39.668 | 70.978 | 5.857  | 1.00 45.24 | в с        | :  |
| ATOM   | 5933  | 0   | ARG | В | 329 | -39.020 | 70.963 | 4.824  | 1.00 46.43 | B 0        | į  |
| ATOM   | 5934  | N   | VAL | В | 330 | -39.970 | 69.861 | 6.510  | 1.00 44.73 | B N        | ;  |
| ATOM   | 5935  | CB  | VAL | В | 330 | -39.496 | 68.583 | 5.994  | 1.00 44.36 | в с        | ,  |
| ATOM   | 5936  | CB  | VAL | В | 330 | -39.216 | 67.574 | 7.126  | 1.00 44.16 | ВС         |    |
| ATOM   | 5937  | CG1 | VAL | В | 330 | -39.031 | 68.313 | 8.431  | 1.00 44.51 | в с        | ,  |
| ATOM   | 5938  | CG2 | VAL | В | 330 | -40.321 | 66.548 | 7.218  | 1.00 45.37 | ВС         | ,  |
| ATOM   | 5939  | С   | VAL | В | 330 | -40.424 | 67.929 | 4.982  | 1.00 44.16 | . в с      |    |
| ATOM   | 5940  | 0   | VAL | В | 330 | -40.044 | 66.967 | 4.327  | 1.00 44.73 | ВО         | )  |
| ATOM   | 5941  | N   | ILE | В | 331 | -41.647 | 68.428 | 4.875  | 1.00 44.44 | B N        |    |
| ATOM   | 5942  | CB  | ILE | В | 331 | -42.607 | 67.896 | 3.918  | 1.00 46.17 | в с        |    |
| ATOM   | 5943  | CB  | ILE | В | 331 | -43.767 | 67.123 | 4.604  | 1.00 44.98 | в с        |    |
| ATOM   | 5944  | CG2 | ILE | В | 331 | -44.770 | 66.671 | 3.540  | 1.00 43.85 | в с        |    |
| ATOM   | 5945  | CG1 | ILE | В | 331 | -43.224 | 65.941 | 5.425  | 1.00 45.15 | в с        | :  |
| MOTA   | 5946  | CD1 | ILE | В | 331 | -44.179 | 65.371 | 6.484  | 1.00 41.00 | в с        |    |
| ATOM   | 5947  | С   | ILE | В | 331 | -43.198 | 69.127 | 3.260  | 1.00 49.25 | . В. С     |    |
| ATOM   | 5948  | 0   | ILE | В | 331 | -43.696 | 70.019 | 3.943  | 1.00 51.31 | В О        | ł  |
| MOTA   | 5949  | N   | GLY | В | 332 | -43.161 | 69.203 | 1.941  | 1.00 51.20 | Bar N      |    |
| MOTA   | 5950  | CB  | GLY | В | 332 | -43.721 | 70.389 | 1.314  | 1.00 55.10 | • В. С     |    |
| ATOM   | 5951  | С   | GLY | В | 332 | -45.235 | 70.468 | 1.371  | 1.00 56.81 | В. С       |    |
| MOTA   | 5952  | 0   | GLY | В | 332 | -45.890 | 69.633 | 1.987  | 1.00 56.88 | - B - O    | ١. |
| MOTA   | 5953  | N   | ARG | В | 333 | -45.789 | 71.491 | 0.735  | 1.00 59.15 | B N        |    |
| MOTA   | 5954  | CB  | ARG | В | 333 | -47.227 | 71.651 | 0.680  | 1.00 61.57 | . в. с     |    |
| ATOM   | 5955  | CB  | ARG | В | 333 | -47.600 | 73.085 | 0.285  | 1.00 64.06 | er Breek.C |    |
| MOTA   | 5956  | CG  | ARG | В | 333 | -46.838 | 74.152 | 1.048  | 1.00 69.84 | В. С       |    |
| MOTA   | 5957  | CD  | ARG | В | 333 | -46.877 | 75.514 | 0.342  | 1.00 74.48 | в с        |    |
| ATOM   | 5958  | NE  | ARG | В | 333 | -46.620 | 75.400 | -1.095 | 1.00 78.36 | в и        | :  |
| ATOM   | 5959  | CZ  | ARG | В | 333 | -46.329 | 76.422 | -1.896 | 1.00 79.81 | в с        |    |
| ATOM   | -5960 | NH1 | ARG | В | 333 | -46.250 | 77.652 | -1.397 | 1.00 80.76 | в и        |    |
| ATOM   | 5961  | NH2 | ARG | В | 333 | -46.124 | 76.213 | -3.196 | 1.00 79.87 | в и        |    |
| ATOM   | 5962  | С   | ARG | В | 333 | -47.669 | 70.686 | -0.419 | 1.00 61.45 | в с        |    |
| ATOM   | 5963  | 0   | ARG | В | 333 | -48.853 | 70.392 | -0.575 | 1.00 62.42 | в о        | )  |
| ATOM   | 5964  | N   | ASN | В | 334 | -46.699 | 70.179 | -1.174 | 1.00 60.14 | B N        |    |
| ATOM   | 5965  | ÇВ  | ASN | В | 334 | -47.011 | 69.277 | -2.260 | 1.00 58.78 | в с        |    |
| ATOM   | 5966  | СВ  | ASN | В | 334 | -45.963 | 69.405 | -3.358 | 1.00 59.38 | в с        |    |
| ATOM   | 5967  | CG  | ASN | В | 334 | -45.859 | 70.820 | -3.868 | 1.00 61.23 | в с        |    |
| ATOM   | 5968  | ODl | ASN | В | 334 | -46.634 | 71.690 | -3.462 | 1.00 62.90 | в о        | ,  |
| ATOM   | 5969  | ND2 | ASN | В | 334 | -44.908 | 71.067 | -4.758 | 1.00 62.88 | B N        |    |
| ATOM   | 5970  | С   | ASN | В | 334 | -47.180 | 67.830 | -1.841 | 1.00 57.09 | в с        |    |
| ATOM   | 5971  | 0   | ASN | В | 334 | -48.254 | 67.435 | -1.372 | 1.00 58.61 | в о        | )  |
| MOTA   | 5972  | N   | ARG | В | 335 | -46.129 | 67.039 | -2.000 | 1.00 53.76 | в и        |    |
| ATOM   | 5973  | CB  | ARG | В | 335 | -46.201 | 65.631 | -1.659 | 1.00 50.35 | в с        |    |
| MOTA   | 5974  | CB  | ARG | В | 335 | -44.817 | 65.000 | -1.663 | 1.00 49.81 | в с        |    |
| ATOM   | 5975  | CG  | ARG | В | 335 | -44.078 | 65.104 | -0.373 | 1.00 48.65 | в с        |    |
| ATOM   | 5976  | CD  | ARG |   |     | -42.766 | 64.397 | -0.540 | 1:00 49.71 | в с        |    |
| ATOM   | 5977  | NE  | ARG | В | 335 | -42.362 | 63.693 | 0.671  | 1.00 52.35 | B N        |    |
| ATOM   | 5978  | CZ  | ARG | В | 335 | -41.521 | 64.181 | 1.569  | 1.00 52.19 | в с        |    |
| MOTA   | 5979  | NH1 | ARG | В | 335 | -40.987 | 65.384 | 1.387  | 1.00 53.60 | в и        |    |
| ATOM   | 5980  | NH2 | ARG |   |     | -41.219 | 63.465 | 2.642  | 1.00 52.28 | B N        |    |
| ATOM   | 5981  | С   | ARG | В | 335 | -46.884 | 65.320 | -0.339 | 1.00 48.36 | в с        |    |
| MOTA   | 5982  | 0   | ARG |   |     | -47.187 | 66.199 | 0.463  | 1.00 47.98 | в о        | •  |
| ATOM   | 5983  | N   | SER | В | 336 | -47.123 | 64.039 | -0.126 | 1.00 46.16 | B N        |    |
| ATOM   | 5984  | CB  | SER | В | 336 | -47.792 | 63.596 | 1.070  | 1.00 44.75 | в с        |    |
| MOTA   | 5985  | CB  | SER | В | 336 | -48.825 | 62.539 | 0.702  | 1.00 47.04 | в с        |    |
| ATOM   | 5986  | OG  | SER | В | 336 | -49.784 | 63.093 | -0.183 | 1.00 52.24 | ВО         |    |
| MOTA   | 5987  | C   | SER |   |     | -46.826 | 63.049 | 2.097  | 1.00 42.21 | в с        |    |
| ATOM   | 5988  | 0   | SER |   |     | -45.774 | 62.513 | 1.760  | 1.00 42.75 | в о        |    |
| ATOM   | 5989  | N   | PRO |   |     | -47.172 | 63.195 | 3.379  | 1.00 39.33 | B N        |    |
| ATOM   | 5990  | CD  | PRO |   |     | -48.333 | 63.926 | 3.915  | 1.00 37.01 | в с        |    |
| MOTA   | 5991  | СВ  | PRO |   |     | -46.316 | 62.700 | 4.453  | 1.00 38.76 | в с        |    |
| ATOM   | 5992  | СВ  | PRO |   |     | -47.147 | 62.970 | 5.696  | 1.00 36.77 | в с        |    |
| ATOM   | 5993  | CG  | PRO |   |     | -47.928 | 64.191 | -5.335 | 1.00 36.78 | в с        |    |
|        |       |     |     |   |     |         |        |        |            |            |    |

|     | ATOM  | 599    | 4 C  | PR    | to 1 | B 331   | 7   | -46.02  | 0 61 31  | 2 4 20 |        |         |   | _  | _   |
|-----|-------|--------|------|-------|------|---------|-----|---------|----------|--------|--------|---------|---|----|-----|
|     | ATOM  | 599.   |      |       | 10   |         |     |         |          |        |        | 0 39.81 |   | В  | C   |
|     | ATOM  | 599    |      |       |      |         |     |         | 5 60.44  |        |        | 0 42.91 |   | В  | 0   |
|     |       |        |      |       | S    |         |     | -44.79  | _        | 9 4.51 | 0 1.0  | 0 39.33 | 3 | В  | ·N  |
|     | MOTA  | 599    | _    | S CY  | S I  | B 338   | 3   | -44.50  | 0 59.36  | 0 4.43 | 9 1.0  | 0 38.63 | 3 | В  | С   |
|     | MOTA  | 5998   | B CE | CY    | SI   | B 338   | }   | -43.54  | 6 59.00  |        |        | 0 39.85 |   | В  |     |
|     | ATOM  | 5999   | 9 SG | CY    | S    | 3 3 3 8 | ₹.  | -41.92  |          |        |        |         |   |    | C   |
|     | ATOM  | 6000   |      |       |      | 3 338   |     |         |          |        |        | 0 46.49 |   | В  | s   |
|     |       |        |      |       |      |         |     | -43.90  |          |        |        | 0 37.07 | , | В  | С   |
| -   | ATOM  | 6001   |      |       | S    |         |     | -43.56  | 1 59.84  | 4 6.57 | 8 1.0  | 0 36.06 | 5 | В  | 0.  |
|     | ATOM  | 6002   | 2 N  | ME    | T E  | 3 339   | )   | -43.78  | 8 57.68  | 6.05   |        | 0 36.00 |   | В  | N   |
|     | ATOM  | - 6003 | CB   | ME    | T E  | 3 339   | )   | -43.25  |          |        |        | 0 35.61 |   |    |     |
|     | ATOM  | 6004   |      |       |      | 339     |     | -43.45  |          |        |        |         |   | В  | · C |
|     | ATOM  | 6005   |      |       |      | 339     |     |         |          |        |        | 0 33.01 |   | В  | С   |
|     |       |        |      |       |      |         |     | -44.78  |          | 5 8.12 | 3 1.0  | 0 31.26 | , | В  | С   |
|     | MOTA  | 6006   |      |       |      | 339     |     | -45.17  | 2 56.620 | 9.47   | 5 1.00 | 0 33.05 |   | В  | S   |
|     | ATOM  | 6007   | CE   | ME    | T E  | 339     |     | -44.13  | 0 56.107 |        |        | 29.13   |   | В  |     |
|     | ATOM  | 6008   | C    | ME'   | ТВ   | 339     |     | -41.79  |          |        |        | 37.33   |   |    | C   |
|     | ATOM  | 6009   |      |       |      | 339     |     |         |          |        |        |         |   | В  | С   |
|     | ATOM  |        |      |       |      |         |     | -41.22  |          |        |        | 38.32   |   | В  | 0   |
|     |       | 6010   |      |       |      | 340     |     | -41.17  |          | 6.487  | 1.00   | 38.89   |   | В  | N   |
|     | MOTA. | 6011   |      |       |      | 340     |     | -39.77  | 1 58.577 | 6.588  | 1.00   | 39.34   |   | В  | C   |
|     | MOTA  | 6012   | CB   | GL    | N B  | 340     |     | -39.09  | 5 58.448 |        |        | 40.87   |   | В  |     |
|     | ATOM  | 6013   | - CG | GLi   | N B  | 340     |     | -38.43  |          |        |        |         |   |    | C,  |
|     | ATOM  | 6014   |      |       |      | 340     |     |         |          |        |        | 44.39   |   | В  | С   |
|     |       |        |      |       |      |         |     | -37.57  |          |        |        | 48.35   |   | В  | С   |
|     | ATOM  | 6015   |      |       |      | 340     |     | -36.73  |          | 3.541  | 1.00   | 50.60   |   | В  | 0   |
|     | ATOM  | 6016   |      | 2 GL  |      |         |     | -37.789 | 56.225   | 2.781  |        | 49.24   |   | В  | N.  |
|     | ATOM  | 6017   | C    | GLN   | I B  | 340     |     | -39.517 |          |        |        | 39.51   |   | В  |     |
|     | ATOM  | 6018   |      |       |      | 340     |     | -38.388 |          |        |        |         |   |    | C   |
|     | ATOM  | 6019   |      |       |      | 341     |     |         |          |        |        | 39.63   |   | В  | 0   |
|     | ATOM  |        |      |       |      |         |     | -40.556 |          |        |        | 41.21   |   | В  | N   |
|     |       | 6020   |      |       |      | 341     |     | ~40.356 | 62.114   | 7.807  | 1.00   | 42.59   |   | В  | С   |
|     | ATOM  | 6021   | CB   | ASP   | , B  | 341     |     | -41.341 | 63.090   |        |        | 45.83   |   | В  | .c  |
| . 1 | MOTA  | 6022   | CG   | ASP   | ΥВ   | 341     |     | -41.376 |          |        |        | 48.98   |   |    |     |
|     | ATOM  | 6023   |      |       |      | 341     | 9 - | -40.283 |          |        |        |         |   | В  | c   |
|     | ATOM  | 6024   |      |       |      |         | -   |         |          |        |        | 51.48   |   | В  | 0   |
|     |       |        |      | 2 ASP |      |         |     | -42.488 | _        |        |        | 48.49   |   | В  | 0   |
|     | MOTA  | 6025   | С    |       |      | 341     |     | -40.505 | 62.220   | 9.294  | 1.00   | 43.09   |   | В  | C   |
|     | MOTA  | 6026   | 0    | ASP   | В    | 341     | 5.  | -40.552 | 63.323   |        |        | 43.53   |   | В  | ŏ   |
| 2   | MOTA  | 6027   | N    |       |      | 342     |     | -40.585 |          |        |        |         |   |    |     |
|     | MOTA  | 6028   | СВ   |       |      | 342     |     |         |          |        |        | 43.35   |   | В  | N   |
|     | ATOM  | 6029   |      |       |      |         | ٠., | -40.750 |          |        |        | 44.11   |   | В  | С   |
|     |       |        | CB   |       |      | 342     |     | -41.200 |          | 11.913 | 1.00   | 43.91   |   | В  | C   |
|     | MOTA  | 6030   | CG,  | ARG   | В    | 342     | 1   | -41.496 | 59.739   | 13.405 |        | 42.66   |   | В  | č   |
| 7   | MOTA  | 6031   | CD   | ARG   | В    | 342     | ,i  | -42.739 |          | 13.753 |        | 45.91   |   | В  | č   |
|     | MOTA  | 6032   | NE   |       |      | 342     | ٠.  |         |          |        |        |         |   |    |     |
|     | MOTA  | 6033   | CZ   |       |      |         |     | -42.733 |          | 13.289 |        | 50.90   |   | В  | N   |
|     |       |        |      |       |      | 342     |     | -42.117 |          | 13.897 |        | 53.14   |   | В  | С   |
|     | MOTA  | 6034   |      | ARG   |      |         |     | -41.414 | 56.903   | 14.994 | 1.00   | 55.08   |   | В  | N   |
|     | MOT   | 6035   | NH2  | ARG   | В    | 342     |     | -42.200 |          | 13.429 |        | 53.21   |   | В  | N   |
| A   | MOTA  | 6036   | С    |       |      | 342     |     | -39.429 | 61.481   | 12.119 |        |         |   |    |     |
|     | MOT   | 6037   | ō    | ARG   |      |         |     |         |          |        |        | 45.09   |   | В  | С   |
|     | TOM   |        |      |       |      |         |     | -39.418 | 62.213   | 13.111 |        | 45.40   |   | В  | 0   |
|     |       | 6038   | N    | SER   |      |         |     | -38.325 | 60.943   | 11.614 | 1.00   | 45.20   |   | В  | N   |
|     | MOT   | 6039   | CB   | SER   |      |         |     | -37.026 | 61.214   | 12.203 |        | 46.54   |   | В  | Ċ   |
| A   | MOT   | 6040   | CB   | SER   | В    | 343     |     | -35.960 | 60.377   | 11.533 |        | 49.88   |   | В. | c   |
| A   | MOT   | 6041   | OG   | SER   |      |         |     | -35.901 | 60.748   |        |        |         |   |    |     |
|     | TOM   | 6042   | c    | SER   |      |         |     |         |          | 10.171 |        | 56.25   |   | В  | 0   |
|     |       |        |      |       |      |         |     | -36.667 | 62.684   | 12.021 |        | 45.25   |   | В  | С   |
|     | TOM   | 6043   | 0    | SER   |      |         |     | -36.071 | 63.300   | 12.898 | 1.00   | 47.21   |   | В  | 0   |
|     | TOM   | 6044   | N    | HIS   | В    | 344     |     | -37.009 | 63.261   | 10.883 |        | 43.07   |   | В  | N   |
| - A | TOM   | 6045   | CB   | HIS   | В    | 344     |     | -36.687 | 64.665   | 10.686 |        | 43.16   |   |    |     |
| A   | TOM   | 6046   | СВ   | HIS   |      |         |     | -36.559 | 64.988   |        |        |         |   | В  | C   |
|     | TOM   | 6047   | CG   | HIS   |      |         |     |         |          | 9.201  |        | 44.79   |   | В  | С   |
|     |       |        |      |       |      |         |     | -35.720 | 64.002   | 8.468  |        | 48.47   |   | В  | С   |
|     | TOM   | 6048   |      | HIS   |      |         |     | -34.656 | 63.270   | 8.875  | 1.00   | 49.90   |   | В  | С   |
| A'  | TOM   | 6049   | ND1  | HIS   | В    | 344     |     | -36.018 | 63.573   | 7.191  |        | 49.91   |   | В  | N   |
| A'  | TOM   | 6050   | CE1  | HIS   | В    | 344     |     | -35.179 | 62.612   | 6.849  |        |         |   |    |     |
|     | TOM   | 6051   |      | HIS   |      |         |     |         |          |        |        | 51.06   |   | В  | С   |
|     |       |        |      |       |      |         |     | -34.344 | 62.407   | 7.853  |        | 51.45   |   | В  | N   |
|     | TOM   | 6052   | C    | HIS   |      |         |     | -37.752 | 65.532   | 11.308 | 1.00   | 41.72   |   | В  | С   |
|     | TOM   | 6053   | 0    | HIS   | В    | 344     |     | -37.801 | 66.734   | 11.064 |        | 42.32   |   | В  | ŏ   |
| Α   | TOM   | 6054   | N    | MET   |      |         |     | -38.610 | 64.919   | 12.113 |        | 39.61   |   |    |     |
|     | TOM   | 6055   |      | MET   |      |         |     | -39.679 |          |        |        |         |   | В  | N   |
|     | TOM   | 6056   |      |       |      |         |     |         | 65.650   | 12.775 |        | 37.78   |   | В  | С   |
|     |       |        |      | MET   |      |         |     | -40.993 | 65.433   | 12.047 |        | 34.92   |   | В  | С   |
|     | MOT   | 6057   |      | MET   | В 3  | 345     |     | -40.998 | 66.006   | 10.678 | 1.00   | 31.25   |   | В  | č   |
|     | TOM   | 6058   | SD   | MET   | В 3  | 345     |     | -42.429 | 65.540   | 9.763  | 1.00   |         |   |    |     |
| A1  | TOM   | 6059   |      | MET   |      |         |     | -43.561 | 66.746   |        |        |         |   | В  | s   |
|     | COM   | 6060   |      | MET   |      |         |     |         |          | 10.324 |        | 27.69   |   | В  | С   |
|     | MOT   |        |      |       |      |         |     | -39.B31 | 65.230   | 14.231 | 1.00   |         |   | В  | С   |
|     |       | 6061   |      | MET   |      |         |     | -40.875 | 64.720   | 14.639 | 1.00   | 36.94   |   | В  | ō   |
|     | MOT   | 6062   | N    | PRO   | B 3  | 346     |     | ~38.788 | 65.471   | 15.041 | 1.00   |         |   | В  |     |
| ΑT  | MOT   | 6063   | CD   | PRO : | B 3  | 346     |     | -37.557 | 66.206   | 14.702 | 1.00   |         |   |    | N   |
|     |       | 6064   |      | PRO   |      |         |     | -38.786 |          |        |        |         |   | В  | C   |
|     |       | 6065   |      |       |      |         |     |         | 65.118   | 16.460 | 1.00   |         |   | В  | С   |
|     |       |        |      | PRO 1 |      |         |     | -37.418 | 65.601   | 16.929 | 1.00   |         |   | В  | С   |
|     |       |        |      | PRO I |      |         |     | -37.164 | 66.766   | 16.039 | 1.00   | 38.00   |   | В  | č   |
| ΑT  | MO    | 6067   | C    | PRO I | В 3  | 46      |     | -39.901 | 65.746   | 17.259 | 1.00   |         |   |    |     |
| AT  |       |        |      | PRO I |      |         |     | -40.399 | 65.147   |        |        |         |   | В  | С   |
|     |       | -      |      |       | _    |         |     |         | 33.147   | 18.212 | 1.00   | 31.92   |   | В  | 0   |

| ATOM         | 6069         | N         | TY   | R : | B 347   |     | -40.299            | 66.951           | 16.878           | 1 00 | 34.31          |   | В      | N      |
|--------------|--------------|-----------|------|-----|---------|-----|--------------------|------------------|------------------|------|----------------|---|--------|--------|
| ATOM         | 6070         | СВ        |      |     | B 347   |     | -41.340            |                  |                  |      | 32.48          |   | В      | Č      |
| ATOM         | 6071         | СВ        | TY   |     |         |     | -41.407            |                  | 17.258           |      | 31.22          |   | В      | Č      |
| ATOM         | 6072         | CG        | TY   | R I | B 347   |     | -42.367            |                  | 18.125           |      | 31:44          |   | В      | c      |
| ATOM         | 6073         | CD1       | TY!  | R I | B 347   |     | -41.995            |                  | 19.386           |      | 31.31          |   | В      | c      |
| ATOM         | 6074         |           | . TY |     |         |     | -42.897            |                  | 20.208           | 1.00 | 32.58          |   | В      | С      |
| ATOM         | 6075         |           | TY   |     |         |     | -43.663            | 70.053           | 17.704           | 1.00 | 31.92          |   | В      | С      |
| ATOM         | 6076         |           | TY   |     |         |     | -44.571            |                  | 18.515           | 1.00 | 33.53          |   | В      | С      |
| ATOM         | 6077         | CZ        | TY   |     |         |     | -44.188            |                  | 19.767           | 1.00 | 33.11          |   | В      | С      |
| ATOM         | 6078         | OH        |      |     | B 347   |     | -45.093            |                  | 20.566           |      | 33.32          |   | В      | 0      |
| ATOM<br>ATOM | 6079<br>6080 | С<br>0    |      |     | B 347   |     | -42.706            |                  | 17.421           |      | 31.71          |   | В      | С      |
| ATOM         | 6081         | N         |      |     | B 347   |     | -43.471<br>-43.012 |                  | 18.374           |      | 31.15          |   | В      | 0      |
| ATOM         | 6082         | СВ        |      |     | 348     |     | -44.278            |                  | 16.167<br>15.828 |      | 30.20          |   | В      | N<br>C |
| ATOM         | 6083         | СВ        |      |     | 3 348   |     | -44.428            |                  | 14.336           |      | 26.89          |   | B      | C      |
| ATOM         | 6084         |           |      |     | 3 3 4 8 |     | -44.347            | 67.154           | 13.726           |      | 30.47          |   | В      | Ö      |
| ATOM         | 6085         | CG2       | THE  | R   | 3 348   |     | -45.748            | 65.223           | 14.003           |      | 22.83          |   | В      | č      |
| ATOM         | 6086         | С         | THE  | ł   | 3 348   |     | -44.278            | 64.637           | 16.443           |      | 28.63          |   | В      | C.     |
| ATOM         | 6087         | 0         |      |     | 348     |     | -45.228            | 64.228           | 17.113           | 1.00 | 29.24          |   | В      | 0      |
| ATOM         | 6088         | Ν.        |      |     | 3 349   |     | -43.194            | 63.914           | 16.210           | 1.00 | 28.11          |   | В      | N      |
| ATOM         | 6089         | CB        | ASE  |     |         |     | -43.061            | 62.596           | 16.771           |      | 26.94          |   | В      | С      |
| ATOM         | 6090         | CB        |      |     | 3 349   |     | -41.650            | 62.052           | 16.591           |      | 28.71          |   | В      | С      |
| ATOM<br>ATOM | 6091<br>6092 | CG        | ASE  |     |         |     | -41.578            |                  | 16.774           |      | 31.24          |   | В      | C      |
| ATOM         | 6093         |           | ASE  |     |         |     | -42.498<br>-40.595 | 59.965           | 17.406           |      | 31.78          |   | В      | 0      |
| ATOM         | 6094         | C         | ASE  |     |         |     | -43.323            | 59.907<br>62.782 | 16.293<br>18.245 |      | 32.29          |   | В      | 0      |
| MOTA         | 6095         | ō         | ASE  |     |         |     | -43.973            | 61.948           | 18.868           |      | 26.55<br>27.03 |   | B<br>B | C<br>O |
| ATOM         | 6096         | N         |      |     | 350     |     | -42.847            | 63.883           | 18.815           |      | 25.81          |   | В      | N      |
| ATOM .       | 6097         | CB        | ALB  |     |         | ب   | -43.078            | -64.085          | 20.245           |      | 26.75          |   | В      | Č      |
| ATOM         | 6098         | CB        | ALE  | E   | 350     |     | -42.356            |                  | 20.734           |      | 27.09          |   | В      | č      |
| ATOM         | 6099         | С         | ALB  | E   | 350     |     | -44.541            | 64.194           | 20.615           |      | 26.95          |   | В      | C      |
| MOTA         | 6100         | 0         | ALB  | E   | 350     |     | -44.993            | 63.529           | 21.546           | 1.00 | 25.94          |   | В      | ٥      |
| ATOM         | 6101         | N         | VAL  |     |         |     | -45.278            | 65.035           | 19.898           | 1.00 | 26.06          |   | В      | N      |
| ATOM         | 6102         | CB        |      |     | 351     |     | -46.683            |                  | 20.202           | 1.00 | 24.87          |   | В      | C      |
| ATOM         | 6103         | CB        | VAL  |     |         |     | -47.364            | 66.120           | 19.202           |      | 25.78          |   | В      | С      |
| ATOM<br>ATOM | 6104         |           |      |     | 351     |     | -48.871            | 66.124           | 19.456           |      | 26.61          |   | В      | С      |
| ATOM         | 6105<br>6106 | C         | VAL  |     | 351     |     | -46.810            | 67.521           | 19.341           |      | 26.54          | • | В      | C      |
| ATOM         | 6107         | Ö         |      |     |         | . 4 | -47.442<br>-48.151 | 63.897<br>63.600 | 20.232 21.204    |      | 24.60          |   | В      | C      |
| ATOM         | 6108         | N         |      |     | 352     |     | -47.289            | 63.113           | 19.169           |      | 21.28          | ~ | B      | O<br>N |
| ATOM         | 6109         | СВ        |      |     | 352     |     | -47.988            | 61.845           | 19.093           |      | 18.55          |   | В      | C      |
| ATOM         | 6110         | CB        | VAL  |     |         |     | -47.589            | 61.087           | 17.861           |      | 17.26          |   | В      | č      |
| MOTA         | 6111         | CG1       | VAL  | В   | 352     |     | -48.346            | 59.767           | 17.794           |      | 13.51          |   | В      | č      |
| ATOM         | 6112         | CG2       | VAL  | В   | 352     |     | -47.860            | 61.950           | 16.658           |      | 16.99          |   | В      | С      |
| ATOM         | 6113         | C .       |      |     | 352     |     | -47.742            | 60.996           | 20.322           | 1.00 | 18.84          | • | В      | C      |
| ATOM         | 6114         | 0         | VAL  |     |         |     | -48.682            | 60.471           | 20.919           | 1.00 | 19.12          |   | В      | 0      |
| ATOM         | 6115         | N         | HIS  |     |         |     | -46.484            | 60.856           | 20.711           | 1.00 | 18.05          |   | В      | N      |
| ATOM         | 6116         | CB        |      |     | 353     |     | -46.176            | 60.087           | 21.906           |      | 18.26          |   | В      | С      |
| ATOM<br>ATOM | 6117<br>6118 | CB<br>CG  | HIS  |     |         |     | -44.679            | 60.115           | 22.178           |      | 15.92          |   | В      | C      |
| ATOM         | 6119         |           |      |     | 353     |     | -43.906<br>-43.650 | 59.209           | 21.287           |      | 15.03          |   | В      | c      |
| ATOM         | 6120         |           | HIS  |     |         |     | -43.420            | 59.276<br>57.993 | 19.960<br>21.712 |      | 16.27<br>14.53 |   | B<br>B | C<br>N |
| ATOM         | 6121         |           | HIS  |     |         |     | -42.910            | 57.346           | 20.681           |      | 17.38          |   | В      | Č      |
| ATOM         | 6122         |           | _    |     | 353     |     | -43.040            | 58.102           | 19.604           |      | 16.37          |   | В      | N      |
| ATOM         | 6123         | С         | HIS  | В   | 353     |     | -46.923            | 60.686           | 23.089           |      | 20.12          |   | В      | C      |
| MOTA         | 6124         | 0         | HIS  | В   | 353     |     | -47.650            | 59.982           | 23.788           |      | 20.35          |   | В      | Ō      |
| ATOM         | 6125         | N         |      |     | 354     |     | -46.760            | 61.999           | 23.284           |      | 21.58          |   | В      | N      |
| ATOM         | 6126         | CB        |      |     | 354     |     | -47.401            | 62.719           | 24.393           |      | 22.01          |   | В      | С      |
| ATOM         | 6127         | CB        |      |     | 354     |     | -47.074            | 64.235           | 24.353           |      | 22.14          |   | В      | C      |
| ATOM         | 6128         | CG        |      |     | 354     |     | -47.555            | 65.079           | 25.584           |      | 20.91          |   | В      | С      |
| ATOM<br>ATOM | 6129<br>6130 | CD<br>OE1 |      |     | 354     |     | -47.047            | 64.540           | 26.902           |      | 22.70          |   | В      | С      |
| ATOM         | 6131         | OE2       |      |     |         |     | -46.232<br>-47.446 | 63.620<br>65.011 | 26.835<br>27.999 |      | 25.54<br>23.82 |   | В      | 0      |
| ATOM         | 6132         | C         |      |     | 354     |     | -48.911            | 62.520           | 24.462           |      | 22.30          |   | B<br>B | 0      |
| ATOM         | 6133         | ŏ         |      |     | 354     |     | -49.479            | 62.532           | 25.559           |      | 23.86          |   | В      | C<br>O |
| ATOM         | 6134         | N         |      |     | 355     |     | -49.566            | 62.340           | 23.318           |      | 20.22          |   | В      | N      |
| ATOM         | 6135         |           | VAL  |     |         |     | -51.004            | 62.114           | 23.333           |      | 20.12          |   | В      | C      |
| MOTA         | 6136         |           | VAL  |     |         |     | -51.589            | 62.195           | 21.917           |      | 19.23          |   | В      | Ċ      |
| MOTA         | 6137         | CG1       |      |     |         |     | -53.071            | 61.921           | 21.964           |      | 20.32          |   | В      | Č      |
| ATOM         | 6138         | CG2       |      |     |         |     | -51.322            | 63.563           | 21.346           |      | 18.88          |   | В      | c      |
| MOTA         | 6139         |           | VAL  |     |         |     | -51.247            | 60.717           | 23.943           |      | 19.51          |   | В      | С      |
| ATOM         | 6140         |           | VAL  |     |         |     | -51.909            | 60.569           | 24.971           |      | 18.69          |   | В      | 0      |
| ATOM<br>ATOM | 6141         |           | GLN  |     |         |     | -50.666            | 59.704           | 23.322           |      | 18.09          |   | В      | N      |
| MOTA<br>MOTA | 6142         |           | GLN  |     |         |     | -50.795            | 58.362           | 23.819           |      | 18.35          |   | В      | C      |
| UT OU        | 6143         | CB        | GLN  | ø   | 336     |     | -49.838            | 57.439           | 23.066           | 1.00 | 18.58          |   | В      | С      |

| MOTA         | 6144         | CG         | GLN        | В | 356.       | -50.210            | 57.322           | 21.607           | 1.00 | 18.28          |      | В      | С      |
|--------------|--------------|------------|------------|---|------------|--------------------|------------------|------------------|------|----------------|------|--------|--------|
| ATOM         | 6145         | CD         | GLN        | 8 | 356        | -49.672            | 56.090           | 20.956           |      | 19.53          |      | В      | C      |
| ATOM         | 6146         |            | GLN        |   |            | -48.733            | 56.159           | 20.178           | 1.00 | 22.44          |      | В      | 0.     |
| ATOM         | 6147         |            | GLN        |   |            | -50.267            | 54.948           | 21.261           |      | 16.13          |      | В      | N      |
| ATOM         | 6148         | C          | GLN        |   |            | -50.535            | 58.263           | 25.322           |      | 18.52          |      | В      | C      |
| ATOM<br>ATOM | 6149<br>6150 | 0          | GLN<br>ARG |   |            | -51.265<br>-49.503 | 57.579<br>58.944 | 26.034           |      | 19.07          |      | В      | 0      |
| ATOM         | 6151         | N<br>CB    | ARG        |   |            | -49.154            | 58.905           | 25.804<br>27.219 |      | 18.88          |      | B<br>B | N<br>C |
| ATOM         | 6152         | CB         | ARG        |   |            | -47.754            | 59.484           | 27.443           |      | 20.39          |      | В      | c      |
| MOTA         | 6153         | CG         | ARG        |   |            | -47.267            | 59.338           | 28.883           |      | 18.60          |      | В      | Ċ      |
| ATOM         | 6154         | CD         | ARG        | В | 357        | -46.369            | 60.468           | 29.268           | 1.00 | 16.56          |      | В      | C      |
| MOTA         | 6155         | NE         | ARG        |   |            | -47.092            | 61.736           | 29.316           | 1.00 | 19.70          |      | В      | N      |
| ATOM         | 6156         | CZ         | ARG        |   |            | -47.743            | 62.204           | 30.378           |      | 21.07          | •    | ₿      | С      |
| MOTA<br>MOTA | 6157<br>6158 | NH1        | ARG        |   |            | -48.370            | 63.379           | 30.303           |      | 18.02          |      | В.     | N      |
| ATOM         | 6159         | C          | ARG        |   |            | -47.759<br>-50.120 | 61.503<br>59.672 | 31.508<br>28.092 |      | 22.37          |      | B<br>B | N<br>C |
| ATOM         | 6160         | ŏ          | ARG        |   |            | -50.415            | 59.269           | 29.211           |      | 22.77          |      | В      | Ö      |
| ATOM         | 6161         | N          | TYR        |   |            | -50.586            | 60.799           | 27.579           |      | 23.97          |      | В      | N      |
| MOTA         | 6162         | CB         | TYR        | В | 358        | -51.484            | 61.646           | 28.329           |      | 25.69          |      | В      | C      |
| MOTA         | 6163         | CB         | TYR        |   |            | -51.564            | 63.028           | 27.672           | 1.00 | 25.51          |      | B      | , C    |
| ATOM         | 6164         | CG         | TYR        |   |            | -52.596            | 63.940           | 28.288           |      | 27.13          |      | В      | C      |
| ATOM         | 6165         |            | TYR        |   |            | -53.880            | 64.003           | 27.767           |      | 28.47          |      | В      | C      |
| ATOM<br>ATOM | 6166<br>6167 |            | TYR        |   |            | -54.843<br>-52.300 | 64.823<br>64.725 | 28.326<br>29.394 |      | 28.33          |      | B<br>B | C      |
| ATOM         | 6168         | CE2        | TYR        |   |            | -53.264            | 65.552           | 29.965           |      | 27.59          |      | B<br>B | c      |
| ATOM         | 6169         | CZ         | TYR        |   |            | -54.530            | 65.591           | 29.421           |      | 28.41          |      | В      | č      |
| ATOM         | 6170         | OH         | TYR        | В |            | -55.505            | 66.390           | 29.969           |      | 31.05          |      | В      | -0     |
| MOTA         | 6171         | С          | TYR        | В | 358        | -52.856            | 61.026           | 28.455           | 1.00 | 25.71          |      | В      | C      |
| ATOM         | 6172         | 0          | TYR        |   | 358        | -53.358            | 60.837           | 29.560           |      | 26.05          |      | B      | (0     |
| MOTA         | 6173         | N          | ILE        |   |            | -53.441            | 60.667           | 27.318           |      | 25.69          |      | B -    | N      |
| ATOM<br>ATOM | 6174<br>6175 | CB         | ILE        |   | 359        | -54.785            | 60.106           | 27.310           |      | 25.38          |      | В      | С      |
| ATOM         | 6176         | CB         | ILE        |   | 359<br>359 | -55.325<br>-55.052 | 59.986<br>61.280 | 25.895<br>25.167 | 1.00 |                | 4    | В      | C      |
| ATOM         | 6177         | CG1        | ILE        |   | 359        | -54.715            | 58.770           | 25.181           | 1.00 | 24.77          |      |        | SeC -  |
| ATOM         | 6178         |            | ILE        |   | 359        | -55.194            | 58.599           | 23.727           | 1.00 |                |      | В.     | C      |
| ATOM         | 6179         | С          | ILE        | В | 359        | -54.934            | 58.774           | 27.991           |      | 25.68          |      | В      | ۰Ċ     |
| ATOM         | 6180         | 0          | ILE        | В | 359        | -55.955            | 58.479           | 28.596           | 1.00 | 27.67          | 44.7 | В      | О      |
| ATOM         | 6181         | N          | ASP        |   | 360        | -53.923            | 57.943           | 27.880           | 1.00 | 25.88          |      | В      | 'N     |
| ATOM         | 6182         | CB         | ASP        |   | 360        | -53.992            | 56.654           | 28.524           |      | 24.83          |      | В      | С      |
| ATOM         | 6183         | CB         | ASP        |   | 360        | -53.737            | 56.831           | 29.998           |      | 25.20          |      | В      | C      |
| ATOM<br>ATOM | 6184<br>6185 | CG<br>OD1  | ASP<br>ASP |   | 360<br>360 | -53.765<br>-53.761 | 55.533           | 30.707           |      | 29.82          |      | В      | C      |
| ATOM         | 6186         |            | ASP        |   | 360        | -53.761            | 55.522<br>54.509 | 31.969<br>29.968 |      | 29.12          |      | B<br>B | 0      |
| ATOM         | 6187         | c          | ASP        |   | 360        | -55.325            | 55.932           | 28.321           |      | 22.66          |      | В      | č      |
| ATOM         | 6188         | 0          | ASP        |   | 360        | -56.111            | 55.804           | 29.239           |      | 24.04          |      | В      | ō      |
| ATOM         | 6189         | N          | LEU        | В | 361        | -55.546            | 55.439           | 27.110           | 1.00 | 22.58          | !    | В .    | N      |
| ATOM         | 6190         | СВ         | LEU        |   | 361        | -56.765            | 54.739           | 26.717           |      | 20.37          |      | В      | С      |
| ATOM         | 6191         | CB         | LEU        |   | 361        | -56.732            | 54.537           | 25.209           |      | 16.71          |      | В      | C      |
| ATOM<br>ATOM | 6192<br>6193 | CG         | LEU        |   | 361<br>361 | -57.595            | 55.552           | 24.447           |      | 18.53          |      | В      | C      |
| ATOM         | 6194         |            | LEU        |   | 361        | -57.581<br>-57.141 | 56.889<br>55.665 | 25.169<br>22.988 |      | 16.78<br>16.10 |      | B<br>B | C      |
| ATOM         | 6195         | c          |            |   | 361        | -57.128            | 53.424           | 27.404           |      | 20.79          |      | В      | č      |
| MOTA         | 6196         | Ō          |            | В | 361        | -58.299            | 53.110           | 27.528           |      | 22.24          |      | В      | ō      |
| ATOM         | 6197         | N          | LEU        | В | 362        | -56.127            | 52.657           | 27.817           | 1.00 | 21.92          | 3    | В      | N      |
| MOTA         | 6198         | СВ         | LEU        | В | 362        | -56.315            | 51.382           | 28.498           |      | 22.97          | 1    | 3      | С      |
| ATOM         | 6199         | CB         |            |   | 362        | -55.723            | 50.245           | 27.670           |      | 21.35          |      | 8      | С      |
| ATOM         | 6200         | CG         |            |   | 362        | -56.362            | 49.956           | 26.323           |      | 20.42          |      | 3      | C      |
| ATOM<br>ATOM | 6201<br>6202 | CD1<br>CD2 |            |   |            | -57.720            | 50.578           | 26.306<br>25.204 |      | 23.19          |      | 3      | C      |
| ATOM         | 6203         | CD2        |            |   | 362        | -55.536<br>-55.589 | 50.533<br>51.409 | 29.854           |      | 22.71<br>25.55 | .1   | 3      | C<br>C |
| ATOM         | 6204         | ŏ          | LEU        |   |            | -54.634            | 50.656           | 30.055           |      | 25.88          |      | 3      | Ö      |
| ATOM         | 6205         | N          |            |   | 363        | -56.040            | 52.259           | 30.802           |      | 26.02          |      | 3      | N      |
| MOTA         | 6206         | CD         | PRO        |   |            | -57.303            | 53.010           | 30.812           |      | 26.25          |      | 3      | С      |
| ATOM         | 6207         | СВ         | PRO        |   |            | -55.395            | 52.347           | 32.113           |      | 26.66          |      | 3      | С      |
| ATOM         | 6208         | СВ         | PRO        |   |            | -56.431            | 53.074           | 32.964           |      | 26.82          | I    |        | C      |
| ATOM         | 6209         | CG         | PRO        |   |            | -57.727            | 52.847           | 32.236           |      | 27.65          | I    |        | C      |
| ATOM<br>ATOM | 6210         |            | PRO        |   |            | -54.928<br>-54.156 | 51.024           | 32.716           | 1.00 |                | I    |        | C      |
| ATOM         | 6211<br>6212 |            | THR        |   |            | -54.156<br>-55.425 | 51.002<br>49.925 | 33.685<br>32.163 | 1.00 |                | E    |        | O<br>N |
| ATOM         | 6213         |            | THR        |   |            | -55.025            | 49.566           | 32.554           | 1.00 |                | I    |        | C      |
| ATOM         | 6214         |            | THR        |   |            | -55.939            | 47.968           | 33.644           | 1.00 |                | Ē    |        | c      |
| MOTA         | 6215         | OG1        |            |   |            | -57.300            | 48.289           | 33.367           | 1.00 |                | E    |        | ō      |
| MOTA         | 6216         | CG2        |            |   |            | -55.575            | 48.506           | 35.002           | 1.00 | 31.76          | E    | 3      | С      |
| ATOM         | 6217         |            | THR        |   |            | -55.223            | 47.821           | 31.247           | 1.00 |                | E    |        | С      |
| ATOM         | 6218         | 0          | THR        | В | 364        | -56.357            | 47.553           | 30.862           | 1.00 | 38.84          | E    | 3      | 0      |
|              |              |            |            |   |            |                    |                  |                  |      |                |      |        |        |

| ATOM   | 6219  | N   | SER | В | 365             | -54.152 | 47.519 | 30.526 | 1.00  | 31.72 | В  | N  |
|--------|-------|-----|-----|---|-----------------|---------|--------|--------|-------|-------|----|----|
| ATOM   | 6220  | CB  | SER | R | 365             | -54.323 | 46.851 | 29.240 | 1.00  | 31.29 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6221  | CB  |     |   | 365             | -52.944 | 46.489 | 28.659 |       | 30.31 | В  | С  |
| ATOM   | 6222  | OG  | SER | В | 365             | -52.534 | 45.182 | 29.003 | 1.00  | 29.75 | В  | ٥  |
| MOTA   | 6223  | С   | SER | R | 365             | -55.209 | 45.607 | 29.430 | 1.00  | 31.52 | В  | С  |
|        | 6224  |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   |       | 0   |     |   | 365             | -55.559 | 45.276 | 30.562 |       | 35.37 | В  | 0  |
| ATOM   | 6225  | N   | LEU | В | 366             | -55.587 | 44.921 | 28.357 | 1.00  | 29.61 | В  | N  |
| ATOM   | 6226  | CB  | LEU | В | 366             | -56.421 | 43.721 | 28.499 | 1.00  | 28.76 | В  | С  |
| ATOM   | 6227  | СВ  | LEU |   | 366             | -56.493 | 42.952 | 27.163 |       | 28.55 |    |    |
|        |       |     |     |   |                 |         |        |        |       |       | В  | Ċ  |
| ATOM   | 6228  | CG  | LEU | В | 366             | -56.964 | 43.717 | 25.913 | 1.00  | 27.30 | В  | Ċ  |
| ATOM   | 6229  | CD1 | LEU | В | 366             | -57.254 | 42.785 | 24.740 | 1.00  | 27.44 | В  | С  |
| MOTA   | 6230  |     | LEU |   | 366             | -58.196 | 44.482 | 26.267 |       | 27.91 | В  | Č  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6231  | С   | LEU | В | 366             | -55.791 | 42.832 | 29.589 | 1.00  | 28.35 | В  | С  |
| MOTA   | 6232  | 0   | LEU | В | 366             | -54.571 | 42.816 | 29.720 | 1.00  | 29.01 | В  | 0  |
| ATOM   | 6233  | N   | PRO |   | 367             | -56.611 | 42.106 | 30.390 |       | 26.71 | В  | N  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6234  | CD  | PRO |   | 367             | -58.075 | 42.148 | 30.306 |       | 25.97 | В  | С  |
| ATOM   | 6235  | CB  | PRO | В | 367             | -56.218 | 41.209 | 31.481 | 1.00  | 26.25 | В  | С  |
| ATOM   | 6236  | СВ  | PRO | В | 367             | -57.541 | 40.632 | 31.953 | 1.00  | 24.20 | В  | C  |
|        | 6237  |     | PRO |   |                 | -58.488 |        |        |       |       |    | Č  |
| ATOM   |       | CG  |     |   | 367             |         | 41.683 | 31.683 |       | 23.29 | В  |    |
| MOTA   | 6238  | Ç   | PRO | В | ·367            | -55.283 | 40.106 | 31.052 | 1.00  | 27.98 | В  | С  |
| ATOM   | 6239  | 0   | PRO | В | 367             | -55.341 | 39.652 | 29.918 | 1.00  | 27.89 | В  | 0  |
| ATOM   | 6240  | N   | HIS |   | 368             | -54.438 | 39.668 | 31.980 |       | 29.89 | В  | N  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM . | 6241  | СВ  | HIS |   |                 | -53.479 | 38.604 | 31.730 | 1.00  | 31.37 | В  | С  |
| ATOM   | 6242  | ĊВ  | HIS | В | 368             | -52.052 | 39.109 | 31.992 | 1.00  | 31.05 | В  | С  |
| MOTA   | -6243 | CG  | HIS | B | 368             | -51.528 | 40.073 | 30.959 | 1 00  | 30.63 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6244  | CD2 | HIS | В | 368             | -51.761 | 41.395 | 30.761 | 1.00  | 29.68 | В  | C  |
| ATOM   | 6245  | ND1 | HIS | В | . 368           | -50.636 | 39.696 | 29.977 | 1.00  | 30.15 | В  | N  |
| ATOM . | 6246  | CEI | HIS | Ð | 369             | -50.350 | 40.741 | 29.219 |       | 27.57 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM " | 6247  | NE2 | HIS |   | 368             | -51.018 | 41.784 | 29.673 |       | 25.29 | В  | N  |
| MOTA   | 6248  | С   | HIS | В | 368             | -53.812 | 37.444 | 32.678 | 1.00  | 33.69 | В  | С  |
| ATOM   | 6249  | ٠.  | HIS | B | 368             | -54.817 | 37.475 | 33.388 | 1.00  | 34.02 | В  | 0  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM"  | 6250  | N   | ALB |   |                 | -52.965 | 36.423 | 32.688 |       | 35.79 | В  | N  |
| ATOM:  | 6251  | CB  | ALB | ₿ | 36 <del>9</del> | -53.166 | 35.263 | 33.548 | 1.00  | 37.21 | ₿  | С  |
| MOTA   | 6252  | СВ  | ALB | R | 369             | -54.353 | 34.447 | 33.049 | 1.00  | 35.38 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6253  | С   | ALB |   |                 | -51.886 | 34.432 | 33.491 | 1.00  | 39.20 | В  | С  |
| . ATOM | 6254  | . 0 | ALB | В | 369             | -51.420 | 34.092 | 32.403 | 1,00. | 40.02 | В  | 0  |
| ATOM:  | 6255  | N   | VAL | R | 370             | -51.306 | 34.123 | 34.649 | 1.00  | 41.55 | В  | N  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6256  | СВ  | VAL |   |                 | -50.080 | 33.320 | 34.678 | 1.00  | 44.82 | В  | C  |
| ATOM   | 6257  | CB  | VAL | В | 370             | -49.504 | 33.216 | 36.097 | 1.00  | 44.24 | В  | C  |
| ATOM   | 6258  | CG1 | VAL | R | 370             | -49.146 | 34.603 | 36.615 | 1.00  | 43.13 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6259  |     | VAL |   | 370             | -50.505 | 32.555 | 37.010 |       | 44.26 | В  | C  |
| MOTA   | 6260  | С   | VAL | В | 370             | -50.343 | 31.913 | 34.156 | 1.00  | 46.76 | В  | С  |
| ATOM   | 6261  | 0   | VAL | R | 370             | -51.456 | 31.413 | 34.263 | 1 00  | 47.48 | В  | 0  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6262  | N   | THR |   | 371             | -49.322 | 31.278 | 33.593 | 1.00  | 49.35 | В  | N  |
| MOTA   | 6263  | CB  | THR | В | 371             | -49.462 | 29.925 | 33.046 | 1.00  | 52.61 | В  | C  |
| ATOM   | 6264  | СВ  | THR | R | 371             | -48.830 | 29.827 | 31.663 | 1 00  | 53.22 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 62,65 | OGI | THR |   | 371             | 48.338  | 31.119 | 31.276 | 1.00  | 52.18 | В  | 0  |
| ATOM   | 6266  | CG2 | THR | В | 371             | -49.849 | 29.289 | 30.648 | 1.00  | 54.60 | В  | С  |
| MOTA   | 6267  | С   | THR | В | 371             | -48.760 | 28.885 | 33.894 | 1.00  | 54.39 | В  | С  |
| ATOM   |       |     |     |   |                 |         |        |        |       |       |    |    |
|        | 6268  | 0   | THR |   | 371             | -48.590 | 27.745 | 33.475 | -     | 53.90 | В  | 0  |
| ATOM   | 6269  | N   | CYS | В | 372             | -48.340 | 29.301 | 35.077 | 1.00  | 57.58 | В  | N  |
| ATOM   | 6270  | CB  | CYS | В | 372             | -47.610 | 28.447 | 35.987 | 1.00  | 61.26 | В  | С  |
| ATOM   | 6271  | СВ  | CYS |   | 372             | -46.108 | 28.594 | 35.767 |       | 62.07 | В  | č  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6272  | SG  | CYS |   |                 | -45.461 | 28.053 | 34.188 |       | 66.07 | В  | Ş  |
| ATOM   | 6273  | С   | CYS | В | 372             | -47.887 | 28.933 | 37.378 | 1.00  | 63.31 | В  | C. |
| ATOM   | 6274  | 0   | CYS | P | 372             | -48.610 | 29.905 | 37.576 | 1 00  | 64.75 | В  | 0  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6275  | N   | ASP |   |                 | -47.270 | 28.280 | 38.348 |       | 64.45 | В  | N  |
| ATOM   | 6276  | CB  | ASP | В | 373             | -47.454 | 28.701 | 39.713 | 1.00  | 65.63 | В  | С  |
| ATOM   | 6277  | СВ  | ASP |   |                 | -47.541 | 27.492 | 40.628 |       | 66.44 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   | 6278  | CG  | ASP |   |                 | -48.894 | 26.854 | 40.589 |       | 67.17 | В  | С  |
| ATOM   | 6279  | OD1 | ASP | В | 373             | -49.486 | 26.825 | 39.494 | 1.00  | 67.20 | В  | 0  |
| MOTA   | 6280  | OD2 | ASP | В | 373             | -49.367 | 26.388 | 41.646 | 1.00  | 69.25 | В  | 0  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6281  | C   | ASP |   |                 | -46.303 | 29.587 | 40.121 |       | 65.78 | В  | Ç  |
| ATOM   | 6282  | 0   | ASP | В | 373             | -45.766 | 29.443 | 41.216 | 1.00  | 67.57 | В  | 0  |
| ATOM   | 6283  | N   | ILE |   |                 | -45.934 | 30.523 | 39.254 |       | 64.68 | В  | N  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| MOTA   |       | ·CB | ILE |   |                 | -44.826 | 31.412 | 39.570 |       | 64.44 | В  | C  |
| MOTA   | 6285  | CB  | ILE | В | 374             | -44.642 | 32,500 | 38.478 | 1.00  | 62.54 | В  | С  |
| ATOM   | 6286  |     | ILE |   |                 | -44.432 | 31.854 | 37.136 | 1.00  | 62.77 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |
| ATOM   | 6287  |     | ILE |   |                 | -45.875 | 33.389 | 38.386 |       | 61.31 | В  | C  |
| ATOM . | 6288  | CD1 | ILE | В | 374             | -45.859 | 34.539 | 39.327 | 1.00  | 61.00 | В  | С  |
| MOTA   | 6289  | С   | ILE |   |                 | -44.991 | 32.096 | 40.929 | 1.00  | 65.35 | В  | C  |
|        |       |     |     |   |                 |         |        |        |       | 65.09 |    |    |
| MOTA   | 6290  | 0   | ILE |   |                 | -46.104 | 32.236 | 41.445 |       |       | В  | 0  |
| ATOM   | 6291  | N   | LYS | В | 375             | -43.864 | 32.487 | 41.514 | 1.00  | 65.89 | В  | N  |
| ATOM   | 6292  | СВ  | LYS |   |                 | -43.863 | 33.183 | 42.792 | 1.00  | 66.45 | В  | С  |
|        |       |     |     |   |                 |         |        |        |       | 67.20 | B  | č  |
| ATOM   | 6293  | CB  | LYS | 5 | 3/3             | -43.055 | 32.418 | 43.853 | 1.00  | 01.20 | 13 | U  |
|        |       |     |     |   |                 |         |        |        |       |       |    |    |

| ATOM | 6294 | CG  | LYS | Ð | 375  |       | -41.761 | 31.790 | 43.346 | 1.00 | 69.15 | В  | С   |
|------|------|-----|-----|---|------|-------|---------|--------|--------|------|-------|----|-----|
|      |      |     |     |   |      |       |         |        |        |      | 70.92 | В  | č   |
| ATOM | 6295 | CD  | LYS |   | 375  |       | -42.036 | 30.543 | 42.497 |      |       |    |     |
| ATOM | 6296 | CE  | LYS | В | 375  |       | -42.561 | 29.389 | 43.370 |      | 72.48 | В  | С   |
| ATOM | 6297 | NZ  | LYS | В | 375  |       | -42.952 | 28.156 | 42.602 | 1.00 | 72.49 | В  | N   |
| ATOM | 6298 | С   | LYS | В | 375  |       | -43.258 | 34.557 | 42.569 | 1.00 | 66.05 | В  | С   |
| ATOM | 6299 | 0   | LYS | В | 375  |       | -42.129 | 34.830 | 42.954 | 1.00 | 68.24 | В  | 0   |
| ATOM | 6300 | N   | PHE |   |      |       | -44.015 | 35.424 | 41.925 |      | 64.23 | В  | N   |
|      |      |     |     |   |      |       |         |        |        | -    |       |    |     |
| MOTA | 6301 | CB  | PHE |   |      |       | -43.540 | 36.760 | 41.654 |      | 62.63 | В  | C   |
| MOTA | 6302 | CB  | PHE | В | 376  |       | -44.648 | 37.560 | 40.993 |      | 59.42 | В  | С   |
| ATOM | 6303 | CG  | PHE | В | 376  |       | -44.217 | 38.891 | 40.515 | 1.00 | 55.85 | В  | C   |
| ATOM | 6304 | CD1 | PHE | В | 376  |       | -43.281 | 39.005 | 39.501 | 1.00 | 55.27 | В  | С   |
| MOTA | 6305 | CD2 | PHE | В | 376  |       | -44.749 | 40.037 | 41.075 | 1.00 | 54.53 | В  | C   |
| ATOM | 6306 |     | PHE |   |      |       | -42.881 | 40.249 | 39.054 |      | 55.27 | В  | č   |
|      |      |     | PHE |   |      |       | -44.363 | 41.273 | 40.641 |      | 53.88 | В  | č   |
| ATOM | 6307 |     |     |   |      |       |         |        |        |      |       |    |     |
| ATOM | 6308 | CZ  | PHE |   |      |       | -43.427 | 41.387 | 39.629 |      | 55.99 | В  | С   |
| ATOM | 6309 | С   | PHE |   |      |       | -43.097 | 37.453 | 42.939 |      | 63.77 | В  | C   |
| MOTA | 6310 | 0   | PHE | В | 376  |       | -43.824 | 37.449 | 43.936 | 1.00 | 63.38 | В  | 0   |
| ATOM | 6311 | N   | ARG | В | 377  |       | -41.909 | 38.055 | 42.906 | 1.00 | 65.04 | В  | N   |
| ATOM | 6312 | CB  | ARG | В | 377  |       | -41.369 | 38.749 | 44.068 | 1.00 | 65.51 | В  | С   |
| ATOM | 6313 |     | ARG |   |      |       | -42.318 | 39.867 | 44.493 |      | 63.50 | В  | c   |
| ATOM | 6314 | CG  | ARG |   |      |       | -42.340 | 41.067 | 43.551 |      | 61.32 | В  | č   |
|      |      |     |     |   |      |       |         |        |        |      |       | В  | č   |
| ATOM | 6315 | CD  | ARG |   |      |       | -41.230 | 42.022 | 43.918 |      | 58.82 |    |     |
| ATOM | 6316 | NE  | ARG |   |      |       | -41.531 | 43.433 | 43.696 |      | 55.06 | В  | N   |
| ATOM | 6317 | CZ  | ARG | В | 377  |       | -41.520 | 44.021 | 42.507 | 1.00 | 53.84 | В  | С   |
| ATOM | 6318 | NH1 | ARG | В | 377  |       | -41.232 | 43.317 | 41.426 | 1.00 | 54.33 | В  | N   |
| ATOM | 6319 | NH2 | ARG | В | 377  |       | -41.764 | 45.318 | 42.402 | 1.00 | 53.97 | В  | N   |
| ATOM | 6320 | С   | ARG |   |      |       | -41.178 | 37.747 | 45.199 | 1.00 | 67.10 | В  | c · |
| ATOM | 6321 | ō   | ARG |   |      |       | -40.072 | 37.258 | 45.434 |      | 68.79 | В  | ŏ   |
|      |      |     |     |   |      |       |         |        |        |      | 67.34 |    |     |
| ATOM | 6322 | N   | ASN |   |      | į     | -42.256 | 37.433 | 45.901 |      |       | В  | N   |
| MOTA | 6323 | CB  | ASN |   | 378. | 100   |         | 36.470 | 46.979 |      | 67.66 | В  | С   |
| ATOM | 6324 | CB  | ASN | В | 378  | ٠.    | -41.257 | 37.011 | 48.083 | 1.00 | 68.64 | В  | С   |
| ATOM | 6325 | CG  | ASN | В | 378  |       | -40.434 | 35.915 | 48.749 | 1.00 | 70.93 | В  | C   |
| ATOM | 6326 | OD1 | ASN | В | 378  | ٠     | -40.507 | 35.727 | 49.970 | 1.00 | 72.31 | В  | 0   |
| ATOM | 6327 |     | ASN |   | 378  |       | -39.644 | 35.190 | 47.950 |      | 70.66 | В  | N   |
| MOTA | 6328 |     | ASN |   |      |       | -43.569 | 36.216 | 47.510 |      | 67.57 | В  | ċ   |
|      |      | C   |     |   |      |       |         |        |        |      |       |    |     |
| MOTA | 6329 | 0   | ASN |   |      |       | -43.755 | 35.901 | 48.685 |      | 67.52 | В  | 0   |
| MOTA | 6330 | N   | TYR | В | 379  |       | -44.554 | 36.352 | 46.623 |      | 67.16 | В  | N   |
| ATOM | 6331 | СВ  | TYR | В | 379  | 100   | -45.950 | 36.169 | 46.991 | 1.00 | 65.23 | В  | С   |
| MOTA | 6332 | CB  | TYR | В | 379  | ÷ . · | -46.745 | 37.404 | 46.612 | 1.00 | 64.54 | В  | С   |
| MOTA | 6333 | CG  | TYR | В | 379  |       | -46.434 | 38.586 | 47.486 | 1.00 | 64.45 | В  | С   |
| ATOM | 6334 |     | TYR |   |      |       | ~46.872 | 38.626 | 48.798 |      | 64.40 | В  | С   |
| ATOM | 6335 |     | TYR |   |      |       | -46.595 | 39.705 | 49.616 |      | 64.90 | В  | č   |
|      |      |     |     |   |      |       |         |        |        |      |       |    | č   |
| MOTA | 6336 |     | TYR |   | 379  |       | -45.698 | 39.663 | 47.004 |      | 64.82 | В  |     |
| ATOM | 6337 |     | TYR |   | 379  |       | -45.411 | 40.753 | 47.817 |      | 65.18 | В  | С   |
| ATOM | 6338 | CZ  | TYR | В | 379  |       | -45.865 | 40.766 | 49.126 | 1.00 | 65.33 | В  | С   |
| MOTA | 6339 | OH  | TYR | В | 379  |       | -45.594 | 41.839 | 49.953 | 1.00 | 66.76 | В  | 0   |
| MOTA | 6340 | С   | TYR | В | 379  |       | -46.607 | 34.925 | 46.415 | 1.00 | 65.32 | В  | С   |
| ATOM | 6341 | 0   | TYR |   |      |       | -47.722 | 34.571 | 46.812 | 1.00 | 66.83 | В  | 0   |
| ATOM | 6342 | N   | LEU |   | 380  |       | -45.934 | 34.267 | 45.474 |      | 63.55 | В  | N   |
|      |      |     |     |   |      |       |         |        |        |      |       | В  | Ċ   |
| MOTA | 6343 | СВ  | LEU |   | 380  |       | -46.458 | 33.029 | 44.899 |      | 61.98 |    |     |
| MOTA | 6344 | CB  | LEU |   | 380  |       | -46.408 | 31.920 | 45.951 |      | 61.61 | В  | C   |
| MOTA | 6345 | CG  | LEU | В | 380  |       | -47.026 | 30.555 | 45.674 |      | 61.77 | В  | С   |
| MOTA | 6346 | CD1 | LEU | В | 380  |       | -46.446 | 29.924 | 44.409 |      | 62.33 | В  | С   |
| ATOM | 6347 | CD2 | LEU | В | 380  |       | -46.752 | 29.684 | 46.879 | 1.00 | 62.30 | В  | С   |
| ATOM | 6348 | C   | LEU | В | 380  |       | -47.878 | 33.115 | 44.350 | 1.00 | 61.24 | В  | С   |
| ATOM | 6349 | ō   | LEU |   |      |       | -48.854 | 32.975 | 45.093 | 1.00 | 61.52 | В  | ` 0 |
| ATOM | 6350 | N   | ILE |   |      |       | -47.985 | 33.322 | 43.040 |      | 60.09 | В  | N   |
|      |      |     |     |   |      |       |         |        |        |      |       |    |     |
| ATOM | 6351 | CB  | ILE |   |      |       | -49.274 | 33.407 | 42.377 |      | 57.67 | В  | C   |
| MOTA | 6352 | CB  | ILE |   |      |       | -49.317 | 34.552 | 41.358 |      | 57.13 | В  | C   |
| ATOM | 6353 | ÇG2 | ILE | В | 381  |       | -50.757 | 34.783 | 40.916 | 1.00 | 56.08 | В  | С   |
| MOTA | 6354 | CG1 | ILE | В | 381  |       | -48.720 | 35.820 | 41.967 | 1.00 | 56.63 | В  | С   |
| ATOM | 6355 |     | ILE |   |      |       | -48.573 | 36.964 | 40.980 | 1.00 | 56.68 | В  | С   |
| ATOM | 6356 | c   | ILE |   |      |       | -49.521 | 32.106 | 41.626 |      | 56.74 | В  | С   |
| ATOM | 6357 | Ö   | ILE |   |      |       | -48.725 | 31.712 | 40.763 |      | 55.80 | В  | ŏ   |
|      |      |     |     |   |      |       | -50.631 |        |        |      | 55.87 | В  |     |
| ATOM | 6358 | N · | PRO |   |      |       |         | 31.417 | 41.953 |      |       |    | И   |
| MOTA | 6359 | CD  | PRO |   |      |       | -51.595 | 31.812 | 42.994 |      | 54.93 | В. | C   |
| MOTA | 6360 | CB  | PRO |   |      |       | -51.030 | 30.147 | 41.338 |      | 54.53 | В  | С   |
| ATOM | 6361 | CB  | PRO | В | 382  |       | -52.207 | 29.710 | 42.196 | 1.00 | 53.78 | В  | ¢   |
| MOTA | 6362 | CG  | PRO |   |      |       | -52.796 | 31.006 | 42.625 | 1.00 | 54.61 | В  | С   |
| ATOM | 6363 | c   | PRO |   |      |       | -51.391 | 30.250 | 39.856 | 1.00 | 54.13 | В  | Ċ   |
| ATOM | 6364 | Ö   | PRO |   |      |       | -51.848 | 31.288 | 39.373 |      | 53.18 | В  | ŏ   |
|      |      |     |     |   |      |       |         |        |        |      |       |    |     |
| MOTA | 6365 | N   | LYS |   |      |       | -51.172 | 29.156 | 39.136 |      | 54.37 | В  | N   |
| ATOM | 6366 | CB  | LYS |   |      |       | -51.459 | 29.112 | 37.709 |      | 54.48 | В  | С   |
| MOTA | 6367 | CB  | LYS |   |      |       | -51.125 | 27.735 | 37.139 |      | 56.00 | В  | С   |
| ATOM | 6368 | CG  | LYS | В | 383  |       | -51.439 | 27.603 | 35.655 | 1.00 | 59.08 | В  | С   |

| ATOM  | 6369 | ÇD  | LYS | В | 303   | -51.185 | 26.196 | 35.135        | 1 00   | 61.92 |   | В  | С   |
|-------|------|-----|-----|---|-------|---------|--------|---------------|--------|-------|---|----|-----|
|       |      |     |     |   |       |         | 25.176 | 35.861        |        | 64.65 |   | В  | č   |
| MOTA  | 6370 | CE  | LYS |   | 383   | -52.058 |        |               |        |       |   |    |     |
| ATOM  | 6371 | NZ  | LYS |   | 383   | -51.848 | 23.770 | 35.383        |        | 67.40 |   | В  | N   |
| ATOM  | 6372 | С   | LYS | В | 383   | -52.903 | 29.446 | 37.388        |        | 52.99 |   | ₿  | Ç   |
| ATOM  | 6373 | 0   | LYS | В | 383   | -53.813 | 29.068 | 38.116        | 1.00   | 54.31 |   | В  | 0   |
| ATOM  | 6374 | N   | GLY | В | 384   | -53.102 | 30.163 | 36.288        | 1.00   | 51.34 |   | В  | N   |
| MOTA  | 6375 | СВ  | GLY | В | 384   | -54.440 | 30.530 | 35.876        | 1.00   | 49.14 |   | В  | С   |
| ATOM  | 6376 | c   | GLY |   |       | -54.962 | 31.830 | 36.454        |        | 48.48 |   | В  | С   |
|       |      |     |     |   |       |         | 32.394 | 35.910        |        | 49.09 |   | В  | ō   |
| MOTA  | 6377 | 0   | GLY |   | 384   | -55.913 |        |               |        |       |   |    |     |
| MOTA  | 6378 | N   | THR |   |       | -54.353 | 32.313 | 37.540        |        | 47.00 |   | В  | N   |
| ATOM  | 6379 | CB  | THR | В | 385   | -54.777 | 33.559 | 38.199        | 1.00   | 44.87 |   | В  | С   |
| ATOM  | 6380 | CB  | THR | В | 385   | -53.B70 | 33.928 | 39.391        | 1.00   | 45.93 | • | В  | С   |
| ATOM  | 6381 | OG1 | THR | В | 385   | -53.674 | 32.786 | 40.226        | 1.00   | 47.57 |   | В  | 0   |
| ATOM  | 6382 | CG2 | THR | В | 385   | -54.513 | 35.055 | 40.209        | 1.00   | 46.50 |   | В  | Ç   |
| ATOM  | 6383 | c   | THR |   | 385   | -54.770 | 34.778 | 37.282        |        | 42.49 |   | В  | Ċ   |
|       |      |     |     |   |       |         |        | 36.624        |        | 41.81 |   | В  | ŏ   |
| ATOM  | 6384 | 0   | THR |   | 385   | -53.774 | 35.072 |               |        |       |   |    |     |
| MOTA  | 6385 | N   | THR |   | 386   | -55.877 | 35.508 | 37.262        |        | 39.80 |   | В  | N   |
| ATOM  | 6386 | CB  | THR | В | 386   | -55.941 | 36.692 | 36.427        |        | 37.10 |   | В  | С   |
| MOTA  | 6387 | CB  | THR | В | 386   | -57.371 | 37.199 | 36.318        | 1.00   | 37.22 |   | В  | С   |
| ATOM  | 6388 | OG1 | THR | В | 386   | -58.077 | 36.384 | 35.371        | 1.00   | 38.65 |   | В. | 0   |
| ATOM  | 6389 |     | THR |   | 386   | -57.393 | 38.633 | 35.857        | 1.00   | 36.65 |   | В  | С   |
| ATOM  | 6390 | c   | THR |   | 386   | -55.023 | 37.805 | 36.911        |        | 34.29 |   | В  | C   |
|       |      |     |     |   |       |         |        |               |        | 33.82 |   | В  | ŏ   |
| MOTA  | 6391 | 0   | THR |   | 386   | -54.920 | 38.078 | 38.099        |        |       |   |    |     |
| MOTA  | 6392 | N   | ILE |   | 387   | -54.349 | 38.445 | 35.966        |        | 32.63 |   | В  | N   |
| ATOM  | 6393 | CB  | ILE | В | 387   | -53.418 | 39.502 | 36.302        |        | 30.30 |   | В  | С   |
| ATOM  | 6394 | CB  | ILE | В | 387   | ~51.995 | 39.141 | 35.878        | 1.00   | 29.55 |   | В  | С   |
| ATOM  | 6395 | CG2 | ILE | В | 387   | -51.058 | 40.255 | 36.273        | . 1:00 | 28.60 |   | В  | С   |
| ATOM  | 6396 | CG1 | ILE | В | 387   | -51.581 | 37.812 | :36.497       | -1.00  | 30.52 |   | В  | С   |
| ATOM  | 6397 |     | ILE |   | 387   | -51.588 |        | 37.998        |        |       |   | В  | C   |
|       |      |     |     |   |       | -53.759 |        | <b>35.579</b> |        |       |   | В  | č   |
| MOTA  | 6398 | С   |     |   | 387   |         |        |               |        |       |   |    |     |
| ATOM  | 6399 | 0   | ILE |   |       | -53.830 |        | 34.352        |        |       |   | В  | 0   |
| ATOM  | 6400 | N   | LEU | В | 388   | -53.976 | 41.851 | ∹36.309       | 1.00   | 28.10 |   | В  | N   |
| ATOM  | 6401 | CB  | LEU | В | 388   | -54.252 | 43.087 | 35.610        | 1.00   | 28.73 |   | В  | С.  |
| ATOM  | 6402 | CB  | LEU | В | 388   | -55.646 | 43.619 | 35.961        | :01:00 | 27.75 |   | В  | С   |
| ATOM  | 6403 | CG  | LEU |   | 388   | -55.923 |        | :37.106       |        |       |   | В  | C · |
| ATOM  | 6404 |     | LEU |   | 388   | -55.196 |        | 36.842        |        |       |   | В  | С   |
|       |      |     |     |   |       |         |        | 37.203        |        |       |   | В  | č   |
| MOTA  | 6405 |     | LEU |   | 388   | -57.442 |        |               |        |       |   |    |     |
| ATOM  | 6406 | Ç   | LEU |   | 388   | -53.105 |        | 35.913        |        |       |   | В  | С   |
| ATOM  | 6407 | 0   | LEU | В | 388   | -52.718 | 44.249 | 37.070        | 1.00   | 28.77 |   | В  | 0   |
| ATOM  | 6408 | N   | ILE | В | 389   | -52.515 | 44.573 | 34.841        | 1.00   | 27.53 |   | В  | N   |
| ATOM  | 6409 | CB  | ILE | В | 389   | -51.374 | 45.470 | 34.929        | 1.00   | 27.30 |   | В  | С   |
| ATOM  | 6410 | СВ  | ILE |   | 389   | -50.277 | 45.094 | 33.912        | 1.00   | 29.70 |   | В  | С   |
| MOTA  | 6411 |     | ILE |   | 389   | -49.701 | 43.705 | 34.214        |        | 28.10 |   | В  | C   |
|       |      |     |     |   |       |         |        | 32.523        |        | 30.35 |   | В  | č   |
| ATOM  | 6412 |     | ILE |   |       | -50.871 | 45.028 |               |        |       |   |    | č   |
| ATOM  | 6413 |     | ILE |   | 389   | -49.906 | 44.460 | 31.549        |        | 35.27 |   | В  |     |
| MOTA  | 6414 | С   | ILE |   |       | -51.736 | 46.916 | 34.694        |        | 26.15 |   | В  | С   |
| ATOM  | 6415 | 0   | ILE | В | 389   | -52.458 | 47.250 | 33.776        | 1.00   | 27.24 |   | В  | 0   |
| ATOM  | 6416 | N   | SER | В | 390   | -51.212 | 47.782 | 35.545        | 1.00   | 27.13 |   | В  | N   |
| ATOM  | 6417 | СВ  | SER | В | 390   | -51.498 | 49.192 | 35.434        | 1.00   | 26.28 |   | В  | Ç   |
| ATOM  | 6418 | CB  | SER | R | 390   | -51.413 | 49.862 | 36.790        | 1.00   | 24.70 |   | В  | Ċ   |
| ATOM  | 6419 | OG  | SER |   | 390   | -51.566 | 51.259 | 36.630        |        | 27.02 |   | В  | 0   |
|       |      |     | SER |   |       |         |        |               |        | 25.78 |   | В  | č   |
| ATOM  | 6420 | C   |     |   | 390 . | -50.560 | 49.902 |               |        |       |   | В  | ŏ   |
| ATOM  | 6421 | 0   | SER |   | 390   | -49.387 | 50.095 | 34.769        |        | 27.07 |   |    |     |
| ATOM  | 6422 | N   | LEU |   | 391   | -51.087 | 50.290 | 33.325        |        | 24.11 |   | В  | N   |
| ATOM  | 6423 | CB  | LEU | В | 391   | -50.284 | 51.005 | 32.365        |        | 23.14 |   | В  | С   |
| ATOM  | 6424 | CB  | LEU | В | 391   | -50.922 | 50.955 | 30.989        |        | 19.67 |   | В  | С   |
| MOTA  | 6425 | CG  | LEU | В | 391   | -51.059 | 49.573 | 30.384        | 1.00   | 17.20 |   | В  | С   |
| ATOM  | 6426 |     | LEU |   |       | -51.066 | 49.693 | 28.885        |        | 14.78 |   | В  | С   |
|       |      |     | LEU |   |       | -49.921 | 48.691 | 30.839        |        | 17.48 |   | В  | Ċ   |
| ATOM  | 6427 |     |     |   |       |         |        | 32.832        |        | 24.16 |   | В  | č   |
| ATOM  | 6428 | С   | LEU |   |       | -50.196 | 52.447 |               |        |       |   |    |     |
| ATOM  | 6429 | 0   | LEU |   |       | -49.143 | 53.069 | 32.773        |        | 25.84 |   | В  | 0   |
| ATOM  | 6430 | N   | THR |   |       | -51.312 | 52.983 | 33.290        |        | 23.62 |   | В  | N   |
| ATOM  | 6431 | CB  | THR | В | 392   | -51.313 | 54.342 | 33.750        |        | 24.60 |   | В  | С   |
| ATOM  | 6432 | СВ  | THR |   |       | -52.666 | 54.737 | 34.323        | 1.00   | 26.21 |   | В  | С   |
| ATOM  | 6433 |     | THR |   |       | -52.468 | 55.751 | 35.315        | 1.00   | 30.28 |   | В  | 0   |
|       | 6434 |     | THR |   |       | -53.360 | 53.542 | 34.934        |        | 26.59 |   | В  | č   |
| ATOM. |      |     |     |   |       |         |        |               |        | 23.90 |   |    |     |
| ATOM  | 6435 | С   | THR |   |       | -50.264 | 54.577 | 34.812        |        |       |   | В  | C   |
| MOTA  | 6436 | 0   | THR |   |       | -49.774 | 55.692 | 34.966        |        | 23.26 |   | В  | 0   |
| MOTA  | 6437 | N   | SER |   |       | -49.912 | 53.538 | 35.553        |        | 24.33 |   | В  | N   |
| ATOM  | 6438 | СВ  | SER | В | 393   | -48.917 | 53.721 | 36.597        |        | 25.79 |   | В  | С   |
| ATOM  | 6439 | CB  | SER |   |       | -48.820 | 52.485 | 37.473        | 1.00   | 23.75 |   | В  | C   |
| ATOM  | 6440 | OG  | SER |   |       | -48.223 | 51.455 | 36.725        |        | 24.10 |   | В  | 0   |
|       |      | C   | SER |   |       | -47.573 | 53.961 | 35.934        |        | 26.70 |   | В  | č   |
| ATOM  | 6441 |     |     |   |       |         |        | 36.521        |        | 29.91 |   | В  | Ö   |
| MOTA  | 6442 | 0   | SER |   |       | -46.656 | 54.532 |               |        |       |   |    |     |
| MOTA  | 6443 | N   | VAL | В | 394   | -47.451 | 53.499 | 34.705        | 1.00   | 25.79 |   | В  | N   |

| ATOM | 6444 | CB  | VAL E | 3 394   | -46.219 | 53.696 | 33.995 | 1.00 | 25.26 | · E                                   | C         |
|------|------|-----|-------|---------|---------|--------|--------|------|-------|---------------------------------------|-----------|
| ATOM | 6445 | CB  | VAL E |         | -45.891 | 52.476 | 33.143 | 1.00 | 25.72 | E                                     |           |
| ATOM | 6446 |     | VAL E | 3 3 9 4 | -44.668 | 52.748 | 32.292 | 1.00 | 24.22 | E                                     | C         |
| ATOM | 6447 |     | VAL E |         | -45.667 | 51.273 | 34.056 | 1.00 | 23.12 | . E                                   | . C       |
| ATOM | 6448 | C   | VAL E |         | -46.365 | 54.943 | 33.131 | 1.00 | 26.36 | E                                     | C         |
| MOTA | 6449 | ō   | VAL E |         | -45.586 | 55.882 | 33.262 | 1.00 | 27.11 | E                                     | 0         |
| ATOM | 6450 | N   | LEU F |         | -47.376 | 54.964 | 32.268 | 1.00 | 26.31 | . 8                                   | N         |
| MOTA | 6451 | СВ  | LEU I |         | -47.594 | 56.110 | 31.404 | 1.00 | 26.40 | E                                     | C.        |
| ATOM | 6452 | CB  | LEU E |         | -48.884 | 55.938 | 30.598 | 1.00 | 25.71 |                                       | C         |
| ATOM | 6453 | CG  | LEU I |         | -48.757 | 55.404 | 29.158 | 1.00 | 26.08 | E                                     |           |
| ATOM | 6454 |     | LEU E |         | -48.292 | 53.966 | 29.088 |      | 23.15 | E                                     |           |
|      |      |     | LEU I |         | -50.111 | 55.523 | 28.522 |      | 25.01 | E                                     |           |
| ATOM | 6455 |     | LEU I |         | -47.641 | 57.397 | 32.214 |      | 27.26 | E                                     |           |
| ATOM | 6456 | C . | LEU I |         | -47.443 | 58.492 | 31.684 |      | 27.40 | Ē                                     |           |
| ATOM | 6457 | 0   |       | 396     | -47.887 | 57.277 | 33.509 |      | 27.29 | E                                     |           |
| ATOM | 6458 | N   |       |         | -47.938 | 58.471 | 34.326 |      | 27.55 | i                                     |           |
| ATOM | 6459 | CB  |       | 396     | -49.333 | 58.677 | 34.854 |      | 25.20 | Ī                                     |           |
| ATOM | 6460 | CB  | HIS I |         |         |        | 33.816 |      | 23.32 | Ī                                     |           |
| ATOM | 6461 | CG  |       | 396     | -50.283 | 59.163 |        |      | 21.94 | Ē                                     |           |
| ATOM | 6462 |     | HIS I |         | -50.624 | 58.655 | 32.609 |      | 23.38 | Ė                                     |           |
| ATOM | 6463 |     | HIS I |         | -50.960 | 60.351 | 33.943 |      | 23.24 |                                       |           |
| MOTA | 6464 |     | HIS I |         | -51.679 | 60.559 | 32.852 |      |       | i                                     |           |
| ATOM | 6465 |     | HIS I |         | -51.490 | 59.546 | 32.027 |      | 20.91 |                                       |           |
| MOTA | 6466 | С   | HIS I |         | -46.975 | 58.458 | 35.458 |      | 29.82 | I                                     |           |
| MOTA | 6467 | 0   | HIS I |         | -47.221 | 59.092 | 36.484 |      | 30.11 | I                                     |           |
| ATOM | 6468 | N   |       | в 397   | ~45.865 | 57.753 | 35.277 |      | 31.84 | I                                     |           |
| ATOM | 6469 | CB  | ASP I | в 397   | -44.893 | 57.700 | 36.341 |      | 34.60 | I                                     |           |
| MOTA | 6470 | CB  | ASP 1 | B 397   | -43.686 | 56.861 | 35.969 |      | 36.60 | . 1                                   |           |
| MOTA | 6471 | CG  | ASP 1 | B 397   | -42.635 | 56.873 | 37,060 |      | 40.95 | 1                                     |           |
| ATOM | 6472 | OD1 | ASP I | в 397   | -42.042 | 57.953 | 37.280 |      | 43.36 | 1                                     |           |
| MOTA | 6473 | OD2 | ASP 1 | в 397   | -42.414 | 55.822 | 37.716 |      | 42.73 |                                       |           |
| ATOM | 6474 | С   | ASP I | B 397   | -44.471 | 59.105 | 36.717 | 1.00 | 37.10 | _ p 3 ≥ <b>3</b> 1                    | 3 C       |
| ATOM | 6475 | 0   | ASP 1 | B 397   | -44.138 | 59.934 | 35.875 | 1.00 | 37.38 | 1                                     |           |
| ATOM | 6476 | N   | ASN I | B 398   | -44.490 | 59.358 | 38.013 | 1.00 | 40.38 | : ]                                   | 3 N       |
| ATOM | 6477 | СВ  | ASN I | B 398   | -44.182 | 60.662 | 38.551 | 1.00 | 42.71 | I                                     | 3 C       |
| ATOM | 6478 | СВ  | ASN   |         | -44.374 | 60.644 | 40.046 | 1.00 | 45.67 | . 1                                   | 3 C       |
| ATOM | 6479 | CG  |       | B 398   | -44.941 | 61.916 | 40.527 | 1.00 | 48.59 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 - C - 1 |
| ATOM | 6480 |     | ASN   |         | -44.570 | 62.986 | 40.027 | 1.00 | 51.96 | : " :                                 | 3 0       |
| ATOM | 6481 |     | ASN   |         | -45.862 | 61.838 | 41.487 | 1.00 | 50.01 | . 1                                   | 3 N       |
| ATOM | 6482 | C.  |       | B 398   | -42.831 | 61.252 | 38.275 |      | 43.00 |                                       | з с       |
| ATOM | 6483 | 0   | ASN   |         | -42.703 | 62.462 | 38.125 |      | 44.07 |                                       | в о       |
|      |      |     | LYS   |         | -41.818 | 60.402 | 38.251 |      | 43.47 |                                       | B N       |
| ATOM | 6484 | N   |       | в 399   | -40.457 | 60.848 | 38.026 |      | 44.09 |                                       | ВС        |
| MOTA | 6485 | CB  |       |         | -39.478 | 59.905 | 38.713 |      | 45.90 |                                       | B C       |
| MOTA | 6486 | CB  | LYS   |         |         | 60.119 | 40.189 |      | 48.97 |                                       | ВС        |
| MOTA | 6487 | CG  | LYS   |         | -39.318 |        |        |      | 54.83 |                                       | ВС        |
| ATOM | 6488 | CD  | LYS   |         | -38.106 | 59.350 | 40.693 |      | 58.21 |                                       | ВС        |
| ATOM | 6489 | CE  | LYS   |         | -38.362 | 57.835 | 40.825 |      |       |                                       | B N       |
| MOTA | 6490 | NZ  | LYS   |         | -38.715 | 57.108 | 39.555 |      | 59.71 |                                       |           |
| ATOM | 6491 | С   |       | в 399   | -40.082 | 60.960 | 36.560 |      | 43.59 |                                       |           |
| MOTA |      | - 0 | LY\$  |         | -39.467 | 61.937 | 36.161 |      | 44.72 |                                       | B 0       |
| MOTA | 6493 | N   | GLU   |         | -40.431 | 59.954 | 35.763 |      | 42.23 |                                       | в и       |
| ATOM | 6494 | CB  | GLU   | B 400   | -40.109 | 59.983 | 34.340 |      | 40.78 |                                       | в с       |
| MOTA | 6495 | CB  | GLU   |         | -40.484 | 58.669 | 33.671 |      | 40.94 |                                       | ВС        |
| ATOM | 6496 | CG  | GLU   |         | -40.140 | 58.624 | 32.199 |      | 43.63 |                                       | ВС        |
| MOTA | 6497 | ÇĐ  | GLU   | B 400   | -38.676 | 58.357 | 31.946 |      | 45.59 |                                       | ВС        |
| ATOM | 6498 | OE1 | GLU   | B 400   | -38.294 | 58.137 | 30.771 | 1.00 | 46.73 |                                       | ВО        |
| ATOM | 6499 | OE2 | GLU   | B 400   |         | 58.362 | 32.927 | 1.00 | 46.25 |                                       | ВО        |
| ATOM | 6500 | С   | GLU   | B 400   | -40.844 | 61.111 | 33.642 |      | 39.57 |                                       | в с       |
| MOTA | 6501 | 0   | GLU   | B 400   | -40.399 | 61.604 | 32.607 |      | 39.03 |                                       | в о       |
| ATOM | 6502 | N   | PHE   | B 401   | -41.975 | 61.509 | 34.216 | 1.00 | 38.29 |                                       | B N       |
| ATOM | 6503 | СВ  |       | B 401   |         | 62.569 | 33.648 |      | 38.21 |                                       | в с       |
| ATOM | 6504 | СВ  |       | B 401   |         | 61.984 | 32.916 | 1.00 | 34.63 |                                       | в с       |
| ATOM | 6505 | CG  |       | B 401   |         | 61.001 | 31.838 | 1.00 | 28.85 |                                       | в с       |
| MOTA | 6506 |     |       | B 401   |         | 59.633 | 32.058 | 1.00 | 27.04 |                                       | в с       |
| ATOM | 6507 |     |       | B 401   |         | 61.445 | 30.613 |      | 25.71 |                                       | в с       |
| ATOM | 6508 |     |       | B 401   |         | 58.727 | 31.069 |      | 24.62 |                                       | в с       |
|      |      |     |       | B 401   |         | 60.548 | 29.629 |      | 24.17 |                                       | в с       |
| ATOM | 6509 |     |       | B 401   |         | 59.187 | 29.856 |      | 23.08 |                                       | в с       |
| ATOM | 6510 | CZ  |       |         |         | 63.518 | 34.713 |      | 40.57 |                                       | ВС        |
| ATOM | 6511 | C   |       | B 401   |         | 63.351 | 35.245 |      | 42.37 |                                       | ВО        |
| MOTA | 6512 | 0   |       | B 401   |         |        |        |      | 43.09 |                                       | B N       |
| ATOM | 6513 | N   |       | B 402   |         | 64.546 | 35.021 |      |       |                                       |           |
| MOTA | 6514 | CD  |       | B 402   |         | 64.859 | 34.255 |      | 43.30 |                                       | -         |
| ATOM | 6515 | СВ  |       | B 402   |         | 65.593 | 36.014 |      | 45.06 |                                       | ВС        |
| MOTA | 6516 | CB  |       | B 402   |         | 66.730 | 35.469 |      | 43.73 |                                       | ВС        |
| ATOM | 6517 | CG  |       | B 402   |         | 65.991 | 35.057 |      | 43.34 |                                       | ВС        |
| ATOM | 6518 | С   | PRO   | B 402   | -44.113 | 65.990 | 36.370 | 1.00 | 47.45 |                                       | в с       |

| ATOM   | 6519 | 0   | DDO | ъ | 402 |   | -44.442 | 66.114              | 37.552           | 1 00 | 50.99 |   | В   | 0 |
|--------|------|-----|-----|---|-----|---|---------|---------------------|------------------|------|-------|---|-----|---|
|        |      |     |     |   |     |   |         |                     | 35.390           |      |       |   | В   | N |
| ATOM   | 6520 | N   | ASN |   |     |   | -44.968 | 66.215              |                  |      | 47.48 |   |     |   |
| MOTA   | 6521 | CB  | ASN |   | 403 |   | -46.345 | 66.539              | 35.724           |      | 48.17 |   | В   | C |
| MOTA   | 6522 | CB  | ASN |   | 403 |   | -46.638 | 68.002              | 35.475           |      | 51.95 |   | В   | С |
| ATOM   | 6523 | CG  | ASN | В | 403 |   | -45.857 | 68. <del>9</del> 00 | 36.399           | 1.00 | 55.27 |   | В   | С |
| ATOM   | 6524 | OD1 | ASN | В | 403 |   | -45.176 | 69.830              | 35.947           | 1.00 | 57.13 |   | В   | 0 |
| ATOM   | 6525 | ND2 | ASN | В | 403 |   | -45.947 | 68.635              | 37.705           | 1.00 | 55.98 |   | В   | N |
| ATOM   | 6526 | С   | ASN | В | 403 |   | -47.186 | 65.685              | 34.840           |      | 47.70 |   | В   | C |
| ATOM   | 6527 | . 0 | ASN |   | 403 |   | -47.717 | 66.145              | 33.828           |      | 49.21 |   | В   | ò |
| ATOM   | 6528 | N   | PRO |   | 404 |   | -47.308 | 64.410              | 35.206           |      | 45.41 | • | В   | N |
|        |      |     |     |   |     |   |         |                     |                  |      |       |   | В   |   |
| ATOM   | 6529 | CD  | PRO |   | 404 |   | -46.855 | 63.855              | 36.490           |      | 44.44 |   |     | C |
| ATOM   | 6530 | CB  | PRO |   | 404 |   | -48.078 | 63.420              | 34.467           |      | 44.73 |   | В   | С |
| ATOM   | 6531 | CB  | PRO |   | 404 |   | -48.218 | 62.291              | 35.468           |      | 46.08 |   | В   | С |
| ATOM   | 6532 | CG  | PRO | В | 404 |   | -46.967 | 62.385              | 36.260           | 1.00 | 45.10 |   | В   | С |
| ATOM   | 6533 | С   | PRO | В | 404 |   | -49.432 | 63.874              | 33.957           | 1.00 | 44.81 |   | B   | С |
| ATOM   | 6534 | 0   | PRO | В | 404 |   | -49.782 | 63.613              | 32.814           | 1.00 | 44.80 |   | В   | 0 |
| ATOM   | 6535 | N   | GLU | В | 405 |   | -50.201 | 64.540              | 34.806           | 1.00 | 45.08 |   | В   | N |
| ATOM   | 6536 | CB  | GLU | В | 405 |   | -51.531 | 64.966              | 34.420           | 1.00 | 45.94 |   | В   | С |
| ATOM   | 6537 | СВ  | GLU |   | 405 |   | -52.340 | 65.343              | 35.655           |      | 50.24 |   | В   | С |
| ATOM   | 6538 | CG  | GLU |   | 405 |   | -52.371 | 64.246              | 36.734           |      | 56.29 |   | В   | č |
| ATOM   | 6539 | CD  | GLU |   |     |   | -52.648 | 62.867              | 36.162           |      | 57.58 |   | В   | č |
|        | 6540 |     | GLU |   |     |   | -53.487 |                     |                  |      | 59.53 |   | В   |   |
| ATOM   |      |     |     |   |     |   |         | 62.765              | 35.237           |      |       |   |     | 0 |
| ATOM   | 6541 |     | GLU |   |     |   | -52.029 | 61.892              | 36.642           |      | 57.78 |   | В   | 0 |
| ATOM   | 6542 | C   | GLU |   |     |   | -51.529 | 66.117              | 33.453           |      | 44.26 |   | В   | С |
| ATOM   | 6543 | 0   | GLÜ |   |     |   | -52.578 | 66.653              | 33.115           |      | 45.69 |   | B   | 0 |
| MOTA   | 6544 | N   | MET | В | 406 |   | -50.351 | 66.473              | 32.965           | 1.00 | 15.00 |   | В   | N |
| MOTA   | 6545 | CB  | MET | В | 406 |   | -50.286 | 67.632              | 32.082           | 1.00 | 15.00 |   | В   | С |
| MOTA   | 6546 | СВ  | MET | В | 406 |   | -49.386 | 68.711              | 32.686           | 1.00 | 15.00 |   | в . | С |
| ATOM   | 6547 | CG  | MET |   |     |   | -49.928 | 69.323              | 33.968           |      | 15.00 |   | В   | C |
| ATOM   | 6548 | SD  | MET |   |     |   | -51.428 | 70.288              | 33.697           |      | 15.00 |   | В   | s |
| ATOM   | 6549 | CE  | MET |   |     |   | -50.787 | 71.646              | 32.722           |      | 15.00 |   | В   | Č |
|        |      |     |     |   |     |   |         |                     |                  |      |       |   |     |   |
| ATOM   | 6550 | C   | MET |   |     |   | -49.767 | 67.238              | 30.702           |      | 15.00 |   | В   | C |
| ATOM ' | 6551 | 0   | MET |   |     |   | -48.810 | 66.486              | 30.509           |      | 39.21 |   | В   | 0 |
| MOTA   | 6552 | N   | PHE |   |     |   | -50.435 | 67.802              | 29.679           |      | 36.59 |   | В   | N |
| MOTA   | 6553 | CB  | PHE | В | 407 |   | -50.057 | 67.544              | 28.303           | 1.00 | 33.99 |   | B   | С |
| MOTA   | 6554 | CB  | PHE | В | 407 |   | -51.205 | 67.915              | 27.370           | 1.00 | 31.78 |   | В   | С |
| ATOM   | 6555 | CG  | PHE | В | 407 |   | -50.998 | 67.466              | 25.973           | 1.00 | 29.39 |   | В   | С |
| ATOM   | 6556 | CD1 | PHE | В | 407 |   | -51.078 | 66.123              | 25.652           | 1.00 | 30.10 |   | В   | С |
| ATOM   |      | CD2 | PHE |   |     |   | -50.679 | 68.370              | 24.979           |      | 29.45 |   | В   | Č |
| ATOM   | 6558 |     | PHE |   |     |   | -50.846 | 65.685              | 24.357           |      | 28.19 |   | В   | č |
| ATOM   | 6559 |     | PHE |   |     |   | -50.442 |                     |                  |      | 26.69 |   | В   | č |
|        |      |     |     |   |     |   |         | 67.947              | 23.677           |      |       |   |     |   |
| MOTA   | 6560 | cz  | PHE |   |     |   | -50.525 | 66.602              | 23.370           |      | 26.73 |   | В   | С |
| ATOM   | 6561 | C   | PHE |   |     |   | -48.821 | 68.365              | 27.957           |      | 33.36 |   | В   | С |
| MOTA   | 6562 | 0   | PHE |   |     |   | -48.880 | 69.598              | 27.903           |      | 33.62 |   | В   | 0 |
| MOTA   | 6563 | N   | ASP | В | 408 | 1 | -47.700 | 67.685              | 27.725           | 1.00 | 34.15 |   | В   | N |
| ATOM   | 6564 | CB  | ASP | В | 408 |   | -46.458 | 68.380              | 27.393           | 1.00 | 34.39 |   | В   | С |
| MOTA   | 6565 | CB  | ASP | В | 408 |   | -45.720 | 68.767              | 28.673           | 1.00 | 36.91 |   | В   | С |
| ATOM   | 6566 | CG  | ASP | В | 408 |   | -44.469 | 69.578              | 28.402           | 1.00 | 39.65 |   | В   | С |
| MOTA   | 6567 | OD1 | ASP | В | 408 |   | -43.748 | 69.888              | 29.379           |      | 41.57 |   | В   | 0 |
| ATOM   | 6568 |     | ASP |   |     |   | -44.212 | 69.906              | 27.219           |      | 40.48 |   | В   | ō |
| ATOM   | 6569 | Ç   | ASP |   |     |   | -45.482 | 67.645              | 26.476           |      | 32.96 |   | В   | Č |
| ATOM   | 6570 | ō   | ASP |   |     |   | -44.734 | 66.777              | 26.928           |      | 30.59 |   |     | ŏ |
|        |      |     |     |   |     |   |         |                     |                  |      |       |   | В   |   |
| MOTA   | 6571 | N   | PRO |   |     |   | -45.449 | 68.025              | 25.177           |      | 32.59 |   | В   | N |
| MOTA   | 6572 | CD  | PRO |   | 409 |   | -46.096 | 69.210              | 24.585           |      | 30.10 |   | В   | С |
| ATOM   | 6573 | СВ  | PRO |   |     |   | -44.550 | 67.396              | 24.204           |      | 33.10 |   | В   | С |
| ATOM   | 6574 | CB  | PRO |   |     |   | -44.553 | 68.374              | 23.036           |      | 30.79 |   | В   | С |
| ATOM   | 6575 | CG  | PRO | В | 409 |   | -45.877 | 69.007              | 23.122           | 1.00 | 28.86 |   | В   | С |
| MOTA   | 6576 | С   | PRO | В | 409 |   | -43.151 | 67.262              | 24.768           | 1.00 | 34.11 |   | В   | С |
| ATOM   | 6577 | 0   | PRO | В | 409 |   | -42.456 | 66.275              | 24.531           | 1.00 | 34.16 |   | В   | 0 |
| ATOM   | 6578 | N   | HIS |   |     |   | -42.727 | 68.265              | 25.519           |      | 34.36 |   | В   | N |
| ATOM   | 6579 | ĊВ  | HIS |   |     |   | -41.386 | 68.211              | 26.044           |      | 35.21 |   | В   | Ċ |
| ATOM   | 6580 | СВ  | HIS |   |     |   | -41.058 | 69.506              | 26.785           |      | 35.58 |   | В   | č |
| ATOM   |      |     |     |   |     |   |         |                     |                  |      | 35.15 |   |     |   |
|        | 6581 | CG  | HIS |   |     |   | -41.038 | 70.699              | 25.884<br>25.797 |      | 35.40 |   | В   | C |
| ATOM   | 6582 |     | HIS |   |     |   | -41.872 | 71.760              |                  |      |       |   | В   | C |
| MOTA   | 6583 |     | HIS |   |     |   | -40.172 | 70.807              | 24.817           |      | 35.21 |   | В   | N |
| MOTA   | 6584 |     | HIS |   |     |   | -40.481 | 71.872              | 24.104           |      | 34.36 |   | В   | С |
| MOTA   | 6585 | NE2 | HIS | В | 410 |   | -41.512 | 72.467              | 24.676           |      | 35.70 |   | В   | N |
| ATOM   | 6586 | С   | HIS | В | 410 |   | -41.091 | 66.998              | 26.888           | 1.00 | 34.90 |   | В   | С |
| MOTA   | 6587 | Ō   | HIS |   |     |   | -39.935 | 66.774              | 27.248           | 1.00 | 36.78 |   | В   | 0 |
| ATOM   | 6588 | N   | HIS |   |     |   | -42.121 | 66.210              | 27.204           |      | 34.37 |   | В   | N |
| ATOM   | 6589 | СВ  | HIS |   |     |   | -41.907 | 64.983              | 27.988           |      | 33,51 |   | В   | Ċ |
| ATOM   | 6590 | CB  | HIS |   |     |   | -43.229 | 64.299              | 28.361           |      | 33.36 |   | В   | c |
|        |      |     |     |   |     |   |         |                     |                  |      | 34.19 |   |     |   |
| ATOM   | 6591 | CG  | HIS |   |     |   | -43.895 | 64.846              | 29.588           |      |       |   | В   | C |
| ATOM   | 6592 |     | HIS |   |     |   | -45.208 | 65.031              | 29.868           |      | 34.60 |   | В   | С |
| MOTA   | 6593 | ND1 | HIS | В | 411 |   | -43.211 | 65.161              | 30.741           | 1.00 | 34.87 |   | В   | N |
|        |      |     |     |   |     |   |         |                     |                  |      |       |   |     |   |

| ATOM | 6594 | CE1 | HIS | В   | 411  | -44.071 | 65.515 | 31.682 | 1.00 | 34.81 | В | С |
|------|------|-----|-----|-----|------|---------|--------|--------|------|-------|---|---|
| MOTA | 6595 |     | HIS |     | 411  | -45.289 | 65.443 | 31.177 |      | 35.97 | В | N |
| ATOM | 6596 | C   | HIS |     |      | -41.092 | 64.010 | 27.121 |      | 32.36 | В | С |
| ATOM | 6597 | õ   | HIS |     |      | -40.457 | 63.081 | 27.631 |      | 31.63 | В | 0 |
| ATOM | 6598 | N   | PHE |     | 412  | -41.127 | 64.221 | 25.806 |      | 30.97 | В | N |
| ATOM | 6599 | СВ  |     |     | 412  | -40.394 | 63.366 | 24.888 |      | 31.12 | В | C |
|      |      |     | PHE |     |      | -41.364 | 62.575 | 23.975 |      | 27.98 | В | č |
| ATOM | 6600 | CB  |     |     | 412  | -42.275 | 61.645 | 24.725 |      | 23.26 | В | č |
| ATOM | 6601 | CG  | PHE |     | 412  | -43.447 | 62.115 | 25.293 |      | 22.56 | В | č |
| ATOM | 6602 |     | PHE |     |      |         |        |        |      | 21.86 | В | č |
| MOTA | 6603 |     | PHE |     | 412  | -41.916 | 60.317 | 24.939 |      |       |   | c |
| ATOM | 6604 |     | PHE |     | 412  | -44.252 | 61.280 | 26.067 |      | 23.70 | В |   |
| ATOM | 6605 |     | PHE |     |      | -42.710 | 59.471 | 25.710 |      | 21.30 | В | C |
| ATOM | 6606 | CZ  |     |     | 412  | -43.885 | 59.954 | 26.280 |      | 22.88 | В | C |
| MOTA | 6607 | С   |     |     | 412  | -39.396 | 64.160 | 24.049 |      | 33.25 | В | C |
| ATOM | 6608 | 0   | PHE | В   | 412  | -39.118 | 63.816 | 22.895 |      | 33.77 | В | 0 |
| ATOM | 6609 | N _ | LEU | В   | 413  | -38.864 | 65.231 | 24.632 |      | 35.15 | В | N |
| ATOM | 6610 | CB  | LEU | В   | 413  | -37.857 | 66.063 | 23.970 |      | 37.01 | В | С |
| ATOM | 6611 | CB  | LEU | В   | 413  | -38.483 | 67.310 | 23.341 |      | 32.56 | В | С |
| MOTA | 6612 | CG  | LEU | В   | 413  | -39.421 | 67.102 | 22.152 | 1.00 | 31.71 | В | С |
| ATOM | 6613 | CD1 | LEU | В   | 413  | -39.864 | 68.445 | 21.570 | 1.00 | 27.45 | В | С |
| ATOM | 6614 | CD2 | LEU | В   | 413  | -38.735 | 66.259 | 21.092 | 1.00 | 30.78 | В | С |
| ATOM | 6615 | C   |     |     | 413  | -36.773 | 66.486 | 24.964 | 1.00 | 41.25 | В | С |
| ATOM | 6616 | ŏ   | LEU |     | 413  | -37.054 | 66.765 | 26.146 | 1.00 | 43.43 | В | 0 |
| ATOM | 6617 | N   |     |     | 414  | -35.533 | 66.547 | 24.488 |      | 44.14 | В | N |
| ATOM | 6618 | CB  |     |     | 414  | -34.444 | 66.943 | 25.361 |      | 48.24 | В | С |
| ATOM | 6619 | CB  |     |     | 414  | -33.160 | 66.189 | 24.987 |      | 48.68 | В | č |
|      |      |     |     | _   |      |         | 66.512 | 23.597 |      | 51.40 | В | č |
| ATOM | 6620 | CG  |     |     | 414  | -32.670 |        |        |      |       | В | ŏ |
| ATOM | 6621 |     | ASP |     |      | -31.823 | 65.753 | 23.071 |      | 52.91 | В | ŏ |
| ATOM | 6622 |     | ASP |     |      | -33.125 | 67.525 | 23.025 |      | 53.88 |   |   |
| ATOM | 6623 | С   |     | _   | 414  | -34.255 | 68.459 | 25.321 |      | 51.52 | В | C |
| ATOM | 6624 | 0   |     |     | 414  | -34.885 | 69.149 | 24.511 |      | 50.66 | В | 0 |
| ATOM | 6625 | N   |     | _   | 415  | -33.415 | 68.980 | 26.220 |      | 55.28 | В | N |
| MOTA | 6626 | CB  | GLÜ | В   | 415  | -33.157 | 70.422 | 26.296 |      | 56.26 | В | C |
| ATOM | 6627 | СВ  | GLU | В   | 415  | -32.134 | 70.719 | 27.399 | 1.00 | 60.24 | В | С |
| ATOM | 6628 | CG. | GLU | В   | 415  | -32.129 | 72.175 | 27.938 | 1.00 | 66.98 | В | C |
| ATOM | 6629 | CD: | GLU | . B | /415 | -33.430 | 72.581 | 28.674 | 1.00 | 70.27 | В | ¢ |
| ATOM | 6630 | OE1 | GLU | В   | 415  | -34.503 | 72.614 | 28.020 | 1.00 | 72.39 | В | 0 |
| MOTA | 6631 | OE2 | GLU | В   | 415  | -33.372 | 72.870 | 29.906 | 1.00 | 71.02 | В | 0 |
| ATOM |      | C   |     |     | 415  | -32.617 | 70.831 | 24.944 | 1.00 | 55.37 | В | С |
| ATOM | 6633 | ŏ   |     |     | 415  | -32.933 | 71.903 | 24.430 | 1.00 | 53.76 | В | 0 |
| ATOM | 6634 | N · |     |     | 416  | -31.825 | 69.926 | 24.375 |      | 56.17 | В | N |
| ATOM | 6635 | СВ  |     |     | 416  | -31.211 | 70,118 | 23.073 |      | 57.68 | В | С |
| ATOM | 6636 | c   |     |     | 416  | -32.178 | 70.518 | 21.983 |      | 57.35 | В | С |
| ATOM | 6637 | Ö   |     |     | 416  | -31.836 | 70.537 | 20.804 |      | 58.27 | В | 0 |
| ATOM | 6638 | N   |     |     | 417  | -33.395 | 70.848 | 22.373 |      | 57.30 | В | N |
| ATOM | 6639 | СВ  | GLY |     | 417  | -34.354 | 71.263 | 21.382 |      | 57.49 | В | Ċ |
|      |      |     |     |     | 417  | -35.417 | 70.218 | 21.175 |      | 56.77 | В | č |
| ATOM | 6640 | C   |     |     |      |         | 69.996 | 22.033 |      | 57.35 | В | Ö |
| ATOM | 6641 | 0   |     |     | 417  | -36.268 |        |        |      |       | В | N |
| MOTA | 6642 | N   | ASN |     | 418  | -35.363 | 69.553 | 20.039 |      | 54.87 |   |   |
| ATOM | 6643 | СВ  |     |     | 418  | -36.368 | 68.569 | 19.756 |      | 54.30 | В | C |
| ATOM | 6644 | CB  |     |     | 418  | -37.194 | 69.017 | 18.552 |      | 52.86 | В | C |
| MOTA | 6645 | CG  | ASN |     | 418  | -37.913 | 70.343 | 18.786 |      | 53.20 | В | C |
| ATOM | 6646 |     | ASN |     |      | -37.830 | 70.943 | 19.870 |      | 53.46 | В | 0 |
| MOTA | 6647 |     | ASN |     | 418  | -38.634 | 70.800 | 17.768 |      | 52.59 | В | N |
| MOTA | 6648 | С   | ASN | В   | 418  | -35.712 | 67.238 | 19.480 |      | 55.10 | В | C |
| ATOM | 6649 | 0   | ASN | В   | 418  | -35.147 | 67.035 | 18.417 |      | 57.00 | В | 0 |
| MOTA | 6650 | N   | PHE | В   | 419  | -35.759 | 66.325 | 20.439 |      | 54.14 | В | N |
| ATOM | 6651 | CB  | PHE | В   | 419  | -35.159 | 65.031 | 20.204 | 1.00 | 52.23 | В | С |
| MOTA | 6652 | СВ  |     |     | 419  | -33.683 | 65.073 | 20.575 |      | 55.91 | В | С |
| ATOM | 6653 | CG  |     |     | 419  | -32.880 | 66.016 | 19.737 | 1.00 | 58.64 | В | С |
| ATOM | 6654 |     | PHE |     |      | -32.488 | 67.245 | 20.240 |      | 60.39 | В | С |
| ATOM | 6655 |     | PHE |     |      | -32.533 | 65.681 | 18.433 |      | 60.43 | В | С |
| ATOM | 6656 |     | PHE |     |      | -31.762 | 68.132 | 19.458 |      | 62.91 | В | С |
| MOTA | 6657 |     | PHE |     |      | -31.809 | 66.560 | 17.644 |      | 62.07 | В | c |
| ATOM | 6658 | CZ  |     |     | 419  | -31.422 | 67.791 | 18.159 |      | 63.11 | В | C |
| ATOM | 6659 | C   |     |     | 419  | -35.872 | 63.938 | 20.975 |      | 49.46 | В | č |
|      |      |     |     |     |      | -35.968 | 63.976 | 22.193 |      | 49.57 | В | ō |
| MOTA | 6660 | 0   |     |     | 419  | -35.300 | 62.945 | 20.261 |      | 46.00 | В | N |
| MOTA | 6661 | N   |     |     | 420  |         |        | 20.261 |      | 43.52 | В | C |
| ATOM | 6662 | CB  |     |     | 420  | -37.089 | 61.871 |        |      | 36.54 | В | c |
| ATOM | 6663 | СВ  |     |     | 420  | -37.497 | 60.788 | 19.927 |      |       |   |   |
| MOTA | 6664 | CG  |     |     | 420  | -38.774 | 61.092 | 19.171 |      | 29.16 | В | C |
| ATOM | 6665 | CD  |     |     | 420  | -39.984 | 61.353 | 20.088 |      | 23.37 | В | C |
| MOTA | 6666 | CE  |     |     | 420  | -40.176 | 60.314 | 21.156 |      | 17.15 | В | C |
| MOTA | 6667 | N2  |     |     | 420  | -39.339 | 59.130 | 20.978 |      | 15.74 | В | N |
| ATOM | 6668 | С   | LYS | В   | 420  | -36.309 | 61.206 | 22.066 | 1.00 | 44.10 | В | С |

|      |      | _   |       |     | 420 | -35.080 | 61.141  | 22.025   | 1 00 | 45.33 |   | В      | 0 |
|------|------|-----|-------|-----|-----|---------|---------|----------|------|-------|---|--------|---|
| MOTA | 6669 | 0   | LYS E |     |     |         |         |          |      | 42.46 |   | В      | N |
| ATOM | 6670 | N   | LYS E |     |     | -37.038 | 60.697  | 23.060   |      |       |   |        |   |
| MOTA | 6671 | CB  | LYS E | 3   | 421 | -36.425 | 60.007  | 24.167   |      | 41.92 |   | В      | C |
| MOTA | 6672 | CB  | LYS E | 3 4 | 421 | -36.353 | 60.964  | 25.357   |      | 43.82 |   | В      | C |
| ATOM | 6673 | CG  | LYS E | 3 4 | 421 | -35.637 | 62.301  | 25.042   | 1.00 | 42.14 |   | В      | С |
| MOTA | 6674 | CD  | LYS E | 3 4 | 421 | -35.887 | 63.348  | 26.120   | 1.00 | 43.52 |   | В      | С |
| ATOM | 6675 | CE  | LYS E |     |     | -35.736 | 62.780  | 27.517   | 1.00 | 43.94 |   | В      | С |
|      | 6676 | NZ  | LYS E |     |     | -36.216 | 63.790  | 28.503   | 1.00 | 46.97 |   | В      | N |
| MOTA |      |     |       |     |     | -37.235 | 58.752  | 24.505   |      | 41.39 |   | В      | С |
| ATOM | 6677 | С   | LYS E |     |     |         |         |          |      | 39.18 |   | В      | ŏ |
| ATOM | 6678 | 0   | LYS E |     |     | -37.035 | 57.690  | 23.921   |      |       |   |        |   |
| ATOM | 6679 | N   | SER E |     |     | -38.129 | 58.913  | 25.480   |      | 44.31 |   | В      | N |
| MOTA | 6680 | CB  | SER E |     |     | -39.074 | 57.903  | 26.009   |      | 45.78 |   | В      | C |
| ATOM | 6681 | CB  | SER E | 3 4 | 422 | -40.205 | 57.644  | 24.966   |      | 48.18 |   | В      | С |
| MOTA | 6682 | OG  | SER E | 3 4 | 422 | -39.998 | 56.497  | 24.152   | 1.00 | 47.92 |   | В      | 0 |
| ATOM | 66B3 | С   | SER E | 3 4 | 422 | -38.499 | 56.577  | 26.510   | 1.00 | 43.60 |   | В      | С |
| ATOM | 6684 | Ο.  | SER F | 3   | 422 | -37.354 | 56.252  | 26.213   | 1.00 | 45.23 |   | В      | 0 |
| ATOM | 6685 | N   | LYS E | 3   | 423 | -39.284 | 55.840  | 27.300   | 1.00 | 40.28 |   | В      | N |
| ATOM | 6686 | СВ  | LYS I |     |     | -38.849 | 54.535  | 27.808   | 1.00 | 40.83 |   | В      | С |
| ATOM | 6687 | СВ  | LYS I |     | 423 | -37.526 | 54.632  | 28.574   | 1.00 | 43.89 |   | В      | C |
| ATOM | 6688 | CG  | LYS I |     |     | -36.982 | 53.240  | 28.961   |      | 45.52 |   | В      | С |
|      | 6689 | CD  | LYS I |     | 423 | -37.489 | 52.713  | 30.297   |      | 46.54 |   | В      | С |
| ATOM |      |     | LYS I |     |     | -36.396 | 52.771  | 31.384   |      | 50.35 |   | В      | Ċ |
| ATOM | 6690 | CE  |       |     |     |         |         | 31.656   |      | 52.30 |   | В      | N |
| MOTA | 6691 | NZ  | LYS ! |     |     | -35.638 | 51.488  |          |      | 40.61 |   | В      | c |
| ATOM | 6692 | C   | LYS I |     |     | -39.861 | 53.887  | 28.728   |      |       |   | В      | ŏ |
| MOTA | 6693 | 0   | LYS I |     |     | -39.873 | 52.666  | 28.920   |      | 40.70 |   |        |   |
| MOTA | 6694 | N   | TYR I |     |     | -40.674 | 54.747  | 29.324   |      | 39.74 |   | В      | N |
| MOTA | 6695 | CB  | TYR I |     |     | -41.758 | 54.403  | 30.239   |      | 34.83 |   | В      | С |
| MOTA | 6696 | CB  | TYR I | 8   | 424 | -41.852 | 55.472  | .31.319  |      | 35.11 |   | В      | C |
| ATOM | 6697 | CG  | TYR I | В   | 424 | -41.140 | 55.163  | - 32.585 | 1.00 | 35.28 |   | В      | С |
| ATOM | 6698 | CD1 | TYR I | В   | 424 | -41.854 | .54.809 | 33.719   | 1.00 | 37.09 |   | В      | С |
| ATOM | 6699 |     | TYR I |     |     | -41.212 | 54.515  | 34.905   | 1.00 | 37.81 |   | ъ.     | С |
| ATOM | 6700 |     | TYR I |     |     | -39.761 | 55.219  | 32.660   | 1.00 | 35.33 |   | В      | C |
| ATOM | 6701 |     | TYR   |     |     | -39.102 | 54.925  |          | 1.00 | 37.01 |   | В      | C |
|      |      |     | TYR   |     |     | -39.834 | 54.575  |          |      | 37.93 |   | В      | С |
| ATOM | 6702 | CZ  | TYR   |     |     | -39.201 |         |          |      | 37.86 |   | В      | Ō |
| ATOM | 6703 | OH  |       |     |     |         |         |          |      | 32.31 | • | В      | č |
| ATOM | 6704 | C   | TYR   |     |     | -43.012 |         | 29.377   |      |       |   | В      | ŏ |
| MOTA | 6705 | 0   | TYR   |     |     | -44.094 |         |          |      | 33.78 |   |        |   |
| ATOM | 6706 | N   | PHE I |     |     | -42.825 |         | 28.067   |      | 28.40 |   | В      | N |
| MOTA | 6707 | CB  | PHE   | В   | 425 | -43.893 |         |          |      | 25.80 |   | В      | С |
| ATOM | 6708 | CB  | PHE ! | В   | 425 | -43.333 | 55.061  | 25.780   |      | 24.41 |   | В      | С |
| ATOM | 6709 | CG  | PHE I | В   | 425 | -44.380 | 55.572  | 24.807   |      | 21.49 |   | B      | С |
| ATOM | 6710 | CD1 | PHE I | В   | 425 | ~45.119 | 56.713  | 25.104   | 1.00 | 20.11 |   | В      | С |
| ATOM | 6711 | CD2 | PHE 1 | В   | 425 | -44.603 | 54.932  | 23.583   | 1.00 | 18.81 |   | В      | С |
| ATOM | 6712 | CE1 | PHE   | В   | 425 | -46.069 | 57.216  | 24.204   | 1.00 | 19.00 |   | В      | C |
| ATOM | 6713 |     | PHE   |     |     | -45.553 | 55.429  | 22.674   | 1.00 | 18.75 |   | В      | С |
| ATOM | 6714 | CZ  | PHE   |     |     | -46.287 | 56.572  | 22.988   | 1.00 | 18.83 |   | В      | С |
| ATOM | 6715 | c   | PHE   |     |     | -44.440 | 53.052  | 26.807   | 1.00 | 25.39 |   | В      | С |
|      | 6716 |     | PHE   |     |     | -43.849 | 52.291  | 26.058   |      | 25.85 |   | В      | 0 |
| MOTA |      | 0   |       |     |     | -45.559 | 52.712  | 27.438   |      | 26.01 |   | В      | N |
| ATOM | 6717 | N   | MET   |     |     |         |         | 27.251   |      | 25.95 |   | В      | C |
| ATOM | 6718 | CB  | MET   |     |     | -46.194 | 51.411  |          |      | 25.03 |   | В      | č |
| ATOM | 6719 | CB  | MET   |     |     | -46.055 | 50.574  | 28.506   |      | 27.34 |   | В      | č |
| MOTA | 6720 | CG  | MET   |     |     | -44.645 | 50.214  | 28.864   |      |       |   |        | s |
| MOTA | 6721 | SD  | MET   |     | 426 | -44.689 | 49.128  | 30.294   |      | 31.46 |   | B<br>B | c |
| MOTA | 6722 | CE  | MET   |     |     | -43.007 | 48.501  | 30.328   |      | 31.79 |   |        |   |
| MOTA | 6723 | С   | MET   | В   | 426 | -47.691 | 51.528  | 26.902   |      | 27.22 |   | В      | C |
| MOTA | 6724 | 0   | MET   | В   | 426 | -48.534 | 50.826  |          |      | 28.24 |   | В      | 0 |
| ATOM | 6725 | N   | PRO   | В   | 427 | -48.049 | 52.435  | 25.979   |      | 26.64 |   | В      | N |
| MOTA | 6726 | CD  | PRO   | В   | 427 | -47.307 | 53.459  | 25.233   |      | 26.04 |   | В      | С |
| MOTA | 6727 | CB  | PRO   |     |     | -49.462 | 52.511  | 25.667   |      | 26.08 |   | В      | С |
| MOTA | 6728 | СВ  | PRO   |     |     | -49.530 | 53.707  | 24.735   | 1.00 | 25.46 |   | В      | С |
| ATOM | 6729 | CG  | PRO   |     |     | -48.200 | 53.707  | 24.071   | 1.00 | 24.59 |   | В      | С |
| ATOM | 6730 | č   | PRO   |     |     | -49.905 | 51.206  | .25.000  | 1.00 | 26.95 |   | В      | С |
| ATOM | 6731 | Ö   | PRO   |     |     | -51.008 | 50.724  | 25.236   |      | 27.72 |   | В      | 0 |
|      |      | N   | PHE   |     |     | -49.038 | 50.635  | 24.167   |      | 27.30 |   | В      | N |
| MOTA | 6732 |     | PHE   |     |     | -49.345 | 49.381  | 23.474   |      | 26.23 |   | В      | C |
| ATOM | 6733 | CB  |       |     |     |         | 49.293  | 22.139   |      | 24.32 |   | В      | č |
| ATOM | 6734 | CB  | PHE   |     |     | -48.572 |         | 21.153   |      | 20.68 |   | В      | č |
| MOTA | 6735 | CG  | PHE   |     |     | -48.932 | 50.376  |          |      | 18.91 |   | В      | č |
| MOTA | 6736 |     | PHE   |     |     | -48.316 | 51.610  | 21.194   |      | 22.91 |   | В      | c |
| ATOM | 6737 |     | PHE   |     |     | -49.934 | 50.172  | 20.217   |      |       |   |        | c |
| MOTA | 6738 |     | PHE   |     |     | -48.689 | 52.633  | 20.319   |      | 19.20 |   | В      |   |
| ATOM | 6739 | CE2 | PHE   |     |     | -50.315 | 51.185  | 19.334   |      | 20.57 |   | В      | C |
| MOTA | 6740 | CZ  | PHE   | В   | 428 | -49.691 | 52.416  | 19.390   |      | 19.26 |   | В      | С |
| ATOM | 6741 | С   | PHE   | В   | 428 | -48.979 | 48.182  | 24.364   |      | 26.94 |   | В      | C |
| MOTA | 6742 | 0   | PHÉ   |     |     | -48.939 | 47.038  | 23.905   |      | 28.66 |   | В.     | 0 |
| ATOM | 6743 | N   | SER   |     |     | -48.760 | 48.449  | 25.648   | 1.00 | 26.15 |   | В      | N |
|      |      |     |       |     |     |         |         |          |      |       |   |        |   |

|              |              |     |       |                |         |        |        | 1 00 04 05 | В                         | С |
|--------------|--------------|-----|-------|----------------|---------|--------|--------|------------|---------------------------|---|
| ATOM         | 6744         | CB  | SER B |                |         | 47.450 |        | 1.00 24.25 | В                         | Č |
| ATOM         | 6745         | CB  | SER B | 429            |         | 46.235 |        | 1.00 25.14 |                           | ō |
| ATOM         | 6746         | OG  | SER B | 429            | -48.927 | 45.391 | _      | 1.00 26.23 | В                         |   |
| ATOM         | 6747         |     | SER B |                | -46.938 | 47.015 | 26.329 | 1.00 25.03 | В                         | C |
| ATOM         | 6748         | -   | SER B |                | -46.218 | 47.703 | 25.606 | 1.00 28.29 | В                         | 0 |
| ATOM         | 6749         |     | ALB B |                | -46.548 | 45.867 | 26.868 | 1.00 25.12 | В                         | N |
| ATOM         | 6750         |     | ALB B |                | -45.197 | 45.316 | 26.712 | 1.00 23.22 | ₿                         | С |
| ATOM         | 6751         |     | ALB B |                | -44.302 | 45.871 | 27.788 | 1.00 20.30 | В                         | С |
|              | 6752         |     | ALB B |                | -45.228 | 43.808 | 26.821 | 1.00 23.29 | В                         | С |
| ATOM         |              |     | ALB B |                | -46.225 | 43.234 | 27.252 | 1.00 26.79 | В                         | 0 |
| MOTA         | 6753         |     | GLY B |                | -44.144 | 43.160 | 26.419 | 1.00 22.27 | В                         | N |
| MOTA         | 6754         |     | GLY B |                | -44.074 | 41.709 | 26.535 | 1.00 22.99 | ` В                       | С |
| ATOM         | 6755         | CB  | GLY B |                | -44.563 | 40.854 | 25.382 | 1.00 23.72 | В                         | С |
| MOTA         | 6756         | C   |       | _              | -44.700 | 41.336 | 24.262 | 1.00 22.41 | В                         | 0 |
| ATOM         | 6757         | 0   | GLY B |                | -44.836 | 39.578 | 25.677 | 1.00 25.42 | В                         | N |
| MOTA         | 6758         | N   | LYS E |                | -45.291 | 38.595 | 24.678 | 1.00 26.31 | В                         | С |
| ATOM         | 6759         | CB  | LYS E |                | -45.345 | 37.189 | 25.280 | 1.00 26.29 | В                         | С |
| MOTA         | 6760         | CB  | LYS E |                | -44.095 | 36.712 | 25.979 | 1.00 31.08 | В                         | С |
| ATOM         | 6761         | CG  | LYS E |                |         | 36.577 | 25.025 | 1.00 36.76 | В                         | С |
| MOTA         | 6762         | ÇD  | LYS E |                | -42.919 |        | 25.749 | 1.00 38.87 | В                         | Ċ |
| ATOM         | 6763         | CE  | LYS E |                | -41.619 | 36.217 | 26.662 | 1.00 43.71 | В                         | N |
| MOTA         | 6764         | NZ  | LYS E |                | -41.115 | 37.310 |        | 1.00 27.10 | В                         | Ç |
| MOTA         | 6765         | С   | LYS E |                | -46.672 | 38.894 | 24.111 | 1.00 28.38 | 8                         | ō |
| MOTA         | 6766         | 0   | LYS F |                | -47.026 | 38.413 | 23.035 | 1.00 27.86 | В                         | N |
| MOTA         | 6767         | N   | ARG I |                | -47.446 | 39.672 | 24.856 | 1.00 27.41 | В                         | Ċ |
| ATOM         | 6768         | CB  | ARG E | 3 433          | -48.806 | 40.029 | 24.483 |            | В                         | Č |
| MOTA         | 6769         | CB  | ARG I | 3 433          | -49.721 | 39.875 | 25.702 | 1.00 27.50 | В                         | Č |
| ATOM         | 6770         | CG  | ARG I | B 433          | -50.136 | 38.441 | 25.999 | 1.00 27.54 |                           | Č |
| ATOM         | 6771         | CD  | ARG I | в 433          | -51.272 | 37.997 | 25.102 | 1.00 26.49 | . B                       | N |
| MOTA         | 6772         | NE  | ARG I | B 433          | -51.700 | 36.626 | 25.400 | 1.00 26.00 |                           | C |
| ATOM         | 6773         | CZ  | ARG I | В 433          | -52.800 | 36.058 | 24.906 | 1.00 26.34 | В                         |   |
| ATOM         | 6774         | NH1 | ARG 1 | B 433          | -53.618 | 36.715 | 24.091 | 1.00 23.44 | В                         | N |
| ATOM         | 6775         | NH2 | ARG 1 | B 433          | -53.073 | 34.810 | 25.208 | 1.00 27.30 | В                         | N |
| ATOM         | 6776         | С   | ARG I | B 433          | -48.871 | 41.446 | 23.977 | 1.00 26.60 | В                         | C |
| ATOM         | 6777         | 0   | ARG 1 | B 433          | -49.947 | 42.030 | 23.872 | 1.00 28.79 | В                         | 0 |
| ATOM         | 6778         | N   | ILE ! | B 434          | -47.718 | 42.014 | 23.666 | 1.00 26.20 | . В                       | И |
| ATOM         | 6779         | CB  | ILE : | B 434          | -47.699 | 43.390 | 23.182 | 1.00 25.67 | В                         | Ç |
| ATOM         | 6780         | СВ  | ILE   | B 434          | -46.245 | 43.893 | 22.907 | 1.00 22.89 | В                         | C |
| ATOM         | 6781         | CG2 | ILE   | B 434          | -45.563 | 43.087 | 21.840 | 1.00 21.04 | 7 · · · · · · · · · · · · | C |
| MOTA         | 6782         | CG1 | ILE   | B 434          | -46.305 | 45.317 | 22.389 | 1.00 21.96 | В                         | C |
| ATOM         | 6783         |     | ILE   |                | -45.187 | 46.150 | 22.872 | 1.00 20.46 | В                         | C |
| ATOM         | 6784         | С   | ILE   |                | -48.558 | 43.579 | 21.938 | 1.00 24.22 | В                         | C |
| ATOM         | 6785         | ō   | ILE   |                | -48.592 | 42.736 | 21.056 | 1.00 23.88 | В                         | 0 |
| ATOM         | 6786         | N   | CYS   |                | -49.267 | 44.693 | 21.905 | 1.00 24.87 | В                         | N |
| ATOM         | 6787         | CB  | CYS   |                | -50.115 | 45.019 | 20.787 | 1.00 28.11 | В                         | С |
| ATOM         | 6788         | СВ  | CYS   |                | -50.342 | 46.533 | 20.730 | 1.00 27.77 | В                         | C |
| ATOM         | 6789         | SG  | CYS   |                | -51.278 | 47.073 | 19.256 | 1.00 33.28 | В                         | S |
| ATOM         | 6790         | С   | CYS   |                | -49.474 | 44.535 | 19.486 | 1.00 27.75 | В                         | C |
| ATOM         | 6791         | 0   | CYS   | B 435          | -48.267 | 44.645 | 19.293 | 1.00 29.13 | В                         | 0 |
| ATOM         | 6792         | N   | VAL   |                | -50.304 | 43.983 | 18.615 | 1.00 27.07 | В                         | N |
| ATOM         | 6793         | СВ  | VAL   |                | -49.876 | 43.464 | 17.340 | 1.00 26.13 | В                         | C |
| ATOM         | 6794         | СВ  | VAL   |                | -50.872 | 42.419 | 16.854 | 1.00 27.40 | В                         | C |
| ATOM         | 6795         |     | VAL   |                | -50.592 | 42.046 | 15.424 | 1.00 27.43 | В                         | С |
| MOTA         | 6796         |     | VAL   |                | -50.821 | 41.201 | 17.754 | 1.00 27.30 | В                         | C |
| MOTA         | 6797         | c   | VAL   |                | -49.837 | 44.600 | 16.337 | 1.00 27.24 | В                         | C |
| ATOM         | 6798         | ŏ   | VAL   |                | -49.093 | 44.572 | 15.349 | 1.00 29.06 | В                         | 0 |
|              | 6799         | N   |       | B 437          | -50.654 | 45.611 | 16.602 | 1.00 26.95 | В                         | N |
| ATOM<br>ATOM | 6800         | CB  |       | B 437          | -50.736 | 46.754 | 15.713 | 1.00 25.63 | В                         | С |
|              |              |     |       | B 437          | -49.951 | 47.941 | 16.213 | 1.00 25.25 | В                         | С |
| ATOM         | 6801<br>6802 | 0   |       | B 437          | -50.325 | 49.086 | 15.979 | 1.00 25.33 | В                         | 0 |
| MOTA         |              |     |       | B 438          | -48.861 | 47.668 | 16.915 | 1.00 24.74 | В                         | N |
| ATOM         | 6803         |     |       | B 438          | -48.034 | 48.739 | 17.424 | 1.00 24.84 | В                         | С |
| MOTA         | 6804         |     |       |                | -46.899 | 48.173 |        | 1.00 25.64 | В                         | С |
| ATOM         | 6805         |     |       | B 438<br>B 438 | -46.108 | 49.224 | 18.946 | 1.00 29.03 | В                         | С |
| MOTA         | 6806         |     |       |                | -44.929 | 48.617 |        | 1.00 31.59 | В                         | С |
| MOTA         | 6807         |     |       | B 438          | -44.206 | 49.369 |        | 1.00 34.61 | В                         | 0 |
| MOTA         | 6808         |     |       | B 438          | -44.733 | 47.384 |        | 1.00 29.23 | В                         | 0 |
| MOTA         | 6809         |     |       | B 438          | -47.487 | 49.554 |        | 1.00 24.25 | В                         | С |
| ATOM         | 6810         |     |       | B 438          | -47.498 | 50.774 |        | 1.00 25.24 | В                         | 0 |
| ATOM         | 6811         |     |       | B 438          | -47.498 | 48.893 |        | 1.00 23.20 | В                         | N |
| ATOM         | 6812         |     |       | B 439          | -46.509 |        |        | 1.00 23.25 | В                         | С |
| MOTA         | 6813         |     |       | B 439          | -45.748 | 48.721 |        | 1.00 22.22 | В                         | Ċ |
| MOTA         | 6814         |     | ALB   |                | -47.622 | 50.335 |        |            | В                         | Ċ |
| MOTA         | 6815         |     |       | B 439          | -47.587 |        | _      |            | В                         | Ō |
| MOTA         | 6816         |     |       | B 439          | -47.567 |        |        |            | В                         | N |
| ATOM         | 6817         |     |       | B 440          | -49.728 |        |        |            | В                         | С |
| ATOM         | 6818         | CB  | LEU   | B 440          | -47.120 | 50.034 |        |            |                           |   |

1. 74 348.

· ....

Later Library Co. 1.72 th 19 19 3 10 8

minimized in the

4.0

```
ATOM
               6819
                     CB
                        LEU B 440
                                         -50.773
                                                  49.009 11.805 1.00 23.43
                                                                                          c
                                                          11.256
                                                                   1.00 21.87
                                                                                          ¢
        ATOM
               6820
                     CG
                         LEU B 440
                                         -52.132
                                                  49.456
        ATOM
               6821
                     CD1 LEU B 440
                                         -51.964
                                                  50.099
                                                            9.889
                                                                   1.00 21.87
                                                                                     В
                                                                                          С
                     CD2 LEU B 440
                                         -53.047
                                                  48.259
                                                           11.160
                                                                   1.00 22.15
        MOTA
               6822
                                         -50.398
                                                  51.216
                                                           12.809
        ATOM
               6823
                     c
                          LEU B 440
                                                                   1.00 23.79
                                         -50.829
                                                  52.188
                                                           12.223
                                                                   1.00 23.59
        ATOM
               6824
                     0
                          LEU B 440
        ATOM
               6825
                     N
                          ALB B 441
                                         -50,503
                                                  51.075
                                                           14.110
                                                                   1.00 23.46
                     CB
                         ALB B 441
                                         -51.142
                                                  52.112
                                                           14.848
                                                                   1.00 24.13
        ATOM
               6826
                     СВ
                                                           16.296
                                                                   1.00 25.20
                         ALB B 441
                                         -51.314
                                                  51.688
        ATOM
               6827
                                         -50.284
                                                  53.343
                                                           14.759
                                                                   1.00 24.60
                          ALB B 441
               6828
                     С
        ATOM
                                         -50.792
                                                           14.474
                                                                   1.00 25.46
                         ALB B 441
                                                                                          0
                     0
                                                  54.419
                                                                                     В
        ATOM
               6829
                                         -48.985
                                                           15.011
                                                                   1.00 24.78
                         GLY B 442
                                                  53,190
                                                                                     В
                                                                                          N
       MOTA
               6830
                     N
                                                          14.982
                                                                   1.00 24.59
        MOTA
               6831
                     CB
                         GLY B 442
                                         -48.080
                                                  54.334
                                                                                     В
                                                                                          С
                                                                   1.00 24.02
       ATOM
               6832
                     С
                         GLY B 442
                                         -48.060
                                                  54.994
                                                           13.622
                                                                                     В
                                                                                          C
                                         -47.919
                                                  56.206
                                                           13.480
                                                                   1.00 25.31
                                                                                     В
        ATOM
               6833
                     ٥
                         GLY B 442
                                         -48.223
                                                          12.613
                                                                   1.00 24.75
                                                                                     В
                                                                                          N
       ATOM
               6834
                     N
                         MET B 443
                                                  54.160
                                                                   1.00 25.46
                                                                                          C
                         MET B 443
                                                           11.235
                                                                                     В
        ATOM
               6835
                     CB
                                         -48.230
                                                  54.577
                                                           10.355
                                                                   1.00 28.41
                                         -48.188
       MOTA
               6836
                     СВ
                         MET B 443
                                                  53.340
                                                                                     В
                                                                                          С
                                                            9.017
                                                  53.607
                                                                   1.00 33.22
                                                                                          C
                                                                                     В
        ATOM
               6837
                     CG
                         MET B 443
                                         -47.578
                                                                                          s
                                                            7.914
                                                                   1.00 41.26
                                                                                     В
       ATOM
               6838
                     SD
                         MET B 443
                                         -47.518
                                                  52.170
                                                            8.816
                                                                   1.00 36.17
                                                                                     В
        MOTA
               6839
                     CE
                         MET B 443
                                         -46.430
                                                  50.915
                                                                                          c
       ATOM
               6840
                     С
                         MET B 443
                                         -49.462
                                                  55.402
                                                           10.901
                                                                   1.00 25.19
                                                                                     В
        MOTA
               6841
                     0
                          MET B 443
                                         -49.377
                                                  56.353
                                                           10.155
                                                                   1.00 25.49
                                                                                     В
                                                                                          ٥
                                                                   1.00 26.73
        MOTA
               6842
                     N
                         GLU B 444
                                         -50.612
                                                  55.055
                                                           11.459
                                                                                     В
                                                                                          N
                                                                   1.00 27.79
               6843
                     СВ
                         GLU B 444
                                         -51.834
                                                  55.784
                                                           11.144
                                                                                     В
                                                                                          С
        ATOM
               6844
                     СВ
                         GLU B 444
                                         -53.056
                                                  54.959
                                                           11.514
                                                                   1.00 28.33
                                                                                    В
                                                                                          С
        ATOM
                         GLU B 444
                                         -53.141
                                                  53.593
                                                           10.910
                                                                   1.00 33.19
                                                                                     В
                                                                                          С
        ATOM
               6845
                     CG
                         GLU B 444
                                         -54.405
                                                  52.910
                                                           11.326
                                                                   1.00 37.10
                                                                                     В
                                                                                          С
       ATOM
               6846
                     CD
ATOM
               6847
                     OE1 GLU B 444
                                         -55.441
                                                  53.601
                                                           11.320
                                                                   1.00 42.19
                                                                                     В
                                                                                          .0
               6848
                     OE2 GLU B 444
                                         -54.385
                                                  51.703
                                                           11.652
                                                                   1.00 38.63
                                                                                     В
                                                                                          0
       ATOM
                                                  57.103
                                                                                          ¢
               6849
                     С
                         GLU B 444
                                         -51.881
                                                           11.905
                                                                   1.00 28.02
       .ATOM
                                                                                     В
                                                                                          0
               6850
                     o
                         GLU B 444
                                         -52.287
                                                  58.128
                                                           11.360
                                                                   1.00 29.38
       ATOM
                                                                                     В
                                                                                          N
                         LEU B 445
                                         -51.483
                                                  57.071
                                                           13.173
                                                                   1.00 26.91
       MOTA
               6851
                     N
                                                                                     В
                                                                                          С
                     СВ
                         LEU. B 445
                                         -51.478
                                                  58.269
                                                           13.984
                                                                   1.00 26.03
       ATOM
               6852
                                         -50.963
                                                  57.979
                                                           15.376
                                                                   1.00 24.84
       ATOM
               6853
                     CB
                         LEU B 445
                                                                                          c
c
                                                  57.305
                                                                   1.00 26.40
                                                                                     В
       ATOM
               6854
                     CG
                         LEU B 445
                                         -52.001
                                                           16.261
                                         -51.385
                                                  56.896
                                                           17.598
                                                                   1.00 23.95
                                                                                     В
                     CD1 LEU B 445
       ATOM
               6855
                                                  58.280
                                                           16.464
                                                                    1.00 24.66
                                                                                     В
                                                                                          С
                     CD2 LEU B 445
                                         -53.161
       ATOM
               6856
                                                           13.340
                                                                                     В
                                                                                          С
                                         -50.591
                                                                   1.00 25.99
                         LEU B 445
                                                  59.294
       ATOM
               6857
                     С
                                                                                     В
                                                                                          0
                                         -50,995
                                                  60.443
                                                           13.132
                                                                   1.00 28.13
        ATOM
               6858
                     0
                          LEU B 445
                                                           13.012
                                                                                     В
                                                                                          N
                                         -49.375
                                                  58.881
                                                                   1.00 24.19
        ATOM
               6859
                     N
                          PHE B 446
                                                                                          ¢
                                                  59.788
                                                                                     В
        ATOM
               6860
                     CB
                         PHE B 446
                                         -48.417
                                                           12.407
                                                                   1.00 21.97
                                                                                          С
        MOTA
               6861
                     CB
                         PHE B 446
                                         -47.061
                                                  59,110
                                                           12.228
                                                                   1.00 20.59
                                                                                          С
                                                                                     В
        ATOM
               6862
                     CG
                         PHE B 446
                                         -46.035
                                                  59.997
                                                           11.584
                                                                   1.00 18.18
                                                                                          Ċ
                                                                                     В
        ATOM
               6863
                     CD1 PHE B 446
                                         -45.741
                                                  59.877
                                                           10.231
                                                                   1.00 17.53
                                                                                          С
        ATOM
               6864
                     CD2 PHE B 446
                                         -45.374
                                                  60.977
                                                           12.328
                                                                   1.00 15.18
                                                                                     В
                                                                                          С
        ATOM
               6865
                     CE1 PHE B 446
                                         -44.797
                                                  60.724
                                                            9.628
                                                                   1.00 16.42
                                                                                     В
                     CE2 PHE B 446
                                         -44.442
                                                  61.813
                                                           11.733
                                                                   1.00 14.16
                                                                                     В
                                                                                          C
        ATOM
               6866
                         PHE B 446
                                         -44.152
                                                  61.691
                                                           10.383
                                                                   1.00 13.49
                                                                                     В
                                                                                          С
        ATOM
               6867
                     CZ
        ATOM
               6868
                     С
                          PHE B 446
                                         -48.882
                                                  60.314
                                                           11.074
                                                                   1.00 21.47
                                                                                     В
                                                                                          c
                                                                    1.00 21.99
        ATOM
               6869
                     0
                          PHE B 446
                                         -48.916
                                                  61.528
                                                           10.865
                                                                                     В
                                                                                          ٥
                                                                    1.00 19.85
                                                                                     В
                                                                                          N
               6870
                     N
                          LEU B 447
                                         -49.233
                                                  59.390
                                                           10.181
        ATOM
                     СВ
                          LEU B 447
                                         -49.694
                                                  59.707
                                                            8.838
                                                                    1.00 18.25
                                                                                     В
                                                                                          С
        ATOM
               6871
                                                            7.991
                                                                                          С
               6872
                         LEU B 447
                                         -49.801
                                                  58.418
                                                                    1.00 17.10
                     СВ
        ATOM
                                                                    1.00 18.05
                                                                                          C
               6873
                     CG
                          LEU B 447
                                         -48.482
                                                  57.733
                                                            7.582
                                                                                     В
        ATOM
                                         -48.729
                                                                                          С
                                                  56.460
                                                            6.752
                                                                    1.00 17.51
        MOTA
               6874
                     CD1
                         LEU B 447
                                                                                     В
                                                                                          ¢
        ATOM
               6875
                     CD2 LEU B 447
                                         -47.643
                                                  58.696
                                                            6.818
                                                                    1.00 16.62
               6876
                                         -51.010
                                                  60.494
                                                            8.777
                                                                    1.00 18.18
        ATOM
                          LEU B 447
                     С
                                                  61.365
                                                            7.931
                                                                    1.00 18.00
                                                                                     В
                                                                                          0
                          LEU B 447
                                         -51.150
        ATOM
               6877
                     0
                                                  60.211
                                                            9.643
                                                                    1.00 19.18
                                         -51.981
               6878
                          PHE B 448
        ATOM
                     N
                                                            9.566
                                                                    1:00 20.90
                                                                                          С
                                                  60.977
                         PHE B 448
                                         -53.219
        ATOM
               6879
                     CB
                                                           10.309
                                                                    1.00 18.05
                                                                                          C
                                         -54.397
                                                  60.317
        ATOM
               6880
                     СВ
                         PHE B 448
                                                                    1.00 17.28
                                                            9.681
        ATOM
               6881
                     CG
                          PHE B 448
                                         -54.902
                                                  59.052
                                                            8.472
                                                                    1.00 17.20
                                                                                          С
        MOTA
               6882
                     CD1 PHE B 448
                                         -54.413
                                                  58.606
                                                           10.367
                                                                    1.00 20.87
                                                                                     В
                                                                                          c
               6883
                      CD2 PHE B 448
                                         -55.794
                                                  58.242
        ATOM
                                                           7.952
                                                                    1.00 16.45
                                                                                          c
               6884
                      CE1 PHE B 448
                                         -54.779
                                                  57.366
                                                                                     В
        ATOM
                                                                    1.00 19.79
                     CE2 PHE B 448
                                         -56.179
                                                  56.978
                                                            9.855
                                                                                          C
        ATOM
               6885
                                         -55.661
                                                  56.549
                                                            8.645
                                                                   1.00 18.83
                                                                                     В
                                                                                          С
        ATOM
               6886
                     CZ
                          PHE B 448
                                                           10.196
                                                                    1.00 24.23
                                                                                          C
        MOTA
               6887
                     C
                          PHE B 448
                                         -52.941
                                                  62.335
        ATOM
               6888
                     0
                          PHE B 448
                                         -52.980
                                                  63.361
                                                            9.521
                                                                    1.00 25.03
                                                                                     В
                                                                                          0
                          LEU B 449
                                         -52.613
                                                  62.353
                                                           11.482
                                                                    1.00 27.27
        ATOM
               6889
                     N
                                                           12.143
                                                                    1.00 29.13
                                                                                     В
                                                                                          С
        ATOM
               6890
                     СВ
                          LEU B 449
                                         -52.370
                                                  63.622
                                                                    1.00 30.56
                                                                                          ¢
                                                  63.402
                                                           13.447
                                         -51.598
        ATOM
                     CB
                          LEU B 449
               6891
                                                                    1.00 32.31
                                                                                     В
                                                                                          С
                                                  62.868
                                                           14.585
                     CG
                         LEU B 449
                                         -52.466
        ATOM
               6892
                                                          15.820
                                                                   1.00 32.19
                                                  62.673
        ATOM
               6893
                     CD1 LEU B 449
                                         -51.605
```

| ATOM | 6894 | CD2 | LEU | В  | 449     | -53.617 | 63.866 | 14.880 | 1.00 33.10 | В | С   |
|------|------|-----|-----|----|---------|---------|--------|--------|------------|---|-----|
| ATOM | 6895 | С   | LEU |    |         | -51.623 | 64.599 | 11.253 | 1.00 28.98 | В | С   |
|      |      |     |     |    |         |         |        |        | 1.00 28.26 | В | ō   |
| ATOM | 6896 | 0   | LEU |    |         | -52.011 | 65.751 | 11.115 |            |   |     |
| ATOM | 6897 | N   | THR | В  | 450     | -50.582 | 64.107 | 10.602 | 1.00 30.03 | В | N   |
| ATOM | 6898 | CB  | THR | В  | 450     | -49.730 | 64.935 | 9.768  | 1.00 30.53 | В | С   |
| ATOM | 6899 | СВ  | THR |    |         | -48.440 | 64.139 | 9.486  | 1.00 30.83 | В | С   |
|      |      |     |     |    |         |         |        | 8.974  |            | В |     |
| ATOM | 6900 |     | THR |    |         | -47.434 | 65.011 |        | 1.00 34.66 |   | 0   |
| ATOM | 6901 | CG2 | THR | В  | 450     | -48.725 | 63.000 | 8.526  | 1.00 31.02 | В | С   |
| ATOM | 6902 | С   | THR | В  | 450     | -50.431 | 65.432 | 8.498  | 1.00 29.25 | В | С   |
| ATOM | 6903 | ō   | THR |    |         | -50.359 | 66.608 | 8.159  | 1.00 27.72 | В | 0   |
|      |      |     |     |    |         |         |        |        |            |   |     |
| ATOM | 6904 | N   | SER |    |         | -51.138 | 64.538 | 7.823  | 1.00 30.12 | В | N   |
| ATOM | 6905 | CB  | SER | В  | 451     | -51.876 | 64.898 | 6.620  | 1.00 30.44 | В | C   |
| ATOM | 6906 | CB  | SER | В  | 451     | -52.450 | 63.646 | 5.962  | 1.00 28.64 | В | С   |
| ATOM | 6907 | OG  | SER |    |         | -51.429 | 62.692 | 5.729  | 1.00 28.87 | В | . 0 |
|      |      |     |     |    |         |         | 65.852 |        | 1.00 32.16 | В | č   |
| ATOM | 6908 | С   | SER |    |         | -53.019 |        | 6.964  |            |   |     |
| ATOM | 6909 | 0   | SER | В  | 451     | -53.388 | 66.707 | 6.165  | 1.00 33.03 | В | 0   |
| ATOM | 6910 | N   | ILE | В  | 452     | -53.591 | 65.742 | 8.151  | 1.00 32.71 | В | N   |
| ATOM | 6911 | CB  | ILE | R  | 452     | -54.677 | 66.660 | 8.418  | 1.00 33.65 | В | С   |
|      |      |     |     |    |         |         |        |        | 1.00 33.44 | В | c   |
| MOTA | 6912 | CB  | ILE |    |         | -55.580 | 66.161 | 9.541  |            |   |     |
| ATOM | 6913 | CG2 | ILE | В  | 452     | -55.545 | 64.648 | 9.606  | 1.00 31.19 | В | С   |
| MOTA | 6914 | CG1 | ILE | В  | 452     | -55.156 | 66.786 | 10.858 | 1.00 35.91 | В | С   |
| ATOM | 6915 |     | ILE |    |         | -56.053 | 67.917 | 11.293 | 1.00 37.38 | В | С   |
|      |      |     |     |    |         |         |        | 8.744  | 1.00 35.55 | В | C   |
| ATOM | 6916 | С   | ILE |    |         | -54.203 | 68.068 | •      |            |   |     |
| MOTA | 6917 | 0   | ILE | В  | 452     | -54.883 | 69.035 | 8.421  | 1.00 36.47 | В | 0   |
| MOTA | 6918 | N   | LEU | В  | 453     | -53.038 | 68.183 | 9.376  | 1.00 37.34 | В | N   |
| MOTA | 6919 | CB  | LEU | В  | 453     | -52.493 | 69.482 | 9.742  | 1.00 38.07 | В | С   |
|      |      |     | LEU |    |         | -51.554 | 69.342 | 10.948 | 1.00 37.57 | В | Ċ   |
| MOTA | 6920 | CB  |     |    |         |         |        |        |            |   |     |
| MOTA | 6921 | CG  | LEU |    |         | -52.143 | 69.132 | 12.351 | 1.00 36.97 | В | C   |
| ATOM | 6922 | CD1 | LEU | ٠B | 453 🤋 - | -51.021 | 68.878 | 13.355 | 1.00 36.61 | В | С   |
| ATOM | 6923 | CD2 | LEO | В  | 453:    | -52.942 | 70.337 | 12.767 | 1.00 36.88 | В | С   |
| •    |      |     |     |    | 453     | -51.742 | 70.105 | 8.570  | 1.00 38.53 | В | С   |
| MOTA | 6924 | С   |     |    |         |         |        |        |            |   |     |
| MOTA | 6925 | ٥   | LEU | В  | 453     | -51.390 | 71.287 | 8.602  | 1.00 38.54 | В | 0   |
| ATOM | 6926 | N   | GLN | В  | 454     | -51.481 | 69.306 | 7.542  | 1.00 37.97 | В | N   |
| ATOM | 6927 | CB. | GLN | B  | 454:    | -50.781 | 69.821 | 6.381  | 1.00 38.91 | В | С   |
|      |      |     | GLN |    |         | -50.088 | 68.699 | 5.617  | 1.00 35.81 | В | C   |
| MOTA | 6928 | CB  |     |    |         |         |        |        |            |   |     |
| ATOM | 6929 | CG  | GLN | В  | 454     | -49.422 | 69.141 | 4.340  | 1.00 34.13 | В | С   |
| ATOM | 6930 | CD. | GLN | В  | 454     | -48.972 | 67.962 | 3.502  | 1.00 36.28 | В | С   |
| ATOM | 6931 | OE1 | GLN | В  | 454     | -47.913 | 67.985 | 2.874  | 1.00 36.86 | В | 0   |
|      | 6932 |     | GLN |    |         | -49.785 | 66.920 | 3.483  | 1.00 37.55 | В | N   |
| ATOM |      |     |     |    |         |         |        |        |            |   |     |
| MOTA | 6933 | С   | GLN |    |         | -51.789 | 70.483 | 5.464  | 1.00 40.95 | В | C   |
| ATOM | 6934 | 0   | GLN | В  | 454     | -51.457 | 71.397 | 4.718  | 1.00 43.10 | В | 0   |
| ATOM | 6935 | N   | ASN | В  | 455     | -53.031 | 70.024 | 5.529  | 1.00 42.29 | В | N   |
|      | 6936 | СВ  | ASN |    |         | -54.065 | 70.556 | 4.662  | 1.00 41.61 | В | С   |
| ATOM |      |     |     |    |         |         |        |        |            | В |     |
| MOTA | 6937 | CB  | ASN |    |         | -54.792 | 69.391 | 4.009  | 1.00 39.71 |   | C   |
| MOTA | 6938 | CG  | ASN | В  | 455     | -53.872 | 68.569 | 3.135  | 1.00 40.00 | В | С   |
| ATOM | 6939 | OD1 | ASN | В  | 455     | -53.637 | 68.908 | 1.987  | 1.00 43.17 | В | 0   |
| ATOM | 6940 |     | ASN |    |         | -53.329 | 67.500 | 3.679  | 1.00 38.24 | В | N   |
|      |      |     |     |    |         | -55.044 | 71.493 | 5.335  | 1.00 42.70 | В | C   |
| ATOM | 6941 | С   | ASN |    |         |         |        |        |            |   |     |
| ATOM | 6942 | 0   | ASN | В  | 455     | -55.650 | 72.329 | 4.672  | 1.00 44.74 | В | 0   |
| ATOM | 6943 | N   | PHE | В  | 456     | -55.187 | 71.375 | 6.650  | 1.00 42.92 | В | N   |
| ATOM | 6944 | СВ  | PHE | В  | 456     | -56.116 | 72.227 | 7.371  | 1.00 43.43 | В | С   |
| MOTA | 6945 | CB  | PHE |    |         | -57.364 | 71.442 | 7.755  | 1.00 42.60 | В | C   |
|      |      |     |     |    |         |         |        | 6.642  | 1.00 41.05 | В | · č |
| MOTA | 6946 | CG  | PHE |    |         | -57.933 | 70.622 |        |            |   |     |
| ATOM | 6947 | CD1 | PHE | В  | 456     | -58.681 | 71.213 | 5.635  | 1.00 39.70 | В | С   |
| MOTA | 6948 | CD2 | PHE | В  | 456     | -57.717 | 69.251 | 6.599  | 1.00 39.82 | В | С   |
|      |      |     | PHE |    |         | -59.204 | 70.449 | 4.603  | 1.00 39.52 | В | С   |
| ATOM | 6949 |     |     |    |         |         |        |        | 1.00 39.13 | В | č   |
| MOTA | 6950 |     | PHE |    |         | -58.234 | 68.481 | 5.574  |            |   |     |
| ATOM | 6951 | CZ  | PHE | В  | 456     | -58.980 | 69.079 | 4.572  | 1.00 38.68 | В | С   |
| ATOM | 6952 | C   | PHE | В  | 456     | -55.559 | 72.836 | B.642  | 1.00 45.04 | В | С   |
| ATOM | 6953 | ō   | PHE |    |         | -54.473 | 72.488 | 9.114  | 1.00 44.44 | В | 0   |
|      |      |     |     |    |         |         |        |        | 1.00 15.00 | В |     |
| ATOM | 6954 | N   | ASN |    |         | -56.306 | 73.771 | 9.137  |            |   | N   |
| MOTA | 6955 | CB  | ASN |    |         | -56.105 | 74.434 | 10.419 | 1.00 15.00 | В | C   |
| MOTA | 6956 | CB  | ASN | В  | 457     | -55.913 | 75.939 | 10.216 | 1.00 15.00 | В | С   |
| ATOM | 6957 | CG  | ASN |    |         | -54.571 | 76.278 | 9.599  | 1.00 15.00 | В | С   |
|      |      |     |     |    |         | -53.539 | 75.735 | 9.994  | 1.00 15.00 | В | ō   |
| ATOM | 6958 |     | ASN |    |         |         |        |        |            |   |     |
| ATOM | 6959 | ND2 | ASN |    |         | -54.578 | 77.183 | 8.628  | 1.00 15.00 | В | N   |
| ATOM | 6960 | С   | ASN | В  | 457     | -57.284 | 74.184 | 11.354 | 1.00 15.00 | В | С   |
| ATOM | 6961 | 0   | ASN |    |         | -58.405 | 74.327 | 10.853 | 1.00 50.60 | В | 0   |
| ATOM | 6962 | N   | LEU |    |         | -57.036 | 73.766 | 12.520 | 1.00 52.02 | В | N   |
|      |      |     |     |    |         |         |        |        | 1.00 54.10 | В | Ċ   |
| MOTA | 6963 | CB  | LEU |    |         | -58.121 | 73.428 | 13.407 |            |   |     |
| MOTA | 6964 | CB  | LEU |    |         | -57.625 | 72.376 | 14.398 | 1.00 52.43 | В | С   |
| ATOM | 6965 | CG  | LEU | В  | 458     | -56.793 | 71.238 | 13.789 | 1.00 50.99 | В | С   |
| ATOM | 6966 |     | LEU |    |         | -56.370 | 70.283 | 14.898 | 1.00 50.86 | В | С   |
|      |      |     | LEU |    |         | -57.575 | 70.505 | 12.719 | 1.00 49.00 | В | č   |
| ATOM | 6967 |     |     |    |         |         |        |        |            |   |     |
| ATOM | 6968 | С   | LEU | В  | 458     | -58.725 | 74.620 | 14.148 | 1.00 56.41 | В | С   |

| ATOM 6950 N LYS 8459 -58.161 75.087 13.133 1.00 57.85 B C ATOM 6971 CB LYS 8 459 -59.872 75.126 11.667 1.00 15.00 B C ATOM 6971 CB LYS 8 459 -60.530 76.227 14.357 1.00 15.00 B C ATOM 6973 CG LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6973 CG LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6973 CG LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6975 CE LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6975 CE LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6975 CE LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6975 CE LYS 8 459 -60.201 77.975 12.515 1.00 15.00 B C ATOM 6975 CE LYS 8 459 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6976 CE LYS 8 459 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6976 CE LYS 8 459 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6976 CE LYS 8 459 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6976 CE LYS 8 450 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6976 CE LYS 8 450 -60.201 78.905 10.722 1.00 15.00 B C ATOM 6978 CE SER 8 460 -62.202 75.767 19.971 1.00 65.10 B C ATOM 6981 CE SER 8 460 -62.802 75.767 19.971 1.00 65.10 B C ATOM 6985 CE SER 8 460 -62.802 75.767 19.971 1.00 65.11 B C ATOM 6980 CE SER 8 460 -63.947 77.730 15.771 1.00 69.86 B C ATOM 6986 CE LEU 8 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6980 CE LEU 8 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6990 CD LEU 8 461 -66.613 79.00 18.254 1.00 73.31 B C ATOM 6990 CD LEU 8 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6990 CD LEU 8 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 CD LEU 8 461 -66.613 79.908 19.381 1.00 75.81 B C ATOM 6990 | MOTA   | 6969 | 0   | T.EII | В | 459   | -58.161 | 75.087  | 15.133  | 1.00 5 | 57 85 | В. | 0  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-----|-------|---|-------|---------|---------|---------|--------|-------|----|----|
| ATOM 6971 CB LYS B 459 -60.530 76.227 14.357 1.00 15.00 B C ATOM 6973 CB LYS B 459 -60.201 77.975 12.516 1.00 15.00 B C ATOM 6974 CD LYS B 459 -60.201 77.975 12.516 1.00 15.00 B C ATOM 6976 CE LYS B 459 -60.201 77.975 12.516 1.00 15.00 B C ATOM 6976 CE LYS B 459 -60.201 77.975 12.516 1.00 15.00 B C ATOM 6977 C LYS B 459 -60.201 77.975 10.522 1.00 15.00 B C ATOM 6977 C LYS B 459 -60.201 77.975 10.522 1.00 15.00 B C ATOM 6977 C LYS B 459 -60.201 67.783 10.00 15.00 B C ATOM 6977 C LYS B 459 -60.1578 75.711 15.338 1.00 15.00 G 1.44 B C ATOM 6979 N SER B 460 -61.621 76.323 16.512 1.00 64.04 B N ATOM 6979 N SER B 460 -61.621 76.323 16.512 1.00 64.04 B N ATOM 6981 CB SER B 460 -61.621 76.323 16.512 1.00 64.10 B C ATOM 6981 CB SER B 460 -62.622 75.743 17.555 1.00 65.10 B C ATOM 6981 CB SER B 460 -62.620 75.767 19.971 1.05 65.17 B C ATOM 6981 CB SER B 460 -62.620 75.767 19.971 1.05 65.17 B C ATOM 6983 C SER B 460 -62.821 76.157 18.935 1.00 65.11 B C ATOM 6985 C SER B 460 -62.897 77.730 18.771 1.00 65.10 65.16 B C ATOM 6985 C SER B 460 -62.897 77.730 18.255 1.00 65.11 B C ATOM 6985 C SE LEU B 461 -66.487 77.631 18.255 1.00 70.83 B C ATOM 6980 C SER B 460 -67.31 77.730 18.255 1.00 65.16 B C ATOM 6987 CB LEU B 461 -66.487 77.631 18.255 1.00 70.83 B C ATOM 6980 CD LEU B 461 -67.31 75.042 18.255 1.00 70.83 B C ATOM 6980 CD LEU B 461 -67.31 75.042 18.255 1.00 70.83 B C ATOM 6980 CD LEU B 461 -67.327 15.762 15.790 1.00 73.35 B C ATOM 6980 CD LEU B 461 -67.327 75.762 15.790 1.00 73.35 B C ATOM 6989 C C LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.762 15.790 10.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.762 15.790 10.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.762 15.790 10.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.762 15.790 10.00 73.48 B C ATOM 6999 C C LEU B 461 -67.327 75.792 15.00 10.00 74.86 B C ATOM 6999 C C LEU B 461 -67.327 75.792 15.00 10.00 74.86 B C ATOM 6999 C C LEU B 461 -67.327 75.792 15.00 10.00 74.86  |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM         6972         CB         LYS B         459         -61.187         77.169         13.366         1.00         15.00         B         C           ATOM         6974         CB         LYS B         459         -60.21         77.975         12.516         1.00         15.00         B         C           ATOM         6975         CB         LYS B         459         -60.626         80.626         9.773         1.00         15.00         B         C           ATOM         6978         C         LYS B         459         -61.678         75.711         15.338         1.00         15.00         B         C           ATOM         6978         O         LYS B         459         -62.316         74.783         15.010         64.04         B         A           ATOM         6998         C         ESER B         460         -62.562         75.943         17.917         1.00         65.11         B         C           ATOM         6982         C         SER B         460         -62.92         75.767         19.971         1.00         65.11         B         C           ATOM         6998         C         ELEU B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |     |       |   |       |         |         |         |        |       |    |    |
| NOTON   6973   CG   LYS B 459   -60.201   77.975   12.516   1.00   15.00   B   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6976 CB LYS B 459 -60.921 78.905 11.553 1.00 15.00 B C ATOM 6976 NZ LYS B 459 -60.626 80.626 9.773 1.00 15.00 B C ATOM 6977 C LYS B 459 -60.626 80.626 9.773 1.00 15.00 B N ATOM 6977 C LYS B 459 -61.578 75.711 15.338 1.00 15.00 B N ATOM 6978 O LYS B 459 -62.316 74.783 15.019 1.00 61.44 B N ATOM 6978 N SER B 460 -62.562 75.943 15.912 1.00 64.04 B N ATOM 6998 CB SER B 460 -62.562 75.943 17.565 1.00 65.18 B C ATOM 6998 CB SER B 460 -62.562 75.943 17.565 1.00 65.18 B C ATOM 6998 C SER B 460 -62.562 75.943 17.565 1.00 65.18 B C ATOM 6998 C SER B 460 -62.802 75.767 19.971 1.00 65.18 B C ATOM 6998 C SER B 460 -63.947 77.730 16.771 1.00 68.01 B C ATOM 6998 C SER B 460 -63.947 77.730 16.771 1.00 68.06 B N ATOM 6998 C SER B 460 -63.947 77.730 16.771 1.00 68.06 B N ATOM 6998 C SER B 460 -63.947 77.730 18.254 1.00 73.31 B C ATOM 6998 C SER B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6998 C SER B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6998 C SER B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6998 C SER B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6999 C SEE B 461 -67.327 75.762 15.790 1.00 73.51 B C ATOM 6999 C SEE B 461 -67.327 75.762 15.790 1.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 76.727 73.762 15.790 1.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 76.727 73.762 15.790 1.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 76.727 73.762 15.790 1.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.32 15.70 77.722 1.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.51 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 6999 C SEE B 461 -66.61 77.747 77.31 10.00 73.50 B C ATOM 79.00 S SEE B 462 -66.747 77.741 10.00 SEE B C ATOM 79.00 S SEE B 462 -66.747 77.741 10.00 SEE B C ATOM 79.00 S SEE B 462 -66.747  | ATOM   |      | СВ  |       |   |       |         |         |         |        |       |    |    |
| ATOM         6975         CE         LYS B         459         -59.935         79.709         10.722         2.100         15.00         B         N           ATOM         6977         C         LYS B         459         -61.578         75.711         15.338         1.00         15.00         B         N           ATOM         6977         C         LYS B         459         -61.578         75.711         15.338         1.00         15.00         61.04         B         A           ATOM         6991         C         SER B         460         -61.621         76.1323         15.515         1.00         66.10         B         C           ATOM         6991         C         SER B         460         -61.921         76.157         18.935         1.00         65.11         B         C           ATOM         69981         C         SER B         460         -63.947         77.730         16.771         1.00         65.11         B         C           ATOM         69981         C         LEU B         461         -64.137         76.31         18.257         1.00         73.31         18         C           ATOM <th< td=""><td>MOTA</td><td>6973</td><td>CG</td><td>LYS</td><td>В</td><td>459</td><td>-60.201</td><td>77.975</td><td>12.516</td><td>1.00 1</td><td>15.00</td><td>В</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOTA   | 6973 | CG  | LYS   | В | 459   | -60.201 | 77.975  | 12.516  | 1.00 1 | 15.00 | В  |    |
| ATOM 6976 NZ LYS B 459 -60.626 80.626 9.773 1.00 15.00 B NATOM 6977 C LYS B 459 -62.316 74.783 15.019 1.00 15.00 B C NATOM 6978 N SER B 460 -61.621 76.233 16.512 1.00 64.04 B NATOM 6980 CB SER B 460 -62.552 75.943 17.565 1.00 66.10 B C NATOM 6980 CB SER B 460 -62.552 75.943 17.565 1.00 66.10 B C NATOM 6981 CB SER B 460 -62.552 75.943 17.565 1.00 66.10 B C NATOM 6982 CG SER B 460 -62.802 75.767 19.971 1.00 65.17 B C NATOM 6982 CG SER B 460 -62.802 75.767 19.971 1.00 65.17 B C NATOM 6982 CG SER B 460 -63.897 67.402 17.495 1.00 68.11 B C NATOM 6985 C SER B 460 -63.897 67.402 17.495 1.00 68.11 B C NATOM 6986 CB LEU B 461 -66.407 07.61.31 18.254 1.00 70.33 B C NATOM 6986 CB LEU B 461 -66.140 77.030 18.254 1.00 73.31 B C NATOM 6986 CB LEU B 461 -67.319 75.047 18.267 1.00 72.85 B C NATOM 6998 CG LEU B 461 -67.327 75.762 15.790 1.00 73.30 B C NATOM 6999 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C NATOM 6999 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C NATOM 6999 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C NATOM 6999 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C NATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 75.81 B C NATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C NATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C NATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C NATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C NATOM 6999 CD NATOM 6994 CB VAL B 462 -65.747 77.31 20.616 1.00 76.93 B C NATOM 6999 CD NATOM 6994 CB VAL B 462 -65.747 77.31 20.616 1.00 76.93 B C NATOM 6999 CD NATOM 6994 CB VAL B 462 -65.727 78.219 21.00 79.16 B C NATOM 6998 CD NATOM 6994 CB VAL B 462 -65.727 78.219 21.00 79.00 B C NATOM 6999 CD NATOM 6994 CB VAL B 462 -65.727 78.219 21.00 79.00 B C NATOM 7909 CC NATOM 6994 CB VAL B 462 -65.727 78.219 21.00 19.00 B C NATOM 7909 CC NATOM 6994 CB VAL B 462 -65.747 77.31 1.00 81.00 F S.00 B NATOM 7909 CC NATOM 6994 CB VAL B 462 -65.747 77.31 1.00 81.00 F S.00 B NATOM 7909 CC NATOM 7909 CC NATOM 7909 CC NATOM 7909 CC NATOM 7909 CC NATOM 7909 C | ATOM   | 6974 | CD  | LY\$  | В | 459   | -60.921 | 78.905  | 11.553  | 1.00 1 | 15.00 | В  | C  |
| ATOM 6977 C LYS B 459 -61.578 75.711 15.338 1.00 15.00 B C ATOM 6979 N SER B 459 -62.316 74.783 15.019 1.00 61.40 B B N ATOM 6979 N SER B 460 -61.621 76.323 16.512 1.00 64.04 B N ATOM 6980 CB SER B 460 -61.921 76.157 18.935 1.00 65.18 B C ATOM 6981 CB SER B 460 -62.562 75.943 17.565 1.00 65.18 B C ATOM 6982 CG SER B 460 -62.802 75.76 19.971 1.00 65.18 B C ATOM 6983 C SER B 460 -63.858 76.742 17.495 1.00 65.18 B C ATOM 6983 C SER B 460 -63.858 76.742 17.495 1.00 68.11 B C ATOM 6984 O SER B 460 -63.859 76.742 17.495 1.00 68.11 B C ATOM 6985 C LEU B 461 -66.470 76.312 18.245 1.00 70.83 B N ATOM 6985 C LEU B 461 -66.470 76.312 18.245 1.00 70.83 B N ATOM 6985 C LEU B 461 -66.143 77.030 18.254 1.00 73.35 B C ATOM 6989 C LEU B 461 -66.143 77.031 17.118 1.00 73.20 B C ATOM 6989 C LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6999 CD LEU B 461 -66.133 79.091 17.118 1.00 73.20 B C ATOM 6999 CD LEU B 461 -66.520 74.175 17.222 1.00 73.51 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.137 79.098 19.381 1.00 75.63 B N ATOM 6999 C NAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6999 C NAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6999 C NAL B 462 -65.727 77.449 23.034 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.377 79.942 21.899 1.00 78.64 B C ATOM 6999 C NAL B 462 -66.377 79.832 23.410 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.377 79.832 23.410 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.317 79.992 21.852 1.00 79.18 B C ATOM 6999 C NAL B 462 -66.317 79.992 21.852 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.317 79.993 22.152 1.00 79.18 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.410 1.00 75.00 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.975 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.975 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.999 77.909 24.803 21.00 15.00 B C ATOM 7000 C RASP B 463 -62 | MOTA   | 6975 | CE  | LYS   | В | 459   | -59.935 | 79.709  | 10.722  | 1.00 1 | 15.00 | В  | С  |
| ATOM 6977 C LYS B 459 -61.578 75.711 15.338 1.00 15.00 B C ATOM 6979 N SER B 459 -62.316 74.783 15.019 1.00 61.40 B B N ATOM 6979 N SER B 460 -61.621 76.323 16.512 1.00 64.04 B N ATOM 6980 CB SER B 460 -61.921 76.157 18.935 1.00 65.18 B C ATOM 6981 CB SER B 460 -62.562 75.943 17.565 1.00 65.18 B C ATOM 6982 CG SER B 460 -62.802 75.76 19.971 1.00 65.18 B C ATOM 6983 C SER B 460 -63.858 76.742 17.495 1.00 65.18 B C ATOM 6983 C SER B 460 -63.858 76.742 17.495 1.00 68.11 B C ATOM 6984 O SER B 460 -63.859 76.742 17.495 1.00 68.11 B C ATOM 6985 C LEU B 461 -66.470 76.312 18.245 1.00 70.83 B N ATOM 6985 C LEU B 461 -66.470 76.312 18.245 1.00 70.83 B N ATOM 6985 C LEU B 461 -66.143 77.030 18.254 1.00 73.35 B C ATOM 6989 C LEU B 461 -66.143 77.031 17.118 1.00 73.20 B C ATOM 6989 C LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6999 CD LEU B 461 -66.133 79.091 17.118 1.00 73.20 B C ATOM 6999 CD LEU B 461 -66.520 74.175 17.222 1.00 73.51 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.137 79.098 19.381 1.00 75.63 B N ATOM 6999 C NAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6999 C NAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6999 C NAL B 462 -65.727 77.449 23.034 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.377 79.942 21.899 1.00 78.64 B C ATOM 6999 C NAL B 462 -66.377 79.832 23.410 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.377 79.832 23.410 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.317 79.992 21.852 1.00 79.18 B C ATOM 6999 C NAL B 462 -66.317 79.992 21.852 1.00 79.03 B C ATOM 6999 C NAL B 462 -66.317 79.993 22.152 1.00 79.18 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.410 1.00 75.00 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.752 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.975 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.975 79.932 23.756 1.00 80.12 B C ATOM 7000 C RASP B 463 -62.999 77.909 24.803 21.00 15.00 B C ATOM 7000 C RASP B 463 -62 | ATOM   | 6976 | NZ  | LYS   | В | 459   | -60.626 | 80.626  | 9.773   | 1.00 1 | 15.00 | В  | N  |
| ATOM 6978 O LYS B 459 -62.316 74.783 15.019 1.00 61.44 B O ATOM 6980 CB SER B 460 -62.562 75.943 17.565 1.00 66.10 B C ATOM 6981 CB SER B 460 -62.562 75.943 17.565 1.00 66.10 B C ATOM 6981 CB SER B 460 -62.802 75.767 19.971 1.00 65.17 B C ATOM 6982 CG SER B 460 -62.802 75.767 19.971 1.00 65.17 B C ATOM 6982 CG SER B 460 -63.897 77.730 16.771 1.00 68.66 B C ATOM 6984 CB SER B 460 -63.897 77.730 16.771 1.00 68.66 B C ATOM 6988 CG LEU B 461 -66.870 76.312 18.245 1.00 70.33 B C ATOM 6987 CB LEU B 461 -66.143 77.030 18.254 1.00 70.33 B C ATOM 6987 CB LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6989 CD LEU B 461 -67.319 75.047 18.267 1.00 72.85 B C ATOM 6998 CD LEU B 461 -67.319 75.047 18.267 1.00 73.20 B C ATOM 6999 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6990 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6990 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.6129 77.944 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.6129 77.944 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.6129 77.94 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.6129 77.94 19.474 1.00 74.86 B C ATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 75.81 B C ATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C ATOM 6999 CD LEU B 461 -66.613 79.098 19.381 1.00 76.93 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 462 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 464 62 -65.723 77.8239 21.00 80.01 B C ATOM 6999 CD LEU B 464 62 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 464 62 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 464 62 -65.723 78.219 21.00 80.01 B C ATOM 6999 CD LEU B 464 62 -65.723 78.219 21.00 80.01 B C ATOM 69 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6999 CS SER B 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6981 CB SER B 460 -62.562 75.943 17.565 1.00 66.10 B C ATOM 6982 CG SER B 460 -62.802 75.767 18.935 1.00 65.17 B C ATOM 6982 CG SER B 460 -62.802 75.767 19.971 1.00 65.17 B C ATOM 6984 C SER B 460 -63.897 77.730 16.771 1.00 68.86 B C ATOM 6984 C SER B 460 -63.897 77.730 16.771 1.00 68.86 B C ATOM 6984 C SER B 460 -63.997 77.730 16.771 1.00 68.86 B C ATOM 6987 C SER B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6987 C SER B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6987 C SER B 461 -67.313 76.00 78.257 1.00 72.85 B C ATOM 6988 CG LEU B 461 -67.327 15.762 15.790 1.00 73.40 B C ATOM 6989 COL LEU B 461 -67.327 75.762 15.790 1.00 73.40 B C ATOM 6989 COL LEU B 461 -66.527 77.542 15.790 1.00 73.48 B C ATOM 6990 COL LEU B 461 -66.56.61 79.70 P 17.40 1.00 73.48 B C ATOM 6991 C LEU B 461 -66.56.61 79.70 P 17.40 1.00 73.48 B C ATOM 6991 C LEU B 461 -66.56.61 79.70 P 17.40 1.00 73.48 B C ATOM 6991 C VAL B 462 -65.747 77.431 20.616 1.00 76.31 B C ATOM 6991 C VAL B 462 -65.727 77.449 19.474 1.00 73.48 B C ATOM 6991 C VAL B 462 -65.527 76.24 32.3410 1.00 79.03 B C ATOM 6999 C C VAL B 462 -65.527 76.24 32.3410 1.00 79.03 B C ATOM 6999 C VAL B 462 -66.597 77.419 20.304 1.00 79.03 B C ATOM 6999 C VAL B 462 -66.531 78.352 24.222 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.31 79.90 22.152 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.31 79.80 22.152 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.31 79.90 22.152 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.31 79.90 22.152 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.31 79.90 22.152 1.00 79.18 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -62.752 79.332 23.410 1.00 75.00 B C ATOM 700 C C ASP B 463 -6 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6981 CB SER B 460 -61.921 76.157 18.935 1.00 65.18 B C ATOM 6982 CG SER B 460 -63.858 76.742 17.495 1.00 68.11 B C ATOM 6983 C SER B 460 -63.858 76.742 17.495 1.00 68.11 B C ATOM 6983 C SER B 460 -63.879 77.703 16.771 1.00 68.05 B D C ATOM 6983 CB LEU B 461 -66.143 77.00 18.254 1.00 73.25 B C ATOM 6985 CB LEU B 461 -66.143 77.00 18.254 1.00 73.25 B C ATOM 6987 CB LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6988 CG LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6989 CD LEU B 461 -67.327 75.762 1.701 1.7118 1.00 73.20 B C ATOM 6989 CD LEU B 461 -67.327 75.762 15.790 1.00 73.45 B C ATOM 6989 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6990 CD LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 76.31 B C ATOM 6991 C LEU B 461 -66.137 79.098 19.381 1.00 75.63 B C ATOM 6999 C D LEU B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6995 CB VAL B 462 -65.723 78.219 21.839 1.00 78.64 B C ATOM 6995 CB VAL B 462 -66.297 77.419 23.034 1.00 79.03 B C ATOM 6995 CC VAL B 462 -66.331 78.552 24.222 1.00 79.18 B C ATOM 6995 CD VAL B 462 -66.331 78.552 24.222 1.00 79.18 B C ATOM 6995 CD VAL B 462 -66.331 78.552 24.222 1.00 79.18 B C ATOM 7000 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B N ATOM 7000 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B N ATOM 7000 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.822 80.957 24.521 1.00 80.42 B C ATOM 7000 CB ASP B 463 -62.822 80.957 24.521 1.00 80.42 B C ATOM 7000 CB ASP B 463 -62.822 80.957 24.521 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.822 80.957 24.722 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.822 80.957 24.729 1.00 15.00 B C ATOM 7000 CB ASP B 463 -62.824 77.200 27.758 1.00 83.75 B C ATOM 7000 CB ASP B 463 -62.824 77.200 27.758 1.00 83.75 B C ATOM  |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6982 OG SER 8 460 -62.802 75.767 19.971 1.00 65.17 8 0 C ATOM 6984 O SER 8 460 -63.897 77.730 16.771 1.00 68.86 8 O ATOM 6986 CB LEU B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6987 CB LEU B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6987 CB LEU B 461 -66.143 77.030 18.254 1.00 73.31 B C ATOM 6987 CB LEU B 461 -67.367 35.031 17.118 1.00 73.20 B C ATOM 6989 CD LEU B 461 -67.367 35.031 17.118 1.00 73.20 B C ATOM 6990 CD LEU B 461 -66.143 77.030 18.254 1.00 73.40 B C ATOM 6990 CD LEU B 461 -66.272 75.762 15.790 1.00 73.48 B C ATOM 6990 CD LEU B 461 -66.272 77.344 19.474 1.00 73.48 B C ATOM 6991 CD LEU B 461 -66.272 77.344 19.474 1.00 73.48 B C ATOM 6991 CD LEU B 461 -66.137 39.098 19.381 1.00 78.81 B C ATOM 6991 CD LEU B 461 -66.137 39.098 19.381 1.00 78.81 B C ATOM 6995 CB VAL B 462 -65.723 78.129 21.897 1.00 78.31 B C ATOM 6996 CG VAL B 462 -65.723 78.129 21.897 1.00 78.31 B C ATOM 6997 CG VAL B 462 -66.592 77.419 23.034 1.00 78.31 B C ATOM 6999 C VAL B 462 -66.592 77.419 23.034 1.00 79.03 B C ATOM 6999 C VAL B 462 -66.592 77.419 23.034 1.00 79.03 B C ATOM 6999 C VAL B 462 -66.591 78.352 24.222 1.00 79.18 B C ATOM 6990 C VAL B 462 -66.394 78.061 21.556 1.00 80.12 B C ATOM 6990 C VAL B 462 -66.394 78.061 21.556 1.00 80.12 B C ATOM 7001 CB ASP 8 463 -62.757 79.932 23.400 1.00 15.00 B C ATOM 7002 CB ASP 8 463 -62.275 79.932 23.400 1.00 15.00 B C ATOM 7002 CB ASP 8 463 -62.952 78.614 1.00 15.00 B C ATOM 7002 CB ASP 8 463 -62.952 79.932 23.400 1.00 15.00 B C ATOM 7003 CG ASP 8 463 -63.938 82.505 24.149 1.00 15.00 B C ATOM 7004 CD ASP 8 463 -63.938 82.757 24.614 1.00 15.00 B C ATOM 7005 CD ASP 8 463 -63.938 82.757 24.614 1.00 15.00 B C ATOM 7007 CD ASP 8 463 -63.938 82.757 24.614 1.00 15.00 B C ATOM 7007 CD ASP 8 465 -63.937 81.00 10.00 15.00 B C ATOM 7007 CD ASP 8 465 -63.937 81.00 10.00 15.00 B C ATOM 7007 CD ASP 8 465 -63.937 81.00 10.00 15.00 B C ATOM 7007 CD ASP 8 465 -63.938 78.617 22.799 1.00 83.47 B C ATOM 7001 CB ASP 8 465 -63.937 78.747 23.27 1.00 83.47 B C ATOM 7002 CD ASP 8 466 -63.937 78.747 2 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM         6983         C         SER B         460         -63.947         77.30         16.773         10.00         68.66         B         C           ATOM         6895         N         LEU B         461         -64.870         76.312         18.245         1.00         70.83         B         N           ATOM         6896         CB         LEU B         461         -66.143         77.300         18.267         1.00         73.31         B         N           ATOM         6986         CB         LEU B         461         -67.319         76.047         11.00         73.205         B         C           ATOM         6990         COL LEU B         461         -67.327         75.762         15.790         1.00         73.511         B         C           ATOM         6993         N         VAL B         462         -66.192         77.744         19.474         1.00         73.51         B         C           ATOM         6993         N         VAL B         462         -66.192         77.419         23.034         1.00         79.03         B         C           ATOM         6995         CB VAL B         462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6984 O SER B 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM   |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6985 N LEU B 461 -66.137 77.030 18.254 1.00 70.83 B N ATOM 6986 CB LEU B 461 -67.319 76.047 18.267 1.00 73.31 B C ATOM 6987 CB LEU B 461 -67.319 76.047 18.267 1.00 73.31 B C ATOM 6989 CD1 LEU B 461 -67.319 76.047 18.267 1.00 73.51 B C ATOM 6989 CD1 LEU B 461 -68.267 74.175 17.222 1.00 73.51 B C ATOM 6990 CD2 LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6990 CD2 LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6990 CD2 LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6990 CD2 LEU B 461 -66.5192 77.944 19.474 1.00 75.81 B C ATOM 6990 CD2 LEU B 462 -65.727 77.944 19.474 1.00 75.81 B C ATOM 6990 CD2 LEU B 462 -65.747 77.412 20.161 1.00 75.81 B C ATOM 6990 CD2 LEU B 462 -65.747 77.412 20.161 1.00 75.81 B C ATOM 6990 CD2 LEU B 462 -65.747 77.411 20.161 1.00 76.93 B C C ATOM 6990 CD2 LEU B 462 -65.927 77.149 23.034 1.00 79.03 B C C ATOM 6990 CD2 LEU B 462 -66.591 77.149 23.034 1.00 79.03 B C C ATOM 6990 CD2 LEU B 462 -66.531 78.252 24.222 1.00 79.10 B C C ATOM 6990 CD2 LEU B 462 -66.531 78.252 24.222 1.00 79.10 B C C ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 6990 CD2 ATOM 699 | ATOM   | 6983 | С   | SER   | В | 460   | -63.858 | 76.742  | 17.495  | 1.00 6 | 58.11 | В  | С  |
| ATOM 6986 CB LEU B 461 -66.143 77.030 18.254 1.00 73.31 B C C ATOM 6987 CB LEU B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6989 CG LEU B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6990 CD1 LEU B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6991 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6991 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6992 O LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6992 O LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6993 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6995 CD LEU B 461 -66.192 77.944 19.474 1.00 76.31 B N ATOM 6995 CD LEU B 462 -65.723 78.219 21.893 1.00 76.81 B N ATOM 6995 CD LEU B 462 -66.297 77.419 23.034 1.00 79.03 B C ATOM 6996 CG1 VAL B 462 -66.297 77.419 23.034 1.00 79.03 B C ATOM 6996 CG1 VAL B 462 -66.531 78.535 24.222 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.297 79.45 29.2152 1.00 80.12 B C ATOM 6999 C VAL B 462 -66.317 86.252 24.222 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.314 78.051 21.556 1.00 80.84 B C ATOM 7002 CB ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7003 CG ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7003 CG ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7003 CG ASP B 463 -63.388 22.305 24.164 1.00 15.00 B C ATOM 7003 CG ASP B 463 -63.083 82.507 24.164 1.00 15.00 B C ATOM 7003 CG ASP B 463 -63.989 82.995 24.922 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.998 24.952 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.998 24.952 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.998 24.952 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.998 24.952 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.998 24.952 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.999 82.999 82.909 24.900 1.00 15.00 B C ATOM 7000 CD ASP B 464 -60.785 78.470 23.346 1.00 83.23 B C ATOM 7000 CD ASP B 465 -65.999 82.999 82.995 1.00 15.00 B C ATOM 7000 CD ASP B 465 -65.999 82.999 82.990 82.900 1.00 15.00 B C ATOM 7000 CD ASP B 466 -60.977 79.799 24.803 1.00 83.23 B C ATOM 7000 CD ASP B 466 -60.977 79.799 24.803 1.00 83 | ATOM   | 6984 | 0   | SER   | В | 460   | -63.947 | 77.730  | 16.771  | 1.00 6 | 58.86 | В  | 0  |
| ATOM 6987 CB LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6989 CD LEU B 461 -66.327 75.762 17.222 1.00 73.51 B C ATOM 6990 CD2 LEU B 461 -66.66.613 75.75 17.222 1.00 73.51 B C ATOM 6990 CD2 LEU B 461 -66.66.613 75.762 17.222 1.00 73.51 B C ATOM 6991 C LEU B 461 -66.66.613 79.098 19.381 1.00 73.61 B C ATOM 6992 O LEU B 461 -66.6192 77.944 19.474 1.00 74.866 B C ATOM 6992 O LEU B 462 -65.747 77.431 20.616 1.00 76.81 B O ATOM 6995 CB VAL B 462 -65.747 77.419 23.034 1.00 79.03 B C ATOM 6995 CB VAL B 462 -65.927 77.419 23.034 1.00 79.03 B C ATOM 6995 CB VAL B 462 -66.595 77.47 77.419 23.034 1.00 79.03 B C ATOM 6996 CG1 VAL B 462 -66.595 77.47 77.419 23.034 1.00 79.03 B C ATOM 6997 CG2 VAL B 462 -66.531 76.535 24.222 1.00 79.18 B C ATOM 6998 C VAL B 462 -66.531 76.535 24.222 1.00 79.18 B C ATOM 6998 C VAL B 462 -66.297 77.149 23.034 1.00 79.03 B C ATOM 6998 C VAL B 462 -66.297 79.543 23.069 1.00 15.00 B N ATOM 7000 N ASP B 463 -62.097 79.543 23.069 1.00 15.00 B N ATOM 7000 C B ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7000 C B ASP B 463 -62.822 80.957 24.199 1.00 15.00 B C ATOM 7002 CB ASP B 463 -63.038 82.105 24.199 1.00 15.00 B C ATOM 7003 CB ASP B 463 -63.938 82.055 24.199 1.00 15.00 B C ATOM 7004 ODI ASP B 463 -63.938 82.055 24.199 1.00 15.00 B C ATOM 7005 ODZ ASP B 463 -63.999 82.998 24.952 1.00 15.00 B C ATOM 7006 C ASP B 464 -65.947 78.182 23.930 1.00 15.00 B C ATOM 7006 C ASP B 464 -65.947 78.182 23.930 1.00 15.00 B C ATOM 7007 O ASP B 463 -62.940 77.999 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7012 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.800 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.800 1.00 15.00 | ATOM   | 6985 | N   | LEU   | В | 461   | -64.870 | 76.312  | 18.245  | 1.00 7 | 70.83 | В  | N  |
| ATOM 6987 CB LEU B 461 -67.319 76.047 18.267 1.00 72.85 B C ATOM 6989 CD LEU B 461 -66.327 75.762 17.222 1.00 73.51 B C ATOM 6990 CD2 LEU B 461 -66.66.613 75.75 17.222 1.00 73.51 B C ATOM 6990 CD2 LEU B 461 -66.66.613 75.762 17.222 1.00 73.51 B C ATOM 6991 C LEU B 461 -66.66.613 79.098 19.381 1.00 73.61 B C ATOM 6992 O LEU B 461 -66.6192 77.944 19.474 1.00 74.866 B C ATOM 6992 O LEU B 462 -65.747 77.431 20.616 1.00 76.81 B O ATOM 6995 CB VAL B 462 -65.747 77.419 23.034 1.00 79.03 B C ATOM 6995 CB VAL B 462 -65.927 77.419 23.034 1.00 79.03 B C ATOM 6995 CB VAL B 462 -66.595 77.47 77.419 23.034 1.00 79.03 B C ATOM 6996 CG1 VAL B 462 -66.595 77.47 77.419 23.034 1.00 79.03 B C ATOM 6997 CG2 VAL B 462 -66.531 76.535 24.222 1.00 79.18 B C ATOM 6998 C VAL B 462 -66.531 76.535 24.222 1.00 79.18 B C ATOM 6998 C VAL B 462 -66.297 77.149 23.034 1.00 79.03 B C ATOM 6998 C VAL B 462 -66.297 79.543 23.069 1.00 15.00 B N ATOM 7000 N ASP B 463 -62.097 79.543 23.069 1.00 15.00 B N ATOM 7000 C B ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7000 C B ASP B 463 -62.822 80.957 24.199 1.00 15.00 B C ATOM 7002 CB ASP B 463 -63.038 82.105 24.199 1.00 15.00 B C ATOM 7003 CB ASP B 463 -63.938 82.055 24.199 1.00 15.00 B C ATOM 7004 ODI ASP B 463 -63.938 82.055 24.199 1.00 15.00 B C ATOM 7005 ODZ ASP B 463 -63.999 82.998 24.952 1.00 15.00 B C ATOM 7006 C ASP B 464 -65.947 78.182 23.930 1.00 15.00 B C ATOM 7006 C ASP B 464 -65.947 78.182 23.930 1.00 15.00 B C ATOM 7007 O ASP B 463 -62.940 77.999 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7007 O ASP B 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7012 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.803 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.800 1.00 15.00 B C ATOM 7010 CB PROB 464 -59.989 77.399 24.800 1.00 15.00 | MOTA   | 6986 | СВ  | LEU   | В | 461   | -66.143 | 77.030  | 18.254  | 1.00 7 | 73.31 | В  | С  |
| ATOM 6988 CG LEU B 461 -67.363 75.031 17.118 1.00 73.20 B C ATOM 6990 CD1 LEU B 461 -67.327 75.762 15.790 1.00 73.51 B C ATOM 6991 CD1 LEU B 461 -67.327 75.762 15.790 1.00 73.48 B C ATOM 6991 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6992 C LEU B 461 -66.613 79.098 19.381 1.00 75.81 B C ATOM 6993 N VAL B 462 -65.7327 77.431 20.616 1.00 76.31 B N ATOM 6995 CB VAL B 462 -65.723 78.219 21.399 1.00 78.64 B C ATOM 6995 CB VAL B 462 -66.297 77.419 23.034 1.00 79.03 B C ATOM 6995 CG VAL B 462 -66.5152 76.283 23.40 1.00 79.03 B C ATOM 6995 CG VAL B 462 -66.5152 76.283 23.40 1.00 79.03 B C ATOM 6999 C VAL B 462 -66.5152 76.283 23.40 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.315 76.283 23.40 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.316 78.352 24.222 1.00 79.18 B C ATOM 6999 C VAL B 462 -66.373 78.352 24.222 1.00 79.18 B C ATOM 7000 C B ASP B 463 -64.097 79.543 23.069 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 79.932 23.400 1.00 15.00 B C ATOM 7002 CB ASP B 463 -62.822 80.957 24.614 1.00 15.00 B C ATOM 7003 CC ASP B 463 -63.038 82:671 22.984 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.083 82:671 22.984 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.998 82:999 24.803 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.998 82:999 24.803 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.998 82:671 22.984 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.998 82:871 22.984 1.00 15.00 B C ATOM 7000 CD ASP B 463 -65.998 79.730 23.756 1.00 82.04 B C ATOM 7000 CD ASP B 463 -65.998 79.730 23.756 1.00 82.04 B C ATOM 7001 CB PRO B 464 -60.147 79.159 22.111 1.00 82.04 B C ATOM 7001 CB PRO B 464 -60.147 79.159 22.211 1.00 82.04 B C ATOM 7001 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PRO B 464 -59.986 71.391 22.111 1.00 82.04 B C ATOM 701 CB PR |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6989 CD1 LEU B 461 -66.267 74.175 17.222 1.00 73.48 B C ATOM 6991 CD LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6992 C LEU B 461 -66.613 79.098 19.381 1.00 75.81 B C ATOM 6993 N VAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6994 CB VAL B 462 -65.723 78.219 21.839 1.00 78.64 B C ATOM 6995 CB VAL B 462 -66.297 77.419 23.034 1.00 76.93 B C ATOM 6996 CG1 VAL B 462 -66.297 77.419 23.034 1.00 76.93 B C ATOM 6997 CG2 VAL B 462 -66.391 78.082 23.410 1.00 76.93 B C ATOM 6997 CG2 VAL B 462 -66.531 78.082 23.410 1.00 76.93 B C ATOM 6998 C VAL B 462 -66.531 79.806 22.152 1.00 80.12 B C ATOM 6998 C VAL B 462 -66.314 78.061 21.556 1.00 80.12 B C ATOM 6998 C VAL B 462 -66.314 78.061 21.556 1.00 80.12 B C ATOM 7001 CB ASP B 463 -64.097 79.543 23.069 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 80.957 244.614 1.00 15.00 B C ATOM 7002 CB ASP B 463 -63.038 82.305 244.614 1.00 15.00 B C ATOM 7003 CB ASP B 463 -63.939 82.305 244.614 1.00 15.00 B C ATOM 7003 CB ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7005 CD ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7005 CD ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7005 CD ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7005 CD ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7005 CD ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7001 C C ASP B 463 -63.938 82.935 24.199 1.00 81.00 80.00 C ATOM 7000 C C ASP B 463 -63.939 82.998 24.952 1.00 15.00 B C ATOM 7001 C C PRO B 464 -59.712 76.737 27.739 22.756 1.00 82.04 B C ATOM 7010 C C PRO B 464 -59.980 77.399 22.811 1.00 82.04 B C ATOM 7010 C C PRO B 464 -59.980 77.591 22.211 1.00 82.04 B C ATOM 7011 C C PRO B 464 -59.980 77.591 22.756 1.00 82.05 B C ATOM 7011 C C PRO B 464 -59.980 77.591 27.791 1.00 81.60 B C ATOM 7010 C C PRO B 464 -59.980 77.591 27.791 1.00 81.60 B C ATOM 7010 C C PRO B 464 -59.980 77.591 27.791 1.00 81.60 B C ATOM 7010 C C PRO B 464 -59.980 77.591 27.791 1.00 81.60 B C ATOM 7010 C C PRO B 464 -59.860 77.591 27.7 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM         6990         CD2         LEU B         4611         -66.192         77.944         19.474         1.00         73.48         B         C           ATOM         6992         C         LEU B         461         -66.192         77.944         19.474         1.00         75.811         B         C           ATOM         6992         C         LEU B         461         -66.193         79.998         13.381         1.00         75.811         B         C           ATOM         6995         CB         VAL B         462         -65.727         77.419         23.034         1.00         79.03         B         C           ATOM         6995         CG         VAL B         462         -66.5352         76.223         23.140         1.00         79.03         B         C           ATOM         6999         C         VAL B         462         -63.318         78.051         21.555         1.00         80.12         B         C           ATOM         7001         CB         ASP B         463         -62.752         79.932         23.480         1.00         15.00         B         C           ATOM         7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6991 C LEU B 461 -66.192 77.944 19.474 1.00 74.86 B C ATOM 6992 O LEU B 461 -66.613 79.098 19.381 1.00 76.31 B N ATOM 6993 N VAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6994 CB VAL B 462 -65.747 77.431 20.616 1.00 76.31 B N ATOM 6995 CB VAL B 462 -66.297 77.419 23.034 1.00 78.64 B C ATOM 6995 CG VAL B 462 -66.297 77.419 23.034 1.00 79.03 B C ATOM 6996 CGI VAL B 462 -65.352 76.283 23.410 1.00 76.93 B C ATOM 6997 CG2 VAL B 462 -66.531 78.592 221.100 79.18 B C ATOM 6998 C VAL B 462 -66.531 78.592 221.52 1.00 80.12 B C ATOM 6999 C VAL B 462 -66.3149 78.061 21.556 1.00 80.12 B C ATOM 6999 C VAL B 462 -66.3149 78.061 21.556 1.00 80.12 B C ATOM 6999 C VAL B 462 -66.3149 78.061 21.556 1.00 80.12 B C ATOM 7001 N ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7001 CB ASP B 463 -63.338 82.305 24.149 1.00 15.00 B C ATOM 7000 CD ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7004 ODI ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7004 ODI ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.799 24.952 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.799 24.952 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.799 24.952 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.149 1.00 15.00 B C ATOM 7007 O ASP B 463 -63.938 82.305 24.199 24.803 1.00 82.23 B C ATOM 7007 O ASP B 464 -59.989 77.309 24.803 1.00 82.19 B C ATOM 7007 O ASP B 465 -65.95 71.70 71.95 22.11 1.00 82.04 B C ATOM 7007 O ASP B 465 -59.837 71.70 71.95 22.11 1.00 82.04 B C ATOM 7011 CB RNO 8 464 -59.980 77.309 23.756 1.00 82.09 B C ATOM 7012 CB RNO 8 464 -59.980 77.309 23.756 1.00 82.09 B C ATOM 7014 O RNO 8 464 -59.980 77.309 23.756 1.00 82.09 B C ATOM 7014 O |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6992 N VAL B 462 -65.723 78.219 21.839 1.00 75.81 B C ATOM 6995 C VAL B 462 -65.747 77.431 20.616 1.00 76.31 B C ATOM 6995 C VAL B 462 -65.723 78.219 21.839 1.00 78.64 B C ATOM 6995 C C VAL B 462 -65.325 76.283 23.410 1.00 76.93 B C C ATOM 6995 C C VAL B 462 -66.531 78.352 24.222 1.00 79.18 B C C ATOM 6997 C C VAL B 462 -66.531 78.352 24.222 1.00 79.18 B C C ATOM 6999 C VAL B 462 -66.276 77.419 23.034 1.00 79.03 B C C ATOM 6999 C VAL B 462 -66.276 78.599 22.152 1.00 80.12 B C ATOM 6999 C VAL B 462 -63.349 78.0616 21.556 1.00 80.12 B C ATOM 6999 C VAL B 462 -63.349 78.0616 21.556 1.00 80.12 B C ATOM 6999 C VAL B 462 -63.349 78.0616 21.556 1.00 80.12 B C ATOM 7000 N ASP B 463 -64.027 79.5432 23.069 1.00 15.00 B C ATOM 7001 CB ASP B 463 -62.752 79.932 23.480 1.00 15.00 B C ATOM 7003 CG ASP B 463 -63.383 82.305 24.149 1.00 15.00 B C ATOM 7003 CG ASP B 463 -63.383 82.305 24.149 1.00 15.00 B C ATOM 7005 CO ASP B 463 -63.983 82.305 24.149 1.00 15.00 B C ATOM 7005 CO ASP B 463 -63.983 82.305 24.149 1.00 15.00 B C ATOM 7005 CO ASP B 463 -63.983 82.998 24.952 1.00 15.00 B C ATOM 7007 CO ASP B 463 -62.407 77.991 24.952 1.00 15.00 B C ATOM 7007 CO ASP B 463 -62.407 77.991 24.803 1.00 15.00 B C ATOM 7007 CO ASP B 464 -60.147 79.9159 22.211 1.00 82.04 B C ATOM 7007 CO ASP B 464 -50.078 78.470 23.346 1.00 82.23 B C ATOM 7001 CB PRO B 464 -50.087 78.470 23.346 1.00 82.23 B C ATOM 7001 CB PRO B 464 -59.989 77.309 23.756 1.00 82.04 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.04 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7011 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7012 CG PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.986 77.391 25.275 1.00 82.02 B C ATOM 7010 CB PRO B 464 -59.986 77.391 25.891 1.00 82.02 B C |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6999 N VAL B 462 -65.747 77.431 20.616 1.00 76.31 B N CATOM 6994 CB VAL B 462 -65.723 78.219 21.839 1.00 78.64 B C CATOM 6995 CB VAL B 462 -65.523 76.283 23.410 1.00 79.03 B C CATOM 6995 CCI VAL B 462 -65.352 76.283 23.410 1.00 79.18 B C CATOM 6997 CCI VAL B 462 -66.5317 78.352 24.222 1.00 79.18 B C CATOM 6999 CV VAL B 462 -66.5317 78.352 24.222 1.00 80.12 B C CATOM 6999 O VAL B 462 -63.349 78.0612 21.556 1.00 80.84 B C CATOM 6999 O VAL B 462 -63.349 78.0612 21.556 1.00 80.84 B C CATOM 7001 CB ASP B 463 -64.097 79.543 23.099 1.00 15.00 B C CATOM 7001 CB ASP B 463 -62.752 79.9322 23.480 1.00 15.00 B C CATOM 7002 CB ASP B 463 -62.822 80.957 24.614 1.00 15.00 B C CATOM 7002 CB ASP B 463 -63.388 82.305 24.149 1.00 15.00 B C CATOM 7002 CD ASP B 463 -63.083 82.305 24.149 1.00 15.00 B C CATOM 7005 CD ASP B 463 -63.999 82.999 24.952 1.00 15.00 B C CATOM 7005 CD ASP B 463 -63.999 82.999 24.952 1.00 15.00 B C CATOM 7006 C ASP B 463 -63.999 82.999 24.952 1.00 15.00 B C CATOM 7007 CD ASP B 463 -65.997 78.718 23.930 1.00 15.00 B C CATOM 7008 C ASP B 463 -65.999 82.999 24.952 1.00 15.00 B C CATOM 7009 CD ASP B 464 -60.785 78.470 23.346 1.00 82.35 B C CATOM 7009 CD PRO B 464 -60.785 78.470 23.346 1.00 82.35 B C CATOM 7009 CD PRO B 464 -59.909 77.309 23.756 1.00 82.02 B C CATOM 7010 CB PRO B 464 -59.865 77.552 23.0061 1.00 82.04 B C CATOM 7011 CB PRO B 464 -59.865 77.552 23.061 1.00 82.04 B C CATOM 7011 CB PRO B 464 -59.860 77.291 22.211 1.00 82.04 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.211 1.00 82.04 B C CATOM 7010 CB PRO B 464 -59.860 77.291 22.711 1.00 81.65 B C CATOM 7011 CB PRO B 464 -59.860 77.291 22.715 1.00 82.02 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.715 1.00 81.65 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.715 1.00 81.65 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.715 1.00 81.65 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.715 1.00 81.65 B C CATOM 7012 CB PRO B 464 -59.860 77.291 22.715 1.00 81.60 B C CATOM 7012 CB PRO B 464 -59.860 77.291 23.750 1.00 81.65 B C CATOM 7012 CB PRO B 464 -59.860 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 6995 CB VAL B 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM   | 6992 | 0   |       |   |       | -66.613 | 79.098  | 19.381  |        |       | В  | 0  |
| ATOM   6995   CB   VAL B   462   -66.297   77.419   23.034   1.00   79.03   B   C   C   ATOM   6995   CG   VAL B   462   -66.531   78.352   24.222   1.00   79.18   B   C   C   ATOM   6999   C   VAL B   462   -64.276   78.599   22.152   1.00   80.12   B   C   C   ATOM   6999   C   VAL B   462   -64.276   78.599   22.152   1.00   80.12   B   C   C   ATOM   6999   C   VAL B   462   -63.349   78.0619   21.556   1.00   80.84   B   C   ATOM   7001   CB   ASP B   463   -64.097   79.543   23.069   1.00   15.00   B   N   ATOM   7002   CB   ASP B   463   -62.752   79.932   23.480   1.00   15.00   B   C   ATOM   7002   CB   ASP B   463   -62.822   80.957   24.614   1.00   15.00   B   C   ATOM   7004   OT   ASP B   463   -63.083   82.671   22.994   1.00   15.00   B   C   ATOM   7005   OT   ASP B   463   -63.993   82.671   22.994   1.00   15.00   B   C   ATOM   7007   O   ASP B   463   -63.993   82.671   22.994   1.00   15.00   B   C   ATOM   7007   O   ASP B   463   -63.993   82.999   24.952   1.00   15.00   B   C   ATOM   7007   O   ASP B   463   -62.440   77.999   24.803   1.00   83.23   B   O   ATOM   7007   O   ASP B   463   -62.440   77.999   24.803   1.00   83.23   B   O   ATOM   7009   CD   PRO B   464   -60.785   78.470   23.346   1.00   82.25   B   C   ATOM   7009   CD   PRO B   464   -59.865   77.552   23.061   1.00   82.25   B   C   ATOM   7010   CB   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7011   CB   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7012   CG   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7012   CG   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7013   C   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7014   C   PRO B   464   -59.989   77.309   23.756   1.00   82.20   B   C   ATOM   7015   C   E   E   E   E   E   E   E   E   E                                                                                                                                            | ATOM   | 6993 | N   | VAL   | В | 462   | -65.747 | 77.431  | 20.616  | 1.00 7 | 76.31 | В  | N  |
| ATOM 6997 CG2 VAL B 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM   | 6994 | CB  | VAL   | В | 462   | -65.723 | 78.219  | 21.839  | 1.00 7 | 78.64 | В  | С  |
| ATOM 6997 CG2 VAL B 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM   | 6995 | CB  | VAL   | В | 462   | -66,297 | 77.419  | 23.034  | 1.00 7 | 79.03 | В  | С  |
| ATOM         6997         CG2         VAL         B         462         -66.531         78.352         24:222         1.00         79.18         B         C           ATOM         6999         C         VAL         B         62         -64.276         78.599         22:152         1.00         80.12         B         C           ATOM         7001         CB         ASP         B         463         -64.097         79.932         23:069         1.00         15.00         B         N           ATOM         7001         CB         ASP         B         463         -62.822         80.957         24;614         1.00         15.00         B         C           ATOM         7004         ODI         ASP         B         463         -63.338         82.305         24;194         -100         15.00         B         C           ATOM         7007         O         ASP         B         463         -63.093         82.998         24:952         1.00         15.00         B         C           ATOM         7007         O         ASP         B         463         -62.440         77.989         24:103         1.00         81.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM   6998   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM         6999 O         VAL B 462         -63,349 78,0613 21,556 1.00 80.84 B O         B O           ATOM         7001 CB ASP B 463 -62,752 79,932 23,480 1.00 15.00 B C         B N           ATOM         7001 CB ASP B 463 -62,752 79,932 23,480 1.00 15.00 B C         C           ATOM         7003 CG ASP B 463 -62,752 79,932 23,480 1.00 15.00 B C         C           ATOM         7004 OD1 ASP B 463 -63,383 82,305 24,149 -1.00 15.00 B C         C           ATOM         7005 CC ASP B 463 -63,083 82,671 22,984 1.00 15.00 B C         C           ATOM         7006 C ASP B 463 -61,947 78,718 23,930 1.00 15.00 B C         C           ATOM         7007 O ASP B 463 -61,947 78,718 23,930 1.00 15.00 B C         C           ATOM         7007 O C ASP B 463 -61,947 78,718 23,930 1.00 15.00 B C         C           ATOM         7008 N POR B 464 -60,785 78,470 23,346 1.00 82,32 B O         N           ATOM         7010 CB PRO B 464 -50,785 78,470 23,346 1.00 82,02 B C         B C           ATOM         7011 CB PRO B 464 -59,860 77,551 23,051 1.00 82,02 B C         C           ATOM         7012 CG PRO B 464 -59,860 77,551 23,051 1.00 81,26 B C         C           ATOM         7012 C PRO B 464 -59,860 77,551 23,051 1.00 81,26 B C         C           ATOM         7012 C PRO B 464 -59,860 77,552 23,051 1.00 81,20 B C         C         C <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM         7000         N         ASP B         463         -64.097         79.543         23.069         1.00         15.00         B         N           ATOM         7001         CB         ASP B         463         -62.752         79.932         23.480         1.00         15.00         B         C           ATOM         7003         CG         ASP B         463         -62.822         80.957         24.614         1.00         15.00         B         C           ATOM         7004         ODI         ASP B         463         -63.338         82.671         22.984         1.00         15.00         B         C           ATOM         7006         C         ASP B         463         -63.999         82.998         24.952         1.00         15.00         B         C           ATOM         7006         C         ASP B         463         -60.147         78.718         23.930         1.00         15.00         B         C           ATOM         7010         C         PRO B         464         -50.785         78.470         23.346         1.00         82.23         B         N           ATOM         7011         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7001 CB ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7002 CB ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      | N   | _     |   |       |         |         |         |        |       |    |    |
| ATOM 7003 CG ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM   | 7001 | CB  | ASP   | В | 463   | -62.752 | 79.932  | 23.480  | 1.00 1 | 15.00 | В  | C  |
| ATOM 7004 OD1 ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM   | 7002 | CB  | ASP   | В | 463   | -62.822 | 80.957  | 24;.614 | 1.00 1 | 15.00 | В  | .C |
| ATOM 7004 OD1 ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM   | 7003 | CG  | ASP   | В | 463   | -63.338 | 82.305. | 24.149  | -1.001 | 15.00 | 8  | С  |
| ATOM 7005 OD2 ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |      |     | ASP   | B | 463   |         |         |         |        |       | В  | 0  |
| ATOM 7006 C ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7007 O ASP B 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7008 N PRO B 464 -60.785 78.470 23.346 1.00 82.35 B N ATOM 7009 CD PRO B 464 -50.147 79.159 22.211 1.00 82.04 B C ATOM 7010 CB PRO B 464 -59.989 77.309 23.756 1.00 82.19 B C ATOM 7011 CB PRO B 464 -59.656 77.552 23.061 1.00 81.60 B C ATOM 7012 CG PRO B 464 -59.656 77.552 23.061 1.00 81.60 B C ATOM 7013 C PRO B 464 -59.088 78.157 21.771 1.00 81.26 B C ATOM 7014 O PRO B 464 -59.712 76.237 25.891 1.00 82.02 B C ATOM 7015 N LYS B 465 -59.921 78.479 25.864 1.00 82.36 B N ATOM 7016 CB LYS B 465 -59.921 78.479 25.864 1.00 82.36 B N ATOM 7016 CB LYS B 465 -59.921 78.479 25.864 1.00 82.36 B N ATOM 7017 CB LYS B 465 -59.838 78.631 27.307 1.00 83.12 B C ATOM 7017 CB LYS B 465 -55.8923 81.045 27.544 1.00 85.05 B C ATOM 7019 CD LYS B 465 -55.8923 81.045 27.544 1.00 85.05 B C ATOM 7019 CD LYS B 465 -55.813 81.732 28.739 1.00 87.52 B C ATOM 7021 NZ LYS B 465 -55.6813 81.732 28.739 1.00 87.52 B C ATOM 7021 NZ LYS B 465 -55.6813 81.732 28.739 1.00 87.52 B C ATOM 7022 C LYS B 465 -60.854 77.728 29.674 1.00 88.59 B N ATOM 7022 C LYS B 465 -60.854 77.728 29.675 1.00 82.97 B C ATOM 7022 C LYS B 465 -60.854 77.300 27.252 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B C ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.300 27.252 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.842 79.517 28.276 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.991 74.957 26.286 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.991 74.957 26.286 1.00 79.45 B N ATOM 7031 C ASN B 466 -63.991 74.957 26.286 1.00 79.45 B N ATOM 7032 C LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 C LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7034 C B LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7034 C B LEU B 467 -62.210 74.182 27.406 1.00 79.45 B C ATOM 7034 C B LEU B 467 -62.210 74.182 27.406 1.00 79.45 B C ATOM 7034 C B LEU B 467 -60.896 71.996 28.545 1.00 79.45 B C ATOM 7034 C B LEU B 467 -60.896 71.996 28.545 1.00 79.49 B C ATOM 7038  |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7009 CD PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7010 CB PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7011 CB PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7012 CG PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM   | 7010 | CB  | PRO   | В | 464   | -59.989 | 77.309  | 23.756  | 1.00 8 | 32.19 | В  |    |
| ATOM 7013 C PRO B 464 -59.860 77.291 25.275 1.00 82.02 B C ATOM 7014 O PRO B 464 -59.712 76.237 25.891 1.00 81.65 B O ATOM 7015 N LYS B 465 -59.921 78.479 25.864 1.00 82.36 B N ATOM 7016 CB LYS B 465 -59.838 78.631 27.307 1.00 83.12 B C ATOM 7017 CB LYS B 465 -59.838 78.631 27.307 1.00 84.14 B C ATOM 7018 CG LYS B 465 -58.923 81.045 27.544 1.00 85.05 B C ATOM 7019 CD LYS B 465 -57.727 80.576 28.371 1.00 86.12 B C ATOM 7020 CE LYS B 465 -55.813 81.732 28.739 1.00 87.52 B C ATOM 7021 NZ LYS B 465 -56.813 81.732 28.739 1.00 87.52 B C ATOM 7022 C LYS B 465 -56.813 81.732 28.739 1.00 88.59 B N ATOM 7022 C LYS B 465 -60.854 77.728 27.998 1.00 82.97 B C ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -61.886 77.300 27.252 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.300 27.252 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.300 27.252 1.00 15.00 B C ATOM 7029 ND2 ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7035 CG LEU B 467 -62.210 74.182 27.406 1.00 79.45 B C ATOM 7036 CD LEU B 467 -62.210 77.3603 23.207 1.00 72.28 B C ATOM 7036 CD LEU B 467 -62.210 77.3603 23.207 1.00 72.28 B C ATOM 7036 CD LEU B 467 -62.210 77.3603 23.207 1.00 78.56 B C ATOM 7036 CD LEU B 467 -62.210 77.92 52.551 1.00 79.45 B C ATOM 7030 CD ATTOM 7040 CXT LEU B 467 -62.421 70.625 27.620 1.00 70.70 70.85 B C ATOM 7040 CXT LEU B 467 -62.422 70.650 71.996 28.545 1.00 79.49 B O ATOM 7040 CXT LEU B 467 -62.428 65.967 32.762 1 | ATOM   | 7011 | CB  | PRO   | В | 464   | -58.656 | 77.552  | 23.061  | 1.00 8 | 31.60 | В  | Ç  |
| ATOM 7013 C PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM   | 7012 | CG  | PRO   | В | 464   | -59.088 | 78.157  | 21.771  | 1.00 8 | 31.26 | В  | С  |
| ATOM 7014 O PRO B 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7015 N LYS B 465 -59.921 78.479 25.864 1.00 82.36 B N ATOM 7016 CB LYS B 465 -59.838 78.631 27.307 1.00 83.12 B C ATOM 7017 CB LYS B 465 -60.107 80.089 27.708 1.00 84.14 B C ATOM 7018 CG LYS B 465 -58.923 81.045 27.544 1.00 85.05 B C ATOM 7019 CD LYS B 465 -55.7727 80.576 28.371 1.00 86.12 B C ATOM 7020 CE LYS B 465 -56.813 81.732 28.739 1.00 87.52 B C ATOM 7021 NZ LYS B 465 -57.485 82.688 29.674 1.00 85.95 B N ATOM 7022 C LYS B 465 -57.485 82.688 29.674 1.00 82.97 B N ATOM 7023 O LYS B 465 -60.854 77.728 27.998 1.00 82.97 B C ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.300 27.252 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -64.864 78.379 28.734 1.00 15.00 B C ATOM 7029 ND2 ASN B 466 -64.864 78.379 28.734 1.00 15.00 B C ATOM 7030 C ASN B 466 -64.864 78.379 28.734 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 28.276 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 28.276 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7033 CB LEU B 467 -62.210 74.162 27.406 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.210 74.162 27.406 1.00 79.45 B N ATOM 7035 CG LEU B 467 -62.210 74.162 27.406 1.00 79.45 B N ATOM 7036 CD LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7037 CD2 LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7036 CD LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7037 CD2 LEU B 467 -61.365 72.863 25.531 1.00 72.42 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 79.45 B C ATOM 7037 CD2 LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 OXT LEU B 467 -60.242 70.625 27.620 1.00 77.72 B C ATOM 7040 OXT LEU B 467 -60.242 70.625 27.620 1.00 77.72 B C ATOM 7040 OXT LEU B 467 -60.242 70.625 27.620 1.00 70.86 B C ATOM 7040 OXT LEU B 467 -60.242 70.625 27.620 1.00 70.86 B C ATO |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7016 CB LYS B 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7017 CB LYS B 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7018 CG LYS B 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7019 CD LYS B 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7020 CE LYS B 465 -56.813 81.732 28.739 1.00 87.52 B C ATOM 7021 NZ LYS B 465 -57.485 82.688 29.674 1.00 88.59 B N ATOM 7022 C LYS B 465 -60.854 77.728 27.998 1.00 82.97 B C ATOM 7023 O LYS B 465 -60.696 77.397 29.175 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.966 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -61.876 73.555 24.265 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.876 73.555 24.265 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -62.242 70.625 27.620 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -62.242 66.742 31.537 1.00 70.95 B C ATOM 7040 OXT LEU B 467 -62.243 66.742 31.537 1.00 70.95 B C ATOM 7040 OXT LEU B 467 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                   |        |      | CG  | LYS   |   |       |         | 81.045  | 27.544  |        |       |    |    |
| ATOM 7021 NZ LYS B 465 -57.485 82.688 29.674 1.00 88.59 B N ATOM 7022 C LYS B 465 -60.854 77.728 27.998 1.00 82.97 B C ATOM 7023 O LYS B 465 -60.696 77.397 29.175 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.390 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7029 ND2 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 15.00 B C ATOM 7031 C ASN B 466 -63.991 74.957 26.286 1.00 15.00 B C ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7035 CG LEU B 467 -61.365 72.863 25.531 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -61.859 71.746 27.719 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -61.859 71.746 27.719 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -62.241 70.625 27.620 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -62.242 66.742 31.537 1.00 70.95 B C ATOM 7040 OXT LEU B 467 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATOM   | 7019 | CD  | LYS   | В | 465   | -57.727 | 80.576  | 28.371  | 1.00 8 | 36.12 | В  |    |
| ATOM 7022 C LYS B 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM   | 7020 | CE  | LYS   | В | 465   | -56.813 | 81.732  | 28.739  | 1.00 8 | 37.52 | В  | С  |
| ATOM 7022 C LYS B 465 -60.854 77.728 27.998 1.00 82.97 B C ATOM 7023 O LYS B 465 -60.696 77.397 29.175 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.390 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.390 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7028 0D1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B C ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B C ATOM 7030 C ASN B 466 -63.975 78.246 29.894 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.966 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7035 CG LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -60.797 73.603 23.207 1.00 72.42 B C ATOM 7038 C LEU B 467 -60.797 73.603 23.207 1.00 72.42 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B C ATOM 7040 CNT LEU B 467 -60.242 66.742 31.537 1.00 70.95 B C ATOM 7042 CG1 THR B 470 -62.248 65.967 32.726 1.00 70.95 B C                                                                                                                                                                                                                                                  | MOTA   | 7021 | NZ  | LYS   | В | 465   | -57.485 | 82.688  | 29.674  | 1.00 8 | 38.59 | В  | N  |
| ATOM 7023 O LYS B 465 -60.696 77.397 29.175 1.00 83.47 B O ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7029 ND2 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.566 B C ATOM 7037 CD2 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7038 C LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 78.56 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.242 66.742 31.537 1.00 70.95 B C ATOM 7041 CB THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATOM   | 7022 | С   | LYS   | В | 465   | -60.854 | 77.728  | 27.998  | 1.00 8 | 32.97 | В  | С  |
| ATOM 7024 N ASN B 466 -61.886 77.300 27.252 1.00 15.00 B N ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.965 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 81.63 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 78.10 B C ATOM 7035 CG LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 CR THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7040 CR THR B 470 -62.248 65.967 32.726 1.00 70.95 B C ATOM 7042 CG1 THR B 470 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |     |       |   |       |         | 77.397  |         |        |       | В  | 0  |
| ATOM 7025 CB ASN B 466 -62.952 76.484 27.820 1.00 15.00 B C ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.272 72.871 26.768 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.856 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 CXT LEU B 467 -62.241 70.625 27.620 1.00 77.72 B O ATOM 7040 CXT LEU B 467 -62.242 66.742 31.537 1.00 70.95 B C ATOM 7041 CB THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |       |   |       |         |         |         |        |       | В  |    |
| ATOM 7026 CB ASN B 466 -64.286 77.230 27.750 1.00 15.00 B C ATOM 7027 CG ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7034 CB LEU B 467 -62.272 72.871 26.768 1.00 79.45 B N ATOM 7035 CG LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 CNT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.424 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |     |       |   |       | -       |         |         |        |       |    |    |
| ATOM 7027 CG ASN B 466 -64.364 78.379 28.734 1.00 15.00 B C ATOM 7028 0D1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.422 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7028 OD1 ASN B 466 -63.975 78.246 29.894 1.00 15.00 B O ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 25.531 1.00 76.11 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 73.56 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7038 C LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -60.956 71.996 28.545 1.00 77.72 B O ATOM 7040 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 CG1 THR B 470 -62.248 65.967 32.726 1.00 70.966 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7029 ND2 ASN B 466 -64.872 79.517 28.276 1.00 15.00 B N ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7030 C ASN B 466 -63.066 75.149 27.091 1.00 15.00 B C ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 72.42 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 CXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7040 CXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATOM · | 7028 | 001 | ASN   | В | 466   | -63.975 | 78.246  |         |        |       |    |    |
| ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 CXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.421 70.625 27.620 1.00 77.72 B C ATOM 7042 CG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM   | 7029 | ND2 | ASN   | В | 466   | -64.872 | 79.517  | 28.276  | 1.00 1 | 15.00 | В  | N  |
| ATOM 7031 O ASN B 466 -63.991 74.957 26.286 1.00 81.63 B O ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 CXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.421 70.625 27.620 1.00 77.72 B C ATOM 7042 CG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM   | 7030 | С   | ASN   | В | 466   | -63.066 | 75.149  | 27.091  | 1.00 1 | 15.00 | В  | С  |
| ATOM 7032 N LEU B 467 -62.210 74.182 27.406 1.00 79.45 B N ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.421 70.625 27.620 1.00 77.72 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       | В  |    |
| ATOM 7033 CB LEU B 467 -62.272 72.871 26.768 1.00 78.10 B C ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7034 CB LEU B 467 -61.365 72.863 25.531 1.00 76.11 B C ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.566 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7035 CG LEU B 467 -61.876 73.555 24.265 1.00 73.56 B C ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7036 CD1 LEU B 467 -60.797 73.603 23.207 1.00 72.28 B C ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.421 70.625 27.620 1.00 77.75 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.866 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7037 CD2 LEU B 467 -63.077 72.805 23.745 1.00 72.42 B C ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.421 70.625 27.620 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATOM   |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7038 C LEU B 467 -61.859 71.746 27.719 1.00 78.56 B C ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOTA   | 7037 | CD2 | LEU   | В | 467   | -63.077 | 72.805  | 23.745  |        |       | В  |    |
| ATOM 7039 O LEU B 467 -60.956 71.996 28.545 1.00 79.49 B O ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 7038 | С   | LEU   | В | 467   | -61.859 | 71.746  | 27.719  | 1.00 7 | 18.56 | В  | С  |
| ATOM 7040 OXT LEU B 467 -62.421 70.625 27.620 1.00 77.72 B O ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      |     |       |   |       |         |         |         |        |       | В  |    |
| ATOM 7041 CB THR B 470 -62.432 66.742 31.537 1.00 70.95 B C<br>ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATOM 7042 OG1 THR B 470 -62.248 65.967 32.726 1.00 70.86 B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |     |       |   |       |         |         |         |        |       |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |       |   |       |         |         |         |        |       |    |    |
| ATUM /043 CG2 THR B 4/0 -63.848 66.508 31.003 1.00 /1.45 B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |     |       |   |       |         |         |         |        |       |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM   | /043 | CG2 | THR   | В | 4 / 0 | -63.848 | 66.508  | 31.003  | 1.00 7 | 1.45  | В  | C  |

| ATOM | 7044    | c · | THR | n | 470 | -61.493 | 64.812 | 30.312 | 1.00 | 70.71 | В       | С   |
|------|---------|-----|-----|---|-----|---------|--------|--------|------|-------|---------|-----|
|      |         |     |     |   | 470 | -62.558 | 64.290 | 29.969 |      | 69.89 | 8       | 0   |
| ATOM | 7045    | 0   | THR |   |     |         |        |        |      | 70.82 | В       | N   |
|      | 7046    | N   | THR |   | 470 | -61.525 | 67.064 | 29.205 |      | 70.94 | В       | Ċ   |
| ATOM | 7047    | CB  | THR |   |     | -61.377 | 66.318 | 30.497 |      |       |         |     |
| ATOM | 7048    | N   | PRO | В | 471 | -60.396 | 64.086 | 30.556 |      | 71.07 | В       | N   |
| ATOM | 7049    | CD  | PRO | В | 471 | -59.061 | 64.573 | 30.945 |      | 70.66 | В       | С   |
| ATOM | 7050    | СВ  | PRO | В | 471 | -60.394 | 62.629 | 30.404 | 1.00 | 71.75 | В       | С   |
| ATOM | 7051    | CB  | PRO |   | 471 | -58.967 | 62.243 | 30.798 | 1.00 | 71.17 | В       | С   |
| ATOM | 7052    | CG  | PRO |   |     | -58.173 | 63.471 | 30.435 | 1.00 | 70.30 | В       | C   |
|      |         |     | PRO |   | 471 | -61.447 | 61.893 | 31.228 | _    | 72.64 | В       | С   |
| ATOM | 7053    | C   |     |   |     |         |        | 32.425 |      | 72.94 | В       | ō   |
| MOTA | 7054    | 0   | PRO |   | 471 | -61.625 | 62.160 |        |      |       | В       | N   |
| ATOM | 7055    | N   | VAL |   | 472 | -62.146 | 60.967 | 30.577 |      | 73.11 |         |     |
| ATOM | 7056    | СB  | VAL | В | 472 | -63.163 | 60.170 | 31.251 |      | 74.59 | В       | C   |
| ATOM | 7057    | CB  | VAL | В | 472 | -64.596 | 60.665 | 30.895 | 1.00 | 73.55 | В       | С   |
| ATOM | 7058    | CG1 | VAL | В | 472 | -64.739 | 62.122 | 31.284 | 1.00 | 73.73 | B       | С   |
| ATOM | 7059    | CG2 | VAL | В | 472 | -64.883 | 60.488 | 29.418 | 1.00 | 73.67 | В       | С   |
| ATOM | 7060    | c   | VAL |   | 472 | -63.013 | 58.677 | 30.929 | 1.00 | 75.91 | В       | C   |
|      | 7061    | ŏ   | VAL | _ |     | -62.893 | 58.276 | 29.765 |      | 75.68 | В       | 0   |
| ATOM |         |     |     |   |     | -62.997 | 57.858 | 31.979 |      | 77.60 | В       | N   |
| ATOM | 7062    | N   | VAL |   |     |         |        |        |      |       | В       | Ċ   |
| ATOM | 7063    | СВ  | VAL |   | 473 | -62.845 | 56.417 | 31.812 |      | 79.17 |         |     |
| MOTA | 7064    | CB  | VAL |   | 473 | -62.300 | 55.749 | 33.091 |      | 79.35 | В       | C   |
| ATOM | 7065    | CG1 | VAL | В | 473 | -62.170 | 54.248 | 32.870 |      | 79.62 | В       | С   |
| MOTA | 7066    | CG2 | VAL | В | 473 | -60.954 | 56.345 | 33.455 | 1.00 | 78.93 | В       | С   |
| MOTA | 7067    | C   | VAL |   | 473 | -64.153 | 55.732 | 31.446 | 1.00 | 79.77 | В       | С   |
| ATOM | 7068    | ŏ   | VAL |   | 473 | -64.946 | 55.365 | 32.319 | 1.00 | 79.64 | В       | 0   |
|      |         |     | ASN |   | 474 | -64.364 | 55.546 | 30.149 |      | 80.68 | В       | N   |
| ATOM | 7069    | N   |     |   |     |         |        |        |      | 81.65 | В       | C   |
| ATOM | 7070    | CB  | ASN |   | 474 | -65.579 | 54.903 | 29.667 |      |       |         | Ċ   |
| MOTA | 7071    | CB  | ASN | В | 474 | -65.638 | 54.987 | 28.142 |      | 82.06 | В       |     |
| ATOM | 7072    | CG  | ASN | В | 474 | -67.052 | 55.125 | 27.631 | 1.00 | 83.55 | :В      | С   |
| ATOM | 7073    | OD1 | ASN | В | 474 | -67.311 | 54.993 | 26.430 | 1.00 | 84.28 | В       | 0   |
| ATOM | 7074    |     | ASN |   | 474 | -67.987 | 55.398 | 28.549 | 1.00 | 84.46 | <br>. B | N   |
| ATOM | 7075    | c   | ASN |   | 474 | -65.637 | 53.433 | 30.110 |      | 81.45 | В.      | C   |
|      |         |     |     |   |     | -65.394 | 52.520 | 29.312 |      | 81.39 | В       |     |
| ATOM | 7076    | 0   | ASN |   | 474 |         |        |        |      | 80.40 | В       | N   |
| MOTA | 7077    | N   | GLY |   | 475 | -65.959 | 53.209 | 31.380 |      |       |         |     |
| ATOM | 7078    | CB  | GLY | В | 475 | -66.023 | 51.852 | 31.880 |      | 79.03 | ъ.      |     |
| MOTA | 7079    | С   | GLY | В | 475 | -64.636 | 51.246 | 31.898 |      | 78.19 | В       | . С |
| ATOM | 7080    | 0   | GLY | В | 475 | -63.820 | 51.574 | 32.764 | 1.00 | 78.06 | В       | Ο.  |
| ATOM | 7081    | N   | PHE |   | 476 | -64.352 | 50.377 | 30.931 | 1.00 | 15.00 | В:      | N   |
|      | 7082    | СВ  | PHE |   | 476 | -63.051 | 49.722 | 30.866 |      | 15.00 | В       | · c |
| MOTA |         |     |     |   |     |         | 48.509 | 29.935 |      | 15.00 | В       | C   |
| MOTA | 7083    | CB  | PHE |   | 476 | -63.116 |        |        |      |       | В       | č   |
| ATOM | 7084    | CG  | PHE |   | 476 | -63.363 | 48.862 |        |      | 15.00 |         |     |
| ATOM | 7085    | CD1 | PHE | В | 476 | -62.304 | 49.126 | 27.641 |      | 15.00 | В       | C   |
| ATOM | 7086    | ÇD2 | PHE | В | 476 | -64.653 | 48.930 | 27.996 |      | 15.00 | В       | С   |
| ATOM | 7087    | CE1 | PHE | В | 476 | -62.527 | 49.452 | 26.317 | 1.00 | 15.00 | В       | С   |
| ATOM | 7088    | CE2 | PHE | В | 476 | -64.882 | 49.255 | 26.673 | 1.00 | 15.00 | В       | С   |
| ATOM | 7089    | CZ  |     |   | 476 | -63.818 | 49.515 | 25.833 | 1.00 | 15.00 | В       | С   |
|      |         |     | PHE |   | 476 | -61.976 | 50.687 | 30.383 |      | 15.00 | В       | С   |
| ATOM | 7090    | C   |     |   | 476 |         | 51.051 | 31.147 |      | 75.02 | В       | 0   |
| ATOM | 7091    | 0   | PHE | _ |     | -61.067 |        |        |      |       | B       | Ň   |
| ATOM | 7092    | N   | ALB |   | 477 | -62.044 | 51.079 | 29.112 |      | 72.73 |         |     |
| ATOM | 7093    | CB  | ALB | В | 477 | -61.065 | 51.986 | 28.521 |      | 70.22 | В       | С   |
| ATOM | 7094    | CB  | ALB | В | 477 | -61.084 | 51.845 | 27.002 |      | 70.23 | В       | С   |
| ATOM | 7095    | С   | ALB | В | 477 | -61.328 | 53.447 | 28.920 | 1.00 | 68.40 | В       | С   |
| MOTA | 7096    | ō   | ALB |   | 477 | -61.856 | 53.716 | 30.002 | 1.00 | 67.12 | В       | 0   |
|      | 7097    | N   | SER |   | 478 | -60.934 | 54.381 | 28.054 | 1.00 | 66.3B | В       | N   |
| MOTA |         | CB  | SER |   | 478 | -61.135 | 55.811 | 28.292 |      | 64.51 | В       | c   |
| MOTA | 7098    |     |     |   |     |         |        |        |      | 65.14 | В       | Ċ   |
| MOTA | 7099    | CB  |     |   | 478 | -59.870 | 56.460 | 28.852 |      |       | В       | Ö   |
| MOTA | 7100    | OG  |     |   | 478 | -59.556 | 55.950 | 30.135 |      | 67.68 |         |     |
| ATOM | 7101    | С   |     |   | 478 | -61.518 | 56.513 | 26.993 |      | 62.38 | В       | C   |
| ATOM | 7102    | 0   | SER | В | 478 | -61.283 | 55.990 | 25.896 |      | 62.65 | В       | 0   |
| ATOM | 7103    | N   |     |   | 479 | -62.098 | 57.702 | 27.126 |      | 58.42 | В       | N   |
| ATOM | 7104    | СВ  |     |   | 479 | -62.535 | 58.473 | 25.973 | 1.00 | 55.01 | В       | С   |
|      | 7105    | CB  |     |   | 479 | -63.933 | 58.063 | 25.524 |      | 54.19 | В       | С   |
| ATOM |         |     |     |   |     | -63.916 | 56.648 | 24.998 |      | 53.72 | В       | C   |
| ATOM | 7106    |     | VAL |   |     |         |        | 26.693 |      | 53.45 | В       | Č   |
| ATOM | 7107    |     |     |   | 479 | -64.892 | 58.195 |        |      |       | В       | Č   |
| ATOM | 7108    | С   |     |   | 479 | -62.607 | 59.943 | 26.319 |      | 53.16 |         |     |
| ATOM | 7109    | 0   |     |   | 479 | -62.845 | 60.302 | 27.470 |      | 53.94 | В       | 0   |
| ATOM | 7110    | N   |     |   | 480 | -62.408 | 60.813 | 25.318 |      | 50.40 | В       | N   |
| ATOM | 7111    | CD  |     |   | 480 | -62.000 | 60.473 | 23.940 | 1.00 | 48.44 | В       | С   |
| ATOM | 7112    | СВ  |     |   | 480 | -62.451 | 62.265 | 25.497 |      | 47.37 | В       | С   |
|      |         |     |     |   |     | -61.656 | 62.765 | 24.300 |      | 46.21 | В       | С   |
| ATOM | 7113    | CB  |     |   | 480 |         |        | 23.235 |      | 46.36 | В       | č   |
| ATOM | 7114    | CG  |     |   | 480 | -62.079 | 61.811 |        |      |       |         | c   |
| MOTA | 7115    | С   |     |   | 480 | -63.899 | 62.777 | 25.488 |      | 44.85 | В       |     |
| ATOM | 7116    | 0   | PRO | В | 480 | -64.834 | 62.009 | 25.227 |      | 43.82 | В       | 0   |
| ATOM | 7117    | N   |     |   | 481 | -64.092 | 64.071 | 25.802 | 1.00 | 41.97 | В       | N   |
| ATOM | 7118    | CD  |     |   | 481 | -63.074 | 64.880 | 26.480 | 1.00 | 41.52 | В       | С   |
|      | · + + V |     |     | _ | -   |         |        |        |      |       |         |     |

বিজ্ঞান ক্রিয়াইছে। সাম্বাহ্য স্ক্রিয়াইছে। সাম্বাহ্য স্ক্রিয়াইছ

A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A MESSAGE AND A

227 37 1

4 15 4

11.600

1245

37075

1 29

. . . . .

96/514

```
ATOM
                   7119
                         CB
                             PRO B 481
                                            -65.376
                                                     64.766
                                                             25.841 1.00 40.82
                                            -65.047
                                                      66.068
                                                              26.566
                                                                     1.00 40.33
           ATOM
                   7120
                         CB
                             PRO B 481
           ATOM
                   7121
                         CG
                             PRO B 481
                                            -63,904
                                                      65.699
                                                              27.415
                                                                      1.00 40.92
                                                                                       В
                                                                      1.00 40.26
                                                      65.050
                                                              24.417
           ATOM
                  7122
                             PRO B 481
                                            -65.840
                                                              23.466
                                                                      1.00 41.14
                                                                                             0
           MOTA
                   7123
                             PRO B 481
                                            -65.070
                                                      64.891
                                                     65.471
                                                              24.284
                                                                      1.00 38.33
           ATOM
                   7124
                             PHE B 482
                                            -67.094
                                                             22.993
                                                                      1.00 36.65
                                                                                             С
           ATOM
                   7125
                         CB
                             PHE B 482
                                            -67.651
                                                      65.815
                                                                                       В
                                                             23.062
                                                                      1.00 34.94
                                                                                             С
           ATOM
                   7126
                         CB
                             PHE B 482
                                            -69.170
                                                      65.836
                   7127
                         CG
                             PHE B 482
                                            -69.815
                                                     66.435
                                                              21.853
                                                                      1.00 33.41
                                                                                             C
           ATOM
                   7128
                         CD1 PHE B 482
                                            -70.078
                                                     67.804
                                                             21.790
                                                                      1.00 33.31
           ATOM
                                                                      1.00 30.54
                         CD2 PHE B 482
                                            -70.112
                                                      65.643
                                                             20.755
           ATOM
                   7129
                                            -70.624
                                                      68.368
                                                              20.637
                                                                      1.00 32.29
                   7130
                         CE1 PHE B 482
           ATOM
                                                     66.197
                         CE2 PHE B 482
                                            -70.654
                                                              19.605
                                                                      1.00 30.15
           ATOM
                   7131
                             PHE B 482
                                            -70.910
                                                      67.559
                                                              19.541
                                                                      1.00 30.57
           ATOM
                   7132
                         CZ
                                                             22.638
                                                                      1.00 36.97
           ATOM
                   7133
                             PHE B 482
                                            -67.146
                                                      67,198
                         С
                             PHE B 482
                                            -66,920
                                                     68.005
                                                             23.524
                                                                     1.00 37.93
           ATOM
                   7134
                         O
                             TYR B 483
                                                              21.351
                                                                      1.00 37.53
                                            -66.960
                                                      67.469
           ATOM
                   7135
                         N
                                                      68.777
                                                              20.921
                                                                      1.00 38.43
           ATOM
                   7136
                         CB
                             TYR B 483
                                            -66.497
                                                     69.021
                                                                      1.00 39.48
                            TYR B 483
                                            -65.058
                                                              21.413
           ATOM
                   7137
                         CB
                                                              20.538
                                                     68.409
                                                                      1.00 40.38
           ATOM
                   7138
                         CG
                            TYR B 483
                                            -63.981
                                                     69.054
                                                              19.377
                                                                      1.00 39.49
           ATOM
                   7139
                         CD1 TYR B 483
                                            -63.548
                                                              18.508
                                                                      1.00 39.39
           ATOM
                   7140
                         CE1 TYR B 483
                                            -62.646
                                                     68.449
                                                                      1.00 40.56
           MOTA
                   7141
                         CD2 TYR B 483
                                            -63.469
                                                      67.139
                                                              20.816
                                                                                       В
                                                                      1.00 39.33
                                                                                             ¢
           MOTA
                   7142
                         CE2 TYR B 483
                                            -62.571
                                                     66.526
                                                              19.955
                                                                                       В
                                                                                            С
                   7143
                            TYR B 483
                                            -62.170
                                                      67.183
                                                              18.801
                                                                      1.00 40.65
                                                                                       В
           ATOM
                         CZ
           ATOM
                   7144
                             TYR B 483
                                            -61.343
                                                      66.548
                                                              17.903
                                                                      1.00 42.74
                                                                                       В
                                                                                            0
                         OH
                   7145
                             TYR B 483
                                            -66.575
                                                      68.854
                                                              19.402 1.00 39.29
                                                                                       В
                                                                                            С
           ATOM
                         С
                                                                                            0
                   7146
                             TYR B 483
                                            -66.788
                                                      67.851
                                                              18.736
                                                                      1.00 39.17
                                                                                       В
           ATOM
                         0
                                                                                            N
C
       ATOM
                   7147
                             GLN B 484
                                            -66.405
                                                     70.049
                                                              18.858
                                                                      1.00 41.65
                                                                                       В
                                            -66.473
        ATOM
                   7148
                         CB
                             GLN B 484
                                                     70.245
                                                              17.418
                                                                      1.00 44.75
                                                                                       В
4. 6. 8 6 9 15 TOM
                             GLN B 484
                                            -67.825
                                                     70.841
                                                              17.023
                                                                      1.00 47.39
                                                                                       В
                                                                                            С
                   7149
                         CB
                             GLN B 484
                                                     70.330
                                                              17.770
                                                                      1.00 52.06
                                                                                       В
                                                                                            С
ATOM
                   7150
                         CG
                                            -69.031
                                            -70.280
                                                     71.135
                                                              17.443
                                                                      1.00 53.65
                                                                                       В
Cost and a Print ATOM
                   7151
                         CD.
                             GLN B 484
      , 🧠 ATOM
                                                              16.308
                                                                      1.00 54.26
                                                                                       В
                                                                                            0
                   7152
                         OE1 GLN B 484
                                            -70.751
                                                     71.136
      MOTA
                                                                      1.00 54.88
                                                                                            N
                   7153
                         NE2 GLN B 484
                                            -70.815
                                                     71.832
                                                              18.442
         5 ATOM
                             GLN B 484
                                            -65.417
                                                     71.243
                                                              16.957
                                                                      1.00 46.08
                                                                                       В
                                                                                            С
                   7154
                         С
         . ATOM
                             GLN B 484
                                            -65.022
                                                     72.147
                                                              17.698
                                                                      1.00 46.05
                   7155
                         0
                             LEU B 485
                                            -64.972
                                                     71.102
                                                              15.719
                                                                      1.00 47.36
                                                                                       В
         . ⊋ ATOM
                   7156
                         N
                                                                      1.00 50.15
                                                                                             С
        ATOM
                            LEU B 485
                                                              15.186
                                            -64.027
                                                      72,060
                   7157
                         CB
                                                                                             С
                             LEU B 485
                                            -62.587
                                                     71.631
                                                              15.460
                                                                      1.00 50.47
                                                                                       В
           ATOM
                   7158
                         CB
                                                                                             С
                                                                      1.00 51.64
                                                              14.573
           ATOM
                   7159
                         CG
                            LEU B 485
                                            -61.960
                                                     70.565
                                                                      1.00 51.79
           ATOM
                   7160
                         CD1 LEU B 485
                                            -60.472
                                                     70.814
                                                              14.557
                                                                                       В
                                                                      1.00 50.79
           MOTA
                   7161
                         CD2 LEU B 485
                                            -62.301
                                                      69.155
                                                              15.064
                                                              13.687
                                                                      1.00 52.36
           ATOM
                   7162
                         С
                             LEU B 485
                                            -64.279
                                                     72.188
                                                                                       В
           MOTA
                   7163
                         0
                             LEU B 485
                                            -65.112
                                                     71.466
                                                              13.123
                                                                      1.00 52.60
           ATOM
                   7164
                         N
                             CYS B 486
                                            -63.557
                                                     73.102
                                                              13.046
                                                                      1.00 53.48
                                                                                       В
                                                                                             C
           MOTA
                   7165
                         CB
                             CYS B 486
                                            -63.717
                                                     73.325
                                                              11.616
                                                                      1.00 53.93
                                                                                       В
           ATOM
                   7166
                             CYS B 486
                                            -64.259
                                                     74.733
                                                              11.376
                                                                      1.00 55.12
                                                                                             C
                         CB
           ATOM
                   7167
                         SG
                             CYS B 486
                                            -65.633
                                                     75.136
                                                              12.468
                                                                      1.00 58.63
                                                                                       B
                                                                                             S
           ATOM
                   7168
                         C
                             CYS B 486
                                            -62.377
                                                     73.147
                                                              10.925
                                                                      1.00 53.38
                                                                                       В
           ATOM
                   7169
                         0
                             CYS B 486
                                            -61.396
                                                     73.793
                                                              11.286
                                                                      1.00 53.56
                                                                                             ٥
                   7170
                             PHE B 487
                                            -62.331
                                                     72.254
                                                               9.945
                                                                      1.00 52.17
                                                                                       R
                                                                                             N
           ATOM
                         N
           ATOM
                   7171
                         СВ
                             PHE B 487
                                            -61.097
                                                     72.019
                                                               9.225
                                                                      1.00 51.10
                                                                                       В
                                                                                             С
                             PHE B 487
                                            -61.100
                                                     70.618
                                                               8.602
                                                                      1.00 48.21
                                                                                             С
           ATOM
                   7172
                             PHE B 487
                                            -61.100
                                                      69.507
                                                               9.615
                                                                      1.00 46.12
                                                                                       В
                                                                                             С
           ATOM
                   7173
                         CG
                                            -62.217
                                                              10.401
                                                                      1.00 45.45
                                                                                       В
                                                                                             С
           ATOM
                   7174
                         CD1 PHE B 487
                                                      69.262
                                                      68.730
                                                              9.816
                                                                      1.00 45.79
                                                                                       В
                                                                                             С
           ATOM
                   7175
                         CD2 PHE B 487
                                            -59.962
                                            -62.206
                                                      68.258
                                                              11.375
                                                                      1.00 44.49
           ATOM
                   7176
                         CE1 PHE B 487
                         CE2 PHE B 487
                                            -59.941
                                                      67.722
                                                              10.790
                                                                      1.00 44.37
                                                                                       В
           ATOM
                   7177
                                            -61.064
                                                      67.490
                                                              11.569
                                                                      1.00 43.64
                            PHE B 487
           ATOM
                   7178
                         CZ
                                            -60.967
                                                               8.157
                                                                      1.00 52.20
                                                     73.088
                             PHE B 487
           ATOM
                   7179
                         С
                                            -61.478
                                                               7.047
                                                                      1.00 53.59
                                                     72,939
                                                                                             0
           ATOM
                   7180
                         0
                             PHE B 487
                                                                      1.00 53.65
                                            -60.295
                                                               8.506
           ATOM
                   7181
                         N
                             ILE B 488
                                                     74.180
                                                               7.578
                                                                      1.00 56.15
           ATOM
                   7182
                         CB
                             ILE B 488
                                            -60.099
                                                     75.290
                                                                                             C
                                                                      1.00 55.49
                                                               8.322
           ATOM
                   7183
                             ILE B 488
                                            -59.793
                                                     76.593
                         ÇВ
                                                                      1.00 55.84
           ATOM
                   7184
                            ILE B 488
                                            -59.685
                                                     77.734
                                                               7.338
                                                                                             C
                         CG2
                                                                      1.00 55.95
                         CG1 ILE B 488
                                            -60.887
                                                     76.892
                                                               9.331
                                                                                       В
           ATOM
                   7185
           ATOM
                   7186
                            ILE B 488
                                            -60.576
                                                     78.101
                                                              10.169
                                                                      1.00 56.88
                                                                                             C
                         CD1
                                            -58.929
                                                     75.022
                                                               6.642
                                                                      1.00 57.98
           ATOM
                   7187
                             ILE B 488
           ATOM
                   7188
                             ILE B 488
                                            -57.829
                                                     74.716
                                                               7.096
                                                                      1.00 58.25
                                                                                             0
           ATOM
                   7189
                             PRO B 489
                                            -59.147
                                                     75.130
                                                               5.323
                                                                      1.00 59.93
                                            -60.426
                                                     75.262
                                                               4.613
                                                                      1.00 60.25
                                                                                       В
                                                                                             С
           ATOM
                   7190
                         CD
                             PRO B 489
                                                     74.891
                                                               4.372
                                                                      1.00 62.54
                                                                                       R
           ATOM
                   7191
                         СВ
                             PRO B 489
                                            -58.061
                                                     74.972
                                                               3.021
                                                                      1.00 61.66
                                                                                       В
                                                                                             С
           ATOM
                         CB
                             PRO B 489
                                            -58.759
                   7192
                                            -60.144 74.529
                                                               3.330
                                                                     1.00 60.78
           ATOM
                   7193
                         CG
                             PRO B 489
```

|       |      | _   |     | _ |       |          |        |        | 1 00 66 04  |     |     |
|-------|------|-----|-----|---|-------|----------|--------|--------|-------------|-----|-----|
| MOTA  | 7194 | С   |     |   | 489   | -56.969  | 75.949 | 4.505  | 1.00 65.24  | E   | _   |
| ATOM  | 7195 | 0   | PRO | В | 489   | -57.103  | 76.899 | 5.278  | 1.00 64.90  | Ε   | 3 0 |
| MOTA  | 7196 | N   | VAL | В | 490   | -55.911  | 75.787 | 3.744  | 1.00 15.00  | E   | 3 N |
| MOTA  | 7197 | CB  | VAL | В | 490   | -54.800  | 76.730 | 3.781  | 1.00 15.00  | E   | 3 C |
| ATOM  | 7198 | CB  | VAL |   | 490   | -53.708  | 76.267 | 4.766  | 1.00 15.00  | Ē   |     |
|       |      |     |     | - |       |          |        |        |             |     |     |
| MOTA  | 7199 |     | VAL |   | 490   | -52.489  | 77.172 | 4.659  | 1.00 15.00  |     |     |
| ATOM  | 7200 | CG2 | VAL |   | 490   | -54.248  | 76.262 | 6.187  | 1.00 15.00  | E   |     |
| MOTA  | 7201 | С   | VAL | В | 490   | -54.177  | 76.896 | 2.399  | 1.00 15.00  | . E | 3 C |
| ATOM  | 7202 | 0   | VAL | В | 490   | -54.011  | 75.903 | 1.685  | 1.00 77.97  | E   | 3 0 |
| ATOM  | 7203 | N   | HIS |   | 491   | ~53.873  | 78.123 | 2.014  | 1.00 80.83  | E   | 3 N |
| ATOM  | 7204 | СВ  | HIS |   | 491   | -53.284  | 78.370 | 0.696  | 1.00 83.82  | Ē   |     |
|       |      |     |     |   |       |          |        |        |             |     |     |
| MOTA  | 7205 | CB  | HIS |   | .491  | -54.244  | 77.908 | -0.406 | 1.00 86.47  | E   |     |
| MOTA  | 7206 | CG  | HIS |   | 491   | -53.558  | 77.514 | -1.678 | 1.00 89.34  | E   | _   |
| ATOM: | 7207 | CD2 | HIS | В | 491   | -53.507  | 78.115 | -2.892 | 1.00 90.97  | E   | 3 C |
| ATOM  | 7208 | ND1 | HIS | В | 491   | ~52.808  | 76.364 | -1.789 | 1.00 90.84  | E   | 3 N |
| ATOM  | 7209 |     | HIS | В | 491   | -52.324  | 76.271 | -3.017 | 1.00 90.92  | E   | 3 C |
|       |      |     |     |   | 491   | -52.734  | 77.321 | -3.706 | 1.00 91.43  | E   |     |
| ATOM  | 7210 |     | HIS |   |       |          |        |        |             |     |     |
| ATOM  | 7211 | С   | HIS | В | 491   | -52.964  | 79.850 | 0.491  | 1.00 84.02  | E   |     |
| ATOM  | 7212 | 0   | HIS | В | 491   | -53.175  | 80.639 | 1.441  | 1.00 83.96  | 8   |     |
| ATOM  | 7213 | OXT | HIS | В | 491   | -52.523  | 80.197 | -0.627 | 1.00 B3.06  | E   | 3 0 |
| ATOM  | 7214 | FE1 | HEM | В | 501   | -53.854  | 46.932 | 19.898 | 1.00 23.53  | E   | 3 F |
| ATOM  | 7215 | N2  | HEM |   | 501   | -53.556  | 46.521 | 21.963 | 1.00 5.13   | E   |     |
|       |      |     |     |   |       |          |        |        |             | Ē   |     |
| MOTA  | 7216 | N3  | HEM |   | 501   | -54.157  | 48.976 | 20.277 |             |     |     |
| ATOM  | 7217 | N4  | HEM |   | 501   | -54.304  | 47.223 | 17.772 | 1.00 9.11   | E   |     |
| ATOM  | 7218 | พ5  | HEM | В | 501   | -54.203  | 44.734 | 19.542 | 1.00 6.04   | . E |     |
| ATOM  | 7219 | C6  | HEM | В | 501   | -53.511  | 45.320 | 22.577 | 1.00 8.09   | E   | 3 C |
| ATOM  | 7220 | C7  | HEM |   |       | -53.172  | 45.528 | 23.986 | 1.00 9.05   | E   | 3 C |
| ATOM  | 7221 | C8  | HEM |   |       | -53.028  | 46.855 | 24.193 | 1.00 6.44   | Ē   |     |
|       |      |     |     |   |       |          |        |        |             |     |     |
| MOTA  | 7222 | C9  | HEM |   | 501   | -53.292  | 47.580 | 22.935 | 1.00 5.45   | E   |     |
| MOTA  | 7223 | C10 | HEM | В | 501   | -53'.665 | 49.632 | 21.405 | 1.00 3.49   | E   |     |
| ATOM  | 7224 | C11 | HEM | В | 501   | -53.656  | 51.093 | 21.106 | 1.00 1.28   | Ε   |     |
| MOTA  | 7225 | C12 | HEM | В | 501   | -53.895  | 51.293 | 19.800 | 1.00 - 1.82 | E   | 3 C |
| ATOM  | 7226 |     | HEM |   | 501   | -54.155  | 49.948 | 19.158 | 1.00 - 3.62 | Ē   |     |
| ATOM  | 7227 |     | HEM |   | 501   | -54.300  | 48.398 | 17.126 | 1.00 8.99   | E   |     |
|       |      |     |     |   |       |          |        |        |             |     |     |
| ATOM  | 7228 |     |     |   | 501   | -54.390  | 48.152 | 15.666 | 1.00 10.03  | E   |     |
| ATOM  | 7229 | C16 | HEM |   | 501   | -54.578  | 46.802 | 15.494 | 1.00 12.02  | Ē   |     |
| ATOM  | 7230 | C17 | HEM | В | 501 . | -54.518  | 46.150 | 16.826 | 1.00 11.41  | E   |     |
| ATOM  | 7231 | C18 | HEM | В | 501   | -54.506  | 44.096 | 18.395 | 1.00 8.52   | E   | s c |
| ATOM  | 7232 |     | HEM |   | 501   | -54.617  | 42.646 | 18.677 | 1.00 7.61   | E   | 3 C |
| ATOM  | 7233 |     | HEM |   | 501   | -54.271  | 42.451 | 19.969 | 1.00 10.04  | Ē   |     |
|       |      |     |     |   |       |          |        |        |             |     |     |
| ATOM  | 7234 |     | HEM |   | 501   | -54.051  | 43.772 | 20.606 | 1.00 5.94   | E   |     |
| ATOM  | 7235 |     | HEM |   | 501   | -53.776  | 43.995 | 21.904 | 1.00 5.96   | E   |     |
| ATOM  | 7236 | C23 | HEM | В | 501   | -53.285  | 48.975 | 22.714 | 1.00 3.48   | E   |     |
| ATOM  | 7237 | C24 | HEM | В | 501   | -54.227  | 49.685 | 17.797 | 1.00 6.77   | E   | 3 C |
| ATOM  | 7238 | 025 | HEM | R | 501   | -54.674  | 44.819 | 17.062 | 1.00 11.27  | E   | з с |
| ATOM  | 7239 |     | HEM |   | 501   | -52.927  | 47.625 | 25.496 | 1.00 4.02   | E   |     |
|       | 7240 |     |     |   | 501   | -52.784  |        | 24.823 | 1.00 13.87  | 2   |     |
| ATOM  |      |     | HEM |   |       |          | 44.295 |        |             |     |     |
| ATOM  | 7241 |     | HEM |   | 501   | -52.735  | 44.275 | 26.348 | 1.00 21.34  | E   |     |
| ATOM  | 7242 | C29 | HEM | В | 501   | -51.903  | 43.044 | 26.787 | 1.00 23.77  | 8   |     |
| ATOM  | 7243 | 030 | HEM | В | 501   | -52.684  | 41.969 | 27.061 | 1.00 28.61  | E   | 3 0 |
| ATOM  | 7244 | 031 | HEM | В | 501   | -50.749  | 43.021 | 26.804 | 1.00 23.82  | 8   | 3 0 |
| ATOM  | 7245 |     | HEM |   | 501   | -53.075  | 52.080 | 22.086 | 1.00 1.81   | E   | 3 C |
|       |      |     |     |   |       |          |        |        |             | E   |     |
| MOTA  | 7246 |     | HEM |   | 501   | -54.234  | 52.502 | 19.030 | 1.00 2.16   |     |     |
| MOTA  | 7247 |     | HEM |   | 501   | -53.269  | 53.667 | 19.239 | 1.00 5.15   | 8   |     |
| MOTA  | 7248 | C35 | HEM | В | 501   | -54.556  | 49.259 | 14.656 | 1.00 11.14  | E   |     |
| MOTA  | 7249 | C36 | HEM | В | 501   | -54.525  | 45.903 | 14.268 | 1.00 12.94  | E   |     |
| ATOM  | 7250 |     | HEM | В | 501   | -53.208  | 45.739 | 13.515 | 1.00 16.82  | £   | s C |
| MOTA  | 7251 |     | HEM |   | 501   | -54.841  | 41.577 | 17.602 | 1.00 4.37   |     |     |
|       |      |     |     |   |       | -54.252  |        | 20.764 | 1.00 11.58  | E   |     |
| ATOM  | 7252 |     | HEM |   | 501   |          | 41.145 |        |             |     |     |
| ATOM  | 7253 |     | HEM |   | 501   | -52.908  | 40.854 | 21.395 | 1.00 18.63  | E   |     |
| MOTA  | 7254 | C41 | HEM | В | 501   | -52.833  | 39.464 | 21.980 | 1.00 22.42  | E   |     |
| MOTA  | 7255 | 042 | HEM | В | 501   | -52.250  | 38.587 | 21.476 | 1.00 28.62  | E   | 3 0 |
| ATOM  | 7256 |     | HEM |   |       | -53.498  | 39.364 | 23.132 | 1.00 24.93  | . 8 | 3 0 |
| END   |      |     |     | - |       |          |        |        |             |     |     |
|       |      |     |     |   |       |          |        |        |             |     |     |

## Figure 2 Table 2

| ATOM | 1  | N   | PRO A | 30 | 6.948  | 61.863 | 48.650 1.00 51.63                            | N   |
|------|----|-----|-------|----|--------|--------|----------------------------------------------|-----|
| ATOM | 2  | CA  | PRO A | 30 | 8.378  | 62.312 | 48.212 1.00 51.17                            | С   |
| ATOM | 3  | CB. | PRO A | 30 | 8.357  | 62.494 | 46.718 1.00 49.42                            | С   |
| ATOM | 4  | CG  | PRO A | 30 | 7.371  | 61.385 | 46.239 1.00 48.87                            | С   |
| ATOM | 5  | CD  | PRO A | 30 | 6.309  | 61.240 | 47.441 1.00 56.68                            | С   |
| ATOM | 6  | С   | PRO A | 30 | 8.547  | 63.566 | 48.834 1.00 51.07                            | С   |
| ATOM | 7  | Ō   | PRO A | 30 | 7.704  | 64.397 | 48.582 1.00 55.74                            | 0   |
| ATOM | 8  | N   | PRO A | 31 | 9.593  | 63.742 | 49.559 1.00 45.95                            | N   |
| ATOM | 9  | CA  | PRO A | 31 | 9.787  | 64.843 | 50.414 1.00 44.40                            | С   |
| ATOM | 10 | СВ  | PRO A | 31 | 11.142 | 64.525 | 51.103 1.00 44.35                            | С   |
| ATOM | 11 | CG  | PRO A | 31 | 11.903 | 63.627 | 50.147 1.00 48.33                            | С   |
| MOTA | 12 | CD  | PRO A | 31 | 10.722 | 62.808 | 49.492 1.00 47.79                            | Ċ   |
| ATOM | 13 | C   | PRO A | 31 | 9.844  | 66.064 | 49.703 1.00 47.01                            | Ċ.  |
|      | 14 | Ö   | PRO A | 31 | 9.781  | 65.886 | 48.565 1.00 51.96                            | ŏ   |
| ATOM |    |     | GLY A | 32 | 10.050 | 67.260 | 50.325 1.00 47.17                            | N   |
| ATOM | 15 | N   | GLY A | 32 | 10.114 | 68.541 | 49.674 1.00 46.74                            | Ċ   |
| ATOM | 16 | CA  |       | 32 | 9.811  | 69.667 | 50.679 1.00 47.51                            | č   |
| ATOM | 17 | C   | GLY A |    | 9.358  | 69.460 | 51.703 1.00 44.93                            | ŏ   |
| ATOM | 18 | 0   | GLY A | 32 | 10.017 | 70.897 | 50.374 1.00 46.55                            | N   |
| ATOM | 19 | N   | PRO A | 33 |        |        | 51.343 1.00 47.81                            | č   |
| MOTA | 20 | CA  | PRO A | 33 | 9.649  | 71.893 |                                              | č   |
| ATOM | 21 | CB  | PRO A | 33 | 10.087 | 73.270 | 50.709 1.00 46.05                            | c   |
| ATOM | 22 | CG  | PRO A | 33 | 10.114 | 72.947 | 49.269 1.00 48.72<br>49.108 1.00 46.27       | Ċ.  |
| MOTA | 23 | CD  | PRO A | 33 | 10.395 | 71.467 |                                              |     |
| ATOM | 24 | С   | PRO A | 33 | 8.183  | 71.924 | 51.434 1.00 47.04                            | c   |
| ATOM | 25 | 0   | PRO A | 33 | 7.651  | 71.646 | 50.501 1.00 50.34                            | 0   |
| ATOM | 26 | N   | THR A | 34 | 7.666  | 72.264 | 52.571 1.00 50.85                            | N   |
| ATOM | 27 | ÇA  | THR A | 34 | 6.320  | 72.461 | 52.994 1.00 50.67                            | C   |
| MOTA | 28 | CB  | THR A | 34 | 6.140  | 72.799 | 54.512 1.00 54.10                            | C   |
| ATOM | 29 | OG1 | THR A | 34 | 7.468  | 72.614 | 55.097 1.00 60:49                            | 0   |
| MOTA | 30 | CG2 | THR A | 34 | 5.107  | 71.751 | 55.275 1.00 54.94                            | С   |
| ATOM | 31 | С   | THR A | 34 | 5.944  | 73.893 | 52.409 \{1.00 50.51}                         | С   |
| MOTA | 32 | 0   | THR A | 34 | 6.632  | 74.962 | 52.731 1.00 45.73                            | . 0 |
| ATOM | 33 | N   | PRO A | 35 | .4.868 | 73.889 | 51.637 <sub>63</sub> 1.00 47.05 <sub>3</sub> | N   |
| ATOM | 34 | CA  | PRO A | 35 | 4.318  | 74.984 | 50.882 1.00 50.41                            | С   |
| ATOM | 35 | СВ  | PRO A | 35 | 3.607  | 74.239 | 49.816: 1.00 52:81                           | · C |
| ATOM | 36 | CG  | PRO A | 35 | 3.239  | 72.981 | 50.564, 1.00 49.09                           | С   |
| ATOM | 37 | CD  | PRO A | 35 | 4.200  | 72.638 | 51.451 1.00 43.28                            | С   |
| ATOM | 38 | c   | PRO A | 35 | 3.280  | 75.813 | 51.615 1.00 56:80                            | С   |
| ATOM | 39 | ŏ   | PRO A | 35 | 2.519  | 75.307 | 52.436 1.00 59.32                            | 0   |
| ATOM | 40 | N   | LEU A | 36 | 3.180  | 77.090 | 51.283 1.00 58.99                            | N   |
| ATOM | 41 | CA  | LEU A | 36 | 2.318  | 78.017 | 52.022 1.00 58.69                            | С   |
| ATOM | 42 | CB  | LEU A | 36 | 2.792  | 79.431 | 51.779 1.00 56.84                            | C   |
| ATOM | 43 | CG  | LEU A | 36 | 3.929  | 79.638 | 52.719 1.00 50.04                            | Č   |
|      | 44 |     | LEU A | 36 | 4.293  | 81.192 | 52.640 1.00 46.53                            | č   |
| ATOM |    |     | LEU A | 36 | 3.671  | 79.172 | 54.069 1.00 46.56                            | č   |
| ATOM | 45 |     |       | 36 | 0.984  | 77.953 | 51.451 1.00 61.55                            | č   |
| ATOM | 46 | C   | LEU A |    |        | 77.456 | 50.292 1.00 67.28                            | ŏ   |
| ATOM | 47 | 0 . | LEU A | 36 | 0.870  | 78.480 |                                              | N   |
| ATOM | 48 | N   | PRO A | 37 | 0.004  |        |                                              | ċ   |
| ATOM | 49 | CA  | PRO A | 37 | -1.416 | 78.376 | 51.816 1.00 62.40                            | Ċ.  |
| MOTA | 50 | CB  | PRO A | 37 | -2.013 | 79.374 | 52.718 1.00 64.55                            |     |
| ATOM | 51 | CG  | PRO A | 37 | -1.225 | 79.220 | 53.849 1.00 66.39                            | C   |
| ATOM | 52 | CD  | PRO A | 37 | 0.190  | 79.179 | 53.435 1.00 62.21                            | C   |
| MOTA | 53 | С   | PRO A | 37 | -1.819 | 78.683 | 50.451 1.00 61.93                            | C   |
| MOTA | 54 | 0   | PRO A | 37 | -2.634 | 78.005 | 49.846 1.00 66.62                            | 0   |
| MOTA | 55 | N   | VAL A | 38 | -1.374 | 79.684 | 49.839 1.00 59.79                            | N   |
| ATOM | 56 | CA  | VAL A | 38 | -1.917 | 79.670 | 48.449 1.00 59.03                            | С   |
| ATOM | 57 | CB  | VAL A | 38 | -3.092 | 80.722 | 48.272 1.00 59.04                            | С   |
| ATOM | 58 | CG1 | VAL A | 38 | -2.655 | 82.075 | 48.712 1.00 64.14                            | С   |
| ATOM | 59 | CG2 | VAL A | 38 | -3.511 | 81.004 | 46.779 1.00 60.19                            | С   |
| ATOM | 60 | С   | VAL A | 38 | -0.741 | 79.981 | 47.423 1.00 57.97                            | С   |
| ATOM | 61 | 0   | VAL A | 38 | -0.963 | 79.761 | 46.135 1.00 57.04                            | 0   |
| ATOM | 62 | N   | ILE A | 39 | 0.460  | 80.408 | 47.986 1.00 55.15                            | N   |
| ATOM | 63 | CA  | ILE A | 39 | 1.668  | 80.753 | 47,238 1.00 52.25                            | C   |
| ATOM | 64 | СВ  | ILE A | 39 | 2.340  | 81.759 | 47.832 1.00 52.00                            | С   |
| ATOM | 65 |     | ILE A | 39 | 2.632  | 81.428 | 49.306 1.00 51.20                            | С   |
| MOTA | 66 |     | ILE A | 39 | 3.442  | 82.649 | 50.013 1.00 46.31                            | C   |
| ATOM | 67 |     | ILE A | 39 | 1.628  | 83.038 | 47.634 1.00 48.60                            | č   |
|      | 68 | C   | ILE A | 39 | 2.617  | 79.538 | 46.999 1.00 53.36                            | č   |
| MOTA |    |     | ILE A | 39 | 3.759  | 79.640 | 46.590 1.00 51.05                            | ō   |
| ATOM | 69 | 0   |       |    |        | 78.334 | 47.237 1.00 52.77                            | N   |
| ATOM | 70 | N   | GLY A | 40 | 2.074  |        |                                              | C . |
| MOTA | 71 | CA  | GLY A | 40 | 2.877  | 77.195 |                                              | c   |
| MOTA | 72 | C   | GLY A | 40 | 4.227  | 77.256 |                                              | 0   |
| ATOM | 73 | .0  | GLY A | 40 | 4.266  | 77.624 |                                              |     |
| ATOM | 74 | N   | ASN A | 41 | 5.282  | 76.847 | 46.713 1.00 43.40                            | N   |

182184 Tools

The property of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of

|                |                                      | Figure 2                                                           |               |
|----------------|--------------------------------------|--------------------------------------------------------------------|---------------|
| ATOM           | 75 CA ASN A 41                       | 6.637 76.907 47.232 1.00 39.35                                     | C             |
| ATOM           | 76 CB ASN A 41                       | 7.427 75.728 47.048 1.00 36.22                                     | C             |
| MOTA           | 77 CG ASN A 41                       | 7.031 74.502 47.789 1.00 36.46<br>7.299 74.247 49.026 1.00 41.14   | Ö             |
| MOTA           | 78 OD1 ASN A 41                      | 7.299 74.247 49.026 1.00 41.14<br>6.508 73.640 47.071 1.00 41.24   | N             |
| MOTA           | 79 ND2 ASN A 41<br>80 C ASN A 41     | 7.267 78.105 46.568 1.00 38.83                                     | c             |
| MOTA<br>MOTA   | 81 O ASN A 41                        | 8.466 78.274 46.588 1.00 39.13                                     | 0             |
| ATOM           | 82 N ILE A 42                        | 6.502 79.005 46.069 1.00 39.36                                     | N             |
| ATOM           | 83 CA ILE A 42                       | 7.106 80.090 45.374 1.00 42.68                                     | C<br>C        |
| ATOM           | 84 CB ILE A 42                       | 6.076 81.164 44.864 1.00 43.48<br>6.651 82.011 43.669 1.00 43.85   | č             |
| ATOM           | 85 CG1 ILE A 42<br>86 CD1 ILE A 42   | 6.651 82.011 43.669 1.00 43.85<br>5.663 82.826 43.136 1.00 40.70   | c             |
| ATOM           | 86 CD1 ILE A 42<br>87 CG2 ILE A 42   | 5.752 82.110 45.857 1.00 42.47                                     | С             |
| ATOM<br>ATOM   | 88 C ILE A 42                        | 8.139 80.719 46.190 1.00 45.34                                     | C             |
| ATOM           | 89 O ILE A 42                        | 9.201 80.964 45.787 1.00 48.42                                     | 0<br>N        |
| ATOM           | 90 N LEU A 43                        | 7.889 81.038 47.398 1.00 50.95<br>9.047 81.671 48.221 1.00 51.59   | C             |
| ATOM           | 91 CA LEU A 43                       | 10 10 10 21                                                        | č             |
| MOTA           | 92 CB LEU A 43<br>93 CG LEU A 43     | 8.644 81.748 49.688 1.00 50.21<br>8.095 83.028 50.220 1.00 45.20   | С             |
| ATOM<br>ATOM   | 94 CD1 LEU A 43                      | 7.506 83.923 49.234 1.00 50.53                                     | C             |
| ATOM           | 95 CD2 LEU A 43                      | 7.201 82.701 51.252 1.00 42.24                                     | C             |
| ATOM           | 96 C LEU A 43                        | 10.377 80.877 48.079 1.00 51.44                                    | с<br>0        |
| MOTA           | 97 O LEUA 43                         | 11.359 81.425 47.970 1.00 53.69<br>10.358 79.616 48.050 1.00 49.97 | N             |
| ATOM           | 98 N GLN A 44                        | 201300                                                             | Ċ             |
| ATOM           | 99 CA GLN A 44<br>100 CB GLN A 44    | 11.560 78.869 47.931 1.00 52.95<br>11.239 77.390 48.221 1.00 56.84 | С             |
| MOTA MOTA      | 100 CB GLN A 44<br>101 CG GLN A 44   | 10.634 77.171 49.671 1.00 66.59                                    | C             |
| ATOM           | 102 CD GLN A 44                      | 11.772 77.437 50.697 1.00 72.80                                    | ·C            |
| ATOM           | 103 OE1 GLN A 44                     | 11.847 76.735 51.690 1.00 76.86                                    | O<br>N        |
| MOTA           | 104 NE2 GLN A 44                     | 12.578 78.489 50.499 1.00 75.16<br>12.142 78.827 46.616 1.00 53.69 | Č             |
| MOTA           | 105 C GLN A 44                       | 12.142 78.827 46.616 1.00 53.69<br>13.277 78.968 46.626 1.00 57.46 | ŏ             |
| MOTA           | 106 O GLN A 44<br>107 N ILE A 45     | 11.427 78.551 45.484 1.00 52.07                                    | N             |
| ATOM<br>ATOM   | 107 N ILE A 45<br>108 CA ILE A 45    | 11.953 78.505 44.195 1.00 47.84                                    | C             |
| MOTA           | 109 CB ILE A 45                      | 11.099 77.712 43.337 1.00 48.21                                    | , , ,         |
| MOTA           | 110 CG1 ILE A 45                     | 10.042 78.529 42.741 1.00 44.06                                    | C ·           |
| ATOM           | 111 CD1 ILE A 45                     | 9.360 77.449 41.767 1.00 59.97<br>10.381 76.671 44.032 1.00 48.27  | " " C         |
| MOTA           | 112 CG2 ILE A 45                     | 200 40 03                                                          | С             |
| ATOM           | 113 C ILE A 45                       | 12.003 79.807 43.540 1.00 48.81<br>12.910 80.165 42.844 1.00 51.13 | . 0           |
| ATOM           | 114 O ILE A 45<br>115 N GLY A 46     | 10.994 80.543 43.582 1.00 48.23                                    | N             |
| ATOM<br>ATOM   | 116 CA GLY A 46                      | 11.120 81.872 42.933 1.00 48.54                                    | C             |
| ATOM           | 117 C GLY A 46                       | 10.568 82.038 41.604 1.00 47.73                                    | C<br>0        |
| ATOM           | 118 O GLY A 46                       | 9.967 81.176 41.084 1.00 50.64<br>10.857 83.102 40.985 1.00 49.71  | N             |
| ATOM           | 119 N ILE A 47                       | 10.00                                                              | č             |
| ATOM .         | 120 CA ILE A 47<br>121 CB ILE A 47   | 10.357 83.328 39.650 1.00 54.12<br>9.652 84.495 39.800 1.00 54.56  | С             |
| ATOM<br>ATOM   | 121 CB ILE A 47<br>122 CG1 ILE A 47  | 9.066 84.757 38.556 1.00 59.03                                     | c             |
| ATOM           | 123 CD1 ILE A 47                     | 8,230 86,005 38,685 1,00 63,30                                     | C             |
| ATOM           | 124 CG2 ILE A 47                     | 10.632 85.633 40.185 1.00 54.59                                    | C<br>C        |
| ATOM           | 125 C ILE A 47                       | 11.514 83.645 38.574 1.00 57.00<br>11.203 83.766 37.410 1.00 58.08 | Ö             |
| ATOM           | 126 O ILE A 47                       | 11.203 83.766 37.410 1.00 58.08<br>12.760 83.763 39.074 1.00 55.95 | . N           |
| MOTA<br>MOTA   | 127 N LYS A 48<br>128 CA LYS A 48    | 14.015 83.974 38.422 1.00 59.19                                    | С             |
| ATOM           | 129 CB LYS A 48                      | 15.030 84.717 39.338 1.00 60.10                                    | C             |
| ATOM           | 130 CG LYS A 48                      | 14.259 85.313 40.759 1.00 73.05                                    | c<br><b>c</b> |
| ATOM           | 131 CD LYS A 48                      | 15.123 85.316 42.283 1.00 73.90                                    | c             |
| MOTA           | 132 CE LYS A 48                      | 14.183 85.368 43.501 1.00 75.80<br>13.140 86.459 43.368 1.00 61.99 | N             |
| MOTA           | 133 NZ LYS A 48                      | 13.140 86.459 43.368 1.00 61.99<br>14.670 82.726 37.792 1.00 59.32 | С             |
| MOTA           | 134 C LYS A 48<br>135 O LYS A 48     | 14.172 82.066 36.810 1.00 59.20                                    | 0             |
| ATOM .<br>ATOM | 136 N ASP A 49                       | 15.867 82.426 38.273 1.00 56.61                                    | N             |
| MOTA           | 137 CA ASP A 49                      | 16.397 81.187 37.826 1.00 54.46                                    | C             |
| MOTA           | 138 CB ASP A 49                      | 17.886 81.070 38.100 1.00 55.81<br>18.526 79.947 37.211 1.00 57.00 | . C           |
| MOTA           | 139 CG ASP A 49                      | 20.00                                                              | ō             |
| ATOM           | 140 OD1 ASP A 49                     | 19.796 79.868 37.050 1.00 57.89<br>17.721 79.153 36.636 1.00 61.80 | ō             |
| ATOM           |                                      | 15.734 80.016 38.527 1.00 50.61                                    | . С           |
| MOTA<br>MOTA   | 142 C ASP A 49<br>143 O ASP A 49     | 16.323 79.547 39.421 1.00 52.34                                    | 0             |
| MOTA           | 144 N ILE A 50                       | 14.593 79.542 38.119 1.00 46.42                                    | И             |
| ATOM           | 145 CA ILE A 50                      | 14.123 78.443 38.697 1.00 48.50<br>12.694 78.018 38.377 1.00 48.86 | c             |
| ATOM           | 146 CB ILE A 50                      | 12:03                                                              | c             |
| MOTA           | 147 CG1 ILE A 50                     | 12.704 76.934 37.437 1.00 56.30<br>12.336 75.553 38.048 1.00 62.11 | С             |
| ATOM           | 148 CD1 ILE A 50<br>149 CG2 ILE A 50 | 11.742 79.157 37.989 1.00 56.44                                    | С             |
| MOTA<br>MOTA   | 150 C ILE A 50                       | 15.050 77.243 38.704 1.00 48.67                                    | С             |
| 111011         | -20 0                                |                                                                    |               |

TO SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SEC

|              |             |          |            |   |          | Fi               | gure             | 2                |                          |        |
|--------------|-------------|----------|------------|---|----------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 151         | 0        | ILE        | A | 50       | 15.157           | 76.517           | 39.745           | 1.00 49.83               | 0      |
| MOTA         | 152         | N        | SER        |   | 51       | 15.751           | 76.991           | 37.650           | 1.00 48.20               | N      |
| ATOM         | 153         | CA       | SER        |   | 51<br>51 | 16.484<br>17.155 | 75.831<br>75.565 | 37.698<br>36.399 | 1.00 48.44<br>1.00 52.80 | C<br>C |
| ATOM<br>ATOM | 154<br>155  | CB<br>OG | SER        |   | 51       | 17.967           | 74.300           | 36.427           | 1.00 46.27               | Ö      |
| ATOM         | 156         | c        | SER        |   | 51       | 17.563           | 75.778           | 38.712           | 1.00 51.75               | С      |
| ATOM         | 157         | 0        | SER        | A | 51       | 17.927           | 74.622           | 39.247           | 1.00 50.48               | 0      |
| MOTA         | 158         | N        | LYS        |   | 52       | 18.116           | 76.941           | 39.105           | 1.00 51.90               | N      |
| MOTA         | 159         | CA       | LYS        |   | 52       | 19.167           | 76.875<br>78.162 | 40.165<br>40.272 | 1.00 52.23<br>1.00 56.15 | c<br>c |
| MOTA<br>MOTA | 160<br>161  | CB<br>CG | LYS        |   | 52<br>52 | 19.803<br>21.292 | 78.174           | 40.787           | 1.00 56.01               | č      |
| ATOM         | 162         | CD       | LYS        |   | 52       | 22.458           | 77.775           | 39.652           | 1.00 70.39               | Ċ      |
| MOTA         | 163         | CE       | LYS        | A | 52       | 22.773           | 78.875           | 38.593           | 1.00 70.21               | С      |
| ATOM         | 164         | NZ       | LYS        |   | 52       | 24.069           | 78.711           | 37.871           | 1.00 82.42               | N<br>C |
| MOTA<br>MOTA | 165<br>.166 | С<br>0   | LYS        |   | 52<br>52 | 18.495<br>19.019 | 76.636<br>75.984 | 41.594<br>42.513 | 1.00 53.36<br>1.00 56.96 | Ö      |
| ATOM         | 167         | N        | SER        |   | 53       | 17.297           | 77.056           | 41.786           | 1.00 47.99               | N.     |
| MOTA         | 168         | CA       | SER        |   | 53       | 16.697           | 76.727           | 42.963           | 1.00 45.84               | С      |
| MOTA         | 169         | CB       | SER        |   | 53       | 15.363           | 77.413           | 43.000           | 1.00 44.84               | C      |
| ATOM         | 170<br>171  | OG<br>C  | SER<br>SER |   | 53<br>53 | 15.640<br>16.513 | 78.766<br>75.249 | 42.998<br>43.044 | 1.00 53.83<br>1.00 45.50 | o<br>c |
| MOTA<br>MOTA | 172         | ò        | SER        |   | 53       | 16.617           | 74.612           | 44.105           | 1.00 45.01               | ō      |
| ATOM         | 173         | N        | LEU        |   | 54       | 16.132           | 74.601           | 41.961           | 1.00 45.21               | N      |
| MOTA         | 174         | CA       | LEU        |   | 54       | 16.002           | 73.120           | 42.082           | 1.00 43.84               | Ċ      |
| MOTA         | 175         | CB       | LEU        |   | 54       | 15.596           | 72.714           | 40.778           | 1.00 41.31               | C      |
| ATOM         | 176<br>177  | CG       | LEU        |   | 54<br>54 | 14.245<br>14.297 | 73.022<br>72.210 | 40.315<br>38.955 | 1.00 41.32<br>1.00 41.46 | C<br>C |
| ATOM<br>ATOM | 178         |          | LEU        |   | 54       | 13.009           | 72.393           | 41.126           | 1.00 40.27               | č      |
| ATOM         | 179         | c        | LEU        |   | 54       | 17.375           | 72.369           | 42.560           | 1.00 43.71               | С      |
| MOTA         | 180         | 0        | LEU        | A | 54       | 17.449           | 71.404           | 43.187           | 1.00 44.07               | 0      |
| ATOM         | 181         | N        | THR        |   | 55       | 18.488           | 72.933           | 42.280           | 1.00 43.30               | N      |
| ATOM<br>ATOM | 182<br>183  | CA<br>CB | THR        |   | 55<br>55 | 19.678<br>20.971 | 72.278<br>72.881 | 42.643<br>41.817 | 1.00 42.87               | C<br>C |
| ATOM         | 184         |          | THR        |   | 55       | 20.816           | 72.637           | 40.326           | 1.00 45.23               | ō      |
| ATOM         | 185         |          | THR        |   | 55       | 22.107           | 72.163           | 42.196           | 1.00 35.96               | С      |
| MOTA         | 186         | C        | THR        |   | 55       | 19.823           | 72.374           | 44.128           | 1.00 41.51               | C      |
| ATOM         | 187<br>188  | O N      | THR        |   | 55<br>56 | 19.985<br>19.868 | 71.375<br>73.603 | 44.795<br>44.624 | 1.00 44.31               | О<br>N |
| ATOM         | 189         | CA       | ASN        |   | 56       | 19.898           | 73.980           | 46.013           | 1.00 34.75               | č      |
| ATOM         | 190         | CB       | ASN        |   | 56       | 19.547           | 75.423           | 46.067           | 1.00 34.48               | С      |
| MOTA         | 191         | CG       | ASN        |   | 56       | 20.744           | 76.338           | 45.698           | 1.00 36.13               | C      |
| ATOM         | 192         |          | ASN        |   | 56       | 21.875           | 75.840<br>77.663 | 45.500<br>45.591 | 1.00 39.61<br>1.00 29.29 | o<br>n |
| ATOM<br>ATOM | 193<br>194  | C        | ASN<br>ASN |   | 56<br>56 | 20.501<br>18.785 | 73.081           | 46.700           | 1.00 34.36               | c c    |
| ATOM         | 195         | ŏ        | ASN        |   | 56       | 18.993           | 72.171           | 47.498           | 1.00 34.45               | 0      |
| ATOM         | 196         | N        | LEU        |   | 57       | 17.591           | 73.155           | 46.308           | 1.00 31.97               | N      |
| ATOM         | 197         | CA       | LEU        |   | 57       | 16.707           | 72.209           | 46.917           | 1.00 31.71<br>1.00 33.83 | C<br>C |
| ATOM<br>ATOM | 198<br>199  | CB<br>CG | LEU<br>LEU |   | 57<br>57 | 15.331<br>14.462 | 72.248<br>73.523 | 46.353<br>46.630 | 1.00 36.13               | č      |
| MOTA         | 200         |          | LEU        |   | 57       | 13.305           | 73.497           | 45.620           | 1.00 42.55               | Č      |
| ATOM         | 201         |          | LEU        |   | 57       | 13.944           | 73.445           | 48.027           | 1.00 38.64               | С      |
| MOTA         | 202         | С        | LEU        |   | 57       | 17.147           | 70.811           | 46.940           | 1.00 33.08               | c      |
| ATOM<br>ATOM | 203<br>204  | O<br>N   | LEU<br>SER |   | 57<br>58 | 16.903<br>17.784 | 70.116<br>70.300 | 47.912<br>45.886 | 1.00 35.13<br>1.00 36.21 | O<br>N |
| ATOM         | 205         | CA       | SER        |   | 58       | 18.166           | 68.850           | 45.914           | 1.00 34.71               | С      |
| MOTA         | 206         | CB       | SER        |   | 58       | 18.698           | 68.361           | 44.594           | 1.00 36.52               | Ç      |
| ATOM         | 207         | OG       | SER        |   | 58       | 19.806           | 69.050           | 44.229           | 1.00 30.72               | 0      |
| ATOM         | 208         | C        | SER        |   | 58       | 19.197<br>19.286 | 68.596<br>67.500 | 46.916<br>47.456 | 1.00 34.96<br>1.00 29.82 | С<br>0 |
| ATOM<br>ATOM | 209<br>210  | O<br>N   | SER        |   | 58<br>59 | 19.972           | 69.617           | 47.187           | 1.00 35.06               | N      |
| ATOM         | 211         | CA       | LYS        |   | 59       | 21.054           | 69.385           | 48.177           | 1.00 36.79               | С      |
| MOTA         | 212         | CB       | LYS        |   | 59       | 21.867           | 70.636           | 48.222           | 1.00 38.03               | c      |
| ATOM         | 213         | CG       | LYS        |   | 59       | 23.169           | 70.663           | 47.768<br>46.322 | 1.00 43.50<br>1.00 59.74 | C<br>C |
| MOTA<br>MOTA | 214<br>215  | CD       | LYS        |   | 59<br>59 | 23.388<br>24.861 | 70.488<br>71.105 | 45.821           | 1.00 64.36               | č      |
| ATOM         | 216         | NZ       | LYS        |   | 59       | 24.956           | 72.649           | 46.483           | 1.00 58.10               | N      |
| ATOM         | 217         | C        | LYS        |   | 59       | 20.343           | 69.212           | 49.544           | 1.00 39.23               | C      |
| ATOM         | 218         | 0        | LYS        |   | 59       | 20.939           | 68.736           | 50.439           | 1.00 39.75               | 0      |
| MOTA         | 219         | N        | VAL        |   | 60<br>60 | 19.017           | 69.628<br>69.271 | 49.754<br>51.023 | 1.00 39.50<br>1.00 33.52 | N<br>C |
| MOTA<br>MOTA | 220<br>221  | CA<br>CB | VAL<br>VAL |   | 60<br>60 | 18.400<br>17.903 | 70.251           | 51.675           | 1.00 34.28               | č      |
| ATOM         | 222         |          | VAL        |   | 60       | 18.294           | 71.567           | 51.107           | 1.00 36.85               | С      |
| ATOM         | 223         |          | VAL        | Α | 60       | 16.431           | 70.112           | 51.858           | 1.00 37.83               | С      |
| ATOM         | 224         | С        | VAL        |   | 60       | 17.327           | 68.255           | 50.834           | 1.00 34.23               | C      |
| MOTA         | 225         | 0        | VAL        |   | 60<br>61 | 17.131<br>16.689 | 67.440<br>68.092 | 51.739<br>49.704 | 1.00 30.21<br>1.00 31.83 | 0<br>ห |
| MOTA         | 226         | N        | TYR        |   | 01       | 10.009           | 55.552           | .504             | 52.00                    | •      |

|                |            |           |                |            | D.               |                   | 2                |      |                    | • |        |
|----------------|------------|-----------|----------------|------------|------------------|-------------------|------------------|------|--------------------|---|--------|
|                |            |           |                | <b>.</b> . |                  | gure 2            | 49.761           | 1 00 | 31.92              |   | С      |
| ATOM           | 227        |           | TYR A<br>TYR A | 61<br>61   | 15.749<br>14.317 | 66.984<br>67.422  | 49.701           |      | 32.86              |   | č      |
| MOTA<br>MOTA   | 228<br>229 |           | TYR A          | 61         | 13.861           | 68.556            | 50.160           |      | 32.99              |   | С      |
| ATOM           | 230        |           | TYR A          | 61         | 13.178           | 68.339            | 51.354           | 1.00 | 45.35              |   | С      |
| ATOM           | 231        |           | TYR A          | 61         | 12.773           | 69.487            | 52.259           |      | 40.82              |   | C      |
| ATOM           | 232        | CZ        | TYR A          | 61         | 13.066           | 70.717            | 51.902           |      | 46.50              |   | С<br>О |
| ATOM           | 233        |           | TYR A          | 61         | 12.786           | 71.824            | 52.622           |      | 47.47              |   | c      |
| ATOM           | 234        |           | TYR A          | 61         | 13.839           | 70.990            | 50.628<br>49.839 |      | 51.95<br>43.97     |   | Č      |
| ATOM           | 235        |           | TYR A          | 61<br>61   | 14.226<br>16.097 | 69.867<br>65.785  | 49.079           |      | 33.82              |   | č      |
| ATOM<br>ATOM   | 236<br>237 | С<br>О    | TYR A          | 61         | 15.325           | 64.764            | 49.120           |      | 37.81              |   | 0      |
| ATOM           | 238        | N         | GLY A          | 62         | 17.246           | 65.734            | 48.407           | 1.00 | 35.15              |   | N      |
| ATOM           | 239        |           | GLY A          | 62         | 17.675           | 64.454            | 47.686           |      | 31.72              |   | C      |
| MOTA           | 240        | С         | GLY A          | 62         | 17.364           | 64.510            | 46.288           |      | 30.90              |   | 0      |
| ATOM           | 241        | 0         | GLY A          | 62         | 16.884           | 65.555            | 45.813<br>45.596 |      | 31.05<br>28.44     |   | N      |
| MOTA           | 242        | N         | PRO A          | 63<br>63   | 17.613<br>17.440 | 63.507<br>63.575  | 44.134           |      | 35.51              |   | C      |
| MOTA<br>MOTA   | 243<br>244 | CA<br>CB  | PRO A          | 63         | 18.204           | 62.341            | 43.642           |      | 37.55              |   | C '    |
| ATOM           | 245        | CG        | PRO A          | 63         | 17.880           | 61.324            | 44.704           | 1.00 | 33.67              |   | С      |
| MOTA           | 246        | CD        | PRO A          | 63         | 17.992           | 62.249            | 45.953           |      | 24.74              |   | C      |
| MOTA           | 247        | Ç         | PRO A          | 63         | 15.987           | 63.421            | 43.697           |      | 38.70              |   | c<br>o |
| MOTA           | 248        | 0         | PRO A          | 63         | 15.713           | 63.497            | 42.492           |      | 43.27              |   | И      |
| MOTA           | 249        | N         | VAL A          |            | 15.044           | 63.205<br>63.148  | 44.566<br>44.088 |      | 37.62              |   | č      |
| MOTA           | 250        | CA<br>CB  | VAL A          |            | 13.662<br>13.145 | 61.920            | 44.259           |      | 38.22              |   | C      |
| MOTA-<br>MOTA- | 251<br>252 |           | VAL A          |            | 11.789           | 61.909            | 43.767           |      | 40.59              |   | С      |
| ATOM           | 253        |           | VAL A          |            | 13.980           | 60.947            | 43.540           |      | 42.93              |   | С      |
| ATOM           | 254        | С         | VAL A          | 64         | 12.813           | 63.957            | 45.033           |      |                    |   | C      |
| ATOM           | 255        | 0         | VAL A          |            | 12.560           | 63.443            | 46.101           |      | 34.96<br>37.74     |   | O<br>N |
| MOTA           | 256        | N         | PHE A          |            | 12.460           | 65.229            | 44.682<br>45.545 |      | 38.33              |   | Č      |
| MOTA           | 257        | CA        | PHE A          |            | 11.583<br>12.216 | 65.884<br>:66.966 | 46.233           |      | 38.45              |   | č      |
| ATOM           | 258<br>259 | CB<br>CG  | PHE A          |            | 12.924           | 67.997            | 45.341           |      | 36.69              |   | C      |
| ATOM<br>ATOM   | 260        |           | PHE A          |            | 14.068           | 67.720            | 44.808           |      | 25.30              |   | С      |
| ATOM           | 261        |           | PHE A          |            | 14.760           | 68.650            | 44.090           | 1.00 | 29.63              |   | C      |
| ATOM           | 262        | CZ        | PHE A          |            | 14.259           | 69.925            | 43.784           |      | 39.94              |   | С      |
| MOTA           | 263        | CE2       | PHE A          |            | 13.017           | 70.244            | 44.304           |      | 41.65              |   | C<br>C |
| MOTA           | 264        |           | PHE A          |            | 12.365           | 69.243            | 45.100           |      | 38.35<br>39.37     | • | c      |
| ATOM           | 265        | C         | PHE A          |            | 10.280<br>10.105 | 66.317            | 45.042<br>43.877 |      | 37.40              |   | ŏ      |
| ATOM           | 266        | O<br>N    | PHE A          |            | 9.321            |                   | 46.025           |      | 41.23              |   | N      |
| MOTA<br>MOTA   | 267<br>268 | CA        | THR A          |            | 8.010            | 67.320            | 45.730           |      | 39.11              |   | С      |
| ATOM           | 269        | СВ        | THR A          |            | 6.944            | 66.798            | 46.524           |      | 38.92              |   | C      |
| ATOM           | 270        | OG1       | THR P          | 66         | 6.425            | 65.476            | 46.141           |      | 42.47              |   | 0      |
| ATOM           | 271        |           | THR A          | 2 .        | 5.762            | 67.638            | 46.189           |      | 43.08              |   | c      |
| MOTA           | 272        | С         | THR A          |            | 8.011            | 68.801<br>69.380  | 45.746<br>46.510 |      | 37.63              |   | ŏ      |
| ATOM           | 273        | 0         | THR A          |            | 8.682<br>7.352   | 69.442            | 44.821           |      | 38.18              |   | N      |
| ATOM<br>ATOM   | 274<br>275 | N<br>CA   | LEU A          |            | 7.350            | 70.859            | 44.874           |      | 40.62              |   | С      |
| ATOM           | 276        | СВ        | LEU A          |            | 8.410            | 71.370            | 43.970           | 1.00 | 42.99              |   | С      |
| ATOM           | 277        | CG        | LEU A          |            | 9.082            | 72.683            | 44.416           |      | 44.33              |   | C.     |
| ATOM           | 278        | CD1       | LEU A          |            | 10.100           | 72.164            | 45.238           |      | 47.78              |   | C      |
| MOTA           | 279        |           | LEU A          |            | 9.845            | 73.377            | 43.263           |      | ) 52.59<br>) 40.96 |   | Ċ      |
| ATOM           | 280        | C         | LEU A          |            | 6.032<br>5.449   | 71.364<br>70.808  | 44.435<br>43.561 |      | 44.14              |   | ŏ      |
| ATOM           | 281<br>282 | O<br>N    | LEU A          |            | 5.528            | 72.426            | 45.035           |      | 42.97              |   | N      |
| ATOM<br>ATOM   | 283        | CA        | TYR A          |            | 4.187            | 72.986            | 44.726           | 1.00 | 43.54              |   | С      |
| ATOM           | 284        | СВ        | TYR A          |            | 3.442            | 73.334            | 46.069           |      | 46.49              |   | C      |
| ATOM           | 285        | CG        | TYR A          |            | 3.015            | 72.055            | 46.726           |      | 42.81              |   | C      |
| ATOM           | 286        |           | TYR A          |            | 3.761            | 71.440            | 47.491           |      | 45.46              |   | C      |
| ATOM           | 287        |           | TYR A          |            | 3.296            | 70.112            | 48.078<br>47.796 |      | ) 44.35<br>) 41.35 |   | Ċ      |
| ATOM           | 288        | CZ        | TYR            |            | 2.146            | 69.551<br>68.334  | 48.377           |      | 50.54              |   | ŏ      |
| MOTA           | 289        | OH        | TYR I          |            | 1.739<br>1.391   | 70.167            | 46.975           |      | 43.11              |   | c      |
| MOTA<br>MOTA   | 290<br>291 |           | TYR            |            | 1.809            | 71.426            |                  | 1.0  | 49.55              |   | С      |
| ATOM           | 292        | C         | TYR            |            | 4.200            | 74.216            | 43.904           |      | 42.83              |   | C      |
| ATOM           | 293        | ō         | TYR            |            | 4.831            | 75.212            | 44.355           |      | 40.76              |   | 0      |
| ATOM           | 294        | N         | PHE            |            | 3.547            | 74.119            | 42.710           |      | 38.94              |   | N      |
| ATOM           | 295        | CA        | PHE            |            | 3.439            | 75.246            |                  |      | 42.88              |   | c      |
| MOTA           | 296        | CB        | PHE            |            | 3.687            | 74.822            |                  |      | 0 45.98<br>0 45.37 |   | c      |
| ATOM           | 297        | CG        | PHE            |            | 5.115            | 74.963<br>75.665  |                  |      | 54.29              |   | Ċ      |
| ATOM           | 298        |           | PHE            |            | 5.425<br>6.655   | 75.785            | _                |      | 0 62.21            |   | č      |
| ATOM           | 299<br>300 |           | PHE.           |            | 7.596            | 75.235            |                  |      | 58.47              |   | Č      |
| ATOM<br>ATOM   | 300        | CZ<br>CE2 | PHE.           |            | 7.286            | 74.498            |                  |      | 56.65              |   | С      |
| ATOM           | 302        |           | PHE            |            | 6.100            |                   |                  |      | 0 52.52            |   | С      |
|                |            |           |                | -          |                  |                   |                  |      |                    |   |        |

|              |            |          |            |   |          | Fi               | gure             | 2                |      |                |     |          |
|--------------|------------|----------|------------|---|----------|------------------|------------------|------------------|------|----------------|-----|----------|
| MOTA         | 303        | С        | PHE        |   | 69       | 1.960            | 75.697           | 42.129           |      | 47,00          |     | С        |
| ATOM<br>ATOM | 304<br>305 | O<br>N   | PHE        |   | 69<br>70 | 0.903<br>1.875   | 75.131<br>76.678 | 41.625<br>43.049 |      | 44.99          |     | <b>И</b> |
| ATOM         | 305        | CA       | GLY        |   | 70       | 0.627            | 76.989           | 43.675           |      | 46.29          |     | Ċ        |
| ATOM         | 307        | C        | GLY        | A | 70       | 0.070            | 75.747           | 44.376           |      | 47.01          |     | C        |
| MOTA         | .308       | 0        | GLY        |   | 70       | 0.712            | 75.288           | 45.384           |      | 46.20          |     | 0        |
| MOTA         | 309        | n<br>Ca  | LEU        |   | 71<br>71 | -0.998<br>-1.495 | 75.156<br>73.967 | 43.846<br>44.524 |      | 45.27<br>48.19 |     | N        |
| ATOM<br>ATOM | 310<br>311 | CB       | LEU        |   | 71       | -3.009           | 74.078           | 44.689           |      | 51.39          |     | č        |
| ATOM         | 312        | CG       | LEU        |   | 71       | -3.762           | 75.386           | 45.207           |      | 51.13          |     | С        |
| MOTA         | 313        |          | LEU        |   | 71       | -5.212           | 74.798           | 45.502           |      | 51.40          |     | С        |
| MOTA         | 314        |          | LEU        |   | 71<br>71 | -3.183<br>-1.321 | 76.051<br>72.681 | 46.421<br>43.808 |      | 45.54          |     | C        |
| ATOM<br>ATOM | 315<br>316 | С<br>0   | LEU        |   | 71       | -1.961           | 71.680           | 44.129           |      | 50.85          |     | ŏ        |
| ATOM         | 317        | N        | LYS        |   | 72       | -0.492           | 72.732           | 42.735           | 1.00 | 52.92          |     | N        |
| ATOM         | 318        | CA       | LY\$       |   | 72       | -0.029           | 71.611           | 41.850           |      | 49.36          |     | C        |
| ATOM<br>ATOM | 319<br>320 | CB<br>CG | LYS        |   | 72<br>72 | 0.375<br>0.610   | 72.193<br>71.117 | 40.552<br>39.437 |      | 51.95<br>47.72 |     | C        |
| ATOM         | 321        | CD       | LYS        |   | 72       | 0.540            | 71.675           | 38.064           |      | 50.49          |     | č        |
| ATOM         | 322        | CE       | LYS        |   | 72       | 1.172            | 70.777           | 37.144           |      | 52.75          |     | С        |
| ATOM         | 323        | NZ       | LYS        |   | 72       | 0.349            | 69.760           | 36.606           |      | 54.71          |     | N<br>C   |
| ATOM<br>ATOM | 324<br>325 | С<br>0   | LYS        |   | 72<br>72 | 1.223<br>2.235   | 71.052<br>71.785 | 42.382<br>42.745 |      | 49.88<br>52.62 |     | 0        |
| ATOM         | 326        | N        | PRO        |   | 73       | 1.188            | 69.788           | 42.589           |      | 51.01          |     | N        |
| MOTA         | 327        | CA       | PRO        | A | 73       | 2.316            | 69.012           | 43.120           |      | 51.34          |     | С        |
| ATOM         | 328        | CB       | PRO        |   | 73       | 1.657            | 67.931           | 43.920           |      | 48.72          |     | C<br>C   |
| ATOM<br>ATOM | 329<br>330 | CG<br>CD | PRO<br>PRO |   | 73<br>73 | 0.502<br>0.033   | 67.536<br>68.922 | 43.053<br>42.476 |      | 51.88          |     | C        |
| MOTA         | 331        | C        | PRO        |   | 73       | 3.078            | 68.489           | 41.949           |      | 49.92          |     | č        |
| MOTA         | 332        | 0        | PRO        |   | 73       | 2.600            | 67.724           | 41.111           |      | 47.59          |     | 0        |
| MOTA         | 333        | N.       | ILE        |   | 74       | 4.302            | 68.934           | 41.939           |      | 49.24          | •   | N        |
| ATOM<br>ATOM | 334<br>335 | CA<br>CB | ILE        |   | 74<br>74 | 5.294<br>5.905   | 68.529<br>69.822 | 40.945<br>40.552 |      | 47.80          |     | C        |
| ATOM         | 336        |          | ILE        |   | 74       | 4.805            | 70.654           | 39.867           |      | 51.23          |     | С        |
| MOTA         | 337        | CD1      | ILE        | A | 74       | 3.932            | 69.845           | 39.054           |      | 47.39          |     | С        |
| ATOM         | 338        |          | ILE        |   | 74       | 7.076            | 69.714           | 39.678           |      | 41.48          |     | C        |
| ATOM<br>ATOM | 339<br>340 | 0        | ILE        |   | 74<br>74 | 6.345<br>6.958   | 67.633<br>68.005 | 41.560<br>42.624 |      |                |     | Ö        |
| ATOM         | 341        | N        | VAL        |   | 75       | 6.611            | 66.492           | 40.973           | 1.00 |                |     | · N      |
| ATOM         | 342        | CA       | VAL        |   | 75       | 7.863            | 65.711           | 41.434           |      | 42.45          | . 1 | C        |
| MOTA         | 343        | CB       | VAL        |   | 75       | 7.583            | 64.286           | 41.184           |      | 41.32          |     | C        |
| ATOM<br>ATOM | 344<br>345 |          | VAL<br>VAL |   | 75<br>75 | 8.698<br>6.617   | 63.412<br>63.931 | 41.487<br>42.153 |      | 42.30<br>51.09 |     | Č        |
| ATOM         | 346        | c        | VAL        |   | 75       | 9.235            | 66.205           | 40.620           |      | 38.51          |     | Č        |
| ATOM         | 347        | 0        | VAL        |   | 75       | 9.234            | 66.157           | 39.432           |      | 39.21          |     | 0        |
| ATOM         | 348        | N        | VAL        |   | 76<br>76 | 10.230           | 66.801           | 41.193           |      | 34.26<br>35.04 |     | N<br>C   |
| ATOM<br>ATOM | 349<br>350 | CA<br>CB | VAL<br>VAL |   | 76       | 11.466<br>12.169 | 67.143<br>68.267 | 40.492<br>41.089 |      | 34.56          |     | Č        |
| ATOM         | 351        |          | VAL        |   | 76       | 13.217           | 68.660           | 40.351           |      | 38.94          |     | С        |
| MOTA         | 352        |          | VAL        |   | 76       | 11.429           | 69.392           | 41.055           |      | 36.88          |     | С        |
| ATOM         | 353        | C        | VAL<br>VAL |   | 76<br>76 | 12.516<br>12.760 | 65.902<br>65.394 | 40.531           |      | 34.67<br>35.64 |     | . C      |
| ATOM<br>ATOM | 354<br>355 | O<br>N   | LEU        |   | 77       | 13.085           | 65.400           | 39.390           |      | 33.42          |     | N        |
| ATOM         | 356        | CA       | LEU        |   | 77       | 14.206           | 64.371           | 39.382           | 1.00 | 30.96          |     | С        |
| ATOM         | 357        | СВ       | LEU        |   | 77       | 13.977           | 63.526           | 38.299           |      | 31.96          |     | C        |
| ATOM<br>ATOM | 358<br>359 | CG       | LEU        |   | 77<br>77 | 12.761<br>12.990 | 62.726<br>61.553 | 38.234<br>37.392 |      | 32.20<br>31.25 |     | C        |
| ATOM         | 360        |          | LEU        |   | 77       | 12.339           | 62.366           | 39.583           |      | 33.23          |     | č        |
| MOTA         | 361        | C        | LEU        |   | 77       | 15.517           | 65.093           | 39.158           |      | 32.29          |     | С        |
| MOTA         | 362        | 0        | LEU        |   | 77       | 15.645           | 65.791           | 38.203           |      | 31.80          |     | 0        |
| ATOM<br>ATOM | 363<br>364 | N<br>CA  | HIS        |   | 78<br>78 | 16.527<br>17.731 | 65.002<br>65.799 | 40.006<br>39.825 |      | 35.21<br>32.29 |     | N<br>C   |
| ATOM         | 365        | CB       | HIS        |   | 78       | 18.027           | 66.453           | 40.979           |      | 33.94          |     | Č        |
| MOTA         | 366        | CG       | HIS        |   | 78       | 18.883           | 67.647           | 40.844           |      | 30.39          |     | C        |
| ATOM         | 367        |          | HIS        |   | 78       | 20.222           | 67.635           | 41.099           |      | 34.55<br>35.88 |     | N        |
| ATOM<br>ATOM | 368<br>369 |          | HIS<br>HIS |   | 78<br>78 | 20.732<br>19.734 | 68.882<br>69.700 | 40.898           |      | 36.13          |     | C<br>N   |
| ATOM         | 370        |          | HIS        |   | 78       | 18.580           | 68.913           | 40.562           |      | 33.85          |     | Ċ        |
| ATOM         | 371        | C        | HIS        |   | 78       | 18.983           | 65.101           | 39.385           | 1.00 | 37.25          |     | С        |
| ATOM         | 372        | 0        | HIS        |   | 78       | 19.719           | 65.525           | 38.320           |      | 40.21          |     | 0        |
| ATOM<br>ATOM | 373<br>374 | N<br>Ca  | GLY<br>GLY |   | 79<br>79 | 19.513<br>20.829 | 64.070<br>63.962 | 39.882<br>38.967 |      | 34.84 29.06    |     | N<br>C   |
| ATOM         | 375        | C        | GLY        |   | 79       | 20.675           | 62.971           | 37.862           |      | 29.37          |     | č        |
| ATOM         | 376        | 0        | GLY        | A | 79       | 19.577           | 62.480           | 37.514           | 1.00 | 30.61          |     | 0        |
| MOTA         | 377        | N        | TYR        |   | 80       | 21.772           | 62.625           | 37.253           |      | 30.22          |     | N        |
| MOTA         | 378        | CA       | TYR        | A | 80       | 21.777           | 61.614           | 36.173           | 1.00 | 31.63          |     | С        |

|              |            |           |            |          |          | <b>D</b> 2       |                  |                  |      |                | • |        |
|--------------|------------|-----------|------------|----------|----------|------------------|------------------|------------------|------|----------------|---|--------|
| 3.004        | 379        | СВ        | TYR        | <b>a</b> | 80       | 23.245           | gure 2           | 2<br>35.719      | 1 00 | 41.22          |   | С      |
| ATOM<br>ATOM | 380        | CG        | TYR        |          | 80       | 23.387           | 60.297           | 34.773           |      | 41.29          |   | c      |
| MOTA         | 381        |           | TYR        |          | 80       | 23.320           | 60.509           | 33.395           | 1.00 | 44.38          |   | C      |
| MOTA         | 382        |           | TYR        |          | 80       | 23.355           | 59.409           | 32.506           |      | 40.96          |   | С      |
| MOTA         | 383        | CZ        | TYR        |          | 80       | 23.482           | 58.206           | 33.018           |      | 38.40          |   | C      |
| ATOM<br>ATOM | 384<br>385 | OH        | TYR        |          | 80<br>80 | 23.558           | 57.184<br>58.047 | 32.118<br>34.241 |      | 53.57<br>37.17 |   | 0      |
| ATOM         | 386        |           | TYR        |          | 80       | 23.494           | 59.092           | 35.182           |      | 35.13          |   | č      |
| ATOM         | 387        | C         | TYR        |          | 80       | 21.275           | 60.355           | 36.562           |      | 32.13          |   | С      |
| MOTA         | 388        | 0         | TYR        |          | 80       | 20.523           | 59.739           | 35.835           |      | 33.46          |   | 0      |
| ATOM         | 389        | N         | GLU        |          | 81       | 21.614           | 59.844           | 37.744           |      | 35.97          |   | N<br>C |
| ATOM<br>ATOM | 390<br>391 | CA<br>CB  | GLU        |          | 81<br>81 | 21.038<br>21.557 | 58.483<br>57.933 | 38.071<br>39.240 |      | 36.54<br>35.03 |   | C      |
| ATOM         | 392        | CG        | GLU        |          | 81       | 23.057           | 57.851           | 39.310           |      | 45.55          |   | č      |
| MOTA         | 393        | CD        | GLU        |          | 81       | 23.807           | 56.786           | 38.250           |      | 52.36          |   | С      |
| MOTA         | 394        |           | GLU        |          | 81       | 25.082           | 56.938           | 37.943           |      | 53.35          |   | 0      |
| MOTA<br>MOTA | 395<br>396 | OE2<br>C  | GLU        |          | 81<br>81 | 23.192<br>19.473 | 55.868<br>58.478 | 37.668<br>38.105 |      | 49.01<br>38.69 |   | 0      |
| ATOM         | 397        | ŏ         | GLU        |          | 81       | 18.777           | 57.582           | 37.492           |      | 40.69          |   | ŏ      |
| ATOM         | 398        | N         | ALA        |          | 82       | 18.866           | 59.477           | 38.726           |      | 37.87          |   | N      |
| ATOM         | 399        | CA        | ALA        |          | 82       | 17.403           | 59.402           | 38.793           |      | 34.63          |   | C      |
| ATOM         | 400        | CB        | ALA        |          | 82       | 16.936           | 60.284           | 39.741           |      | 33.65          |   | C      |
| ATOM<br>ATOM | 401<br>402 | C<br>0    | ALA<br>ALA |          | 82<br>82 | 16.908<br>15.949 | 59.786<br>59.123 | 37.462<br>36.946 |      | 36.43<br>39.84 |   | 0      |
| ATOM         | 403        | N         | VAL        |          | 83       | 17.443           | 60.822           | 36.777           |      | 34.69          |   | N      |
| ATOM         | 404        | CA        | VAL        | A        | 83       | 16.814           | 61.096           | 35.416           | 1.00 | 31.85          |   | С      |
| ATOM         | 405        | CB        | VAL        |          | 83       | 17.547           | 62.058           | 34.734           |      | 31.52          |   | c      |
| ATOM         | 406        |           | VAL        |          | 83 -     | 17.163           | 62.270<br>63.268 | 33.406<br>35.495 | •    | 32.33<br>31.16 |   | C      |
| ATOM<br>ATOM | 407<br>408 | C         | VAL<br>VAL |          | 83<br>83 | 17.495<br>17.010 | 59.851           | 34.591           |      | 32.74          |   | č      |
| ATOM         | 409        | ŏ         | VAL        |          | 83       | 16.153           | 59.396           | 33.855           |      | 33.35          |   | ō      |
| ATOM         | 410        | N         | LYS        | A        | 84       | 18.098           | 59.171           | 34.749           | 1.00 | 36.40          |   | N      |
| ATOM         | 411        | CA        | LYS        |          | 84       | 18.191           | 57.933           | 33.885           |      | 43.00          |   | c ·    |
|              | 412        | CB        | LYS        |          | 84       | 19.707           | 57.559           | 33.610           |      | 45.12<br>46.51 |   | C :    |
| ATOM<br>ATOM | 413<br>414 | CG        | LYS        |          | 84<br>84 | 20.249           | 56.125<br>55.222 | 33.827<br>32.769 |      | 46.80          |   | c      |
| ATOM         | 415        | CE        | LYS        |          | 84       | 20.907           | 53.815           | 33.146           |      | 56.15          |   | C /    |
| ATOM         | 416        | NZ        | LYS        | A        | 84       | 20.191           | 52.423           | 33.437           |      | 45.69          |   | N      |
| ATOM         | 417        | С         | LYS        |          | 84       | 17.288           | 56.769           | 34.268           |      | 43.88          |   | C .    |
| MOTA<br>MOTA | 418<br>419 | O<br>N    | LYS        |          | 84<br>85 | 16.634<br>17.156 | 56.144<br>56.530 | 33.418<br>35.548 |      | 48.34<br>44.31 |   | N<br>O |
| ATOM         | 420        | CA        | GLU        |          | 85       | 16.281           | 55.505           | 35.965           |      | 44.55          |   | c      |
| ATOM         | 421        | CB        | GLU        |          | 85       | 16.346           | 55.456           | 37.425           |      | 48.21          |   | С      |
| MOTA         | 422        | CG        | GLU        |          | 85       | 15.488           | 54.392           | 38.101           |      | 52.59          |   | С      |
| ATOM         | 423        | CD        | GLU        |          | 85       | 16.020           | 54.063           | 39.519           |      | 57.58          |   | 0      |
| MOTA<br>MOTA | 424<br>425 |           | GLU<br>GLU |          | 85<br>85 | 17.062<br>15.439 | 54.787<br>53.002 | 39.962<br>40.081 |      | 49.26<br>60.10 |   | ŏ      |
| ATOM         | 426        | Ç         | GLU        |          | 85       | 14.867           | 55.823           | 35.587           |      | 46.07          |   | C      |
| ATOM         | 427        | 0         | GLU        | A        | 85       | 14.145           | 54.912           | 35.244           |      | 51.88          |   | 0      |
| ATOM         | 428        | N         | ALA        |          | 86       | 14.427           | 57.069           | 35.552           |      | 44.28          |   | N      |
| ATOM<br>ATOM | 429<br>430 | CA<br>CB  | ALA<br>ALA |          | 86<br>86 | 13.107<br>12.608 | 57.312<br>58.780 | 35.063<br>35.657 |      | 43.86<br>44.87 |   | C      |
| MOTA         | 431        | C         | ALA        |          | 86       | 12.921           | 57.327           | 33.600           |      | 41.92          |   | č      |
| ATOM         | 432        | Ō         | ALA        | _        | 86       | 12.225           | 56.564           | 33.003           | 1.00 | 44.80          |   | 0      |
| ATOM         | 433        | N         | LEU        |          | 87       | 13.539           | 58.273           | 32.981           |      | 42.14          |   | N      |
| ATOM         | 434        | CA        | LEU        |          | 87       | 13.420<br>14.168 | 58.456<br>59.696 | 31.532<br>31.250 |      | 42.12<br>41.66 |   | C<br>C |
| ATOM<br>ATOM | 435<br>436 | CB<br>CG  | LEU        |          | 87<br>87 | 13.363           | 60.857           | 30.767           |      | 41.34          |   | č      |
| ATOM         | 437        |           | LEU        |          | 87       | 12.213           | 60.847           | 31.514           |      | 36.74          |   | С      |
| ATOM         | 438        | CD2       | LEU        |          | 87       | 14.193           | 62.156           | 30.833           |      | 42.00          |   | С      |
| ATOM         | 439        | C         | LEU        |          | 87       | 13.884           | 57.252           | 30.605<br>29.561 |      | 41.20<br>43.07 |   | С<br>О |
| ATOM<br>ATOM | 440<br>441 | N<br>N    | LEU        |          | 87<br>88 | 13.425<br>14.782 | 57.144<br>56.394 | 31.057           |      | 42.66          |   | N      |
| ATOM         | 442        | CA        | ILE        |          | 88       | 15.163           | 55.221           | 30.393           |      | 44.60          |   | С      |
| ATOM         | 443        | CB        | ILE        | A        | 88       | 16.654           | 55.187           | 30.235           |      | 43.58          |   | С      |
| ATOM         | 444        |           | ILE        |          | 88       | 16.962           | 56.061           | 29.007           |      | 40.46          |   | C      |
| ATOM         | 445        |           | ILE        |          | 88       | 18.279<br>17.083 | 56.599           | 29.274           |      | 49.74<br>49.59 |   | C<br>C |
| ATOM<br>ATOM | 446<br>447 | CG2<br>C  | ILE        |          | 88<br>88 | 14.688           | 53.927<br>53.933 | 29.605<br>31.090 |      | 46.05          |   | c      |
| ATOM         | 448        | 0         | ILE        |          | 88       | 14.151           | 53.148           | 30.455           | _    | 44.79          |   | o      |
| ATOM         | 449        | N         | ASP        |          | 89       | 14.864           | 53.718           | 32.381           |      | 47.92          |   | N      |
| ATOM         | 450        | CA        | ASP        |          | 89       | 14.388           | 52.438           | 32.947           |      | 50.27          |   | C      |
| ATOM         | 451        | CB        | ASP        |          | 89<br>89 | 15.089<br>16.677 | 52.075<br>52.187 | 34.220<br>34.043 |      | 52.12<br>59.48 |   | c<br>c |
| ATOM<br>ATOM | 452<br>453 | CG<br>OD1 | ASP<br>ASP |          | 89       | 17.472           | 52.610           | 34.043           |      | 65.01          |   | Ö      |
| MOTA         | 454        |           | ASP        |          | 89       | 17.193           | 51.968           | 32.909           |      | 62.87          |   | ō      |
|              |            |           |            |          |          |                  |                  |                  |      |                |   |        |

|              |            |          |            |   |                       | Fi               | gure             | 2                |                          | • |        |
|--------------|------------|----------|------------|---|-----------------------|------------------|------------------|------------------|--------------------------|---|--------|
| ATOM         | 455        | С        | ASP        | A | 89                    | 12.936           | 52.316           | 33.045           | 1.00 51.46               |   | С      |
| ATOM         | 456        | 0        | ASP        |   | 89                    | 12.346           | 51.290           | 32.651           | 1.00 52.59               |   | 0      |
| ATOM<br>ATOM | 457        | N        | LEU        |   | 90                    | 12.251           | 53.330           | 33.506           | 1.00 52.89               |   | N      |
| ATOM         | 458<br>459 | CA<br>CB | LEU        |   | 90<br>90              | 10.835<br>10.319 | 53.281<br>53.775 | 33.407<br>34.597 | 1.00 51.36<br>1.00 53.57 |   | C      |
| MOTA         | 460        | CG       | LEU        |   | 90                    | 10.401           | 52.811           | 35.798           | 1.00 54.91               |   | С      |
| MOTA         | 461        |          | LEU        |   | 90                    | 11.036           | 51.673           | 35.416           | 1.00 55.94               |   | C      |
| ATOM         | 462        |          | LEU        |   | 90                    | 11.245           | 53.644           | 36.938           | 1.00 57.15               |   | C      |
| ATOM<br>ATOM | 463<br>464 | 0        | LEU        |   | 90<br>90              | 10.354<br>9.248  | 54.139<br>54.785 | 32.249<br>32.228 | 1.00 52.73<br>1.00 53.90 |   | O.     |
| ATOM         | 465        | N        | GLY        |   | 91                    | 11.143           | 54.084           | 31.202           | 1.00 52.16               |   | N      |
| ATOM         | 466        | CA       | GLY        |   | 91                    | 10.760           | 54.746           | 30.013           | 1.00 51.92               |   | С      |
| ATOM<br>ATOM | 467<br>468 | С<br>0   | GLY<br>GLY |   | 91<br>91              | 9.298<br>8.884   | 55.012<br>56.191 | 29.734<br>29.570 | 1.00 50.75<br>1.00 53.20 |   | 0      |
| ATOM         | 469        | N        | GLU        |   | 92                    | 8.558            | 53.968           | 29.577           | 1.00 50.15               |   | N      |
| ATOM         | 470        | CA       | GLU        |   | 92                    | 7.166            | 54.068           | 29.254           | 1.00 52.51               |   | С      |
| ATOM         | 471        | CB       | GLU        |   | 92                    | 6.425            | 52.719           | 29.075           | 1.00 54.52               |   | C      |
| MOTA<br>MOTA | 472<br>473 | CD       | GLU<br>GLU |   | 92<br>92              | 5.957<br>4.997   | 52.271<br>53.255 | 27.655<br>26.988 | 1.00 60.90<br>1.00 66.63 |   | C      |
| ATOM         | 474        | OE1      | GLU        |   | 92                    | 3.919            | 53.611           | 27.562           | 1.00 59.98               |   | ŏ      |
| MOTA         | 475        | OE2      |            |   | 92                    | 5.326            | 53.636           | 25.791           | 1.00 72.94               |   | 0      |
| ATOM         | 476        | C        | GLU        |   | 92                    | 6.486            | 54.698           | 30.439           | 1.00 51.74               |   | C      |
| ATOM<br>ATOM | 477<br>478 | O<br>N   | GLU        |   | 92<br>93              | 5.697<br>6.722   | 55.675<br>54.230 | 30.251<br>31.620 | 1.00 53.66<br>1.00 47.11 |   | O<br>N |
| ATOM         | 479        | CA       | GLU        |   | 93                    | 6.021            | 54.933           | 32.696           | 1.00 47.89               |   | Ċ      |
| ATOM         | 480        | СВ       | GLU        |   | 93                    | 6.493            | 54.435           | 34.095           | 1.00 50.04               |   | С      |
| ATOM<br>ATOM | 481<br>482 | CG<br>CD | GLU        |   | 93<br>93              | 6.126<br>6.637   | 53.034<br>52.112 | 34.505<br>33.507 | 1.00 47.62               |   | C<br>C |
| ATOM         | 483        |          | GLU        |   | 93                    | 7.887            | 52.000           | 33.199           | 1.00 65.43               |   | ō      |
| MOTA         | 484        |          | GLU        | A | 93                    |                  | 51.535           | 32.917           | 1.00 56.11               |   | 0      |
| ATOM         | 485        | C ·      | GLU        |   | 93                    | 6.209            | 56.426           | 32.725           | 1.00 43.45               |   | С      |
| ATOM<br>ATOM | 486<br>487 | 0<br>N   | GLU<br>PHE |   | 93<br>94              | 5.476<br>7.250   | 57.085<br>56.933 | 33.364<br>32.137 | 1.00 43.57<br>1.00 41.68 |   | O<br>N |
| ATOM         | 488        | CA       | PHE        |   | 94                    | 7.459            | 58.335           | 32.166           | 1.00 42.22               |   | C      |
| ATOM         | 489        | СВ       | PHE        |   | 94                    | 8.786            | 58.675           | 32.848           | 1.00 42.24               |   | С      |
| ATOM         | 490        | CG       | PHE        |   | 94                    | 8.896            | 58.560           | 34.353           | 1.00 33.91               |   | Ç      |
| ATOM<br>ATOM | 491<br>492 |          | PHE        |   | 94 <sub>.</sub><br>94 | 8.878<br>9.076   | 59.557<br>59.420 | 35.157<br>36.457 | 1.00 33.27               |   | C<br>C |
| ATOM         | 493        | CZ       | PHE        |   | 94                    | 9.306            | 58.227           | 36.960           | 1.00 34.75               |   | Č      |
| ATOM         | 494        |          | PHE        |   | 94                    | 9.320            | 57.194           | 36.176           | 1.00 35.09               |   | С      |
| ATOM<br>ATOM | 495<br>496 | CD2<br>C | PHE        |   | 94<br>94              | 9.127<br>7.345   | 57.379<br>59.100 | 34.886<br>30.741 | 1.00 44.17<br>1.00 43.08 |   | C      |
| ATOM         | 497        | ō        | PHE        |   | 94                    | 7.882            | 60.317           | 30.569           | 1.00 43.00               |   | Ö      |
| ATOM         | 498        | N        | SER        |   | 95                    | 6.653            | 58.450           | 29.803           | 1.00 41.94               |   | N      |
| ATOM         | 499        | CA       | SER        |   | 95                    | 6.554            | 58.933           | 28.535           | 1.00 42.05               |   | C      |
| ATOM<br>ATOM | 500<br>501 | CB<br>OG | SER<br>SER |   | 95<br>95              | 6.237<br>4.808   | 57.753<br>57.990 | 27.781<br>27.384 | 1.00 46.23               |   | 0      |
| ATOM         | 502        | c        | SER        |   | 95                    | 5.519            | 59.970           | 28.363           | 1.00 41.49               |   | č      |
| ATOM         | 503        | 0        | SER        |   | 95                    | 5.362            | 60.751           | 27.445           | 1.00 44.07               |   | 0      |
| ATOM<br>ATOM | 504<br>505 | N<br>Ça  | GLY<br>GLY |   | 96<br>96              | 4.714<br>3.625   | 60.151<br>61.190 | 29.345<br>29.184 | 1.00 42.97<br>1.00 38.57 |   | N<br>C |
| ATOM         | 506        | C        | GLY        |   | 96                    | 4.106            | 62.581           | 29.288           | 1.00 37.05               |   | c      |
| MOTA         | 507        | 0        | GLY        |   | 96                    | 5.078            | 62.905           | 29.960           | 1.00 36.37               |   | 0      |
| ATOM         | 508        | N        | ARG        |   | 97                    | 3.386            | 63.501           | 28.658           | 1.00 37.19               |   | N      |
| ATOM<br>ATOM | 509<br>510 | CA<br>CB | ARG<br>ARG |   | 97<br>97              | 3.728<br>3.490   | 64.945<br>65.567 | 28.721<br>27.397 | 1.00 33.72<br>1.00 35.62 |   | C<br>C |
| ATOM         | 511        | CG       | ARG        |   | 97                    | 3.452            | 66.925           | 27.285           | 1.00 32.80               |   | С      |
| ATOM         | 512        | CD       | ARG        |   | 97                    | 4.750            | 67.577           | 27.160           | 1.00 38.15               |   | С      |
| MOTA<br>MOTA | 513<br>514 | NE<br>CZ | ARG<br>ARG |   | 97<br>97              | 5.571<br>6.834   | 67.172<br>66.774 | 26.008<br>26.186 | 1.00 40.30<br>1.00 37.33 |   | N<br>C |
| ATOM         | 515        |          | ARG        |   | 97                    | 7.560            | 66.451           | 25.247           | 1.00 37.33               |   | N      |
| MOTA         | 516        |          | ARG        |   | 97                    | 7.352            | 66.763           | 27.351           | 1.00 35.53               |   | N      |
| ATOM         | 517        | C        | ARG        |   | 97 .                  | 2.891            | 65.558           | 29.630           | 1.00 38.72               |   | С      |
| MOTA<br>MOTA | 518<br>519 | N<br>N   | ARG<br>GLY |   | 97<br>98              | 1.762<br>3.340   | 65.259<br>66.518 | 29.712<br>30.361 | 1.00 43.89<br>1.00 39.70 |   | N      |
| ATOM         | 520        | CA       | GLY        |   | 98                    | 2.507            | 67.223           | 31.230           | 1.00 35.42               |   | Ċ      |
| ATOM         | 521        | С        | GLY        | A | 98                    | 2.348            | 68.674           | 30.984           | 1.00 37.85               |   | С      |
| ATOM         | 522        | 0        | GLY        |   | 98                    | 3.179            | 69.372           | 30.650           | 1.00 43.46               | • | 0      |
| ATOM<br>ATOM | 523<br>524 | N<br>CA  | ILE        |   | 99<br>99              | 1.216<br>0.921   | 69.219<br>70.560 | 31.287<br>30.988 | 1.00 40.48<br>1.00 40.83 |   | N<br>C |
| ATOM         | 525        | CB       | ILE        |   | 99                    | -0.324           | 70.565           | 30.133           | 1.00 42.22               |   | С      |
| ATOM         | 526        |          | ILE        |   | 99                    | -0.198           | 69.359           | 29.105           | 1.00 47.46               |   | C      |
| ATOM<br>ATOM | 527<br>528 |          | ILE        |   | 99<br>99              | -1.059<br>-0.282 | 69.381<br>71.847 | 27.924<br>29.225 | 1.00 52.31<br>1.00 46.39 | • | C<br>C |
| ATOM         | 528<br>529 | C        | ILE        |   | 99                    | 0.753            | 71.383           | 32.101           | 1.00 48.39               |   | c      |
| MOTA         | 530        | ō        | ILE        |   | 99                    | 0.265            | 70.978           | 32.932           | 1.00 46.82               |   | ō      |
|              |            |          |            |   |                       |                  |                  |                  |                          |   |        |

|              |            |           |                        | Fi               | gure :           | 2                |                          |        |
|--------------|------------|-----------|------------------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 531        | N         | PHE A 100              | 1.247            | 72.589           | 32.120           | 1.00 45.58               | N      |
| ATOM         | 532        | CA        | PHE A 100              | 1.179            | 73.545           | 33.105           | 1.00 44.13               | C<br>C |
| ATOM         | 533        | CB        | PHE A 100<br>PHE A 100 | 2.467<br>3.572   | 74.337<br>73.824 | 33.157<br>34.150 | 1.00 45.39               | č      |
| ATOM<br>ATOM | 534<br>535 | CG<br>CD1 | PHE A 100              | 4.828            | 73.857           | 33.882           | 1.00 46.26               | С      |
| ATOM         | 536        |           | PHE A 100              | 5.715            | 73.352           | 34.823           | 1.00 55.82               | C      |
| ATOM         | 537        | CZ        | PHE A 100              | 5.371            | 72.800           | 36.047           | 1.00 52.74               | C      |
| ATOM         | 538        | CE2       | PHE A 100<br>PHE A 100 | 4.260<br>3.270   | 72.770<br>73.313 | 36.321<br>35.361 | 1.00 57.30               | c      |
| atom<br>Atom | 539<br>540 | C         | PHE A 100              | 0.004            | 74.566           | 32.593           | 1.00 48.97               | č      |
| ATOM         | 541        | ō         | PHE A 100              | -0.372           | 74.663           | 31.410           | 1.00 51.86               | 0      |
| ATOM         | 542        | N         | PRO A 101              | -0.619           | 75.323           | 33.464           | 1.00 49.60               | N<br>C |
| ATOM         | 543        | CA<br>CB  | PRO A 101<br>PRO A 101 | -1.631<br>-1.651 | 76.279<br>77.199 | 33.092<br>34.317 | 1.00 48.49               | c      |
| MOTA<br>MOTA | 544<br>545 | CG        | PRO A 101              | -1.489           | 76.088           | 35.590           | 1.00 49.64               | С      |
| ATOM         | 546        | CD        | PRO A 101              | -0.417           | 75.227           | 34.929           | 1.00 49.81               | , c    |
| ATOM         | 547        | C         | PRO A 101              | -1.399           | 77.118           | 31.987           | 1.00 47.42<br>1.00 50.36 | C<br>0 |
| ATOM         | 54B<br>549 | O<br>N    | PRO A 101<br>LEU A 102 | -2.152<br>-0.390 | 77.158<br>77.895 | 31.118<br>31.924 | 1.00 47.22               | N      |
| MOTA<br>MOTA | 550        | CA        | LEU A 102              | -0.356           | 78.792           | 30.721           | 1.00 45.43               | С      |
| ATOM         | 551        | CB        | LEU A 102              | 0.835            | 79.617           | 30.707           | 1.00 43.84               | c      |
| ATOM         | 552        | CG        | LEU A 102              | .1.100           | 80.570           | 29.595           | 1.00 49.64               | C<br>C |
| ATOM         | 553        |           | LEU A 102<br>LEU A 102 | 1.572<br>-0.189  | 79.963<br>81.403 | 28.410<br>29.290 | 1.00 50.08<br>1.00 56.08 | Ċ      |
| ATOM<br>ATOM | 554<br>555 | C         | LEU A 102              | -0.496           | 78.046           | 29.469           | 1.00 47.51               | c      |
| ATOM         | 556        | ō         | LEU A 102              | -1.174           | 78.422           | 28.617           | 1.00 50.42               | 0      |
| ATOM         | 557        | N         | ALA A 103              | 0.034            | 76.883           | 29.317           | 1.00 47.74               | N<br>C |
| ATOM         | 558        | CA        | ALA A 103<br>ALA A 103 | -0.102<br>1.108  | 76.249<br>75.241 | 28.084<br>27.895 | 1.00 49.06<br>1.00 49.63 | c      |
| ATOM<br>ATOM | 559<br>560 | CB<br>C   | ALA A 103              | -1.401           | 75.538           | 27.799           | 1.00 48.96               | č      |
| ATOM         | 561        | ō         | ALA A 103              | -1.909           | 75.362           |                  | 1.00 47.16               | . 0    |
| ATOM         | 562        | N         | GLU A 104              |                  | 74.991           | 28.812           | 1.00 51.12               | N      |
| ATOM         | 563        | CA        | GLU A 104              | -3.061<br>-3.434 | 74.338<br>73.847 | 28.738<br>30.101 | 1.00 53.84<br>1.00 51.49 | C<br>C |
| ATOM<br>ATOM | 564<br>565 | CB<br>CG  | GLU A 104<br>GLU A 104 | -4.577           | 72.940           | 30.021           | 1.00 60.23               | č      |
| ATOM         | 566        | CD        | GLU A 104              | -4.704           | 72.137           | 31.311           | and the second second    | · с    |
| ATOM         | 567        | OE1       | GLU A 104              | -4.643           | 72.714           | 32,320           | 1.00 62.45               | 0      |
| ATOM         | 568        |           | GLU A 104              | -4.842           | 70.878<br>75.335 | 31.346<br>28.184 | 1.00 78.40<br>1.00 53.81 | 0<br>C |
| ATOM<br>ATOM | 569<br>570 | C         | GLU A 104<br>GLU A 104 | -4.027<br>-4.763 | 75.010           | 27.399           | 1.00 58.07               | . 0    |
| ATOM         | 571        | N         | ARG A 105              | -3.926           | 76.588           | 28.480           |                          | N      |
| ATOM         | 572        | CA        | ARG A 105              | -4.845           | 77.607           | 27.897           | 1.00 53.08               | c      |
| ATOM         | 573        | СВ        | ARG A 105              | -4.863           | 78.801           | 28.755<br>29.837 | 1.00 52.33               | C<br>C |
| MOTA<br>MOTA | 574<br>575 | CG<br>CD  | ARG A 105<br>ARG A 105 | -5.776<br>-7.177 | 78.761<br>79.093 | 29.364           | 1.00 66.58               | č      |
| ATOM         | 576        | NE        | ARG A 105              | -7.801           | 80.399           | 29.612           | 1.00 70.83               | N      |
| MOTA         | 577        | CZ        | ARG A 105              | -8.194           | 80.834           | 30.747           | 1.00 66.82               | C      |
| ATOM         | 578        | NH1       |                        | -8.755           | 82.042           | 30.787<br>31.830 | 1.00 71.12               | N<br>N |
| MOTA<br>MOTA | 579<br>580 | NH2<br>C  | ARG A 105<br>ARG A 105 | -8.013<br>-4.508 | 80.102<br>78.140 | 26.568           | 1.00 51.49               | c<br>C |
| ATOM         | 581        | Ö         | ARG A 105              | -5.367           | 78.575           | 25.824           | 1.00 52.38               | 0      |
| ATOM         | 582        | N         | ALA A 106              | -3.215           | 78.141           | 26.252           | 1.00 52.04               | N      |
| ATOM         | 583        | CA        | ALA A 106              | -2.761           | 78.650           | 24.960<br>24.984 | 1.00 51.03               | C ·    |
| ATOM<br>ATOM | 584<br>585 | CB<br>C   | ALA A 106<br>ALA A 106 | -1.399<br>-2.853 | 79.260<br>77.740 | 23.906           | 1.00 49.44               | č      |
| ATOM         | 586        | Ö         | ALA A 106              | -2.702           | 78.215           | 22.818           | 1.00 50.44               | 0      |
| ATOM         | 587        | N         | ASN A 107              | -3.118           | 76.510           | 24.221           | 1.00 49.44               | N      |
| MOTA         | 588        | CA        | ASN A 107              | -3.139           | 75.490<br>74.299 | 23.196<br>23.506 | 1.00 55.02<br>1.00 55.52 | C<br>C |
| ATOM<br>ATOM | 589<br>590 | CB<br>CG  | ASN A 107<br>ASN A 107 | -2.238<br>-0.864 | 74.595           | 23.126           | 1.00 58.78               | č      |
| ATOM         | 591        |           | ASN A 107              | -0.019           |                  |                  | 1.00 67.45               | 0      |
| ATOM         | 592        |           | ASN A 107              | -0.618           | 74.760           |                  | 1.00 49.03               | . И    |
| ATOM         | 593        | C         | ASN A 107              | -4.392           |                  | 22.828<br>23.479 | 1.00 57.35<br>1.00 62.61 | C<br>0 |
| ATOM         | 594<br>595 | 0         | ASN A 107<br>ARG A 108 | -4.772<br>-5.007 | 73.931<br>75.240 |                  | 1.00 58.69               | N      |
| ATOM<br>ATOM | 595<br>596 | N<br>CA   | ARG A 108              | -6.277           |                  | 21.338           | 1.00 59.97               | C      |
| ATOM         | 597        | СВ        | ARG A 108              | ~7.139           | 75.805           | 20.595           | 1.00 60.79               | C      |
| ATOM         | 598        | CG        | ARG A 108              | -8.495           |                  | 21.034           | 1.00 61.21               | c<br>c |
| ATOM         | 599        | CD        | ARG A 108              | -8.629<br>-9.305 |                  |                  | 1.00 65.73<br>1.00 59.95 | N      |
| ATOM<br>ATOM | 600<br>601 | NE<br>CZ  | ARG A 108<br>ARG A 108 | -9.363           |                  | 21.749           | 1.00 61.14               | c<br>c |
| ATOM         | 602        |           | ARG A 108              | -8.807           |                  | 20.571           | 1.00 55.83               | N      |
| ATOM         | 603        |           | ARG A 108              | -9.963           |                  |                  | 1.00 67.57               | N      |
| ATOM         | 604        | C         | ARG A 108              | -5.808<br>-5.587 |                  |                  | 1.00 60.45<br>1.00 65.57 | C<br>0 |
| ATOM<br>ATOM | 605<br>606 | O<br>N    | ARG A 108<br>GLY A 109 | -5.587<br>-5.547 |                  |                  | 1.00 59.35               | N      |
| A. OH        | 500        | .,        | Ju                     |                  |                  |                  |                          |        |

|              |             |           |       |                | Fi                       | gure             | 2                |                                       |          |
|--------------|-------------|-----------|-------|----------------|--------------------------|------------------|------------------|---------------------------------------|----------|
| MOTA         | 607         | CA        |       | A 109          | -5.096                   | 71.497           | 19.611           | 1.00 55.75                            | c        |
| ATOM<br>ATOM | 608<br>609  | C<br>0    |       | A 109<br>A 109 | -3.834<br>-2.831         | 70.683<br>71.171 | 19.845<br>20.060 | 1.00 54.74                            | C<br>O   |
| ATOM         | 610         | N         |       | A 110          | -3.943                   | 69.379           | 19.868           | 1.00 53.54                            | N        |
| ATOM         | 611         | CA        |       | A 110          | -2.823                   | 68.557           | 20.048           | 1.00 51.28                            | Ċ        |
| ATOM         | 612         | СВ        |       | A 110          | -3.093                   | 67.607           | 21.151           | 1.00 50.87                            | С        |
| ATOM<br>ATOM | 613<br>614  | CG        |       | A 110<br>A 110 | -3.390<br>-2.552         | 68.292<br>69.294 | 22.438<br>22.919 | 1.00 58.40<br>1.00 58.60              | C        |
| ATOM         | 615         |           |       | A 110          | -2.815                   | 69.940           | 24.104           | 1.00 65.41                            | c        |
| ATOM         | 616         | CZ        |       | A 110          | -3.871                   | 69.624           |                  | 1.00 65.14                            | č        |
| ATOM         | 617         |           |       | A 110          | -4.705                   | 68.624           | 24.347           | 1.00 68.77                            | C        |
| ATOM<br>ATOM | 618<br>619  | CD2       |       | A 110<br>A 110 | -4.470<br>-2.258         | 67.959<br>67.822 | 23.154<br>18.868 | 1.00 59.89<br>1.00 51.96              | C<br>C   |
| ATOM         | 620         | ŏ         |       | A 110          | -2.858                   | 67.036           | 18.162           | 1.00 54.58                            | 0        |
| ATOM         | 621         | N         |       | A 111          | -1.009                   | 68.108           | 18.668           | 1.00 50.81                            | N        |
| ATOM<br>ATOM | 622<br>623  | CA<br>C   |       | A 111<br>A 111 | -0.192<br>0.796          | 67.486           | 17.668           | 1.00 49.70                            | C        |
| MOTA         | 624         | Ö         |       | A 111          | 0.480                    | 66.444<br>65.229 | 18.108<br>18.120 | 1.00 45.32                            | C<br>D   |
| ATOM         | 625         | N         |       | A 112          | 1.986                    | 66.940           | 18.464           | 1.00 43.32                            | N        |
| MOTA         | 626         | CA        |       | A 112          | 3.069                    | 66.076           | 18.953           | 1.00 38.93                            | C        |
| MOTA<br>MOTA | 627<br>628  | CB<br>CG1 |       | A 112<br>A 112 | 3.963<br>4.959           | 65.867<br>64.792 | 17.954<br>18.225 | 1.00 40.47                            | C<br>C   |
| MOTA         | 629         |           |       | A 112          | 5.646                    | 64.393           | 16.889           | 1.00 44.81                            | c        |
| ATOM         | 630         |           |       | A 112          | 4.628                    | 67.146           | 17.536           | 1.00 44.49                            | С        |
| ATOM<br>ATOM | 631         | C         |       | A 112          | 3.634                    | 66.519           | 20.158           | 1.00 37.30                            | С        |
| MOTA         | 632<br>633  | O<br>N    |       | A 112<br>A 113 | 3.798<br>3.895           | 65.754<br>67.752 | 21.003           | 1.00 44.60<br>1.00 35.52              | O<br>N   |
| ATOM         | 634         | CA        |       | A 113          | 4.566                    | 68.149           | 21.568           | 1.00 34.15                            | Č        |
| ATOM         | 635         | СВ        |       | A 113          | 4.871                    | 69.577           | 21.480           | 1.00 33.64                            | <b>C</b> |
| MOTA         | 636         |           |       | A 113<br>A 113 | 5.242                    | 70.127           | 22.793           | 1.00 38.82                            | , C      |
| ATOM<br>ATOM | 637<br>638  | C         |       | A 113          | 5.938<br>3.730           | 69.834<br>67.968 | 20.622<br>22.821 | 1.00 33.21                            | <br>1 C  |
| ATOM         | 639         | ō         |       | A 113          | 4.290                    | 67.847           | 23.906           | 1.00 40.55                            | 0        |
| ATOM         | 640         | N         |       | A 114          | 2.406                    | 68.044           | 22.730           | 1.00 39.70                            | N        |
| ATOM<br>ATOM | 641<br>642  | CA<br>CB  |       | A 114<br>A 114 | 1.468<br>0.720           | 67.963           | 23.874           | 1.00 37.76                            | . с      |
| ATOM         | 643         | CG        |       | A 114          | 1.554                    | 69.313<br>70.451 | 24.006<br>24.307 | 1.00 36.16<br>1.00 33.53              | C        |
| ATOM         | 644         |           | PHE 2 |                | 1.643                    | 71.457           | 23.462           | 1.00 41.04                            | c        |
| ATOM         | 645         |           | PHE 2 |                | 2.484                    | 72.739           | 23.754           | 1.00 41.09                            | 27 JC    |
| ATOM<br>ATOM | 646<br>647  | CZ        | PHE A | A 114          | 3.191<br>3.089           | 72.797<br>71.746 | 25.020<br>25.866 | 1.00 38.57 <sup>c</sup><br>1.00 32.94 | C C      |
| ATOM         | 648         |           | PHE 2 |                | 2.234                    | 70.574           | 25.477           | 1.00 37.21                            | Ċ        |
| ATOM         | 649         | С         |       | A 114          | 0.487                    | 66.829           | 23.824           | 1.00 37.32                            | С        |
| ATOM<br>ATOM | 650<br>651  | 0<br>N    |       | A 114          | -0.320                   | 66.548           | 24.632           | 1.00 41.71                            | 0        |
| ATOM         | 652         | CA        |       | A 115<br>A 115 | 0.524<br>-0.348          | 66.085<br>64.952 | 22.866<br>22.767 | 1.00 40.66<br>1.00 39.87              | N<br>C   |
| ATOM         | 653         | CB        |       | A 115          | -0.040                   | 64.363           | 21.453           | 1.00 42.53                            | č        |
| ATOM         | 654         | OG<br>C   |       | A 115          | -0.769                   | 65.065           | 20.492           | 1.00 53.09                            | 0        |
| ATOM<br>ATOM | 655<br>656  | 0         |       | A 115<br>A 115 | 0.087<br>1.143           | 63.930<br>64.005 | 23.760<br>24.298 | 1.00 40.89                            | C<br>O   |
| ATOM         | 657         | Ň         |       | A 116          | -0.735                   | 62.901           | 23.969           | 1.00 41.21                            | พ        |
| ATOM         | 658         | CA        |       | A 116          | -0.471                   | 61.900           | 24.975           | 1.00 38.19                            | С        |
| ATOM<br>ATOM | 659.<br>660 | CB        |       | A 116<br>A 116 | -1.005                   | 62.300           | 26.273<br>27.317 | 1.00 35.93<br>1.00 39.46              | C        |
| ATOM         | 661         |           | ASN A |                | 0.074<br>0.942           | 62.715<br>61.936 | 27.625           | 1.00 48.45                            | Ö        |
| ATOM         | 662         |           | ASN A | 116            | -0.087                   | 63.827           | 27.981           | 1.00 36.40                            | N        |
| ATOM         | 663         | C         |       | 116            | -1.135                   | 60.673           | 24.381           | 1.00 38.66                            | C        |
| ATOM<br>ATOM | 664<br>665  | O<br>N    | GLY A | 116            | -1.610<br>-1.026         | 60.648<br>59.565 | 23.243<br>25.027 | 1.00 37.28                            | O<br>N   |
| ATOM         | 666         | CA        | GLY A |                | -1.649                   | 58.381           | 24.458           | 1.00 40.16                            | Ċ        |
| ATOM         | 667         | C         | GLY A |                | -1.374                   | 57.925           | 23.014           | 1.00 44.99                            | С        |
| ATOM<br>ATOM | 668<br>669  | O<br>N    | GLY F |                | -0.338<br>-2.335         | 58.179<br>57.224 | 22.417<br>22.434 | 1.00 46.24<br>1.00 45.77              | N<br>0   |
| MOTA         | 670         | CA        | LYS F |                | -2.293                   | 56.851           | 21.065           | 1.00 47.64                            | C        |
| ATOM         | 671         | CB        | LYS A | 118            | -3.539                   | 55.966           | 20.648           | 1.00 50.45                            | С        |
| ATOM         | 672         | CG        | LYS A |                | -4.554                   | 55.917           | 21.869           | 1.00 61.75                            | c        |
| ATOM<br>ATOM | 673<br>674  | CE        | LYS A |                | -4.979<br><b>-</b> 5.622 | 57.424<br>57.163 | 22.581 23.978    | 1.00 62.69<br>1.00 59.63              | c        |
| MOTA         | 675         | NZ        | LYS A |                | ~4.684                   | 56.563           | 25.027           | 1.00 60.58                            | N        |
| ATOM         | 676         | С         | LYS A |                | -2.169                   | 58.075           | 20.180           | 1.00 43.23                            | С        |
| ATOM<br>ATOM | 677<br>678  | O<br>N    | LYS A |                | -1.481<br>-2.797         | 58.104<br>59.112 | 19.240<br>20.399 | 1.00 44.81<br>1.00 41.76              | 0        |
| ATOM         | 679         | CA        | LYS P |                | -2.797<br>-2.558         | 60.123           | 19.378           | 1.00 41.76                            | N<br>C   |
| ATOM         | 680         | СB        | LYS A | 119            | -3.251                   | 61.375           | 19.740           | 1.00 40.49                            | С        |
| ATOM         | 681         | CG        | LYS A |                | -3.368                   | 62.325           | 18.712           | 1.00 47.26                            | С        |
| MOTA         | 682         | CD        | LYS A | 119            | -4.414                   | 63.567           | 19.241           | 1.00 53.29                            | С        |
|              |             |           |       |                |                          |                  |                  |                                       |          |

|              |               |           |            |   |            | Fi               | .gure            | 2                |      |                |            |
|--------------|---------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|------------|
| ATOM         | 683           | CE        | LYS        | A | 119        | -4.567           | 64.660           | 18.271           |      | 55.89          | C          |
| MOTA         | 684           | NZ        | LYS        |   |            | -5.899           | 65.439           | 18.478           |      | 65.64          | ท<br>C     |
| MOTA         | 685           | C         | LYS<br>LYS |   |            | -1.027<br>-0.368 | 60.411<br>60.379 | 19.338<br>18.287 |      | 45.58<br>45.13 | ō          |
| MOTA<br>MOTA | 686<br>687    | N<br>O    | TRP        |   |            | -0.424           | 60.646           | 20.534           |      | 45.87          | N          |
| ATOM         | 688           | CA        | TRP        |   |            | 0.952            | 60.949           | 20.552           | 1.00 | 43.55          | С          |
| ATOM         | 689           | СВ        | TRP        | A | 120        | 1.335            | 61.212           | 21.956           |      | 44.81          | C          |
| ATOM         | 690           | CG        | TRP        |   |            | 2.808            | 61.343           | 22.101           |      | 46.13          | C<br>C     |
| ATOM         | 691           |           | TRP        |   |            | 3.546            | 62.399           | 21.734<br>22.011 |      | 50.97<br>54.12 | N          |
| MOTA<br>MOTA | 692<br>693    |           | TRP<br>TRP |   |            | 4.873<br>4.970   | 62.141<br>60.914 | 22.582           |      | 45.10          | <u>,</u> c |
| ATOM         | 694           |           | TRP        |   |            | 3.703            | 60.413           | 22.686           |      | 42.76          | С          |
| MOTA         | 695           |           | TRP        |   |            | 3.539            | 59.171           | 23.275           |      | 49.62          | c          |
| MOTA         | 696           |           | TRP        |   |            | 4.654            | 58.480           | 23.754           |      | 47.25<br>42.18 | C<br>C     |
| MOTA<br>MOTA | 697<br>698    |           | TRP        |   |            | 5.878<br>6.043   | 59.068<br>60.289 | 23.660<br>23.055 |      | 42.03          | č          |
| ATOM         | 699           | c         | TRP        |   |            | 1.726            | 59.870           | 19.950           |      | 46.08          | С          |
| ATOM         | 700           | 0         | TRP        |   |            | 2.458            | 60.115           | 19.026           |      | 46.96          | 0          |
| ATOM         | 701           | N         | LYS        |   |            | 1.598            | 58.653           | 20.449           |      | 46.24          | N<br>C     |
| ATOM         | 702           | CA        | LYS        |   |            | 2.380<br>1.759   | 57.521<br>56.299 | 20.103<br>20.617 |      | 46.13          | Č          |
| ATOM<br>ATOM | 703<br>704    | CB<br>CG  | LYS        |   |            | 2.658            | 55.377           | 21.589           |      | 59.42          | č          |
| ATOM         | 705           | CD        | LYS        |   |            | 3.908            | 54.653           | 20.823           |      | 70.81          | С          |
| ATOM         | 706           | CE        | LYS        | A | 121        | 5.188            | 54.282           | 21.857           |      | 76.01          | c          |
| MOTA         | 707           | NZ        | LYS        |   |            | 6.379            | 55.492           | 22.115<br>18.757 |      | 72.17<br>47.67 | ท<br>C     |
| MOTA         | 708<br>709    | С<br>0    | LYS<br>LYS |   |            | 2.360<br>3.278   | 57.335<br>56.866 | 18.179           |      | 49.99          | ŏ          |
| ATOM         | 710           | N         | GLU        |   |            | 1.292            | 57.739           | 18.113           |      | 50.95          | N          |
| ATOM         | 711           | CA        | GLU        |   |            | 1.156            | 57.489           | 16.668           |      | 49.04          | C          |
| MOTA         | 712           | CB        | GLU        |   |            | -0.251           | 57.203           | 16.395           |      | 50.93          | C<br>C     |
| ATOM         | 713           | CG        | GLU        |   |            | -0.615<br>-2.114 | 55.876<br>55.463 | 15.652<br>15.807 |      | 60.86<br>64.30 | c          |
|              | 714<br>715    | CD<br>OE1 | GLU        |   |            | -2.402           | 54.678           | 16.748           |      | 68.75          | ō          |
| ATOM         | 716           |           | GLU        |   |            | -2.970           | 55.933           | 14.996           |      | 69.28          | 0          |
| ATOM         | 717           | С         |            |   | 122        | 1.628            | 58.581           | 15.873           |      | 48.39          | C          |
| ATOM         |               | 0         | GLU        |   |            | 2.343            | 58.303           | 14.960<br>16.136 |      | 54.52<br>44.18 | О<br>И     |
| ATOM .       | 719<br>720    | N -<br>CA |            |   | 123<br>123 | 1.292<br>1.856   | 59.840<br>60.892 | 15.349           |      | 40.60          | č          |
| ATOM:        |               | СВ        |            |   | 123        | 1.181            | 62.142           | 15.761           | 1.00 | 38.96          | С          |
| ATOM         | 3€ <b>722</b> |           | ILE        |   |            | -0.247           | 62.086           | 15.454           |      | 42.69          | C          |
| MOTA         | 723           |           | ILE        |   |            | -1.052           | 63.488           | 15.970<br>14.944 |      | 47.09<br>44.85 | C<br>C     |
| ATOM<br>ATOM | 724<br>725    | CG2<br>C  | ILE        |   | 123        | 1.683<br>3.425   | 63.444<br>60.906 | 15.467           |      | 39.20          | č          |
| ATOM         | 726           | ŏ         |            |   | 123        | 4.194            | 61.155           | 14.580           |      | 40.79          | 0          |
| ATOM         | 727           | N         |            |   | 124        | 3.938            | 60.697           | 16.597           |      | 38.18          | N          |
| MOTA         | 728           | CA        |            |   | 124        | 5.399            | 60.880           | 16.755           |      | 37.41          | C<br>C     |
| ATOM         | 729<br>730    | CB<br>CG  |            |   | 124<br>124 | 5.801<br>7.258   | 60.533<br>60.629 | 18.150<br>18.386 |      | 35.60<br>35.22 | č          |
| MOTA<br>MOTA | 731           | CD        |            |   | 124        | 7.657            |                  | 19.720           |      | 32.56          | Ċ          |
| ATOM         | 732           | NE        |            |   | 124        | 9.078            | 60.076           | 19.960           |      | 31.38          | N          |
| MOTA         | 733           | CZ        |            |   | 124        | 9.839            |                  | 20.376           |      | 40.33          | C<br>N     |
| ATOM<br>ATOM | 734<br>735    |           | ARG        |   |            | 9.345<br>11.186  |                  | 20.607<br>20.560 |      | 44.91<br>34.96 | N          |
| ATOM         | 736           | C         |            |   | 124        | 6.048            |                  | 15.909           |      | 39.31          | Ċ          |
| ATOM         | 737           | Ó         |            |   | 124        | 7.040            |                  | 15.317           |      | 42.49          | 0          |
| ATOM         | 738           | N         |            |   | 125        | 5.552            |                  | 15.891           | 1.00 | 42.17<br>42.11 | N<br>C     |
| ATOM         | 739<br>740    | CA<br>CB  |            |   | 125<br>125 | 6.191<br>5.491   |                  |                  |      | 43.95          | č          |
| ATOM<br>ATOM | 741           | CG        |            |   | 125        | 5.907            |                  |                  |      | 49.51          | С          |
| ATOM         | 742           | CD        |            |   | 125        | 5.206            | 53.971           |                  |      | 63.22          | С          |
| MOTA         | 743           | NE        |            |   | 125        | 6.193            |                  |                  |      | 82.37<br>91.60 | N<br>C     |
| ATOM         | 744           | CZ        |            |   | 125        | 6.113            |                  |                  |      | 93.81          | N          |
| MOTA<br>MOTA | 745<br>746    |           | ARG<br>ARG |   |            | 5.040<br>7.113   |                  |                  |      | 91.56          | N          |
| ATOM         | 747           | C         |            |   | 125        | 6.081            |                  |                  | 1.00 | 39.78          | С          |
| ATOM         | 748           | ō         | ARG        | A | 125        | 6.855            | 57.815           | 12.932           |      | 41.06          |            |
| ATOM         | 749           | N         |            |   | 126        | 5.073            |                  |                  |      | 38.58<br>37.36 | N<br>C     |
| MOTA         | 750           | CA        |            |   | 126        | 5.036<br>3.612   |                  |                  |      | 34.12          | c          |
| ATOM<br>ATOM | 751<br>752    | CB<br>CG  |            |   | 126<br>126 | 3.551            |                  |                  |      | 32.87          | С          |
| ATOM         | 753           |           |            |   | 126        | 3.760            | 61.558           | 10.007           | 1.00 | 45.48          | С          |
| ATOM         | 754           | CE1       | PHE        | A | 126        | 3.792            |                  |                  |      | 44.35          |            |
| ATOM         | 755           | CZ        |            |   | 126        | 3.573<br>3.390   |                  |                  |      | 38.98<br>37.11 | . c        |
| ATOM<br>ATOM | 756<br>757    |           |            |   | 126<br>126 | 3.365            |                  |                  |      | 39.43          |            |
| ATOM         | 758           | C         |            |   | 126        | 6.029            |                  |                  |      | 41.31          |            |
|              |               |           |            |   |            |                  |                  |                  |      |                |            |

|              | •          |           |                            | Fi               | gure 2           | 2                |      |                |        |          |
|--------------|------------|-----------|----------------------------|------------------|------------------|------------------|------|----------------|--------|----------|
| MOTA         | 759        | 0         | PHE A 126                  | 6.682            | 59.820           | 10.488           |      | 45.20          |        |          |
| ATOM         | 760        | N         | SER A 127                  | 6.142            | 60.856<br>61.920 | 12.323<br>12.122 |      | 42.07<br>43.52 | )<br>( |          |
| ATOM         | 761<br>762 | CA<br>CB  | SER A 127<br>SER A 127     | 6.984<br>6.723   | 62.932           | 13.375           |      | 46.92          | č      |          |
| MOTA<br>MOTA | 763        | OG        | SER A 127                  | 5.366            | 63.490           | 13.219           | 1.00 | 41.28          | (      |          |
| ATOM         | 764        | c         | SER A 127                  | 8.439            | 61.502           | 12.089           |      | 43.00          |        |          |
| MOTA         | 765        | 0         | SER A 127                  | 9.173            | 61.850           | 11.180<br>12.978 |      | 47.59<br>40.47 |        | ,<br>1 · |
| ATOM         | 766<br>767 | N<br>CA   | LEU A 128<br>LEU A 128     | 8.872<br>10.290  | 60.715<br>60.303 | 12.879           |      | 40.07          | ·      |          |
| ATOM<br>ATOM | 768        | CB        | LEU A 128                  | 10.559           | 59.319           | 13.950           |      | 36.57          | C      |          |
| ATOM         | 769        | CG        | LEU A 128                  | 10.740           | 60.050           | 15.238           |      | 38.33          | (      |          |
| ATOM         | 770        |           | LEU A 128                  | 10.663           | 58.958<br>60.960 | 16.206<br>15.435 |      | 35.87<br>37.15 | (      | 2        |
| MOTA         | 771<br>772 | CD2<br>C  | LEU A 128<br>LEU A 128     | 11.984<br>10.594 | 59.604           | 11.510           |      | 43.53          |        | -        |
| MOTA<br>MOTA | 773        | Ö         | LEU A 128                  | 11.648           | 59.834           | 10.842           |      | 45.89          |        | 0        |
| ATOM         | 774        | N         | MET A 129                  | 9.722            | 58.728           | 11.157           |      | 46.21          |        | N<br>C   |
| ATOM         | 775        | CA        | MET A 129                  | 9.796            | 57.996<br>57.205 | 9.935<br>9.789   |      | 49.76<br>51.79 |        |          |
| ATOM<br>ATOM | 776<br>777 | CB<br>CG  | MET A 129<br>MET A 129     | 8.522<br>8.691   | 55.783           | 9.153            |      | 61.62          |        | c        |
| ATOM         | 778        | SD        | MET A 129                  | 9.961            | 54.860           | 10.169           |      | 69.86          |        | S        |
| ATOM         | 779        | CE        | MET A 129                  | 8.561            | 53.672           | 11.577           |      | 77.26          |        | 0        |
| ATOM         | 780        | C         | MET A 129                  | 9.963            | 59.039           | 8.858<br>8.134   |      | 49.17<br>47.14 |        | 0        |
| ATOM         | 781<br>782 | O<br>N    | MET A 129<br>THR A 130     | 10.999<br>9.058  | 59.050<br>59.988 | 8.771            |      | 47.16          |        | N        |
| ATOM<br>ATOM | 783        | CA        | THR A 130                  | 9.326            | 60.925           | 7.720            |      | 46.45          |        | С        |
| ATOM         | 784        | CB        | THR A 130                  | 8.044            | 61.678           | 7.297            |      | 46.69          |        | C        |
| MOTA         | 785        |           | THR A 130                  | 8.032            | 63.004           | 7.800<br>7.931   |      | 47.34<br>51.08 |        | O<br>C   |
| ATOM         | 786<br>787 | CG2<br>C  | THR A 130<br>THR A 130     | 6.718<br>10.469  | 60.941<br>61.838 | 7.944            |      | 46.23          |        | c        |
| ATOM<br>ATOM | 788        | Ö         | THR A 130                  | 10.916           | 62.453           | 7.011            |      | 50.53          |        | o ·      |
| ATOM         | 789        | N         | LEU A 131                  | 10.970           | 62.018           | 9.102            |      | 44.22          |        | N        |
| ATOM         | 790        | CA        | LEU A 131                  | 12.052           | 62.910           | 9.278            |      | 42.71<br>44.96 |        | C        |
| ATOM         | 791        | CB        | LEU A 131                  | 11.953           | 63.354<br>64.756 | 10.721<br>10.835 |      | 51.83          |        | c        |
| ATOM<br>ATOM | 792<br>793 | CG<br>CD1 | LEU A 131<br>LEU A 131     | 11.258           | 65.289           | 12.278           |      | 56.37          |        | С        |
| ATOM         | 794        |           | LEU A 131                  | 12.331           | 65.593           | 10.129           |      | 54.03          |        | С        |
| ATOM         | 795        | С         | LEU A 131                  | 13.464           | 62.308           | 9.098            |      | 43.58          |        | C<br>O   |
| ATOM         | 796        | 0         | LEU A 131                  | 14.590           | 62.978<br>61.036 | 9.249<br>8.875   |      | 45.72<br>42.33 |        | N        |
| ATOM<br>ATOM | 797<br>798 | N<br>CA   | ARG A 132                  | 13.500<br>14.780 | 60.323           | 8.571            |      | 39.96          |        | C        |
| ATOM         | 799        | СВ        | ARG A 132                  | 14.423           | 58.895           | 8.187            |      | 38.15          |        | С        |
| MOTA         | 800        | CG        | ARG A 132                  | 13.739           | 58.139           | 9.302            |      | 44.43          |        | C<br>C   |
| ATOM         | 801        | CD        | ARG A 132                  | 13.279           | 56.759<br>56.960 | 8.968<br>7.680   |      | 51.37<br>64.58 |        | N        |
| ATOM<br>ATOM | 802<br>803 | NE<br>CZ  | ARG A 132<br>ARG A 132     | 12.655<br>11.863 | 56.047           | 7.048            |      | 70.97          |        | С        |
| MOTA         | 804        |           | ARG A 132                  | 11.572           | 54.866           | 7.657            |      | 73.05          |        | N        |
| ATOM         | 805        | NH2       | ARG A 132                  | 11.350           | 56.335           | 5.849            |      | 60.49          |        | N<br>C   |
| MOTA         | 806        | С         | ARG A 132                  | 15.371<br>14.713 | 60.965<br>61.514 | 7.335.<br>6.542  |      | 38.80<br>39.47 |        | ō        |
| MOTA<br>MOTA | 807<br>808 | O<br>N    | ARG A 132<br>ASN A 133     | 16.653           | 60.848           | 7.130            |      | 39.05          |        | N        |
| ATOM         | 809        | CA        | ASN A 133                  | 17.361           | 61.551           | 6.069            |      | 38.18          |        | С        |
| ATOM         | 810        | CB        | ASN A 133                  | 18.780           | 61.167           | 5.936            |      | 33.17          |        | C        |
| ATOM         | 811        | CG        | ASN A 133                  | 19.526           | 62.103           | 5.119<br>4.454   |      | 35.90<br>56.30 |        | 0        |
| ATOM         | 812<br>813 |           | . ASN A 133<br>. ASN A 133 | 20.364<br>19.251 | 61.699<br>63.396 | 5.114            |      | 42.45          |        | N        |
| ATOM         | 814        | C         | ASN A 133                  | 16.704           | 61.282           | 4.698            | 1.00 | 41.56          |        | С        |
| ATOM         | 815        | 0         | ASN A 133                  | 16.598           | 62.220           | 3.820            |      | 37.70          |        | 0        |
| ATOM         | 816        | N         | PHE A 134                  | 16.321           | 60.023           | 4.545<br>3.329   |      | 43.09          |        | C        |
| ATOM         | 817<br>818 | CA<br>CB  | PHE A 134<br>PHE A 134     | 15.720<br>16.470 | 59.742<br>58.697 | 2.651            |      | 47.35          | •      | č        |
| ATOM<br>ATOM | 819        | CG        | PHE A 134                  | 17.707           | 59.170           | 1.927            |      | 49.07          |        | С        |
| ATOM         | 820        | CD1       | PHE A 134                  | 17.578           | 59.903           | 0.770            |      | 40.18          |        | C        |
| ATOM         | 821        |           | L PHE A 134                | 18.697           | 60.360           | 0.092<br>0.559   |      | 52.83<br>47.26 |        | c        |
| ATOM         | 822<br>823 | CZ        | PHE A 134<br>2 PHE A 134   | 20.032<br>20.169 | 60.065<br>59.280 | 1.704            |      | 51.58          |        | č        |
| ATOM<br>ATOM | 824        |           | 2 PHE A 134                | 19.019           | 58.823           |                  | 1.00 | 43.85          |        | С        |
| ATOM         | 825        | C         | PHE A 134                  | 14.268           | 59.328           | 3.407            |      | 48.91          |        | C        |
| ATOM         | 826        | 0         | PHE A 134                  | 13.762           | 58.647           |                  |      | 50.31          |        | O<br>N   |
| ATOM         | 827        | N         | GLY A 135                  | 13.538<br>12.207 | 59.776<br>59.200 |                  |      | 47.26          |        | C        |
| ATOM<br>ATOM | 828<br>829 | CA<br>C   | GLY A 135<br>GLY A 135     | 11.139           | 59.880           |                  | 1.00 | 47.25          |        | С        |
| ATOM         | 830        | ŏ         | GLY A 135                  | 10.077           | 59.826           | 4.112            | 1.00 | 43.01          |        | 0        |
| ATOM         | 831        | N         | MET A 136                  | 11.473           | 60.508           |                  |      | 52.47          |        | N        |
| ATOM         | 832        |           | MET A 136                  | 10.349           | 61.113<br>62.038 |                  |      | 51.30<br>46.66 |        | C        |
| MOTA         | 833        |           | MET A 136<br>MET A 136     | 9.536<br>10.055  | 63.297           |                  |      | 42.37          |        | Ċ        |
| ATOM         | 834        | CG        | HEI W 130                  | 20.000           |                  |                  |      |                |        |          |

|              |            |          |            |   |       |                  |                  | ^                |      |                |   |        |
|--------------|------------|----------|------------|---|-------|------------------|------------------|------------------|------|----------------|---|--------|
|              |            |          |            |   |       |                  | gure             |                  |      |                |   | _      |
| ATOM         | 835        | SD       | MET        |   |       | 9.383            | 64.386           | 4.525            |      | 51.35          |   | 5      |
| ATOM         | 836        | CE       | MET        |   |       | 9.844            | 65.934           | 4.249            |      | 45.33          |   | c      |
| ATOM         | 837        | C        | MET        |   |       | 10.766           | 61.797           | 0.681<br>0.554   |      | 53.33<br>57.25 |   | Ö      |
| ATOM         | 838        | 0        | MET        |   |       | 10.952           | 63.065           | -0.342           |      | 53.83          |   | N      |
| ATOM         | 839        | N<br>CA  | GLY        |   |       | 10.917<br>11.234 | 60.987<br>61.664 | -1.599           |      | 53.10          |   | č      |
| ATOM<br>ATOM | 840<br>841 | C        | GLY        |   |       | 12.562           | 61.412           | -2.080           |      | 52.59          |   | č      |
| ATOM         | 842        | Ö        | GLY        |   |       | 13.335           | 60.706           | -1.559           |      | 49.60          |   | ō      |
| ATOM         | 843        | N        | LYS        |   |       | 12.822           | 62.029           | -3.154           |      | 54.22          |   | N      |
| ATOM         | 844        | CA       | LYS        |   |       | 14.210           | 61.895           | -3.609           |      | 56.11          |   | С      |
| ATOM         | 845        | СВ       | LYS        |   |       | 14.215           | 61.791           | -5.197           | 1.00 | 58.55          |   | С      |
| MOTA         | 846        | CG ·     | LYS        | A | 138   | 13.185           | 60.647           | -5.790           |      | 63.64          |   | С      |
| ATOM         | 847        | CD       | LYS        | A | 138   | 13.682           | 60.039           | -7.233           |      | 72.39          |   | С      |
| ATOM         | 848        | CE       | LYS        |   |       | 13.001           | 60.532           | -8.564           |      | 74.28          |   | С      |
| ATOM         | 849        | NZ       | LYS        |   |       | 13.280           | 62.104           | -9.196           |      | 77.24          |   | N      |
| MOTA         | 850        | C        | LYS        |   |       | 15.112           | 63.022           | -3.105           |      | 51.33          |   | C      |
| ATOM         | 851        | 0        | LYS        |   |       | 16.247           | 63.074           | -3.517           |      | 56.34          |   | 0<br>N |
| ATOM         | 852        | N        | ARG        |   |       | 14.634           | 63.932<br>64.938 | -2.319<br>-1.785 |      | 44.22          |   | Č      |
| ATOM         | 853<br>854 | CA<br>CB | ARG<br>ARG |   |       | 15.444<br>14.779 | 66.278           | -1.977           |      | 42.37          |   | Č      |
| ATOM<br>ATOM | 855        | CG       | ARG        |   |       | 15.556           | 67.555           | -1.940           |      | 43.92          |   | č      |
| ATOM         | 856        | CD       | ARG        |   |       | 14.578           | 6B.677           | -1.690           |      | 49.20          |   | Č      |
| ATOM         | 857        | NE       | ARG        |   |       | 15.070           | 70.055           | -1.478           |      | 47.80          |   | N      |
| ATOM         | 858        | CZ       | ARG        |   |       | 16.120           | 70.515           | -1.920           |      | 41.20          |   | С      |
| ATOM         | 859        |          | ARG        |   |       | 16.524           | 71.685           | -1.706           |      | 45.04          |   | N      |
| MOTA         | 860        |          | ARG        |   |       | 16.805           | 69.763           | -2.594           | 1.00 | 58.03          |   | N      |
| ATOM         | 861        | C        |            |   | 139   | 15.754           | 64.588           | -0.324           | 1.00 | 38.75          |   | С      |
| MOTA         | 862        | 0        | ARG        | A | 139   | 14.978           | 64.141           | 0.447            | 1.00 | 43.67          |   | 0      |
| MOTA         | 863        | N        | SER        | A | 140   | 16.943           | 64.679           | 0.104            |      | 37.28          |   | N      |
| MOTA         | 864        | CA       | SER        | A | 140   | 17.219           | 64.286           | 1.501            |      | 35.67          |   | С      |
| MOTA         | 865        | СВ       |            |   | 140   | 18.634           | 63.650           | 1.617            | 1.00 | 35.74          |   | C      |
| ATOM         | 866        | OG       |            |   | 140   | 19.488           | 64.702           | 1.187            |      |                |   | 0      |
| MOTA         | 867        | С        |            |   | 140   | 17.123           | 65.420           |                  | 1.00 |                |   | C      |
| MOTA         | 868        | 0        |            |   | 140   | 17.213           | 66.672           | 2.134            |      | 30.29          |   | 0      |
| ATOM         | 869        | N        |            |   | 141   | 16.910           | 65.036           | 3.787            |      | 26.05          |   | N<br>C |
| MOTA         | 870        | CA       | ILE        |   |       | 16.912           | 66.139           | 4.800            | 1.00 |                |   | c      |
| MOTA         | 871        | CB       | ILE        |   |       | 16.838           | 65.542           | 6.594            |      | 24.43          |   | č      |
| ATOM         | 872<br>873 |          | ILE        |   |       | 15.492<br>14.278 | 65.097<br>66.133 | 6.468            |      | 28.01          |   | Č.     |
| ATOM<br>ATOM | 874        |          | ILE        |   |       | 17.292           | 66.385           |                  | 1.00 |                |   | č      |
| ATOM         | 875        | C ·      |            |   | 141   | 18.174           | 66.936           | 4.631            |      |                |   | č      |
| ATOM         | 876        | ō        | ILE        |   |       | 18.299           | 68.219           | 4.630            |      | 24.52          |   | ō      |
| ATOM         | 877        | N        |            |   | 142   | 19.296           | 66.194           | 4.512            |      | 31.90          |   | N      |
| ATOM         | 878        | CA       |            |   | 142   | 20.626           | 66.847           | 4.396            |      | 30.87          |   | C      |
| ATOM         | 879        | СВ       | GLU        |   |       | 21.563           | 65.826           | 4.259            |      | 34.12          |   | С      |
| MOTA         | 880        | CG       |            |   | 142   | 22.973           | 66.341           | 4.355            | 1.00 | 38.74          |   | С      |
| ATOM         | 881        | CD       | GLU        | A | 142   | 24.096           | 65.310           | 4.512            | 1.00 | 42.43          |   | С      |
| ATOM         | 882        | OE1      | GLU        | A | 142   | 23.970           | 64.082           |                  |      | 43.26          |   | 0      |
| MOTA         | 883        | OE2      | GLU        |   |       | 25.117           | 65.877           | 4.158            |      | 50.73          |   | 0      |
| MOTA         | 884        | С        | GLU        |   |       | 20.818           | 67.763           | 3.346            |      | 31.02          |   | C      |
| MOTA         | 885        | 0        | GLU        |   |       | 21.431           | 68.819           | 3.313            |      | 29.01          |   | 0      |
| ATOM         | 886        | N        |            |   | 143   | 20.196           | 67.390           | 2.294            |      | 34.59<br>33.78 |   | N<br>C |
| MOTA         | 887        | CA       |            |   | 143   | 20.238           | 68.255           | 1.203            |      | 42.01          |   | c      |
| MOTA         | 888        | CB       | ASP        |   |       | 19.503           | 67.511<br>67.409 | 0.175<br>-1.157  |      | 48.13          |   | č      |
| ATOM<br>ATOM | 889<br>890 | CG       | ASP<br>ASP |   |       | 20.355<br>20.648 | 68.634           | -1.672           |      | 45.44          |   | ŏ      |
| ATOM         | 891        |          | ASP        |   |       | 20.631           | 66.142           | -1.552           |      | 60.43          |   | ŏ      |
| ATOM         | 892        | C        | ASP        |   |       | 19.665           | 69.492           | 1.437            |      | 32.19          |   | č      |
| ATOM         | 893        | Ö        |            |   | 143   | 20.175           | 70.611           | 1.105            |      | 35.16          |   | ō      |
| MOTA         | 894        | N        | ARG        |   |       | 18.456           | 69.468           | 1.978            |      | 29.46          |   | N      |
| ATOM         | 895        | CA       | ARG        |   |       | 17.820           | 70.613           | 2.469            |      | 26.61          |   | С      |
| ATOM         | 896        | СВ       | ARG        |   |       | 16.736           | 70.091           | 3.274            | 1.00 | 30.33          |   | С      |
| MOTA         | 897        | CG       | ARG        |   |       | 15.605           | 69.388           | 2.318            | 1.00 | 35.39          | • | С      |
| MOTA         | 898        | CD       | ARG        | A | 144   | 14,293           | 69.031           | 3.068            |      | 37.49          |   | С      |
| MOTA         | 899        | NE       | ARG        |   |       | 13.432           | 68.077           | 2.418            |      | 41.67          |   | N      |
| MOTA         | 900        | CZ       |            |   | 144 . | 12.650           | 68.385           | 1.357            |      | 49.73          |   | С      |
| ATOM         | 901        |          | ARG        |   |       | 12.526           | 69.597           | 0.784            |      | 48.00          |   | N      |
| ATOM         | 902        |          | ARG        |   |       | 11.959           | 67.418           | 0.922            |      | 50.73          |   | N      |
| MOTA         | 903        | С        | ARG        |   |       | 18.730           | 71.352           | 3.415            |      | 24.52          |   | C      |
| MOTA         | 904        | 0        | ARG        |   |       | 18.966           | 72.510           | 3.320            |      | 24.52          |   | 0      |
| ATOM         | 905        | N        | VAL        |   |       | 19.375           | 70.706           | 4.336            |      | 22.81          |   | И      |
| ATOM         | 906        | CA       | VAL        |   |       | 20.122           | 71.660           | 5.186<br>6.523   |      | 22.04          |   | C      |
| ATOM         | 907        | CB       | VAL        |   |       | 20.481           | 70.928<br>71.816 | 7.486            |      | 29.12          |   | c      |
| ATOM         | 908        |          | VAL        |   |       | 21.241           | 70.351           | 7.234            |      | 16.30          |   | c      |
| ATOM         | 909        | CG2      | VAL        |   |       | 19.247<br>21.264 | 72.204           | 4.430            |      | 21.39          |   | Č      |
| MOTA         | 910        | C        | VAL        | н | T43   | 21.204           | 12.204           | 4.430            |      |                |   | -      |

|              |                    |         |                            | Fi               | gure 2           | ?                |                          |        |
|--------------|--------------------|---------|----------------------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 911 0              | v       | AL A 145                   | 21.601           | 73.467           | 4.484            | 1.00 22.58               | O<br>N |
| MOTA         | 912 N              |         | LN A 146                   | 21.880           | 71.488           | 3.527<br>2.872   | 1.00 22.41               | č      |
| ATOM         |                    |         | LN A 146                   | 22.998<br>23.659 | 72.197<br>71.338 | 1.953            | 1.00 27.61               | Ċ      |
| ATOM         |                    |         | LN A 146<br>LN A 146       | 23.817           | 70.074           | 2.622            | 1.00 34.94               | С      |
| ATOM<br>ATOM |                    |         | LN A 146                   | 24.886           | 69.144           | 1.936            | 1.00 31.46               | c      |
| ATOM         |                    |         | LN A 146                   | 26.019           | 69.557           | 1.946            | 1.00 30.86               | 0      |
| ATOM         |                    | 1E2 G   | SLN A 146                  | 24.537           | 67.900           | 1.359            | 1.00 30.29               | N<br>C |
| MOTA         | 919 (              |         | LN A 146                   | 22.698           | 73.292           | 2.042<br>2.006   | 1.00 26.53<br>1.00 32.51 | . 0    |
| ATOM         |                    |         | LN A 146                   | 23.331<br>21.556 | 74.431<br>73.221 | 1.386            | 1.00 31.46               | N      |
| MOTA         | -                  |         | LU A 147<br>GLU A 147      | 21.057           | 74.501           | 0.604            | 1.00 31.32               | С      |
| MOTA<br>MOTA |                    |         | SLU A 147                  | 19.863           | 74.093           | -0.254           | 1.00 33.42               | Ç      |
| MOTA         |                    |         | SLU A 147                  | 19.168           | 75.301           | -0.719           | 1.00 39.21               | C      |
| ATOM         | 925 (              | ם כ     | GLU A 147                  | 18.048           | 75.044           | -1.696           | 1.00 40.72               | C<br>0 |
| ATOM         |                    |         | GLU A 147                  | 17.534           | 73.935           | -1.721           | 1.00 34.01               | ŏ      |
| MOTA         |                    |         | GLU A 147                  | 17.766<br>20.835 | 76.072<br>75.668 | -2.442<br>1.508  | 1.00 29.86               | č      |
| ATOM         |                    |         | GLU A 147<br>GLU A 147     | 21.092           | 76.905           | 1.223            | 1.00 31.22               | 0      |
| MOTA<br>MOTA |                    |         | GLU A 148                  | 20.293           | 75.392           | 2.662            | 1.00 30.51               | N      |
| MOTA         |                    |         | GLU A 148                  | 20.123           | 76.536           | 3.571            | 1.00 30.82               | C      |
| ATOM         |                    |         | GLU A 148                  | 19.409           | 76.060           | 4.792            | 1.00 32.31               | C<br>C |
| ATOM         | 933                |         | GLU A 148                  | 18.573           | 77.272           | 5.381            | 1.00 37.22<br>1.00 38.41 | č      |
| MOTA         |                    |         | GLU A 148                  | 17.567<br>16.785 | 77.863<br>76.921 | 4.435<br>3.725   | 1.00 39.40               | ō      |
| ATOM         |                    |         | GLU A 148<br>GLU A 148     | 17.609           |                  | 4.394            | 1.00 28.43               | 0      |
| ATOM<br>ATOM |                    |         | GLU A 148                  | 21.453           |                  | 3.963            | 1.00 29.17               | С      |
| ATOM         |                    |         | GLU A 148                  | 21.763           |                  | 4.075            | 1.00 24.88               | 0      |
| ATOM         |                    |         | ALA A 149                  | 22.377           |                  | 4.150            | 1:00 29.21               | N      |
| MOTA         | 940                |         | ALA A 149                  | 23.711           |                  | 4.564            | 1.00 27.28<br>1.00 27.73 | C<br>C |
| ATOM         |                    |         | ALA A 149                  | 24.564           |                  | 4.922<br>3.668   | 1.00 27.73               | č      |
| ATOM         |                    |         | ALA A 149                  | 24.257<br>24.575 |                  | 4.020            | 1.00 23.46               | 0      |
| MOTA         | 943<br>944         |         | ALA A 149<br>ARG A 150     | 24.357           |                  | 2.348            | 1.00 32.06               | N      |
| MOTA<br>MOTA | 945                |         | ARG A 150                  | 24.662           |                  | 1.377            | 1.00 35.58               | c      |
| ATOM         | 946                |         | ARG A 150                  | 25.150           | 78.058           | 0.085            | 1.00 37.53               | C      |
| ATOM         | 947                | CG      | ARG A 150                  | 24.324           |                  | -0.586           | 1.00 41.88               | C C    |
| ATOM         | 948                | CĐ      | ARG A 150                  | 24.699           |                  | -2.065<br>-2.985 | 1.00 47.51<br>1.00 50.72 | N      |
| ATOM         | 949                | NE      | ARG A 150                  | 23.577           |                  | -2.967           | 1.00 48.60               | C      |
| ATOM         | 950                | CZ      | ARG A 150<br>ARG A 150     | 23.110<br>22.133 | _                | -3.738           | 1.00 58.84               | N      |
| ATOM<br>ATOM | 951<br>952         |         | ARG A 150                  | 23.637           |                  | -2.161           | 1.00 44.34               | N      |
| ATOM         | 953                | C       | ARG A 150                  | 23.831           |                  | 1.244            | 1.00 34.92               | C      |
| ATOM         | 954                | 0       | ARG A 150                  | 24.431           |                  | 1.085            | 1.00 36.02               | O<br>N |
| MOTA         | 955                | N       | CYS A 151                  | 22.53            |                  | 1.451            | 1.00 37.36<br>1.00 38.23 | C 74   |
| MOTA         | 956                | CA      | CYS A 151                  | 21.72°<br>20.148 |                  | 1.544            | 1.00 42.31               | Č      |
| MOTA         | 957                | CB      | CYS A 151<br>CYS A 151     |                  |                  | -0.014           | 1.00 48.85               | s      |
| MOTA<br>MOTA | 958<br>95 <b>9</b> | SG<br>Ç | CYS A 151                  |                  |                  | 2.664            | 1.00 39.42               | С      |
| ATOM         | 960                | Ö       | CYS A 151                  |                  |                  | 2.511            | 1.00 43.70               | 0      |
| ATOM         | 961                | N -     | LEU A 152                  | 22.43            |                  | 3.827            | 1.00 39.38               | С<br>И |
| ATOM         | 962                | CA      | LEU A 152                  |                  |                  | 5.030<br>6.154   | 1.00 37.67<br>1.00 37.98 | č      |
| ATOM         | 963                | СВ      | LEU A 152                  |                  |                  | 7.598            | 1.00 41.77               | č      |
| ATOM         | 964                | CG      | LEU A 152<br>LEU A 152     |                  |                  |                  |                          | С      |
| ATOM<br>ATOM | 965<br>966         |         | LEU A 152                  |                  |                  |                  | 1.00 48.35               | C      |
| MOTA         | 967                | C       | LEU A 152                  |                  |                  |                  |                          | C      |
| ATOM         | 968                | 0       | LEU A 152                  | 24.25            |                  |                  |                          | O<br>N |
| MOTA         | 969                | N       | VAL A 153                  |                  |                  |                  |                          | C      |
| ATOM         | 970                | CA      | VAL A 153                  |                  |                  |                  |                          | Č      |
| ATOM         | 971                | CB      | VAL A 153                  |                  |                  |                  | <b></b>                  | c      |
| ATOM         | 972                |         | VAL A 153<br>VAL A 153     |                  |                  |                  |                          |        |
| MOTA<br>MOTA | 973<br>974         | C       | VAL A 153                  |                  |                  |                  | 1.00 41.94               |        |
| MOTA         | 975                | ŏ       | VAL A 153                  |                  |                  |                  |                          |        |
| ATOM         | 976                | N       | GLU A 154                  | 25.33            |                  |                  |                          |        |
| MOTA         | 977                | CA      | GLU A 154                  |                  |                  |                  |                          |        |
| MOTA         | 978                | CB      | GLU A 154                  |                  |                  |                  |                          |        |
| ATOM         | 979                | CG      | GLU A 154                  |                  |                  |                  |                          |        |
| ATOM         | 980                | CD      | GLU A 154<br>GLU A 154     |                  |                  |                  |                          | 0      |
| ATOM         | 981<br>982         |         | . GLU A 154<br>! GLU A 154 |                  |                  |                  | 1.00 90.18               | • •    |
| ATOM<br>ATOM | 982                | C       | GLU A 15                   |                  | 5 85.694         | 1.879            | 1.00 52.05               |        |
| MOTA         | 984                | ō       | GLU A 15                   | 4 24.71          |                  |                  |                          |        |
| ATOM         | 985                | N       | GLU A 15                   | 5 23.35          |                  |                  |                          |        |
| MOTA         | 986                | CA      | GLU A 15                   | 5 22.77          | 12 86.502        | . 3.444          | , 1.00 .0.0.             |        |
|              |                    |         |                            |                  |                  |                  |                          |        |

|              |              |          |            |   |            | Fi               | gure             | 2                |                          |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 987          | СВ       | GLU        |   |            | 21.510           | 85.952           | 4.131            | 1.00 46.48               | C      |
| ATOM:        | 988<br>989   | CG<br>CD | GLU<br>GLU |   |            | 20.290<br>19.926 | 85.984<br>87.336 | 3.241<br>2.793   | 1.00 54.87               | C      |
| ATOM         | 990          | OE1      | GLU        |   |            | 19.947           | 87.608           | 1.572            | 1.00 52.59               | ő      |
| ATOM         | 991          | OE2      |            |   |            | 19.707           | 88.127           | 3.742            |                          | 0      |
| MOTA         | 992          | C        | GLU        |   |            | 23.786           | 87.097           | 4.349            | 1.00 44.76               | C      |
| MOTA<br>MOTA | 993<br>994   | О<br>И   | GLU<br>LEU |   |            | 23.728<br>24.660 | 88.215<br>86.344 | 4.637<br>4.891   | 1.00 47.26<br>1.00 43.35 | 0<br>N |
| ATOM         | 995          | CA       | LEU        |   |            | 25.584           | 86.910           | 5.870            | 1.00 42.83               | č      |
| ATOM         | 996          | СВ       | LEU        |   |            | 26.270           | 85.841           | 6.574            | 1.00 42.03               | С      |
| ATOM         | 997          | CG       | LEU        |   |            | 25.632           | 85.237           | 7.733            | 1.00 40.19               | C      |
| MOTA<br>MOTA | 998<br>999   |          | LEU        |   |            | 26.387<br>25.618 | 84.089<br>86.350 | 8.195<br>8.803   | 1.00 43.99               | C      |
| ATOM         | 1000         | c        | LEU        |   |            | 26.534           | 87.672           | 5.075            | 1.00 43.59               | č      |
| ATOM         | 1001         | 0        | LEU        |   |            | 27.176           | 88.637           | 5.476            | 1.00 41.36               | . 0    |
| ATOM         | 1002<br>1003 | N<br>C3  | ARG        |   |            | 26.645           | 87.270<br>88.033 | 3.864<br>3.006   | 1.00 46.23               | N<br>C |
| ATOM<br>ATOM | 1003         | CA<br>CB | ARG<br>ARG |   |            | 27.627<br>27.965 | 87.228           | 1.772            | 1.00 48.16               | - 6    |
| ATOM         | 1005         | CG       | ARG        |   |            | 29.352           | 87.367           | 1.430            | 1.00 54.23               | c      |
| ATOM         | 1006         | CD       | ARG        |   |            | 29.687           | 86.977           | 0.005            | 1.00 55.16               | C      |
| ATOM         | 1007<br>1008 | NE<br>CZ | ARG<br>ARG |   |            | 29.696<br>30.751 | 85.527<br>84.821 | -0.098<br>0.270  | 1.00 53.51               | , C    |
| ATOM<br>ATOM | 1008         |          | ARG        |   |            | 31.775           | 85.423           | 0.727            | 1.00 51.40               | . C    |
| ATOM         | 1010         |          | ARG        |   |            | 30.753           | 83.522           | 0.224            | 1.00 54.97               | N      |
| ATOM         | 1011         | C        | ARG        |   |            | 27.079           | 89.415           | 2.634            | 1.00 48.52               | c      |
| ATOM<br>ATOM | 1012<br>1013 | N<br>N   | ARG<br>LYS |   |            | 27.710<br>25.843 | 90.400<br>89.506 | 2.423<br>2.560   | 1.00 46.20               | О<br>И |
| ATOM         | 1013         | CA       | LYS        |   |            | 25.284           | 90.773           | 2.242            | 1.00 49.97               | C      |
| ATOM         | 1015         | CB       | LYS        |   |            | 23.761           | 90.652           | 2.053            | 1.00 48.11               | С      |
| MOTA         | 1016         | CG       | LYS        |   |            | 23.364           | 90.117           | 0.675            | 1.00 57.42               | c<br>c |
| MOTA         | 1017         | CD       | LYS        |   |            | 21.699<br>21.241 | 89.971<br>89.205 | 0.538<br>-0.736  | 1.00 65.02<br>1.00 69.17 | c      |
| ATOM         |              | NZ       | LYS        |   |            | 21.664           | 89.921           | -2.170           | 1.00 73.75               | N      |
|              | 1020         | С        | LYS        |   |            | 25.558           | 91.708           | 3.355            | 1.00 50.11               | С      |
| MOTA         |              | 0        | LYS        |   |            | 25.570           | 92.919           | 3.115            | 1.00 54.16               | 0      |
| ATOM<br>ATOM | 1022<br>1023 | N<br>CA  | THR        |   |            | 25.808<br>26.056 | 91.254<br>92.278 | 4.575<br>5.620   | 1.00 49.61<br>1.00 48.61 | N<br>C |
| ATOM         | 1024         | CB       | THR        |   |            | 26.057           | 91.645           | 6.900            | 1.00 49.69               | č      |
| ATOM         | 1025         | OG1      | THR        | A | 159        | 27.383           | 91.207           | 7.311            | 1.00 56.21               | 0      |
| ATOM         | 1026         |          | THR        |   |            | 25.113           | 90.471           | 6.977            | 1.00 50.03               | C      |
| ATOM         | 1027<br>1028 | С<br>О   | THR        |   |            | 27.319<br>27.669 | 93.070<br>93.902 | 5.440<br>6.306   | 1.00 48.52               | 0      |
| ATOM         | 1029         | N        | LYS        |   |            | 28.019           | 92.856           | 4.295            | 1.00 51.54               | N      |
| MOTA         | 1030         | CA       | LYS        |   |            | 29.226           | 93.652           | 3.978            | 1.00 54.62               | c      |
| ATOM         | 1031         | CB       | LYS        |   |            | 28.844           | 95.013           | 3.405            | 1.00 56.43               | C      |
| MOTA<br>MOTA | 1032<br>1033 | CG<br>CD | LYS<br>LYS |   |            | 28.908<br>28.138 | 95.124<br>96.441 | 1.821<br>1.197   | 1.00 02.23               | č      |
| ATOM         | 1034         | CE       | LYS        |   |            | 28.942           | 97.788           | 1.513            | 1.00 81.19               | С      |
| ATOM         | 1035         | NZ       | LYS        |   |            | 29.633           | 98.594           | 0.343            | 1.00 75.08               | . N    |
| MOTA<br>MOTA | 1036<br>1037 | С<br>0   | LYS        |   | 160<br>160 | 30.161<br>30.602 | 93.920<br>95.019 | 5.210<br>5.532   | 1.00 57.59               | C<br>0 |
| ATOM         | 1037         | N        | ALA        |   |            | 30.475           | 92.867           | 5.949            | 1.00 59.31               | N      |
| ATOM         | 1039         | CA       | ALA        |   |            | 31.426           | 93.005           | 7.033            | 1.00 57.73               | С      |
| ATOM         | 1040         | СВ       | ALA        |   |            | 32.810           | 93.137           | 6.429            | 1.00 58.14               | c      |
| ATOM<br>ATOM | 1041<br>1042 | С<br>0   | ALA<br>ALA |   |            | 31.217<br>32.097 | 94.136<br>94.828 | 7.919<br>8.220   | 1.00 57.55<br>1.00 56.49 | . c    |
| ATOM         | 1043         | N        | SER        |   |            | 30.066           | 94.311           | 8.439            | 1.00 59.39               | N      |
| ATOM         | 1044         | CA       | SER        |   |            | 29.937           | 95.457           | 9.358            | 1.00 61.25               | C      |
| ATOM         | 1045         | CB       | SER        |   |            | 29.158           | 96.440           | 8.542<br>7.760   | 1.00 64.66               | C<br>0 |
| ATOM<br>ATOM | 1046<br>1047 | OG<br>C  | SER<br>SER |   |            | 28.241<br>28.959 | 95.584<br>95.108 | 10.426           | 1.00 60.52               | č      |
| ATOM         | 1048         | ō        | SER        |   |            | 28.083           | 94.292           | 10.201           | 1.00 60.89               | 0      |
| MOTA         | 1049         | N        | PRO        |   |            | 28.990           | 95.799           |                  | 1.00 58.45               | N      |
| ATOM         | 1050         | CA       | PRO        |   |            | 28.288<br>28.276 | 95.375<br>96.645 | 12.743<br>13.545 | 1.00 55.45               | C<br>C |
| ATOM<br>ATOM | 1051<br>1052 | CB<br>CG | PRO<br>PRO |   |            | 29.530           | 97.232           | 13.164           | 1.00 57.10               | Ċ      |
| MOTA         | 1053         | CD       | PRO        | A | 163        | 29.660           | 97.051           | 11.752           | 1.00 56.21               | С      |
| ATOM         | 1054         | C        | PRO        |   |            | 26.976           | 94.958           | 12.390           | 1.00 51.92               | c      |
| ATOM<br>ATOM | 1055<br>1056 | O<br>N   | PRO<br>CYS |   |            | 26.336<br>26.539 | 95.634<br>93.892 | 11.584<br>13.019 | 1.00 54.82               | О<br>И |
| ATOM         | 1050         | CA       | CYS        |   |            | 25.245           | 93.349           | 12.810           | 1.00 45.02               | С      |
| MOTA         | 1058         | СВ       | CYS        | A | 164        | 25.301           | 92.563           | 11.507           | 1.00 46.13               | С      |
| MOTA         | 1059         | SG       | CYS        |   |            | 25.065           | 90.893           | 11.683           | 1.00 47.08               | s<br>c |
| ATOM<br>ATOM | 1060<br>1061 | С<br>0   | CYS        |   |            | 24.870<br>25.667 | 92.435<br>91.779 | 13.898<br>14.409 | 1.00 41.32               | 0      |
| ATOM         | 1062         | N        | ASP        |   |            | 23.619           | 92.340           | 14.204           | 1.00 40.80               | N      |

|              |              |           |                        | Fi               | gure :           | 2                |                          |        |
|--------------|--------------|-----------|------------------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 1063         | CA        | ASP A 165              | 23.044           | 91.532           | 15.282           | 1.00 39.28               | C      |
| ATOM         | 1064         | CB        | ASP A 165              | 21.912           | 92.288<br>91.389 | 16.009<br>16.810 | 1.00 35.83<br>1.00 39.42 | C      |
| ATOM<br>ATOM | 1065<br>1066 | CG        | ASP A 165<br>ASP A 165 | 21.085<br>20.114 | 91.731           | 17.572           | 1.00 40.84               | ō      |
| ATOM         | 1067         |           | ASP A 165              | 21.280           | 90.181           | 16.652           | 1.00 40.72               | 0      |
| MOTA         | 1068         | C         | ASP A 165              | 22.479           | 90.331           | 14.608           | 1.00 38.80               | C      |
| MOTA         | 1069         | 0         | ASP A 165              | 21.412           | 90.464           | 14.033           | 1.00 43.10               | О<br>И |
| ATOM         | 1070<br>1071 | n<br>Ca   | PRO A 166<br>PRO A 166 | 23.079<br>22.757 | 89.157<br>87.940 | 14.758<br>13.985 | 1.00 35.00<br>1.00 28.88 | č      |
| ATOM<br>ATOM | 1071         | CB        | PRO A 166              | 23.998           | 87.099           | 14.241           | 1.00 30.69               | Č      |
| ATOM         | 1073         | CG        | PRO A 166              | 24.294           | 87.442           | 15.659           | 1.00 31.36               | Ċ      |
| ATOM         | 1074         | CD        | PRO A 166              | 24.158           | 88.911           | 15.703           | 1.00 33.89               | C<br>C |
| MOTA         | 1075<br>1076 | С<br>0    | PRO A 166<br>PRO A 166 | 21.501<br>20.917 | 87.424<br>86.635 | 14.306<br>13.654 | 1.00 24.16<br>1.00 29.79 | Ö      |
| ATOM<br>ATOM | 1077         | N         | THR A 167              | 20.866           | 87.918           | 15.312           | 1.00 23.96               | N      |
| ATOM         | 1078         | CA        | THR A 167              | 19.567           | 87.237           | 15.701           | 1.00 23.76               | c      |
| ATOM         | 1079         | CB        | THR A 167              | 18.906           | 88.046           | 16.668           | 1.00 24.19<br>1.00 25.38 | C<br>0 |
| ATOM<br>ATOM | 1080<br>1081 |           | THR A 167<br>THR A 167 | 19.847<br>17.786 | 88.646<br>87.427 | 17.558<br>17.335 | 1.00 17.74               | č      |
| ATOM         | 1082         | C         | THR A 167              | 18.507           | 86.958           | 14.716           | 1.00 27.64               | С      |
| ATOM         | 1083         | 0         | THR A 167              | 17.809           | 85.942           | 14.790           | 1.00 34.82               | 0      |
| ATOM         | 1084         | N         | PHE A 168              | 18.305           | 87.849           | 13.788           | 1.00 30.27<br>1.00 33.77 | N<br>C |
| MOTA<br>MOTA | 1085<br>1086 | CA<br>CB  | PHE A 168<br>PHE A 168 | 17.285<br>16.723 | 87.630<br>89.012 | 12.780<br>12.160 | 1.00 34.18               | č      |
| ATOM         | 1087         | CG        | PHE A 168              | 15.886           | 88.754           |                  | 1.00 29.32               | С      |
| ATOM         | 1088         |           | PHE A 168              | 16.438           | 88.812           | 9.695            | 1.00 39.21               | C      |
| MOTA         | 1089         |           | PHE A 168              | 15.709           | 88.606           | 8.503            | 1.00 29.36               | c<br>c |
| MOTA<br>MOTA | 1090         | CZ        | PHE A 168<br>PHE A 168 | 14.362<br>13.830 | 88.230<br>88.156 | 8.715<br>9.946   | 1.00 31.04<br>1.00 35.36 | ç      |
| ATOM         | 1091<br>1092 |           | PHE A 168              | 14.636           | 88.447           | 11.160           | 1.00 30.54               | č      |
| ATOM         | 1093         | C         | PHE A 168              | 17.778           | 86.645           | 11.628           | 1.00 34.62               | C      |
| MOTA         | 1094         | 0         | PHE A 168              | 17.119           | 85.719           | 11.276           | 1.00 31.07               | О<br>N |
| MOTA         | 1095         | N         | ILE A 169              | 18.950<br>19.366 | 86.883<br>85.981 | 11.078<br>9.966  | 1.00 35.46<br>1.00 34.33 | Č      |
| ATOM<br>ATOM | 1096<br>1097 | CA<br>CB  | ILE A 169 .            | 20.659           | 86.359           | 9.688            | 1.00 35.54               | č      |
| ATOM         | 1098         |           | ILE A 169              |                  | 87.678           | 8.956            | 1.00 38.75               | С      |
| MOTA         | 1099         |           | ILE A 169              | 21.877           | 88.365           | 8.634            | 1.00 42.47               | C<br>C |
| MOTA         | 1100         |           | ILE A 169              | 21.130<br>19:551 | 85.458<br>84.543 | 8.844<br>10.469  | 1.00 44.11<br>1.00 32.19 | c      |
| ATOM<br>ATOM | 1101<br>1102 | 0         | ILE A 169<br>ILE A 169 | 19.551           | 83.798           | 10.028           | 1.00 32.70               | ŏ      |
| ATOM         | 1103         | N         | LEU A 170              | 20.223           | 84.236           | 11.531           | 1.00 30.57               | N      |
| ATOM         | 1104         | CA        | LEU A 170              | 20.238           | 82.915           | 12.118           | 1.00 29.50               | c      |
| ATOM         | 1105         | CB        | LEU A 170              | 21.098<br>22.549 | 82.998<br>82.941 | 13.411<br>13.480 | 1.00 27.97<br>1.00 22.75 | C<br>C |
| MOTA<br>MOTA | 1106<br>1107 | CG<br>CD1 | LEU A 170<br>LEU A 170 | 23.148           | 83.195           | 12.393           | 1.00 25.42               | č      |
| MOTA         | 1108         |           | LEU A 170              | 23.037           | 83.727           | 14.523           | 1.00 24.67               | С      |
| ATOM         | 1109         | С         | LEU A 170              | 18.813           | 82.551           | 12.509           | 1.00 33.81               | c      |
| ATOM         | 1110         | 0         | LEU A 170              | 18.577           | 81.302<br>83.354 | 12.822<br>12.730 | 1.00 38.38<br>1.00 36.55 | О<br>N |
| ATOM<br>ATOM | 1111<br>1112 | N<br>CA   | GLY A 171<br>GLY A 171 | 17.744<br>16.521 | 82.575           | 13.005           | 1.00 34.15               | c<br>c |
| ATOM         | 1113         | c.        | GLY A 171              | 15.933           | 82.208           | 11.694           | 1.00 34.19               | c      |
| ATOM         | 1114         | 0         | GLY A 171              | 15.179           | 81.199           | 11.606           | 1.00 35.66               | O<br>N |
| ATOM         | 1115         | N         | CYS A 172              | 16.242<br>15.524 | 82.952<br>82.493 | 10.589<br>9.356  | 1.00 34.40<br>1.00 36.16 | C      |
| MOTA<br>MOTA | 1116<br>1117 | CA<br>CB  | CYS A 172<br>CYS A 172 | 15.759           | 83.516           | 8.279            | 1.00 39.14               | Č      |
| ATOM         | 1118         | SG        | CYS A 172              | 15.135           | 85.191           | 8.722            | 1.00 44.48               | S      |
| MOTA         | 1119         | С         | CYS A 172              | 15.942           | 81.091           | 8.929            | 1.00 37.47               | С<br>0 |
| ATOM         | 1120         | 0         | CYS A 172              | 15.055<br>17.240 | 80.216<br>80.749 | 8.640<br>8.894   | 1.00 41.23<br>1.00 32.82 | N      |
| MOTA<br>MOTA | 1121<br>1122 | N<br>CA   | ALA A 173<br>ALA A 173 | 17.599           | 79.426           | 8.452            | 1.00 27.73               | Ċ      |
| ATOM         | 1123         | СВ        | ALA A 173              | 18.947           | 79.366           | 8.516            | 1.00 30.25               | С      |
| MOTA         | 1124         | С         | ALA A 173              | 16.965           | 78.220           | 9.091            | 1.00 26.74               | C      |
| ATOM         | 1125         | 0         | ALA A 173              | 16.348           | 77.447<br>78.011 | 8.396<br>10.404  | 1.00 31.04<br>1.00 26.41 | О<br>N |
| MOTA<br>MOTA | 1126<br>1127 | N<br>Ça   | PRO A 174<br>PRO A 174 | 16.947<br>16.355 | 76.843           | 10.953           | 1.00 23.70               | č      |
| MOTA         | 1128         | CB        | PRO A 174              | 16.427           | 77.012           | 12.341           | 1.00 19.80               | c      |
| ATOM         | 1129         | CG        | PRO A 174              | 17.454           | 77.929           | 12.546           | 1.00 26.97               | C      |
| ATOM         | 1130         | CD        | PRO A 174              | 17.400           | 78.936           | 11.416<br>10.583 | 1.00 27.65<br>1.00 28.79 | · c    |
| MOTA         | 1131<br>1132 | С<br>0    | PRO A 174<br>PRO A 174 | 14.870<br>14.180 | 76.914<br>75.911 | 10.383           | 1.00 28.79               | Ö      |
| ATOM         | 1132         | И         | CYS A 174              | 14.327           | 78.093           | 10.529           | 1.00 30.80               | N      |
| ATOM '       | 1134         | CA        | CYS A 175              | 12.877           | 78.092           | 10.201           | 1.00 33.70               | c      |
| MOTA         | 1135         | CB        | CYS A 175              | 12.373           | 79.601           | 10.260           | 1.00 37.06               | C      |
| MOTA         | 1136         | SG        | CYS A 175              | 10.492<br>12.622 | 79.505<br>77.664 | 9.885<br>8.766   | 1.00 42.71<br>1.00 32.75 | s<br>C |
| ATOM<br>ATOM | 1137<br>1138 | С<br>О    | CYS A 175<br>CYS A 175 | 11.676           | 76.915           |                  | 1.00 29.24               | ŏ      |
| A I ON       | 1130         | U         | 010 N 1/3              | 22.0.0           |                  |                  |                          |        |

|              |              |          |       | Fi               | gure :           | 2                  |      |                |   |        |
|--------------|--------------|----------|-------|------------------|------------------|--------------------|------|----------------|---|--------|
| MOTA         | 1139         | N        | ASN A | 13.557           | 78.119           | 7.925              |      | 33.21          |   | N      |
| MOTA         | 1140         | CA       | ASN A | 13.496<br>14.408 | 77.725<br>78.532 | 6.482<br>5.729     |      | 31.80          |   | C      |
| ATOM<br>ATOM | 1141<br>1142 | CB<br>CG | ASN A | 13.811           | 79.139           | 4.450              |      | 34.54          |   | č      |
| ATOM         | 1143         |          | ASN A | 12.761           | 78.801           | 4.122              |      | 32.00          |   | 0      |
| MOTA         | 1144         |          | ASN A | 14.550           | 80.043           | 3.769              |      | 28.09          |   | N      |
| ATOM         | 1145         | C        | ASN A | 13.688<br>13.119 | 76.285<br>75.719 | 6.252<br>5.328     |      | 26.89<br>27.13 |   | С<br>0 |
| MOTA<br>MOTA | 1146<br>1147 | O<br>N   | ASN A | 14.318           | 75.659           | 7.157              |      | 24.18          |   | N      |
| ATOM         | 1148         | CA       | VAL A | 14.487           | 74.186           | 6.944              |      | 25.56          |   | С      |
| ATOM         | 1149         | СВ       | VAL A | 15.517           | 73.716           | 7.919              |      | 27.20          |   | С      |
| MOTA         | 1150         |          | VAL A | 15.713           | 72.285           | 7.853<br>7.790     |      | 28.01<br>21.86 |   | C      |
| MOTA<br>MOTA | 1151<br>1152 | CGZ      | VAL A | 16.828<br>13.302 | 74.361<br>73.458 | 7.177              |      | 27.10          |   | Ç      |
| ATOM         | 1153         | ŏ        | VAL A | 12.963           | 72.391           | 6.587              |      | 30.02          |   | o      |
| ATOM         | 1154         | N        | ILE A | 12.542           | 73.931           | 8.126              |      | 31.57          |   | N      |
| ATOM         | 1155         | CA       | ILE A | 11.226           | 73.326           | 8.458              |      | 31.53          |   | C      |
| ATOM<br>ATOM | 1156<br>1157 | CB       | ILE A | 10.785<br>11.307 | 73.856<br>72.936 | 9.818<br>10.930    |      | 36.70          |   | c      |
| ATOM         | 1158         |          | ILE A | 12.587           | 73.128           | 11.278             |      | 41.48          |   | c      |
| ATOM         | 1159         | CG2      | ILE A | 9.278            | 73.409           | 10.108             |      | 38.15          |   | С      |
| ATOM         | 1160         | C        | ILE A | 10.274           | 73.674           | 7.292<br>6.697     |      | 29.34          |   | C      |
| MOTA<br>MOTA | 1161<br>1162 | O<br>N   | ILE A | 9.639<br>10.228  | 72.741<br>74.928 | 6.882              |      | 28.37          |   | N      |
| ATOM         | 1163         | CA       | CYS A | 9.453            | 75.241           | 5.631              |      | 30.25          |   | С      |
| ATOM         | 1164         | CB       | CYS A | 9.806            | 76.544           | 5.046              |      | 30.45          |   | С      |
| ATOM         | 1165         | SG       | CYS A | 9.083            | 77.790           | 6.118              |      | 35.38          |   | s<br>C |
| ATOM<br>ATOM | 1166<br>1167 | C<br>0   | CYS A | 9.761<br>8.865   | 74.250<br>73.645 | 4.514 ·<br>3.882 · |      |                | • | Ö      |
| ATOM         | 1168         | N        | SER A | 11.018           | 73.998           | 4.260              |      | 29.36          |   | N      |
| ATOM         | 1169         | CA       | SER A | 11.256           | 73.052           | 3.156              |      |                |   | C      |
| ATOM         | 1170         | СВ       | SER A | 12.721           | 73.272           | 2.664              |      | 31.43          |   | C      |
| ATOM         | 1171         | OG       | SER A | 13.339           | 72.031<br>71.732 | 2.038 -<br>3.534 = |      |                |   | O<br>C |
| MOTA<br>MOTA | 1172<br>1173 | С<br>0   | SER A | 10.558           | 70.926           | 2.684              |      |                | • | ŏ      |
| ATOM         | 1174         | N        | ILE A | 10.947           | 71.319           | 4.796              |      |                |   | N      |
| MOTA         | 1175         | CA       | ILE A | 10.687           | 69.867           | 5.024              |      |                |   | C      |
| ATOM         | 1176         | CB       | ILE A | 11.104<br>12.557 | 69.563<br>69.322 | 6.416              |      | 29.61          |   | c      |
| ATOM<br>ATOM | 1177<br>1178 |          | ILE A | 12.970           | 68.826           | 7.891              |      |                | • | č      |
| ATOM         | 1179         |          | ILE A | 10.276           | 68.388           |                    |      | 28.36          | , | С      |
| ATOM         | 1180         | С        | ILE A | 9.196            | 69.737           | 4.941              |      | 33.79          |   | C      |
| ATOM         | 1181         | 0        | ILE A | 8.699<br>8.404   | 68.674<br>70.788 | 4.614<br>5.377     |      | 32.15          |   | O<br>N |
| ATOM<br>ATOM | 1182<br>1183 | N<br>Ca  | ILE A | 6.888            | 70.700           | 5.380              |      | 34.06          |   | Ĉ      |
| ATOM         | 1184         | СВ       | ILE A | 6.199            | 71.619           | 6.358              | 1.00 | 37.58          |   | С      |
| ATOM         | 1185         |          | ILE A | 6.750            | 71.692           | 7.827              |      | 36.18          |   | C      |
| ATOM<br>ATOM | 1186<br>1187 |          | ILE A | 6.424<br>4.627   | 70.508<br>71.564 | 8.506<br>6.205     |      | 36.82<br>34.23 |   | C      |
| ATOM         | 1188         | C        | ILE A | 6.315            | 71.021           | 4.003              |      | 33.08          |   | č      |
| ATOM         | 1189         | ō        | ILE A | 5.364            | 70.398           | 3.648              |      | 32.61          |   | 0      |
| ATOM         | 1190         | N        | PHE A | 6.794            | 72.073           | 3.313              |      | 31.46          |   | N      |
| ATOM         | 1191         | CA       | PHE A | 6.364<br>6.372   | 72.446<br>73.874 | 2.004<br>1.940     |      | 33.85<br>34.76 |   | C      |
| ATOM<br>ATOM | 1192<br>1193 | CB<br>CG | PHE A | <br>5.630        | 74.624           | 3.130              |      | 26.97          |   | č      |
| ATOM         | 1194         |          | PHE A | 6.079            | 75.804           | 3.613              | 1.00 | 32.08          |   | С      |
| ATOM         | 1195         |          | PHE A | 5.468            | 76.445           | 4.753              |      | 37.47          |   | C      |
| ATOM         | 1196         | CZ       | PHE A | 4.419            | 75.859<br>74.666 | 5.415<br>4.932     |      | 31.82          |   | C      |
| ATOM<br>ATOM | 1197<br>1198 |          | PHE A | 4.621            | 74.093           | 3.763              |      | 37.84          |   | č      |
| ATOM         | 1199         | c        | PHE A | 7.266            | 71.989           | 0.793              | 1.00 | 41.70          |   | С      |
| ATOM         | 1200         | 0        | PHE P | 6.776            | 72.141           | -0.255             |      | 45.69          |   | 0      |
| MOTA         | 1201         | N        | HIS A | 8.531<br>9.323   | 71.405<br>70.980 | 0.898<br>-0.191    |      | 47.88<br>49.67 |   | N<br>C |
| ATOM<br>ATOM | 1202<br>1203 | CA<br>CB | HIS A | 8.576            | 70.254           | -1.243             |      | 53.54          |   | č      |
| ATOM         | 1204         | CG       | HIS A | 9.469            | 69.301           | -1.998             | 1.00 | 63.25          |   | С      |
| ATOM         | 1205         |          | HIS P | 9.588            | 69.345           | -3.394             |      | 73.83          | * | N      |
| MOTA         | 1206         |          | HIS A | 10.468           | 68.411<br>67.785 | -3.798<br>-2.714   |      | 73.38<br>73.41 |   | C<br>N |
| ATOM<br>ATOM | 1207<br>1208 |          | HIS A | 10.931           | 68.316           | -1.568             |      | 64.23          |   | C      |
| MOTA         | 1209         | C        | HIS A | 10.106           | 72.000           | -0.758             | 1.00 | 48.45          |   | С      |
| MOTA         | 1210         | 0        | HIS P | 10.842           | 71.732           | -1.621             |      | 53.79          |   | 0      |
| MOTA         | 1211         | N        | LYS A | 10.105           | 73.160           | -0.217             |      | 47.34<br>49.42 |   | N<br>C |
| ATOM<br>ATOM | 1212<br>1213 | CA<br>CB | LYS A | 10.882           | 74.191<br>74.560 | -0.831<br>-2.057   |      | 51.02          |   | c      |
| ATOM         | 1214         | CG       | LYS A | 10.503           | 75.769           | -2.708             |      | 59.44          |   | C      |
|              |              |          |       |                  |                  |                    |      |                |   |        |

|              |              |          |            |   |            | E-i              | ~11×0            | 2                |       |                |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|-------|----------------|--------|
| ATOM         | 1215         | CD       | LYS        | A | 185        | 9.192            | gure<br>76.156   | -3.801           | 1.00  | 65.19          | С      |
| ATOM         | 1216         | CE       | LYS        |   |            | 8.763            | 77.730           | -3.690           | 1.00  | 67.36          | С      |
| MOTA         | 1217         | NZ       | LYS        |   |            | 8.193            | 78.241           | -2.386           |       | 65.39          | N<br>C |
| ATOM         | 1218         | C<br>0   | LYS        |   |            | 11.125<br>10.216 | 75.378<br>76.006 | 0.033<br>0.575   |       | 49.82<br>55.03 | Ö.     |
| ATOM<br>ATOM | 1219<br>1220 | N        | ARG        |   |            | 12.345           | 75.777           | 0.249            |       | 47.63          | N      |
| ATOM         | 1221         | CA       | ARG        |   |            | -12.557          | 76.949           | 1.019            |       | 42.16          | C      |
| MOTA         | 1222         | СВ       | ARG        |   |            | 14.007           | 77.250           | 1.200            |       | 46.08          | C<br>C |
| ATOM         | 1223         | CG       | ARG<br>ARG |   |            | 14.616<br>15.977 | 77.613<br>77.850 | -0.013<br>0.049  |       | 42.30<br>43.37 | Ċ      |
| ATOM<br>ATOM | 1224<br>1225 | CD<br>NE | ARG        |   |            | 16.391           | 78.658           | 1.150            |       | 45.33          | N      |
| MOTA         | 1226         | CZ       | ARG        |   |            | 16.733           | 79.835           | 1.087            |       | 49.22          | С      |
| MOTA         | 1227         |          | ARG        |   |            | 16.605           | 80.376           | -0.031           |       | 46.14          | N<br>N |
| ATOM         | 1228<br>1229 | NH2<br>C | ARG        |   |            | 17.163<br>11.978 | 80.449<br>78.097 | 2.148<br>0.275   |       | 44.66          | C      |
| ATOM<br>ATOM | 1230         | Ö        | ARG        |   |            | 11.601           | 78.018           | -0.899           |       | 43.42          | ō      |
| ATOM         | 1231         | N        | PHE        | A | 187.       | 11.968           | 79.224           | 1.024            |       | 45.01          | N      |
| MOTA         | 1232         | CA       | PHE        |   |            | 11.424           | 80.544           | 0.713            |       | 42.80          | C      |
| ATOM         | 1233<br>1234 | CB<br>CG | PHE        |   |            | 10.604<br>9.305  | 81.007<br>80.404 | 1.911<br>2.055   |       | 44.75<br>41.13 | Ċ      |
| MOTA<br>MOTA | 1235         |          | PHE        |   |            | 8.886            | 79.661           | 3.111            |       | 39.52          | С      |
| ATOM         | 1236         |          | PHE        |   |            | 7.541            | 79.258           | 3.184            |       | 44.65          | С      |
| MOTA         | 1237         | CZ       | PHE        |   |            | 6.616            | 79.673           | 2.193            |       | 42.39          | C<br>C |
| ATOM<br>ATOM | 1238         |          | PHE        |   |            | 7.076<br>8.404   | 80.405<br>80.755 | 1.188<br>1.128   |       | 38.82<br>42.10 | Ċ      |
| ATOM         | 1239<br>1240 | CD2      | PHE        |   |            | 12.495           | 81.510           | 0.678            |       | 44.42          | č      |
| ATOM         | 1241         | ō        | PHE        |   |            | 13.246           | 81.534           | 1.624            |       | 46.91          | 0      |
| MOTA         | 1242         | N        | ASP        |   |            | 12.601           | 82.327           | -0.331           |       | 47.91          | N<br>C |
| ATOM         | 1243<br>1244 | CA<br>CB | ASP<br>ASP |   |            | 13.553<br>13.293 | 83.385<br>84.247 | -0.248<br>-1.315 |       | 49.78<br>54.07 | .c     |
| MOTA<br>MOTA | 1244         | CG       | ASP        |   |            | 14.331           | 85.214           | -1.455           |       | 60.46          | · c    |
| ATOM         | 1246         |          | ASP        |   |            | 14.590           | 86.031           | -0.575           |       | 72.40          | ~ O ↑  |
| MOTA         | 1247         |          | ASP        |   |            | 15.042           | 85.168           | -2.469           |       | 78.74          | : O    |
| MOTA         | 1248         | C        | ASP        |   |            | 13.303<br>12.184 | 84.160<br>84.407 | 1.026<br>1.380   |       | 48.41<br>48.05 |        |
| ATOM<br>ATOM | 1249<br>1250 | 0        | ASP<br>TYR |   |            | 14.358           | 84.537           | 1.722            |       | 49.36          | N      |
| ATOM         | 1251         | CA       | TYR        |   |            | 14.260           | 85.208           | 3.016            | .1.00 | 50.80          | : -C   |
| ATOM         | 1252         | СB       | TYR        |   |            | 15.653           | 85.511           | 3.674            |       | 49.94          | C      |
| ATOM         | 1253         | CG       |            |   | 189        | 16.468           | 84.275<br>84.245 | 4.112<br>4.156   |       | 45.98<br>44.73 | C      |
| ATOM<br>ATOM | 1254<br>1255 |          | TYR<br>TYR |   |            | 17.845<br>18.554 | 83.109           | 4.541            |       | 45.95          | č      |
| MOTA         | 1256         | CZ       |            |   | 189        | 17.940           | 82.048           | 4.829            |       | 46.78          | С      |
| ATOM         | 1257         | OH       |            |   | 189        | 18.869           | 80.997           | 5.024            |       | 46.38          | 0      |
| MOTA         | 1258         |          | TYR        |   |            | 16.583           | 82.020           | 4.771<br>4.397   |       | 50.98<br>45.36 | C<br>C |
| ATOM<br>ATOM | 1259<br>1260 | CD2      | TYR        |   | 189        | 15.850<br>13.578 | 83.117<br>86.506 | 2.850            |       | 53.27          | č      |
| ATOM         | 1261         | ŏ        | TYR        |   |            | 13.341           | 87.428           | 3.762            | 1.00  | 55.25          | 0      |
| ATOM         | 1262         | N        | LYS        |   |            | 13.299           | 86.759           |                  |       | 53.93          | N      |
| ATOM         | 1263         | CA       | LYS        |   |            | 12.586           | 88.022           | 1.453<br>0.314   |       | 55.64<br>58.46 | c<br>c |
| ATOM<br>ATOM | 1264<br>1265 | CB<br>CG | LYS        |   | 190        | 13.128<br>13.807 | 88.838<br>90.115 |                  |       | 61.63          | č      |
| ATOM         | 1266         | CD       |            |   | 190        | 14.956           | 90.331           | -0.359           |       | 72.13          | C      |
| MOTA         | 1267         | CE       |            |   | 190        | 14.504           | 90.188           | -1.869           |       | 75.03          | C<br>N |
| ATOM<br>ATOM | 1268         |          | LYS        |   | 190        | 13.830<br>11.064 | 91.544<br>87.796 |                  |       | 63.73<br>53.56 | č      |
| ATOM         | 1269<br>1270 | С<br>0   |            |   | 190        | 10.373           | 88.645           |                  |       | 50.40          | ō      |
| ATOM         | 1271         | N        |            |   | 191        | 10.568           | 86.664           | 0.771            |       | 49.39          | N      |
| MOTA         | 1272         | CA       |            |   | 191        | 9.137            | 86.358           |                  |       | 48.11<br>48.98 | C      |
| ATOM         | 1273<br>1274 | CB<br>CG |            |   | 191<br>191 | 9.076<br>7.676   | 84.901<br>84.382 |                  |       | 59.42          | Č      |
| MOTA<br>MOTA | 1275         |          | ASP        |   |            | 7.568            | 83.471           |                  |       | 71.83          | ō      |
| ATOM         | 1276         |          | ASP        |   |            | 6.627            | 84.810           | 0.687            |       | 57.40          | 0      |
| ATOM         | 1277         | С        |            |   | 191        | 8.342            | 86.639           |                  |       | 49.35          | C<br>O |
| ATOM         | 1278         | 0        |            |   | 191<br>192 | 8.539<br>7.370   | 86.189<br>87.443 |                  |       | 53.98<br>49.84 | N      |
| MOTA<br>MOTA | 1279<br>1280 | N<br>CA  |            |   | 192        | 6.438            | 87.799           |                  |       | 47.76          | č      |
| ATOM         | 1281         | СВ       |            |   | 192        | 5.418            | 88.771           | 1.891            |       | 48.77          | С      |
| ATOM         | 1282         | CG       | GLN        | A | 192        | 4.564            | 89.502           |                  |       | 50.44          | C      |
| MOTA         | 1283         | CD       |            |   | 192        | 5.393<br>6.272   | 90.428<br>91.216 |                  |       | 54.79<br>52.34 | C<br>O |
| ATOM<br>ATOM | 1284<br>1285 |          | GLN<br>GLN |   |            | 5.219            | 90.272           |                  |       | 47.68          | N      |
| ATOM         | 1286         | C        |            |   | 192        | 5.748            | 86.552           | 3.239            | 1.00  | 41.56          | C.     |
| ATOM         | 1287         | 0        | GLN        | A | 192        | 5.403            | 86.633           |                  |       | 38.50          | . 0    |
| ATOM         | 1288         | N        |            |   | 193        | 5.490<br>4.773   | 85.487<br>84.526 |                  |       | 40.18          | N<br>C |
| ATOM<br>ATOM | 1289<br>1290 | CA<br>CB |            |   | 193<br>193 | 4.773            | 83.323           |                  |       | 45.50          | č      |
|              |              | _        |            |   |            |                  |                  |                  |       |                |        |

|              |              |           |            |   |            | F                | igure            | 2                |      |                |              |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------------|
| MOTA         | 1291         | CG        |            |   | 193        | 3.900            | 83.387           | 1.080            |      | 51.86          | Ç            |
| ATOM<br>ATOM | 1292<br>1293 | CD        |            |   | 193        | 3.499<br>3.412   | 81.920<br>80.918 | 0.499            |      | 61.19          | C            |
| MOTA         | 1294         | NE2       | GLN<br>GLN |   | 193        | 3.342            | 81.783           | 1.255            |      | 54.57<br>61.97 | N            |
| ATOM         | 1295         | c         |            |   | 193        | 5.688            | 84.139           | 4.618            |      | 45.94          | C            |
| ATOM         | 1296         | 0         |            |   | 193        | 5.186            | 84.044           | 5.808            |      | 47.11          | 0            |
| ATOM         | 1297         | N         |            |   | 194        | 6.974            | 83.983           | 4.284            |      | 42.76          | N<br>C       |
| ATOM<br>ATOM | 1298<br>1299 | CA        |            |   | 194<br>194 | 8.015<br>9.389   | 83.728<br>83.616 | 5.053<br>4.221   |      | 38.91<br>37.55 | c            |
| ATOM         | 1300         | CG        |            |   | 194        | 10.529           | 83.110           | 5.137            |      | 34.02          | č            |
| MOTA         | 1301         |           | PHE        |   |            | 11.461           | 83.917           | 5.550            |      | 33.17          | С            |
| ATOM         | 1302         |           | PHE        |   |            | 12.349           | 83.551           | 6.301            |      | 25.92          | C            |
| ATOM<br>ATOM | 1303<br>1304 | CZ<br>CE2 | PHE        |   | 194<br>194 | 12.408<br>11.517 | 82.349<br>81.415 | 6.767<br>6.504   |      | 30.87<br>29.57 | C<br>. , . C |
| MOTA         | 1305         |           | PHE        |   |            | 10.570           | 81.815           | 5.640            |      | 35.88          | Ċ            |
| MOTA         | 1306         | С         |            |   | 194        | 8.178            | 84.724           | 6.038            |      | 40.16          | C            |
| ATOM<br>ATOM | 1307<br>1308 | Ŋ         |            |   | 194<br>195 | 8.288<br>8.235   | 84.326           | 7.199<br>5.755   |      | 43.19          | O<br>N       |
| ATOM         | 1309         | CA        | LEU        |   |            | 8.478            | 86.043<br>86.913 | 6.921            |      | 36.08          | C            |
| ATOM         | 1310         | СВ        |            |   | 195        | 8.787            | 88.270           | 6.627            |      | 37.44          | Č            |
| ATOM         | 1311         | CG        |            |   | 195        | 9.967            | 88.344           | 5.828            |      | 43.71          | C            |
| ATOM<br>ATOM | 1312<br>1313 |           | LEU        |   |            | 9.561<br>10.980  | 89.135<br>89.052 | 4.473<br>6.588   |      | 40.56<br>48.61 | C<br>C       |
| ATOM         | 1314         | C         | LEU        |   |            | 7.339            | 86.918           | 7.907            |      | 35.71          | Č            |
| MOTA         | 1315         | 0         | LEU        |   |            | 7.492            | 87.249           | 9.031            |      | 33.44          | Ō            |
| ATOM         | 1316         | N         |            |   | 196        | 6.148            | 86.510           | 7.503            |      | 37.85          | N            |
| ATOM<br>ATOM | 1317<br>1318 | CA<br>CB  | ASN<br>ASN |   |            | 4.956<br>3.707   | 86.500<br>86.278 | 8.406<br>7.665   |      | 35.64<br>34.38 | · C          |
| ATOM         | 1319         | CG        |            |   | 196        | 3.274            | 87.472           | 6.732            |      | 41.45          | c            |
| ATOM :       | 1320         |           | ASN        |   |            | 2.667            | 87.138           | 5.690            | 1.00 | 38.80          | 0            |
| ATOM .       | 1321         |           | ASN        |   |            | 3.518            | 88.817           | 7.081            |      | 36.94          | Ŋ            |
|              | 1322<br>1323 | C<br>0    | ASN        |   |            | 4.986<br>4.620   | 85.400<br>85.449 | 9.337<br>10.520  |      | 37.65<br>42.82 | . C<br>O     |
| ATOM         |              | . N       | LEU        |   |            | 5.440            | B4.302           | 8.878            |      | 38.98          | N            |
| ATOM         |              | . CA      | LEU        | A | 197        | 5.460            | 83.208           | 9.677            |      | 38.93          | С            |
| ATOM :       | 1326         |           | LEU        |   |            | 5.792            | 82.127           | 8.791            |      | 40.07          | c            |
| ATOM:        | 1327<br>1328 | CG        | LEU        |   |            | 6.086<br>4.941   | 80.864<br>80.701 | 9.514<br>10.376  |      | 43.57          | C            |
| ATOM :       |              |           | LEU        |   |            | 6.251            | 79.757           | 8.483            |      | 45.32          | č            |
| ATOM         | 1330         | C         | LEU        |   |            | 6.574            | 83.527           | 10.623           |      | 40.32          | С            |
| ATOM         | 1331         | 0         | LEU        |   |            | 6.499            | 83.272           | 11.835           |      | 41.14          | 0            |
| ATOM<br>ATOM | 1332<br>1333 | N<br>CA   | MET<br>MET |   |            | 7.637<br>8.814   | 84.114<br>84.325 | 10.118<br>11.020 |      | 39.97<br>41.22 | N<br>C       |
| ATOM         | 1334         | СВ        | MET        |   |            | 9.894            | 84.877           | 10.209           |      | 41.95          | č            |
| ATOM         | 1335         | CG        | MET        |   |            | 11.224           | 84.562           | 10.505           |      | 50.96          | С            |
| ATOM         | 1336         | SD        | MET        |   |            | 11.812           | 82.798           | 10.577<br>12.549 |      | 56.36          | , s<br>C     |
| ATOM<br>ATOM | 1337<br>1338 | CE<br>C   | MET<br>MET |   |            | 12.109<br>8.384  | 82.595<br>85.209 | 12.011           |      | 51.90<br>44.34 | c            |
| ATOM         | 1339         | ō         | MET        |   |            | 8.608            | 85.068           | 13.125           |      | 53.70          | ŏ            |
| MOTA         | 1340         | N         | GLU        |   |            | 7.612            | 86.127           | 11.694           |      | 45.88          | N            |
| ATOM         | 1341         | CA        | GLU        |   |            | 7.188            | 87.086           | 12.664           |      | 47.90          | C<br>C       |
| MOTA         | 1342<br>1343 | CB<br>CG  | GLU        |   |            | 6.529<br>6.121   | 88.193<br>89.474 | 11.781<br>12.598 |      | 50.50<br>53.80 | c            |
| MOTA         | 1344         | CD        | GLU        | A | 199        | 4.972            | 90.251           | 11.795           | 1.00 | 68.21          | Ċ            |
| ATOM         | 1345         |           | GLU        |   |            | 5.171            | 91.295           | 10.873           |      | 61.60          | 0            |
| MOTA<br>MOTA | 1346<br>1347 | OE2<br>C  | GLU        |   |            | 3.796<br>6.265   | 89.636<br>86.538 | 12.000<br>13.696 |      | 68.62<br>46.35 | 0<br>C       |
| ATOM         | 1348         | ŏ         | GLU        |   |            | 6.187            | 86.815           | 14.920           |      | 49.89          | ŏ            |
| MOTA         | 1349         | N         | LYS        |   |            | 5.419            | 85.729           | 13.256           |      | 46.66          | N            |
| MOTA         | 1350         | CA        | LYS        |   |            | 4.446            | 85.201<br>84.548 | 14.241           |      | 43.67          | C            |
| ATOM<br>ATOM | 1351<br>1352 | CB<br>CG  | LYS<br>LYS |   |            | 3.402<br>1.949   | 84.718           | 13.302<br>13.689 |      | 44.49<br>54.43 | C            |
| ATOM         | 1353         | CD        | LYS        |   |            | 1.162            | 86.189           | 13.591           |      | 50.54          | č            |
| MOTA         | 1354         | CE        | LYS        | A | 200        | 1.432            | 86.703           | 12.351           |      | 53.63          | C            |
| ATOM         | 1355         | NZ        | LYS        |   |            | 1.403            | 88.137           | 12.530           |      | 50.36          | N            |
| ATOM<br>ATOM | 1356<br>1357 | С<br>0    | LYS<br>LYS |   |            | 5.198<br>4.891   | 84.281<br>84.262 | 15.118<br>16.182 |      | 45.27          | . C          |
| ATOM         | 1358         | N         | LEU        |   |            | 6.281            | 83.525           | 14.708           |      | 38.68          | Ñ            |
| MOTA         | 1359         | CA        | LEU        | A | 201        | 6.938            | 82.580           | 15.579           |      | 33.34          | С            |
| ATOM         | 1360         | CB        | LEU        |   |            | 7.918            | 81.815           | 14.827           |      | 31.13          | C            |
| ATOM<br>ATOM | 1361<br>1362 | CG        | LEU        |   |            | 7.329<br>8.293   | 80.753<br>80.040 | 14.064<br>13.257 |      | 29.70<br>31.98 | c<br>c       |
| ATOM         | 1363         |           | LEU        |   |            | 6.747            | 79.750           | 14.913           |      | 32.61          | č            |
| MOTA         | 1364         | С         | LEU        | A | 201        | 7.775            | 83.359           | 16.632           |      | 34.82          | С            |
| ATOM         | 1365         | 0         | LEU        |   |            | 7.834            | 82.964           | 17.805           |      | 31.61          | 0            |
| MOTA         | 1366         | N         | ASN        | A | 202        | 8.354            | 84.511           | 16.239           | 1.00 | 36.21          | N            |

|              |      |           |        |                | Fi               | .gure            | 2                |                          |        |
|--------------|------|-----------|--------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         |      | CA        | ASN A  |                | 9.152            | 85.277           | 17.172           | 1.00 38.82               | c      |
| ATOM<br>ATOM |      | CB<br>CG  | ASN A  |                | 10.078<br>11.055 | 86.290<br>85.681 | 16.555<br>15.468 | 1.00 37.94<br>1.00 45.27 | C      |
| ATOM         |      |           | ASN A  |                | 11.374           | 86,275           | 14.487           | 1.00 46.46               | , o    |
| ATOM         |      | ND2       | ASN A  |                | 11.594           | 84.484           |                  | 1.00 50.71               | . N    |
| ATOM         |      | С         | ASN A  |                | 8.293            | 85.903           | 18.187           | 1.00 42.29               | C      |
| ATOM<br>ATOM |      | O<br>N    | ASN A  |                | 8.655<br>7.069   | 85.896<br>86.332 | 19.487<br>17.783 | 1.00 42.72               | O<br>N |
| ATOM         |      | ÇA        | GLU A  |                | 6.248            | 86.939           | 18.888           | 1.00 42.60               | č      |
| ATOM         |      | СВ        | GLU A  |                | 5.020            | 87.378           | 18.286           | 1.00 46.93               | Ċ      |
| ATOM         |      | CG        | GLU A  |                | 4.605            | 88.845           | 18.495           | 1.00 52.55               | C      |
| ATOM<br>ATOM |      | CD        | GLU F  |                | 3.115<br>2.515   | 88.982<br>88.507 | 18.492<br>17.490 | 1.00 58.26<br>1.00 68.49 | С<br>0 |
| ATOM         |      |           | GLU A  |                | 2.532            | 89.469           | 19.506           | 1.00 65.16               | ŏ      |
| ATOM         |      | С         | GLU A  | 203            | 5.925            | 86.010           | 19.929           | 1.00 39.07               | С      |
| ATOM         |      | 0         | GLU A  |                | 5.870            | 86.232           | 21.166           | 1.00 39.68               | 0      |
| ATOM<br>ATOM |      | N<br>CA   | ASN A  |                | 5.695<br>5.403   | 84.817<br>83.801 | 19.515<br>20.595 | 1.00 40.16               | N<br>C |
| ATOM         |      | СВ        | ASN A  |                | 4.932            | 82.625           | 19.927           | 1.00 40.10               | č      |
| MOTA         |      | CG        | ASN A  |                | 3.415            | 82.646           | 19.572           | 1.00 42.14               | С      |
| ATOM         |      |           | ASN A  |                | 2.920            | 81.734           | 18.903           | 1.00 43.48               | 0      |
| ATOM<br>ATOM |      | C C       | ASN A  |                | 2.725<br>6.637   | 83.587<br>83.554 | 20.007<br>21.509 | 1.00 42.56<br>1.00 41.05 | N<br>C |
| ATOM         |      | ŏ         | ASN A  |                | 6.490            | 83.278           | 22.709           | 1.00 41.93               | ō      |
| ATOM         |      | N         | ILE P  |                | 7.863            | 83.762           | 20.965           | 1.00 37.68               | N      |
| ATOM         |      | CA        | ILE A  |                | 8.979            | 83.580<br>83.500 | 21.763           | 1.00 35.61               | C<br>C |
| ATOM<br>ATOM |      | CB<br>CG1 | ILE P  |                | 10.224<br>10.307 | 82.146           | 20.865<br>20.171 | 1.00 36.61<br>1.00 31.07 | c      |
| ATOM         |      |           | ILE A  |                | 11.093           | 82.327           | 18.869           | 1.00 46.46               | Č      |
| ATOM         |      |           | ILE A  |                | 11.413           | 83.462           | 21.643           | 1.00 31.70               | C      |
| ATOM         |      | C         | ILE A  |                | 9.199            | 84.661<br>84.381 | 22.758           | 1.00 39.14               | c<br>0 |
| ATOM<br>ATOM |      | O<br>N    |        | 205 ·<br>206 · |                  | 85.894           | 23.870<br>22.422 | 1.00 40.14               | N      |
| ATOM         |      | CA        |        | 206            | 8.905            | 87.006           | 23.298           | 1.00 41.80               | c      |
| ATOM         |      | CB        |        | 206            |                  | 88.170           | 22.497           | 1.00 44.47               | C      |
| ATOM         |      | CG        | GLU A  |                | 8.732            | 89.447<br>90.428 | 23.217<br>22.125 | 1.00 57.06 1.00 63.46    | c<br>c |
| MOTA<br>MOTA |      | CD<br>OE1 | GLU A  | 206:<br>206:   |                  | 91.533           | 22.531           | 1.00 74.04               | Ö      |
| ATOM         |      |           |        |                | 9.318            | 90.035           | 20.925           | 1.00 63.39               | 0      |
| ATOM         |      | С         | GLU A  | 506.           | 7.740            | 86.869           | 24.362           | 1.00 41.54               | C      |
| ATOM<br>ATOM |      | 0         | GLU A  | 206            | 7.916<br>6.497   | 86.901<br>86.610 | 25.484<br>23.931 | 1.00 36.58<br>1.00 43.02 | О<br>И |
| ATOM         |      | N<br>CA   | ILE A  |                | 5.473            | 86.494           | 24.947           | 1.00 40.42               | č      |
| ATOM         |      | СВ        | ILE A  |                | 4.228            | 85.998           | 24.357           | 1.00 39.82               | С      |
| ATOM         |      |           | ILE A  |                | 3.604            | 86.978           | 23.436           | 1.00 47.19               | C      |
| ATOM<br>ATOM |      |           | ILE A  |                | 2.444<br>3.320   | 86.197<br>85.757 | 22.415<br>25.249 | 1.00 51.04<br>1.00 43.22 | C<br>C |
| ATOM         |      | C         | ILE A  |                | 6.031            | 85.490           | 25.944           | 1.00 41.08               | č      |
| ATOM         | 1415 | 0         | ILE A  | 207            | 6.090            | 85.777           | 27.081           | 1.00 40.73               | 0      |
| ATOM         |      | N         | LEU A  |                | 6.401            | 84.279           | 25.513           | 1.00 42.13               | С<br>И |
| ATOM<br>ATOM |      | CA<br>CB  | LEU A  |                | 6.797<br>7.067   | 83.214<br>82.003 | 26.387<br>25.614 | 1.00 42.21               | c      |
| ATOM         |      | CG        | LEU A  |                | 5.847            | 81.561           | 25.006           | 1.00 40.73               | C      |
| ATOM         |      |           | LEU A  |                | 5.978            | 80.263           | 24.075           | 1.00 41.66               | c      |
| ATOM<br>ATOM |      |           | LEU A  |                | 4.890<br>8.051   | 81.162<br>83.470 | 26.172<br>27.245 | 1.00 48.62               | C      |
| ATOM         |      | 0         | LEU A  |                | 8.357            | 82.751           | 28.224           | 1.00 45.68               | ő      |
| ATOM         |      | N         | SER A  | 209            | 8.765            | 84.503           | 26.912           | 1.00 49.39               | N      |
| ATOM         |      | CA        | SER A  |                | 9.935            | 84.770           | 27.664           | 1.00 51.90               | C      |
| ATOM<br>ATOM |      | CB<br>OG  | SER A  |                | 10.912<br>10.410 | 85.389<br>86.691 | 26.695<br>26.542 | 1.00 52.34<br>1.00 56.90 | C<br>0 |
| ATOM         |      | C         | SER A  |                | 9.740            | 85.761           | 28.827           | 1.00 53.48               | . č    |
| ATOM         | 1429 | Ō         | SER A  | 209            | 10.575           | 85.860           | 29.761           | 1.00 56.40               | 0      |
| ATOM         |      | N         | SER A  |                | 8.680            | 86.485           | 28.876           | 1.00 53.03               | И      |
| ATOM<br>ATOM |      | CA<br>CB  | SER A  |                | 8.558<br>7.252   | 87.354<br>88.051 | 30.083<br>29.973 | 1.00 54.34<br>1.00 56.76 | C<br>C |
| ATOM         |      | OG        | SER A  |                | 6.547            | 87.742           | 31.061           | 1.00 59.56               | ŏ      |
| ATOM         | 1434 | С         | SER A  | 210            | 8.430            | 86.614           | 31.287           | 1.00 52.14               | ç,     |
| ATOM         |      | 0         | SER A  |                | 7.711            | 85.740           | 31.326           | 1.00 52.09               | 0      |
| ATOM<br>ATOM |      | N<br>Ca   | PRO A  |                | 9.143<br>9.253   | 87.004<br>86.410 | 32.297<br>33.612 | 1.00 52.23<br>1.00 52.16 | N<br>C |
| ATOM         |      | CB        | PRO A  |                | 10.016           | 87.457           | 34.397           | 1.00 53.41               | č      |
| ATOM         | 1439 | CG        | PRO A  | 211            | 10.962           | 88.249           | 33.171           | 1.00 56.24               | С      |
| ATOM         |      | CD        | PRO A  |                | 10.039           | 88.146           | 32.024           | 1.00 54.20               | c      |
| ATOM<br>ATOM |      | С<br>0    | PRO A  |                | 7.989<br>7.715   | 86.278<br>85.475 | 34.252<br>35.175 | 1.00 52.90<br>1.00 49.17 | c<br>o |
| A 1 OM       | 1442 | •         | F KO M |                | ,.,13            | 55.475           | 55.2.5           | 30.21                    | •      |

|   |              |              |           |       |     | Fi               | gure             | 2                |                          |   |        |
|---|--------------|--------------|-----------|-------|-----|------------------|------------------|------------------|--------------------------|---|--------|
|   | MOTA         | 1443         | N         | TRP A |     | 7.112            | 87.093           | 33.834           | 1.00 56.27               |   | N      |
|   | MOTA         | 1444         | CA        | TRP A |     | 5.849            | 86.997           | 34.486           | 1.00 60.67               |   | C      |
|   | MOTA<br>MOTA | 1445<br>1446 | CB<br>CG  | TRP A |     | 5.230<br>4.093   | 88.456<br>88.937 | 34.819<br>34.159 | 1.00 62.42<br>1.00 75.44 |   | C      |
|   | MOTA         | 1447         |           | TRP A |     | 3.801            | 88.704           | 32.818           | 1.00 89.76               |   | č      |
|   | ATOM         | 1448         |           | TRP A |     | 2.571            | 89.228           | 32.414           | 1.00 90.98               |   | N      |
|   | ATOM         | 1449         |           | TRP A |     | 2.033            | 89.808           | 33.533           | 1.00 90.86               |   | С      |
|   | ATOM         | 1450         |           | TRP A |     | 2.973            | 89.657           | 34.674           | 1.00 89.51               |   | C      |
|   | MOTA         | 1451<br>1452 |           | TRP A |     | 2.630<br>1.409   | 90.197<br>90.859 | 35.967<br>36.112 | 1.00 93.88<br>1.00 93.68 |   | C      |
|   | MOTA<br>MOTA | 1453         |           | TRP A |     | 0.525            | 91.010           | 34.963           | 1.00 91.84               |   | č      |
|   | ATOM         | 1454         |           | TRP A |     | 0.845            | 90.492           | 33.655           | 1.00 91.39               |   | С      |
|   | MOTA         | 1455         | С         | TRP A |     | 5.150            | 85.768           | 33.984           | 1.00 60.41               |   | С      |
|   | ATOM         | 1456         | 0         | TRP A |     | 4.161            | 85.327           | 34.468           | 1.00 65.51               |   | 0      |
|   | MOTA<br>MOTA | 1457<br>1458 | N<br>CA   | ILE A |     | 5.691<br>4.924   | 84.983<br>83.703 | 33.112<br>32.768 | 1.00 60.84<br>1.00 60.07 |   | N<br>C |
|   | ATOM         | 1459         | CB        | ILE A |     | 5.528            | 83.018           | 31.472           | 1.00 58.53               |   | č      |
|   | ATOM         | 1460         |           | ILE A |     | 5.161            | 83.849           | 30.310           | 1.00 61.60               |   | С      |
|   | MOTA         | 1461         |           | ILE A |     | 4.109            | 83.234           | 29.466           | 1.00 65.34               |   | C      |
|   | MOTA         | 1462         |           | ILE A |     | 5.007            | 81.518           | 31.221           | 1.00 52.00<br>1.00 62.01 |   | C<br>C |
|   | atom<br>atom | 1463<br>1464 | C<br>0    | ILE A |     | 4.962<br>4.298   | 82.531<br>81.477 | 33.792<br>33.699 | 1.00 65.07               |   | Ö      |
|   | ATOM         | 1465         | N         | GLN A |     | 5.851            | 82.531           | 34.727           | 1.00 62.40               |   | N      |
|   | ATOM         | 1466         | CA        | GLN A |     | 5.740            | 81.412           | 35.673           | 1.00 60.67               |   | С      |
|   | ATOM         | 1467         | СB        | GLN A |     | 7.046            | B1.205           | 36.286           | 1.00 62.52               |   | С      |
|   |              | 1468         | CG        | GLN A |     | 7.324            | 79.812           | 36.520           | 1.00 66.00<br>1.00 71.29 |   | C<br>C |
|   | ATOM<br>ATOM | 1469<br>1470 | CD<br>OF1 | GLN A |     | 7.345<br>7.800   | 79.131<br>79.769 | 35.143           | 1.00 71.29               |   | 0      |
|   | MOTA         | 1471         |           | GLN A |     | 6.814            | 77.878           | 35.087           | 1.00 64.33               |   | N      |
|   | MOTA         | 1472         | C         | GLN A |     | 4.765            | 81.872           | 36.767           | 1.00 58.55               |   | С      |
|   | MOTA         | 1473         | 0         | GLN A |     | 4.252            | 81.137           | 37.566           | 1.00 57.23               |   | 0      |
|   | MOTA         | 1474         | N         | VAL A |     | 4.434            | 83.160           |                  | 1:00755.66               |   | N<br>C |
|   | ATOM<br>ATOM | 1475<br>1476 | CA<br>CB  | VAL A |     | 3.478<br>3.369   | 83.539<br>84.972 |                  | 1.00 54-06<br>1.00 54.15 |   | Ċ      |
|   | MOTA         | 1477         |           | VAL A |     | 2.422            | 85.417           | 38.861           | 1.00 56.51               |   | č      |
|   | ATOM         | 1478         |           | VAL A |     | 4.646            | 85.483           | 38.183           | 1.00 56.89               |   | С      |
|   | ATOM         | 1479         | C         | VAL A |     | 2.122            | 82.981           | 37.268           | 1.00 52:21               |   | C      |
|   | MOTA         | 1480         | 0         | VAL A |     | 1.336            | 82.668           | 37.991<br>36.036 | 1.00 55 09<br>1.00 50 43 |   | O<br>N |
|   | ATOM<br>ATOM | 1481<br>1482 | N<br>CA   | TYR A |     | 1.849<br>0.633   | 82.807<br>82.177 |                  | 1.00 47.72               | • | C      |
|   | ATOM         | 1483         | СВ        | TYR A |     | 0.355            | 82.194           | 34.404           | 1.00-47:26               |   | Č      |
|   | ATOM         | 1484         | CG        | TYR A | 216 | 0.098            | 83.529           | 33.752           | 1.00 50.88               |   | С      |
|   | ATOM         | 1485         |           | TYR A |     | -0.968           | 84.139           | 33.966           | 1.00 49.80               |   | C      |
|   | ATOM<br>ATOM | 1486<br>1487 | CEI       | TYR A |     | -1.248<br>-0.401 | 85.369<br>85.906 | 33.367<br>32.498 | 1.00 49.93<br>1.00 53.16 |   | C      |
|   | ATOM         | 1488         | OH        | TYR A |     | -0.847           | 87.085           | 31.917           | 1.00 59.86               |   | ŏ      |
|   | ATOM         |              |           | TYR A |     | 0.774            | 85.291           | 32.182           | 1.00 47.47               |   | С      |
| • | ATOM         | 1490         |           | TYR A |     | 1.022            | 84.121           | 32.797           | 1.00 53.78               |   | С      |
|   | ATOM         | 1491         | C         | TYR A |     | 0.565            | 80.756           | 36.249           | 1.00 45.73               |   | 0      |
|   | ATOM<br>ATOM | 1492<br>1493 | O<br>N    | TYR A |     | -0.455<br>1.643  | 80.365<br>80.021 | 36.689<br>36.246 | 1.00 44.98<br>1.00 46.24 |   | N      |
|   | ATOM         | 1494         | CA        | ASN A |     | 1.680            | 78.657           | 36.618           | 1.00 44.87               |   | С      |
|   | ATOM         | 1495         | CB        | ASN A | 217 | 2.904            | 78.011           | 36.139           | 1.00 44.03               |   | С      |
|   | MOTA         | 1496         | CG        | ASN A |     | 2.930            | 77.893           | 34.607           | 1.00 48.66               |   | C      |
|   | ATOM<br>ATOM | 1497<br>1498 |           | ASN A |     | 1.875<br>4.089   | 77.623<br>78.147 | 33.956<br>34.028 | 1.00 50.73<br>1.00 48.68 |   | O<br>N |
|   | MOTA         | 1499         | C         | ASN A |     | 1.603            | 78.565           | 37.996           | 1.00 46.13               |   | Ċ      |
|   | ATOM         | 1500         | 0         | ASN A |     | 1.198            | 77.621           | 38.531           | 1.00 49.16               |   | 0      |
|   | MOTA         | 1501         | N         | ASN A |     | 1.892            | 79.574           | 38.660           | 1.00 47.73               |   | N      |
|   | ATOM<br>ATOM | 1502<br>1503 | CA<br>CB  | ASN A |     | 1.773<br>2.907   | 79.378<br>80.200 | 40.057<br>40.669 | 1.00 50.23<br>1.00 54.76 |   | C      |
|   | ATOM         | 1504         | CG        | ASN A |     | 3.890            | 79.350           | 41.379           | 1.00 60.20               |   | Č      |
|   | ATOM         | 1505         |           | ASN A |     | 3.720            | 78.048           | 41.465           | 1.00 69.56               |   | 0      |
|   | MOTA         | 1506         | ND2       | ASN A |     | 4.899            | 79.990           | 41.973           | 1.00 67.99               |   | N      |
|   | ATOM         | 1507         | C         | ASN A |     | 0.428            | 79.834           | 40.577           | 1.00 50.18               | • | C      |
|   | ATOM         | 1508<br>1509 | O<br>N    | ASN A |     | -0.044<br>-0.237 | 79.344<br>80.752 | 41.614<br>39.834 | 1.00 50.24<br>1.00 48.26 |   | И<br>И |
|   | ATOM<br>ATOM | 1510         | N<br>CA   | PHE A |     | -0.237           | 80.752           | 40.178           | 1.00 46.01               |   | C      |
|   | ATOM         | 1511         | CB        | PHE A |     | -1.251           | 82.584           | 40.640           | 1.00 47.67               |   | Ċ      |
|   | ATOM         | 1512         | CG        | PHE A |     | -0.470           | 82.674           | 41.788           | 1.00 47.42               |   | С      |
|   | MOTA         | 1513         |           | PHE A |     | 0.315            | 83.726           | 41.967           | 1.00 52.39               |   | C      |
|   | MOTA<br>MOTA | 1514<br>1515 | CE1       | PHE A |     | 1.061<br>0.991   | 83.910<br>82.990 | 43.096<br>44.096 | 1.00 59.52<br>1.00 63.37 |   | C<br>C |
|   | ATOM         | 1516         |           | PHE A |     | 0.185            | 81.869           | 43.950           | 1.00 60.97               |   | c      |
|   | ATOM         | 1517         |           | PHE A |     | -0.574           | 81.746           | 42.745           | 1.00 57.27               |   | С      |
|   | ATOM         | 1518         | С         | PHE A | 219 | -2.486           | 81.289           | 38.993           | 1.00 45.88               |   | С      |
|   |              |              |           |       |     |                  |                  |                  |                          |   |        |

1.0 (1.0 kg/g) 2.0 (2.0 kg/g)

A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp

|              |              |           |            |   |     | Figu       | re             | 2                |      |                |   |   |                 |
|--------------|--------------|-----------|------------|---|-----|------------|----------------|------------------|------|----------------|---|---|-----------------|
| ATOM         | 1519         | 0         | PHE        | A | 219 |            | 428            | 38.564           | 1.00 | 47.78          |   |   | 0               |
| ATOM         | 1520         | N         | PRO        |   |     |            | 129            | 38.470           |      | 43.31          |   |   | N               |
| ATOM<br>ATOM | 1521<br>1522 | CA<br>CB  | PRO<br>PRO |   |     |            | 985            | 37.277           |      | 42.99          |   |   | C<br>C          |
| ATOM         | 1523         | CG .      | PRO        |   |     |            | 116            | 38.421           |      | 37.76          |   |   | č               |
| ATOM         | 1524         | CD        | PRO        |   |     | -2.767 78. | 831            | 39.073           |      | 43.84          |   |   | C               |
| MOTA         | 1525         | С         | PRO        |   |     |            | 917            | 37.209           |      | 44.77          |   |   | С               |
| MOTA<br>MOTA | 1526<br>1527 | O<br>N    | PRO<br>ALA |   |     |            | 672<br>992     | 36.257<br>38.267 |      | 50.32<br>45.06 |   |   | O<br>N          |
| ATOM         | 1528         | CA        | ALA        |   |     |            | 913            | 38.517           |      | 45.99          |   |   | Č               |
| ATOM         | 1529         | СВ        | ALA        |   |     |            | 974            | 39.994           |      | 50.85          |   |   | С               |
| ATOM         | 1530         | С         | ALA        |   |     |            | 288            | 37.984           |      | 47.42          |   |   | C               |
| ATOM<br>ATOM | 1531<br>1532 | O<br>N    | ALA<br>LEU |   |     |            | 905            | 37.475<br>37.956 |      | 51.31          |   |   | O<br>N          |
| ATOM         | 1533         | CA        | LEU        |   |     |            | 109            | 37.380           |      | 51.79          |   |   | Č               |
| MOTA         | 1534         | СВ        | LEU        | A | 222 | -3.210 85. | 420            | 37.634           |      | 49.88          |   |   | С               |
| ATOM         | 1535         | CG        | LEU        |   |     |            | 241            | 38.816           |      | 58.18          |   |   | C               |
| ATOM<br>ATOM | 1536<br>1537 |           | LEU<br>LEU |   |     |            | .880<br>.316   | 38.496<br>39.226 |      | 57.51<br>58.84 |   |   | C               |
| ATOM         | 1538         | C         | LEU        |   |     |            | 202            | 35.885           |      | 55.76          |   |   | č               |
| ATOM         | 1539         | 0         | LEU        | A | 222 | -5.554 86. | 134            | 35.377           |      | 58.80          |   |   | 0               |
| ATOM         | 1540         | N         | LEU        |   |     |            | 116            | 35.214           |      | 55.87          |   |   | N               |
| ATOM<br>ATOM | 1541<br>1542 | CA<br>CB  | LEU        |   |     |            | . 927<br>. 452 | 33.825<br>33.412 |      | 54.52<br>52.40 |   |   | C<br>C          |
| ATOM         | 1543         | CG        | LEU        |   |     |            | 735            | 33.122           |      | 47.89          |   | • | č               |
| ATOM         | 1544         |           | LEU        |   |     |            | 240            | 32.930           |      | 45.92          |   |   | C               |
| ATOM         | 1545         |           | TEA        |   |     |            | 306            | 31.861           |      | 52.18          |   |   | C               |
| ATOM<br>ATOM | 1546<br>1547 | С<br>0    | LEU        |   |     |            | 615<br>721     | 33.489<br>32.861 |      | 59.11<br>67.97 |   |   | C<br>O          |
| ATOM         | 1548         | N         | ASP        |   |     |            | 084            | 34.028           |      | 48.66          |   |   | N               |
| ATOM         | 1549         | CA        | ASP        |   |     |            | 466            | 33.770           |      | 49.55          |   |   | C ?             |
| ATOM         | 1550         | CB        | ASP        |   |     |            | 742            | 34.234           |      | 47.28          |   |   | C               |
| ATOM         | 1551         | CG        | ASP<br>ASP |   |     |            | .312<br>.529   | 34.519           |      | 57.60<br>54.52 |   | - | C<br>O          |
| ATOM<br>ATOM | 1552<br>1553 |           | ASP        |   |     |            | 907            | 33.687<br>35.684 |      | 56.14          |   | • | Ö               |
| ATOM         | 1554         | c         | ASP        |   |     |            | 940            | 34.039           |      | 50.79          |   |   | C: -            |
| ATOM         | 1555         | 0         | ASP        |   |     | -9.200 86. | 730            | 33.139           |      | 54.74          |   |   | ~ <b>0</b> ( ): |
| ATOM         | 1556         | N         | TYR        |   |     |            |                | 34.404           |      | 56.82          |   |   | N.              |
| ATOM<br>ATOM | 1557<br>1558 | CA<br>CB  | TYR<br>TYR |   |     |            | .121<br>.855   | 34.994<br>36.414 |      | 59.56<br>58.94 | - |   | C               |
| ATOM         | 1559         | CG        | TYR        |   |     |            | 432            | 37.353           |      | 58.51          |   |   | C ~             |
| ATOM         | 1560         |           | TYR        |   |     |            | 410            | 38.083           |      | 66.89          |   |   | C               |
| ATOM         | 1561         |           | TYR        |   |     |            | .923           | 39.035           |      | 70.13          |   |   | C<br>C          |
| ATOM<br>ATOM | 1562<br>1563 | CZ<br>OH  | TYR<br>TYR |   |     |            | .523<br>.968   | 39.143<br>40.112 |      | 76.12          |   |   | Ö               |
| ATOM         | 1564         |           | TYR        |   |     |            | 640            | 38.366           |      | 69.33          |   |   | Ċ               |
| ATOM         | 1565         |           | TYR        |   |     |            | .053           | 37.499           |      | 69.99          |   |   | C               |
| ATOM<br>ATOM | 1566<br>1567 | С<br>0    | TYR<br>TYR |   |     |            | .621<br>.764   | 34.224<br>34.369 |      | 59.87<br>65.30 |   |   | C<br>0          |
| ATOM         | 1568         | N         |            |   | 226 |            | 667            | 33.542           |      | 59.90          |   |   | N               |
| ATOM         | 1569         | CA        | PHE        |   |     |            | 961            | 32.402           |      | 58.46          |   |   | С               |
| MOTA         | 1570         | СВ        | PHE        |   |     |            | 142            | 32.964           |      | 57.41          |   |   | C               |
| ATOM<br>ATOM | 1571<br>1572 | CG        | PHE        |   |     |            | .059<br>.564   | 34.106<br>35.344 |      | 59.21<br>63.07 |   |   | C               |
| ATOM         | 1573         |           | PHE        |   |     |            | 370            | 36.487           |      | 66.39          |   |   | č               |
| ATOM         | 1574         | CZ        | PHE        | A | 226 | -3.442 91. | 663            | 36.352           | 1.00 | 68.76          |   |   | С               |
| ATOM         | 1575         |           | PHE        |   |     |            | 178            | 35.120           |      | 64.02          |   |   | C               |
| ATOM<br>ATOM | 1576<br>1577 | CD2       | PHE        |   |     |            | .398<br>.133   | 34.012<br>31.165 |      | 66.80<br>56.79 |   |   | C<br>C          |
| ATOM         | 1578         | ō         | PHE        |   |     |            | 766            | 30.755           |      | 61.20          |   |   | ŏ               |
| ATOM         | 1579         | N         | PRO        |   |     |            | 949            | 30.489           |      | 57.22          |   |   | N               |
| MOTA         | 1580         | CA        | PRO        |   |     |            | .080           | 29.318           |      | 55.27          |   |   | C               |
| ATOM<br>ATOM | 1581<br>1582 | CB<br>CG  | PRO<br>PRO |   |     |            | .221<br>.662   | 28.860<br>30.116 |      | 55.17<br>60.17 |   |   | C               |
| ATOM         | 1583         | CD        | PRO        |   |     |            | 572            |                  |      | 59.84          |   |   | Č               |
| ATOM         | 1584         | c         | PRO        | A | 227 | -5.187 87. | .524           | 28.297           | 1.00 | 51.67          |   |   | С               |
| ATOM         | 1585         | 0         | PRO        |   |     |            | 777            |                  |      | 53.19          |   |   | 0               |
| ATOM         | 1586         | N         | GLY        |   |     |            | .726<br>.036   | 28.233<br>27.106 |      | 50.97          |   |   | N<br>C          |
| ATOM<br>ATOM | 1587<br>1588 | CA<br>C   | GLY<br>GLY |   |     |            | 012            | 26.681           |      | 49.43          |   |   | c               |
| ATOM         | 1589         | ō         | GLY        |   |     |            | 711            | 25.516           | 1.00 | 51.18          |   |   | 0               |
| ATOM         | 1590         | N         | THR        | A | 229 |            | 405            | 27.601           |      | 49.64          |   |   | N               |
| ATOM         | 1591         | CA        | THR        |   |     |            | 149            | 27.123<br>28.236 |      | 47.24<br>45.77 |   |   | C<br>C          |
| ATOM<br>ATOM | 1592<br>1593 | CB<br>OG1 | THR        |   |     |            | .151<br>.347   | 28.236           |      | 44.45          |   |   | Ö               |
| ATOM         | 1594         |           | THR        |   |     |            | 172            | 27.836           |      | 46.94          |   |   | Ċ               |
|              |              |           |            |   |     |            |                |                  |      |                |   |   |                 |

|              |              |           |            |   |            |    | Fi             | gure             | 2                |      |                |        |
|--------------|--------------|-----------|------------|---|------------|----|----------------|------------------|------------------|------|----------------|--------|
| ATOM         | 1595         | С         | THR        |   |            |    | .886           | 85.306           | 26.809           |      | 45.90          | C      |
| MOTA         | 1596         | 0         | THR        |   |            |    | .756<br>.681   | 84.974<br>84.613 | 27.499<br>25.830 |      | 48.27<br>45.13 | N<br>O |
| ATOM<br>ATOM | 1597<br>1598 | N<br>CA   | HIS        |   |            |    | . 698          | 83.470           | 25.728           |      | 47.17          | C      |
| MOTA         | 1599         | СВ        | HIS        |   |            |    | .177           | 82.718           | 26.918           |      | 41.72          | Ç      |
| MOTA         | 1600         | CG        | HIS        |   |            |    | .536           | 83.024           | 27,452           |      | 48.23          | C      |
| ATOM         | 1601         |           | HIS        |   |            |    | .976<br>.192   | 82.576<br>82.991 | 28.709<br>28.914 |      | 49.66<br>48.56 | N<br>C |
| ATOM<br>ATOM | 1602<br>1603 |           | HIS        |   |            |    | . 585          | 83.667           | 27.851           |      | 49.12          | N      |
| ATOM         | 1604         |           | HIS        |   |            |    | .570           | 83.699           | 26.932           |      | 54.25          | С      |
| ATOM         | 1605         | C         | HIS        |   |            |    | . 698          | 83.750           | 24.687           |      | 49.39          | c      |
| ATOM<br>ATOM | 1606<br>1607 | 0<br>N    | HIS<br>ASN |   |            |    | .103           | 82.840<br>85.007 | 24.010<br>24.536 |      | 52.51<br>48.87 | N      |
| ATOM         | 1608         | CA        | ASN        |   |            |    | .880           | 85.400           | 23.520           |      | 48.67          | C      |
| ATOM         | 1609         | CB        | ASN        |   |            |    | . 692          | 86.639           | 23.935           |      | 49.28          | C      |
| ATOM         | 1610         | CG        | asn<br>asn |   |            |    | .960           | 86.308<br>85.079 | 24.803<br>24.993 |      | 53.14<br>48.05 | C<br>0 |
| ATOM<br>ATOM | 1611<br>1612 |           | ASN        |   |            |    | .582           | 87.455           | 25.324           |      | 50.87          | N      |
| ATOM         | 1613         | C         | ASN        |   |            | -3 | .980           | 85.708           | 22.368           | 1.00 | 46.50          | С      |
| ATOM         | 1614         | 0         | ASN        |   |            |    | .278           | 85.516           | 21.228           |      | 48.81          | 0      |
| ATOM<br>ATOM | 1615<br>1616 | N<br>CA   | LYS        |   |            |    | .830           | 86.227<br>86.460 | 22.646<br>21.553 |      | 45.43<br>45.64 | N<br>C |
| ATOM         | 1617         | CB        | LYS        |   |            |    | .857           | 87.445           | 22.004           |      | 47.70          | č      |
| ATOM         | 1618         | CG        | LYS        |   |            |    | .766           | 88.836           | 21.221           |      | 53.98          | С      |
| ATOM         | 1619         | CD        | LYS        |   |            |    | .264           | 89.910           | 22.216           |      | 64.66<br>66.02 | C<br>C |
| ATOM<br>ATOM | 1620<br>1621 | CE<br>NZ  |            |   | 232<br>232 |    | .646           | 89.836<br>90.701 | 23.737<br>23.913 |      | 69.73          | N      |
| ATOM         | 1622         | C         | LYS        |   |            |    | .302           | 85.100           | 21.072           |      | 41.47          | C      |
| ATOM         | 1623         | 0         | LYS        |   |            |    | .141           | 84.816           | 19.887           | _    | 44.35          | 0      |
| ATOM         | 1624         | N         |            |   | 233<br>233 |    | .125           | 84.219<br>82.967 | 21.978<br>21.629 |      | 34.85<br>34.48 | N<br>C |
| MOTA         | 1625<br>1626 | CA<br>CB  |            |   | 233        |    | 1.130          | 82.143           | 22.977           |      | 31.50          | c      |
| MOTA         | 1627         | CG        |            |   | 233        |    | .043           | 82.732           | 23.718           |      | 37.06          | С      |
| ATOM         |              |           | LEU        |   |            |    | . 451          | 82.025           | 24.905           |      | 39.64          | C      |
| MOTA         | 1629<br>1630 | CD2       | LEU        |   | 233        |    | . 612          | 82.988<br>82.351 | 22.791<br>20.808 |      | 41.47          | C      |
| ATOM         | 1631         | Ö         |            |   | 233        |    | .386           | 81.953           | 19.761           |      | 35.44          | ō      |
| ATOM         | 1632         | N         |            |   | 234        |    | .865           | 82.341           | 21.327           |      | 38.81          | N      |
| ATOM         | 1633         | CA        |            |   | 234        |    | .027           | 81.739           | 20.580           |      | 37.07          | C      |
| MOTA MOTA    | 1634<br>1635 | CB        | LEU        |   |            |    | 3.333<br>3.337 | 81.798<br>80.618 | 21.398<br>22.398 |      | 34.97<br>37.00 | c      |
| ATOM         | 1636         |           | LEU        |   |            |    | . 600          | 80.657           | 23.123           |      | 36.25          | С      |
| ATOM         | 1637         |           | LEU        |   |            |    | . 132          | 79.363           | 22.016           |      | 35.64          | C      |
| ATOM<br>ATOM | 1638<br>1639 | C<br>0    | LEU        |   | 234<br>234 |    | 1.202          | 82.367<br>81.756 | 19.204<br>18.258 |      | 36.64<br>35.79 | C<br>O |
| ATOM         | 1640         | N         |            |   | 235        |    | .067           | 83.641           | 19.136           |      | 37.48          | N      |
| ATOM         | 1641         | CA        |            |   | 235        |    | .366           | 84.213           | 17.900           |      | 39.58          | С      |
| MOTA         | 1642         | CB        |            |   | 235        |    | .496           | 85.611           | 18.088           |      | 39.74<br>52.54 | C      |
| MOTA<br>MOTA | 1643<br>1644 | CG<br>CD  |            |   | 235<br>235 |    | 1.654          | 86.348<br>87.926 | 16.944<br>17.167 | _    | 62.82          | c      |
| MOTA         | 1645         | CE        |            |   | 235        |    | 5.717          | 87.934           | 17.791           | 1.00 | 69.67          | С      |
| MOTA         | 1646         | NZ        |            |   | 235        |    | 8.827          | 88.260           | 19.482           |      | 68.35          | N<br>C |
| ATOM         | 1647<br>1648 | С<br>0    |            |   | 235<br>235 |    | 3.276<br>3.483 | 83.799<br>83.333 | 16.971<br>15.904 |      | 40.86<br>42.13 | Ö      |
| MOTA         | 1649         | N         |            |   | 236        |    | .031           | 83.853           | 17.396           | 1.00 | 43.68          | N      |
| ATOM         | 1650         | CA        | ASN        | A | 236        |    | .845           | 83.459           |                  |      | 38.89          | C      |
| ATOM         | 1651         | CB        |            |   | 236<br>236 |    | ).332<br>).694 | 83.741<br>85.242 |                  |      | 41.95<br>43.03 | C      |
| MOTA<br>MOTA | 1652<br>1653 | CG<br>OD1 | ASN        |   |            |    | .583           | 85.667           |                  |      | 44.01          | ō      |
| ATOM         | 1654         |           | ASN        |   |            |    | .089           | 85.986           |                  |      | 41.76          | N      |
| ATOM         | 1655         | С         |            |   | 236        |    | .831           | 82.078           |                  |      | 34.42          | C      |
| ATOM         | 1656         | 0         |            |   | 236<br>237 |    | 1.143          | 81.737<br>81.206 |                  |      | 34.81<br>31.63 | о<br>И |
| ATOM<br>ATOM | 1657<br>1658 | N<br>CA   |            |   | 237        |    | .076           | 79.852           |                  |      | 32.14          | Ċ      |
| MOTA         | 1659         | СВ        |            |   | 237        |    | .430           | 79.093           |                  |      | 32.23          | С      |
| MOTA         | 1660         |           | VAL        |   |            |    | .767           | 77.658           |                  |      | 35.60<br>36.37 | C      |
| ATOM<br>ATOM | 1661<br>1662 | CG2<br>C  | VAL        |   | 237<br>237 |    | 2.107          | 79.140<br>79.755 |                  |      | 37.98          | C      |
| ATOM         | 1663         | 0         |            |   | 237        |    | 2.062          | 78.983           |                  | 1.00 | 42.65          | 0      |
| MOTA         | 1664         | N         | ALA        | A | 238        | -3 | 3.124          | 80.543           |                  |      | 39.20          | N      |
| ATOM         | 1665.        | CA        |            |   | 238        |    | 1.303          | 80.424<br>81.224 |                  |      | 39.22<br>41.36 | C<br>C |
| ATOM<br>ATOM | 1666<br>1667 | CB<br>C   |            |   | 238<br>238 |    | 5.290<br>3.909 | 80.887           |                  |      | 35.38          | c      |
| ATOM         | 1668         | Ö         |            |   | 238        |    | 1.178          | 80.286           | 12.346           | 1.00 | 38.73          | 0      |
| MOTA         | 1669         | N         |            |   | 239        |    | 3.268          | 81.981           |                  |      | 34.04          | N      |
| ATOM         | 1670         | CA        | PHE        | Α | 239        | -2 | 2.780          | 82.527           | 12.033           | 1.00 | 35.60          | С      |

|              |              |          |                        | F                | igure                | 2                |                          |          |
|--------------|--------------|----------|------------------------|------------------|----------------------|------------------|--------------------------|----------|
| » mow        | 1671         | СВ       | PHE A 239              | -2.001           |                      | 12.301           | 1.00 32.91               | С        |
| ATOM<br>ATOM | 1672         | CG       | PHE A 239              | -1.409           |                      | 11.179           | 1.00 37.44               | С        |
| ATOM         | 1673         |          | PHE A 239              | -0.365           |                      | 10.537           | 1.00 40.72               | C        |
| ATOM         | 1674         | CE1      | PHE A 239              | 0.308            |                      | 9.387            | 1.00 39.72               | c        |
| ATOM         | 1675         | CZ       | PHE A 239              | -0.176           |                      | 8.938            | 1.00 37.66<br>1.00 38.85 | c<br>c   |
| ATOM         | 1676         |          | PHE A 239              | -1.282<br>-1.878 |                      | 9.573<br>10.704  | 1.00 34.48               | č        |
| ATOM<br>ATOM | 1677<br>1678 | CDZ      | PHE A 239              | -1.922           |                      | 11.339           | 1.00 39.78               | Ċ        |
| ATOM         | 1679         | 0        | PHE A 239              | -2.171           |                      | 10.260           | 1.00 43.56               | 0        |
| ATOM         | 1680         | N        | MET A 240              | -0.968           |                      | 12.069           | 1.00 44.03               | N        |
| ATOM         | 1681         | CA       | MET A 240              | -0.129           |                      | 11.507           | 1.00 41.58               | C        |
| MOTA         | 1682         | СВ       | MET A 240              | 0.952            |                      | 12.577           | 1.00 40.36<br>1.00 39.00 | c<br>c   |
| ATOM         | 1683         | CG       | MET A 240<br>MET A 240 | 2.292<br>3.058   |                      | 12.478<br>14.088 |                          | Š        |
| ATOM<br>ATOM | 1684<br>1685 | SD<br>CE | MET A 240              | 2.541            |                      | 14.899           | 1.00 49.00               | Č        |
| MOTA         | 1686         | c        | MET A 240              | -1.004           |                      | 11.133           | 1.00 40.12               | С        |
| ATOM         | 1687         | 0        | MET A 240              | -0.802           |                      | 10.085           | 1.00 38.71               | 0        |
| MOTA         | 1688         | N        | LYS A 241              | -1.891           |                      | 11.961           | 1.00 40.56               | -и<br>С  |
| ATOM         | 1689         | CA       | LYS A 241              | -2.608<br>-3.621 |                      | 11.430<br>12.388 | 1.00 42.09<br>1.00 42.82 | c<br>c   |
| ATOM<br>ATOM | 1690<br>1691 | CB<br>CG | LYS A 241<br>LYS A 241 | -3.160           |                      | 13.513           | 1.00 46.02               | č        |
| ATOM         | 1692         | CD       | LYS A 241              | -3.623           |                      | 14.836           | 1.00 48.60               | С        |
| ATOM         | 1693         | CE       | LYS A 241              | -4.216           |                      | 15.489           | 1.00 52.19               | C        |
| MOTA         | 1694         | NZ       | LYS A 241              | -5.011           |                      | 14.324           | 1.00 53.79               | N        |
| MOTA         | 1695         | C        | LYS A 241              |                  |                      | 10.092<br>9.203  | 1.00 46.41               | C<br>0   |
| ATOM         | 1696         | 0        | LYS A 241<br>SER A 242 | -3.366<br>-3.624 |                      | 9.836            | 1.00 46.70               | . и      |
| ATOM<br>ATOM | 1697<br>1698 | N<br>CA  | SER A 242              |                  |                      | 8.609            | 1.00 45.60               | Ċ        |
| ATOM         | 1699         | СВ       | SER A 242              |                  |                      | 8.595            | 1.00 47.64               | С        |
| ATOM         | 1700         | OG       | SER A 242              | -6.174           |                      | 9.156            | 1.00 52.43               | o o      |
| ATOM         | 1701         | С        | SER A 242              |                  | 78.777               | 7.477            | 1.00 46.09               | c        |
| MOTA         | 1702         | 0        | SER A 242              | -4.069           | 78.373               | 6.391            | 1.00 49.46               | O<br>N   |
| ATOM         | 1703         | N        | TYR A 243              | -2.327<br>-1.323 | 79.457<br>3.79.581   | 7.583<br>6.525   | 1.00 44.40               | Č        |
| MOTA<br>MOTA | 1704<br>1705 | CA<br>CB | TYR A 243              |                  | 80.212               | 7.125            | 1.00 41.88               | č        |
| ATOM         | 1706         | CG       | TYR A 243              |                  | 80.141               | 6.115            | 1.00 47.46               | С        |
| ATOM         | 1707         |          | TYR A 243              | 1.077            | 81.008               | 5.163            | 1.00 50.59               | C        |
| ATOM         | 1708         |          | TYR A 243              | 1.957            | 80.938               | 4.232            | 1.00 51.41               | . с      |
| ATOM         | 1709         | CZ       | TYR A 243              | 2.832            | 79.981               | 4.195            | 1.00 50.41               | C<br>0   |
| ATOM         | 1710         | OH       | TYR A 243              |                  | 80.002<br>79.059     | 3.084<br>5.143   | 1.00 48.94               | č        |
| MOTA<br>MOTA | 1711<br>1712 |          | TYR A 243              |                  |                      | 6.111            | 1.00 49.78               | Ċ        |
| ATOM         | 1713         | C        | TYR A 243              |                  |                      | 6.113            | 1.00 42.04               | С        |
| ATOM         | 1714         | 0        | TYR A 243              | -1.176           |                      | 5.025            | 1.00 44.81               | 0        |
| ATOM         | 1715         | N        | ILE A 244              |                  |                      | 7.032            | 1.00 42.24               | . N<br>C |
| ATOM         | 1716         | CA       | ILE A 244              |                  |                      | 6.726<br>8.025   | 1.00 40.63<br>1.00 41.16 | Č        |
| ATOM<br>ATOM | 1717<br>1718 | CB       | ILE A 244              |                  |                      |                  | 1.00 44.67               | С        |
| MOTA         | 1719         |          | ILE A 244              |                  |                      |                  | 1.00 43.26               | С        |
| ATOM         | 1720         |          | ILE A 244              |                  | 73.604               |                  | 1.00 38.87               | c        |
| ATOM         | 1721         | С        | ILE A 244              |                  |                      |                  | 1.00 42.47               | c<br>0   |
| ATOM         | 1722         | 0        | ILE A 244              | -1.584           |                      |                  | 1.00 48.90<br>1.00 44.74 | N        |
| ATOM         | 1723<br>1724 | N<br>CA  | LEU A 245              |                  | 5 75.292<br>7 74.808 |                  | 1.00 41.58               | c<br>C   |
| ATOM<br>ATOM | 1725         | CB       | LEU A 245              |                  | 75.401               | 6.416            | 1.00 36.64               | С        |
| ATOM         | 1726         | CG       | LEU A 245              |                  |                      | 6.429            | 1.00 45.21               | C        |
| ATOM         | 1727         | CD1      | LEU A 245              |                  |                      | 5.593            | 1.00 50.65               | c        |
| ATOM         | 1728         |          | LEU A 245              |                  |                      |                  | 1.00 43.42               | C<br>C   |
| MOTA         | 1729         | C        | LEU A 245              |                  |                      |                  | 1.00 44.18               | Ö        |
| ATOM         | 1730<br>1731 | O<br>N   | LEU A 245              |                  |                      |                  | 1.00 43.27               | N        |
| MOTA<br>MOTA | 1732         | CA       | GLU A 240              |                  |                      |                  | 1.00 43.36               | С        |
| ATOM         | 1733         | СВ       | GLU A 24               |                  |                      |                  | 1.00 42.57               | С        |
| MOTA         | 1734         | CG       | GLU A 240              |                  |                      |                  | 1.00 48.26               | C        |
| MOTA         | 1735         | CD       | GLU A 240              |                  |                      |                  | 1.00 63.53<br>1.00 64.48 | C<br>0   |
| ATOM         | 1736         |          | GLU A 240              |                  |                      |                  | 1.00 64.48               | Ö        |
| MOTA         | 1737<br>1738 |          | GLU A 240              |                  |                      |                  | 1.00 47.70               | č        |
| MOTA<br>MOTA | 1739         | С<br>0   | GLU A 24               |                  |                      |                  | 1.00 53.86               | ō        |
| MOTA         | 1740         | N        | LYS A 24               |                  |                      |                  | 1.00 50.47               | N        |
| ATOM         | 1741         | CA       | LYS A 24               | -0.74            | 4 75.171             | 2.060            | 1.00 48.58               | C        |
| ATOM         | 1742         | CB       | LYS A 24               |                  |                      |                  | 1.00 49.63               | c        |
| MOTA         | 1743         | CG       | LYS A 24               |                  |                      |                  | 1.00 49.30               | C<br>C   |
| MOTA<br>MOTA | 1744<br>1745 | CD       | LYS A 24°              |                  |                      |                  |                          | č        |
| MOTA         | 1745         | NZ       | LYS A 24               |                  |                      |                  |                          | N        |
|              |              |          |                        |                  |                      | _                |                          |          |

A Property of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con

```
Figure 2
       1747
                 LYS A 247
                                 -1.038 73.802
                                                 1.818 1.00 46.07
ATOM
             С
                                 -0.534 73.268
MOTA
       1748
                 LYS A 247
                                                  0.898 1.00 52.18
ATOM
       1749
                  VAL A 248
                                -1.767
                                        73.122
                                                  2.726
                                                        1.00 40.67
       1750
                 VAL A 248
                                 -2.007 71.757
                                                  2.496
                                                         1.00 42.10
ATOM
             CA
             СВ
                 VAL A 248
                                 -2.459
                                         71.049
                                                  3.757
                                                         1.00 42.35
ATOM
       1751
       1752
             CG1 VAL A 248
                                 -2.432
                                         71.901
                                                  4.877
                                                         1.00 41.80
ATOM
       1753
             CG2 VAL A 248
                                 -3.851
                                         70.372
                                                  3.512
                                                         1.00 48.12
ATOM
                                 -3.112
                                                  1.429
                                                         1.00 46.47
                 VAL A 248
                                         71.543
       1754
             С
                                                                               C
ATOM
ATOM
       1755
                 VAL A 248
                                         70.346
                                                  0.881
                                                         1.00 42.37
             ٥
                                 -3.416
                                 -3.739
                 LYS A 249
                                         72.683
                                                  1.143
                                                         1.00 50.75
ATOM
       1756
             N
                                                                               N
                LYS A 249
                                 -4.758
                                         72.602
                                                  0.158
                                                         1.00 51.28
ATOM
       1757
             CA
                                                                               C
                                                  0.259
                                 -5.688
                                                         1.00 51.65
ATOM
       1758
             CB
                 LYS A 249
                                         73.828
                                                                               С
ATOM
       1759
             CG
                LYS A 249
                                 -7.032
                                         73.434
                                                  1.175
                                                         1.00 53.66
                                                                               С
ATOM
       1760
             CD
                 LYS A 249
                                 -7.994
                                         74.671
                                                  1.061
                                                         1.00 57.63
                                                                               C
             CE LYS A 249
ATOM
       1761
                                 -8.900
                                         74.755
                                                  2.231
                                                         1.00 55.47
ATOM
       1762
             NZ LYS A 249
                                 -9.241
                                         73.278
                                                  2.613
                                                         1.00 45.91
                                                                               N
MOTA
       1763
             С
                 LYS A 249
                                 -4.024
                                         72.411
                                                 -1.174
                                                         1.00 50.92
       1764
                 LYS A 249
                                 -4.162
                                         71.331
                                                 -1.838
                                                         1.00 48.68
ATOM
             0
                                                         1.00 50.83
ATOM
       1765
             N
                 GLU A 250
                                · -3.250
                                         73.438
                                                 -1.509
ATOM
       1766
             CA
                 GLU A 250
                                -2.407
                                         73.372
                                                 -2.661
                                                         1.00 53.39
       1767
                 GLU A 250
                                 -1.199
                                         74.336
                                                 -2.755
                                                         1.00 53.74
ATOM
             CB
       1768
                 GLU A 250
                                         75.808
ATOM
             CG
                                 -1.477
                                                 -2.316
                                                         1.00 59.66
                 GLU A 250
                                 -0.234
ATOM
       1769
             CD
                                         76.808
                                                 -2.402
                                                         1.00 70.61
ATOM
       1770
             OE1 GLU A 250
                                 -0.298
                                         78,007
                                                 -2.770
                                                         1.00 72.93
                                                                               ٥
ATOM
       1771
             OE2 GLU A 250
                                 0.929
                                         76.482
                                                 -2.006
                                                         1.00 81.66
                                                                               0
ATOM
       1772
             C
                 GLU A 250
                                 -1.870
                                         71.939
                                                 -2.736
                                                         1.00 54.65
                                                                               С
ATOM
       1773
                 GLU A 250
                                 -1.928
                                         71.270
                                                 -3.722
                                                         1.00 58.66
                                                                               ٥
       1774
                 HIS A 251
                                 -1.436
                                         71.381
                                                         1.00 53.45
ATOM
             N
                                                 -1.685
                                                                               N
                                                                             HIS A 251
                                         70.033
                                                 -1.796
       1775
             CA
                                 -1.011
                                                         1.00 52.84
ATOM
                                         69.733
ATOM
       1776
             CB HIS A 251
                                 -0.319
                                                 -0.354
                                                         1.00 52.61
                                                 -0.280
ATOM
      1777
             CG HIS A 251
                                 1.134
                                         70.136
                                                         1.00 52.90
MOTA
      1778
             ND1 HIS A 251
                                  1.578
                                         71.448
                                                 -0.382
                                                         1.00 53.11
                                         71.485
ATOM
      1779
             CE1 HIS A 251
                                  2.894
                                                 -0.292
                                                         1.00 44.68
ATOM
      1780
             NE2 HIS A 251
                                  3.323
                                         70.236
                                                 -0.145
                                                         1.00 48.91
ATOM
      1781
             CD2 HIS A 251
                                  2.245
                                         69.373
                                                -0.135
                                                         1.00 51.85
ATOM
             C HIS A 251
            ...s A 251
O HIS A 251
N GLM
      1782
                                 -2.117
                                         69.003
                                                 -2.104
                                                         1.00 53.37
                                                                            ATOM
       1783
                                 -1.917
                                         68.123
                                                 -2.750
                                                         1.00 53.11
                                 -3.220
                                         69.038
                                                 -1.435
ATOM
       1784
                                                         1.00 55.94
             CA GLN A 252
ATOM
       1785
                                 -4.298
                                         68.115
                                                -1.804
                                                         1.00 58.62
ATOM
       1786
             CB
                GLN A 252
                                 -5.590
                                         68.299
                                                 -0.967
                                                         1.00 56.53
ATOM
       1787
             CG
                 GLN A 252
                                 -5.449
                                         68.604
                                                 0.478
                                                         1.00 61.83
       1788
                 GLN A 252
                                         68.433
                                                 1.307
                                                         1.00 55.48
ATOM
             CD
                                 -6.666
ATOM
       1789
             OE1 GLN A 252
                                 -6.922
                                         67.356
                                                  1.749
                                                         1.00 57.94
                                                                               0
                                 -7.365
                                         69.550
ATOM
       1790
             NE2 GLN A 252
                                                 1.610
                                                         1.00 53.90
ATOM
       1791
             С
                 GLN A 252
                                 -4.589
                                         68.274
                                                 -3:326
                                                         1.00 60.46
                                                                               c
                                                         1.00 57.73
ATOM
       1792
                 GLN A 252
                                 -4.947
                                         67.373
                                                 -4.012
             ٥
                                                                               0
                                         69.446
69.585
ATOM
       1793
             N
                 GLU A 253
                                 -4.394
                                                 -3.846
                                                         1.00 64.61
                                                                               N
                                                         1.00 67.30
       1794
                 GLU A 253
                                                -5.269
ATOM
             CA
                                 -4.497
                                                                               С
                                         71.023
       1795
                 GLU A 253
                                                         1.00 66.82
ATOM
             CB
                                 -4.513
                                                -5.658
                                                                               C
                                 -5.041
                                                -7.031
ATOM
       1796
             CG
                 GLU A 253
                                         71.182
                                                         1.00 71.27
                                                                               C
MOTA
       1797
             CD GLU A 253
                                 -3.944
                                         71.055
                                                -7.993
                                                         1.00 79.88
                                                                               C
MOTA
       1798
             OE1 GLU A 253
                                 -4.199
                                         70.413
                                                -9.127
                                                         1.00 88.91
                                                                               ٥
MOTA
       1799
             OE2 GLU A 253
                                 -2.823
                                         71.516
                                                -7.517
                                                         1.00 80.91
                                                                               0
ATOM
       1800
             С
                 GLU A 253
                                 -3.414
                                         68.929
                                                -6.014
                                                         1.00 70.94
                                                                               С
ATOM
       1801
             0
                 GLU A 253
                                 -3.664
                                         68.193
                                                -6.958
                                                         1.00 77.05
                                                                               ٥
ATOM
       1802
                 SER A 254
                                 -2.159
                                         69.208
                                                -5.710
             N
                                                         1.00 72.94
                                                                               N
                                 -1.079
                                         68.799
ATOM
       1803
             CA
                 SER A 254
                                                -6.659
                                                         1.00 73.02
ATOM
       1804
             СВ
                 SER A 254
                                 -0.232
                                         69.934
                                                -7.053
                                                         1.00 74.77
ATOM
       1805
             OG
                 SER A 254
                                 0.292
                                         69.510
                                                -8.357
                                                         1.00 78.60
MOTA
       1806
             C .
                 SER A 254
                                 -0.313
                                         67.617
                                                -6.342
                                                         1.00 70.55
                                                                               С
                                 0.653
                                         67.185
                                                -6.852
                                                         1.00 72.23
ATOM
       1807
                                                                               0
             0
                 SER A 254
ATOM
       1808
             N
                 MET A 255
                                -1.001
                                         66.924
                                                -5.591
                                                         1.00 68.07
                                                                               N
                                         65.877
       1809
                                -0.325
                                                -4.B16
                                                         1.00 65.74
ATOM
             CA
                 MET A 255
                                                                               C
                                                -3.378
                                                         1.00 65.48
ATOM
       1810
             CB
                 MET A 255
                                -0.959
                                         65.755
                                                                               C
ATOM
       1811
             CG
                 MET A 255
                                -0.186
                                         65.119
                                                -2.353
                                                         1.00 73.23
                                                                               C
                                                -1.841
ATOM
       1812
             SD
                 MET A 255
                                -0.496
                                        63.468
                                                         1.00 85.69
                                                                               S
ATOM
       1813
             CE
                 MET A 255
                                -2.533
                                        63.317
                                                -1.230
                                                         1.00 80.36
                                                                               C
ATOM
       1814
                 MET A 255
                                -0.512
                                        64.575
                                                -5.571
                                                         1.00 62.75
             С
ATOM
       1815
                                 -1.609
                                         64.189
                                                -5.779
                                                         1.00 64.04
             0
                 MET A 255
                                  0.599
                                        63.887
                                                -5.824
                                                         1.00 59.02
ATOM
       1816
                 ASP A 256
                                  0.727
                                         62.596
                                                -6.467
                                                         1.00 53.65
ATOM
       1817
             CA
                 ASP A 256
ATOM
       1818
             СВ
                 ASP A 256
                                 1.741
                                         62.744
                                                -7.537
                                                         1.00 54.44
ATOM
       1819
             CG
                 ASP A 256
                                 2.275
                                         61.487
                                                -B.053
                                                         1.00 50.75
                                 1.618
                                        60.426
                                                -8.051
                                                         1.00 47.11
ATOM
       1820
             OD1 ASP A 256
ATOM
             OD2 ASP A 256
                                 3.395
                                        61.626
                                                -8.621
                                                        1.00 56.89
       1821
                                                        1.00 49.20
                                 1.130
                                        61.613
                                                -5.560
ATOM
       1822
             С
                 ASP A 256
```

WU 03/035093 PC 1/GB02/ 122/514

|              |              |           |            |   |            |   | Fi               | gure             | 2                |                          |          |
|--------------|--------------|-----------|------------|---|------------|---|------------------|------------------|------------------|--------------------------|----------|
| MOTA         | 1823         | 0         |            |   | 256        |   | 2.220            | 61.428           | -5.130           | 1.00 48.00               | 0        |
| ATOM<br>ATOM | 1824<br>1825 | N<br>CA   |            |   | 257<br>257 |   | 0.111<br>0.518   | 60.949<br>59.845 | -5.172<br>-4.247 | 1.00 39.38               | N<br>C   |
| ATOM         | 1826         | СВ        |            |   | 257        |   | -0.652           | 58.966           | -3.823           | 1.00 41.92               | č        |
| ATOM         | 1827         | CG        |            |   | 257        |   | -2.109           | 59.857           | -3.413           | 1.00 34.70               | C        |
| ATOM<br>ATOM | 1828<br>1829 | SD        |            |   | 257<br>257 |   | -2.264<br>-3.619 | 59.117<br>60.533 | -1.582<br>-0.988 | 1.00 39.23               | S<br>C   |
| ATOM         | 1830         | C         | MET        | A | 257        |   | 1.478            | 58.868           | -5.011           | 1.00 44.80               | С        |
| MOTA<br>MOTA | 1831<br>1832 | N<br>N    |            |   | 257<br>258 |   | 1.912<br>1.959   | 59.183<br>57.846 | -6.168<br>-4.337 | 1.00 56.01<br>1.00 54.41 | о<br>и   |
| ATOM         | 1833         | CA        |            |   | 258        |   | 3.134            | 57.160           | -5.012           | 1.00 58.40               | c<br>c   |
| ATOM         | 1834         | CB        |            |   | 258        |   | 2.886            | 56.734           | -6.446           | 1.00 62.22               | c        |
| ATOM<br>ATOM | 1835<br>1836 | CG<br>OD1 | ASN        |   | 258<br>258 |   | 1.535<br>1.288   | 56.227<br>55.044 | -6.689<br>-6.294 | 1.00 66.78               | C<br>0   |
| MOTA         | 1837         | ND2       | ASN        | A | 258        |   | 0.653            | 57.074           | -7.374           | 1.00 66.32               | N        |
| ATOM<br>ATOM | 1838<br>1839 | С<br>0    |            |   | 258<br>258 |   | 4.397<br>5.377   | 57.968<br>57.336 | -5.215<br>-5.522 | 1.00 56.95<br>1.00 56.76 | C        |
| ATOM         | 1840         | N         |            |   | 259        |   | 4.407            | 59.302           | -4.995           | 1.00 56.21               | . и      |
| ATOM         | 1841         | CA        |            |   | 259        |   | 5.577            | 60.217           | -5.076           | 1.00 52.90               | c        |
| MOTA<br>MOTA | 1842<br>1843 | CB<br>CG  |            |   | 259<br>259 |   | 5.561<br>5.919   | 60.860<br>59.945 | -6.442<br>-7.492 | 1.00 57.88<br>1.00 58.00 | . C<br>C |
| ATOM         | 1844         | OD1       | ASN        | A | 259        |   | 6.666            | 59.055           | -7.243           | 1.00 57.65               | 0        |
| ATOM         | 1845         |           | ASN        |   |            |   | 5.361<br>5.573   | 60.167           | -8.690           | 1.00 54.07<br>1.00 48.99 | N<br>C   |
| ATOM<br>ATOM | 1846<br>1847 | C<br>O    |            |   | 259<br>259 |   | 5.783            | 61.415           | -4.108<br>-4.517 | 1.00 46.14               | ō        |
| ATOM         | 1848         | N         |            |   | 260        |   | 5.388            | 61.165           | -2.843           | 1.00 47.56               | N        |
| ATOM<br>ATOM | 1849<br>1850 | CA<br>CB  |            |   | 260<br>260 |   | 5.420<br>4.967   | 62.233<br>61.585 | -1.875<br>-0.635 | 1.00 46.94               | c<br>c   |
| ATOM         | 1851         | CG        | PRO        | A | 260        |   | 5.391            | 60.152           | -0.804           | 1.00 49.97               | . č      |
| ATOM<br>ATOM | 1852         | CD        | PRO        | A | 260<br>260 |   | 5.159            | 59.888           | -2.207           | 1.00 47.72               | C<br>C   |
| ATOM         | 1853<br>1854 | 0 5       | PRO        | A | 260        |   | 6.771<br>7.659   | 62.817<br>62.102 | -1.803<br>-1.833 | 1.00 45.67<br>1.00 44.97 | Ö        |
| ATOM         | 1855         | N         | GLN        | A | 261        |   | 6.829            | 64.132           | -1.754           | 1.00 45.03               | N        |
| atom<br>Atom | 1856<br>1857 |           | GLN<br>GLN |   | 261<br>261 |   | 7.992<br>7.892   | 64.857<br>65.882 | -1.674<br>-2.676 | 1.00 47.38               | C<br>C   |
| ATOM         | 1858         | CG :      | GLN        | Ä | 261        |   | 7.511            | 65.341           | -3.981           | 1.00 56.58               | С        |
| ATOM         | 1859         | CD'.      | GLN        | A | 261        |   | 8.558            | 65.582           | -5.053           | 1.00 62.00               | C        |
| ATOM<br>ATOM | 1860<br>1861 |           | GLN<br>GLN |   | 261        | - | 9.584<br>8.310   | 64.853<br>66.612 | -5.159<br>-5.849 | 1.00 59.84               | О<br>И   |
| MOTA         | 1862         | C ~       | GLN        | A | 261        |   | 8.143            | 65.672           | -0.340           | 1.00 48.48               | С        |
| ATOM<br>ATOM | 1863<br>1864 | N<br>N    | GLN        |   | 261<br>262 |   | 9.170<br>7.141   | 66.233<br>65.860 | -0.123<br>0.533  | 1.00 50.79<br>1.00 46.27 | О<br>И   |
| ATOM         | 1865         | CA        | ASP        |   |            |   | 7.415            | 66.573           | 1.803            | 1.00 42.21               | С        |
| ATOM         | 1866         | CB        | ASP        |   |            |   | 7.386            | 68.041           | 1.681            | 1.00 41.36               | C<br>C   |
| ATOM<br>ATOM | 1867<br>1868 | CG<br>OD1 | ASP<br>ASP |   |            |   | 6.183<br>5.996   | 68.456<br>69.735 | 1.056<br>0.561   | 1.00 40.76<br>1.00 34.09 | o        |
| MOTA         | 1869         | OD2       | ASP        | A | 262        |   | 5.294            | 67.545           | 1.063            | 1.00 45.38               | 0        |
| ATOM<br>ATOM | 1870<br>1871 | 0         | ASP<br>ASP |   |            |   | 6.514<br>5.851   | 66.046<br>64.948 | 2.862<br>2.686   | 1.00 42.64<br>1.00 43.26 | C<br>0   |
| ATOM         | 1872         | N         | PHE        |   |            |   | 6.482            | 66.717           | 4.037            | 1.00 42.18               | N        |
| MOTA         | 1873         | CA        | PHE        |   |            |   | 5.723            | 66.184           | 5.298            | 1.00 37.66               | C.       |
| ATOM<br>ATOM | 1874<br>1875 | CB<br>CG  | PHE        |   |            |   | 5.907<br>5.546   | 67.086<br>66.590 | 6.416<br>7.599   | 1.00 36.73               | C<br>C   |
| ATOM         | 1876         | CD1       | PHE        | A | 263        |   | 6.331            | 65.767           | 8.256            | 1.00 42.15               | C        |
| ATOM<br>ATOM | 1877<br>1878 | CE1       | PHE        |   |            |   | 5.936<br>4.784   | 65.225<br>65.543 | 9.495<br>10.062  | 1.00 43.88               | C<br>C   |
| ATOM         | 1879         |           | PHE        |   |            |   | 4.006            | 66.434           | 9.474            | 1.00 35.40               | С        |
| ATOM         | 1880         |           | PHE        |   |            |   | 4.393            | 66.972           | 8.196            | 1.00 38.74               | c<br>c.  |
| ATOM<br>ATOM | 1881<br>1882 | С<br>0    | PHE        |   |            |   | 4.290<br>3.573   | 66.140<br>65.083 | 4.912<br>5.011   | 1.00 40.34               | o        |
| ATOM         | 1883         | N         | ILE        | A | 264        |   | 3.790            | 67.243           | 4.396            | 1.00 39.70               | N        |
| ATOM<br>ATOM | 1884<br>1885 | CA<br>CB  | ILE        |   |            |   | 2.368<br>2.065   | 67.216<br>68.537 | 4.123<br>3.451   | 1.00 40.42               | C<br>C   |
| ATOM         | 1886         |           | ILE        |   |            |   | 2.119            | 69.640           | 4.467            | 1.00 35.48               | č        |
| ATOM         | 1887         | CD1       | ILE        | A | 264        |   | 1.928            | 71.032           | 3.840            | 1.00 34.85               | c        |
| ATOM<br>ATOM | 1888<br>1889 | CG2<br>C  | ILE        |   |            |   | 0.556<br>1.960   | 68.647<br>65.920 | 2.869<br>3.180   | 1.00 43.26               | c<br>c   |
| ATOM         | 1890         | ŏ         | ILE        | A | 264        |   | 1.183            | 65.074           | 3.660            | 1.00 46.60               | 0        |
| ATOM         | 1891         | N         | ASP        |   |            |   | 2.549            | 65.765<br>64.716 | 1.946<br>0.919   | 1.00 39.55<br>1.00 37.91 | ท<br>C   |
| MOTA<br>MOTA | 1892<br>1893 | CA<br>CB  | ASP<br>ASP |   |            |   | 2.318<br>3.467   | 64.716           | -0.015           | 1.00 37.91               | c        |
| ATOM         | 1894         | CG        | ASP        | A | 265        |   | 3.493            | 65.529           | -1.099           | 1.00 42.36               | С        |
| ATOM<br>ATOM | 1895<br>1896 |           | ASP<br>ASP |   |            |   | 2.419<br>4.515   | 66.296<br>65.636 | -1.114<br>-1.978 | 1.00 47.16<br>1.00 40.01 | 0        |
| ATOM         | 1897         | C         | ASP        |   |            |   | 2.235            | 63.617           | 1.753            | 1.00 35.74               | С        |
| MOTA         | 1898         | 0         | ASP        | A | 265        |   | 1.345            | 62.890           | 1.498            | 1.00 40.09               | 0        |
|              |              |           |            |   |            |   |                  |                  |                  |                          |          |

THO SEAR COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITTEE COMMITT

|              |              |          |            |   |            | F                | igure            | 2                    |                          |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|----------------------|--------------------------|--------|
| MOTA         | 1899         | N        |            |   | 266        | 3.192            | 63.365           | 2.639                | 1.00 42.34               | N      |
| ATOM<br>ATOM | 1900<br>1901 | CA<br>CB |            |   | 266<br>266 | 3.199<br>4.519   | 61.999<br>61.747 | 3.387<br>4.192       | 1.00 44.33               | C<br>C |
| ATOM         | 1902         | SG       |            |   | 266        | 5.945            | 61.642           | 3.192                | 1.00 46.66               | S      |
| ATOM         | 1903         | C        |            |   | 266        | 2.084            | 61.870           | 4.429                | 1.00 42.13               | C      |
| ATOM<br>ATOM | 1904<br>1905 | O<br>N   | -          |   | 266<br>267 | 1.709<br>1.669   | 60.900<br>62.927 | 4.761<br>4.997       | 1.00 41.94<br>1.00 44.31 | O<br>N |
| ATOM         | 1906         | CA       |            |   | 267        | 0.578            | 62.860           | 5.989                | 1.00 45.83               | ĉ      |
| MOTA         | 1907         | СВ       |            |   | 267        | 0.646            | 64.106           | 6.909                | 1.00 43.79               | C      |
| ATOM         | 1908         | CG       | PHE        |   | 267        | -0.264<br>0.217  | 64.113<br>63.940 | 8.106<br>9.355       | 1.00 46.32               | C      |
| ATOM<br>ATOM | 1909<br>1910 |          | PHE        |   |            | -0.505           | 63.957           | 10.353               | 1.00 41.71               | č      |
| ATOM         | 1911         | CZ       |            |   | 267        | -1.677           | 64.167           | 10.239               | 1.00 48.75               | C      |
| ATOM         | 1912<br>1913 |          | PHE        |   |            | -2.230<br>-1.549 | 64.379<br>64.369 | 8.988<br>7.998       | 1.00 50.03<br>1.00 45.57 | C<br>C |
| ATOM<br>ATOM | 1914         | C        |            |   | 267        | -0.738           | 62.690           | 5.141                | 1.00 43.79               | Ċ      |
| MOTA         | 1915         | 0        |            |   | 267        | -1.645           | 61.945           | 5.508                | 1.00 41.86               | 0      |
| MOTA         | 1916<br>1917 | N<br>CA  | LEU        |   | 268<br>268 | -0.784<br>-1.986 | 63.335<br>63.250 | 4.005<br>3.071       | 1.00 44.34               | N<br>C |
| ATOM<br>ATOM | 1918         | CB       | LEU        |   |            | -1.804           | 64.094           | 1.815                | 1.00 39.63               | Č      |
| MOTA         | 1919         | CG       | LEU        | A | 268        | -2.880           | 65.183           | 1.867                | 1.00 40.57               | С      |
| ATOM<br>ATOM | 1920<br>1921 |          | LEU        |   |            | -3.503<br>-2.379 | 65.223<br>66.495 | 3.137<br>1.587       | 1.00 43.20               | c<br>c |
| ATOM         | 1922         | C        | LEU        |   |            | -2.095           | 61.833           | 2.773                | 1.00 44.87               | c      |
| MOTA         | 1923         | 0        | LEU        | A | 268        | -3.070           | 61.134           | 3.133                | 1.00 44.80               | 0      |
| MOTA         | 1924         | N        | MET<br>MET |   |            | -1.058           | 61.335           | 2.176<br>1.729       | 1.00 47.37               | N<br>C |
| ATOM<br>ATOM | 1925<br>1926 | CA<br>CB | MET        |   |            | -1.230<br>-0.105 | 59.989<br>59.560 | 0.871                | 1.00 52.26<br>1.00 54.48 | c      |
| ATOM         | 1927         | CG       | MET        | A | 269        | 1.249            | 59.749           | 1.451                | 1.00 62.43               | С      |
| ATOM         | 1928         | SD       |            |   | 269        | 2.136            | 58.374           |                      | 1.00 79.02               | S      |
| ATOM<br>ATOM | 1929<br>1930 | CE       | MET<br>MET |   |            | 2.047<br>-1.338  |                  | ;-1;:262<br>;:3::052 | 1.00 79.13               | C      |
| ATOM         | 1931         | ō        | MET        |   |            | -1.898           |                  | 23,104               | 1.00 47.09               | Ö.     |
| ATOM         | 1932         | N        | LYS        |   |            | -0.823           | 59.351           |                      |                          | · N    |
| ATOM<br>ATOM | 1933<br>1934 | CA<br>CB | LYS        |   |            | -1.032<br>-0.319 |                  | 5,353<br>6.515       | 1.00 51.19<br>1.00 52.51 | c<br>c |
| ATOM         | 1935         | CG       | LYS        |   |            |                  | 58.493           |                      | 1.00 50.38               | č      |
| ATOM         | 1936         | CD       | LYS        |   |            | -0.323           |                  | 7.851                | 1.00 52.96               | c      |
| ATOM<br>ATOM | 1937<br>1938 | CE<br>NZ | LYS<br>LYS |   |            | -0.255<br>0.165  |                  | 9.294`<br>9.332      | 1.00 57.26<br>1.00 55.71 | C<br>N |
| ATOM         | 1939         | C        | LYS        |   |            | -2.536           | 58.472           | 5.708                | 1.00 53.41               | Ċ      |
| ATOM         | 1940         | 0        | LYS        |   |            | -3.060           | 57.541           | 6.199                | 1.00 50.26               | 0      |
| ATOM<br>ATOM | 1941<br>1942 | N<br>CA  | MET<br>MET |   |            | -3.261<br>-4.671 | 59.550<br>59.445 | 5.411<br>5.600       | 1.00 56.26<br>1.00 59.41 | С<br>И |
| ATOM         | 1943         | СВ       | MET        |   |            | -5.285           | 60.761           | 5.349                | 1.00 60.59               | С      |
| ATOM         | 1944         | CG       | MET        |   |            | -4.562           | 61.840           | 6.166                | 1.00 62.77               | C      |
| ATOM<br>ATOM | 1945<br>1946 | SD<br>CE | MET<br>MET |   |            | -5.588<br>-5.733 | 63.288<br>64.253 | 6.657<br>5.426       | 1.00 66.49               | s<br>C |
| ATOM         | 1947         | c        | MET        |   |            | -5.247           | 58.407           | 4.686                | 1.00 61.97               | č      |
| ATOM         | 1948         | 0        | MET        |   |            | -5.829           | 57.376           | 5.123                | 1.00 62.66               | . 0    |
| ATOM<br>ATOM | 1949<br>1950 | N<br>Ca  | GLU        |   |            | -5.058<br>-5.518 | 58.636<br>57.682 | 3.410<br>2.454       | 1.00 65.01               | N<br>C |
| ATOM         | 1951         | CB       | GLU        |   |            | -4.830           | 57.758           | 1.117                | 1.00 72.18               | č      |
| ATOM         | 1952         | CG       | GLU        |   |            | -5.811           | 57.257           | 0.002                | 1.00 79.14               | c      |
| MOTA<br>MOTA | 1953<br>1954 | CD       | GLU        |   |            | -6.856<br>-7.542 | 58.399<br>58.926 | -0.303<br>0.635      | 1.00 82.73               | С<br>0 |
| ATOM         | 1955         |          | GLU        |   |            | -6.944           | 58.866           | -1.481               | 1.00 87.03               | ő      |
| ATOM         | 1956         | С        | GLU        | A | 272        | -5.345           | 56.303           | 2.961                | 1.00 68.60               | ç      |
| MOTA<br>MOTA | 1957<br>1958 | 0        | GLU<br>LYS |   |            | -6.255<br>-4.247 | 55.644<br>55.807 | 2.651<br>3.608       | 1.00 71.65<br>1.00 67.72 | О<br>И |
| ATOM         | 1959         | N<br>Ca  | LYS        |   |            | -4.291           | 54.425           | 4.150                | 1.00 68.25               | Č      |
| ATOM         | 1960         | СВ       | LYS        | A | 273        | -2.949           | 53.956           | 4.700                | 1.00 67.78               | Ç      |
| ATOM         | 1961         | CG       | LYS        |   |            | -1.924<br>-0.531 | 53.978<br>53.290 | 3.569<br>4.008       | 1.00 70.11<br>1.00 75.48 | c<br>c |
| MOTA<br>MOTA | 1962<br>1963 | CE       | LYS        |   |            | -0.722           | 51.819           | 4.504                | 1.00 76.72               | c      |
| ATOM         | 1964         | NZ       | LYS        | A | 273        | -0.750           | 51.705           | 6.067                | 1.00 77.70               | N      |
| ATOM         | 1965         | C        | LYS        |   |            | -5.280<br>-6.246 | 54.755<br>55.346 | 5.194<br>4.851       | 1.00 70.08<br>1.00 69.12 | C<br>0 |
| MOTA<br>MOTA | 1966<br>1967 | O<br>N   | LYS<br>GLU |   |            | -6.246<br>-5.039 | 54.625           | 6.472                | 1.00 69.12               | N      |
| MOTA         | 1968         | CA       | GLU        | A | 274        | -6.053           | 54.902           | 7.420                | 1.00 73.92               | С      |
| ATOM         | 1969         | CB       | GLU        |   |            | -5.602           | 56.094           | 8.301<br>9.331       | 1.00 74.47<br>1.00 76.15 | c<br>c |
| ATOM<br>ATOM | 1970<br>1971 | CG<br>CD | GLU<br>GLU |   |            | -4.482<br>-4.769 | 55.776<br>54.631 | 10.250               | 1.00 78.13               | c      |
| ATOM         | 1972         | OE1      | GLU        | A | 274        | -5.800           | 54.702           | 10.976               | 1.00 82.60               | 0      |
| ATOM         | 1973         |          | GLU        |   |            | -3.959           | 53.634           | 10.145               | 1.00 85.06               | 0      |
| MOTA         | 1974         | С        | GLU        | A | 2/4        | -7.542           | 54.952           | 6.930                | 1.00 75.99               | С      |

|              |              |             |            |   |            | Fi                       | gure             | 2                |      |                |                                       |
|--------------|--------------|-------------|------------|---|------------|--------------------------|------------------|------------------|------|----------------|---------------------------------------|
| ATOM         | 1975         | 0           |            |   | 274        | -8.298                   | 54.061           | 7.262            |      | 76.50          | 0                                     |
| MOTA<br>MOTA | 1976<br>1977 | N<br>CA     |            |   | 275<br>275 | -7.987<br><b>-</b> 9.369 | 55.603<br>56.086 | 5.915<br>5.691   |      | 79.03<br>81.31 | N<br>C                                |
| ATOM         | 1978         | CB          |            |   | 275        | -9.427                   | 56.476           | 4.223            |      | 79.85          | č                                     |
| ATOM         | 1979         | CG          | LYS        | A | 275        | -9.392                   | 55.229           | 3.316            |      | 83.94          | С                                     |
| ATOM         | 1980         | CD          |            |   | 275        | -10.183                  | 55.430           | 1.894            |      | 87.58          | C                                     |
| MOTA<br>MOTA | 1981<br>1982 | CE<br>NZ    |            |   | 275<br>275 | -9.636<br>-10.143        | 56.730<br>57.087 | 1.095<br>-0.295  |      | 89.42<br>83.10 | C<br>N                                |
| ATOM         | 1983         | C           |            |   | 275        | -10.541                  | 55.174           | 5.996            |      | 82.63          | · c                                   |
| MOTA         | 1984         | 0           | LYS        | A | 275        | -11.440                  | 55.422           | 6.779            |      | 86.34          | 0                                     |
| ATOM         | 1985         | N           |            |   | 276        | -10.698                  | 54.147           | 5.376            |      | 82.31          | N                                     |
| ATOM<br>ATOM | 1986<br>1987 | CA<br>CB    |            |   | 276<br>276 | -11.578<br>-11.042       | 53.189<br>51.982 | 5.764<br>5.083   |      | 84.27<br>85.32 | C<br>C                                |
| ATOM         | 1988         | CG          |            |   | 276        | -11.204                  | 52.023           | 3.573            |      | 91.03          | č                                     |
| ATOM         | 1989         |             | HIS        |   |            | -12.281                  | 51.450           | 2.907            |      | 94.29          | N                                     |
| MOTA         | 1990         |             | HIS        |   |            | -12.128                  | 51.615           | 1.597            |      | 99.15          | C                                     |
| ATOM<br>ATOM | 1991<br>1992 |             | HIS        |   |            | -10.991<br>-10.392       | 52.286<br>52.544 | 1.390<br>2.603   |      | 98.96<br>96.99 | N<br>C                                |
| ATOM         | 1993         | C           |            |   | 276        | -11.697                  | 52.914           | 7.197            |      | 83.19          | č                                     |
| MOTA         | 1994         | 0           |            |   | 276        | -12.818                  | 52.819           | 7.704            |      | 86.11          | 0                                     |
| ATOM         | 1995         | N           |            |   | 277        | -10.617                  | 52.934           | 7.885            |      | 82.59          | N                                     |
| ATOM<br>ATOM | 1996<br>1997 | ÇA<br>CB    | ASN        |   | 277        | -10.726<br>-9.618        | 52.556<br>51.644 | 9.288<br>9.686   |      | 84.14<br>84.89 | c<br>c                                |
| ATOM         | 1998         | CG          |            |   | 277        | -9.134                   | 50.782           | 8.532            |      | 89.28          | č                                     |
| ATOM         | 1999         |             | ASN        |   |            | -9.185                   | 51.169           | 7.276            |      | 85.73          | 0                                     |
| ATOM         | 2000         |             | ASN        |   |            | -8.697                   | 49.563           | 8.927            |      | 90.42          | N                                     |
| ATOM<br>ATOM | 2001<br>2002 | С<br>0      | ASN        |   | 277        | -10.739<br>-9.716        | 53.922<br>54.377 | 10.026<br>10.466 |      | 84.74<br>86.35 | ; C                                   |
| ATOM         | 2003         | N           |            |   | 278        | -11.919                  | 54.544           | 10.216           |      | 83.91          | N                                     |
| ATOM         | 2004         | CA          | GLN        |   |            | -12.076                  | 55.961           | 10.450           |      | 81.65          | · · · · · · · · · · · · · · · · · · · |
| ATOM         | 2005         | CB          | GLN<br>GLN |   |            | -13.288                  | 56.441           | 9.727            |      | 84.27          | 14 14 C                               |
| ATOM<br>ATOM | 2006<br>2007 | CG<br>CD    | GLN        |   |            | -13.145<br>-11.949       | 57.898<br>57.948 | 9.156<br>8.075   |      | 86.90<br>88.34 |                                       |
| ATOM         | 2008         |             | GLN        |   |            | -12.149                  | 57.906           | 6.811            |      | 88.29          | · · · · · · · · · · · · · · · · · · · |
| MOTA         | 2009         | NE2         | GLN        |   |            | -10.754                  | 57.838           | 8.587            |      | 87.75          | N                                     |
| ATOM         | 2010         | C           | GLN        |   |            | -12.135                  | 56.528           | 11.743           |      | 79.80          | C O                                   |
| MOTA<br>MOTA | 2011<br>2012 | N<br>N      |            |   | 278<br>279 | -12.332<br>-11.990       | 57.723<br>55.791 | 11.856<br>12.800 |      | 82.41<br>77.32 | N S                                   |
| ATOM         | 2013         | CA          |            |   | 279        | -11.842                  | 56.523           | 14.093           |      | 74.22          | C C                                   |
| ATOM         | 2014         | СВ          | PRO        |   |            | -11.519                  | 55.489           | 15.079           |      | 74.87          |                                       |
| MOTA         | 2015         | CG          | PRO        |   |            | -12.211                  | 54.288           | 14.473           |      | 80.84          | C                                     |
| ATOM<br>ATOM | 2016<br>2017 | CD<br>C     | PRO<br>PRO |   |            | -11.948<br>-10.661       | 57.436           | 12.913<br>13.757 |      | 78.08<br>70.11 | C<br>C                                |
| ATOM         | 2018         | ō           | PRO        |   |            | -10.974                  | 58.572           | 13.756           |      | 67.66          | ō                                     |
| MOTA         | 2019         | N           | SER        |   |            | -9.489                   | 56.924           | 13.362           |      | 66.29          | N                                     |
| ATOM         | 2020         | CA          | SER        |   |            | -8.236                   | 57.663<br>58.064 | 12.897           |      | 65.45          | C<br>C                                |
| ATOM<br>ATOM | 2021<br>2022 | CB<br>OG    | SER<br>SER |   |            | -8.365<br>-7.062         | 58.508           | 11.080           |      | 66.62<br>71.79 | 0                                     |
| MOTA         | 2023         | c           | SER        |   |            | -7.469                   | 58.873           | 13.540           |      | 63.48          | č                                     |
| ATOM         | 2024         | 0           | SER        |   |            | -7.932                   | 59.929           | 13.721           |      | 62.83          | 0                                     |
| ATOM<br>ATOM | 2025<br>2026 | N<br>CA     | GLU        |   |            | -6.182<br>-5.431         | 58:756<br>59.795 | 13.748<br>14.443 |      | 62.00<br>55.65 | N<br>C                                |
| ATOM         | 2027         | CB          | GLU        |   |            | -4.371                   | 59.042           | 15.124           |      | 55.29          | Č                                     |
| MOTA         | 2028         | CG          | GLU        | A | 281        | -4.282                   | 59.296           | 16.601           | 1.00 |                | С                                     |
| ATOM         | 2029         | CD          | GLU        |   |            | -5.491                   | 59.340           | 17.469           | 1.00 |                | C                                     |
| ATOM<br>ATOM | 2030<br>2031 |             | GLU        |   |            | -6.050<br>-5.818         | 60.500<br>58.286 | 17.672<br>18.013 | 1.00 |                | 0                                     |
| ATOM         | 2032         | C           | GLU        |   |            | -4.886                   | 60.890           | 13.507           | 1.00 |                | č                                     |
| ATOM         | 2033         | 0           | GLU        |   |            | -4.635                   | 62.127           | 13.949           | 1.00 |                | 0                                     |
| ATOM         | 2034         | N           | PHE        |   |            | -4.726                   | 60.546           | 12.221           | 1.00 |                | N                                     |
| MOTA<br>MOTA | 2035<br>2036 | CA<br>CB    | PHE        |   |            | -4.245<br>-3.458         | 61.526<br>60.785 | 11.243<br>10.169 | 1.00 |                | C                                     |
| ATOM         | 2037         | CG          | PHE        |   |            | -2.384                   | 60.141           | 10.715           | 1.00 |                | Ċ                                     |
| MOTA         | 2038         | CD1         | PHE        | A | 282        | -2.571                   | 59.041           | 11.392           | 1.00 |                | С                                     |
| ATOM         | 2039         |             | PHE        |   |            | -1.556                   | 58.439           | 12.002           | 1.00 |                | C                                     |
| ATOM<br>ATOM | 2040<br>2041 | CZ<br>CE2   | PHE        |   |            | -0.277<br>-0.190         | 59.047<br>60.242 | 11.928<br>11.254 | 1.00 |                | C<br>C                                |
| ATOM         | 2041         |             | PHE        |   |            | -1.202                   | 60.751           | 10.685           | 1.00 |                | Ċ                                     |
| MOTA         | 2043         | С           | PHE        | A | 282        | -5.476                   | 62.160           | 10.611           | 1.00 | 45.75          | С                                     |
| ATOM         | 2044         | 0           | PHE        |   |            | -6.300                   | 61.427           | 10.185           | 1.00 |                | 0                                     |
| MOTA<br>MOTA | 2045<br>2046 | N<br>CA     | THR<br>THR |   |            | -5.565<br>-6.647         | 63.458<br>64.234 | 10.519<br>9.992  | 1.00 |                | N<br>C                                |
| ATOM         | 2047         | CB          | THR        |   |            | -7.618                   | 64.426           | 11.099           | 1.00 |                | č                                     |
| MOTA         | 2048         | <b>0</b> G1 | THR        | A | 283        | -7.030                   | 65.387           | 12.067           | 1.00 |                | 0                                     |
| ATOM         | 2049         |             | THR        |   |            | -7.919<br>-6.177         | 63.186           | 11.883           | 1.00 |                | C<br>C                                |
| ATOM         | 2050         | С           | THR        | A | 203        | -6.177                   | 65.716           | 9.670            | 1.00 | 41.9/          | C                                     |

ATTOM.

A 286

Miller.

38. 4

33766

31.72

7-128

115 9 9475. 14604

```
Figure 2
       2051
                  THR A 283
                                  -5.219 66.181 10.184 1.00 45.45
MOTA
                                          66.484
                  ILE A 284
                                                   8.839 1.00 41.12
ATOM
       2052
                                  -6.805
                  ILE A 284
                                          67.740
                                                   8.523
                                                          1.00 39.63
ATOM
       2053
                                  -6.293
                                                   7.690
                                                          1.00 38.71
       2054
                 ILE A 284
                                  -7.266
                                          68.486
ATOM
                                          67.953
                                                   6.272
                                                          1.00 40.86
       2055
             CG1 ILE A 284
                                  -7.442
MOTA
                                                   5.603
                                                          1.00 44.76
MOTA
       2056
             CD1 ILE A 284
                                  -6.075
                                          67.474
                                                          1.00 44.96
ATOM
       2057
             CG2 ILE A 284
                                  -6.755
                                          69.775
                                                   7.386
                  ILE A 284
                                 -6.048
                                          68.397
                                                   9.865
                                                          1.00 44.45
       2058
ATOM
             С
                                          69.016
                                                  10.013
                                                          1.00 43.03
                  ILE A 284
                                  -5.068
MOTA
       2059
             0
                                          68.246
                                                  10.902
                                                          1.00 46.28
                  GLU A 285
ATOM
       2060
                                  -6.900
             N
                 GLU A 285
                                          69.113
                                                  12.080
                                                          1.00 49.00
ATOM
       2061
             CA
                                 -6.676
                               -7.700
                                                  13.223
                                                          1.00 52.48
                 GLU A 285
                                          68.831
ATOM
       2062
             CB
                                                          1.00 59.53
MOTA
       2063
             CG
                 GLU A 285
                                 -8.578
                                          69.945
                                                  13.771
                                                  15.142
                                                          1.00 71.58
                                          70.635
ATOM
       2064
             CD
                 GLU A 285
                                  -8.152
                                          70.063
                                                          1.00 63.52
MOTA
       2065
             OE1 GLU A 285
                                  -8.248
                                                  16.353
                                 -7.693
                                                          1.00 84.17
                                                  15.040
ATOM
       2066
             OE2 GLU A 285
                                          71.860
                                                  12.673
                                                          1.00 49.46
ATOM
       2067
             С
                  GLU A 285
                                 -5.266
                                          68.820
                                                          1.00 50.26
MOTA
       2068
             0
                  GLU A 285
                                  -4.541
                                          69.671
                                                  12.980
                                                  12.828
                                                          1.00 49.55
ATOM
       2069
             N
                  SER A 286
                                 -4.912
                                          67.539
                                                          1.00 43.81
ATOM
       2070
             CA
                 SER A 286
                                 -3.679
                                          67.045
                                                  13.381
                                                                                C
ATOM
       2071
             СB
                  SER A 286
                                 -3.663
                                          65.530
                                                  13.656
                                                          1.00 44.46
                                                                                C
ATOM
       2072
             OG
                  SER A 286
                                  -4.429
                                          64.524
                                                  12.980
                                                          1.00 44.02
                                                                                0
ATOM
       2073
             С
                  SER A 286
                                  -2.526
                                          67.459
                                                  12.553
                                                          1.00 46.39
                                                                                C
ATOM
       2074
             0
                  SER A 286
                                  -1.433
                                          67.770
                                                  13.164
                                                          1.00 42.30
                                                                                0
       2075
                  LEU A 287
                                  -2.713
                                          67.509
                                                  11.192
                                                          1.00 44.89
ATOM
       2076
             CA
                 LEU A 287
                                  -1.616
                                          67.817
                                                  10.392
                                                          1.00 41.67
                                                                                С
ATOM
                 LEU A 287
                                  -1.972
                                          67.598
                                                   8.985
                                                          1.00 45.61
ATOM
       2077
ATOM
       2078
             CG
                  LEU A 287
                                  -0.926
                                          68.170
                                                   8.076
                                                          1.00 47.32
       2079
             CD1 LEU A 287
                                  0.131
                                          67.395
                                                   8.215
                                                          1.00 42.53
ATOM
ATOM
       2080
             CD2 LEU A 287
                                  -1.439
                                          68.228
                                                   6.536
                                                          1.00 51.66
                 LEU A 287
                                  -1.390
                                          69.163
                                                  10.767
                                                          1.00 42.11
                                                                                С
       2081
ATOM
             С
                                          69.536
                                                  11.131
                                                          1.00 46.58
                                                                                0
       2082
                  LEU A 287
                                  -0.360
ATOM
             0
                                          70.020
                                                  10.747
                                                          1.00 43.75
                                 -2.293
                                                                                N
ATOM
       2083
             N
                 GLU A 288
                                                  11.071
                                                                                С
       2084
             CA
                 GLU A 288
                                  -1.930
                                          71.403
                                                          1.00 44.23
ATOM
                                                          1.00 45.20
                                 -3.205
                                          72.277
                                                  11.143
                                                                                С
ATOM:
       2085
             CB
                 GLU A 288
                                                          1.00 47.29
                                                                                C
                                          73,220
                                                  10.036
ATOM
       2086
             CG
                 GLU A 288
                                 -3.681
                                                  10.174
                                                          1.00 57.36
                                                                                С
ATOM
       2087
             CD
                 GLU A 288
                                 -5.256
                                          73.418
                                                                                ٥
ATOM
       2088
             OE1 GLU A 288
                                 -5.819
                                          73.600
                                                  11.307
                                                          1.00 57.36
ATOM
       2089
             OE2 GLU A 288
                                 -6.001
                                          73.343
                                                   9.182
                                                          1.00 63.32
                                                                                0
                                                                                С
ATOM
       2090
                  GLU A 288
                                 -1.265
                                          71.549
                                                  12.400
                                                          1.00 42.60
ATOM
       2091
             0
                  GLU A 288
                                  -0.385
                                          72.364
                                                  12.553
                                                          1.00 45.15
                                                                                0
                  ASN A 289
                                  -1.731
                                          70.817
                                                  13.352
                                                          1.00 38.68
                                                                                N
ATOM
       2092
       2093
             CA
                 ASN A 289
                                  -1.269
                                          70.936
                                                  14.635
                                                          1.00 37.54
                                                                                С
ATOM
                 ASN A 289
                                  -1.989
                                          70.038
                                                  15.582
                                                          1.00 40.93
                                                                                С
       2094
                                  -3.396
                                          70.554
                                                  16.121
                                                          1.00 43.71
                                                                                С
ATOM
       2095
             CG
                 ASN A 289
                                          71.559
                                                          1.00 51.05
MOTA
       2096
             OD1 ASN A 289
                                  -3.778
                                                  15.672
                                                          1.00 47.51
MOTA
       2097
             ND2 ASN A 289
                                  -4.069
                                          69.899
                                                  17.031
                                                                                N
ATOM
       2098
                 ASN A 289
                                  0.190
                                          70.454
                                                  14.658
                                                          1.00 39.59
             С
                                          71.076
                                                  15.257
                                                          1.00 43.44
ATOM
       2099
                  ASN A 289
                                   1.047
             0
                                          69.317
                                                  14.055
                                                          1.00 38.78
                 THR A 290
                                   0.507
ATOM
       2100
             N
                                                          1.00 35.47
                                                  13.939
MOTA
       2101
             CA
                 THR A 290
                                   1.873
                                          68.853
                                                          1.00 36.45
                                          67.608
                                                  13.379
ATOM
       2102
             ĊВ
                 THR A 290
                                   1.850
                                          66.700
                                                          1.00 37.32
                                                                                0
ATOM
       2103
             OG1 THR A 290
                                   1.237
                                                  14.379
MOTA
       2104
             CG2 THR A 290
                                   3.240
                                          66.973
                                                  13.279
                                                          1.00 37.32
                                                          1.00 34.13
MOTA
       2105
                  THR A 290
                                   2.712
                                          69.835
                                                  13.226
             С
MOTA
       2106
             0
                 THR A 290
                                   3.820
                                          70.242
                                                  13.646
                                                          1.00 36.76
                                                                                0
                                                          1.00 34.77
MOTA
       2107
             N
                 ALA A 291
                                   2.186
                                          70.355
                                                  12.188
                                                                                N
ATOM
       2108
             CA
                 ALA A 291
                                   2.947
                                          71.397
                                                  11.516
                                                          1.00 31.50
                                                                                C
                 ALA A 291
                                   2.181
                                          71.885
                                                  10.337
                                                          1.00 26.64
                                                                                С
ATOM
       2109
ATOM
       2110
                  ALA A 291
                                   3.289
                                          72.511
                                                  12.482
                                                          1.00 30.52
                                                                                С
ATOM
       2111
                  ALA A 291
                                   4.450
                                          72.868
                                                  12.533
                                                          1.00 33.35
                                                                                ٥
                  VAL A 292
                                          73.071
                                                  13.248
                                                          1.00 29.38
                                                                                N
ATOM
       2112
             N
                                   2.352
                                          74.186
                                                  14.008
                                                          1.00 31.10
                                                                                С
             CA
                 VAL A 292
                                   2.798
ATOM
       2113
                                          74.935
                                                          1.00 34.94
             СВ
                 VAL A 292
                                   1.629
                                                  14.656
MOTA
       2114
             CG1 VAL A 292
                                   0.536
                                          74.974
                                                  13.696
                                                          1.00 33.68
ATOM
       2115
                                          74.226
                                                  15.921
                                                          1.00 38.70
ATOM
             CG2 VAL A 292
                                   1.138
       2116
                                          73.750
                                                  15.070
                                                          1.00 33.22
ATOM
       2117
             C
                  VAL A 292
                                   3.840
                                          74.431
                                                  15.249
                                                          1.00 34.24
ATOM
       2118
             0
                  VAL A 292
                                   4.821
MOTA
       2119
             N
                 ASP A 293
                                   3.705
                                          72.607
                                                  15.679
                                                          1.00 30.77
ATOM
       2120
                 ASP A 293
                                   4.634
                                          72.183
                                                 16.583
                                                          1.00 31.62
             CA
       2121
                 ASP A 293
                                   4.208
                                          70.755
                                                  17.028
                                                          1.00 35.74
                                                                                С
ATOM
             СВ
                                                          1.00 34.03
ATOM
       2122
             CG
                 ASP A 293
                                   3.241
                                          70.772
                                                  18.122
ATOM
       2123
             OD1 ASP A 293
                                   2.887
                                          69.650
                                                  18.710
                                                          1.00 38.26
                                                                                ٥
                                                  18.387
                                                          1.00 36.48
MOTA
             OD2 ASP A 293
                                   2.731
                                          71.949
       2124
                                          72.140
ATOM
       2125
             С
                 ASP A 293
                                   6.060
                                                  15.950
                                                          1.00 33.78
                                                                                С
```

7.020

0

**ASP A 293** 

2126

ATOM

72.835

16.478

1.00 31.15

|              |              |            |     |    |            | E-4              | ~:               | 2                |                          |        |
|--------------|--------------|------------|-----|----|------------|------------------|------------------|------------------|--------------------------|--------|
|              | 2127         | .,         |     |    | 204        |                  | _                | 2                | 1.00 32.65               | N      |
| ATOM<br>ATOM | 2127<br>2128 | N<br>CA    |     |    | 294<br>294 | 6.216<br>7.496   | 71.358<br>71.295 | 14.843           | 1.00 32.65               | N<br>C |
| ATOM         | 2129         | CB         |     |    | 294        | 7.373            | 70.642           | 12.803           | 1.00 30.44               | č      |
| ATOM         | 2130         | CG         |     |    | 294        | 6.844            | 69.174           | 12.961           | 1.00 30.08               | č      |
| ATOM         | 2131         |            | LEU |    |            | 7.014            | 68.510           | 11.705           | 1.00 35.77               | С      |
| ATOM         | 2132         | CD2        | LEU | A  | 294        | 7.629            | 68.369           | 13.802           | 1.00 33.64               | С      |
| ATOM         | 2133         | С          |     |    | 294        | 7.933            | 72.709           | 14.035           | 1.00 28.04               | С      |
| MOTA         | 2134         | 0          |     |    | 294        | 8.948            | 73.036           | 14.541           | 1.00 27.02               | 0      |
| MOTA         | 2135         | N          |     |    | 295        | 7.191            | 73.622           | 13.523           | 1.00 28.12               | N      |
| MOTA         | 2136         | CA         |     |    | 295        | 7.796            | 75.105           | 13.409           | 1.00 26.77               | C      |
| MOTA         | 2137         | CB         |     |    | 295        | 6.867            | 76.167           | 12.743           | 1.00 27.67<br>1.00 25.92 | C<br>C |
| MOTA<br>ATOM | 2138<br>2139 | CG         | PHE |    | 295<br>295 | 6.775<br>7.724   | 76.041<br>76.458 | 11.270<br>10.496 | 1.00 28.31               | · c    |
| ATOM         | 2140         |            | PHE |    |            | 7.621            | 76.296           | 9.126            | 1.00 35.34               | č      |
| ATOM         | 2141         | CZ         |     |    | 295        | 6.650            | 75.719           | 8.589            | 1.00 29.14               | Č      |
| ATOM         | 2142         |            | PHE |    |            | 5.765            | 75.288           | 9.269            | 1.00 30.59               | С      |
| ATOM         | 2143         | CD2        | PHE |    |            | 5.848            | 75.439           | 10.736           | 1.00 30.70               | С      |
| ATOM         | 2144         | С          |     |    | 295        | 8.236            | 75.611           | 14.636           | 1.00 27.83               | С      |
| ATOM         | 2145         | 0          |     |    | 295        | 9.212            | 76.348           | 14.733           | 1.00 31.17               | 0      |
| ATOM         | 2146         | N          |     |    | 296<br>296 | 7.535<br>7.826   | 75.238<br>75.929 | 15.690           | 1.00 31.24<br>1.00 31.61 | N<br>C |
| ATOM<br>ATOM | 2147<br>2148 | CA<br>C    |     |    | 296        | 9.007            | 75.278           | 16.904<br>17.642 | 1.00 35.18               | č      |
| ATOM         | 2149         | Ö          |     |    | 296        | 9.864            | 76.014           | 18.179           | 1.00 33.55               | ŏ      |
| ATOM         | 2150         | N          |     |    | 297        | 8.966            | 73.946           | 17.671           | 1.00 32.73               | N      |
| ATOM         | 2151         | ÇA         |     |    | 297        | 9.985            | 73.233           | 18.258           | 1.00 32.58               | c      |
| ATOM         | 2152         | CB         |     |    | 297        | 9.584            | 71.822           | 18.497           | 1.00 32.65               | С      |
| MOTA         | 2153         | С          |     |    | 297        | 11.178           | 73.260           | 17.344           | 1.00 35.91               | C      |
| ATOM         | 2154         | 0          |     |    | 297        | 12.195           | 72.800           | 17.805           | 1.00 44.25               | 0      |
| ATOM         | 2155         | N          |     |    | 298<br>298 | 11.129           | 73.716           | 16.107           | 1.00 35.80               | N<br>C |
| ATOM<br>ATOM | 2156<br>2157 | CA<br>C    |     |    | 298 - M    | 12.293<br>12.888 | 73.502<br>74.811 | 15.200<br>15.127 | 1.00 34.36<br>1.00 37.82 | c      |
| ATOM         | 2158         | Ö          |     |    | 298        | 13.935           | 74.965           | 14.624           | 1.00 43.53               | ŏ      |
| ATOM         | 2159         | N          |     |    | 299        |                  | 75.890           | 15.536           | 1.00 37.79               | N      |
| ATOM         | 2160         | CA         |     |    | 299        | 12.919           | 77.155           | 15.383           | 1.00 33.74               | С      |
| ATOM         | 2161         | CB         |     |    | 299        | 11.847           | 78.121           | 14.905           | 1.00 35.00               | С      |
| ATOM         | 2162         |            |     |    | 299        | 11.324           | 77.516           | 13.569           | 1.00 37.85               | 0      |
| MOTA         | 2163         |            |     |    | 299        | 12.615           | 79.447           | 14.493           | 1.00 36.32               | c      |
| MOTA         | 2164         | <b>C</b> . |     |    | 299        |                  | 77.772           | 16.480           | 1.00 34.01               | C      |
| ATOM         | 2165         | 0          |     |    | 299<br>300 | 14.870<br>13.038 | 78.056<br>78.151 | 16.366<br>17.562 | 1.00 35.66<br>1.00 33.44 | О<br>И |
| ATOM<br>ATOM | 2166<br>2167 | N<br>CA    |     |    | 300        | 13.581           | 78.878           | 18.667           | 1.00 30.31               | c<br>C |
| ATOM         | 2168         | CB         |     |    | 300        | 12.543           | 78.946           | 19.696           | 1.00 35.71               | č      |
| ATOM         | 2169         | CG         |     |    | 300        | 12.921           | 79.475           | 21.121           | 1.00 40.32               | c      |
| ATOM         | 2170         | CD         | GLU | A  | 300        | 13.713           | 80.726           | 20.905           | 1.00 45.49               | С      |
| MOTA         | 2171         |            | GLU |    |            | 14.149           | 81.355           | 21.948           | 1.00 51.44               | 0      |
| ATOM         | 2172         |            | GLU |    |            | 13.849           | 81.126           | 19.683           | 1.00 47.21               | 0      |
| MOTA         | 2173         | C          |     |    | 300        | 14.856           | 78.243           | 19.224           | 1.00 32.28<br>1.00 32.23 | C<br>0 |
| ATOM<br>ATOM | 2174<br>2175 | N<br>N     | THR |    | 300<br>301 | 15.840<br>14.962 | 79.040<br>76.932 | 19.247<br>19.636 | 1.00 32.23               | N      |
| ATOM         | 2176         | CA         | THR |    |            | 16.185           | 76.332           | 20.122           | 1.00 25.76               | Ċ      |
| MOTA         | 2177         | СB         |     |    | 301        | 16.049           | 74.998           | 20.496           | 1.00 29.47               | С      |
| ATOM         | 2178         | OG1        | THR | A  | 301        | 14.849           | 74.790           | 21.280           | 1.00 26.81               | 0      |
| ATOM         | 2179         | CG2        | THR | A  | 301        | 17.169           | 74.694           | 21.437           | 1.00 35.25               | c      |
| ATOM         | 2180         | С          |     |    | 301        | 17.302           | 76.321           | 19.217           | 1.00 26.55               | C      |
| ATOM         | 2181         | 0          |     |    | 301        | 18.443           | 76.732           | 19.530           | 1.00 26.72               | О<br>И |
| ATOM         | 2182         | N          |     |    | 302<br>302 | 17.075<br>18.143 | 75.790<br>75.823 | 18.020<br>17.094 | 1.00 24.67<br>1.00 25.17 | C .    |
| ATOM<br>ATOM | 2183<br>2184 | CA<br>CB   |     |    | 302        | 17.669           | 75.371           | 15.901           | 1.00 28.25               | č      |
| ATOM         | 2185         |            | THR |    |            | 17.220           | 74.068           | 15.986           | 1.00 31.64               | ō      |
| ATOM         | 2186         |            | THR |    |            | 18.632           | 75.292           | 14.755           | 1.00 32.52               | С      |
| ATOM         | 2187         | С          |     |    | 302        | 18.702           | 77.232           | 16.905           | 1.00 26.93               | C      |
| MOTA         | 2188         | 0          |     |    | 302        | 20.023           | 77.617           | 16.911           | 1.00 34.89               | 0      |
| ATOM         | 2189         | N          |     |    | 303        | 17.833           | 78.099           | 16.648           | 1.00 26.87               | N      |
| ATOM         | 2190         | CA         |     |    | 303        | 18.296           | 79.515           | 16.369           | 1.00 27.77               | c      |
| ATOM         | 2191         | CB<br>OG   |     |    | 303<br>303 | 17.031<br>17.303 | 80.399<br>81.745 | 16.298<br>16.138 | 1.00 27.41<br>1.00 32.05 | C<br>0 |
| ATOM<br>ATOM | 2192<br>2193 | C          |     |    | 303        | 19.174           | 79.967           | 17.474           | 1.00 32.03               | č      |
| ATOM         | 2194         | Ö          |     |    | 303        | 20.292           | 80.453           | 17.260           | 1.00 32.66               | ŏ      |
| ATOM         | 2195         | N          |     |    | 304        | 18.686           | 79.819           | 18.705           | 1.00 30.04               | N      |
| ATOM         | 2196         | CA         | THR |    |            | 19.414           | 80.321           | 19.759           | 1.00 28.57               | С      |
| ATOM         | 2197         | СВ         | THR |    |            | 18.440           | 80.215           | 21.118           | 1.00 31.60               | c      |
| ATOM         | 2198         |            | THR |    |            | 17.316           | 80.981           | 20.821           | 1.00 29.38               | 0      |
| ATOM         | 2199         |            | THR |    |            | 19.014           | 80.910           | 22.200           | 1.00 31.67<br>1.00 27.72 | c<br>c |
| MOTA<br>MOTA | 2200<br>2201 | С<br>0     | THR |    |            | 20.718<br>21.735 | 79.569<br>80.213 | 19.995<br>20.465 | 1.00 27.72               | 0      |
| ATOM         | 2202         | N          |     |    | 305        | 20.782           | 78.291           | 19.704           | 1.00 26.23               | N      |
| AL JII       | 2202         | ••         |     | •• |            | 20.,02           |                  |                  | <b></b>                  | •      |

2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2000年 2

|              |              |           |       |     | E-4              | ~~               | 2                |                          |        |
|--------------|--------------|-----------|-------|-----|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 2203         | CA        | THR A | 305 | 22.006           | gure<br>77.565   | 19.932           | 1.00 21.78               | С      |
| MOTA         | 2204         | СВ        | THR A |     | 21.771           | 76.205           | 19.647           | 1.00 24.53               | č      |
| ATOM         | 2205         |           | THR A |     | 20.898           | 75.649           | 20.646           | 1.00 25.08               | 0      |
| ATOM<br>ATOM | 2206<br>2207 | CG2<br>C  | THR A |     | 23.118           | 75.523<br>78.156 | 19.802           | 1.00 22.60 1.00 21.81    | C<br>C |
| ATOM         | 2208         | ò         | THR A |     | 22.982<br>24.068 | 78.442           | 19.001<br>19.374 | 1.00 23.89               | 0      |
| ATOM         | 2209         | N         | LEU A |     | 22.616           | 78.422           | 17.763           | 1.00 23.18               | N      |
| ATOM         | 2210         | CA        | LEU A |     | 23.541           | 79.184           | 16.819           | 1.00 22.76               | С      |
| ATOM         | 2211         | CB        | LEU A |     | 22.985           | 79.391           | 15.352           | 1.00 23.83               | C      |
| ATOM<br>ATOM | 2212<br>2213 | CG        | LEU A |     | 22.663<br>21.554 | 78.002<br>77.934 | 14.732<br>13.685 | 1.00 28.74<br>1.00 28.72 | C      |
| ATOM         | 2213         |           | LEU A |     | 24.032           | 77.664           | 14.171           | 1.00 30.46               | C<br>C |
| ATOM         | 2215         | C         | LEU A |     | 23.971           | 80.492           | 17.257           | 1.00 22.63               | č      |
| ATOM         | 2216         | 0         | LEU A |     | 25.038           | 80.822           | 17.060           | 1.00 26.24               | 0      |
| ATOM         | 2217         | N         | ARG A |     | 23.098           | 81.326           | 17.779           | 1.00 24.78               | И      |
| ATOM<br>ATOM | 2218<br>2219 | CA<br>CB  | ARG A |     | 23.370<br>22.139 | 82.732<br>83.393 | 18.022<br>18.557 | 1.00 26.27<br>1.00 23.06 | C<br>C |
| MOTA         | 2220         | CG        | ARG A |     | 22.152           | 84.921           | 18.430           | 1.00 23.00               | c      |
| ATOM         | 2221         | CD        | ARG A |     | 21.080           | 85.680           | 19.396           | 1.00 29.59               | Ċ      |
| ATOM         | 2222         | NE        | ARG A |     | 19.861           | 84.980           | 19.462           | 1.00 33.88               | N      |
| ATOM         | 2223         | CZ        | ARG A |     | 19.047           | 84.825           | 20.383<br>21.495 | 1.00 26.22               | C      |
| MOTA<br>MOTA | 2224<br>2225 |           | ARG A |     | 19.200<br>18.020 | 85.366<br>84.061 | 20.193           | 1.00 37.44               | N<br>N |
| ATOM         | 2226         | c         | ARG A |     | 24.479           | 82.616           | 19.227           | 1.00 28.83               | č      |
| ATOM         | 2227         | 0         | ARG A | 307 | 25.513           | 83.294           | 19.195           | 1.00 28.50               | 0      |
| MOTA         | 2228         | N         | TYR A |     | 24.234           | 81.667           | 20.174           | 1.00 27.67               | N      |
| MOTA<br>MOTA | 2229<br>2230 | CA        | TYR A |     | 25.060<br>24.298 | 81.433<br>80.576 | 21.384           | 1.00 24.52               | C<br>C |
| ATOM         | 2231         | CB<br>CG  | TYR A |     | 24.530           | 81.080           | 23.677           | 1.00 21.52               | c      |
| ATOM         | 2232         |           | TYR A |     | 23.572           | 80.923           | 24.645           | 1.00 23.96               | č      |
| ATOM         | 2233         |           | TYR A |     | 23.700           |                  |                  | 1.00 24.04               | С      |
| ATOM         | 2234         | CZ        | TYR A |     | 24.781           |                  | 26.314           | 1.00 30.85               | C      |
| MOTA<br>MOTA | 2235<br>2236 | OH<br>CE2 | TYR A |     | 24.661<br>25.821 |                  | 27.686<br>25.444 | 1.00 24.21 1.00 29.79    | C      |
| ATOM         | 2237         |           | TYR A |     | 25.660           |                  | 24.043           |                          | · č    |
| ATOM         | 2238         | С         | TYR A |     | 26.325           |                  |                  | 1.00 22.22               | .с .   |
| ATOM         | 2239         | 0         | TYR A |     | 27.344           |                  |                  | 1.00 20.73               | 0      |
| ATOM         | 2240         | N         | ALA A |     | 26.265           |                  | 19.946           | 1.00 18.79               | N<br>C |
| MOTA<br>MOTA | 2241<br>2242 | CA<br>CB  | ALA A |     | 27.554<br>27.325 | 78.449           |                  | 1.00 21.83               | c      |
| ATOM         | 2243         | c         | ALA A |     | 28.414           |                  |                  | 1.00 22.82               | č      |
| MOTA         | 2244         | 0         | ALA A |     | 29.506           | 80.640           | 19.379           | 1.00 28.18               | 0      |
| MOTA         | 2245         | N         | LEU A |     | 27.950           | 81.360           | 18.017           | 1.00 27.23               | N      |
| ATOM<br>ATOM | 2246<br>2247 | CA<br>CB  | LEU A |     | 28.776<br>28.029 | 82.484<br>83.228 | 17.547<br>16.549 | 1.00 23.50               | c<br>c |
| ATOM         | 2248         | CG        | LEU A |     | 27.635           | 82.488           | 15.324           | 1.00 25.22               | č      |
| ATOM         | 2249         |           | LEU A |     | 27.486           | 83.676           | 14.395           | 1.00 25.14               | . с    |
| ATOM         | 2250         |           | LEU A |     | 28.642           | 81.499           | 14.596           | 1.00 26.82               | C      |
| ATOM         | 2251         | C         | LEU A |     | 29.251           | 83.353           | 18.717           | 1.00 26.41               | . c    |
| ATOM<br>ATOM | 2252<br>2253 | O<br>N    | LEU A |     | 30.411<br>28.416 | 83.644<br>83.772 | 18.832<br>19.666 | 1.00 30.80               | N      |
| ATOM         | 2254         | CA        | LEU A |     | 28.926           | 84.538           | 20.850           | 1.00 28.58               | Ċ      |
| MOTA         | 2255         | СB        | LEU A |     | 27.865           | 84.641           | 21.912           | 1.00 27.48               | C      |
| ATOM         | 2256         |           | LEU A |     | 28.254           | 85.455           | 23.157           | 1.00 25.82               | c      |
| MOTA<br>MOTA | 2257<br>2258 |           | LEU A |     | 28.603<br>27.048 | 87.016<br>85.656 | 22.803<br>23.932 | 1.00 27.17               | c<br>c |
| ATOM         | 2259         | Ç         | LEU A |     | 30.160           | 83.875           | 21.476           | 1.00 28.66               | c      |
| MOTA         | 2260         | 0         | LEU A |     | 31.190           | 84.488           | 21.627           | 1.00 31.05               | 0      |
| MOTA         | 2261         | N         | LEU A |     | 30.057           | 82.582           | 21.779           | 1.00 27.21               | N      |
| ATOM<br>ATOM | 2262<br>2263 | CA<br>CB  | LEU A |     | 31.162<br>30.722 | 81.785<br>80.407 | 22.344<br>22.632 | 1.00 25.35               | c<br>c |
| MOTA         | 2264         | CG        | LEU A |     | 29.670           | 80.399           | 23.748           | 1.00 15.23               | Č      |
| ATOM         | 2265         |           | LEU A |     | 28.871           | 79.098           | 23.827           | 1.00 16.68               | С      |
| MOTA         | 2266         |           | LEU A |     | 30.135           | 80.600           | 24.947           | 1.00 14.21               | С      |
| ATOM         | 2267         | C         | LEU A |     | 32.343           | 81.788           | 21.382           | 1.00 27.23               | C      |
| ATOM<br>ATOM | 2268<br>2269 | N<br>N    | LEU A |     | 33.467<br>32.115 | 81.943<br>81.616 | 21.788 20.092    | 1.00 28.00               | O<br>N |
| ATOM         | 2270         | CA        | LEU A |     | 33.287           | 81.607           | 19.233           | 1.00 23.03               | C      |
| MOTA         | 2271         | СВ        | LEU A |     | 32.914           | 81.244           | 17.875           | 1.00 29.16               | č      |
| ATOM         | 2272         | CG        | LEU A | 313 | 32.534           | 79.752           | 17.785           | 1.00 29.36               | C      |
| ATOM         | 2273         |           | LEU A |     | 32.059           | 79.301           | 16.379           | 1.00 20.18               | c      |
| ATOM<br>ATOM | 2274<br>2275 | CD2       | LEU A |     | 33.647<br>33.944 | 79.000<br>83.005 | 18.082<br>19.221 | 1.00 27.55<br>1.00 33.55 | c<br>c |
| ATOM         | 2276         | Ö         | LEU A |     | 35.118           | 83.086           | 18.779           | 1.00 36.59               | Õ      |
| MOTA         | 2277         | N         | LEU A | 314 | 33.262           | 84.103           | 19.567           | 1.00 34.07               | N      |
| MOTA         | 2278         | CA        | LEU A | 314 | 33.947           | 85.408           | 19.539           | 1.00 32.67               | С      |
|              |              |           |       |     |                  |                  |                  |                          |        |

|              |              |           |            |   |            | Fi               | gure             | 2                |                |                          |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|----------------|--------------------------|
| ATOM         | 2279         | СВ        |            |   | 314        | 32.968           | B6.470           | 19.600           | 34.30          | C                        |
| ATOM<br>ATOM | 2280<br>2281 | CG<br>CD1 | LEU        |   |            | 32.333           | 87.127<br>88.505 | 18.407<br>18.905 | 38.46<br>39.11 | c<br>c                   |
| ATOM         | 2282         |           | LEU        |   |            | 31.650<br>33.207 | 87.385           | 17.363           | 37.93          | c                        |
| MOTA         | 2283         | С         |            |   | 314        | 34.659           | 85.464           | 20.913           | 35.34          | Č                        |
| MOTA         | 2284         | 0         |            |   | 314        | 35.702           | 85.980           | 21.078           | 36.28          | 0                        |
| ATOM<br>ATOM | 2285<br>2286 | N<br>CA   |            |   | 315<br>315 | 34.030<br>34.668 | 84.989<br>85.138 | 21.947<br>23.237 | 35.60<br>36.72 | N<br>C                   |
| MOTA         | 2287         | CB        |            |   | 315        | 33.825           | 84.593           | 24.280           | 36.49          | C                        |
| ATOM         | 2288         | CG        |            |   | 315        | 34.402           | 84.658           | 25.623           | 40.30          | Č                        |
| ATOM         | 2289         | CD        |            |   | 315        | 34.301           | 85.937           | 26.333           | 43.42          | c                        |
| ATOM<br>ATOM | 2290<br>2291 | CE<br>N2  |            |   | 315<br>315 | 34.679<br>35.207 | 86.011<br>87.500 | 27.828<br>28.088 | 41.04<br>54.42 | C<br>N                   |
| ATOM         | 2292         | c         |            |   | 315        | 35.908           | 84.379           | 23.206           | 41.41          | č                        |
| MOTA         | 2293         | 0         |            |   | 315        | 36.903           | 84.867           | 23.601           | 44.19          | 0                        |
| ATOM<br>ATOM | 2294<br>2295 | N<br>CA   |            |   | 316<br>316 | 35.926<br>37.145 | 83.185           | 22.626<br>22.544 | 42.73          | N                        |
| ATOM         | 2296         | CB        |            |   | 316        | 36.771           | 82.349<br>80.964 | 23.109           | 40.10<br>36.40 | C                        |
| ATOM         | 2297         | CG        |            |   | 316        | 36.079           | 81.088           | 24.353           | 36.57          | č                        |
| ATOM         | 2298         |           | HIS        |   |            | 36.645           | 80.830           | 25.526           | 36.20          | N                        |
| ATOM<br>ATOM | 2299<br>2300 |           | HIS<br>HIS |   |            | 35.728<br>34.572 | 81.016<br>81.324 | 26.517<br>25.988 | 36.79<br>37.75 | C<br>N                   |
| ATOM         | 2301         |           | HIS        |   |            | 34.781           | 81.460           | 24.625           | 46.13          | C                        |
| ATOM         | 2302         | С         | HIS        |   |            | 37.867           | 82.163           | 21.176           | 38.56          | c                        |
| ATOM         | 2303         | 0         | HIS        |   |            | 37.752           | 81.164           | 20.505           | 38.71          | 0                        |
| ATOM<br>ATOM | 2304<br>2305 | N<br>CA   | PRO        |   | 317<br>317 | 38.573<br>39.134 | 83.108<br>82.953 | 20.692<br>19.350 | 36.45<br>33.11 | N<br>C                   |
| ATOM         | 2306         | СВ        | PRO        |   |            | 39.857           | 84.257           | 19.124           | 31.74          | č                        |
| MOTA         | 2307         | CG        | PRO        |   |            | 40.035           | 84.803           | 20.401           | 37.91          | C                        |
| ATOM         | 2308         | CD        | PRO        |   |            | 38.860           | 84.362           | 21.324           | 36.42          | C<br>S A A A C           |
| ATOM<br>ATOM | 2309<br>2310 | С<br>О    | PRO<br>PRO |   |            | 40.057<br>40.200 | 81.753<br>81.253 | 19.140<br>18.097 | 35.89<br>39.54 | 1. 11 At Mil. C          |
| ATOM         | 2311         | N         | GLU        |   |            | 40.733           | 81.277           | 20.130           | 36.29          | N                        |
| ATOM         | 2312         | CA        | GLU        |   |            | 41.580           | 80.230           | 19.984           | 35.01          | * ' <b>c</b>             |
| ATOM         | 2313         | CB        | GLU        |   |            | 42.158           | 79.806           | 21.242           | 39.43          | C                        |
| ATOM<br>ATOM | 2314<br>2315 | CG<br>CD  | GLU        |   | 318        | 43.601<br>44.118 | 79.770<br>81.120 | 21.448<br>21.749 | 46.81<br>63:13 | ovika i ko<br>Luta itiko |
| ATOM         | 2316         |           | GLU        |   | 318        | 44.593           | 81.784           | 20.771           | 73.88          | ō                        |
| ATOM         | 2317         |           | GLU        |   |            | 44.052           | 81.548           | 22.953           | 73.47          | ÇO                       |
| ATOM<br>ATOM | 2318<br>2319 | C         | GLU<br>GLU |   |            | 40.723           | 79.030           | 19.601           | 33.61          | o ·                      |
| ATOM         | 2320         | N<br>0    | VAL        |   |            | 41.181<br>39.567 | 78.239<br>78.804 | 18.686<br>20.153 | 40.36<br>29.98 | Ŋ                        |
| MOTA         | 2321         | CA        | VAL        |   |            | 38.626           | 77.694           | 19.732           | 27.19          | Ċ                        |
| ATOM         | 2322         | СВ        | VAL        |   |            | 37.504           | 77.716           | 20.494           | 23.15          | Ç                        |
| ATOM<br>ATOM | 2323<br>2324 |           | VAL<br>VAL |   |            | 36.589<br>37.970 | 76.716<br>77.405 | 20.065<br>21.947 | 24.84          | C                        |
| ATOM         | 2325         | c         | VAL        |   |            | 38.276           | 77.837           | 18.287           | 26.97          | č                        |
| ATOM         | 2326         | 0         | VAL        |   |            | 38.395           | 76.882           | 17.479           | 28.31          | 0                        |
| ATOM         | 2327         | N         | THR        |   |            | 38.006           | 79.015           | 17.874           | 26.89          | N                        |
| ATOM<br>ATOM | 2328<br>2329 | CA<br>CB  | THR        |   |            | 37.616<br>37.261 | 79.273<br>80.646 | 16.476<br>16.484 | 28.65<br>27.89 | c<br>c                   |
| ATOM         | 2330         |           | THR        |   |            | 36.174           | 80.811           | 17.491           | 39.20          | ŏ                        |
| ATOM         | 2331         |           | THR        |   |            | 36.804           | 81.141           | 15.259           | 26.63          | С                        |
| ATOM<br>ATOM | 2332<br>2333 | С<br>0    | THR<br>THR |   |            | 38.751<br>38.663 | 78.927           | 15.450<br>14.441 | 33.00<br>32.33 | С<br>0                   |
| ATOM         | 2334         | N         | ALA        |   |            | 39.922           | 78.190<br>79.429 | 15.763           | 35.30          | N                        |
| MOTA         | 2335         | CA        | ALA        |   |            | 41.139           | 79.122           | 14.950           | 30.68          | С                        |
| ATOM         | 2336         | CB        | ALA        |   |            | 42.173           | 79.664           | 15.541           | 26.62          | c                        |
| MOTA<br>MOTA | 2337<br>2338 | С<br>О    | ALA<br>ALA |   |            | 41.315<br>41.415 | 77.630<br>76.995 | 14.903<br>13.794 | 30.40<br>33.20 | C<br>0                   |
| ATOM         | 2339         | N ·       | LYS        |   |            | 41.235           | 76.947           | 16.039           | 30.73          | N                        |
| MOTA         | 2340         | CA        | LYS        | A | 322        | 41.350           | 75.509           | 15.808           | 30.79          | С                        |
| ATOM         | 2341<br>2342 | CB        | LYS        |   |            | 41.402           | 74.769           | 16.981           | 30.41<br>39.50 | c                        |
| ATOM<br>ATOM | 2342         | CG.       | LYS<br>LYS |   |            | 42.693<br>42.706 | 74.967<br>73.748 | 17.888<br>18.960 | 48.57          | C<br>C                   |
| MOTA         | 2344         | CE        | LYS        | A | 322        | 43.556           | 73.939           | 20.200           | 44.82          | č                        |
| ATOM         | 2345         |           | LYS        |   |            | 43.418           | 72.408           | 21.149           | 50.22          | N                        |
| ATOM<br>ATOM | 2346<br>2347 |           | LYS        |   |            | 40.232           | 74.960           | 14.935<br>14.156 | 30.86<br>28.88 | C                        |
| ATOM         | 2347         | O<br>N    | LYS<br>VAL |   |            | 40.530<br>38.965 | 74.115<br>75.516 | 15.036           | 31.80          | O<br>N                   |
| ATOM         | 2349         | CA        | VAL        |   |            | 37.902           | 74.982           | 14.164           | 29.38          | č                        |
| MOTA         | 2350         |           | VAL        |   |            | 36.542           | 75.452           | 14.498           | 29.06          | С                        |
| ATOM<br>ATOM | 2351<br>2352 |           | VAL        |   |            | 35.524<br>36.121 | 74.865<br>74.866 | 13.571<br>15.738 | 27.01<br>29.52 | c<br>c                   |
| ATOM         | 2352         |           | VAL .      |   |            | 38.317           | 75.226           | 12.718           | 27.09          | c                        |
| ATOM         | 2354         |           | VAL        |   |            | 38.272           | 74.337           | 11.872           | 26.65          | ō                        |
|              |              |           |            |   |            |                  |                  |                  |                |                          |

|              |              |           |            |   |            | F                | igure            | 2                |                          |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 2355         | N         |            |   | 324        | 38.717           | 76.429           | 12.435           | 1.00 26.85               | N      |
| MOTA<br>MOTA | 2356<br>2357 | CA<br>CB  |            |   | 324        | 39.082<br>39.333 | 76.732<br>78.173 | 11.068<br>10.824 | 1.00 27.04<br>1.00 25.31 | C<br>C |
| ATOM         | 2358         | CG        |            |   | 324        | 38.055           | 78.930           | 10.960           | 1.00 27.18               | č      |
| ATOM         | 2359         | CD        |            |   | 324        | 38.167           | 80.428           | 11.153           | 1.00 32.06               | c      |
| ATOM         | 2360         |           |            |   | 324        | 37.408           | 81.188           | 10.511           | 1.00 32.58               | 0      |
| ATOM<br>ATOM | 2361<br>2362 | NE2       |            |   | 324        | 39.028           | 80.865           | 12.006           | 1.00 30.60<br>1.00 32.56 | N<br>C |
| ATOM         | 2363         | Ö         |            |   | 324        | 40.136<br>40.131 | 75.807<br>75.465 | 10.604<br>9.427  | 1.00 32.36               | Ö      |
| ATOM         | 2364         | N         |            |   | 325        | 41.071           | 75.324           | 11.485           | 1.00 36.07               | , N    |
| ATOM         | 2365         | CA        |            |   | 325        | 42.090           | 74.445           | 10.898           | 1.00 36.20               | С      |
| ATOM<br>ATOM | 2366<br>2367 | CB        |            |   | 325        | 43.195<br>44.154 | 74.087           | 11.758           | 1.00 41.99               | c      |
| ATOM         | 2368         | CD        |            |   | 325        | 44.640           | 75.130<br>74.778 | 12.317<br>14.022 | 1.00 50.36<br>1.00 57.78 | C<br>C |
| ATOM         | 2369         |           |            |   | 325        | 45.237           | 75.683           | 14.780           | 1.00 60.35               | ŏ      |
| ATOM         | 2370         |           |            |   | 325        | 44.461           | 73.696           | 14.766           | 1.00 58.91               | 0      |
| MOTA         | 2371<br>2372 | C         |            |   | 325        | 41.475           | 73.111           | 10.532           | 1.00 35.51               | C      |
| ATOM<br>ATOM | 2373         | O<br>N    |            |   | 325        | 41.834<br>40.566 | 72.497<br>72.560 | 9.499<br>11.332  | 1.00 35.53<br>1.00 35.10 | О<br>N |
| ATOM         | 2374         | CA        |            |   | 326        | 39.995           | 71.314           | 10.804           | 1.00 33.14               | č      |
| ATOM         | 2375         | CB        |            |   | 326        | 38.972           | 70.772           | 11.702           | 1.00 31.97               | С      |
| ATOM         | 2376<br>2377 | CG        |            |   | 326        | 39.551           | 69.694           | 12.555           |                          | C      |
| MOTA<br>MOTA | 2378         | CD<br>OE1 |            |   | 326        | 38.540<br>38.669 | 69.090<br>67.936 | 13.689<br>14.163 | 1.00 48.43               | c<br>0 |
| ATOM         | 2379         |           |            |   | 326        | 37.547           | 69.752           | 14.147           | 1.00 52.29               | ő      |
| ATOM         | 2380         | С         |            |   | 326        | 39.280           | 71.493           | 9.542            | 1.00 29.70               | c      |
| ATOM         | 2381         | 0         |            |   | 326        | 39.231           | 70.662           | 8.657            | 1.00 30.45               | 0      |
| ATOM<br>ATOM | 2382<br>2383 | N<br>CA   |            |   | 327        | 38.737<br>37.992 | 72.629<br>72.807 | 9.329<br>8.107   | 1.00 32.50<br>1.00 33.03 | N<br>C |
| ATOM         | 2384         | CB        |            |   | 327        | 37.161           | 74.199           | 8.255            | 1.00 32.84               | Ċ      |
| MOTA         | 2385         |           |            |   | 327        | 35.902           | 74.033           | 9.061            | 1.00 32.61               | č      |
| ATOM         | 2386         |           |            |   | 327        | 35.247           | 75.311           | 9.710            | 1.00 29.97               | С      |
| ATOM         | 2387         |           |            |   | 327        | 36.702           | 74.614           | 7.106            | 1.00 33.05               | C      |
| MOTA         | 2388<br>2389 | С<br>0    |            |   | 327<br>327 | 38.927<br>38.646 | 72.985<br>72.351 | 6.902<br>5.839   | 1.00 33.29<br>1.00 33.57 | C 0 ·  |
| ATOM         | 2390         | N         |            |   | 328        | 40.012           | 73.754           | 7.029            | 1.00 28.53               | Ň      |
| MOTA         | 2391         | ÇA        |            |   | 328        | 40.856           | 73.821           | 5.865            | 1.00 31.92               | С      |
| ATOM         | 2392         | CB        |            |   | 328        | 42.089           | 74.520           | 6.012            | 1.00 35.24               | C      |
| ATOM         | 2393<br>2394 | CG<br>CD  |            |   | 328<br>328 | 41.940<br>42.021 | 75.898<br>77.079 | 6.656<br>5.652   | 1.00 49.42<br>1.00 62.15 | C<br>C |
| ATOM         | 2395         |           |            |   | 328        | 42.014           | 78.271           | 6.263            | 1.00 60.83               | ŏ      |
| MOTA         | 2396         |           |            |   | 328        | 42.069           | 76.795           | 4.371            | 1.00 59.19               | o      |
| ATOM         | 2397         | C         |            |   | 328        | 41.318           | 72.518           | 5.578            | 1.00 30.79               | c      |
| ATOM<br>ATOM | 2398<br>2399 | O<br>N    |            |   | 328<br>329 | 41.393<br>41.667 | 72.203<br>71.725 | 4.580<br>6.467   | 1.00 35.56<br>1.00 29.64 | o<br>N |
| ATOM         | 2400         | CA        |            |   | 329        | 42.189           | 70.451           | 6.205            | 1.00 29.18               | C N    |
| ATOM         | 2401         | CB        |            |   | 329 -      | 42.964           | 69.941           | 7.377            | 1.00 31.85               | С      |
| ATOM         | 2402         | CG        |            |   | 329        | 43.327           | 68.485           | 7.524            | 1.00 32.32               | c      |
| ATOM<br>ATOM | 2403<br>2404 | CD<br>NE  |            |   | 329<br>329 | 44.441<br>43.940 | 68.263<br>68.553 | 8.564<br>9.826   | 1.00 36.73<br>1.00 38.50 | C<br>N |
| ATOM         | 2405         | CZ        |            |   | 329        | 43.119           | 67.801           | 10.324           | 1.00 38.30               | · C    |
| MOTA         | 2406         |           |            |   | 329        | 42.557           | 68.097           | 11.478           | 1.00 40.58               | N      |
| MOTA         | 2407         |           |            |   | 329        | 42.806           | 66.761           | 9.551            | 1.00 43.37               | N      |
| MOTA<br>MOTA | 2408<br>2409 | C<br>O    |            |   | 329<br>329 | 41.298<br>41.605 | 69.417<br>68.726 | 5.815<br>5.038   | 1.00 29.34<br>1.00 32.16 | C<br>0 |
| ATOM         | 2410         | N         |            |   | 330        | 40.103           | 69.336           | 6.338            | 1.00 32.10               | n      |
| ATOM         | 2411         | CA        |            |   | 330        | 39.141           | 68.317           | 5.879            | 1.00 27.99               | C      |
| ATOM         | 2412         | СВ        |            |   | 330        | 38.291           | 68.030           | 7.021            | 1.00 24.53               | C      |
| ATOM<br>ATOM | 2413<br>2414 | CG1       | VAL        |   |            | 37.429<br>39.193 | 66.941<br>67.588 | 6.749<br>8.194   | 1.00 26.23<br>1.00 26.56 | c<br>c |
| ATOM         | 2415         | C         |            |   | 330        | 38.299           | 68.671           | 4.709            | 1.00 30.84               | c      |
| ATOM         | 2416         | ō         |            |   | 330        | 38.021           | 67.856           | 3.957            | 1.00 32.47               | ō      |
| ATOM         | 2417         | N         |            |   | 331        | 37.927           | 69.910           | 4.511            | 1.00 32.09               | N      |
| ATOM         | 2418         | CA        |            |   | 331        | 37.089           | 70.307           | 3.412            | 1.00 38.42               | c      |
| ATOM TA      | 2419<br>2420 | CB<br>CG1 |            |   | 331<br>331 | 35.813<br>35.211 | 70.969<br>69.892 | 4.307<br>5.133   | 1.00 39.04<br>1.00 36.70 | C<br>C |
| ATOM         | 2421         | CD1       |            |   |            | 34.164           | 70.327           | 6.204            | 1.00 36.50               | Ċ      |
| ATOM         | 2422         | CG2       | ILE        | A | 331        | 34.862           | 71.582           | 3.299            | 1.00 49.28               | C      |
| ATOM         | 2423         | ¢         |            |   | 331        | 37.870           | 71.422           | 2.764            | 1.00 38.33               | c      |
| MOTA<br>MOTA | 2424<br>2425 | O<br>N    | ILE<br>GLY |   |            | 38.320<br>38.227 | 72.183<br>71.746 | 3.477<br>1.724   | 1.00 44.91<br>1.00 40.68 | о<br>И |
| ATOM         | 2426         | CA        | GLY        |   |            | 39.001           | 72.924           | 1.663            | 1.00 44.91               | Č      |
| MOTA         | 2427         | c         | GLY        | A | 332        | 38.161           | 74.160           | 1.700            | 1.00 49.04               | С      |
| ATOM         | 2428         | 0         | GLY        |   |            | 37.344           | 74.307           | 2.577            | 1.00 45.26               | 0      |
| ATOM<br>ATOM | 2429<br>2430 | N<br>CA   | ARG<br>ARG |   |            | 38.440<br>37.788 | 75.039<br>76.248 | 0.741<br>0.664   | 1.00 53.16<br>1.00 55.09 | N<br>C |
| AT ON        | 2430         | CA        | OZZ        | ~ | JJJ        | 31.100           | .0.240           | U. 004           | 1.00 33.03               | ·      |

```
Figure 2
                                  38.784 77.406
                                                     0.581
                                                            1.00 57.66
ATOM
       2431
              СВ
                  ARG A 333
MOTA
       2432
              CG
                  ARG A 333
                                  38.327
                                           78.503
                                                     1.669
                                                            1.00 66.01
MOTA
       2433
                  ARG A 333
                                   39.334
                                           79.753
                                                     1.547
                                                            1.00 76.13
              CD
                                   40.017
                                           80.231
                                                     2.803
                                                            1.00 80.58
ATOM
       2434
              NE
                  ARG A 333
                                           80.019
                                                     3.213
                                                            1.00 83.62
ATOM
       2435
              CZ
                  ARG A 333
                                   41.312
                                   42.252
                                           79.267
                                                     2.541
                                                            1.00 83.79
ATOM
       2436
              NH1 ARG A 333
              NH2 ARG A 333
                                           80.599
                                                     4.366
                                                            1.00 86.26
                                   41.656
ATOM
       2437
                                                    -0.474
                                  36.808
                                           76.117
                                                            1.00 55.45
                                                                                   C
ATOM
       2438
              С
                  ARG A 333
                                                   -0.669
                                   35.989
                                                            1.00 60.59
ATOM
       2439
              ٥
                  ARG A 333
                                           76.932
                                  36.778
                                           75.068
                                                    -1.187
ATOM
       2440
              N
                  ASN A 334
                                                            1.00 53.78
MOTA
       2441
              CA
                  ASN A 334
                                  35.938
                                           75.022
                                                    -2.368
                                                            1.00 53.83
ATOM
       2442
              CB
                  ASN A 334
                                  36.644
                                           74.187
                                                    -3.485
                                                            1.00 53.11
                                                                                   С
MOTA
       2443
              CG
                  ASN A 334
                                   37.953
                                           74.846
                                                   -3.933
                                                            1.00 52.95
                                                                                   C
MOTA
       2444
              OD1 ASN A 334
                                  38.973
                                           74.951
                                                   -3.284
                                                            1.00 47.13
                                                                                   0
       2445
              ND2 ASN A 334
                                   37.900
                                           75.339
                                                   -5.145
                                                            1.00 69.10
ATOM
ATOM
       2446
                  ASN A 334
                                  34.619
                                           74.363
                                                   -1.914
                                                            1.00 52.70
                                                                                   С
              C
ATOM
       2447
                  ASN A 334
                                  33.754
                                           75.071
                                                   -1.476
                                                            1.00 59.79
                                                                                   0
       2448
                  ARG A 335
                                  34.465
                                           73.069
                                                   -1.932
                                                            1.00 47.41
ATOM
              N
ATOM
       2449
                  ARG A 335
                                   33.295
                                           72.432
                                                   -1.560
                                                            1.00 41.41
ATOM
       2450
              СВ
                  ARG A 335
                                  33.370
                                           70.924
                                                    -1.626
                                                            1.00 36.80
                                                                                   C
                  ARG A 335
                                  34.049
                                           70.402
                                                   +0.638
                                                            1.00 44.80
ATOM
       2451
              CG
                  ARG A 335
                                   34.029
                                           68.844
                                                    -0.626
                                                            1.00 40.28
ATOM
       2452
              CD
                                                                                   c
                                           68.337
                                                    0.691
                                                            1.00 48.35
ATOM
       2453
              NE
                  ARG A 335
                                  33.823
ATOM
       2454
              СZ
                  ARG A 335
                                  34.766
                                           67.964
                                                     1.505
                                                            1.00 56.67
                                                                                   c
       2455
              NH1 ARG A 335
                                  35.988
                                           68.000
                                                    1.088
                                                            1.00 64.30
ATOM
ATOM
       2456
              NH2 ARG A 335
                                  34.456
                                           67.555
                                                    2.734
                                                            1.00 56.56
ATOM
       2457
                  ARG A 335
                                  32.678
                                           72.790
                                                    -0.313
                                                            1.00
                                                                 42.19
              C
       2458
                  ARG A 335
                                  33.194
                                           73.533
                                                    0.637
                                                            1.00 42.92
                                                                                   0
ATOM
              0
                  SER A 336
                                           72.261
                                                    -0.128
                                                            1.00 39.70
                                  31.503
ATOM
       2459
             N
                                                                                   N
ATOM
             CA
                  SER A 336
                                  30.836
                                           72.867
                                                    1.061
                                                            1.00 40.11
                                                                                   С
       2460
                                           73.295
                                                     0.705
                                                            1.00 43.20
ATOM
       2461
                  SER A 336
                                  29.476
                                                                                   C
             CB
ATOM
       2462
             OG
                  SER A 336
                                  28.851
                                           71.995
                                                     0.440
                                                            1.00 50.49
                                                                                   0
ATOM
       2463
             C
                  SER A 336
                                  30.765
                                           71.749
                                                    2.024
                                                            1.00 37.20
                                                                                   C
                                                           .1.00 35.49
ATOM
       2464
             0
                  SER A 336
                                  31.056
                                           70.490
                                                    1.592
                                                                                   0
ATOM
       2465
             N
                  PRO A 337
                                  30.561
                                           71.935
                                                    3.321
                                                           1.00 28.12
                                                                                   N
ATOM
       2466
             CA
                  PRO A:337
                                  30.629
                                           70.855
                                                     4.240
                                                            1.00 21.18
                                                                                   С
       2467
             CB
                  PRO A 337
                                  30.414
                                           71.468
                                                     5.415
                                                            1.00 19.30
                                                                                   c
ATOM
                  PRO A 337
                                  30.985
                                           72.672
                                                     5.235
                                                            1.00 25.88
                                                                                   С
ATOM
       2468
             CG
                                                     3.872
                                                            1.00 26.63
                                                                                   С
MOTA
       2469
              CD
                  PRO A 337
                                  30.630
                                           73.213
MOTA
       2470
              C
                  PRO A: 337
                                  29.555
                                           69.929
                                                     4.016
                                                            1.00 27.11
ATOM
       2471
              0
                  PRO A 337
                                  28.669
                                           70.297
                                                     3.267
                                                            1.00 28.43
                  CYS A 338
                                  29.572
                                           68.746
                                                     4.592
                                                            1.00 28.67
ATOM
       2472
             N
ATOM
       2473
             CA
                  CYS A 338
                                  28.533
                                           67.904
                                                     4.605
                                                            1.00 31.28
                  CYS A 338
                                  28.654
                                           67.145
                                                     3.317
                                                            1.00 36.76
ATOM
             СВ
       2474
                                                     3.277
                                                            1.00 44.97
ATOM
       2475
             SG
                  CYS A 338
                                  29.859
                                           65.807
                                                     5.767
                                                            1.00 30.95
ATOM
                  CYS A 338
                                  28.693
                                           66.878
       2476
             С
                                           66.785
                                                     6.485
                                                            1.00 30.63
                                                                                   0
ATOM
       2477
             0
                  CYS A 338
                                  29.695
                                                    5.978
                                                            1.00 30.73
                                  27.749
                                           66.044
                                                                                   N
ATOM
       2478
             N
                  MET A 339
                                  27.792
                                           65.269
                                                     7.213
                                                            1.00 31.41
                                                                                   C
ATOM
       2479
             CA
                  MET A 339
ATOM
       2480
             CB
                  MET A 339
                                  26.456
                                           64.658
                                                    7.522
                                                            1.00 30.93
                                                                                   C
ATOM
       2481
             CG
                  MET A 339
                                  25.418
                                           65.682
                                                    7.548
                                                            1.00 34.95
                                                                                   C
ATOM
       2482
             SD
                  MET A 339
                                  25.712
                                           66.839
                                                    9.008
                                                            1.00 39.80
                                                                                   S
MOTA
       2483
             CE
                  MET A 339
                                  25.771
                                           65.632
                                                   10.165
                                                            1.00 40.92
                                                                                  С
       2484
                  MET A 339
                                  28.859
                                           64.367
                                                    7.294
                                                            1.00 34.83
                                                                                  C
ATOM
                  MET A 339
                                  29.501
                                           64.095
                                                    8.353
                                                            1.00 40.35
                                                                                   ٥
ATOM
       2485
                  GLN A 340
                                           63.856
                                                     6.176
                                                            1.00 41.03
                                                                                  N
ATOM
       2486
              N
                                  29.260
                  GLN A 340
                                                     6.289
                                                            1.00 42.49
ATOM
       2487
             CA
                                  30.424
                                           62.864
ATOM
       2488
             СВ
                  GLN A 340
                                  30.754
                                           62.265
                                                     4.944
                                                            1.00 45.27
                                                                                   ¢
                                                     4.971
                                                            1.00 54.24
ATOM
       2489
             CG
                  GLN A 340
                                  30.339
                                           60.897
MOTA
       2490
             CD
                  GLN A 340
                                  30.479
                                           60.425
                                                     3.605
                                                            1.00 65.40
                                                                                   С
             OE1 GLN A 340
                                  31.509
                                           60.800
                                                    2.898
                                                            1.00 68.31
ATOM
       2491
                                  29.451
                                           59.630
                                                     3.136
                                                            1.00 73.77
ATOM
       2492
             NE2 GLN A 340
                                  31.687
                                           63.470
                                                     6.758
                                                            1.00 37.85
                                                                                   c
                  GLN A 340
ATOM
       2493
             С
                                           62.740
                                                     7.159
                                                            1.00 36.49
                                                                                   0
                                  32.394
ATOM
       2494
             0
                  GLN A 340
                                           64.778
                                                            1.00 32.76
                                                     6.682
ATOM
       2495
             N
                  ASP A 341
                                  31.936
                                           65.256
                                                     7.346
                                                            1.00 30.78
ATOM
       2496
             CA
                  ASP A 341
                                  33.091
                                                    7.000
ATOM
       2497
              СВ
                  ASP A 341
                                  33.311
                                           66.618
                                                            1.00 31.24
       2498
                  ASP A 341
                                  33.318
                                           66.828
                                                    5.532
                                                            1.00 35.73
ATOM
              CG
       2499
                                  33.817
                                           65.956
                                                    4.778
                                                            1.00 47.14
                                                                                   0
ATOM
              ODI ASP A 341
                                  32.788
                                           67.811
                                                    5.035
                                                            1.00 41.01
ATOM
       2500
             OD2 ASP A 341
                                  33.161
                                           65.333
                                                    8.774
                                                            1.00 31.29
ATOM
       2501
             С
                  ASP A 341
       2502
             0
                                  34.160
                                           65.883
                                                    9.390
                                                            1.00 29.89
MOTA
                  ASP A 341
                                  32.124
                                           64.903
                                                    9.446
                                                            1.00 32.19
ATOM
       2503
             N
                  ARG A 342
                                  32.228
                                           65.330
                                                   10.838
                                                            1.00 31.37
ATOM
       2504
             CA
                  ARG A 342
                                  30.851
                                           65.541
                                                   11.359
                                                            1.00 34.31
                                                                                   ¢
ATOM
       2505
                  ARG A 342
              CB
                                           65.768
                                                   12.798
                                                           1.00 37.02
                                  30.810
ATOM
       2506
             CG
                  ARG A 342
```

â

13.6

353

348

088 190

250

450

oto

± (€

. ..

1887 G.

196 14

5.3

. 4 S

eka, co ve.

14, 1

63 656

 $\mathcal{M} = \mathcal{Q}$ 

|              |              |          |       |                |    | Fi               | .gure            | 2                |      |                |        |
|--------------|--------------|----------|-------|----------------|----|------------------|------------------|------------------|------|----------------|--------|
| MOTA         | 2507         | CD       |       | A 342          | 2  | 29.684           | 65.793           | 13.478           |      | 32.09          | C      |
| MOTA         | 2508         | NE       |       | A 342          |    | 8.823            | 64.795           | 13.153           |      | 35.51          | N      |
| ATOM         | 2509         | CZ       |       | A 342<br>A 342 |    | 27.465<br>26.917 | 64.835<br>65.861 | 13.497<br>14.212 |      | 44.46          | C<br>N |
| MOTA<br>MOTA | 2510<br>2511 |          |       | A 342          |    | 26.694           | 63.851           | 13.114           |      | 44.62          | N      |
| ATOM         | 2512         | С        |       | A 342          |    | 3.035            | 64.324           | 11.654           |      | 33.83          | C      |
| ATOM         | 2513         | 0        |       | A 342          |    | 33.684           | 64.703           | 12.639           |      | 33.52          | 0      |
| ATOM         | 2514         | N        |       | A 343          |    | 33.026           | 63.047           | 11.267           |      | 32.02          | N      |
| MOTA         | 2515         | CA       |       | A 343          |    | 33.835           | 62.171<br>60.773 | 11.931           |      | 31.16<br>35.28 | C      |
| MOTA<br>MOTA | 2516<br>2517 | CB<br>OG |       | A 343<br>A 343 |    | 33.615<br>34.158 | 60.773           | 11.505<br>10.124 |      | 41.82          | Ö      |
| ATOM         | 2518         | c        |       | A 343          |    | 5.243            | 62.472           | 11.635           |      | 33.09          | č      |
| MOTA         | 2519         | 0        |       | A 343          |    | 35.999           | 62.071           | 12.349           |      | 38.94          | 0      |
| ATOM         | 2520         | N        |       | A 344          |    | 35.702           | 63.199           | 10.730           |      | 32.72          | N      |
| ATOM<br>ATOM | 2521<br>2522 | CA<br>CB |       | A 344<br>A 344 |    | 37.105<br>37.587 | 63.575<br>63.552 | 10.637<br>9.101  |      | 31.77<br>37.61 | C      |
| ATOM         | 2523         | CG       |       | A 344          |    | 37.151           | 62.285           | 8.359            |      | 42.38          | č      |
| ATOM         | 2524         |          | HIS . |                |    | 37.124           | 61.031           | 9.000            |      | 54.11          | N      |
| MOTA         | 2525         |          | HIS . |                |    | 6.592            | 60.112           | 8.171            |      | 47.25          | С      |
| ATOM         | 2526         |          | HIS   |                |    | 6.238            | 60.714           | 7.037            |      | 43.16          | N      |
| MOTA<br>MOTA | 2527<br>2528 | CD2      | HIS . | A 344<br>A 344 |    | 36.621<br>37.302 | 62.071<br>64.909 | 7.123<br>11.210  |      | 45.51<br>33.12 | C      |
| ATOM         | 2529         | ō        |       | A 344          |    | 8.366            | 65.474           | 11.214           |      | 28.98          | ŏ      |
| ATOM         | 2530         | N        |       | A 345          |    | 6.288            | 65.488           | 11.768           |      | 34.40          | N      |
| MOTA         | 2531         | CA       |       | A 345          |    | 6.611            | 66.672           | 12.500           |      | 33.54          | С      |
| ATOM         | 2532         | CB       |       | A 345          |    | 15.757           | 67.788           | 11.763           |      | 35.68<br>36.51 | C      |
| MOTA<br>MOTA | 2533<br>2534 | CG<br>SD |       | A 345<br>A 345 |    | 16.221           | 68.171<br>68.713 | 10.453<br>9.627  |      | 32.60          | s      |
| ATOM         | 2535         | CE       |       | A 345          |    | 5.394            | 70.345           | 9.812            |      | 31.51          | č      |
| ATOM         | 2536         | С        | MET ! | A 345          | 3  | 6.210            | 66.744           | 14.076           | 1.00 | 35.58          | С      |
| ATOM         | 2537         | 0        |       | A 345          |    | 5.258            | 67.513           | 14.496           |      | 32.08          | 0      |
| ATOM         | 2538         | N        |       | A 346          |    | 6.938            |                  | 14.932<br>16.323 |      | 33.84          | N<br>C |
| ATOM<br>ATOM | 2539<br>2540 | CA<br>CB |       | A 346<br>A 346 |    | 16.735<br>17.955 |                  | 16.650           |      | 31.65          | c      |
| ATOM         | 2541         | CG       |       | A 346          |    | 8.414            | 64.691           | 15.494           |      | 32.56          | č      |
| ATOM         | 2542         | CD       | PRO I | A 346          | -3 | 8.225            | 65.546           | 14.517           |      | 33.80          | С      |
| ATOM         | 2543         | С        |       | A 346          |    | 6.672            | 671:036          | 16.987           |      | 29.99          | C      |
| ATOM         | 2544         | 0        |       | A 346          |    | 5.835<br>7.551   | 67.271           | 17.772           |      | 34.98<br>25.52 | O<br>N |
| ATOM<br>ATOM | 2545<br>2546 | N<br>Ca  |       | A 347<br>A 347 |    | 7.528            |                  | 17.475           |      | 24.96          | c      |
| ATOM         | 2547         | СВ       |       | A 347          |    | 8.716            |                  | 17.143           |      | 21.55          | c      |
| ATOM         | 2548         | CG       |       | A 347          |    | 8.932            | 71.267           | 18.136           |      | 23.95          | С      |
| ATOM         | 2549         |          | TYR   |                |    | 9.535            | 71.108           | 19.401           |      | 27.58          | C<br>C |
| MOTA<br>MOTA | 2550<br>2551 | CEI      | TYR   | A 347          |    | 9.692            | 72.125<br>73.363 | 20.121<br>19.769 |      | 30.73          | c      |
| ATOM         | 2552         | OH       |       | A 347          |    | 9.311            | 74.484           | 20.646           |      | 30.35          | ō      |
| MOTA         | 2553         | CE2      | TYR I | A 347          | 3  | 8.682            | 73.494           | 18.663           |      | 29.41          | С      |
| ATOM         | 2554         |          | TYR I |                |    | 8.529            | 72.465           | 17.899           |      | 27.78          | C      |
| MOTA<br>MOTA | 2555<br>2556 | С<br>0   |       | A 347<br>A 347 |    | 6.192<br>5.580   | 69.972<br>70.355 | 17.272<br>18.207 |      | 26.12          | c<br>o |
| ATOM         | 2557         | N        |       | A 348          |    | 5.715            | 70.153           | 16.064           |      | 26.11          | N      |
| ATOM         | 2558         | CA       |       | A 348          |    | 4.469            | 70.790           | 15.771           |      | 24.64          | С      |
| ATOM         | 2559         | СВ       |       | A 348          |    | 4.333            | 70.860           | 14.255           |      | 24.60          | С      |
| ATOM         | 2560         |          | THR A |                |    | 5.489<br>3.218   | 71.640<br>71.706 | 13.724<br>13.894 |      | 26.33<br>23.66 | c      |
| ATOM<br>ATOM | 2561<br>2562 | C        | THR I | A 348          |    | 3.268            | 70.084           | 16.343           |      | 25.46          | ç      |
| ATOM         | 2563         | ŏ        |       | A 348          |    | 2.321            | 70.676           | 16.867           |      | 26.10          | 0      |
| MOTA         | 2564         | N        | ASP A | A 349          |    | 3.329            | 68.770           | 16.336           |      | 26.94          | N      |
| ATOM         | 2565         | CA       |       | A 349          |    | 2.267            | 68.045           | 16.870           |      | 27.16          | C      |
| ATOM<br>ATOM | 2566<br>2567 | CB<br>CG |       | A 349<br>A 349 |    | 1.229            | 66.666<br>65.847 | 16.652<br>16.632 |      | 24.43          | C<br>C |
| ATOM         | 2568         |          | ASP I |                |    | 0.075            | 66.290           | 16.987           |      | 40.81          | ō      |
| ATOM         | 2569         |          | ASP A |                |    | 1.273            | 64.612           | 16.296           | 1.00 | 34.49          | 0      |
| MOTA         | 2570         | С        |       | A 349          |    | 2.217            | 68.409           | 18.359           |      | 28.13          | С      |
| ATOM         | 2571         | 0        |       | A 349          |    | 1.244            | 68.323           | 19.072           |      | 26.54          | N<br>N |
| ATOM<br>ATOM | 2572<br>2573 | N<br>CA  |       | A 350<br>A 350 |    | 3.361            | 68.701<br>68.929 | 18.911<br>20.367 |      | 31.77 26.72    | C      |
| ATOM         | 2574         | CB       |       | A 350          |    | 4.774            | 68.734           | 20.812           |      | 28.60          | c      |
| ATOM         | 2575         | C        |       | A 350          |    | 3.012            | 70.325           | 20.646           | 1.00 | 26.38          | С      |
| ATOM         | 2576         | 0        |       | A 350          |    | 2.334            | 70.487           | 21.685           |      | 29.40          | 0      |
| ATOM         | 2577         | N        |       | A 351          |    | 3.430            | 71.333           | 19.900           |      | 20.04          | N      |
| ATOM<br>ATOM | 2578<br>2579 | CA<br>CB |       | A 351<br>A 351 |    | 2.906<br>3.450   | 72.697<br>73.435 | 20.101<br>19.074 |      | 16.24<br>19.48 | c<br>c |
| ATOM         | 2580         |          | VAL A |                |    | 2.705            | 74.718           | 19.078           |      | 20.46          | c      |
| ATOM         | 2581         |          | VAL A | A 351          | 3  | 4.885            | 73.910           | 19.214           | 1.00 | 25.28          | С      |
| ATOM         | 2582         | С        | VAL A | A 351          | 3  | 1.335            | 72.574           | 19.971           | 1.00 | 20.17          | С      |
|              |              |          |       |                |    |                  |                  |                  |      |                |        |

|              |              |           |            |   |            | Fi               | .gure            | 2                |                            |                                       |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|----------------------------|---------------------------------------|
| ATOM         | 2583         | 0         |            |   | 351        | 30.607           | 73.170           | 20.754           | 1.00 18.81                 | 0                                     |
| ATOM<br>ATOM | 2584<br>2585 | N<br>CA   |            |   | 352<br>352 | 30.725<br>29.304 | 71.857<br>71.841 | 18.894<br>18.794 | 1.00 19.06<br>1.00 15.87   | N<br>C                                |
| ATOM         | 2586         | СВ        |            |   | 352        | 28.878           | 71.183           | 17.550           | 1.00 15.99                 | Č                                     |
| ATOM         | 2587         |           | VAL        |   |            | 27.413           | 70.907           | 17.564           | 1.00 24.05                 | С                                     |
| ATOM         | 2588         |           | VAL        |   |            | 29.098           | 72.057           | 16.443           | 1.00 23.35                 | C                                     |
| MOTA<br>MOTA | 2589<br>2590 | C<br>O    |            |   | 352<br>352 | 28.723<br>27.900 | 71.272<br>71.877 | 20.128<br>20.893 | 1.00 16.12<br>1.00 18.46   | C<br>O                                |
| MOTA         | 2591         | N         |            |   | 353        | 29.075           | 70.095           | 20.494           | 1.00 17.64                 | N                                     |
| MOTA         | 2592         | CA        | HIS        | A | 353        | 28.641           | 69.471           | 21.720           | 1.00 15.92                 | c                                     |
| MOTA         | 2593         | CB        |            |   | 353        | 29.393           | 68.188           | 21.907           | 1.00 13.07                 | C                                     |
| ATOM<br>ATOM | 2594<br>2595 | CG<br>ND1 | HIS        |   | 353<br>353 | 28.866<br>28.156 | 67.087<br>66.009 | 21.105<br>21.611 | 1.00 12.29<br>1.00 10.05   | С<br>N                                |
| ATOM         | 2596         |           | HIS        |   |            | 27.928           | 65.128           | 20.646           | 1.00 11.93                 | С                                     |
| MOTA         | 2597         |           | HIS        |   |            | 28.439           | 65.596           | 19.519           | 1.00 15.51                 | . N                                   |
| ATOM         | 2598         | CD2       | HIS        |   | 353<br>353 | 29.018<br>28.805 | 66.862<br>70.447 | 19.824<br>22.944 | 1.00 17.05<br>1.00 20.76   | C                                     |
| ATOM<br>ATOM | 2599<br>2600 | Ö         |            |   | 353        | 27.905           | 70.570           | 23.675           | 1.00 19.28                 | ŏ                                     |
| ATOM         | 2601         | N         |            |   | 354        | 29.992           | 71.105           | 23.077           | 1.00 23.66                 | N                                     |
| ATOM         | 2602         | CA        | GLU        |   |            | 30.222           | 71.876           | 24.236           | 1.00 26.84                 | C                                     |
| ATOM<br>ATOM | 2603<br>2604 | CB<br>CG  | GLU        |   | 354<br>354 | 31.647<br>31.989 | 72.262<br>73.106 | 24.499<br>25.692 | 1.00 26.12<br>1.00 21.95   | C<br>C                                |
| ATOM         | 2605         | CD        |            |   | 354        | 31.798           | 72.532           | 27.028           | 1.00 25.97                 | Č                                     |
| ATOM         | 2606         |           | GLU        |   |            | 31.295           | 71.482           | 27.148           | 1.00 28.50                 | 0                                     |
| ATOM         | 2607         |           | GLU        |   |            | 32.242           | 73.161           | 28.087           | 1.00 27.97                 | 0<br>C                                |
| MOTA<br>MOTA | 2608<br>2609 | С<br>0    |            |   | 354<br>354 | 29.347<br>28.909 | 73.106<br>73.514 | 24.155<br>25.254 | 1.00 29.81<br>1.00 36.02   | •                                     |
| ATOM         | 2610         | N         |            |   | 355        | 29.044           | 73.697           | 23.071           | 1.00 26.43                 | N                                     |
| ATOM         | 2611         | CA        |            |   | 355        | 28.144           | 74.795           | 23.192           | 1.00 21.52                 | .c                                    |
| ATOM         | 2612         | CB        |            |   | 355        | 27.927           | 75.310<br>76.081 | 21.747<br>21.879 | 1.00 26.12<br>1.00 34.55   | Ċ                                     |
| ATOM<br>ATOM | 2613<br>2614 |           | VAL<br>VAL |   |            | 26.520<br>29.017 | 76.226           | 21.485           | 1.00 34.33                 | · · · · · · · · · · · ·               |
| ATOM         | 2615         |           |            |   | 355        | 26.797           | 74.061           | 23.681           | 1.00 23.34                 | . Sic.                                |
| MOTA         | 2616         | 0         |            |   | 355        | 26.190           | 74.480           | 24.592           | 1.00 22.97                 |                                       |
| MOTA         | 2617         | N         |            |   | 356        | 26.206           | 73.010           | 23.099           | 1.00 20.57<br>1.00 15.86   | N<br>C                                |
| ATOM<br>ATOM | 2618<br>2619 | CA<br>CB  |            |   | 356<br>356 | 25.002<br>24.414 | 72.622<br>71.425 | 23.659<br>22.945 | 1.00 18.19                 | C                                     |
| MOTA         | 2620         | CG        |            |   | 356        | 23.940           | 71.735           | 21.518           | 1.00 19.12                 |                                       |
| MOTA         | 2621         | CD        |            |   | 356        | 23.316           | 70.533           | 20.847           | 1.00 30.38                 | · · · · · · · · · · · · · · · · · · · |
| MOTA         | 2622         |           | GLN        |   |            | 23.982           | 69.614           | 20.307<br>21.015 | 1.00 30.97 7<br>1.00 33.77 | , , , , , , , , , , , , , , , , , , , |
| ATOM<br>ATOM | 2623<br>2624 | C         | GLN<br>GLN |   | 356        | 22.015<br>25.053 | 70.409<br>72.392 | 25.094           | 1.00 20.26                 | C                                     |
| ATOM         | 2625         | ŏ         |            |   | 356        | 24.229           | 72,712           | 25.855           | 1.00 25.55                 | 0                                     |
| MOTA         | 2626         | N         | ARG        |   |            | 25.971           | 71.709           | 25.695           | 1.00 28.31                 | N                                     |
| ATOM<br>ATOM | 2627<br>2628 | CA<br>CB  | ARG        |   |            | 25.997<br>27.374 | 71.298<br>70.707 | 27.209<br>27.546 | 1.00 22.14<br>1.00 23.81   | C<br>C                                |
| ATOM         | 2629         | CG        | ARG        |   |            | 27.569           | 69.979           | 28.922           | 1.00 24.46                 | Č                                     |
| ATOM         | 2630         | CD        | ARG        | A | 357        | 28.885           | 69.806           | 29.313           | 1.00 19.05                 | С                                     |
| ATOM         | 2631         | NE        | ARG        |   |            | 29.650           | 71.037           | 29.220           | 1.00 14.95                 | N<br>C                                |
| ATOM<br>ATOM | 2632<br>2633 | CZ<br>NH1 | ARG<br>ARG |   |            | 29.671<br>30.386 | 71.838<br>73.013 | 30.198<br>30.188 | 1.00 23.28<br>1.00 29.57   | N                                     |
| ATOM         | 2634         |           | ARG        |   |            | 28.921           | 71.573           | 31.264           | 1.00 24.11                 | N                                     |
| ATOM         | 2635         | С         | ARG        |   |            | 26.106           | 72.602           | 28.001           | 1.00 28.14                 | C                                     |
| ATOM         | 2636         | 0         | ARG        |   |            | 25.537           | 72.788<br>73.399 | 29.046<br>27.645 | 1.00 26.96<br>1.00 28.64   | O<br>N                                |
| ATOM<br>ATOM | 2637<br>2638 | N<br>CA   | TYR<br>TYR |   |            | 27.070<br>27.288 | 74.636           | 28.414           | 1.00 30.15                 | Č                                     |
| ATOM         | 2639         | СВ        | TYR        |   |            | 28.343           | 75.559           | 27.771           | 1.00 28.31                 | С                                     |
| ATOM         | 2640         | CG        | TYR        |   |            | 28.634           | 76.900           | 28.399           | 1.00 30.60                 | C                                     |
| ATOM<br>ATOM | 2641<br>2642 |           | TYR<br>TYR |   |            | 28.136<br>28.318 | 78.006<br>79.246 | 27.884<br>28.313 | 1.00 36.27<br>1.00 27.20   | C                                     |
| MOTA         | 2643         | CZ        | TYR        |   |            | 29.014           | 79.472           | 29.315           | 1.00 30.17                 | Č                                     |
| MOTA         | 2644         | OH        | TYR        |   |            | 29.187           | 80.874           | 29.754           | 1.00 37.35                 | 0                                     |
| ATOM         | 2645         |           | TYR        |   |            | 29.590           | 78.437           | 29.928           | 1.00 29.39                 | c<br>c                                |
| ATOM<br>ATOM | 2646<br>2647 | CDZ       | TYR<br>TYR |   |            | 29.414<br>26.025 | 77.113<br>75.532 | 29.442<br>28.537 | 1.00 31.97<br>1.00 31.22   | C                                     |
| ATOM         | 2648         | ò         | TYR        |   |            | 25.754           | 75.883           | 29.654           | 1.00 30.15                 | ŏ                                     |
| MOTA         | 2649         | N         | ILE        | A | 359        | 25.397           | 75.930           | 27.436           | 1.00 29.03                 | N                                     |
| ATOM         | 2650         | CA        | ILE        |   |            | 24.296           | 76.916<br>77.385 | 27.408           | 1.00 25.35<br>1.00 19.39   | c<br>c                                |
| ATOM<br>ATOM | 2651<br>2652 | CB<br>CG1 | ILE        |   |            | 23.959<br>23.480 | 76.347           | 26.074<br>25.199 | 1.00 19.39                 | c                                     |
| ATOM         | 2653         |           | ILE        |   |            | 23.073           | 76.986           | 23.747           | 1.00 19.40                 | С                                     |
| ATOM         | 2654         | CG2       | ILE        | A | 359        | 25.073           | 77.911           | 25.438           | 1.00 28.40                 | C                                     |
| ATOM         | 2655         | C         | ILE        |   |            | 22.960           | 76.335<br>77.122 | 28.022<br>28.239 | 1.00 28.82<br>1.00 32.05   | c<br>o                                |
| MOTA<br>MOTA | 2656<br>2657 | O<br>N    | ILE<br>ASP |   |            | 22.040<br>22.863 | 75.050           | 28.227           | 1.00 32.03                 | и                                     |
| MOTA         | 2658         | CA        | ASP        |   |            | 21.641           | 74.426           | 28.775           | 1.00 29.48                 | C                                     |
|              |              |           |            |   |            |                  |                  |                  |                            |                                       |

1940. 1940.

49, 735.

2 to 12.

4 , 1 -

ATOM

2734

CG1

VAL A 370

```
Figure 2
                  CB ASP A 360
                                               74.341
            2659
                                      21.867
                                                       30,366
                                                               1.00 31.44
     ATOM
                  CG
                      ASP A 360
                                      20.792
                                               73.568
                                                       31.105
                                                               1.00 35.25
     ATOM
            2660
                                       20.660
                                                                1.00 41.05
     ATOM
            2661
                  OD1 ASP A 360
                                               73.788
                                                       32.365
     ATOM
            2662
                  OD2 ASP A 360
                                      19.938
                                               72.842
                                                       30.349
                                                                1.00 50.73
     ATOM
            2663
                  С
                      ASP A 360
                                       20.372
                                               75.068
                                                       28.496
                                                                1.00 27.30
     ATOM
            2664
                  0
                      ASP A 360
                                       19.819
                                               75.558
                                                       29,250
                                                                1.00 34.26
     ATOM
            2665
                  N
                      LEU A 361
                                       19.897
                                               75.190
                                                       27.379
                                                                1.00 33.01
     ATOM
            2666
                  CA
                      LEU A 361
                                      18.656
                                               76.048
                                                       26.991
                                                                1.00 30.32
                                                                                       C
     MOTA
            2667
                  СВ
                      LEU A 361
                                       18.645
                                               76.103
                                                       25.378
                                                                1.00 27.82
     ATOM
            2668
                  CG
                      LEU A 361
                                      19.256
                                               77.235
                                                       24.696
                                                                1.00 30.29
                                                                                       C
     ATOM
            2669
                  CD1 LEU A 361
                                      20.380
                                               77,790
                                                       25.222
                                                                1.00 35.81
                                                                                       C
     ATOM
            2670
                  CD2 LEU A 361
                                      19.427
                                               76.898
                                                       23.318
                                                                1.00 40.70
                                                                                       C
            2671
                      LEU A 361
                                       17.244
                                               75.441
                                                       27.543
                                                                1.00 30.91
                                                                                       c
     ATOM
            2672
                       LEU A 361
                                      16.372
                                               76.124
                                                       27.716
                                                                1.00 31.70
                                                                                       0
     ATOM
                  0
                                      17.053
                                               74.147
                                                       27.842
                                                                1.00 28.20
     ATOM
            2673
                  N
                      LEU A 362
                  CA
                                               73.666
                                                       28.375
                                                                1.00 23.63
     ATOM
            2674
                      LEU A 362
                                       15.922
            2675
                  СВ
                      LEU A 362
                                      15.349
                                               72.664
                                                       27.475
                                                                1.00 20.10
                                                                                      С
     ATOM
                                                       26.241
     ATOM
            2676
                  CG
                      LEU A 362
                                      15.237
                                               73.487
                                                                1.00 28.70
                                                                                      С
     ATOM
            2677
                  CD1 LEU A 362
                                      14.800
                                               72.433
                                                       25.249
                                                                1.00 40.60
            2678
                      LEU A 362
                                      14.065
                                               74.494
                                                       26.230
                                                                1.00 30.55
     ATOM
                  CD2
                                                       29.730
            2679
                                      16.284
                                               73.052
                                                                1.00 24.05
    ATOM
                  С
                      LEU A 362
                      LEU A 362
                                      16.260
                                               71.857
                                                       29.911
                                                                1.00 31.14
    ATOM
            2680
                  0
                                                                                      0
                                      16.546
                                               73.814
                                                       30.706
                                                                1.00 25.12
            2681
                      PRO A 363
    ATOM
                  N
                  ÇA
                                      17.034
                                               73.333
                                                       32.034
                                                                1.00 25.72
    ATOM
            2682
                      PRO A 363
                                      17.084
                                                       32.781
                                                                1.00 28.26
    ATOM
            2683
                  CB
                      PRO A 363
                                               74.637
                                                                                      С
    ATOM
            2684
                  CG
                      PRO A 363
                                      17,254
                                               75.644
                                                       31.789
                                                                1.00 22.00
                                      16.562
                                                       30.690
                                                                1.00 25.48
            2685
                  CD
                      PRO A 363
                                               75,289
                                                                                      C
    ATOM
                                                                1.00 26.16
            2686
                      PRO A 363
                                      16.261
                                               72.24R
                                                       32.655
                                                                                      C
    ATOM
                  С
                                      16.949
    ATOM
            2687
                  0
                      PRO A 363
                                               71.491
                                                       33.366
                                                                1.00 32.89
                                                                                      0
                                      14.974
    ATOM
            2688
                  N
                      THR A 364
                                               72.076
                                                       32.364
                                                                1.00 27.38
                                                                                      N
                                                                                      С
    · ATOM
            2689
                  CA
                      THR A 364
                                      13.888
                                               71.093
                                                       32.739
                                                                1.00 24.83
ATOM
            2690
                  CB
                      THR A 364
                                      12.981
                                               71.876
                                                       33.639
                                                                1.00 29.37
                                                                                      С
    ATOM
            2691
                  0G1
                      THR A 364
                                      12.041
                                               72.783
                                                       33.103
                                                                1.00 27.78
                                                                                      0
            2692
                  CG2 THR A 364
                                      13.726
                                               72.631
                                                       34.624
                                                                1.00 24.29
                                                                                      С
    ATOM
                                      13.397
                                               70.995
                                                       31.438
                                                                1.00 31.42
                                                                                      С
    ATOM
            2693
                  C
                      THR A 364
                                               72.068
                                                       30.705
    ATOM
            2694
                  ٥
                      THR A 364
                                      13.192
                                                                1.00 41.38
                                                       30.777
            2695
                  N
                      SER A 365
                                      13.378
                                               69.850
                                                                1.00 35.24
    ATOM
    ATOM
            2696
                  CA
                      SER A' 365
                                      13.157
                                               69.915
                                                       29.409
                                                                1.00 30.54
                                                                                      С
    ATOM
            2697
                  СВ
                      SER A 365
                                      13.372
                                               68.643
                                                       28.737
                                                                1.00 31.89
                                                                                      С
                                               67.704
                                      12,771
                                                       29,170
                                                                1.00 30.50
                                                                                      0
    ATOM
            2698
                      SER A 365
                  OG
                                      11.768
                      SER A 365
                                               70.448
                                                                1.00 30.31
                                                                                      С
    ATOM
                  C
                                                       29.149
           2699
                                                       29.396
                                                               1.00 28.48
                                                                                      0
    ATOM
           2700
                  0
                      SER A 365
                                      11.590
                                               71.530
                                                       28.626
                                                                1.00 31.50
    ATOM
            2701
                  N
                      LEU A 366
                                      10.852
                                               69.688
                                                                                      N
    ATOM
           2702
                  CA
                      LEU A 366.
                                       9.445
                                               70.049
                                                       28.606
                                                               1.00 30.60
                                                                                      С
    ATOM
           2703
                  СВ
                      LEU A 366
                                       8.762
                                               69.573
                                                       27.345
                                                                1.00 31.40
    ATOM
            2704
                  CG
                      LEU A 366
                                       8.593
                                               70.810
                                                       26.474
                                                                1.00 29.87
                                                                                      ¢
    ATOM
            2705
                  CD1 LEU A 366
                                       9.711
                                               71.550
                                                       26.348
                                                               1.00 32.76
                                                                                      C
    ATOM
            2706
                  CD2 LEU A 366
                                       8.190
                                               70.380
                                                       25.104
                                                                1.00 36.17
                                                                                      С
    ATOM
            2707
                  С
                      LEU A 366
                                       9.031
                                               69.211
                                                       29.694
                                                                1.00 30.92
                                                                                      С
    ATOM
            2708
                      LEÚ A 366
                                       9.665
                                               68.184
                                                       29.834
                                                                1.00 32.15
                                                                                      0
                  0
    ATOM
            2709
                      PRO A 367
                                       7.922
                                               69.475
                                                       30.390
                                                               1.00 29.15
    MOTA
            2710
                  CA
                      PRO A 367
                                       7.473
                                               68.722
                                                       31.496
                                                                1.00 29.28
                                                                                      C
                      PRO A 367
                                       6.375
                                               69.498
                                                       32.004
                                                                1.00 31.11
    ATOM
            2711
                  СВ
                                       6.398
                                               70.718
                                                       31.451
                                                                1.00 33.82
    ATOM
            2712
                  CG
                      PRO A 367
                                                                                      C
                                       6.986
                                                       30.126
    ATOM
            2713
                  CD
                      PRO A 367
                                               70.455
                                                               1.00 30.92
                                               67.478
    ATOM
            2714
                      PRO A 367
                                       6.892
                                                       31.129
                                                                1.00 29.30
                  C
                                       6.323
                                               67.419
                                                       30.186
                                                                1.00 29.58
    ATOM
            2715
                      PRO A 367
                  0
                                                       31.966
                                                                1.00 32.00
                                                                                      N
    ATOM
                      HIS A 368
                                       7.072
                                               66.499
            2716
                  N
                                       6.596
                                               65.209
                                                       31.769
                                                                1.00 36.07
                      HIS A 368
                                                                                      C
    ATOM
            2717
                  CA
                                                       32.052
                                                                1.00 35.82
                                       7.809
                                               64.271
                                                                                      C
    ATOM
            2718
                  CB
                      HIS A 368
                                                       30.905
                                                                1.00 30.59
                                                                                      C
    ATOM
           2719
                  CG
                     HIS A 368
                                       8.764
                                               64.047
                                                       30.492
                                               62.799
                                                                1.00 30.27
                                                                                      N
    MOTA
           2720
                  ND1 HIS A 368
                                       9.112
                                               62.966
                                                       29.501
    MOTA
           2721
                  CE1 HIS A 368
                                       9.985
                                                                1.00 44.81
                                                                                      C
    ATOM
           2722
                  NE2 HIS A 368
                                      10.188
                                               64.254
                                                       29.275
                                                                1.00 32.27
    ATOM
           2723
                  CD2 HIS A 368
                                       9.490
                                               64.928
                                                       30.193
                                                               1.00 30.85
                                                                                      C
    ATOM
           2724
                      HIS A 368
                                       5.578
                                               64.866
                                                       32.799
                                                               1.00 38.59
            2725
                                       5.320
                                               65.545
                                                       33.773
                                                               1.00 39.10
                                                                                      ٥
    ATOM
                      HIS A 368
                                                               1.00 43.14
                                       5.016
                                               63.694
                                                       32.631
    ATOM
            2726
                      ALA A 369
            2727
                                               63.264
                                                       33.675
                                                                1.00 44.94
    ATOM
                  CA
                      ALA A 369
                                       4.041
                                                       33.324
    ATOM
           2728
                  СВ
                      ALA A 369
                                       2.766
                                               63.884
                                                               1.00 48.43
    ATOM
           2729
                  С
                      ALA A 369
                                       3.901
                                               61.798
                                                       33.672
                                                               1.00 40.83
           2730
                                       3.982
                                               61.308
                                                       32.637
                                                               1.00 38.43
    ATOM
                  0
                      ALA A 369
                      VAL A 370
                                               61.159
                                                       34.833
                                                                1.00 43.57
           2731
                                       3.786
    ATOM
                 N
                      VAL A 370
                                                       34.855
                                                               1.00 46.49
                                       3.718
                                               59.636
                                                                                      C
    ATOM
           2732
                 CA
                      VAL A 370
                                       3.887
                                              59.088
                                                       36,128
                                                               1.00 46.19
    ATOM
           2733
                                                                                      C
                  CB
                                                               1.00 48.32
```

HALL

38 7 1 .

18. 22. B

٠,٠

porty-

Airco.

9213.

AT 114

. . . . .

7.1

1. E.W. ..

S THE

59.389

36.647

5.262

|              |              |           |                        | Fi               | .gure            | 2                |                          |        |
|--------------|--------------|-----------|------------------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 2735         |           | VAL A 370              | 2.961            | 59.784           | 37.049           | 1.00 52.50               | С      |
| ATOM         | 2736         | C         | VAL A 370              | 2.475            | 59.072           | 34.259           | 1.00 47.52               | C      |
| ATOM<br>ATOM | 2737<br>2738 | O<br>N    | VAL A 370<br>THR A 371 | 1.378<br>2.684   | 59.549<br>58.066 | 34.338<br>33.558 | 1.00 49.10<br>1.00 50.90 | О<br>И |
| ATOM         | 2739         | CA        | THR A 371              | 1.691            | 57.445           | 32.758           | 1.00 57.29               | č      |
| ATOM         | 2740         | СВ        | THR A 371              | 2.402            | 56.837           | 31.633           | 1.00 58.71               | c      |
| ATOM         | 2741         |           | THR A 371              | 1.620            | 56.679           | 30.533           | 1.00 65.42               | 0      |
| ATOM         | 2742         |           | THR A 371              | 3.010            | 55.476           | 31.895           | 1.00 61.14               | C      |
| ATOM         | 2743<br>2744 | C         | THR A 371<br>THR A 371 | 0.849<br>0.001   | 56.383<br>55.771 | 33.420<br>32.787 | 1.00 61.70<br>1.00 62.14 | С<br>0 |
| ATOM<br>ATOM | 2745         | O<br>N    | CYS A 372              | 1.159            | 56.092           | 34.691           | 1.00 65.29               | . N    |
| ATOM         | 2746         | CA        | CYS A 372              | 0.346            | 55.240           | 35.556           | 1.00 66.28               | Ċ      |
| ATOM         | 2747         | CB        | CYS A 372              | 0.554            | 53.782           | 35.187           | 1.00 68.07               | С      |
| ATOM         | 2748         | SG        | CYS A 372              | 2.239            | 53.360           | 35.423           | 1.00 72.57               | S      |
| MOTA<br>MOTA | 2749<br>2750 | С<br>0    | CYS A 372<br>CYS A 372 | 0.859<br>1.978   | 55.376<br>55.884 | 36.978<br>37.246 | 1.00 66.26<br>1.00 64.25 | С<br>0 |
| ATOM         | 2751         | N         | ASP A 373              | 0.104            | 54.849           | 37.927           | 1.00 66.29               | N      |
| ATOM         | 2752         | CA        | ASP A 373              | 0.552            | 54.998           | 39.314           | 1.00 67.93               | С      |
| ATOM         | 2753         | CB        | ASP A 373              | -0.418           | 54.407           | 40.247           | 1.00 68.26               | C      |
| ATOM<br>ATOM | 2754<br>2755 | CG        | ASP A 373 ASP A 373    | -1.583<br>-2.743 | 55.347<br>55.060 | 40.545           | 1.00 73.80<br>1.00 81.15 | С<br>0 |
| ATOM         | 2756         |           | ASP A 373              | -1.429           | 56.400           | 41.199           | 1.00 76.26               | ŏ      |
| ATOM         | 2757         | C         | ASP A 373              | 1.901            | 54.269           | 39.375           | 1.00 67.65               | С      |
| MOTA         | 2758         | 0         | ASP A 373              | 1.967            | 53.176           | 38.827           | 1.00 68.16               | 0      |
| ATOM         | 2759         | N         | ILE A 374              | 2.958            | 54.893           | 39.930<br>39.976 | 1.00 65.47               | И      |
| MOTA<br>MOTA | 2760<br>2761 | CA<br>CB  | ILE A 374<br>ILE A 374 | 4.214<br>5.117   | 54.215<br>54.705 | 38.767           | 1.00 65.77<br>1.00 67.78 | C<br>C |
| ATOM         | 2762         |           | ILE A 374              |                  | 53.610           | 38.260           | 1.00 67.43               | č·     |
| ATOM         | 2763         |           | ILE A 374              | 5.854            | 52.156           | 39.081           | 1.00 78.28               | С      |
| ATOM         | 2,764        |           | ILE A 374              | 5.989            | 56.000           | 39.130           | 1.00 66.78               | c      |
| MOTA<br>MOTA | 2765<br>2766 | C<br>O    | ILE A 374<br>ILÉ A 374 | 4.930<br>4.703   | 54.410<br>55.375 | 41.301<br>41.966 | 1.00 65.40<br>1.00 65.64 | C<br>0 |
| ATOM         | 2767         | N         | LYS A 375              | 5.756            | 53.467           | 41.703           | 1.00 64.77               | Ň      |
| ATOM         | 2768         | CA        | LYS A 375              | 6.573            | 53.634           | 42.904           | 1.00 64.82               | С      |
| MOTA         | 2769         | СВ        | LYS A 375              | 6.597            | 52.330           | 43.659           | 1.00 67.67               | c      |
| ATOM         | 2770         | CG        | LYS A 375              | 7.606<br>6.918   | 52.282<br>51.807 | 44.786<br>46.191 | 1.00 68.98<br>1.00 82.43 | c<br>c |
| ATOM<br>ATOM | 2771<br>2772 | CD<br>CE  | LYS A 375<br>LYS A 375 | 7.104            | 50.263           | 46.608           | 1.00 83.85               | č      |
| ATOM         | 2773         | N2        | LYS A 375              | 6.509            | 49.247           | 45.624           | 1.00 85.46               | N      |
| ATOM         | 2774         | С.,       | LYS A 375              | 7.942            | 53.821           | 42.470           | 1.00 63.36               | Ç      |
| ATOM         | 2775         | 0         | LYS A 375              | 8.511            | 52.943           | 41.838           | 1.00 63.43               | 0      |
| ATOM<br>ATOM | 2776<br>2777 | N<br>CA   | PHE A 376<br>PHE A 376 | 8.504<br>9.776   | 54.971<br>55.223 | 42.711<br>42.117 | 1.00 60.72<br>1.00 58.02 | N<br>C |
| ATOM         | 2778         | СВ        | PHE A 376              | 9.726            | 56.479           | 41.244           | 1.00 57.50               | č      |
| ATOM         | 2779         | CG        | PHE A 376              | 11.007           | 56.872           | 40.711           | 1.00 55.10               | С      |
| ATOM         | 2780         |           | PHE A 376              | 11.491           | 56.251           | 39.621           | 1.00 57.09               | c      |
| ATOM<br>ATOM | 2781<br>2782 | CE1       | PHE A 376<br>PHE A 376 | 12.692<br>13.412 | 56.596<br>57.582 | 39.123<br>39.723 | 1.00 56.61<br>1.00 56.77 | c<br>c |
| ATOM         | 2783         |           | PHE A 376              | 12.976           | 58.156           | 40.776           | 1.00 52.28               | č      |
| ATOM         | 2784         |           | PHE A 376              | 11.760           | 57.832           | 41.283           | 1.00 51.53               | С      |
| ATOM         | 2785         | C         | PHE A 376              | 10.637           | 55.479           | 43.221           | 1.00 58.04               | Ç      |
| ATOM         | 2786         | 0         | PHE A 376              | 10.351           | 56.311           | 43.926           | 1.00 56.23               | 0<br>N |
| ATOM<br>ATOM | 2787<br>2788 | N<br>CA   | ARG A 377<br>ARG A 377 | 11.762<br>12.754 | 54.772<br>54.887 | 43.335<br>44.451 | 1.00 60.07<br>1.00 60.57 | C      |
| ATOM         | 2789         | CB        | ARG A 377              | 13.611           | 56.171           | 44.427           | 1.00 59.72               | Ċ      |
| ATOM         | 2790         | ÇG        | ARG A 377              | 14.346           | 56.429           | 43.156           | 1.00 65.58               | c      |
| ATOM         | 2791         | CD        | ARG A 377              | 15.804           | 55.961           | 43.082           | 1.00 61.76               | C<br>N |
| ATOM<br>ATOM | 2792<br>2793 | NE<br>CZ  | ARG A 377<br>ARG A 377 | 16.706<br>17.676 | 57.073<br>57.398 | 43.333<br>42.515 | 1.00 59.55<br>1.00 50.42 | C      |
| ATOM         | 2794         |           | ARG A 377              | 17.950           | 56.717           | 41.485           | 1.00 56.99               | N      |
| MOTA         | 2795         | NH2       | ARG A 377              | 18.414           | 58.394           | 42.781           | 1.00 55.93               | N      |
| MOTA         | 2796         | С         | ARG A 377              | 11.992           | 54.763           | 45.837           | 1.00 62.56               | c      |
| MOTA         | 2797         | 0         | ARG A 377              | 12.294           | 55.527<br>53.843 | 46.890<br>45.793 | 1.00 58.78<br>1.00 61.29 | O<br>N |
| ATOM<br>ATOM | 2798<br>2799 | N<br>CA   | ASN A 378<br>ASN A 378 | 11.005<br>10.201 | 53.666           | 46.895           | 1.00 62.58               | C      |
| ATOM         | 2800         | СB        | ASN A 378              | 11.133           | 53.255           | 47.980           | 1.00 64.37               | č      |
| ATOM         | 2801         | CG        | ASN A 378              | 10.449           | 52.598           | 49.103           | 1.00 71.59               | С      |
| ATOM         | 2802         |           | ASN A 378              | 10.747           | 52.919           | 50.339           | 1.00 78.21               | 0      |
| ATOM<br>ATOM | 2803<br>2804 | ND2<br>C  | ASN A 378<br>ASN A 378 | 9.461<br>9.478   | 51.701<br>54.974 | 48.775<br>47.249 | 1.00 81.33<br>1.00 62.51 | N<br>C |
| ATOM         | 2805         | ò         | ASN A 378              | 9.515            | 55.316           | 48.407           | 1.00 62.57               | ŏ      |
| MOTA         | 2806         | N         | TYR A 379              | 8.807            | 55.699           | 46.301           | 1.00 61.68               | N      |
| MOTA         | 2807         | CA        | TYR A 379              | 8.059            | 56.907           | 46.623           | 1.00 62.41               | c      |
| ATOM<br>ATOM | 2808         | CB        | TYR A 379              | 8.660<br>9.735   | 58.227<br>58.685 | 46.201<br>47.094 | 1.00 61.59<br>1.00 60.19 | C<br>C |
| ATOM         | 2809<br>2810 | CG<br>CD1 | TYR A 379<br>TYR A 379 | 11.110           | 58.794           | 46.644           | 1.00 61.33               | č      |
|              |              |           | ·· • / •               |                  |                  |                  |                          | -      |

|              |              |          |     |   |            | េះ               | .gure            | 2                |                          |         |
|--------------|--------------|----------|-----|---|------------|------------------|------------------|------------------|--------------------------|---------|
| лтом         | 2811         | CEI      | TYR | Δ | 379        | 12.157           | .gure<br>59.241  | 47.515           | 1.00 61.54               | С       |
| ATOM<br>ATOM | 2812         | CZ       |     |   | 379        | 11.839           | 59.520           | 48.842           | 1.00 66.37               | č       |
| MOTA         | 2813         | ОН       |     |   | 379        | 12.850           | 59.965           | 49.769           | 1.00 72.33               | ō       |
| ATOM         | 2814         |          | TYR |   |            | 10.505           | 59.366           | 49.248           | 1.00 59.62               | С       |
| ATOM         | 2815         | CD2      | TYR | A | 379        | 9.471            | 58.961           | 48.343           | 1.00 56.89               | С       |
| ATOM         | 2816         | С        |     |   | 379        | 6.628            | 56.869           | 46.147           | 1.00 65.77               | Ç       |
| MOTA         | 2817         | 0        |     |   | 379        | 5.717            | 57.630           | 46.649           | 1.00 72.35               | 0       |
| ATOM         | 2818         | N        |     |   | 380        | 6.290            | 55.987           | 45.254           | 1.00 66.29               | N       |
| MOTA         | 2819         | CA       |     |   | 380        | 4.867<br>3.954   | 55.996<br>55.411 | 44.834<br>45.976 | 1.00 66.27               | C<br>C  |
| ATOM<br>ATOM | 2820<br>2821 | CB<br>CG |     |   | 380<br>380 | 2.633            | 56.217           | 46.162           | 1.00 70.76               | č       |
| MOTA         | 2822         |          | LEU |   |            | 1.725            | 55.990           | 44.954           | 1.00 70.22               | č       |
| MOTA         | 2823         |          | LEU |   |            | 1.816            | 55.863           | 47.516           | 1.00 75.95               | Ċ       |
| ATOM         | 2824         | Ç        | LEU | A | 380        | 4.344            | 57.401           | 44.386           | 1.00 63.96               | С       |
| MOTA         | 2825         | 0        |     |   | 380        | 4.046            | 58.245           | 45.167           | 1.00 63.26               | 0       |
| MOTA         | 2826         | N        |     |   | 381        | 4.220            | 57.576           | 43.086           | 1.00 62.64               | N       |
| MOTA         | 2827         | CA       |     |   | 381 .      | 3.742<br>4.873   | 58.753<br>59.232 | 42.433<br>41.542 | 1.00 58.31               | C<br>C  |
| ATOM<br>ATOM | 2828<br>2829 | CB       | ILE |   | 381<br>381 | 6.006            | 59.697           | 42.447           | 1.00 62.31               | c       |
| MOTA         | 2830         |          | ILE |   |            | 7.300            | 59.849           | 41.613           | 1.00 66.48               | č       |
| ATOM         | 2831         |          | ILE |   |            | 4.451            | 60.340           | 40.720           | 1.00 59.63               | С       |
| MOTA         | 2832         | С        |     |   | 381        | 2.669            | 58.313           | 41.571           | 1.00 52.45               | С       |
| ATOM         | 2833         | 0        |     |   | 381        | 2.789            | 57.516           | 40.720           | 1.00 50.21               | 0       |
| ATOM         | 2834         | N        |     |   | 382        | 1.581            | 58.923           | 41.833           | 1.00 52.40               | N       |
| ATOM         | 2835         | CA       |     |   | 382        | 0.239            | 58.683           | 41.171           | 1.00 52.31<br>1.00 47.42 | C<br>C. |
| ATOM         | 2836<br>2837 | CB<br>CG |     |   | 382<br>382 | -0.762<br>0.033  | 59.437<br>60.479 | 42.067<br>42.475 | 1.00 47.42               | C.      |
| ATOM<br>ATOM | 2838         | CD       |     |   | 382        | 1.447            | 59.982           | 42.810           | 1.00 52.39               | č       |
| ATOM         | 2839         | c        |     |   | 382        | 0.134            |                  | 39.807           | 1.00 50.33               | č       |
| ATOM         | 2840         | ō        |     |   | 382        | 0.640            |                  | 39.445           | 1.00 44.44               | 0       |
| MOTA         | 2841         | N        | LYS | A | 383        | -0.570           | 58.300           | 39.092           | 1.00 52.90               | N       |
| ATOM         | 2842         | CA       |     |   | 383        |                  | 58.506           | 37.643           | 1.00 54.17               | С       |
| ATOM         | 2843         | CB       |     |   | 383        | -1.864           |                  | 37.134           | 1.00 55.66               | C       |
| ATOM         | 2844         | CG       |     |   | 383        |                  | 57.954<br>56.627 | 35.688           | 1.00 63.37<br>1.00 61.24 | c<br>c  |
| ATOM<br>ATOM | 2845<br>2846 | CD<br>CE |     |   | 383<br>383 | -2.874<br>-4.323 | 56.783           | 34.822<br>34.663 | 1.00 59.82               | c       |
| ATOM         | 2847         | NZ       |     |   | 383        | -4.813           |                  | 33.303           | 1.00 64.11               | N       |
| ATOM         | 2848         | C        |     |   | 383        | -1.094           |                  | 37.313           | 1.00 51.96               | C.      |
| MOTA         | 2849         | 0        | LYS | A | 383        | -1.856           | 60.436           | 37.938           | 1.00 54.22               | 0       |
| MOTA         | 2850         | N        |     |   | 384        | -0.374           | 60.515           | 36.358           | 1.00 49.83               | N       |
| MOTA         | 2851         | CA       |     |   | 384        | -0.575           | 61.827           | 35.884           | 1.00 43.87               | C<br>C  |
| ATOM<br>ATOM | 2852<br>2853 | С<br>0   |     |   | 384<br>384 | 0.043<br>-0.186  | 62.872<br>64.051 | 36.674<br>36.339 | 1.00 43.32<br>1.00 45.72 | Ö       |
| MOTA         | 2854         | N        |     |   | 385        | 0.808            | 62.601           | 37.700           | 1.00 41.43               | N       |
| ATOM         | 2855         | CA       |     |   | 385        | 1.470            | 63.701           | 38.408           | 1.00 40.61               | С       |
| ATOM         | 2856         | CB       | THR | A | 385        | 2.332            | 63.157           | 39.449           | 1.00 42.39               | С       |
| ATOM         | 2857         |          | THR |   |            | 1.503            | 62.548           | 40.487           | 1.00 51.00               | 0       |
| ATOM         | 2858         |          | THR |   |            | 3.180            | 64.251           | 40.081           | 1.00 40.02               | c       |
| ATOM         | 2859         | C        |     |   | 385        | 2.461            | 64.330<br>63.626 | 37.585<br>37.010 | 1.00 40.79<br>1.00 45.69 | C<br>0  |
| ATOM<br>ATOM | 2860<br>2861 | Ŋ        |     |   | 385<br>386 | 3.173<br>2.550   | 65.603           | 37.446           | 1.00 38.07               | N       |
| ATOM         | 2862         | CA       |     |   | 386        | 3.590            | 66.130           | 36.640           | 1.00 38.06               | Ċ       |
| ATOM         | 2863         | ÇВ       |     |   | 386        | 3.389            | 67.600           | 36.634           | 1.00 37.32               | С       |
| ATOM         | 2864         |          | THR |   |            | 2.269            | 67.845           | 35.851           | 1.00 40.76               | 0       |
| MOTA         | 2865         |          | THR |   |            | 4.612            | 68.197           | 36.063           | 1.00 33.17               | c       |
| MOTA         | 2866         | C        |     |   | 386        | 5.067            | 65.967           | 37.148           | 1.00 37.62<br>1.00 38.24 | C       |
| ATOM         | 2867         | 0        |     |   | 386<br>387 | 5.318<br>6.024   | 66.193<br>65.590 | 38.335<br>36.262 | 1.00 36.24               | И       |
| ATOM<br>ATOM | 2868<br>2869 | N<br>CA  |     |   | 387        | 7.521            | 65.378           | 36.558           | 1.00 31.76               | c c     |
| MOTA         | 2870         | СВ       |     |   | 387        | 7.989            | 64.111           | 36.027           | 1.00 29.92               | Ċ       |
| ATOM         | 2871         |          | ILE |   |            | 6.962            | 62.991           | 36.268           | 1.00 32.74               | С       |
| ATOM         | 2872         | CD1      | ILE | A | 387        | 6.834            | 62.689           | 37.848           | 1.00 29.50               | C       |
| ATOM         | 2873         | CG2      | ILE |   |            | 9.132            | 63.779           | 36.827           | 1.00 32.42               | C       |
| MOTA         | 2874         | С        |     |   | 387        | 8.383            | 66.481           | 35.852           | 1.00 30.54               | C       |
| ATOM         | 2875         | 0        |     |   | 387        | 8.208<br>9.256   | 66.707<br>67.184 | 34.715<br>36.569 | 1.00 26.44               | O<br>N  |
| ATOM<br>ATOM | 2876<br>2877 | N<br>CA  |     |   | 388<br>388 | 10.142           | 68.095           | 35.999           | 1.00 31.43               | C       |
| ATOM         | 2878         | CB       |     |   | 388        | 10.142           | 69.284           | 36.776           | 1.00 28.66               | Č       |
| MOTA         | 2879         | CG       |     |   | 388        | 9.129            | 70.328           | 36.421           | 1.00 37.51               | С       |
| ATOM         | 2880         |          | LEU |   |            | 9.390            | 71.618           | 37.324           | 1.00 40.96               | С       |
| MOTA         | 2881         | CD2      | LEU | A | 388        | 9.141            | 70.820           | 35.069           | 1.00 39.21               | C       |
| MOTA         | 2882         | С        |     |   | 388        | 11.585           | 67.423           | 36.002           | 1.00 31.80               | C       |
| ATOM         | 2883         | 0        |     |   | 388        | 12.188           | 67.362<br>66.931 | 37.032<br>34.849 | 1.00 30.66<br>1.00 31.06 | O<br>N  |
| ATOM<br>ATOM | 2884<br>2885 | N<br>CA  |     |   | 389<br>389 | 12.091<br>13.418 | 66.348           | 34.649           | 1.00 31.06               | C       |
| ATOM         | 2886         | CB       |     |   | 389        | 13.465           | 65.820           | 33.253           | 1.00 31.54               | č       |
|              |              |          |     |   |            |                  |                  |                  |                          |         |

|              |              |           |            |   |     | r:               | gure             | 2                |      |                |        |
|--------------|--------------|-----------|------------|---|-----|------------------|------------------|------------------|------|----------------|--------|
| ATOM         | 2887         | CG1       | ILE        | Δ | 389 | 12.787           | 64.529           | 33.056           | 1 00 | 34.90          | С      |
| ATOM         | 2888         |           | ILE        |   |     | 12.365           | 63.923           | 34.188           |      | 33.44          | č      |
| MOTA         | 2889         |           | ILE        |   |     | 14.775           | 65.666           | 32.837           | 1.00 | 42.71          | С      |
| MOTA         | 2890         | C         | ILE        |   |     | 14.398           | 67.520           | 34.720           |      | 27.65          | C      |
| ATOM         | 2891         | 0         | ILE        |   |     | 14.204           | 68.486           | 33.962           |      | 27.66          | 0      |
| ATOM<br>ATOM | 2892<br>2893 | N<br>CA   | SER<br>SER |   |     | 15.458<br>16.385 | 67.515<br>68.582 | 35.563<br>35.540 |      | 26.66<br>26.58 | N<br>C |
| ATOM         | 2894         | CB        | SER        |   |     | 17.056           | 68.705           | 36.806           |      | 28.07          | č      |
| ATOM         | 2895         | OG        | SER        |   |     | 18.335           | 69.546           | 36.688           |      | 26.60          | ō      |
| ATOM         | 2896         | С         | SER        |   |     | 17.521           | 68.318           | 34.552           |      | 30.64          | С      |
| ATOM         | 2897         | 0         | SER        |   |     | 18.560           | 67.889           | 34.929           |      | 29.96          | 0      |
| ATOM<br>ATOM | 2898<br>2899 | N<br>CA   | LEU        |   |     | 17.385<br>18.499 | 68.631<br>68.426 | 33.293<br>32.395 |      | 30.95<br>31.09 | N<br>C |
| ATOM         | 2900         | CB        | LEU        |   |     | 18.175           | 68.909           | 30.978           |      | 29.23          | č      |
| ATOM         | 2901         | CG        | LEU        |   |     | 17.147           | 68.030           | 30.347           |      | 24.01          | č      |
| ATOM         | 2902         |           | LEU        |   |     | 16.962           | 68.153           | 28.920           |      | 19.47          | С      |
| ATOM         | 2903         |           | LEU        |   |     | 17.458           | 66.816           | 30.680           |      | 22.56          | c      |
| ATOM<br>ATOM | 2904<br>2905 | С<br>0    | LEU        |   |     | 19.759<br>20.917 | 69.190<br>68.772 | 32.934<br>32.771 |      | 32.60          | C      |
| ATOM         | 2906         | N         | THR        |   |     | 19.557           | 70.308           | 33.596           |      | 31.61          | N      |
| ATOM         | 2907         | CA        | THR        |   |     | 20.791           | 71.071           | 33.980           |      | 30.31          | Ċ      |
| ATOM         | 2908         | CB        | THR        |   |     | 20.512           | 72.186           | 34.942           |      | 24.61          | C      |
| ATOM         | 2909         |           | THR        |   |     | 19.614           | 72.980           | 34.341           |      | 32.88          | 0      |
| ATOM         | 2910<br>2911 | CG2       | THR<br>THR |   |     | 21.643           | 73.068<br>70.120 | 35.016<br>34.772 |      | 25.93<br>32.13 | C<br>C |
| ATOM<br>ATOM | 2912         | Ö         | THR        |   |     | 22.894           | 70.120           | 34.777           |      | 32.96          | ŏ      |
| ATOM         | 2913         | N         | SER        |   |     | 21.147           | 69.345           | 35.610           |      | 31.94          | N      |
| ATOM         | 2914         | CA        | SER        | A | 393 | 21.965           | 68.692           | 36.500           |      | 31.24          | С      |
| ATOM         | 2915         | СВ        | SER        |   |     | 21.071           | 68.125           | 37.663           |      | 29.73          | C      |
| ATOM         | 2916         | OG        | SER        |   |     | 20.295<br>22.664 | 67.069           | 36.919           | 1.00 |                | 0<br>C |
| MOTA<br>MOTA | 2917<br>2918 | С<br>0    | SER<br>SER |   |     | 23.523           | 66.928           | 35.802<br>36.420 |      | 30.76<br>36.03 | . 0    |
| ATOM         | 2919         | N         | VAL        |   |     | 22.340           | 67.156           | 34.671           |      |                | N      |
| ATOM         | 292Ò         | CA        | VAL        |   |     | 23.070           | 66:149           | 33.963           | 1.00 | 30.74          | C      |
| ATOM         | 2921         | СВ        | VAL        |   |     | 22.175           | 65.420           |                  | 1.00 |                | Ç      |
| ATOM         | 2922         |           | VAL        |   |     | 22.789           | 64.274           |                  | 1.00 |                | C.     |
| ATOM<br>ATOM | 2923<br>2924 | C         | VAL<br>VAL |   |     | 21.344<br>24.127 | 66.858           | 34.066<br>33.135 |      | 28.72          | C      |
| ATOM         | 2925         | ŏ         | VAL        |   |     | 25.244           | 66.445           | 33.231           |      | 34.76          | ŏ      |
| ATOM         | 2926         | N         | LEU        |   |     |                  | 67.971           | 32.460           |      | 27.31          | N      |
| ATOM         | 2927         | CA        | LEU        |   |     | 24.774           | 68.734           | 31.599           |      | 22.46          | Ç      |
| ATOM         | 2928         | CB        | LEU        |   |     | 23.991           | 69.796           | 30.699           |      | 19.98          | C      |
| ATOM<br>ATOM | 2929<br>2930 | CG        | LEU .      |   |     | 23.282<br>22.734 | 69.358<br>68.239 | 29.488<br>29.594 |      | 20.86          | C<br>C |
| ATOM         | 2931         |           | LEU        |   |     | 22.134           | 70.125           | 28.798           |      | 20.97          | č      |
| ATOM         | 2932         | С         | LEU        |   |     | 25.847           | 69.333           | 32.343           |      | 23.56          | С      |
| MOTA         | 2933         | 0         | LEU        |   |     | 26.933           | 69.651           | 31.905           |      | 26.09          | 0      |
| ATOM         | 2934<br>2935 | N         | HIS .      |   |     | 25.636           | 69.570<br>70.334 | 33.527           |      | 28.76          | N<br>C |
| ATOM<br>ATOM | 2936         | CA<br>CB  | HIS .      |   |     | 26.583<br>25.878 | 71.574           | 34.359<br>34.849 |      | 28.26          | Č      |
| ATOM         | 2937         | CG        | HIS        |   |     | 25.792           | 72.665           | 33.818           |      | 32.98          | Č      |
| ATOM         | 2938         |           | HIS.       |   |     | 26.084           | 73.964           | 34.081           |      | 37.63          | N      |
| ATOM         | 2939         |           | HIS        |   |     | 25.977           | 74.667           | 32.978           |      | 36.33          | C      |
| ATOM<br>ATOM | 2940<br>2941 |           | HIS .      |   |     | 25.660<br>25.558 | 73.866<br>72.624 | 32.010<br>32.528 |      | 29.73<br>32.12 | N<br>C |
| ATOM         | 2942         | C         | HIS .      |   |     | 26.951           | 69.556           | 35.568           |      | 30.04          | c      |
| ATOM         | 2943         | ō         | HIS        |   |     | 27.340           | 70.106           | 36.467           |      | 29.98          | ō      |
| MOTA         | 2944         | N         | ASP .      |   |     | 26.903           | 68.244           | 35.517           |      | 32.35          | N      |
| MOTA         | 2945         | CA        | ASP .      |   |     | 27.417           | 67.408           | 36.607           |      | 30.41          | C      |
| ATOM         | 2946         | CB        | ASP .      |   |     | 27.180           | 65.987<br>65.012 | 36.132<br>37.065 |      | 33.21<br>36.54 | C      |
| ATOM<br>ATOM | 2947<br>2948 | CG<br>OD1 | ASP .      |   |     | 27.618<br>28.813 | 65.012           | 37.404           |      | 38.33          | ō      |
| ATOM         | 2949         |           | ASP .      |   |     | 26.798           | 64.225           | 37.475           |      | 45.27          | ō      |
| MOTA         | 2950         | С         | ASP .      |   |     | 28.773           | 67.656           | 36.858           |      | 34.17          | С      |
| ATOM         | 2951         | 0         | ASP        |   |     | 29.573           | 67.551           | 35.952           |      | 38.87          | 0      |
| ATOM         | 2952         | N         | ASN .      |   |     | 29.158           | 68.043           | 38.056           |      | 37.73<br>37.45 | N<br>C |
| ATOM<br>ATOM | 2953<br>2954 | CA<br>CB  | ASN .      |   |     | 30.517<br>30.533 | 68.355<br>68.436 | 38.511<br>40.071 |      | 41.49          | c      |
| ATOM         | 2955         | CG        | ASN I      |   |     | 30.365           | 69.856           | 40.438           |      | 58.53          | č      |
| MOTA         | 2956         |           | ASN        |   |     | 29.223           | 70.284           | 40.832           | 1.00 | 76.00          | 0      |
| ATOM         | 2957         |           | ASN        |   |     | 31.407           | 70.706           | 40.175           |      | 62.66          | N      |
| ATOM         | 2958         | C         | ASN A      |   |     | 31.554           | 67.294           | 38.242<br>38.278 |      | 37.26          | C<br>0 |
| MOTA<br>MOTA | 2959<br>2960 | O<br>N    | ASN L      |   |     | 32.736<br>31.223 | 67.601<br>66.059 | 38.278           |      | 39.50<br>34.56 | И      |
| MOTA         | 2961         | CA        | LYS 2      |   |     | 32.294           | 65.122           | 38.051           |      | 35.27          | č      |
| ATOM         | 2962         | СВ        | LYS        |   |     | 31.825           | 63.834           | 38.732           |      | 36.23          | С      |

Figure 2 CG LYS A 399 MOTA 2963 32.619 63.108 39.445 1.00 39.88 ATOM 2964 CD LYS A 399 32.600 61.526 39.170 1.00 40.60 ATOM 2965 CE LYS A 399 32.833 60.678 40.670 1.00 45.70 ATOM 2966 LYS A 399 33.301 40.224 1.00 47.72 NZ 59.294 2967 LYS A 399 64.754 36.582 ATOM 32,508 1.00 37.20 ATOM 2968 0 LYS A 399 33.602 64.612 36.219 1.00 38.44 1.00 36.28 ATOM 2969 N **GLU A 400** 31,498 64.550 35.721 MOTA 2970 CA **GLU A 400** 31.823 34.309 1.00 35.46 64.244 2971 CB **GLU A 400** 30.678 63.650 33.543 1.00 34.38 ATOM C 2972 CG GLU A 400 ATOM 30.990 63.335 32.154 1.00 36.66 CD ATOM 2973 **GLU A 400** 31.875 1.00 39.75 31.031 61.915 C 2974 OE1 GLU A 400 30.888 30.709 1.00 36.97 ATOM 61.301 0 2975 ATOM OE2 GLU A 400 31.297 61.289 32.841 1.00 46.78 0 ATOM 2976 С **GLU A 400** 32.345 65.456 33.633 1.00 36.95 С ATOM 2977 0 **GLU A 400** 33.063 65.301 32.692 1.00 42.25 0 ATOM 2978 N PHE A 401 32.050 66.673 34.106 1.00 37.74 2979 CA PHE A 401 32.499 67.881 33.522 1.00 35.75 ATOM C 2980 СВ PHE A 401 31.392 68.618 32.750 1.00 32.92 ATOM 2981 PHE A 401 30.545 67.722 31.740 ATOM CG 1.00 28.15 29.397 67.302 32.038 MOTA 2982 **CD1 PHE A 401** 1.00 24.67 ATOM 2983 CE1 PHE A 401 28.594 66.560 31,200 1.00 21.31 ATOM 2984 CZ PHE A 401 29.056 66.229 29.970 1.00 23.57 С 2985 CE2 PHE A 401 30.300 66.637 29.676 1.00 23.30 С ATOM CD2 PHE A 401 31.010 67.378 30.509 1.00 22.84 2986 С ATOM 68.830 34.584 PHE A 401 33.087 1.00 42.26 c ATOM 2987 С 32.526 69.802 34.968 1.00 44.16 ATOM 2988 0 PHE A 401 0 1.00 48.00 ATOM 2989 N PRO A 402 34.338 68.656 34.947 N 2990 35.005 69.408 36.002 1.00 47.82 ATOM CA PRO A 402 С 35.781 ATOM 2991 CB PRO A 402 36.414 69.232 1.00 49.35 С ATOM 2992 CG PRO A 402 36.370 67.833 35.143 1.00 50.32 a. 1.11 = ¢ ATOM 2993 ÇD PRO A 402 35.176 67.613 34.314 1.00 48.52 C C C ATOM 2994 С PRO A 402 34.739 70.871 36.106 1.00 51.18 ATOM 2995 PRO A 402 34.501 71.265 37.258 1.00 58.28 1.3 ATOM 2996 N **ASN A 403** 34.897 71.744 35,201 1.00 49.90 38. 38. ATOM 2997 CA **ASN A 403** 34.441 73.042 35.659 1.00 48.01. ATOM 2998 ÇВ **ASN A 403** 35.506 74.042 35.300 1.00 50.95 ¢ ASN A 403 36.843 73.804 36.016 1.00 58.12 C ATOM 2999 CG 1 1974 37.246 1.00 63.74 ATOM OD1 ASN A 403 36.903 73.936 0 3000 11.50 73.398 ATOM 3001 ND2 ASN A 403 37.871 35.253 1.00 60.58 N 33.194 34.925 1.00 44.63 ·c ATOM 3002 С ASN A 403 73.283 33.826 1.00 45.06 0 ATOM 3003 0 **ASN A 403** 33.255 73.969 N ATOM 3004 N PRO A 404 32.045 72.809 35.367 1.00 40.50 ATOM 3005 CA PRO A 404 30.944 72.807 34.473 1.00 39.40 С ATOM 3006 СВ PRO A 404 29.909 71.930 35.157 1.00 41.17 ATOM 3007 CG PRO A 404 30.524 71.425 36.291 1.00 42.61 C ATOM 3008 CD PRO A 404 31.482 72.360 36.601 1.00 39.74 3009 PRO A 404 30.359 -74.029 34.012 1.00 38.29 С **ATOM** С ATOM 3010 PRO A 404 29.560 73.850 33.156 1.00 41.86 0 GLU A 405 ATOM 3011 N 30.746 75.156 34.412 1.00 37.09 ATOM 3012 CA **GLU A 405** 30.222 76.495 34.091 1.00 39.98 ATOM **GLU A 405** 29.870 77.310 35.319 1.00 42.08 3013 CB ATOM 3014 CG **GLU A 405** 28.903 76.540 36.337 1.00 56.33 ATOM CD **GLU A 405** 27.482 77.164 36.863 1.00 72.29 3015 27.182 37.629 1.00 69.16 OE1 GLU A 405 78.250 ATOM 3016 36.524 1.00 84.96 ATOM OE2 GLU A 405 76.341 3017 26.564 **GLU A 405** 33.363 1.00 36.42 C 77.223 ATOM 3018 С 31.115 1.00 37.91 33.260 0 ATOM 3019 0 **GLU A 405** 30.983 78.464 ATOM 3020 N **MET A 406** 32.003 76.446 32.903 1.00 34.96 N 32.006 ATOM 3021 CA MET A 406 32.887 77.060 1.00 37.91 C ATOM 3022 СВ **MET A 406** 34.170 77.001 32.619 1.00 41.09 C 34.233 78.209 33.664 1.00 52.44 C ATOM 3023 CG MET A 406 35.928 78.870 33.410 1.00 65.97 S ATOM 3024 SD **MET A 406** 77.089 1.00 57.18 3025 MET A 406 36.919 34.361 MOTA CE ATOM 3026 С MET A 406 32.929 76.408 30.644 1.00 35.90 MET A 406 32.727 75.199 30.487 1.00 36.29 ATOM 3027 ٥ 29.624 1.00 36.68 N 33.105 77.182 ATOM PHE A 407 3028 N 76.632 28.246 1.00 35.77 PHE A 407 33.080 ATOM 3029 CA 77.791 32.769 27.279 1.00 35.49 ATOM 3030 CB PHE A 407 77.443 25.870 1.00 31.68 ATOM 3031 CG PHE A 407 32.806 C 76.708 ATOM 3032 CD1 PHE A 407 31.796 25.344 1.00 34.68 ATOM 3033 **CE1 PHE A 407** 31,799 76.403 24.031 1.00 36.41 C 1.00 31.31 ATOM 3034 CZ PHE A 407 32.817 76.879 23.244 ATOM 3035 CE2 PHE A 407 33.767 77.574 23.716 1.00 27.33 C 1.00 26.32 33.774 77.851 25.117 ATOM 3036 CD2 PHE A 407 34.345 75.918 27.865 1.00 35.92 С ATOM 3037 C PHE A 407 PHE A 407 35.330 76.472 27.850 1.00 33.49 3038 ATOM ٥

1. 1.15

1 874 .

1. Qav

e dig Se att

47 94

. . 129

```
Figure 2
                                  34.321 74.620 27.568 1.00 35.52
                 ASP A 408
ATOM
       3039 N
                                                  27.170
ATOM
       3040
             CA
                 ASP A 408
                                  35.573
                                          74.004
                                                          1.00 33.98
                 ASP A 408
                                  36.257
                                          73.630
                                                  28.400
                                                          1.00 37.98
       3041
             CB
                 ASP A 408
                                  37.663
                                          73.100
                                                  28.140
                                                          1.00 41.68
ATOM
       3042
             CG
             OD1 ASP A 408
                                  38.115
                                          72.511
                                                  29.168
                                                          1.00 50.75
ATOM
       3043
             OD2 ASP A 408
                                          73.213
                                                  27.160
ATOM
       3044
                                  38.332
                                                          1.00 44.88
                 ASP A 408
                                          72.799
                                                  26.365
                                  35.409
                                                          1.00 29.18
ATOM
       3045
             С
                  ASP A 408
                                  35.123
                                          71.717
                                                  26.949
                                                          1.00 30.04
ATOM
       3046
             ٥
                  PRO A 409
                                  35.735
                                          72.872
                                                  25.187
                                                          1.00 23.44
ATOM
       3047
             N
                 PRO A 409
                                  35.567
                                          71.788
                                                  24,234
                                                          1.00 25.89
                                                                                 C
ATOM
       3048
             CA
                                  36.207
                                          72.299
                                                  22.974
                                                          1.00 26.65
                 PRO A 409
       3049
                                                                                 C
ATOM
             CB
                                                  23.211
                                                          1.00 27.22
       3050
                 PRO A 409
                                  36.473
                                          73.781
                                                                                 C
ATOM
             CG
                                                          1.00 24.79
                 PRO A 409
                                  36.372
                                          74.019
                                                  24.639
ATOM
       3051
             CD
                                                                                 С
                                                          1.00 24.42
                 PRO A 409
ATOM
       3052
             C
                                  36.195
                                          70.524
                                                  24.686
                                                                                 C
MOTA
       3053
             0
                  PRO A 409
                                  35.783
                                          69.458
                                                  24.466
                                                          1.00 23.80
                                                                                 0
                                                  25.410
ATOM
       3054
             N
                  HIS A 410
                                  37.272
                                          70.652
                                                          1.00 28.22
                                                                                 N
ATOM
       3055
             CA
                 HIS A 410
                                  37.898
                                          69.459
                                                  26.103
                                                          1.00 25.15
                                                                                 ¢
       3056
             СВ
                 HIS A 410
                                  39.153
                                          69.802
                                                  26.846
                                                          1.00 22.47
                                                                                 C
ATOM
       3057
             CG
                 HIS A 410
                                  40.167
                                          70.206
                                                  26.031
                                                          1.00 28.04
                                                                                 С
MOTA
       3058
             ND1 HIS A 410
                                  40.492
                                          69.366
                                                  24.918
                                                          1.00 24.61
ATOM
       3059
             CE1 HIS A 410
                                  41.252
                                          70.040
                                                  24.049
                                                          1.00 28.77
ATOM
                                                                                 С
ATOM
       3060
             NE2 HIS A 410
                                  41.409
                                          71.306
                                                  24.460
                                                          1.00 30.25
MOTA
       3061
             CD2 HIS A 410
                                  40.701
                                          71.428
                                                  25.719
                                                          1.00 33.46
                 HIS A 410
                                  37.077
                                                  26.873
                                                          1.00 26.77
MOTA
       3062
             С
                                          68.646
ATOM
       3063
             0
                 HIS A 410
                                  37.391
                                          67.610
                                                  27.120
                                                          1.00 34.22
                 HIS A 411
                                  35.931
                                          69.146
                                                  27.312
                                                          1.00 29.64
ATOM
       3064
             N
ATOM
       3065
             CA
                 HIS A 411
                                  35.025
                                          68.230
                                                  27.918
                                                          1.00 24.57
                                                                                 C
                 HIS A 411
                                  33.735
                                          68.976
                                                  28.290
                                                          1.00 30.03
ATOM
       3066
             СВ
                                                                                С
ATOM
       3067
             CG
                 HIS A 411
                                  33.871
                                          69.926
                                                  29.464
                                                          1,00 33.41
                                                                                С
                                                                                   3 .5
23 $2
52 $5
27 $7
             ND1 HIS A 411
                                          69.467
                                                  30.713
                                                          1.00 27.14
                                  34.157
                                                                                N
ATOM
       3068
                                          70.532
                                                          1.00 37.52
ATOM
       3069
             CE1 HIS A 411
                                  34.198
                                                  31.520
                                                                                С
                                                  30.862
                                                                                N
ATOM
       3070
             NE2 HIS A 411
                                  33.857
                                          71.636
                                                          1.00 30.28
ATOM
       3071
             CD2 HIS A 411
                                 33.629
                                          71.280
                                                  29.563
                                                          1.00 38.11
                                                                                С
                                                                                C 18 5
MOTA
       3072
             С
                 HIS A 411
                                  34.652
                                          67.170
                                                 27.039
                                                          1.00 19.94
       3073
             0
                 HIS A 411
                                 34.065
                                          66.248
                                                 27.478
                                                          1.00 20.29
                                                                                0
ATOM
       3074
                 PHE A 412
                                  34.714
                                          67.347
                                                  25.692
                                                          1.00 22.95
                                                                                N
ATOM
             N
                 PHE A 412
                                  34.347
                                          66.234
                                                  24.799
                                                          1.00 24.92
ATOM
       3075
             CA
                 PHE A 412
                                  33.182
                                                  23.936
MOTA
       3076
             СВ
                                          66.661
                                                          1.00 27.19
                                                                                   1. 18 27
ATOM
       3077
             CG
                 PHE A 412
                                  31.901
                                          66.819
                                                  24.652
                                                          1.00 24.37
ATOM
       3078
             CD1 PHE A 412
                                  31.619
                                          67.959
                                                  25.218
                                                          1.00 30.83
ATOM
       3079
             CE1 PHE A 412
                                  30.402
                                          68.032
                                                 26.038
                                                          1.00 32.07
ATOM
       3080
                 PHE A 412
                                 29.608
                                          66.957
                                                  26.132
                                                          1.00 24.45
                                                                                C
             CZ
ATOM
             CE2 PHE A 412
                                 29.916
                                          65.914
                                                  25.584
                                                          1.00 22.86
       3081
                                                                                C
ATOM
       3082
             CD2 PHE A 412
                                 31.037
                                          65.864
                                                  24.792
                                                          1.00 27.50
                                                                                C
                                          65.696
                                                          1.00 27.19
       3083
                                 35.595
                                                 23.981
                                                                                С
ATOM
             С
                 PHE A 412
                                 35.462
ATOM
       3084
             0
                 PHE A 412
                                          64.901
                                                 23.052
                                                          1.00 28.34
                                                                                0
ATOM
       3085
             N
                 LEU A 413
                                 36.836
                                          66.089
                                                 24.382
                                                          1.00 27.01
                                                                                N
                                 38.044
ATOM
       3086
             CA
                 LEU A 413
                                          65.592
                                                 23.735
                                                          1.00 30.17
                                                                                 C
ATOM
       3087
             СВ
                 LEU A 413
                                 38.859
                                          66.751
                                                 23.319
                                                          1.00 27.99
                                                                                C
ATOM
       3088
                 LEU A 413
                                 38.308
                                          67.331
                                                 22.152
                                                          1.00 27.43
                                                                                 C
             CG
MOTA
       3089
             CD1 LEU A 413
                                 38.945
                                          68.596
                                                  21.752
                                                          1.00 25.32
                                                                                C
             CD2 LEU A 413
                                 38.000
                                          66.401
                                                  20.974
                                                          1.00 24.18
                                                                                 С
ATOM
       3090
       3091
                                  38.847
                                          64.592
                                                  24.610
                                                          1.00 32.78
                                                                                C
ATOM
             С
                 LEU A 413
ATOM
       3092
             0
                 LEU A 413
                                  38.796
                                          64.753
                                                  25.793
                                                          1.00 31.53
                                                                                 0
ATOM
       3093
             N
                 ASP A 414
                                  39.606
                                          63.645
                                                  24.068
                                                          1.00 31.85
                                                                                N
                                                          1.00 28.57
ATOM
       3094
             CA
                 ASP A 414
                                  40.473
                                          62.746
                                                 24.929
ATOM
       3095
             СВ
                 ASP A 414
                                  40.502
                                          61.296
                                                 24.546
                                                          1.00 22.22
                                 40.996
                                          61.015
                                                 23.193
                                                          1.00 33.84
ATOM
       3096
             CG
                 ASP A 414
ATOM
             OD1 ASP A 414
                                 40.957
                                          59.786
                                                  22.695
                                                          1.00 40.83
                                                                                0
       3097
                                                  22.371
                                                          1.00 39.09
ATOM
       3098
             OD2 ASP A 414
                                 41.525
                                          61.908
                                 41.897
                                          63.402
                                                  24.831
                                                          1.00 31.69
                                                                                С
ATOM
       3099
             C
                 ASP A 414
                                                 24.270
                                                          1.00 29.62
                                                                                0
ATOM
       3100
             0
                 ASP A 414
                                 42.060
                                          64.577
                                                          1.00 32.87
ATOM
       3101
             N
                 GLU A 415
                                  42.841
                                          62.777
                                                 25.471
                                                                                N
ATOM
       3102
             CA
                 GLU A 415
                                 44.246
                                          63.288
                                                 25.515
                                                          1.00 35.82
                                                                                С
MOTA
       3103
             CB
                 GLU A 415
                                  45.103
                                          62.096
                                                 26.039
                                                          1.00 37.50
                                                                                C
ATOM
       3104
             CG
                 GLU A 415
                                  45.235
                                          60.922
                                                 25.058
                                                          1.00 37.96
                                                                                C
                                  44.462
                                          59.949
                                                 25.491
                                                          1.00 48.36
                                                                                 C
ATOM
       3105
             CD
                 GLU A 415
                                  44.764
                                          58.726
                                                 25.040
                                                          1.00 63.24
ATOM
       3106
             OE1 GLU A 415
                                                                                 0
                                                 26.365
                                                          1.00 54.16
             OE2 GLU A 415
                                 43.591
                                          60.410
ATOM
       3107
                 GLU A 415
                                  44.709
                                          63.603
                                                 23.971
                                                          1.00 35.48
ATOM
       3108
             С
                                  45.475
                                          64.504
                                                 23.778
                                                          1.00 34.35
ATOM
       3109
             0
                 GLU A 415
                                          62.882
                                                  22.937
                                                          1.00 31.62
ATOM
                 GLY A 416
                                 44.315
       3110
             N
                                                  21.599
                                                          1.00 37.60
                                 44.754
                                          63,356
ATOM
       3111
             CA
                 GLY A 416
                                                          1.00 40.88
                                                                                 c
                                 43.653
                                                  20.967
ATOM
       3112
             С
                 GLY A 416
                                          64.139
                                                          1.00 47.40
                                                                                ٥
ATOM
       3113
             0
                 GLY A 416
                                 42.631
                                         64.592
                                                 21.525
             N
                 GLY A 417
                                 43.551
                                         64.310
                                                 19.809
                                                          1.00 43.54
ATOM
       3114
```

. 27

1

. 1

700

STUME .

TOM

घटन

বংশ

377215

. 1. 5

5 U.5 %

3714-, 68

March 122

or and a logar

3.52分。 30.5

170/11/3111

. ATOM 1: 0133 . C

1 Auto 1.51 A

WO 03/035693 139/514

```
Figure 2
ATOM
        3115
             CA
                  GLY A 417
                                   42.080 65.022 19.474 1.00 43.01
ATOM
        3116
              C
                  GLY A 417
                                   40.864
                                           64.196
                                                    19.675
                                                            1.00 37.66
ATOM
        3117
              0
                   GLY A 417
                                   40.223
                                           64.426
                                                    20.323
                                                            1.00 49.55
ATOM
        3118
                  ASN A 418
                                   40.664
                                                    19.315
                                                            1.00 35.04
              N
                                           63.084
ATOM
                  ASN A 418
                                   39.557
        3119
              CA
                                           62.322
                                                   19.625
                                                            1.00 31.25
                  ASN A 418
ATOM
        3120
              СВ
                                   40.111
                                           61.111
                                                    20.046
                                                            1.00 34.56
ATOM
        3121
              CG
                  ASN A 418
                                   41.385
                                           60.677
                                                    19.211
                                                            1.00 41.89
ATOM
        3122
              OD1 ASN A 418
                                   42.397
                                           60.188
                                                    19.807
                                                            1.00 46.74
                                                                                   0
ATOM
        3123
              ND2 ASN A 418
                                   41.298
                                           60.692
                                                    17.896
                                                            1.00 31.68
                                                                                   N
MOTA
                  ASN A 418
                                  38.347
                                           62.736
                                                    20.347
                                                            1.00 29.21
        3124
              c
                                                                                   C
ATOM
        3125
                  ASN A 418
                                  38.353
                                           63.044
                                                    21.399
                                                            1.00 30.03
              0
                                                                                   0
ATOM
        3126
              N
                  PHE A 419
                                  37,209
                                           62.694
                                                    19.702
                                                            1.00 29.30
                                                                                   N
ATOM
              CA
                  PHE A 419
                                  35.940
                                           63.067
                                                   20.207
                                                            1.00 24.22
        3127
                                                                                   Ċ
                                  34.799
ATOM
        3128
              CB
                  PHE A 419
                                           62.906
                                                   19.081
                                                            1.00 21.88
ATOM
        3129
              CG
                  PHE A 419
                                  33.491
                                           63.208
                                                   19.566
                                                            1.00 25.92
ATOM
        3130
              CD1 PHE A 419
                                  33.126
                                           64.475
                                                    19.815
                                                            1.00 32.50
ATOM
        3131
              CE1 PHE A 419
                                  32.018
                                           64.765
                                                   20.417
                                                            1.00 27.44
MOTA
        3132
              CZ PHE A 419
                                  31.239
                                           63.948
                                                   20.800
                                                            1.00 29.11
ATOM
        3133
              CE2 PHE A 419
                                  31.463
                                                   20.682
                                           62.663
                                                            1.00 28.30
ATOM
              CD2 PHE A 419
                                           62.294
        3134
                                  32.654
                                                   20.042
                                                            1.00 31.10
                  PHE A 419
ATOM
        3135
              ¢
                                  35.707
                                           62.194
                                                   21.236
                                                            1.00 23.86
                                                                                  C
ATOM
        3136
                  PHE A 419
                                  35.912
                                           61.060
                                                   21.029
                                                            1.00 26.18
ATOM
        3137
              N
                  LYS A 420
                                  35.202
                                           62.697
                                                   22.378
                                                            1.00 24.51
                                                                                  N
ATOM
        3138
              CA
                  LYS A 420
                                  34.928
                                           61.915
                                                   23.562
                                                            1.00 23.25
                                                                                  С
ATOM
       3139
              СВ
                  LYS A 420
                                  35.817
                                           62,419
                                                            1.00 22.28
                                                   24.612
                                                                                  C
                                  35.324
ATOM
       3140
              CG
                  LYS A 420
                                           61.597
                                                   25.845
                                                            1.00 20.14
                                                                                  С
MOTA
                  LYS A 420
                                           61.909
       3141
              CD
                                  36.266
                                                   27.200
                                                            1.00 25.69
                                                                                  С
ATOM
       3142
              CE
                  LYS A 420
                                                   27,269
                                  36.697
                                           63.314
                                                            1.00 24.09
                                                                                  C
MOTA
       3143
             NZ
                 LYS A 420
                                  37.298
                                           63.521
                                                   28.510
                                                            1.00 27.84
                                                                                  N
ATOM
       3144
             ·C
                 LYS A 420
                                  33.467
                                           61.898
                                                   24.025
                                                            1.00 26.37
                                                                                  С
MOTA
       3145
              0
                  'LYS A 420
                                  32.874
                                           62.740
                                                   24.378
                                                            1.00 32.35
ATOM :
       3146
             N
                  LYS A 421
                                  32.832
                                           60.884
                                                   23.933
                                                            1.00 29.92
ATOM
       3147
             CA
                  LYS A 421
                                  31.391
                                           60.984
                                                   24.041
                                                            1.00 28.55
                                                                                  ¢
ATOM
       3148
             ; CB
                  LYS A 421
                                  30.568
                                           59.810
                                                   23.445
                                                            1.00 28.44
                                                                                  С
ATOM .
       3149
             CG
                 : LYS A 421
                                  30.925
                                           58.464
                                                   23.891
                                                            1.00 31.53
                                                                                  C
ATOM
       3150
             CD
                  LYS A 421
                                  30.195
                                           57.508
                                                   22.995
                                                            1.00 32.42
                                                                                  c
ATOM
       3151
             .CE
                  LYS A 421
                                  30.498
                                           55.985
                                                   23.332
                                                                                  c
                                                            1.00 31.68
ATOM
       3152
                  LYS A 421
                                  30.595
                                           55.408
                                                   21.620
             NZ
                                                            1.00 37.96
                                                                                  N
ATOM
                                  31.085
                                           60.930
                                                   25.505
       3153
             ·C
                  LYS A 421
                                                            1.00 32.29
                                                                                  c
ATOM
       3154
                  LYS A 421
                                  31.870
                                           60.635
                                                            1.00 32.44
                                                                                  0
             ٥
                                                   26.119
ATOM
                  SER A 422
                                  29.880
       3155
             N
                                           61.364
                                                   25.985
                                                            1.00 35.08
                                                                                  N
ATOM
       3156
             CA
                  SER A 422
                                  29.395
                                           61.333
                                                   27.315
                                                            1.00 26.36
                                                                                  C
ATOM
       3157
             CB
                  SER A 422
                                  29.484
                                           62.504
                                                   27.911
                                                            1.00 26.75
                                                                                  С
ATOM
       3158
             OG
                  SER A 422
                                  28.976
                                           62.296
                                                   29.159
                                                            1.00 22.72
                                                                                  0
ATOM
       3159
             С
                  SER A 422
                                  27.925
                                           61.049
                                                   27.442
                                                            1.00 28.09
                                                                                  С
MOTA
       3160
              0
                  SER A 422
                                  27.108
                                           61.493
                                                   26.735
                                                            1.00 24.14
ATOM
       3161
             N
                  LYS A 423
                                  27.602
                                           60.194
                                                   28.404
                                                            1.00 29.75
ATOM
       3162
             CA
                  LYS A 423
                                  26.273
                                          59.774
                                                   28.487
                                                            1.00 30.71
MOTA
             СВ
                  LYS A 423
       3163
                                  26.203
                                          58.471
                                                   29.138
                                                            1.00 32.16
                                                            1.00 43.10
ATOM
       3164
             CG
                 LYS A 423
                                  26.512
                                          58.489
                                                   30.645
MOTA
       3165
             CD
                  LYS A 423
                                  26.876
                                          56.879
                                                   31.219
                                                            1.00 48.95
       3166
MOTA
             CE
                  LYS A 423
                                  27.401
                                          56.664
                                                   32.663
                                                            1.00 46.55
MOTA
       3167
             NZ
                  LYS A 423
                                  26.735
                                          55.358
                                                   33.191
                                                            1.00 45.62
ATOM
                                                   29.247
       3168
                  LYS A 423
                                  25.592
                                          60.863
                                                                                  C
             С
                                                            1.00 32.11
ATOM
       3169
                                  24.556
                                                            1.00 33.08
             0
                  LYS A 423
                                          60.831
                                                   29.442
                                                                                  0
ATOM
                                                   29.718
       3170
                  TYR A 424
                                  26.265
                                          61.878
                                                            1.00 33.73
             N
                                                                                  N
ATOM
                                                                                  С
       3171
             CA
                 TYR A 424
                                  25.637
                                          62.929
                                                   30.443
                                                            1.00 30.97
ATOM
       3172
             CB
                 TYR A 424
                                  26.726
                                          63.578
                                                   31.410
                                                           1.00 30.42
                                                                                  С
ATOM
       3173
             CG
                 TYR A 424
                                  26.918
                                          62.771
                                                   32.685
                                                            1.00 36.39
ATOM
       3174
             CD1 TYR A 424
                                  26.573
                                          63.259
                                                   33.984
                                                            1.00 33.17
                                                                                  C
ATOM
       3175
                                  26.705
                                          62.515
                                                   35.025
                                                            1.00 38.71
             CEI TYR A 424
ATOM
       3176
                                                   34.885
             CZ
                 TYR A 424
                                  27.218
                                          61.180
                                                            1.00 41.27
ATOM
       3177
             ОН
                 TYR A 424
                                  27.459
                                          60.420
                                                   35.962
                                                           1.00 39.44
ATOM
       3178
             CE2 TYR A 424
                                  27.590
                                          60.649
                                                   33.698
                                                            1.00 31.60
ATOM
       3179
             CD2 TYR A 424
                                  27.414
                                          61.433
                                                   32.599
                                                           1.00 43.17
                                          63.987
ATOM
       3180
             C
                 TYR A 424
                                  25.349
                                                   29.338
                                                           1.00 30.11
ATOM
                                          65,105
                                                   29.545
       3181
                 TYR A 424
                                  25.142
                                                           1.00 30.13
             0
ATOM
                                                           1.00 30.60
                 PHE A 425
                                  25.458
                                          63.727
                                                   28.108
       3182
             N
ATOM
       3183
             CA
                 PHE A 425
                                  25.154
                                          64.818
                                                   27.138
                                                           1.00 26.35
                                                                                  C
ATOM
       3184
             CB
                 PHE A 425
                                  25.961
                                          64.628
                                                   25.957
                                                           1.00 22.36
ATOM
       3185
             CG
                 PHE A 425
                                  25.757
                                          65.636
                                                   24.810
                                                           1.00 21.27
ATOM
             CD1 PHE A 425
                                  26.240
                                          66.862
                                                   24.935
       3186
                                                           1.00 15.53
ATOM
       3187
             CE1 PHE A 425
                                  25.989
                                          67.799
                                                   23.833
                                                           1.00 17.27
ATOM
       3188
             CZ PHE A 425
                                  25.311
                                          67.360
                                                   22.727
                                                           1.00 19.45
ATOM
       3189
             CE2 PHE A 425
                                  24.803
                                          66.111
                                                   22.643
                                                           1.00 13.13
                                                                                  C
ATOM
       3190
             CD2 PHE A 425
                                  25.052
                                          65.253
                                                   23.714
                                                           1.00 14.48
```

|              |              |           |            |   |                | Fi               | gure             | 2                |                          |        |
|--------------|--------------|-----------|------------|---|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3191         | C         |            |   | 425            | 23.730           | 64.572           | 26.684           | 1.00 26.60               | С      |
| MOTA<br>MOTA | 3192<br>3193 | 0         |            |   | 425<br>426     | 23.667           | 63.925           | 25.841<br>27.326 | 1.00 26.02<br>1.00 28.93 | 0      |
| ATOM         | 3194         | N<br>CA   |            |   | 426            | 22.729<br>21.354 | 65.148<br>65.167 | 27.326           | 1.00 28.93               | N<br>C |
| ATOM         | 3195         | СВ        |            |   | 426            | 20.623           | 64.710           | 28.463           | 1.00 32.66               | č      |
| ATOM         | 3196         | CG        |            |   | 426            | 20.767           | 63.226           | 28.595           | 1.00 38.56               | С      |
| ATOM<br>ATOM | 3197<br>3198 | SD<br>CE  |            |   | 426            | 20.034           | 62.876           | 30.223           | 1.00 38.01               | S      |
| ATOM         | 3190         | C         |            |   | 426<br>426     | 20.314<br>20.647 | 61.174<br>66.562 | 30.101<br>26.853 | 1.00 32.84<br>1.00 29.20 | C<br>C |
| ATOM         | 3200         | ō         |            |   | 426            | 19.609           | 66.869           | 27.291           | 1.00 27.27               | ō      |
| ATOM         | 3201         | N         |            |   | 427            | 21.105           | 67.314           | 25.989           | 1.00 27.35               | N      |
| ATOM<br>ATOM | 3202<br>3203 | CA<br>CB  |            |   | 427<br>427     | 20.402<br>21.365 | 68.541<br>69.310 | 25.804<br>24.990 | 1.00 25.07<br>1.00 23.24 | C      |
| ATOM         | 3204         | CG        |            |   | 427            | 22.086           | 68.388           | 24.331           | 1.00 25.28               | C<br>C |
| MOTA         | 3205         | CD        | PRO        | A | 427            | 22.265           | 67.095           | 25.098           | 1.00 26.71               | Ċ      |
| ATOM         | 3206         | C         |            |   | 427            | 19.106           | 68.377           | 25.125           | 1.00 26.67               | c      |
| ATOM<br>ATOM | 3207<br>3208 | O<br>N    |            |   | 427<br>428     | 18.394<br>18.826 | 69.231<br>67.278 | 25.055<br>24.578 | 1.00 33.00<br>1.00 26.30 | 0<br>N |
| ATOM         | 3209         | CA        |            |   | 428            | 17.729           | 67.048           | 23.822           | 1.00 23.84               | Č      |
| ATOM         | 3210         | СВ        | •          |   | 428            | 18.058           | 66.181           | 22.446           | 1.00 22.56               | С      |
| ATOM<br>ATOM | 3211<br>3212 | CG        | PHE        |   | 428            | 18.845<br>20.134 | 66.926           | 21.378           | 1.00 20.64               | C      |
| ATOM         | 3212         |           | PHE        |   |                | 20.134           | 66.633           | 20.226           | 1.00 14.86               | c      |
| ATOM         | 3214         | CZ        |            |   | 428            | 20.393           | 68.359           | 19.510           | 1.00 13.22               | .c     |
| ATOM         | 3215         |           | PHE        |   |                | 19.173           | 68.717           | 19.617           | 1.00 24.66               | Ç      |
| ATOM<br>ATOM | 3216<br>3217 | CD2<br>C  | PHE        |   |                | 18.313<br>16.970 | 67.949<br>66.037 | 20.668           | 1.00 21.56<br>1.00 26.02 | C<br>C |
| ATOM         | 3218         | Ö         |            |   | 428            | 16.098           | 65.212           | 24.743           | 1.00 24.12               | Ö      |
| ATOM         | 3219         | N         | SER        | A | 429            | .17.408          | 65.961           | 25.956           | 1.00 25.33               | N      |
| MOTA         | 3220         | CA        |            |   | 429            | 16.738           | 64.953           | 26.776           | 1.00 28.05               | C      |
| ATOM<br>ATOM | 3221<br>3222 | CB<br>OG  |            |   | 429 .<br>429 . | 15.275<br>14.505 | 65.151<br>64.467 | 26.832<br>27.832 | 1.00 29.78<br>1.00 24.86 | C<br>0 |
| ATOM         | 3223         | C         |            |   | 429 :          | 16.904           | 63.493           | 26.485           | 1.00 29.46               | č      |
| ATOM         | 3224         | 0         |            |   | 429            | 17.908           | 63.111           | 25.861           | 1.00 33.46               | 0      |
| ATOM         | 3225         | N         |            |   | 430 .          | 16.040           | 62.631           | 26.976           | 1.00 29.43               | N      |
| ATOM<br>ATOM | 3226<br>3227 | ÇA<br>CB  | ALA        |   | 430<br>430     | 16.418<br>17.378 | 61.251<br>60.875 | 26.861<br>27.883 | 1.00 32.79<br>1.00 34.73 | C<br>C |
| ATOM         | 3228         | č         |            |   | 430            | 15.301           | 60.367           | 27.016           | 1.00 35.64               | č      |
| ATOM         | 3229         | 0         | ALA        | A | 430            | 14.297           | 60.732           | 27.591           | 1.00 40.99               | 0      |
| ATOM         | 3230         | N         | GLY        | A | 431            | 15.365           | 59.171           | 26.471           | 1.00 35.52               | N      |
| ATOM<br>ATOM | 3231<br>3232 | CA<br>C   | GLY<br>GLY |   |                | 14.178<br>13.122 | 58.391<br>58.471 | 26.532<br>25.557 | 1.00 35.36<br>1.00 34.37 | C<br>C |
| ATOM         | 3233         | ŏ         | GLY        |   |                | 13.297           | 58.999           | 24.580           | 1.00 34.16               | ō      |
| ATOM         | 3234         | N         | LYS        |   |                | 11.982           | 57.872           | 25.851           | 1.00 35.52               | N      |
| ATOM<br>ATOM | 3235<br>3236 | CA<br>CB  | LYS<br>LYS |   |                | 10.790<br>9.669  | 57.951<br>57.193 | 25.000<br>25.579 | 1.00 35.18<br>1.00 33.20 | c<br>c |
| ATOM         | 3237         | CG        | LYS        |   |                | 10.016           | 55.681           | 25.459           | 1.00 38.84               | č      |
| ATOM         | 3238         | CD        | LYS        |   |                | 8.912            | 54.787           | 25.606           | 1.00 51.53               | С      |
| ATOM         | 3239         | CE        | LYS        |   |                | 9.352            | 53.280           | 25.486           | 1.00 51.42               | C      |
| ATOM<br>ATOM | 3240<br>3241 | NZ<br>C   | LYS<br>LYS |   |                | 9.790<br>10.275  | 52.957<br>59.249 | 24.017<br>24.425 | 1.00 53.92<br>1.00 35.57 | N<br>C |
| ATOM         | 3242         | ŏ         | LYS        |   |                | 9.695            | 59.241           | 23.419           | 1.00 39.39               | ŏ      |
| ATOM         | 3243         | N         | ARG        |   |                | 10.473           | 60.378           | 24.996           | 1.00 37.40               | N      |
| ATOM<br>ATOM | 3244<br>3245 | CA<br>CB  | ARG<br>ARG |   |                | 10.091<br>9.646  | 61.650<br>62.593 | 24.442<br>25.511 | 1.00 36.00<br>1.00 38.07 | C<br>C |
| ATOM         | 3246         | CG        | ARG        |   |                | 8.226            | 62.391           | 25.977           | 1.00 46.00               | č      |
| MOTA         | 3247         | CD        | ARG        | A | 433            | 7.170            | 63.358           | 25.259           | 1.00 49.80               | С      |
| ATOM         | 3248         | NE        | ARG        |   |                | 5.894            | 62.714           | 25.443           | 1.00 46.32               | N      |
| ATOM<br>ATOM | 3249<br>3250 | CZ<br>NH1 | ARG<br>ARG |   |                | 4.891<br>4.986   | 63.168<br>64.292 | 24.925<br>24.225 | 1.00 51.59<br>1.00 48.64 | С<br>N |
| ATOM         | 3251         |           | ARG        |   |                | 3.772            | 62.478           | 25.083           | 1.00 57.65               | N      |
| MOTA         | 3252         | С         | ARG        |   |                | 11.243           | 62.393           | 23.975           | 1.00 36.49               | С      |
| ATOM         | 3253         | 0         | ARG        |   |                | 11.161           | 63.571           | 23.860           | 1.00 43.34<br>1.00 33.15 | 0      |
| ATOM<br>ATOM | 3254<br>3255 | N<br>CA   | ILE        |   |                | 12.355<br>13.455 | 61.821           | 23.730<br>23.257 | 1.00 33.13               | . N    |
| ATOM         | 3256         | СВ        | ILE.       |   |                | 14.579           | 61.611           | 22.958           | 1.00 35.14               | č      |
| ATOM         | 3257         |           | ILE        |   |                | 15.920           | 62.369           | 22.792           | 1.00 39.47               | C      |
| ATOM<br>ATOM | 3258<br>3259 |           | ILE        |   |                | 17.193           | 61.444           | 22.868           | 1.00 35.99<br>1.00 32.51 | C      |
| ATOM         | 3259         | CG2       | ILE        |   |                | 14.240<br>13.185 | 63.412           | 22.004           | 1.00 32.31               | c      |
| ATOM         | 3261         | ŏ         | ILE        |   |                | 12.459           | 63.056           | 21.174           | 1.00 35.21               | ŏ      |
| MOTA         | 3262         | N         | CYS        |   |                | 13.802           | 64.520           | 21.835           | 1.00 30.99               | И      |
| MOTA<br>MOTA | 3263<br>3264 | CA<br>CB  | CYS        |   |                | 13.540<br>14.567 | 65.342<br>66.410 | 20.702           | 1.00 30.41<br>1.00 32.93 | c<br>c |
| ATOM         | 3265         | SG        | CYS        |   |                | 14.560           | 67.604           | 19.276           | 1.00 34.31               | s      |
| ATOM         | 3266         | С         | CYS        |   |                | 13.425           | 64.749           | 19.478           | 1.00 30.43               | c      |

|              |              |           |            |   |            | Fi               | gure             | 2                |      |                |        |   |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|---|
| ATOM         | 3267         | 0         | CYS        | A | 435        | 14.220           | 64.096           | 19.123           | 1.00 | 39.21          |        | 0 |
| ATOM         | 3268         | N         |            |   | 436        | 12.388           | 64.949           | 18.727           |      | 31.68          |        | N |
| ATOM<br>ATOM | 3269<br>3270 | CA<br>CB  |            |   | 436        | 12.167           | 64.229           | 17.528           |      | 30.46          |        | 2 |
| ATOM         | 3270         |           | VAL        |   | 436<br>436 | 10.577<br>10.294 | 64.500<br>64.535 | 17.176<br>15.817 |      | 32.25<br>28.19 |        | 0 |
| ATOM         | 3272         |           | VAL        |   |            | 9.881            | 63.298           | 17.649           |      | 37.42          |        | C |
| ATOM         | 3273         | С         |            |   | 436        | 13.104           | 64.823           | 16.566           |      | 30.03          |        | c |
| MOTA         | 3274         | 0         | VAL        | A | 436        | 13.329           | 64.307           | 15.561           | 1.00 | 34.40          | C      |   |
| MOTA         | 3275         | N         |            |   | 437        | 13.708           | 65.882           | 16.844           |      | 27.13          | b      |   |
| ATOM         | 3276         | CA        |            |   | 437        | 14.661           | 66.357           | 15.903           | •    | 24.62          | Ç      |   |
| ATOM<br>ATOM | 3277<br>3278 | С<br>0    |            |   | 437<br>437 | 16.133<br>16.963 | 66.422<br>67.250 | 16.172<br>15.593 |      | 23.60<br>23.22 | 0      |   |
| ATOM         | 3279         | N ·       |            |   | 438        | 16.522           | 65.499           | 16.949           |      | 23.63          | N      |   |
| ATOM         | 3280         | CA        |            |   | 438        | 17.929           | 65.394           | 17.264           |      | 23.06          | Ċ      |   |
| MOTA         | 3281         | CB        |            |   | 438        | 18.183           | 64.227           | 18.069           |      | 22.05          | c      |   |
| ATOM         | 3282         | CG        |            |   | 438        | 19.204           | 64.335           | 19.088           |      | 33.52          | C      |   |
| ATOM<br>ATOM | 3283<br>3284 | CD<br>OE1 |            |   | 438        | 19.522<br>20.471 | 62.965<br>62.831 | 19.770<br>20.809 |      | 40.09<br>45.50 | C<br>C |   |
| ATOM         | 3285         |           | GLU        |   |            | 18.894           | 61.954           | 19.329           |      | 32.86          |        |   |
| ATOM         | 3286         | c         |            |   | 438        | 18.754           | 65.446           | 16.109           |      | 24.83          | Č      |   |
| ATOM         | 3287         | 0         | GLU        | A | 438        | 19.609           | 66.388           | 15.813           | 1.00 | 26.82          | C      |   |
| ATOM         | 3288         | N         |            |   | 439        | 18.556           | 64.501           | 15.279           |      | 27.54          | N      |   |
| ATOM         | 3289         | CA        |            |   | 439        | 19.457           | 64.531           | 14.105           |      | 23.17          | C      |   |
| ATOM<br>ATOM | 3290<br>3291 | CB<br>C   |            |   | 439<br>439 | 19.295<br>19.284 | 63.296<br>65.701 | 13.374<br>13.316 |      | 22.46          | C      |   |
| ATOM         | 3292         | ŏ         | ALA        |   |            | 20.270           | 66.253           | 12.830           |      | 29.26          | Ö      |   |
| ATOM         | 3293         | N         | LEU        |   |            | 18.142           | 66.258           | 13.186           |      | 23.84          | N      |   |
| ATOM         | 3294         | CA ·      | LEU        |   |            | 18.048           | 67.404           | 12.233.          |      | 23.84          | c      |   |
| ATOM         | 3295         | СВ        | LEU        |   |            | 16.578           | 67.746           | 11.998           |      | 29.02          | C      |   |
| MOTA<br>MOTA | 3296<br>3297 | CG<br>CD1 | LEU        |   |            | 16.581<br>17.079 | 69.008<br>68.653 | 11.060<br>9.814  |      | 28.02          | C      |   |
| ATOM         | 3298         |           | LEU        |   |            | 15.020           | 69.233           | 10.901           | -    | 30.50          | C      |   |
| ATOM         | 3299         | c         | LEU        |   |            | 18.777           | 68.485           | 12.744           |      | 22.11          | , c    |   |
| MOTA         | 3300         | 0         | LEU        |   |            | 19.532           | 69.109           | 12.080           | 1.00 | 24.46          | ō      |   |
| MOTA         | 3301         | N         | ALA        |   |            | 18.606           | 68.709           | 14.001           | 1.00 | 23.08          | N      |   |
| ATOM         | 3302         | CA        | ALA        |   |            | 19.397           | 69.760           | 14.631           | 1.00 | 23.78          | c      |   |
| ATOM         | 3303         | СВ        | ALA        |   | 441        | 18.922           | 69.754           | 16.131           |      |                | C      |   |
| ATOM<br>ATOM | 3304<br>3305 | С<br>0    | ALA<br>ALA |   |            | 20.888<br>21.720 | 69.540<br>70.423 | 14.627<br>14.550 |      | 24.80          | 0      |   |
| ATOM         | 3306         | N         | GLY        |   |            | 21.320           | 68.346           | 14.798           |      |                | N      |   |
| MOTA         | 3307         | CA        | GLY        | A | 442        | 22.847           | 68.075           | 14.691           |      | 24.51          | С      | : |
| ATOM         | 3308         | C         | GLY        |   | 442        | 23.226           | 68.405           | 13.373           |      | 24.88          | c      |   |
| ATOM         | 3309         | 0         | GLY        |   | 442        | 24.291           | 69.038           | 13.249           |      | 26.51          | 0      |   |
| ATOM<br>ATOM | 3310<br>3311 | N<br>CA   | MET<br>MET |   | 443        | 22.420<br>22.860 | 68.113<br>68.597 | 12.350<br>11.004 |      | 26.36<br>24.24 | · С    |   |
| ATOM         | 3312         | CB        | MET        |   | 443        | 21.929           | 68.168           | 9.954            |      | 26.11          | č      |   |
| ATOM         | 3313         | CG        | MET        |   |            | 21.990           | 66.564           | 9.638            |      | 28.78          | č      |   |
| ATOM         | 3314         | SD        | MET        |   | 443        | 21.067           | 66.057           | 8.142            | 1.00 | 34.46          | S      |   |
| ATOM         | 3315         | CE        | MET        |   | 443        | 20.789           | 64.430           | 8.759            |      | 40.55          | C      |   |
| ATOM<br>ATOM | 3316<br>3317 | C<br>0    | MET<br>MET |   | 443        | 22.847<br>23.711 | 70.024           | 10.916<br>10.273 |      | 28.23          | C<br>0 |   |
| ATOM         | 3318         | N         | GLU        |   | 444        | 21.834           | 70.664<br>70.745 | 11.433           |      | 30.44          | N      |   |
| ATOM         | 3319         | CA        | GLU        |   | 444        | 21.912           | 72.187           | 11.255           |      | 25.10          | Č      |   |
| ATOM         | 3320         | СВ        | GLU        | A | 444        | 20.696           | 72.837           | 11.636           | 1.00 | 27.47          | Ċ      | : |
| ATOM         | 3321         | CG        | GLU        |   |            | 19.593           | 72.375           | 10.790           |      | 36.61          | C      |   |
| ATOM<br>ATOM | 3322         | CD        | GLU        |   |            | 18.238           | 73.009           | 11.267           |      | 37.67          | C<br>0 |   |
| ATOM         | 3323<br>3324 |           | GLU<br>GLU |   |            | 18.121<br>17.375 | 74.132<br>72.406 | 11.171<br>11.775 |      | 42.56<br>42.29 | 0      |   |
| ATOM         | 3325         | c         | GLU        |   |            | 22.995           | 72.843           | 11.963           |      | 25.12          | č      |   |
| MOTA         | 3326         | 0         | GLU        |   |            | 23.622           | 73.831           | 11.365           |      | 26.60          | 0      |   |
| ATOM         | 3327         | N         | LEU        |   |            | 23.285           | 72.473           | 13.223           |      | 23.48          | N      |   |
| MOTA         | 3328         | CA        | LEU        |   |            | 24.415           | 73.161           | 13.965           |      | 20.44          | C      |   |
| ATOM         | 3329<br>3330 | CB<br>CG  | LEU        |   |            | 24.585<br>23.275 | 72.491<br>72.745 | 15.292<br>15.985 |      | 17.29<br>16.53 | C      |   |
| MOTA MOTA    | 3331         |           | LEU        |   |            | 23.283           | 72.006           | 17.191           |      | 15.95          | Č      |   |
| ATOM         | 3332         |           | LEU        |   |            | 23.155           | 74.390           | 16.296           |      | 15.27          | č      |   |
| ATOM         | 3333         | C         | LEU        |   |            | 25.631           | 72.898           | 13.266           |      | 21.74          | c      |   |
| MOTA         | 3334         |           | LEU        |   |            | 26.453           | 73.898           | 12.942           |      | 25.33          | 0      |   |
| MOTA         | 3335         | N         | PHE        |   |            | 25.892           | 71.618           | 12.981           |      | 21.72          | N      |   |
| ATOM<br>ATOM | 3336<br>3337 | CA<br>CB  | PHE        |   |            | 27.233<br>27.418 | 71.284<br>69.775 | 12.238<br>12.071 |      | 24.94<br>28.24 | c      |   |
| ATOM<br>ATOM | 3338         | CG        | PHE        |   |            | 28.705           | 69.775           | 11.464           |      | 31.13          | C      |   |
| ATOM         | 3339         | CD1       |            |   |            | 28.765           | 69.091           | 10.213           |      | 36.67          | č      |   |
| MOTA         | 3340         | CE1       |            |   |            | 30.090           | 68.721           | 9.665            |      | 33.72          | С      |   |
| MOTA         | 3341         | CZ        | PHE        |   |            | 31.189           | 68.711           | 10.392           |      | 29.13          | C      |   |
| MOTA         | 3342         | CE2       | PHE        | A | 446        | 31.005           | 68.970           | 11.637           | 1.00 | 35.96          | С      |   |

|              |              |            |            |   |            | F:               | igure            | 2                |                          |         |
|--------------|--------------|------------|------------|---|------------|------------------|------------------|------------------|--------------------------|---------|
| MOTA         | 3343         |            |            |   | 446        | 29.817           | 69.318           | 12.183           |                          | С       |
| ATOM<br>ATOM | 3344<br>3345 | C<br>O     |            |   | 446        | 27.397           | 71.956           | 10.851<br>10.631 | 1.00 24.14<br>1.00 27.47 | C<br>0  |
| ATOM         | 3346         | N          |            |   | 447        | 28.337<br>26.430 | 72.695<br>71.816 | 9.918            | 1.00 27.47               | и       |
| ATOM         | 3347         | CA         |            |   | 447        | 26.526           | 72.426           | 8.626            | 1.00 19.03               | C       |
| ATOM         | 3348         | CB         |            |   | 447        | 25.552           | 71.758           | 7.670            | 1.00 15.66               | С       |
| ATOM         | 3349<br>3350 | CG         |            |   | 447        | 25.669           | 70.348           | 7.718            | 1.00 21.09               | C       |
| ATOM<br>ATOM | 3351         |            |            |   | 447        | 24.738<br>27.013 | 69.652<br>69.964 | 6.790<br>7.178   | 1.00 27.06<br>1.00 25.78 | C       |
| ATOM         | 3352         | c          |            |   | 447        | 26.401           | 73.901           | 8.712            | 1.00 20.66               | č       |
| ATOM         | 3353         | 0          |            |   | 447        | 27.093           | 74.607           | 7.917            | 1.00 24.87               | 0       |
| ATOM         | 3354         | N          |            |   | 448        | 25.586           | 74.539           | 9.542            | 1.00 20.90               | N       |
| MOTA<br>MOTA | 3355<br>3356 | CA<br>CB   |            |   | 448        | 25.638<br>24.389 | 76.021<br>76.698 | 9.473<br>10.169  | 1.00 23.19<br>1.00 25.18 | C<br>C  |
| ATOM         | 3357         | CG         |            |   | 448        | 23.086           | 76.278           | 9.605            | 1.00 21.82               | Č       |
| ATOM         | 3358         |            |            |   | 448        | 22.995           | 75.879           | 8.366            | 1.00 24.52               | С       |
| ATOM         | 3359         | CE1        |            |   | 448        | 21.725           | 75.498           | 7.870            | 1.00 32.45               | c       |
| ATOM<br>ATOM | 3360<br>3361 |            |            |   | 448<br>448 | 20.598<br>20.754 | 75.602<br>76.031 | 8.617<br>9.801   | 1.00 27.73<br>1.00 26.34 | C       |
| ATOM         | 3362         |            |            |   | 448        | 22.012           | 76.437           | 10.264           | 1.00 22.84               | č       |
| MOTA         | 3363         | С          |            |   | 448        | 26.889           | 76.584           | 10.222           | 1.00 26.18               | С       |
| MOTA<br>MOTA | 3364<br>3365 | 0          |            |   | 448        | 27.414<br>27.380 | 77.724           | 9.886            | 1.00 34.36<br>1.00 26.66 | 0       |
| ATOM         | 3366         | N<br>CA    |            |   | 449<br>449 | 28.534           | 75.975<br>76.567 | 11.301<br>11.943 |                          | N<br>C  |
| MOTA         | 3367         | СВ         |            |   | 449        | 28.797           |                  | 13.329           | 1.00 27.48               | Č       |
| MOTA         | 3368         | CG         |            |   | 449        | 27.742           | 76.246           | 14.277           | 1.00 29.63               | С       |
| ATOM         | 3369         |            |            |   | 449        | 28.109           | 75.767           | 15.600           | 1.00 28.18               | C       |
| ATOM<br>ATOM | 3370<br>3371 | CDZ        |            |   | 449        | 27.401<br>29.810 | 77.752<br>76.353 | 14.404           | 1.00 25.11<br>1.00 25.44 | C       |
| ATOM         | 3372         | ō          |            |   | 449        | 30.560           | 77.352           | 10.673           | 1.00 23.68               | ŏ       |
| MOTA         | 3373         | N          |            |   | 450        | 30.132           | 75.120           | 10.310           | 1.00 24.67               | N       |
| ATOM         | 3374         | CA         |            |   | 450<br>450 | 31.272           | 74.864           | 9.435            | 1.00 22.89               | C       |
| ATOM<br>ATOM | 3375<br>3376 | CB<br>OG1  |            |   | 450        | 31.391<br>30.169 | 73.522<br>73.045 | 9.113            | 1.00 23.85               | C<br>O- |
| ATOM         | 3377         |            |            |   | 450        | 31.615           | 72.596           | 10.322           | 1.00 27.83               | Ç:      |
| ATOM .       | 3378         | С          |            |   | 450        | 31.139           | 75.736           | 8.335            | 1.00 22.07               | C       |
|              | 3379         | 0          |            |   | 450        | 32.067           | 76.398           | 8.008            | 1 00 27 80               | ., 0,   |
| ATOM<br>ATOM | 3380<br>3381 | N<br>CA    |            |   | 451<br>451 | 29.927<br>29.678 | 75.871<br>76.786 | 7.760<br>6.649   | 1.00 22.44<br>1.00 21.38 | N C     |
| ATOM         | 3382         | СВ         |            |   | 451        | 28.348           | 76.740           | 5.926            | 1.00 22.74               | C       |
| MOTA         | 3383         | OG         | SER        | A | 451        | 28.104           | 75.305           | 5.479            | 1.00 21.65               | . 0     |
| MOTA         | 3384         | С          |            |   | 451        | 30.002           | 78.172           | 7.060            | 1.00 25.05               | C       |
| MOTA<br>MOTA | 3385<br>3386 | И<br>О     |            |   | 451<br>452 | 30.734<br>29.529 | 78.797<br>78.739 | 6.361<br>8.198   | 1.00 30.97<br>1.00 24.60 | 0<br>พ  |
| ATOM         | 3387         | CA         |            |   | 452        | 29.870           | 80.104           | 8.398            | 1.00 24.35               | c       |
| ATOM         | 3388         | СВ         |            |   | 452        | 29.240           | 80.541           | 9.594            | 1.00 28.69               | С       |
| ATOM         | 3389         |            |            |   | 452        | 27.698           | 80.418           | 9.545            | 1.00 28.64               | c       |
| ATOM<br>ATOM | 3390<br>3391 |            |            |   | 452<br>452 | 27.006<br>29.934 | 81.225<br>81.851 | 10.523<br>10.159 | 1.00 29.85<br>1.00 25.54 | C       |
| ATOM         | 3392         | C          |            |   | 452        | 31.375           | 80.258           | 8.611            | 1.00 29.19               | č       |
| ATOM         | 3393         | 0          |            |   | 452        | 32.021           | 81.211           | 8.143            | 1.00 31.84               | 0       |
| ATOM         | 3394         | N          |            |   | 453        | 32.039           | 79.359           | 9.378            | 1.00 32.77               | N       |
| ATOM<br>ATOM | 3395<br>3396 | CA<br>CB   |            |   | 453<br>453 | 33.513<br>34.003 | 79.614<br>78.881 | 9.684<br>10.872  | 1.00 30.05<br>1.00 28.07 | C<br>C  |
| ATOM         | 3397         | CG         |            |   | 453        | 33.351           | 79.369           | 12.142           | 1.00 32.12               | Č       |
| ATOM         | 3398         |            |            |   | 453        | 33.689           | 78.528           | 13.261           | 1.00 32.23               | С       |
| ATOM<br>ATOM | 3399         |            |            |   | 453<br>453 | 33.853<br>34.317 | 80.716           | 12.422<br>8.457  | 1.00 34.63<br>1.00 30.64 | C       |
| ATOM         | 3400<br>3401 | С<br>0     |            |   | 453        | 35.379           | 79.216<br>79.722 | 8.234            | 1.00 30.04               | o       |
| ATOM         | 3402         | N          |            |   | 454        | 33.885           | 78.301           | 7.665            | 1.00 30.34               | N       |
| MOTA         | 3403         | CA         |            |   | 454        | 34.646           | 78.196           | 6.424            | 1.00 30.29               | С       |
| MOTA<br>MOTA | 3404         | CB         |            |   | 454<br>454 | 34.105           | 77.169           | 5.531            | 1.00 30.16<br>1.00 27.18 | C<br>C  |
| ATOM         | 3405<br>3406 | CG<br>CD   |            |   | 454        | 34.662<br>33.786 | 77.098<br>76.191 | 4.230<br>3.356   | 1.00 27.16               | c       |
| ATOM         | 3407         |            | GLN        |   |            | 34.198           | 75.165           | 2.783            | 1.00 32.96               | ō       |
| MOTA         | 3408         | NE2        |            |   |            | 32.462           | 76.559           | 3.277            | 1.00 37.07               | N       |
| ATOM         | 3409         | C          |            |   | 454        | 34.637           | 79.381           | 5.660            | 1.00 33.30               | C       |
| ATOM<br>ATOM | 3410<br>3411 | O<br>N     | GLN<br>ASN |   | 454<br>455 | 35.441<br>33.700 | 79.486<br>80.403 | 4.865<br>5.895   | 1.00 33.29<br>1.00 39.99 | . O     |
| ATOM         | 3412         | CA         | ASN        |   |            | 33.660           | 81.575           | 4.907            | 1.00 36.63               | С       |
| ATOM         | 3413         | СВ         | ASN        | A | 455        | 32.336           | 81.602           | 4.266            | 1.00 40.83               | ¢       |
| ATOM         | 3414         | CG         | ASN        |   |            | 32.085           | 80.506           | 3.179            | 1.00 31.62               | C       |
| MOTA<br>MOTA | 3415<br>3416 | OD1<br>ND2 |            |   |            | 32.188<br>31.667 | 80.745<br>79.375 | 2.017<br>3.612   | 1.00 32.70<br>1.00 32.54 | O<br>N  |
| ATOM         | 3417         | C          | ASN        |   |            | 33.942           | 82.897           | 5.496            | 1.00 37.67               | C       |
| ATOM         | 3418         | ō          | ASN        |   |            | 34.253           | 83.828           | 4.785            | 1.00 36.43               | 0       |
|              |              |            |            |   |            |                  |                  |                  |                          |         |

|              |              |          |            |   |            | Fi                       | .gure            | 2                |                          |          |
|--------------|--------------|----------|------------|---|------------|--------------------------|------------------|------------------|--------------------------|----------|
| ATOM         | 3419         | N        |            |   | 456        | 33.928                   | 83.054           | 6.817            | 1.00 37.22               | N        |
| ATOM         | 3420         | CA       |            |   | 456        | 34.210                   | 84.339           | 7.380            | 1.00 34.49               | C        |
| MOTA<br>MOTA | 3421<br>3422 | CB<br>CG |            |   | 456<br>456 | 32.883<br>31.768         | 84.970<br>84.943 | 7.918<br>6.913   | 1.00 35.24<br>1.00 39.50 | c<br>c   |
| ATOM         | 3423         |          |            |   | 456        | 31.708                   | 86.011           | 5.890            | 1.00 48.66               | č        |
| ATOM         | 3424         |          |            |   | 456        | 30.820                   | 86.016           | 4.944            | 1.00 41.39               | Č        |
| ATOM         | 3425         | CZ       | PHE        | A | 456        | 29.901                   | 85.021           | 4.900            | 1.00 43.01               | С        |
| ATOM         | 3426         |          |            |   | 456        | 29.974                   | 84.012           | 5.836            | 1.00 41.87               | C        |
| ATOM         | 3427         |          |            |   | 456        | 30.924                   | 84.009           | 6.866<br>8.668   | 1.00 30.66<br>1.00 37.76 | C        |
| MOTA<br>MOTA | 3428<br>3429 | С<br>0   |            |   | 456<br>456 | 34.950<br>34.979         | 84.096<br>82.922 | 9.229            | 1.00 37.76               | 0        |
| ATOM         | 3430         | N        |            |   | 457        | 35.446                   | 85.217           | 9.243            | 1.00 37.45               | N        |
| MOTA         | 3431         | CA       |            |   | 457        | 36.044                   | 85.296           | 10.424           | 1.00 37.15               | С        |
| MOTA         | 3432         | CB       |            |   | 457        | 37.381                   | 85.880           | 10.202           | 1.00 38.66               | C        |
| ATOM<br>ATOM | 3433<br>3434 | CG       | ASN<br>ASN |   | 457        | 38.454<br>38.587         | 84.865<br>83.774 | 9.603<br>9.963   | 1.00 40.12<br>1.00 46.20 | C<br>0   |
| ATOM         | 3435         |          | ASN        |   |            | 39.169                   | 85.312           | 8.691            | 1.00 44.89               | N        |
| ATOM         | 3436         | C        |            |   | 457        | 35.155                   | 86.179           | 11.327           | 1.00 41.18               | c c      |
| ATOM         | .3437        | 0        | ASN        | A | 457        | 34.640                   | 87.127           | 10.853           | 1.00 46.11               | 0        |
| MOTA         | 3438         |          | LEU        |   |            | 34.974                   | 85.918           | 12.605           | 1.00 40.14               | N        |
| MOTA<br>MOTA | 3439<br>3440 | CA<br>CB |            |   | 458<br>458 | 33.997<br>33.375         | 86.595<br>85.688 | 13.284<br>14.288 | 1.00 39.88               | C<br>. C |
| MOTA         | 3441         | CG       |            |   | 458        | 32.982                   | 84.424           | 13.698           | 1.00 36.71               | Č        |
| ATOM         | 3442         |          | LEU        |   |            | 32.377                   | 83.588           | 14.614           | 1.00 39.33               | č        |
| ATOM         | 3443         | CD2      | LEU        |   |            | 32.149                   | 84.621           | 12.549           | 1.00 39.58               | С        |
| ATOM         | 3444         | C        |            |   | 458        | 34.707                   | 87.721           | 13.966           | 1.00 43.61               | C        |
| ATOM<br>ATOM | 3445<br>3446 | O<br>N   |            |   | 458<br>459 | 35.466<br>34.375         | 87.544<br>88.945 | 14.682<br>13.763 | 1.00 44.98<br>1.00 49.38 | О<br>N   |
| ATOM         | 3447         | CA       |            |   | 459        | 35.039                   | 89.984           | 14.492           | 1.00 51.89               | C C      |
| ATOM         | 3448         | СВ       |            |   | 459        | 35.626                   | 90.878           | 13.478           | 1.00 53.92               | č        |
| ATOM         | 3449         | €G       |            |   | 459        | 35.990                   | 92.222           | 14.141           | 1.00 64.73               | С        |
| ATOM         | 3450         | CD       |            |   | 459        | 37.382                   | 92.823           | 13.650           | 1.00 67.10               | C        |
| ATOM         | 3451         | CE<br>NZ |            |   | 459<br>459 | 37.345                   | 94.421<br>95.081 | 13.781           | 1.00 66.68<br>1.00 69.41 | C<br>N   |
| ATOM<br>ATOM | 3452<br>3453 | C        |            |   | 459        | 36.653<br>34.135         | 90.716           | 12.655<br>15.416 | 1.00 50.73               | C        |
| ATOM         | 3454         | ŏ        |            |   | 459        | 33.038                   | 91.083           | 15.106           | 1.00 48.99               | ŏ        |
| ATOM         | 3455         | N        | SER        | A | 460        | 34.594                   | 90.863           | 16.612           | 1.00 56.40               | N        |
| ATOM         | 3456         | CA       |            |   | 460        | 33.801                   | 91.531           | 17.627           | 1.00 60.33               | c        |
| MOTA         | 3457         | CB       |            |   | 460<br>460 | 33.999<br>33.349         | 90.989<br>91.861 | 18.969<br>19.917 | 1.00 61.28               | C<br>0   |
| MOTA         | 3458<br>3459 | OG<br>C  |            |   | 460        | 34.171                   | 92.877           | 17.708           | 1.00 62.99               | c        |
| ATOM         | 3460         | ŏ        |            |   | 460        | 35.218                   | 93.214           | 17.334           | 1.00 66.26               | ō        |
| MOTA         | 3461         | N        | LEU        | A | 461        | 33.264                   | 93.720           | 18.129           | 1.00 68.82               | N        |
| ATOM         | 3462         | CA       |            |   | 461        | 33.506                   | 95.197           | 18.212           | 1.00 70.90               | c        |
| ATOM<br>ATOM | 3463<br>3464 | CB<br>CG | LEU        |   |            | 32.336<br>30.920         | 95.964<br>95.416 | 17.596<br>17.435 | 1.00 72.39               | C<br>C   |
| MOTA         | 3465         |          | LEU        |   |            | 29.866                   | 96.648           | 17.403           | 1.00 78.78               | c        |
| ATOM         | 3466         |          | LEU        |   |            | 30.902                   | 94.606           | 16.158           | 1.00 71.60               | С        |
| ATOM         | 3467         | С        | LEU        | A | 461        | 33.691                   | 95.633           | 19.651           | 1.00 71.22               | С        |
| ATOM         | 3468         | 0        | LEU        |   |            | 34.473                   | 96.436           | 20.058           | 1.00 70.80               | 0        |
| ATOM<br>ATOM | 3469<br>3470 | N<br>Ca  | VAL        |   |            | 32.917<br>33.059         | 95.049<br>95.305 | 20.473<br>21.918 | 1.00 73.35<br>1.00 74.14 | N<br>C   |
| ATOM         | 3471         | СВ       | VAL        |   |            | 31.656                   | 95.295           | 22.613           | 1.00 74.59               | č        |
| MOTA         | 3472         |          | VAL        |   |            | 31.180                   | 93.947           | 22.816           | 1.00 79.89               | С        |
| ATOM         | 3473         |          | VAL        |   |            | 31.571                   | 96.177           | 23.898           | 1.00 77.32               | c        |
| ATOM         | 3474         | C        | VAL        |   |            | 34.130                   | 94.457           | 22.603           | 1.00 70.46               | C        |
| MOTA<br>MOTA | 3475<br>3476 | O<br>N   | VAL<br>ASP |   |            | 33.983<br>35.214         | 94.089<br>94.225 | 23.715<br>21.892 | 1.00 68.61<br>1.00 67.06 | 0<br>N   |
| ATOM         | 3477         | CA       | ASP        |   |            | 36.425                   | 93.681           | 22.500           | 1.00 64.31               | č        |
| ATOM         | 3478         | СВ       | ASP        | A | 463        | 37.200                   | 94.779           | 23.102           | 1.00 65.86               | С        |
| ATOM         | 3479         | CG       | ASP        |   |            | 38.021                   | 94.365           | 24.270           | 1.00 77.29               | C        |
| MOTA         | 3480         |          | ASP        |   |            | 38.940                   | 93.423           | 24.033<br>25.463 | 1.00 86.33<br>1.00 80.32 | 0        |
| MOTA<br>MOTA | 3481<br>3482 | C        | ASP<br>ASP |   |            | 37.79 <b>7</b><br>36.307 | 94.940<br>92.446 | 23.429           | 1.00 59.64               | č        |
| ATOM         | 3483         | ŏ        | ASP        |   |            | 35.916                   | 92.425           | 24.613           | 1.00 59.49               | ō        |
| ATOM         | 3484         | N        | PRO        | A | 464        | 36.883                   | 91.362           | 22.870           | 1.00 48.85               | N        |
| MOTA         | 3485         | CA       | PRO        |   |            | 36.458                   | 89.976           | 23.312           | 1.00 44.23               | C        |
| ATOM         | 3486         | CB       | PRO        |   |            | 37.412                   | 88.927           | 22.579           | 1.00 38.88               | C        |
| MOTA<br>MOTA | 3487<br>3488 | CG<br>CD | PRO<br>PRO |   |            | 38.713<br>38.009         | 89.707<br>91.196 | 22.514<br>21.791 | 1.00 44.60<br>1.00 47.11 | C<br>C   |
| ATOM         | 3489         | C        | PRO        |   |            | 36.357                   | 89.839           | 24.763           | 1.00 42.49               | č        |
| ATOM         | 3490         | ō        | PRO        |   |            | 35.144                   | 89.781           | 25.306           | 1.00 58.52               | ō        |
| MOTA         | 3491         | N        | LYS        | A | 465        | 37.366                   | 89.469           | 25.424           | 1.00 39.46               | N        |
| MOTA         | 3492         |          | LYS        |   |            | 37.705                   | 89.736           | 26.889           | 1.00 36.21               | C        |
| MOTA<br>MOTA | 3493<br>3494 | CB<br>CG | LYS<br>LYS |   |            | 38.898<br>40.197         | 90.802<br>90.321 | 26.713<br>27.391 | 1.00 34.46<br>1.00 39.33 | C        |
| VI OW        | 2424         | -0       | n12        | ^ | 400        | 40.177                   | JU.JEI           |                  |                          | •        |

|              |              |           |            |    |                |                  |                  | •                |                          |        |
|--------------|--------------|-----------|------------|----|----------------|------------------|------------------|------------------|--------------------------|--------|
|              |              |           |            |    |                | F                | igure            | 2                |                          |        |
| ATOM         | 3495         | ÇD        |            |    | 4 465          | 40.108           |                  | 28.798           | 1.00 44.06               | С      |
| MOTA         | 3496         | CE        |            |    | 465            | 41.583           |                  | 29.537           | 1.00 42.88               | С      |
| ATOM<br>ATOM | 3497<br>3498 | NZ<br>C   |            |    | 4 465<br>4 465 | 41.283<br>36.763 |                  | 31.181<br>27.701 | 1.00 35.01               | N      |
| ATOM         | 3499         | Ö         |            |    | 465            | 36.631           | 89.908           | 29.036           | 1.00 35.15<br>1.00 45.78 | C<br>0 |
| ATOM         | 3500         | N         |            |    | 466            | 36.129           |                  | 27.235           | 1.00 34.35               | N      |
| ATOM         | 3501         | ÇA        |            |    | 466            | 35.376           |                  | 28.584           | 1.00 41.13               | Ċ      |
| MOTA         | 3502         | ÇВ        |            |    | 466            | 34.667           |                  | 28.164           | 1.00 35.78               | С      |
| ATOM         | 3503         | CG        |            |    | 466            | 35.333           | 94.583           | 28.969           | 1.00 52.20               | C      |
| atom<br>Atom | 3504<br>3505 |           |            |    | 466            | 35.104<br>36.263 | 94.690<br>95.456 | 30.365           | 1.00 40.93<br>1.00 39.39 | 0      |
| MOTA         | 3506         | C         |            |    | 466            | 34.192           | 90.983           | 28.228<br>28.661 | 1.00 39.39               | N<br>C |
| ATOM         | 3507         | ŏ         |            |    | 466            | 34.354           | 90.094           | 29.675           | 1.00 55.90               | ŏ      |
| ATOM         | 3508         | N         |            |    | 467            | 33.417           | 91.029           | 27.286           | 1.00 53.18               | N      |
| ATOM         | 3509         | CA        |            |    | 467            | 32.024           | 90.573           | 26.701           | 1.00 55.71               | С      |
| MOTA         | 3510         | CB        |            |    | 467            | 31.823           | 90.343           | 25.189           | 1.00 57.50               | c      |
| ATOM<br>ATOM | 3511<br>3512 | CG        |            |    | 467            | 32.715<br>31.945 | 89.441<br>88.144 | 24.449<br>24.367 | 1.00 60.99<br>1.00 65.13 | C      |
| ATOM         | 3512         |           |            |    | 467            | 33.040           | 89.848           | 23.044           | 1.00 69.58               | C<br>C |
| ATOM         | 3514         | C         |            |    | 467            | 31.601           | 89.441           | 27.401           | 1.00 57.97               | č      |
| ATOM         | 3515         | 0         | LEU        | JA | 467            | 32.381           | 88.631           | 27.610           | 1.00 62.83               | 0      |
| ATOM         | 3516         | N         |            |    | 468            | 30.401           | 89.437           | 27.956           | 1.00 60.15               | N      |
| ATOM         | 3517         | CA        |            |    | 468            | 29.943           | 88.386           | 28.920           | 1.00 58.38               | C      |
| ATOM<br>ATOM | 3518<br>3519 | CB<br>CG  |            |    | 468            | 29.141<br>28.045 | 89.127<br>88.247 | 30.031           | 1.00 62.27<br>1.00 70.63 | C<br>C |
| MOTA         | 3520         |           |            |    | 468            | 26.927           | 87.904           | 30.104           | 1.00 70.03               | Ö      |
| ATOM         | 3521         |           |            |    | 468            | 28.235           | 87.875           | 32.007           | 1.00 63.47               | ŏ      |
| ATOM         | 3522         | С         |            |    | 468            | 29.117           | 87.359           | 28.236           | 1.00 53.98               | С      |
| ATOM         | 3523         | 0         |            |    | 468            | 28.397           | 87.718           | 27.338           | 1.00 51.07               | 0      |
| ATOM<br>ATOM | 3524<br>3525 | N<br>. CA |            |    | 469            | 29.223           | 86.072           | 28.664           | 1.00 50.24               | N      |
| ATOM         | 3526         | CB        |            |    | 469            | 28.514<br>29.459 | 85.105<br>84.188 | 28.009<br>27.341 | 1.00 45.30<br>1.00 45.43 | C<br>C |
| ATOM         | 3527         |           |            |    | 469            | 30.094           |                  | 28.312           | 1.00 49.16               | ŏ      |
| MOTA         | 3528         |           |            |    | 469            | 30.372           | 84.880           | 26.607           | 1.00 38.34               | c      |
| ATOM         | 3529         | С         |            |    | 469            | 27.678           | 84.448           | 28.855           | 1.00 46.20               | С      |
| ATOM         | 3530         | 0         |            |    | 469            | 27.145           | 83.321           | 28.685           | 1.00 44.94               | 0      |
| ATOM<br>ATOM | 3531<br>3532 |           |            |    | 470            | 27.384<br>26.527 | 85.129<br>84.449 | 29.848<br>30.869 | 1.00 51.45<br>1.00 56.34 | N<br>C |
| ATOM         | 3533         | CB        |            |    | 470            | 26.712           | 85.212           | 32.213           | 1.00 59.93               | c      |
| ATOM         | 3534         |           |            |    | 470            |                  | 85.390           | 32.454           | 1.00 56.12               | ŏ      |
| ATOM         | 3535         | CG2       |            |    | 470            | 26.004           | 84.395           | 33.325           | 1.00 62.00               | С      |
| ATOM         | 3536         | C         |            |    | 470            | 25.093           | 84.406           | 30.501           | 1.00 53.44               | Ç      |
| ATOM<br>ATOM | 3537<br>3538 | O<br>N    |            |    | 470<br>471     | 24.576           | 85.367           | 30.141           | 1.00 52.84               | 0      |
| ATOM         | 3539         | CA        |            |    | 471            | 24.543<br>23.157 | 83.250<br>83.035 | 30.528<br>30.193 | 1.00 53.93<br>1.00 54.03 | N<br>C |
| ATOM         | 3540         | CB        |            |    | 471            | 22.896           | 81.569           | 30.583           | 1.00 53.21               | č      |
| MOTA         | 3541         | CG        |            |    | 471            | 24.294           | 80.863           | 30.402           | 1.00 54.68               | С      |
| ATOM         | 3542         | CD        |            |    | 471            | 25.271           | 82.003           | 30.757           | 1.00 55.52               | Ç      |
| ATOM<br>ATOM | 3543<br>3544 | С<br>0    |            |    | 471<br>471     | 22.264<br>22.454 | 83.913           | 30.839           | 1.00 54.41               | c<br>o |
| ATOM         | 3545         | N         |            |    | 472            | 21.346           | 83.962<br>84.616 | 31.933<br>30.189 | 1.00 55.24<br>1.00 55.59 | N      |
| ATOM         | 3546         | CA        |            |    | 472            | 20.300           | 85.316           | 30.903           | 1.00 56.29               | c c    |
| ATOM         | 3547         | СВ        | VAL        | A  | 472            | 19.789           | 86.503           | 30.142           | 1.00 57.84               | С      |
| ATOM         | 3548         |           |            |    | 472            | 18.401           | 86.879           | 30.441           | 1.00 56.23               | C      |
| atom<br>Atom | 3549         |           |            |    | 472<br>472     | 20.671           | 87.685           | 30.264<br>30.945 | 1.00 56.11               | C      |
| MOTA         | 3550<br>3551 | С<br>0    |            |    | 472            | 19.093<br>18.617 | 84.281<br>83.766 | 29.991           | 1.00 57.85<br>1.00 55.08 | c<br>o |
| ATOM         | 3552         | N         |            |    | 473            | 18.643           | 83.995           | 32.125           | 1.00 62.90               | N      |
| ATOM         | 3553         | CA        |            |    | 473            | 17.553           | 83.025           | 32.512           | 1.00 67.28               | c      |
| MOTA         | 3554         | СВ        |            |    | 473            | 17.946           | 82.138           | 33.748           | 1.00 68.23               | С      |
| ATOM         | 3555         |           | VAL        |    |                | 16.700           | 81.383           | 34.408           | 1.00 72.91               | c      |
| MOTA<br>MOTA | 3556<br>3557 | C         | VAL        |    | 473            | 19.091<br>16.222 | 81.184<br>83.572 | 33.423<br>33.032 | 1.00 66.18<br>1.00 68.21 | C      |
| ATOM         | 3558         | ο.        |            |    | 473            | 16.093           | 84.590           | 33.730           | 1.00 68.58               | ō      |
| ATOM         | 3559         | N         |            |    | 474            | 15.185           | 82.861           | 32.682           | 1.00 68.12               | N      |
| ATOM         | 3560         | CA        | ASN        | A  | 474            | 13.896           | 83.296           | 33.173           | 1.00 66.39               | С      |
| ATOM         | 3561         | СВ        |            |    | 474            | 13.306           | 84.344           | 32.257           | 1.00 69.68               | C      |
| ATOM         | 3562         | CG        |            |    | 474            | 13.887           | 85.738           | 32.497           | 1.00 74.57               | C      |
| ATOM<br>ATOM | 3563<br>3564 |           | ASN<br>ASN |    |                | 14.393<br>13.928 | 86.348<br>86.153 | 31.612<br>33.698 | 1.00 81.52<br>1.00 80.22 | O<br>N |
| ATOM         | 3565         | C         |            |    | 474            | 13.925           | 82.139           | 33.232           | 1.00 63.02               | C      |
| ATOM         | 3566         | ō         |            |    | 474            | 12.494           | 81.666           | 32.281           | 1.00 61.74               | ŏ      |
| ATOM         | 3567         | N         |            |    | 475            | 12.917           | 81.638           | 34.437           | 1.00 62.66               | N      |
| ATOM         | 3568         | CA        |            |    | 475            | 12.166           | 80.455           | 34.715           | 1.00 62.09               | C      |
| MOTA<br>MOTA | 3569<br>3570 | С<br>0    |            |    | 475<br>475     | 12.801<br>13.723 | 79.197<br>78.744 | 34.169<br>34.807 | 1.00 61.57<br>1.00 60.50 | C<br>0 |
| W1013        | 3370         | •         | 311        | •  | 113            | 13.723           | 70.744           | J3.00/           | 1.00 00.30               | 0      |

THA COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE COLF OF THE CO

|              |              |          |            |   |            | Fi               | igure            | 2                |                          |   |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------------------------|---|--------|
| ATOM         | 3571         | N        |            |   | 476        | 12.299           | 78.698           | 33.026           | 1.00 59.89               |   | N      |
| ATOM         | 3572         | CA       |            |   | 476        | 12.759           | 77.532           | 32.358           | 1.00 58.52               |   | C      |
| ATOM<br>ATOM | 3573<br>3574 | CB<br>CG |            |   | 476        | 11.597<br>10.855 | 76.507<br>76.126 | 32.207<br>33.479 | 1.00 60.22<br>1.00 59.53 |   | C      |
| MOTA         | 3575         |          |            |   | 476        | 9.485            | 75.890           | 33.420           | 1.00 61.38               |   | č      |
| MOTA         | 3576         |          |            |   | 476        | 8.815            | 75.564           | 34.470           | 1.00 63.90               |   | С      |
| ATOM         | 3577         | CZ       |            |   | 476        | 9.522            | 75.436           | 35.761           | 1.00 65.94               |   | C      |
| ATOM<br>ATOM | 3578<br>3579 |          |            |   | 476<br>476 | 10.782<br>11.480 | 75.642<br>75.990 | 35.838<br>34.650 | 1.00 57.02               |   | C      |
| ATOM         | 3580         | C        |            |   | 476        | 13.331           | 77.840           | 30.910           | 1.00 58.82               |   | Č      |
| ATOM         | 3581         | 0        |            |   | 476        | 13.253           | 77.068           | 29.970           | 1.00 58.47               |   | 0      |
| ATOM         | 3582         | N        |            |   | 477        | 13.841           | 78.998           | 30.637           | 1.00 58.46               | • | N      |
| MOTA<br>MOTA | 3583<br>3584 | CA<br>CB |            |   | 477        | 14.456<br>13.504 | 79.146<br>79.551 | 29.346<br>28.425 | 1.00 56.19<br>1.00 56.12 |   | C      |
| ATOM         | 3585         | C        |            |   | 477        | 15.684           | 80.160           | 29.494           | 1.00 55.58               |   | c      |
| ATOM         | 3586         | 0        | ALA        | A | 477        | 15.572           | 81.172           | 30.352           | 1.00 54.41               |   | 0      |
| ATOM         | 3587         | N        |            |   | 478        | 16.826           | 79.889           | 28.767           | 1.00 48.90               |   | N      |
| ATOM<br>ATOM | 3588<br>3589 | CA<br>CB |            |   | 478<br>478 | 17.892<br>19.106 | 80.862<br>80.437 | 28.808<br>29.582 | 1.00 46.41               |   | C      |
| MOTA         | 3590         | OG       |            |   | 478        | 19.115           | 79.076           | 29.850           | 1.00 60.89               |   | ŏ      |
| ATOM         | 3591         | С        |            |   | 478        | 18.275           | 81.350           | 27.519           | 1.00 39.52               |   | С      |
| MOTA         | 3592         | 0        |            |   | 478        | 17.907           | 80.746           | 26.582           | 1.00 38.61               |   | 0      |
| MOTA<br>MOTA | 3593<br>3594 | N<br>CA  |            |   | 479<br>479 | 18.930<br>19.342 | 82.490<br>82.945 | 27.460<br>26.228 | 1.00 33.46               |   | N<br>C |
| ATOM         | 3595         | ÇB       |            |   | 479        | 18.216           | 83.957           | 25.689           | 1.00 31.39               |   | c      |
| ATOM         | 3596         |          |            |   | 479        | 16.923           | 83.562           | 25.463           | 1.00 30.10               |   | Č      |
| ATOM         | 3597         |          | VAL        |   |            | 18.065           | 85.072           | 26.532           | 1.00 33.31               |   | С      |
| MOTA         | 3598         | C        |            |   | 479        | 20.573           |                  | 26.316           | 1.00 29.61               |   | C      |
| ATOM<br>ATOM | 3599<br>3600 | О<br>И   |            |   | 479<br>480 | 20.783<br>21.253 |                  | 27.306           | 1.00 31.08<br>1.00 25.96 |   | O<br>N |
| ATOM         | 3601         | CA       |            |   | 480        | 22.473           |                  | 25.399           | 1.00 29.92               |   | C      |
| ATOM         | 3602         | CB       |            |   | 480        | 23.188           |                  | 24.052           | 1.00 31.60               |   | С      |
| ATOM         | 3603         | CG       |            |   | 480        | 22.058           |                  | 23.195           | 1.00 23.48               |   | C      |
| ATOM<br>ATOM | 3604<br>3605 | CD<br>C  |            |   | 480<br>480 | 22.248           | 83.430<br>86.124 | 25.454           | 1.00 22.21<br>1.00 33.37 |   | C      |
| ATOM         | 3606         | Ö        |            |   | 480        | 21.134           |                  | 25.232           | 1.00 41.87               |   | ŏ      |
| ATOM         | 3607         | N        | PRO        | A | 481        | 23.149           | 86.955           | 25.844           | 1.00 32.12               |   | N      |
| ATOM         | 3608         | CA       |            |   | 481        | 22.917           | _                | 25.942           | 1.00 32.03               |   | C      |
| MOTA<br>MOTA | 3609<br>3610 | CB<br>CG |            |   | 481<br>481 | 24.077           | 87.859           | 26.910           | 1.00 28.61 1.00 36.01    |   | C      |
| ATOM         | 3611         | CD       |            |   | 481        | 24.368           |                  | 26.535           | 1.00 33.17               |   | č      |
| ATOM         | 3612         | С        | PRO        | A | 481        | 23.107           | 88.921           | 24.646           | 1.00 31.85               |   | С      |
| MOTA         | 3613         | 0        |            |   | 481        | 23.778           |                  | 23.868           | 1.00 39.05               |   | 0      |
| ATOM<br>ATOM | 3614<br>3615 | N<br>CA  |            |   | 482<br>482 | 22.802<br>22.897 | 90.116<br>90.614 | 24.384<br>23.050 | 1.00 30.85               |   | N<br>C |
| ATOM         | 3616         | СВ       |            |   | 482        | 21.997           | 91.955           | 23.014           | 1.00 36.52               |   | Ċ      |
| ATOM         | 3617         | CG       |            |   | 482        | 22.279           | 92.896           | 21.857           | 1.00 34.68               |   | C      |
| ATOM         | 3618         |          | PHE        |   |            | 23.347           | 93.746           | 21.917           | 1.00 35.52               |   | C      |
| ATOM<br>ATOM | 3619<br>3620 | CE1      | PHE        |   | 482<br>482 | 23.591<br>22.818 | 94.583<br>94.523 | 20.857<br>19.752 | 1.00 42.04<br>1.00 35.29 |   | C      |
| ATOM         | 3621         |          | PHE        |   |            | 21.764           | 93.710           | 19.753           | 1.00 33.14               |   | č      |
| MOTA         | 3622         |          | PHE        |   |            | 21.497           | 92.907           | 20.808           | 1.00 29.54               |   | С      |
| MOTA         | 3623         | C        |            |   | 482        | 24.232           | 90.972           | 22.624           | 1.00 33.23               |   | С      |
| ATOM<br>ATOM | 3624<br>3625 | O<br>N   |            |   | 482<br>483 | 24.854<br>24.623 | 91.470<br>90.893 | 23.330<br>21.384 | 1.00 36.50<br>1.00 35.53 |   | O<br>N |
| ATOM         | 3626         | CA       |            |   | 483        | 25.952           | 91.311           | 20.992           | 1.00 34.41               |   | Ċ      |
| ATOM         | 3627         | ÇВ       |            |   | 483        | 26.970           | 90.163           | 21.215           | 1.00 31.37               |   | С      |
| ATOM         | 3628         | CG       |            |   | 483        | 26.706           | 88.919           | 20.355           | 1.00 29.31               |   | c      |
| ATOM<br>ATOM | 3629<br>3630 |          | TYR<br>TYR |   |            | 27.306<br>26.985 | 88.708<br>87.551 | 19.230<br>18.474 | 1.00 35.44<br>1.00 31.41 |   | C      |
| ATOM         | 3631         | CZ       |            |   | 483        | 26.100           | 86.702           | 18.945           | 1.00 32.86               |   | Č      |
| MOTA         | 3632         | ОН       |            |   | 483        | 25.720           | 85.546           | 18.172           | 1.00 33.74               |   | 0      |
| ATOM         | 3633         |          | TYR        |   |            | 25.592           | 86.890           | 20.102           | 1.00 28.78               |   | С      |
| ATOM<br>ATOM | 3634<br>3635 | CD2<br>C | TYR        |   | 483<br>483 | 25.862<br>25.904 | 87.937<br>91.546 | 20.760<br>19.504 | 1.00 32.30<br>1.00 34.06 |   | C      |
| ATOM         | 3636         | 0        |            |   | 483        | 24.970           | 91.318           | 18.969           | 1.00 35.82               |   | Ö      |
| ATOM         | 3637         | N        | GLN        |   |            | 26.937           | 91.930           | 18.892           | 1.00 33.09               |   | N      |
| MOTA         | 3638         | CA       | GLN        |   |            | 27.029           | 92.067           | 17.553           | 1.00 37.56               |   | C      |
| ATOM         | 3639         | CB       | GLN        |   |            | 27.069           | 93.555<br>94.419 | 17.262<br>17.859 | 1.00 38.11<br>1.00 48.84 |   | C      |
| ATOM<br>ATOM | 3640<br>3641 | CG<br>CD | GLN<br>GLN |   |            | 25.750<br>25.693 | 95.916           | 17.839           | 1.00 43.03               |   | ¢      |
| ATOM         | 3642         |          | GLN        |   |            | 26.691           | 96.670           | 17.479           | 1.00 50.28               |   | ŏ      |
| MOTA         | 3643         | NE2      | GLN        | A | 484        | 24.634           | 96.290           | 16.620           | 1.00 45.10               |   | N      |
| MOTA         | 3644         | C        | GLN        |   |            | 28.355           | 91.551           | 16.993           | 1.00 38.46               |   | c      |
| ATOM<br>ATOM | 3645<br>3646 | O<br>N   | GLN<br>LEU |   |            | 29.354<br>28.492 | 91.410<br>91.368 | 17.783<br>15.686 | 1.00 44.48<br>1.00 35.24 |   | о<br>И |
|              | 5010         | ••       | 220        | • |            |                  |                  |                  |                          |   | ••     |

|              |              |          |            |   |            | Fi               | gure             | 2                |                          |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3647         | CA       | LEU        | A | 485        | 29.770           | 90.978           | 15.184           | 1.00 36.57               | С      |
| ATOM         | 3648         | СВ       |            |   | 485        | 29.937           | 89.499           | 15.426           | 1.00 35.43               | С      |
| ATOM         | 3649         | CG       |            |   | 485        | 29.071           | 88.535           | 14.686           | 1.00 33.32               | C      |
| ATOM<br>ATOM | 3650<br>3651 |          |            |   | 485        | 29.382<br>27.741 | 87.082<br>88.636 | 15.026<br>15.204 | 1.00 41.27<br>1.00 45.06 | C      |
| ATOM         | 3652         | C        |            |   | 485        | 29.822           | 91.242           | 13.686           | 1.00 38.80               | č      |
| ATOM         | 3653         | 0        | LEU        | A | 485        | 28.770           | 91.400           | 13.083           | 1.00 39.49               | 0      |
| ATOM         | 3654         | N        |            |   | 486        | 30.990           | 91.198           | 13.054           | 1.00 38.36               | N      |
| ATOM<br>ATOM | 3655<br>3656 | CA<br>CB |            |   | 486        | 31.025<br>32.125 | 91.449<br>92.467 | 11.672<br>11.344 | 1.00 38.88<br>1.00 39.10 | C      |
| ATOM         | 3657         | SG       |            |   | 486        | 32.065           | 93.975           | 12.423           | 1.00 50.86               | s      |
| ATOM         | 3658         | C        | CYS        | A | 486        | 31.412           | 90.187           | 11.022           | 1.00 41.75               | č      |
| MOTA         | 3659         | 0        |            |   | 486        | 32.413           | 89.554           | 11.529           | 1.00 43.95               | 0      |
| ATOM<br>ATOM | 3660<br>3661 | N<br>CA  |            |   | 487<br>487 | 30.789<br>31.303 | 89.794<br>88.627 | 9.894<br>9.297   | 1.00 39.47<br>1.00 37.24 | N<br>C |
| ATOM         | 3662         | СВ       |            |   | 487        | 30.151           | 87.918           | 8.679            | 1.00 37.24               | c      |
| MOTA         | 3663         | ÇG       |            |   | 487        | 29.171           | 87.468           | 9.780            | 1.00 32.50               | С      |
| ATOM         | 3664         |          | PHE        |   |            | 28.305           | 88.292           | 10.282           | 1.00 32.57               | С      |
| ATOM<br>ATOM | 3665<br>3666 | CEI      | PHE        |   | 487        | 27.437<br>27.461 | 87.951<br>86.660 | 11.329<br>11.888 | 1.00 30.85<br>1.00 27.41 | C      |
| ATOM         | 3667         |          | PHE        |   |            | 28.252           | 85.842           | 11.350           | 1.00 37.43               | c      |
| ATOM         | 3668         | CD2      | PHE        | A | 487        | 29.150           | 86.213           | 10.247           | 1.00 32.50               | C      |
| ATOM         | 3669         | C        |            |   | 487        | 32.375           | 88.965           | 8.338            | 1.00 38.78               | С      |
| MOTA<br>MOTA | 3670<br>3671 | O<br>N   |            |   | 487<br>488 | 32.097<br>33.625 | 89.225<br>88.961 | 7.269<br>8.650   | 1.00 44.31<br>1.00 39.02 | O<br>N |
| ATOM         | 3672         | CA       |            |   | 488        | 34.578           | 89.290           | 7.617            | 1.00 39.02               | C      |
| ATOM         | 3673         | CB       |            |   | 488        | 35.887           | 89.707           | 8.249            | 1.00 40.79               | č      |
| ATOM         | 3674         |          | ILE        |   |            | 35.835           | 91.077           | 8.741            | 1.00 42.28               | С      |
| MOTA<br>MOTA | 3675<br>3676 |          | ILE        |   |            | 35.219           | 91.059<br>89.756 | 9.907            | 1.00:53.46               | C      |
| ATOM         | 3677         | C        |            |   | 488        | 36.887<br>35.004 | 88.193           | 7.203<br>6.673   | 1.00 39.89<br>1.00 42.92 | C      |
| ATOM         | 3678         | ō        |            |   | 488        | 35.554           | 87.302           | 7.040            | 1.00 46.24               | ŏ      |
| ATOM         | 3679         | N        |            |   | 489        | 34.947           | 88.278           | 5.395            | 1.00 46.81               | N      |
| ATOM         | 3680         | CA       |            |   | 489        | 35.227           | 87.102           | 4.570            | 1.00 48.03               | c      |
| ATOM<br>ATOM | 3681<br>3682 | CB<br>CG |            |   | 489<br>489 | 34.877<br>33.893 | 87.610<br>88.553 | 3.202<br>3.469   | 1.00 49.28               | C      |
| ATOM         | 3683         | CD       |            |   | 489        | 34.534           | 89.363           | 4.567            | 1.00 45.18               | c      |
| ATOM         | 3684         | С        |            |   | 489        | 36.558           | 86.510           | 4.542            | 1.00 46.48               | Č      |
| ATOM         | 3685         | 0        |            |   | 489        | 37.352           | 87.296           | 4.392            | 1:00 51.27               | 0      |
| ATOM<br>ATOM | 3686<br>3687 | N<br>CA  |            |   | 490<br>490 | 36.796<br>38.129 | 85.229<br>84.776 | 4.665<br>4.765   | 1.00 44.10               | N<br>C |
| ATOM         | 3688         | СВ       | VAL        |   |            | 38.239           | 83.387           | 4.846            | 1.00 42.19               | Č      |
| ATOM         | 3689         |          | VAL        | A | 490        | 37.456           | 82.884           | 5.885            | 1.00 46.14               | С      |
| ATOM         | 3690         |          | VAL        |   |            | 37.875           | 82.742           | 3.552            | 1.00 38.91               | С      |
| ATOM<br>ATOM | 3691<br>3692 | С<br>0   | VAL        |   |            | 38.897<br>38.121 | 85.212<br>85.135 | 3.497<br>2.464   | 1.00 49.07<br>1.00 51.79 | C      |
| ATOM         | 3693         |          | VAL        |   |            | 40.218           | 85.625           | 3.547            | 1.00 52.50               | Ö      |
| TER          | 3693         |          | VAL        | A | 490        |                  |                  |                  |                          |        |
| ATOM         | 3694         | N        | PRO        |   | 30         | 75.460           | 14.590           | 57.916           | 1.00 47.87               | N      |
| ATOM<br>ATOM | 3695<br>3696 | CA<br>CB | PRO<br>PRO |   | 30<br>30   | 76.929<br>77.327 | 14.360<br>14.523 | 57.891<br>56.382 | 1.00 47.01<br>1.00 43.01 | c      |
| ATOM         | 3697         | CG       | PRO        |   | 30         | 76.388           | 14.225           | 55.676           | 1.00 43.01               | c      |
| ATOM         | 3698         | CD       | PRO        | В | 30         | 75.192           | 14.815           | 56.456           | 1.00 49.58               | C      |
| ATOM         | 3699         | С        | PRO        |   | 30         | 77.480           | 15.417           | 58.674           | 1.00 47.20               | С      |
| ATOM<br>ATOM | 3700<br>3701 | O<br>N   | PRO<br>PRO |   | 30<br>31   | 76.799<br>78.595 | 16.433<br>15.169 | 58.664<br>59.347 | 1.00 52.27<br>1.00 45.37 | 0      |
| ATOM         | 3702         | CA       | PRO        |   | 31         | 79.227           | 16.042           | 60.327           | 1.00 45.46               | Ċ      |
| ATOM         | 3703         | СВ       | PRO        |   | 31         | 80.424           | 15.199           | 60.840           | 1.00 46.70               | C      |
| ATOM         | 3704         | CG       | PRO        |   | 31         | 80.788           | 14.463           | 59.787           | 1.00 45.80               | С      |
| ATOM<br>ATOM | 3705<br>3706 | CD       | PRO<br>PRO |   | 31<br>31   | 79.318<br>79.704 | 13.915<br>17.151 | 59.199<br>59.570 | 1.00 43.31<br>1.00 46.58 | C      |
| ATOM         | 3707         | 0        | PRO        |   | 31         | 79.279           | 17.131           | 58.420           | 1.00 49.70               | 0      |
| ATOM         | 3708         | N        | GLY        |   | 32         | 80.545           | 18.063           | 60.072           | 1.00 48.88               | N      |
| MOTA         | 3709         | CA       | GLY        |   | 32         | 81.018           | 19.382           | 59.467           | 1.00 47.50               | С      |
| ATOM<br>ATOM | 3710<br>3711 | С<br>О   | GLY<br>GLY |   | 32<br>32   | 81.105<br>80.324 | 20.672<br>20.945 | 60.389<br>61.361 | 1.00 47.24<br>1.00 50.47 | C<br>O |
| ATOM         | 3712         | N        | PRO        |   | 33         | 81.927           | 21.572           | 60.059           | 1.00 47.16               | N      |
| ATOM         | 3713         | CA       | PRO        |   | 33         | 82.044           | 22.732           | 60.890           | 1.00 49.44               | Ċ      |
| ATOM         | 3714         | СВ       | PRO        |   | 33         | 83.225           | 23.464           | 60.305           | 1.00 43.82               | С      |
| ATOM<br>ATOM | 3715<br>3716 | CG<br>CD | PRO<br>PRO |   | 33<br>33   | 83.151<br>82.294 | 23.194<br>21.913 | 59.109<br>58.759 | 1.00 47.96<br>1.00 46.95 | C      |
| MOTA         | 3717         | C        | PRO        |   | 33         | 80.752           | 23.562           | 60.892           | 1.00 49.47               | C<br>C |
| ATOM         | 3718         | ō        | PRO        |   | 33         | 80.046           | 23.707           | 60.034           | 1.00 52.07               | ŏ      |
| ATOM         | 3719         | N        | THR        |   | 34         | 80.551           | 24.124           | 62.024           | 1.00 53.41               | N      |
| ATOM         | 3720         |          | THR        |   | 34         | 79.333           | 24.896           | 62.518           | 1.00 52.42               | C      |
| MOTA         | 3721         | CD       | THR        | 0 | 34         | 79.416           | 24.995           | 64.053           | 1.00 52.04               | С      |

राज्यस्य स्थापः । १६ ०० प्रश्नास्य स्थापः । १६ ०० प्राप्तास्य स्थापः

grade services of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the

80 BB 19 BA

```
Figure 2
       3722
             OG1 THR B 34
                                 78.768 23.811 64.549
                                                         1.00 56.81
ATOM
       3723
             CG2 THR B 34
                                                64.520
                                                         1.00 55.08
ATOM
                                 78.620
                                        26.165
                                                         1.00 48.18
ATOM
       3724
             С
                  THR B
                         34
                                 79.437
                                         26.173
                                                 61.989
ATOM
       3725
             0
                  THR R
                         34
                                 80.497
                                        26.794
                                                 62.140
                                                         1.00 51.43
       3726
                  PRO B
                                                         1.00 48.04
ATOM
             N
                         35
                                 78.434
                                         26.522
                                                 61.323
MOTA
       3727
             CA
                  PRO B
                        35
                                 78.368
                                         27.773
                                                 60.659
                                                         1.00 50.19
                                                                               С
                                                         1.00 49.74
ATOM
       3728
             CB
                  PRO B
                         35
                                 77.494
                                         27.372
                                                 59.421
ATOM
       3729
             CG
                  PRO B
                         35
                                 76.377
                                         26.608
                                                 60.042
                                                         1.00 46.21
ATOM
       3730
             CD
                  PRO B
                         35
                                 77.214
                                         25.709
                                                 61.037
                                                         1.00 49.26
ATOM
       3731
             C
                  PRO B
                         35
                                 77.754
                                         28.925
                                                 61.434
                                                         1.00 51.13
ATOM
       3732
             0
                  PRO B
                         35
                                 76.741
                                         28.736
                                                 61.949
                                                         1.00 49.60
ATOM
       3733
             N
                  LEU B
                         36
                                 78.387
                                         30.123
                                                 61.354
                                                         1.00 55.78
       3734
                  LEU B
                                 77.991
                                         31.384
                                                 61.949
                                                         1.00 55.53
ATOM
             CA
                         36
       3735
             СВ
                  LEU B
                         36
                                 79.112
                                         32.382
                                                 61.683
                                                         1.00 55.47
ATOM
                                                 62.704
                                                         1.00 55.23
ATOM
       3736
             CG
                  LEU B
                                 80.310
                                         32,127
                                                 62.386
MOTA
       3737
             CD1
                 LEU B
                         36
                                 81.507
                                         33.084
                                                         1.00 56.19
ATOM
       3738
             CD2 LEU B
                         36
                                 79.879
                                         32.261
                                                 64.127
                                                         1.00 53.55
MOTA
       3739
             С
                  LEU B
                         36
                                 76.667
                                         31.878
                                                 61.391
                                                         1.00 58.59
                                                                               C
MOTA
       3740
                  LEU B
                         36
                                 76.245
                                         31.385
                                                 60.379
                                                         1.00 61.62
ATOM
       3741
             N
                  PRO B
                         37
                                 75.988
                                         32.842
                                                 62.015
                                                         1.00 59.76
       3742
             CA
                  PRO B
                        37
                                 74.657
                                         33.291
                                                 61.649
                                                         1.00 59.86
ATOM
MOTA
       3743
             СВ
                  PRO B
                        37
                                 74.473
                                                 62.482
                                                         1.00 62.07
                                         34.657
                                                 63.746
                                 75.201
ATOM
       3744
             CG
                 PRO B 37
                                         34.567
                                                         1.00 61.92
       3745
             CD PRO B 37
                                                 63.167
ATOM
                                 76.442
                                         33.642
                                                         1.00 62.84
       3746
                 PRO B 37
                                 74.451
ATOM
                                         33.486
                                                 60.160
                                                         1.00 58.63
             С
ATOM
       3747
             ٥
                 PRO B 37
                                 73.630
                                         32.803
                                                 59.642
                                                         1.00 62.43
                                 75.105
                                                 59.410
       3748
                 VAL B 38
                                         34.317
ATOM
             N
                                                         1.00 57.44
                                                                               N
       3749
                                 74.702
MOTA
             CA
                 VAL B 38
                                         34.279
                                                 58.009
                                                         1.00 57.89
       3750
ATOM
             CB
                 VAL B 38
                                 73.968
                                         35.544
                                                 57.709
                                                         1.00 61.91
                                                                               С
ATOM
       3751
             CG1 VAL B 38
                                 75.031
                                         36.639
                                                 57.591
                                                         1.00 66.21
ATOM
       3752
             CG2 VAL B 38
                                 73.115
                                         35.505
                                                 56.283
                                                         1.00 62.10
                                                                               C
ATOM
       3753
             С
                 VAL B 38
                                 75.836
                                        34.119
                                                 56.966
                                                         1.00 54.66
       3754
                 VAL B
                        38
                                 75.609
                                        33.860
                                                 55.802
                                                         1.00 53.83
ATOM
             0
       3755
                 ILE B
                                 77.033
                                        34.222
                                                 57.425
                                                         1.00 51.49
       3756
                ILE B
                                 78.167
                                         34.045
                                                 56.704
ATOM
                        39
                                                         1.00 50.41
                                 79.271
MOTA
      3757
             CB ILE B 39
                                         34.722
                                                 57.429
                                                         1.00 51.80
                                                                                ATOM
       3758
             CG1 ILE B
                        39
                                 79.210
                                         34.444
                                                 58.869
                                                         1.00 50.36
                                         34.951
ATOM
       3759
             CD1 ILE B
                        39
                                 80.483
                                                 59.504
                                                         1.00 56.12
                                                                               С
ATOM
       3760
             CG2 ILE B
                        39
                                 79.203
                                         36.167
                                                 57.266
                                                         1.00 56.29
                                                                               С
       3761
                                 78.582
                                         32.550
                                                 56.713
                                                         1.00 50.48
ATOM
                 ILE B
                        39
             С
                                                                              С
ATOM
       3762
                                                 56.436
                 ILE B 39
                                 79.809
                                         32.239
                                                         1.00 48.59
             ٥
                                                                               0
                                 77.708
       3763
ATOM
                 GLY B 40
                                         31.690
                                                 57.177
                                                         1.00 48.88
             N
       3764
ATOM
                 GLY B 40
                                 77.949
                                         30.247
                                                         1.00 46.48
             CA
                                                 57.144
                                                                               С
ATOM
       3765
             С
                 GLY B 40
                                 79.360
                                         29.921
                                                 57.438
                                                         1.00 45.30
                                                                               C
MOTA
       3766
             0
                 GLY B 40
                                 79.922
                                         30.325
                                                 58.461
                                                         1.00 49.05
                                                                               0
ATOM
       3767
             N
                 ASN B 41
                                 80.005
                                        29.130
                                                 56.554
                                                         1.00 45.65
ATOM
       3768
             CA
                 ASN B 41
                                 81.456
                                        28.743
                                                56.809
                                                         1.00 41.81
ATOM
       3769
             CB
                 ASN B 41
                                 81.642
                                         27.272
                                                 56.504
                                                         1.00 41.59
                                                                               C
ATOM
       3770
             CG
                 ASN B 41
                                 80.860
                                         26.335
                                                 57.420
                                                         1.00 41.89
ATOM
       3771
             OD1 ASN B
                        41
                                 81.099
                                         26.171
                                                 58.803
                                                         1.00 42.00
ATOM
       3772
             ND2 ASN B
                        41
                                 79.985
                                         25.623
                                                 56.740
                                                         1.00 35.61
MOTA
       3773
             С
                 ASN B
                        41
                                 82.527
                                         29.464
                                                 56.148
                                                         1.00 40.25
MOTA
       3774
                 ASN B
                        41
                                         29.064
                                                 56.069
                                                         1.00 36.02
                                 83.646
MOTA
       3775
                 ILE B
                                                 55.593
                                                         1.00 41.78
             N
                        42
                                 82.088
                                         30.513
       3776
                                         31.398
                                                 54.914
                                                         1.00 42.42
ATOM
                 ILE B
                        42
                                 83.005
                                                 54.437
ATOM
       3777
             СВ
                 ILE B
                        42
                                 82.316
                                         32.631
                                                         1.00 39.88
ATOM
       3778
             CG1 ILE B
                        42
                                 82.974
                                         33.140
                                                 53.193
                                                         1.00 42.40
MOTA
       3779
             CD1 ILE B
                        42
                                 82.187
                                         34.552
                                                 52.621
                                                         1.00 39.13
                                                                               C
ATOM
       3780
             CG2 ILE B
                                 82.430
                                         33.676
                                                 55.482
                                                         1.00 46.41
                        42
MOTA
       3781
                 ILE B 42
                                 84.224
                                         31.697
                                                 55.769
                                                         1.00 44.12
                                                                               С
             С
                                                 55.178
                                                         1.00 49.96
ATOM
       3782
                 ILE B
                                 85.292
                                         31.819
             0
                        42
                                        31.767
ATOM
                 LEU B 43
                                 84.106
                                                 57.111
                                                         1.00 47.72
                                                                              N
       3783
             N
                                                 57.965
                                                         1.00 49.17
ATOM
       3784
             CA
                 LEU B
                        43
                                85,295
                                         32.008
                                                                              С
MOTA
       3785
             СВ
                 LEU B
                        43
                                84.916
                                         32.167
                                                 59.335
                                                         1.00 45.58
                                                                               C
ATOM
       3786
             CG
                 LEU B
                        43
                                84.890
                                         33.658
                                                 59.677
                                                         1.00 51.72
                                                                               C
ATOM
       3787
             CD1 LEU B 43
                                 85.418
                                        34.598
                                                58.662
                                                         1.00 52.62
       3788
                                 83.400
                                         34.121
                                                 60.056
                                                         1.00 57.54
ATOM
             CD2 LEU B
                        43
                                         30.791
                                                 57.799
                                                         1.00 52.26
ATOM
       3789
                 LEU B
                       43
                                 86.404
       3790
                                         30.971
                                                 57.788
ATOM
                 LEU B
                        43
                                 87.574
                                                         1.00 49.28
                                85.930
                                        29.608
ATOM
      3791
                 GLN B
                        44
                                                 57.628
                                                         1.00 52.83
ATOM
       3792
             CA
                 GLN B
                        44
                                 86.721
                                        28.435
                                                 57.409
                                                         1.00 55.18
      3793
                 GLN B
                                 85.886
                                        27.168
                                                 57.784
                                                         1.00 55.78
ATOM
             CB
                        44
                                 85.053
                                                 59.086
                                                         1.00 69.38
ATOM
       3794
             CG
                 GLN B
                        44
                                        27.384
                                        26.262
                                                 60.026
                                85.455
                                                         1.00 82.69
ATOM
       3795
             CD
                 GLN B
                        44
                                                                              С
                                                 59.714
                                        25.089
                                                         1.00 83.85
ATOM
       3796
             OET GLN B
                                85.166
                        44
                                        26.593
                                                 61.181
                                                         1.00 87.73
ATOM
      3797
             NE2 GLN B
                                86.154
```

Take the contract of the second

```
Figure 2
MOTA
        3798
              С
                   GLN B
                          44
                                   87.070 28.311
                                                           1.00 53.63
                                                   55.915
MOTA
        3799
                   GLN B
                                                            1.00 59.45
              0
                                   88.209
                                           28.598
                                                    55.561
        3800
                   ILE B
                                                            1.00 49.74
ATOM
                          45
                                   86.182
                                           27.809
                                                    55.028
ATOM
        3801
                  ILE B
                                   86.546
                                           27.814
                                                    53.583
                                                            1.00 50.28
ATOM
        3802
                  ILE B
                          45
                                   85.530
                                           27.370
                                                    52.643
                                                            1.00 49.01
ATOM
        3803
              CG1 ILE B
                          45
                                   84.635
                                           28.425
                                                    52.470
                                                            1.00 44.65
MOTA
        3804
              CD1 ILE B
                          45
                                   83.234
                                           27.856
                                                    52.142
                                                            1.00 57.47
        3805
              CG2 ILE B
                                   84.790
                                                    53.277
                                                             1.00 56.74
ATOM
                          45
                                           26.110
        3806
              С
                  ILE B
ATOM
                                   87.166
                                                    52.932
                                                             1,00 50.12
                          45
                                           28.948
                                                                                   C
        3807
                  ILE B
ATOM
              0
                                                            1.00 49.60
                          45
                                   88.099
                                           28.885
                                                    52,204
                                                                                   0
ATOM
        3808
              N
                  GLY B
                                                    53.173
                                                            1.00 51.16
                          46
                                   86.687
                                           30.062
        3809
                  GLY B
                                           31.181
ATOM
              CA
                          46
                                   87.303
                                                    52.465
                                                            1.00 50.62
                                                                                   C
ATOM
        3810
              С
                  GLY B
                          46
                                   86.670
                                           31.477
                                                    51.159
                                                            1.00 51.58
                                                                                   С
MOTA
        3811
                  GLY B
              ٥
                          46
                                   85.553
                                           30.991
                                                    50.886
                                                            1.00 52.19
                                                                                   0
                                                            1.00 54.80
ATOM
        3812
              N
                  ILE B
                          47
                                   87.368
                                           32,181
                                                    50.247
                  TLE B
ATOM
        3813
              CA
                          47
                                   86,796
                                           32.683
                                                    48.948
                                                            1.00 53.32
                                                                                   С
ATOM
        3814
              CB
                 ILE B
                          47
                                   86.409
                                           33.892
                                                    49.268
                                                            1.00 52.70
ATOM
        3815
              CG1 ILE B
                          47
                                   85.788
                                           34.556
                                                    48.105
                                                            1.00 60.12
                                                                                   С
ATOM
        3816
              CD1 ILE B
                          47
                                   85.835
                                           36.285
                                                    48.198
                                                            1.00 56.67
MOTA
        3817
              CG2 ILE B
                          47
                                   87.672
                                           34.633
                                                    49.689
                                                            1.00 58.72
MOTA
        3818
              С
                  ILE B
                          47
                                   87.889
                                           32.702
                                                    47.829
                                                            1.00 55.60
ATOM
        3819
              ٥
                  ILE B
                          47
                                   87.581
                                           32.738
                                                    46.684
                                                            1.00 58.35
                                                                                   0
ATOM
        3820
              N
                  LYS B
                          48
                                   89.167
                                           32.871
                                                    48.028
                                                            1.00 58.03
ATOM
        3821
              CA
                  LYS B
                          48
                                   90.299
                                           32.266
                                                    47.233
                                                            1.00 62.16
                                                                                   С
MOTA
        3822
              СВ
                  LYS B
                          48
                                   91.660
                                                    47.867
                                           32.659
                                                            1.00 63.34
                                                                                   С
ATOM
        3823
              ÇG
                  LYS B
                          48
                                   91.819
                                           32.315
                                                    49.464
                                                            1.00 69.55
                                                                                   С
                                           33.510
                                                    50.251
ATOM
        3824
              CD
                  LYS B
                          48
                                   92.833
                                                            1.00 76.10
                                                                                   С
ATOM
        3825
              CE
                  LYS B
                          48
                                   93.195
                                           33.292
                                                    51.837
                                                            1.00 76.43
                                                                                   C
MOTA
        3826
              ΝZ
                  LYS B
                          48
                                   92.125
                                           33.102
                                                    52.868
                                                            1.00 72.87
ATOM
        3827
              C
                  LYS B
                          48
                                   90.338
                                           30.643
                                                    46.928
                                                            1.00 62.36
                                                                                   C
ATOM
        3828
                  LYS B
                                  89.557
                                           30.288
                                                    46.100
              0
                          48
                                                            1.00 64.15
                                                                                   0
ATOM
        3829
              N
                  ASP B
                                  91.170
                                           29.686
                                                            1.00 60.80
                          49
                                                    47.466
                                                                                   N
        3830
                 ASP B
                                           28.213
                                                    47.081
ATOM
             .CA
                          49
                                  91.297
                                                            1.00 61.80
                                                                                   С
ATOM
        3831
             CB ASP B
                          49
                                  92.793
                                           27.585
                                                    47.361
                                                            1.00 65.85
                                                                                   C
ATOM
        3832
                 ASP B
                          49
                                  93.242
                                           26.151
                                                            1.00 72.42
                                                                                   C
              CG
                                                    46.439
ATOM
                                  94.485
              OD1 ASP B
                                                            1.00 76.34
        3833
                          49
                                           25.822
                                                    46.409
                                                                                   0
ATOM
              OD2 ASP B
        3834
                          49
                                  92.502
                                           25.335
                                                    45.733
                                                            1.00 76.40
                                                                                   0
ATOM
        3835
              С
                  ASP B
                          49
                                  90.406
                                           27.343
                                                    47.922
                                                            1.00 59.82
                                                                                   ¢
ATOM
       3836
              0
                  ASP B
                          49
                                  90.935
                                           26.471
                                                    48.714
                                                            1.00 58.08
                                                                                   0
ATOM
        3837
              N
                  ILE B
                          50
                                  89.081
                                           27.543
                                                    47.765
                                                            1.00 57.61
ATOM
       3838
              CA
                 ILE B
                          50
                                  88.149
                                           26.755
                                                    48.565
                                                            1.00 57.92
                                                                                   С
ATOM
       3839
              CB
                 ILE B
                          50
                                  86.712
                                           26.987
                                                    48.267
                                                            1.00 56.50
ATOM
       3840
              CG1 ILE B
                          50
                                  86.417
                                           26.121
                                                    47.186
                                                            1.00 61.51
ATOM
              CD1 ILE B
                                  85.496
                                           25.153
                                                    47.559
       3841
                                                            1.00 66.31
ATOM
       3842
              CG2 ILE B
                                  86.388
                          50
                                           28.548
                                                    47.864
                                                            1.00 57.40
                                  88.539
ATOM
       3843
                  ILE B
                                           25.265
                                                    48.535
                                                            1.00 57.20
MOTA
       3844
                  ILE B
                         50
                                  88.413
                                           24.508
                                                    49.500
                                                            1.00 58.03
ATOM
       3845
              N
                  SER B
                         51
                                  89.111
                                           24.881
                                                    47.473
                                                            1.00 55.88
ATOM
       3846
              CA
                  SER B
                         51
                                  89.627
                                           23.565
                                                    47.382
                                                            1.00 58.09
ATOM
       3847
              СВ
                  SER B
                         51
                                  90.247
                                           23.324
                                                   45.910
                                                            1.00 61.88
                                                                                   С
ATOM
       3848
              OG
                                                   45.034
                  SER B
                         51
                                  90.461
                                           24.494
                                                            1.00 63.39
                                                                                   0
ATOM
       3849
              С
                  SER B
                         51
                                  90.709
                                           23,167
                                                   48.373
                                                            1.00 56.68
                                                                                   С
ATOM
       3850
              0
                  SER B
                                  90.863
                                                   48.932
                                                            1.00 48.94
                                                                                   0
                         51
                                           22.018
                                  91.529
ATOM
       3851
              N
                  LYS B
                         52
                                           24.139
                                                   48.610
                                                            1.00 59.10
                                           23.789
ATOM
       3852
              CA
                                  92.580
                                                   49.603
                                                            1.00 62.20
                  LYS B
                         52
                                           24.785
ATOM
       3853
              CB
                 LYS B
                         52
                                  93.651
                                                   49.584
                                                            1.00 65.28
                                                                                   С
                                           24.072
                                                            1.00 75.75
ATOM
       3854
              CG
                  LYS B
                         52
                                  95.018
                                                   49.203
                                                                                   C
                                                            1.00 78.84
ATOM
       3855
              CD
                 LYS B
                         52
                                  94.954
                                           23.235
                                                   47.743
                                                                                   C
ATOM
       3856
              CE
                  LYS B
                         52
                                  96.172
                                           22.348
                                                   47.450
                                                            1.00 81.22
                                                                                   C
MOTA
       3857
              NZ
                  LYS B
                         52
                                  96.121
                                           21.688
                                                   45.992
                                                            1.00 79.38
                                                                                   N
ATOM
       3858
              С
                  LYS B
                         52
                                  92.095
                                           23.640
                                                   51.045
                                                            1.00 59.66
                                                                                   C
MOTA
       3859
              0
                  LYS B
                         52
                                  92.598
                                           22.807
                                                   51.803
                                                            1.00 65.69
                                                                                   ٥
ATOM
              N
                                  91.066
                                           24.337
                                                   51.424
                                                            1.00 52.49
       3860
                  SER B
ATOM
              CA
                         53
                                  90.559
                                           24.114
                                                   52.674
                                                            1.00 48.56
                                                                                   C
       3861
                  SER B
ATOM
       3862
              СВ
                  SER B
                                  89.794
                                           25.424
                                                   53.180
                                                            1.00 47.78
                                  89.039
                                           25.863
                                                   52.191
                                                            1.00 49.78
ATOM
       3863
              OG
                  SER B
                                                   52.779
                                                            1.00 49.78
ATOM
       3864
              С
                  SER B
                                  89.716
                                           22.858
MOTA
       3865
              0
                  SER B
                         53
                                  89.401
                                           22.415
                                                   53.916
                                                            1.00 52.66
ATOM
                  LEU B
                                  89.196
                                           22.297
                                                   51.668
                                                            1.00 48.80
       3866
              N
                         54
                                  88.329
                                           21.125
                                                   51.674
                                                            1.00 44.30
ATOM
              CA
                  LEU B
                         54
       3867
                                  87.889
                                                            1.00 40.93
                  LEU B
                                           20.915
                                                   50.270
ATOM
       3868
             CB
                         54
                  LEU B
                                           21.748
                                                            1.00 44.27
ATOM
       3869
                         54
                                  86,790
                                                   50,005
             CG
ATOM
       3870
             CD1 LEU B
                         54
                                  86.275
                                           21.425
                                                   48,600
                                                           1.00 47.53
                                                                                   C
ATOM
       3871
             CD2 LEU B
                         54
                                  85.755
                                           21.621
                                                   50.842
                                                           1.00 40.38
ATOM
       3872
             С
                  LEU B
                         54
                                  89.334
                                           19.929
                                                   51.992
                                                           1.00 44.15
                                                                                   C
ATOM
       3873
              ۵
                  LEU B
                         54
                                  89.103
                                          18.956
                                                   52.781
                                                           1.00 44.48
```

19<sub>42</sub> 0

Security The

1541 14

4 3 37 100

111

131

4954 1715 452 158

\$77.57

1829 H. 1928

38-51 10/2 FSF

7.9 73,7

A457

35.52

3.34

156

- CO: 1555

|              |              |            |            |   |          | -<br>न            | igure            | 2                 |                          |        |
|--------------|--------------|------------|------------|---|----------|-------------------|------------------|-------------------|--------------------------|--------|
| ATOM         | 3874         | N          | THE        |   | 55       | 90.469            | 19.918           | 51.431            |                          | N      |
| ATOM<br>ATOM | 3875<br>3876 | CA<br>CB   | THE        |   | 55<br>55 | 91.183            | 18.750           | 51.857            | 1.00 42.90<br>1.00 43.63 | C      |
| ATOM         | 3877         |            | THE        |   | 55       | 92.380<br>92.008  | 18.600<br>17.883 | 51.029<br>49.841  | 1.00 43.63               | C<br>0 |
| ATOM         | 3878         | CG2        | THE        | В | 55       | 93.446            | 17.780           | 51.668            | 1.00 37.65               | С      |
| ATOM         | 3879<br>3880 | C          | THE        |   | 55       | 91.631            | 18.926           | 53.355            | 1.00 45.05               | C      |
| ATOM<br>ATOM | 3881         | O<br>N     | ASN        |   | 55<br>56 | 91.667<br>91.881  | 18.109<br>20.072 | 54.073<br>53.870  | 1.00 45.08<br>1.00 46.03 | O<br>N |
| ATOM         | 3882         | CA         | ASN        |   | 56       | 92.115            | 20.257           | 55.324            | 1.00 40.78               | c<br>c |
| ATOM         | 3883         | CB         | ASN        |   | 56       | 92.508            | 21.677           | 55.669            | 1.00 38.86               | C      |
| ATOM<br>ATOM | 3884<br>3885 | CG<br>OD1  | ASN<br>ASN |   | 56<br>56 | 93.960<br>94.608  | 21.884<br>20.984 | 55.404<br>55.083  | 1.00 42.30<br>1.00 44.35 | . C    |
| ATOM         | 3886         |            | ASN        |   | 56       | 94.457            | 23.001           | 55.510            | 1.00 48.99               | N      |
| ATOM         | 3887         | C          | ASN        |   | 56       | 90.867            | 19.881           | 56.116            | 1.00 39.76               | c      |
| ATOM<br>ATOM | 3888<br>3889 | O<br>N     | ASN<br>LEU |   | 56<br>57 | 90.896<br>89.751  | 19.084<br>20.280 | 57.033<br>55.767  | 1.00 44.25<br>1.00 35.94 | O<br>N |
| ATOM         | 3890         | CA         | LEU        |   | 57       | 88.616            | 19.826           | 56.471            | 1.00 37.33               | č      |
| MOTA         | 3891         | CB         | LEU        |   | 57       | 87.373            | 20.463           | 55.912            | 1.00 38.93               | c      |
| MOTA<br>MOTA | 3892<br>3893 | CG<br>CD1  | LEU        |   | 57<br>57 | 87.248<br>86.255  | 22.021<br>22.806 | 56.175<br>55.418  | 1.00 37.93<br>1.00 45.07 | C      |
| ATOM         | 3894         |            | LEU        |   | 57       | 86.959            | 22.243           | 57.598            | 1.00 45.72               | · č    |
| MOTA         | 3895         | C          | LEU        |   | 57       | 88.520            | 18.324           | 56.455            | 1.00 41.03               | · C    |
| MOTA<br>MOTA | 3896<br>3897 | O<br>N     | LEU        |   | 57<br>58 | 88.197<br>88.852  | 17.655<br>17.691 | 57.347<br>55.400  | 1.00 42.27<br>1.00 45.83 | N<br>O |
| ATOM         | 3898         | CA         | SER        |   | 58       | 88.683            | 16.169           | 55.408            | 1.00 44.45               | Č      |
| ATOM         | 3899         | CB         | SER        |   | 58       | 88.943            | 15.544           | 54.017            | 1.00 43.28               | С      |
| MOTA<br>MOTA | 3900<br>3901 | OG<br>C    | SER        |   | 58<br>58 | 90.289<br>89.382  | 15.430<br>15.475 | 53.772<br>56.511  | 1.00 39.14<br>1.00 41.63 | 0<br>C |
| ATOM         | 3902         | ŏ          | SER        |   | 58       | 88.902            | 14.473           | 57.023            | 1.00 42.39               | ŏ      |
| ATOM         | 3903         | N          | LYS        |   | 59       | 90.464            | 16.000           | 56.859            | 1.00 38.60               | N      |
| ATOM<br>ATOM | 3904<br>3905 | CA<br>CB   | LYS        |   | 59<br>59 | 91.345            | 15.428<br>16.281 | 57.802<br>·57.715 | 1.00 39.43<br>1.00 40.24 | C<br>C |
| ATOM         | 3906         | CG         | LYS        |   | 59       | 93.801            |                  | 57.126            | 1.00 40.57               | c      |
| ATOM         | 3907         | CD         | LYS        |   | 59       | 93.704            |                  | 55.618            | 1.00 50.86               | С      |
| ATOM<br>ATOM | 3908<br>3909 | CE<br>NZ   | LYS<br>LYS |   | 59<br>59 | 95:.121           | 14.715<br>15.644 | 55.098<br>55.969  | 1.00 45.03<br>1.00 55.12 | C<br>N |
| ATOM         | 3910         | C          | LYS        |   | 59       |                   | 15.573           | 59.267            | 1.00 43.28               | C      |
| MOTA         | 3911         | 0          | LYS        |   | 59       | 91.330            | 15.013           | 60.252            | 1.00 44.59               | 0      |
| ATOM<br>ATOM | 3912<br>3913 | N<br>CA    | VAL<br>VAL |   | 60<br>60 |                   | 16.260<br>16.275 | 59.396<br>60.544  | 1.00 40.60<br>1.00 35.94 | N<br>C |
| ATOM         | 3914         | CB         | VAL        |   | 60       | 88'.969           | 17.636           | 61.228            | 1.00 38.05               | c      |
| ATOM         | 3915         |            | VAL        |   | 60       | 89.754            | 18.580           | 60.457            | 1.00 39.64               | С      |
| MOTA<br>MOTA | 3916<br>3917 | CG2<br>C   | VAL<br>VAL |   | 60<br>60 | 87.577<br>87.530  | 18.279<br>15.962 | 61.795<br>60.295  | 1.00 36.57<br>1.00 35.88 | C<br>C |
| ATOM         | 3918         | ŏ          | VAL        |   | 60       | 86.855            | 15.589           | 61.181            | 1.00 35.00               | Ö      |
| ATOM         | 3919         | N          | TYR        |   | 61       | 86.936            | 16.031           | 59.211            | 1.00 33.47               | N      |
| ATOM<br>ATOM | 3920<br>3921 | CA<br>CB   | TYR<br>TYR |   | 61<br>61 | 85.571<br>84.521  | 15.567<br>16.523 | 59.473            | 1.00 36.43<br>1.00 38.62 | C      |
| ATOM         | 3922         |            | TYR        |   | 61       | 84.534            | 17.812           | 59.060<br>59.946  | 1.00 47.68               | c      |
| ATOM         | 3923         |            | TYR        |   | 61       | 83.652            | 17.915           | 61.040            | 1.00 49.23               | С      |
| ATOM<br>ATOM | 3924<br>3925 | CE1        | TYR<br>TYR |   | 61<br>61 | 83.634<br>84.498  | 19.035<br>19.994 | 61.793<br>61.529  | 1.00 46.91<br>1.00 50.01 | c<br>c |
| ATOM         | 3926         | OH         | TYR        |   | 61       | 84.547            | 21.095           | 62.364            | 1.00 52.78               | Ö      |
| ATOM         | 3927         |            | TYR        |   | 61       | 85.395            | 19.882           | 60.457            | 1.00 48.76               | c      |
| MOTA<br>MOTA | 3928<br>3929 | CD2        | TYR<br>TYR |   | 61<br>61 | 85.393<br>85.313  | 18.874<br>14.262 | 59.696<br>58.750  | 1.00 43.55<br>1.00 39.55 | C<br>C |
| ATOM         | 3930         | ŏ          | TYR        |   | 61       | 84.128            | 13.709           | 58.737            | 1.00 38.50               | ŏ      |
| ATOM         | 3931         | N          | GLY        |   | 62       | 86.360            | 13.705           | 58.047            | 1.00 37.79               | N      |
| MOTA<br>MOTA | 3932<br>3933 | CA<br>C    | GLY<br>GLY |   | 62<br>62 | 85.973<br>85.949  | 12.466<br>12.748 | 57.386<br>55.929  | 1.00 38.02<br>1.00 39.51 | c<br>c |
| ATOM         | 3934         | ŏ          | GLY        |   | 62       | 86.387            | 13.736           | 55.456            | 1.00 43.56               | ŏ      |
| ATOM         | 3935         | N          | PRO        |   | 63       | 85.590            | 11.721           | 55.200            | 1.00 38.18               | N      |
| ATOM<br>ATOM | 3936<br>3937 | CA<br>CB   | PRO<br>PRO |   | 63<br>63 | 85.497<br>85.685  | 11.820<br>10.344 | 53.759<br>53.360  | 1.00 35.21<br>1.00 36.82 | C<br>6 |
| ATOM         | 3938         | CG         | PRO        |   | 63       | 84.943            | 9.620            | 54.377            | 1.00 30.94               | č      |
| MOTA         | 3939         | CD         | PRO        | В | 63       | 85.149            | 10.438           | 55.709            | 1.00 33.62               | С      |
| ATOM<br>ATOM | 3940         | C          | PRO        |   | 63       | 84.194            | 12.200           | 53.416            | 1.00 36.00<br>1.00 43.66 | C      |
| ATOM         | 3941<br>3942 | O<br>N     | PRO<br>VAL |   | 63<br>64 | 8,4.069<br>83.227 | 12.455<br>12.232 | 52.298<br>54.353  | 1.00 43.66               | О<br>И |
| MOTA         | 3943         | CA         | VAL        | В | 64       | 81.959            | 12.682           | 53.798            | 1.00 34.63               | С      |
| ATOM<br>ATOM | 3944         | CB<br>CC1  | VAL        |   | 64       | 80.980            | 11.793           | 53.797            | 1.00 36.01               | C      |
| ATOM         | 3945<br>3946 | CG1<br>CG2 |            |   | 64<br>64 | 79.601<br>81.357  | 12.246<br>10.677 | 53.348<br>52.921  | 1.00 31.28               | c<br>c |
| MOTA         | 3947         | С          | VAL        | В | 64       | 81.393            | 13.827           | 54.602            | 1.00 38.95               | С      |
| MOTA         | 3948         |            | VAL        |   | 64       | 80.452            | 13.577           | 55.344            | 1.00 35.41               | 0      |
| MOTA         | 3949         | N          | PHE        | B | 65       | 81.922            | 15.061           | 54.476            | 1.00 40.28               | N      |

|              |              |           |            |     |          | F                | igure            | 2                  |                          |   |        |
|--------------|--------------|-----------|------------|-----|----------|------------------|------------------|--------------------|--------------------------|---|--------|
| ATOM         | 3950         | CA        | PHE        | : в | 65       | 81.363           | 16.183           | 55.291             | 1.00 42.07               |   | С      |
| ATOM         | 3951         | CB        | PHE        |     | 65       | 82.433           | 17.073           | 55.845             | 1.00 43.43               |   | C      |
| MOTA<br>MOTA | 3952<br>3953 | CG<br>CD1 | PHE        |     | 65<br>65 | 83.476<br>84.623 | 17.518<br>16.849 | 54.991<br>54.727   | 1.00 38.81               |   | C      |
| ATOM         | 3954         |           | PHE        |     | 65       | 85.637           | 17.406           | 53.912             | 1.00 40.35               |   | С      |
| ATOM         | 3955         | CZ        | PHE        |     | 65       | 85.424           | 18.756           | 53.430             | 1.00 41.42               |   | C      |
| ATOM         | 3956<br>3957 |           | PHE        |     | 65<br>65 | 84.332           | 19.336           | 53.759             | 1.00 35.41               |   | C      |
| MOTA<br>MOTA | 3958         | CDZ       | PHE        |     | 65<br>65 | 83.356<br>80.381 | 18.682<br>17.278 | 54.557<br>54.830   | 1.00 44.67               |   | C      |
| ATOM         | 3959         | ō         | PHE        |     | 65       | 80.131           | 17.355           | 53.648             | 1.00 47.32               |   | ŏ      |
| ATOM         | 3960         | N         | THR        |     | 66       | 79.872           | 18.094           | 55.775             | 1.00 44.55               |   | N      |
| atom<br>Mota | 3961<br>3962 | CA<br>CB  | THR        |     | 66<br>66 | 78.993<br>77.785 | 19.211<br>19.223 | 55.443<br>56.192   | 1.00 45.85               |   | C      |
| ATOM         | 3963         |           | THR        |     | 66       | 76.924           | 18.011           | 55.885             | 1.00 51.79               |   | 0      |
| MOTA         | 3964         |           | THR        |     | 66       | 76.887           | 20.446           | 55.742             | 1.00 45.43               |   | С      |
| ATOM         | 3965         | С<br>0    | THR        |     | 66       | 79.548           | 20.571           | 55.590             | 1.00 47.13               |   | C      |
| MOTA<br>MOTA | 3966<br>3967 | N         | THR        |     | 66<br>67 | 80.205<br>79.339 | 20.973           | 56.622<br>54.516   | 1.00 50.00<br>1.00 47.52 |   | N      |
| ATOM         | 3968         | CA        | LEU        |     | 67       | 79.796           | 22.770           | 54.431             | 1.00 46.96               |   | Ċ      |
| MOTA         | 3969         | CB        | LEU        |     | 67       | 80.816           | 22.932           | 53.330             | 1.00 47.17               |   | C      |
| ATOM<br>ATOM | 3970<br>3971 | CG<br>CD1 | LEU        |     | 67<br>67 | 82.092<br>82.572 | 23.617<br>22.873 | 53.773<br>55.025   | 1.00 53.14<br>1.00 62.54 |   | C      |
| ATOM         | 3972         |           | LEU        |     | 67       | 83.122           | 23.461           | 52.621             | 1.00 54.61               |   | č      |
| ATOM         | 3973         | С         | LEU        |     | 67       | 78.595           | 23.671           | 54.165             | 1.00 47.39               | • | С      |
| ATOM         | 3974         | 0         | LEU        |     | 67       | 77.603           | 23.338           | 53.573             | 1.00 47.16               |   | 0      |
| ATOM<br>ATOM | 3975<br>3976 | N<br>CA   | TYR        |     | 68<br>68 | 78.836<br>77.908 | 24.954<br>26.153 | 54.587<br>54.419   | 1.00 50.90<br>1.00 49.69 |   | N<br>C |
| ATOM         | 3977         | СВ        | TYR        |     | 68       | 77.298           | 26.719           | 55.749             | 1.00 51.66               | • | č      |
| MOTA         | 3978         | CG        | TYR        |     | 68       | 76.208           | 25.730           |                    | 1.00 52.44               |   | c      |
| ATOM<br>ATOM | 3979<br>3980 |           | TYR<br>TYR |     | 68<br>68 | 76.528<br>75.484 | 24.734<br>23.868 | 57.236°<br>57.686° | 1.00 46.82               |   | C      |
| MOTA         | 3981         | CZ        | TYR        |     | 68       | 74.196           | 24.015           |                    | 1.00 49.11               |   | c      |
| ATOM         | 3982         | OH        | TYR        |     | 68       | 73.225           | 23.203           |                    | 1.00 55.73               | • | 0      |
| ATOM         | 3983         |           | TYR        |     | 68       | 73.876           | 24.933           | 56.313             | 1.00 44.01               |   | C      |
| atom<br>atom | 3984<br>3985 | CDZ       | TYR<br>TYR |     | 68<br>68 | 74.859<br>78.256 | 25.804<br>27.219 |                    | 1.00 51.16               |   | C      |
| ATOM         | 3986         | ŏ         | TYR        |     | 68       | 79.265           | 27.946           |                    | 1.00 47.21               |   | ŏ      |
| ATOM         | 3987         | N         | PHE        |     | 69       | 77.442           | 27.402           |                    | 1.00 48.74               |   | N      |
| atom<br>Atom | 3988<br>3989 | CA<br>CB  | PHE        |     | 69<br>69 | 77.650<br>77.664 | 28.560<br>28.157 |                    | 1.00 48.54               |   | C      |
| ATOM         | 3990         | CG        | PHE        |     | 69       | 79.013           | 27.610           | 49.752             | 1.00 57.93               | • | č      |
| ATOM         | 3991         |           | PHE        |     | 69       | 80.075           | 28.373           | 49.739             | 1.00 65.11               |   | C      |
| ATOM<br>ATOM | 3992<br>3993 |           | PHE        |     | 69<br>69 | 81.226<br>81.372 | 27.924           | 49.393             | 1.00 69.09<br>1.00 72.14 |   | C      |
| ATOM         | 3994         | CZ<br>CE2 | PHE        |     | 69       | 80.377           | 26.649<br>25.845 | 49.082<br>49.102   | 1.00 72.14               |   | C      |
| ATOM         | 3995         |           | PHE        |     | 69       | 79.153           | 26.338           | 49.436             | 1.00 71.47               |   | С      |
| ATOM         | 3996         | C         | PHE        |     | 69       | 76.451           | 29.324           | 51.973             | 1.00 48.77               |   | С      |
| ATOM<br>ATOM | 3997<br>3998 | N<br>N    | PHE        |     | 69<br>70 | 75.300<br>76.648 | 29.153<br>30.151 | 51.507<br>52.934   | 1.00 46.72<br>1.00 50.47 |   | O<br>N |
| ATOM         | 3999         | CA        | GLY        |     | 70       | 75.456           | 30.764           | 53.415             | 1.00 48.11               |   | c      |
| MOTA         | 4000         | С         | GLY        |     | 70       | 74.631           | 30.028           | 54.207             | 1.00 45.52               |   | С      |
| MOTA<br>MOTA | 4001<br>4002 | 0         | GLY<br>LEU |     | 70<br>71 | 75.101<br>73.427 | 29.591<br>29.917 | 55.180<br>53.725   | 1.00 52.23               |   | O<br>N |
| ATOM         | 4002         | N<br>CA   | LEU        |     | 71       | 72.422           | 29.084           | 54.330             | 1.00 48.93               |   | Ċ      |
| ATOM         | 4004         | СВ        | LEU        | В   | 71       | 71.096           | 29.852           | 54.360             | 1.00 50.86               |   | С      |
| ATOM         | 4005         | CG        | LEU        |     | 71       | 71.173           | 31.344           | 54.921             | 1.00 45.64               |   | C      |
| ATOM<br>ATOM | 4006<br>4007 |           | LEU        |     | 71<br>71 | 69.740<br>71.474 | 31.839<br>31.176 | 54.693<br>56.341   | 1.00 44.88               |   | C      |
| MOTA         | 4008         | C         | LEU        |     | 71       | 72.333           | 27.873           | 53.421             | 1.00 52.88               |   | c      |
| ATOM         | 4009         | 0         | LEU        |     | 71       | 71.421           | 26.958           | 53.609             | 1.00 55.93               |   | 0      |
| MOTA<br>MOTA | 4010<br>4011 | N<br>CA   | LYS<br>LYS |     | 72<br>72 | 73.219<br>73.161 | 27.770<br>26.654 | 52.421<br>51.562   | 1.00 54.18<br>1.00 52.79 |   | N      |
| ATOM         | 4012         | CB        | LYS        |     | 72       | 73.585           | 27.082           | 50.222             | 1.00 55.31               |   | č      |
| ATOM         | 4013         | CG        | LYS        |     | 72       | 73.091           | 26.064           | 49.038             | 1.00 56.33               |   | С      |
| ATOM         | 4014         | CD        | LYS        |     | 72<br>72 | 72.808<br>73.212 | 26.752<br>25.861 | 47.725<br>46.451   | 1.00 57.50<br>1.00 61.21 |   | C      |
| ATOM<br>ATOM | 4015<br>4016 | CE<br>NZ  | LYS<br>LYS |     | 72<br>72 | 72.334           | 24.684           | 46.431             | 1.00 61.21               |   | N      |
| ATOM         | 4017         | c         | LYS        |     | 72       | 74.124           | 25.506           | 52.168             | 1.00 54.40               |   | С      |
| ATOM         | 4018         | 0         | LYS        |     | 72       | 75.356           | 25.622           | 52.471             | 1.00 53.49               |   | 0      |
| MOTA<br>MOTA | 4019<br>4020 | N<br>CA   | PRO<br>PRO |     | 73<br>73 | 73.452<br>74.083 | 24.412<br>23.189 | 52.452<br>52.974   | 1.00 53.57<br>1.00 51.65 |   | N<br>C |
| ATOM         | 4021         | CB        | PRO        |     | 73<br>73 | 72.857           | 22.461           | 53.567             | 1.00 50.45               |   | c      |
| MOTA         | 4022         | CG        | PRO        | В   | 73       | 71.793           | 22.852           | 52.607             | 1.00 49.75               |   | С      |
| ATOM         | 4023         | CD        | PRO        |     | 73       | 71.957           | 24.325           | 52.378             | 1.00 50.95               |   | C      |
| ATOM<br>ATOM | 4024<br>4025 | 0         | PRO<br>PRO |     | 73<br>73 | 74.610<br>73.846 | 22.434<br>22.111 | 51.842<br>50.894   | 1.00 51.04<br>1.00 54.76 |   | C<br>O |
|              |              | -         |            | -   |          | . 30             |                  |                    |                          |   | -      |

Andropensial

STORY SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION

```
Figure 2
                                75.904 22.114 51.863 1.00 50.60 76.589 21.247 50.785 1.00 47.47
 ATOM
       4026 N
                 ILE B 74
             CA ILE B
 ATOM
       4027
                        74
 ATOM
       4028
             CB ILE B
                        74
                                77.445 22.151
                                                50.069
                                                       1.00 48.08
 MOTA
       4029
             CG1 ILE B
                        74
                                76.765 22.408
                                                48.779
                                                        1.00 50.74
                                        23.422
ATOM
       4030
             CD1 ILE B
                       74
                                75.700
                                                48.859
                                                        1.00 50.97
ATOM
       4031
             CG2 ILE B
                        74
                               . 78.853
                                        21.738
                                                49.882
                                                        1.00 47.15
                                                51.356
ATOM
       4032
             C ILE B 74
                                77.407
                                        20.024
                                                        1.00 46.28
ATOM
       4033
             0
                 ILE B
                        74
                                78.343
                                        20.169
                                                52.237
                                                        1.00 43.38
MOTA
       4034
                        75
             N
                 VAL B
                                77.087
                                       18.844
                                                50.830
                                                        1.00 41.86
                                77.873
ATOM
       4035
             CA
                 VAL B
                        75
                                       17.670
                                                51.194
                                                        1.00 39.51
ATOM
       4036
             CB VAL B 75
                                77.027 16.520
                                                51.075
                                                        1.00 40.03
       4037
             CG1 VAL B
                        75
MOTA
                                77.768
                                       15.316
                                                51.216
                                                        1.00 42.82
             CG2 VAL B 75
       4038
                                75.886 16.493
                                                52.029
                                                        1.00 37.31
                                                                              C
ATOM
       4039
             С
                 VAL B
                        75
                                79.096
                                       17.574
                                                50.259
                                                        1.00 39.20
                                                                              C
       4040
                 VAL B 75
ATOM
                                78.964
                                        17.415
                                                49.003
                                                        1.00 40.54
                                                                             ٥
ATOM
       4041
                 VAL B 76
                                80.320
             N
                                        17.683
                                                50.752
                                                        1.00 37.21
                VAL B
                                81.532
ATOM
       4042
             CA
                        76
                                        17.482
                                                49.975
                                                        1.00 35.01
                                                                             С
ATOM
       4043
             СВ
                VAL B 76
                                                50.648
                                                        1.00 35.30
                                82.547
                                        18.268
                                                                             c
       4044
             CG1 VAL B
ATOM
                        76
                                83.902
                                        17.997
                                                50.194
                                                        1.00 37.98
ATOM
       4045
             CG2 VAL B 76
                                                        1.00 41.62
                                        19.637
                                82.364
                                                50.334
ATOM
       4046
             С
                 VAL B
                        76
                                82,007
                                        16.009
                                                50.050
                                                        1.00 36.65
                 VAL B
                                81.885
ATOM
       4047
             ٥
                        76
                                        15.402
                                                50.997
                                                        1.00 41.11
ATOM
       4048
             N
                 LEU B
                        77
                                82.520
                                        15.362
                                                49.064
                                                        1.00 37.55
ATOM
       4049
             CA LEU B 77
                                82.923
                                        13.969
                                                49.199
                                                        1.00 35.74
ATOM
       4050
             CB LEU B
                        77
                                82.353
                                        13.245
                                                48.065
                                                        1.00 34.83
MOTA
       4051
             CG LEU B 77
                                80.908
                                        13.216
                                                48.087
                                                        1.00 37.80
MOTA
       4052
             CD1 LEU B 77
                                80.328
                                        12.264
                                                46.999
                                                        1.00 38.00
ATOM
       4053
            CD2 LEU B 77
                                80.350
                                        12.603
                                                49.300
                                                        1.00 44.07
                                                                             С
ATOM
       4054
             C LEU B
                        77
                                84.483
                                        13.920
                                                48.995
                                                        1.00 36.84
                                                                            . C
                                                                         C
ATOM
       4055
                LEU B 77
                                B4.976
                                        14.510
                                                48.078
                                                        1.00 37.14
                                85.294
ATOM
       4056
             N
                 HIS B '78
                                        13.291
                                                49.767
                                                        1.00 35.03
ATOM
       4057
             CA HIS B 78
                                86.697
                                        13.647
                                                49.574
                                                        1.00 35.55
                                                                         ATOM
       4058
             CB HIS B
                                87.246
                                        14.336
                                                50.733
                                                        1.00 33.35
             CG HIS B
                                                        1.00 27.76
ATOM
       4059
                       78
                                88.567
                                        14.845
                                                50.578
ATOM
       4060
             ND1 HIS B
                       78
                                89.701
                                        14.142
                                                50.955
                                                        1.00 32.81
MOTA
       4061
                                90.800
             CE1 HIS B
                       78
                                        14.877
                                                50.612
                                                        1.00 32.53
                                                                         ATOM
      4062
                                90.414
             NE2 HIS B
                       78
                                        16.044
                                                50.101
                                                        1.00 30.69
      4063
                                        16.058
ATOM
            CD2 HIS B
                       78
                                89.006
                                                50.090
                                                        1.00 32.13
            С
ATOM
                       78
      4064
                HIS B
                                87.532
                                        12.444,
                                                49.236
                                                        1.00 43.40
ATOM
      4065
                HIS B
                       78
                                        12.415
            0
                                88.586
                                                48.406
                                                        1.00 44.70
MOTA
       4066
            N
                GLY B 79
                                87.283
                                        11.282
                                                49.648
                                                        1.00 45.37
ATOM
       4067
            CA GLY B
                       79
                                88.309
                                        10.473
                                                48.785
                                                        1.00 43.56
                                                                             С
ATOM
       4068
            С
                GLY B 79
                                88.034
                                        9.679
                                                47.579
                                                        1.00 40.33
ATOM
       4069
             0
                 GLY B
                       79
                                86.836
                                         9.632
                                                47.198
                                                        1.00 44.10
ATOM
       4070
            N
                 TYR B 80
                                89.004
                                         8.875
                                                47.080
                                                        1.00 36.20
MOTA
       4071
             CA
                TYR B
                       80
                                88.729
                                         7.943
                                                45.961
                                                        1.00 36.75
       4072
                                90.077
ATOM
             СВ
               TYR B
                       80
                                         7.105
                                                45.497
                                                        1.00 40.08
MOTA
       4073
             CG TYR B
                       80
                                89.587
                                        .6.090
                                                44.540
                                                        1.00 43.86
ATOM
       4074
             CD1 TYR B
                       80
                                89.580
                                         6.338
                                                43.176
                                                        1.00 50.14
       4075
ATOM
             CE1 TYR B
                       80
                                88.984
                                         5.365
                                                42.114
                                                        1.00 35.24
ATOM
       4076
             CZ TYR B
                                88.434
                                         4.236
                                               42.571
                                                       1.00 36.11
ATOM
       4077
             OH TYR B
                       80
                                87.919
                                         3.412
                                                41.659
                                                        1.00 35.80
                                                                             0
ATOM
       4078
            CE2 TYR B
                       80
                                88.406
                                         3.984
                                               43.941
                                                       1.00 42.21
ATOM
       4079
            CD2 TYR B
                       80
                                88.962
                                               44.954
                                         4.869
                                                       1.00 42.19
ATOM
       4080
                                87.543
                                                       1.00 37.17
             C
                TYR B
                       80
                                         7.076
                                               46.254
                                                                             С
ATOM
       4081
                                         6.938
             ٥
                TYR B 80
                                                       1.00 36.00
                               86.587
                                               45.509
                                                                             0
ATOM
       4082
                GLU B 81
                                               47.447
                                                       1.00 39.47
             N
                               87.553
                                         6.487
                                                                             N
ATOM
       4083
             CA GLU B 81
                                               47.797
                                                       1.00 39.4B
                               86.457
                                        5.585
ATOM
       4084
             CB
               GLU B 81
                               86.652
                                         4.798
                                               49.051
                                                       1.00 40.64
                                                                             C
ATOM
      4085
             CG
                GLU B 81
                               87.626
                                        3.506
                                               49.042
                                                       1.00 47.19
ATOM
       4086
            CD
               GLU B 81
                               87.630
                                        2.525
                                               47.781
                                                       1.00 54.30
                                                                             c
ATOM
      4087
             OE1 GLU B 81
                               -88.769
                                        2.258
                                               47.251
                                                       1.00 51.61
ATOM
       4088
            OE2 GLU B
                       81
                               86.584
                                         2.077
                                               47.232
                                                       1.00 51.95
ATOM
       4089
                GLU B 81
                                85.231
                                         6.254
                                               47.847
                                                       1.00 39.26
ATOM
       4090
                                         5.853
                                                47.232
                                                       1.00 39.89
             0
                GLU B
                       81
                                84.264
ATOM
       4091
                ALA B
                                85.143
                                        7.335
                                               48.544
                                                       1.00 42.44
MOTA
       4092
            CA
                ALA B
                       82
                                83.718
                                        8.039
                                                48.600
                                                       1.00 40.78
ATOM
       4093
            СВ
                ALA B
                               83.804
                                        9.074
                                               49.562
                                                       1.00 42.53
MOTA
      4094
                ALA B
                               83.320
                                        8.575
                                               47.199
                                                       1.00 40.51
            С
                       82
MOTA
      4095
            0
                ALA B
                      82
                               82.149
                                        8.340
                                               46.728
                                                       1.00 37.56
                                               46.434
ATOM
      4096
                VAL B
                                        9.101
                                                       1.00 37.25
            N
                      83
                               84.315
      4097
                                               45.189
ATOM
            CA
                VAL B
                       83
                               83.878
                                        9.572
                                                       1.00 37.81
                                                                             C
                                               44.418
ATOM
                VAI. R
                               84.959
                                       10.194
      4098
            CB
                       83
                                                       1.00 38.84
ATOM
      4099
            CG1 VAL B
                      83
                               84.410
                                       10.721
                                               43.127
                                                       1.00 39.55
                                                                             C
ATOM
      4100
            CG2 VAL B 83
                               85.440
                                      11.296
                                               45.049
                                                       1.00 38.70
ATOM
      4101
            С
                VAL B
                       83
                               83.393
                                        8.494
                                               44.324
                                                      1.00 39.26
```

|              |              |            |            |   |          | Fi               | .gure           | 2                |                           |        |
|--------------|--------------|------------|------------|---|----------|------------------|-----------------|------------------|---------------------------|--------|
| MOTA         | 4102         | 0          | VAL        |   | 83       | 82.414           | 8.661           | 43.627           | 1.00 40.15                | 0      |
| ATOM         | 4103         | N          | LYS        |   | 84       | 84.116           | 7.405           | 44.345<br>43.599 | 1.00 39.34<br>1.00 42.58  | N      |
| MOTA<br>MOTA | 4104<br>4105 | CA<br>CB   | LYS        |   | 84<br>84 | 83.741<br>84.922 | 6.257<br>5.275  | 43.824           | 1.00 42.58                | C<br>C |
| ATOM         | 4106         | ÇG         | LYS        |   | 84       | 84.721           | 3.603           | 43.793           | 1.00 51.91                | č      |
| ATOM         | 4107         | CD         | LYS        |   | 84       | 84.286           | 3.194           | 42.581           | 1.00 56.24                | C      |
| ATOM         | 4108         | CE         | LYS        |   | 84       | 84.009           | 1.686           | 42.728<br>43.994 | 1.00 64.34<br>1.00 63.77  | C      |
| ATOM<br>ATOM | 4109<br>4110 | N2<br>C    | LYS        |   | 84<br>84 | 83.523<br>82.437 | 1.284<br>5.599  | 44.002           | 1.00 63.77                | N<br>C |
| ATOM         | 4111         | ō          | LYS        |   | 84       | 81.395           | 5.426           | 43.307           | 1.00 45.24                | ō      |
| ATOM         | 4112         | N          | GLU        |   | 85       | 82.325           | 5.412           | 45.264           | 1.00 44.21                | N      |
| ATOM<br>ATOM | 4113<br>4114 | CA<br>CB   | GLU        |   | 85<br>85 | 81.034<br>81.070 | 4.923<br>4.851  | 45.744<br>47.172 | 1.00 43.79<br>1.00 44.54  | c<br>c |
| ATOM         | 4115         | CG         | GLU        |   | 85       | 79.908           | 4.056           | 47.764           | 1.00 53.29                | č      |
| ATOM         | 4116         | CD         | GLU        |   | 85       | 80.019           | 3.839           | 49.265           | 1.00 61.86                | С      |
| ATOM         | 4117         |            | GLU        |   | 85<br>85 | 81.261           | 3.829           | 49.771           | 1.00 56.62                | 0      |
| ATOM<br>ATOM | 4118<br>4119 | C          | GLU<br>GLU |   | 85       | 78.820<br>79.945 | 3.598<br>5.777  | 49.821<br>45.334 | 1.00 67.20<br>1.00 44.00  | o<br>c |
| ATOM         | 4120         | ō          | GLU        |   | 85       | 78.864           | 5.318           | 45.006           | 1.00 47.38                | ō      |
| ATOM         | 4121         | N          | ALA        |   | 86       | 80.133           | 7.063           | 45.352           | 1.00 43.86                | И      |
| ATOM<br>ATOM | 4122<br>4123 | CA<br>CB   | ALA<br>ALA |   | 86<br>86 | 78.943<br>78.958 | 7.792<br>9.097  | 44.987<br>45.643 | 1.00 44.20<br>1.00 47.67  | C<br>C |
| ATOM         | 4124         | c          | ALA        |   | 86       | 78.809           | 7.992           | 43.493           | 1.00 42.08                | č      |
| MOTA         | 4125         | 0          | ALA        |   | 86       | 77.770           | 7.928           | 42.983           | 1.00 41.13                | . 0    |
| ATOM         | 4126         | N          | LEU        |   | 87       | 79.856           | 8.281           | 42.790           | 1.00 41.50                | N      |
| ATOM<br>ATOM | 4127<br>4128 | CA<br>CB   | LEU        |   | 87<br>87 | 79.692<br>80.860 | 8.580<br>9.337  | 41.367<br>40.897 | 1.00 40.26<br>1.00 37.89  | C      |
| ATOM         | 4129         | CG         | LEU        |   | 87       | 80.810           | 10.929          | 40.691           | 1.00 41.30                | č      |
| ATOM         | 4130         |            | LEU        |   | 87       | 79.513           | 11.462          | 41.166           | 1.00 38.57                | С      |
| ATOM         | 4131         | CD2        | LEU        |   | 87<br>87 | 81.981<br>79.426 | 11.656<br>7.229 | 41.212<br>40.569 | 1.00 34.81<br>1.00 40.45  | C      |
| _            | .4133        | ο.         | LEU        |   | 87       | 78.806           | 7.169           | 39.576           | 1.00 40.43                | o      |
| MOTA         | 4134         | N          | ILE        | В | 88       | 79.921           | 6.114           | 41.006           | 1.00 40.77                | N      |
| ATOM         | 4135         | CA-        | ILE        |   | 88       | 79.656           | 4.957           | 40.301           | 1.00 39.45                | c      |
| MOTA<br>MOTA | 4136<br>4137 | CB-<br>CG1 | ILE        |   | 88<br>88 | 80.973<br>81.657 | 4.328<br>4.915  | 40.101<br>38.771 | 1.00 37.15<br>1.00 36.40  | c<br>c |
| ATOM         | 4138         |            | ILE        |   | 88       | 83.021           | 5.446           | 39.161           | 1.00 40.23                | č      |
| ATOM         | 4139         |            | ILE        |   | 88       | 80.671           | 3.013           | 39.576           | 1.00 41.44                | C      |
| MOTA<br>MOTA | 4140         | 0          |            |   | 88<br>88 | 78.535<br>77.434 | 4.038<br>3.923  | 40.935<br>40.448 | 1.00 45.09<br>1.00 44.10  | C<br>0 |
| MOTA         | 4142         |            | ASP        |   | 89       | 78.815           | 3.427           | 42.105           | 1.00 49.64                | N      |
| MOTA         | 4143         | CA         | ASP        | В | 89       | 77.828           | 2.634           | 42.808           | 1.00 49.52                | С      |
| ATOM         | 4144         | CB         | ASP        |   | 89       | 78.321           | 2.201           | 44.166           | 1.00 51.28                | C      |
| MOTA<br>MOTA | 4145<br>4146 | CG<br>OD1  | ASP<br>ASP |   | 89<br>89 | 79.740<br>80.360 | 1.518<br>1.241  | 44.127<br>45.287 | 1.00 57.57.<br>1.00 62.05 | C<br>0 |
| ATOM         |              |            | ASP        |   | 89       | 80.379           | 1.310           | 43.034           | 1.00 55.76                | ō      |
| ATOM         | 4148         | C          | ASP        |   | 89       | 76.585           | 3.318           | 43.042           | 1.00 49.71                | C      |
| ATOM<br>ATOM | 4149<br>4150 | O<br>N     | ASP<br>LEU |   | 89<br>90 | 75.522<br>76.579 | 2.673<br>4.560  | 42.881<br>43.417 | 1.00 53.34<br>1.00 47.74  | . O    |
| ATOM         | 4151         | CA         | LEU        |   | 90       | 75.249           | 5.225           | 43.483           | 1.00 51.45                | č      |
| ATOM         | 4152         | СВ         | LEU        |   | 90       | 75.161           | 6.073           | 44.685           | 1.00 54.44                | C      |
| MOTA<br>MOTA | 4153<br>4154 | CG         | LEU        |   | 90<br>90 | 74.655           | 5.285<br>4.231  | 45.959           | 1.00 58.75<br>1.00 60.41  | c<br>c |
| ATOM         | 4155         |            | LEU        |   | 90       | 73.696<br>75.797 | 4.691           | 45.485<br>46.622 | 1.00 59.60                | č      |
| ATOM         | 4156         | С          | LEU        |   | 90       | 75.051           | 6.151           | 42.294           | 1.00 51.45                | c      |
| ATOM         | 4157         | 0          | LEU        |   | 90       | 74.377           | 7.170           | 42.303           | 1.00 50.41                | 0      |
| ATOM<br>ATOM | 4158<br>4159 | N<br>CA    | GLY<br>GLY |   | 91<br>91 | 75.646<br>75.505 | 5.787<br>6.632  | 41.193           | 1.00 51.38<br>1.00 50.56  | N<br>C |
| ATOM         | 4160         | c          | GLY        |   | 91       | 74.257           | 7.356           | 39.697           | 1.00 49.29                | č      |
| MOTA         | 4161         | 0          | GLY        |   | 91       | 74.171           | 8.539           | 39.516           | 1.00 51.57                | 0      |
| ATOM<br>ATOM | 4162<br>4163 | N<br>CA    | GLU<br>GLU |   | 92<br>92 | 73.206<br>71.963 | 6.641<br>7.320  | 39.597<br>39.262 | 1.00 50.80<br>1.00 53.49  | N<br>C |
| MOTA         | 4164         | CB         | GLU        |   | 92       | 70.802           | 6.388           | 39.083           | 1.00 54.17                | č      |
| ATOM         | 4165         | CG         | GLU        |   | 92       | 70.442           | 6.122           | 37.646           | 1.00 62.22                | С      |
| ATOM         | 4166         | CD         | GLU        |   | 92       | 69.789           | 7.306           | 37.082           | 1.00 65.94                | C      |
| ATOM<br>ATOM | 4167<br>4168 |            | GLU<br>GLU |   | 92<br>92 | 68.868<br>70.239 | 7.747<br>7.820  | 37.734<br>36.044 | 1.00 61.51<br>1.00 76.24  | 0      |
| ATOM         | 4169         | C          | GLU        |   | 92       | 71.526           | 8.308           | 40.297           | 1.00 52.52                | č      |
| MOTA         | 4170         | 0          | GLU        | В | 92       | 71.038           | 9.392           | 39.955           | 1.00 53.64                | 0      |
| MOTA         | 4171         | N          | GLU        |   | 93       | 71.659           | 7.927           | 41.543           | 1.00 47.41                | N      |
| MOTA<br>MOTA | 4172<br>4173 | CA<br>CB   | GLU<br>GLU |   | 93<br>93 | 71.240<br>71.364 | 8.782<br>8.006  | 42.592<br>43.965 | 1.00 47.60<br>1.00 48.43  | C<br>C |
| MOTA         | 4174         | CG         | GLU        | В | 93       | 70.454           | 6.790           | 44.089           | 1.00 50.49                | С      |
| ATOM         | 4175         | CD         | GLU        |   | 93       | 70.859           | 5.556           | 43.230           | 1.00 58.40                | c      |
| MOTA<br>MOTA | 4176<br>4177 |            | GLU<br>GLU |   | 93<br>93 | 72.104<br>69.891 | 5.218<br>4.876  | 42.907<br>42.809 | 1.00 62.92<br>1.00 60.89  | 0      |
|              |              | JJ2        | -20        | - | ,,       | 05.051           | 7.070           | 12.009           | 1,00 00.07                | J      |

|              |              |          |            |      |          | r i              | igure             | 2                |                          |          |
|--------------|--------------|----------|------------|------|----------|------------------|-------------------|------------------|--------------------------|----------|
| ATOM         | 4178         | С        | GLU        | в 9  | 3        | 72.083           | 10.112            | 42.599           | 1.00 44.65               | С        |
| ATOM         | 4179         | 0        | GLU        |      | 3        | 71.531           | 11.176            | 42.939           | 1.00 43.25               | . 0      |
| ATOM<br>ATOM | 4180<br>4181 | N<br>CA  | PHE        |      | )4<br>)4 | 73.368           | 10.036            | 42.244           | 1.00 40.65               | N<br>C   |
| ATOM         | 4182         | CB       | PHE        |      | 4        | 74.168<br>75.511 | 11.207<br>11.016  | 42.090<br>42.727 | 1.00 39.58<br>1.00 38.19 | c        |
| MOTA         | 4183         | CG       | PHE        |      | 4        | 75.541           | 10.928            | 44.179           | 1.00 41.78               | c        |
| MOTA         | 4184         |          | PHE        |      | 4        | 76.196           | 11.850            | 44.937           | 1.00 47.54               | C        |
| MOTA<br>MOTA | 4185<br>4186 | CE1      | PHE        |      | )4<br>)4 | 76.321<br>75.779 | 11.765<br>10.742  | 46.267<br>46.905 | 1.00 41.60<br>1.00 44.76 | c<br>c   |
| ATOM         | 4187         |          | PHE        |      | 4        | 75.105           | 9.753             | 46.194           | 1.00 44.70               | c        |
| MOTA         | 4188         | CD2      | PHE        | B 9  | 14       | 75.016           | 9.886             | 44.803           | 1.00 52.97               | С        |
| ATOM         | 4189<br>4190 | C        | PHE        |      | 14<br>14 | 74.382           | 11.888            | 40.679           | 1.00 38.02<br>1.00 36.14 | C        |
| ATOM<br>ATOM | 4191         | N<br>N   | PHE<br>SER |      | 15       | 75.269<br>73.516 | 12.584<br>11.713  | 40.342<br>39.833 | 1.00 36.14               | О<br>И   |
| ATOM         | 4192         | CA       | SER        | В 9  | 5        | 73.700           | 12.243            | 38.510           | 1.00 41.23               | С        |
| MOTA         | 4193         | CB       | SER        |      | 5        | 72.995           | 11.263            | 37.616           | 1.00 42.60               | c        |
| ATOM<br>ATOM | 4194<br>4195 | OG<br>C  | SER<br>SER |      | 5        | 71.627<br>73.051 | 11.399<br>13.541  | 37.748<br>38.393 | 1.00 42.61<br>1.00 41.37 | 0<br>C   |
| ATOM         | 4196         | o        | SER        |      | 5        | 72.887           | 14.158            | 37.359           | 1.00 44.32               | ō        |
| MOTA         | 4197         | N        | GLY        |      | 6        | 72.639           | 14.064            | 39.467           | 1.00 41.17               | N        |
| ATOM<br>ATOM | 4198<br>4199 | CA<br>C  | GLY.       |      | 6        | 71.949<br>72.917 | 15.351<br>16.485  | 39.297<br>39.222 | 1.00 41.06<br>1.00 40.63 | . C      |
| ATOM         | 4200         | ŏ        | GLY        |      | 6        | 74.052           | 16.373            | 39.696           | 1.00 39.53               | ō        |
| ATOM         | 4201         | N        | ARG        |      | 7        | 72.515           | 17.621            | 38.590           | 1.00 40.72               | N        |
| ATOM<br>ATOM | 4202<br>4203 | CA<br>CB | ARG A      |      | 7        | 73.443<br>73.278 | 18.757<br>19.316  | 38.424<br>37.054 | 1.00 35.83<br>1.00 31.62 | C        |
| ATOM         | 4204         | CG       | ARG        |      | 7        | 73.958           | 20.676            | 36.948           | 1.00 30.74               | Č        |
| MOTA         | 4205         | CD       | ARG        |      | 7        |                  |                   | 36.930           | 1.00 31.56               | С        |
| ATOM<br>ATOM | 4206<br>4207 | NE<br>CZ | ARG        |      | 7<br>7   | 76.045           | 19.929<br>.19.109 | 35.719<br>35.900 | 1.00 38.87<br>1.00 40.88 | N<br>C   |
| ATOM         | 4207         |          | ARG        |      | 7        |                  |                   | 34.886           | 1.00 33.22               | n        |
| ATOM         | 4209         | NH2      | ARG        | B 9  | 7 🛫      | 77.777           | 18.923            | 37.120           | 1.00 31.33               | N        |
| ATOM         | 4210         | C        | ARG        |      | 7 .      |                  | . 19.747          |                  | 1.00 40.18               | . C      |
| ATOM<br>ATOM | 4211<br>4212 | O<br>N   | ARG GLY    |      | 7 .      |                  | 20.146            | 39.489<br>40.152 | 1.00 42.36<br>1.00 42.11 | O<br>N   |
| ATOM         | 4213         | CA       | GLY        |      | 8        |                  | 21.212            |                  | 1.00 42.22               | Ċ        |
| MOTA         | 4214         | C        | GLY        |      | 8        |                  |                   | 40.679           | 1.00 44.47               | C        |
| ATOM<br>ATOM | 4215<br>4216 | O<br>N   | GLY :      |      | 9        | 74.517           | 22.753<br>23.609  | 39.931<br>41.124 | 1.00 49.07<br>1.00 47.82 | О<br>И   |
| ATOM         | 4217         | CA       | ILE        |      | 9 ç      |                  |                   | 40.489           | 1.00 48.64               | Ċ        |
| ATOM         | 4218         | CB       | ILE        |      | 9 .      |                  | 25.389            | 39.918           | 1.00 48.12               | C        |
| ATOM<br>ATOM | 4219<br>4220 |          | ILE I      |      | 9<br>9   | 71.330<br>71.631 | 24.218<br>23.904  | 39.298<br>37.797 | 1.00 53.93<br>1.00 51.17 | C<br>C   |
| ATOM         | 4221         |          | ILE        |      | 9        | 72.410           | 26.249            | 38.789           | 1.00 50.83               | С        |
| ATOM         | 4222         | C        | ILE        |      | 9        | 73.438           | 25.857            | 41.573           | 1.00 49.19               | C        |
| ATOM<br>ATOM | 4223<br>4224 | O<br>N   | ILE I      |      | 9        | 72.740<br>74.371 | 25.731<br>26.747  | 42.397<br>41.592 | 1.00 53.18<br>1.00 48.35 | 0<br>N   |
| ATOM         | 4225         | CA       | PHE        |      |          | 74.556           | 27.723            | 42.613           | 1.00 48.02               | c        |
| ATOM         | 4226         | СВ       | PHE I      |      |          | 76.054           | 28.091            | 42.927           | 1.00 49.22               | C        |
| MOTA<br>MOTA | 4227<br>4228 | CG       | PHE 1      |      |          | 76.765<br>77.526 | 27.046<br>26.091  | 43.741<br>43.196 | 1.00 48.81<br>1.00 40.88 | C<br>C   |
| ATOM         | 4229         |          | PHE        |      |          | 78.022           | 25.178            | 43.934           | 1.00 41.91               | č        |
| ATOM         | 4230         | CZ       | PHE 1      |      |          | 77.906           | 25.087            | 45.180           | 1.00 40.06               | C        |
| ATOM<br>ATOM | 4231<br>4232 |          | PHE I      |      |          | 77.262<br>76.637 | 25.982<br>27.023  | 45.757<br>45.030 | 1.00 51.02<br>1.00 50.59 | . c      |
| ATOM         | 4233         | C        | PHE I      |      |          | 73.879           | 29.019            | 42.101           | 1.00 50.19               | Č        |
| ATOM         | 4234         | 0        | PHE 1      |      |          | 73.499           | 29.114            | 40.936           | 1.00 50.49               | 0        |
| ATOM<br>ATOM | 4235<br>4236 | N<br>Ca  | PRO I      |      |          | 73.790<br>73.114 | 30.043<br>31.262  | 42.957<br>42.712 | 1.00 50.32<br>1.00 48.99 | , N<br>С |
| ATOM         | 4237         | CB       | PRO I      |      |          | 73.639           | 32.028            | 43.887           | 1.00 51.01               | č        |
| ATOM         | 4238         | CG       | PRO I      |      |          | 73.590           | 31.148            | 44.958           | 1.00 48.56               | C        |
| ATOM<br>ATOM | 4239<br>4240 | CD<br>C  | PRO I      |      |          | 74.374<br>73.387 | 30.085<br>31.967  | 44.332<br>41.439 | 1.00 52.78<br>1.00 48.21 | C        |
| ATOM         | 4241         | Ö        | PRO I      |      |          | 72.470           | 32.196            | 40.726           | 1.00 50.56               | ő        |
| ATOM         | 4242         | N        | LEU I      |      |          | 74.604           | 32.340            | 41.190           | 1.00 49.21               | N        |
| MOTA<br>MOTA | 4243<br>4244 | CA<br>CB | LEU I      |      |          | 75.021<br>76.479 | 33.155<br>33.433  | 40.092<br>40.241 | 1.00 49.23<br>1.00 46.25 | C<br>C   |
| ATOM         | 4244         | CG       | LEU I      |      |          | 76.968           | 34.638            | 39.560           | 1.00 53.62               | c        |
| MOTA         | 4246         | CD1      | LEU I      | 3 10 | 2        | 78.168           | 34.221            | 38.707           | 1.00 55.95               | С        |
| ATOM<br>ATOM | 4247<br>4248 |          | LEU E      |      |          | 76.122<br>74.758 | 35.364<br>32.503  | 38.539<br>38.914 | 1.00 56.22<br>1.00 52.00 | c<br>c   |
| ATOM         | 4248         | С<br>0   | LEU E      |      |          | 74.758           | 32.978            | 38.028           | 1.00 53.85               | 0        |
| MOTA         | 4250         | N        | ALA E      | 3 10 | 3        | 75.202           | 31.283            | 38.853           | 1.00 58.34               | N        |
| ATOM<br>ATOM | 4251         | CA       | ALA E      |      |          | 75.028<br>75.633 | 30.420<br>29.012  | 37.669<br>37.891 | 1.00 57.44<br>1.00 56.71 | c<br>c   |
| ATOM         | 4252<br>4253 | CB<br>C  | ALA E      |      |          | 73.519           | 30.309            | 37.433           | 1.00 58.56               | c        |
|              |              |          | -          |      |          |                  |                   |                  |                          |          |

|              |              |           |            |     |            | F                | igure            | 2                |                                       |          |
|--------------|--------------|-----------|------------|-----|------------|------------------|------------------|------------------|---------------------------------------|----------|
| ATOM         | 4254         | 0         |            |     | 103        | 72.976           | 30.290           | 36.328           |                                       | 0        |
| ATOM         | 4255         | N         |            |     | 104        | 72.819           | 30.486           | 38.483           |                                       | N        |
| ATOM<br>ATOM | 4256<br>4257 | CA<br>CB  |            |     | 104<br>104 | 71.471<br>70.854 | 30.229<br>29.744 | 38.254<br>39.471 |                                       | c        |
| ATOM         | 4258         | CG        |            |     | 104        | 69.371           | 30.007           | 39.551           | 1.00 62.31<br>1.00 68.92              | c<br>c   |
| ATOM         | 4259         | CD        |            |     | 104        | 68.736           | 28.993           | 40.525           | 1.00 77.79                            | c        |
| ATOM         | 4260         | OE1       | GLU        |     |            | 68.881           | 29.166           | 41.850           | 1.00 81.51                            | ŏ        |
| ATOM         | 4261         |           | GLU        |     |            | 68.141           | 27.954           | 39.967           | 1.00 80.03                            | 0        |
| ATOM         | 4262         | C         |            |     | 104        | 70.754           | 31.374           | 37.712           | 1.00 60.86                            | Ç        |
| ATOM<br>ATOM | 4263<br>4264 | N<br>O    |            |     | 104<br>105 | 69.763<br>71.250 | 31.158<br>32.576 | 36.977<br>38.037 | 1.00 58.65<br>1.00 60.68              | 0        |
| ATOM         | 4265         | CA        |            |     | 105        | 70.719           | 33.817           | 37.456           | 1.00 58.96                            | N<br>C   |
| ATOM         | 4266         | СВ        | ARG        | В   | 105        | 71.056           | 34.980           | 38.388           | 1.00 59.36                            | č        |
| MOTA         | 4267         | CG        |            |     | 105        | 70.690           | 34.620           | 39.848           | 1.00 68.12                            | С        |
| ATOM         | 4268         | CD        |            |     | 105        | 69.617           | 35.651           | 40.555           | 1.00 71.89                            | C        |
| ATOM<br>ATOM | 4269<br>4270 | NE<br>CZ  |            |     | 105<br>105 | 69.291<br>68.944 | 36.742<br>37.960 | 39.574<br>39.891 | 1.00 67.09<br>1.00 65.28              | N<br>C   |
| ATOM         | 4271         |           | ARG        |     |            | 68.619           | 38.841           | 38.960           | 1.00 74.18                            | N N      |
| ATOM         | 4272         |           | ARG        |     |            | 68.924           | 38.283           | 41.107           | 1.00 68.43                            | N        |
| ATOM         | 4273         | C         |            |     | 105        | 71.303           | 34.040           | 36.120           | 1.00 54.64                            | С        |
| ATOM         | 4274         | 0         |            |     | 105        | 70.780           | 34.637           | 35.294           | 1.00 52.24                            | 0        |
| ATOM<br>ATOM | 4275<br>4276 | N<br>CA   | ALA<br>ALA |     |            | 72.467<br>73.047 | 33.550<br>33.889 | 35.888<br>34.581 | 1.00 55.41<br>1.00 55.03              | N        |
| ATOM         | 4277         | CB        | ALA        |     |            | 74.480           | 33.989           | 34.650           | 1.00 53.03                            | c<br>c   |
| MOTA         | 4278         | С         | ALA        |     |            | 72.615           | 32.972           | 33.496           | 1.00 56.94                            | č        |
| ATOM         | 4279         | 0         | ALA        |     |            | 73.049           | 33.074           | 32.393           | 1.00 55.31                            | 0        |
| ATOM         | 4280         | N         | ASN        |     |            | 71.725           | 32.034           | 33.819           | 1.00 59.89                            | N        |
| MOTA<br>MOTA | 4281<br>4282 | CA<br>CB  | ASN<br>ASN |     |            | 71.300<br>71.590 | 31.084<br>29.671 | 32.786<br>33.217 | 1.00 59.88 <sup>3</sup><br>1.00 58.92 | . с      |
| ATOM         | 4283         | CG        | ASN        |     |            | 73.016           | 29.215           | 32.849           |                                       | C<br>C   |
| ATOM         | 4284         |           | ASN        |     |            | 73.644           | 28.462           | 33.607           | 1.00 61.12                            | ŏ        |
| ATOM         | 4285         |           | ASN        |     |            | 73.512           | 29.637           | 31.716           | 1.00 59.20                            | N        |
| ATOM -       | 4286         | C         | ASN        |     |            | 69.809           | 31.183           |                  | 1.00 61.44                            | C        |
| ATOM<br>ATOM | 4287<br>4288 | 0         | ASN<br>ARG |     |            | 68.877           | 31.078           | 33.145           |                                       | 0        |
| ATOM         | 4289         | N<br>CA   | ARG        |     |            | 69.581<br>68.191 | 31.359<br>31.393 | 31.084<br>30.666 | 1.00 62.35<br>1.00 61.00              | , N<br>С |
| ATOM         | 4290         | CB        | ARG        |     |            | 67.958           | 32.691           | 29.892           | 1.00 62.20                            | č        |
| MOTA         | 4291         | CG        | ARG        | В   | 108        | 66.596           | 33.394           | 30.107           | 1.00 65.65                            | c        |
| ATOM         | 4292         | CD        | ARG        |     |            | 66.353           | 33.987           | 31.498           |                                       | С        |
| ATOM         | 4293         | NE<br>CZ  | ARG        |     |            | 66.390           | 35.441           | 31.695           | 1.00 69.94                            | . N      |
| ATOM<br>ATOM | 4294<br>4295 | CZ<br>NH1 | ARG<br>ARG |     |            | 66.741<br>67.145 | 36.313<br>35.972 | 30.845<br>29.663 | 1.00 68.65                            | C        |
| ATOM         | 4296         |           | ARG        |     |            | 66.708           | 37.576           | 31.174           | 1.00 69.02                            | N        |
| ATOM         | 4297         | С         | ARG        |     |            | 68.105           | 30.164           | 29.742           | 1.00 60.69                            | Ċ        |
| ATOM         | 4298         | 0         | ARG        |     |            | 68.647           | 30.099           | 28.621           | 1.00 63.36                            | . 0      |
| ATOM         | 4299         | N         | GLY        |     |            | 67.481           | 29.138           | 30.190           | 1.00 57.83                            | N        |
| ATOM<br>ATOM | 4300<br>4301 | CA<br>C   | GLY<br>GLY |     |            | 67.368<br>68.572 | 28.006<br>27.047 | 29.361<br>29.481 | 1.00 53.93<br>1.00 55.18              | C<br>C   |
| ATOM         | 4302         | ŏ         | GLY        |     |            | 69.688           | 27.356           | 29.333           | 1.00 54.13                            | o        |
| ATOM         | 4303         | N         | PHE        |     |            | 68.254           | 25.774           | 29.692           | 1.00 54.02                            | N        |
| MOTA         | 4304         | CA        | PHE        |     |            | 69.145           | 24.779           | 29.901           | 1.00 49.20                            | С        |
| ATOM         | 4305         | CB        | PHE        |     |            | 68.683           | 24.021           | 31.118           | 1.00 49.22                            | C        |
| ATOM<br>ATOM | 4306<br>4307 | CG<br>CD1 | PHE<br>PHE |     |            | 68.659<br>69.679 | 24.885<br>25.701 | 32.405<br>32.707 | 1.00 49.24<br>1.00 57.69              | C<br>C   |
| ATOM         | 4308         |           | PHE        |     |            |                  | 26.500           | 33.831           | 1.00 58.86                            | č        |
| ATOM         | 4309         | CZ        | PHE        |     |            | 68.728           | 26.468           | 34.683           | 1.00 68.16                            | c        |
| MOTA         | 4310         |           | PHE        |     |            | 67.610           | 25.616           | 34.334           | 1.00 64.86                            | С        |
| ATOM         | 4311         |           | PHE        |     |            | 67.624           | 24.879           | 33.208           | 1.00 55.72                            | C        |
| ATOM<br>ATOM | 4312<br>4313 | С<br>0    | PHE        |     |            | 69.260<br>68.347 | 23.960<br>23.762 | 28.766<br>28.074 | 1.00 50.42<br>1.00 53.18              | С<br>0   |
| ATOM         | 4314         |           | GLY        |     |            | 70.503           | 23.481           | 28.553           | 1.00 51.19                            | N        |
| ATOM         | 4315         |           | GLY        |     |            | 70.867           | 22.636           | 27.432           | 1.00 49.56                            | Č        |
| MOTA         | 4316         |           | GLY        |     |            | 71.411           | 21.252           | 27.814           | 1.00 48.77                            | , C      |
| ATOM         | 4317         |           | GLY :      |     |            | 70.711           | 20.348           | 28.011           | 1.00 48.45                            | 0        |
| MOTA<br>MOTA | 4318<br>4319 | N<br>CA   | ILE :      |     |            | 72.690           | 21.095           | 27.985           | 1.00 45.63                            | N        |
| ATOM         | 4319         | CB        | ILE :      |     |            | 73.089<br>73.894 | 19.914<br>19.346 | 28.523<br>27.669 | 1.00 41.96<br>1.00 45.69              | C        |
| ATOM         | 4321         |           | ILE :      |     |            | 74.420           | 18.020           | 28.077           | 1.00 41.31                            | c        |
| MOTA         | 4322         | CD1       | ILE        | В   | 112        | 75.015           | 17.465           | 26.750           | 1.00 49.84                            | Č        |
| MOTA         | 4323         |           | ILE I      |     |            | 75.132           | 20.188           | 27.432           | 1.00 51.26                            | С        |
| ATOM<br>ATOM | 4324         |           | ILE I      |     |            | 73.808           | 20.191           | 29.799           | 1.00 42.38                            | C        |
| ATOM<br>ATOM | 4325<br>4326 |           | ILE I      |     |            | 73.542<br>74.664 | 19.414<br>21.197 | 30.745<br>29.982 | 1.00 47.58<br>1.00 35.23              | O<br>N   |
| ATOM         | 4327         |           | VAL I      |     |            | 75.395           | 21.298           | 31.262           | 1.00 34.15                            | C        |
| MOTA         | 4328         |           | VAL I      |     |            | 76.337           | 22.397           | 31.217           | 1.00 34.50                            | č        |
| MOTA         | 4329         | CG1       | VAL I      | 3 : | 113        | 76.940           | 22.685           | 32.526           | 1.00 37.61                            | C        |

```
Figure 2
       4330
            CG2 VAL B 113
                                77.435 22.158 30.371 1.00 35.98
ATOM
       4331
            С
                 VAL B 113
                                                 32.531 1.00 35.54
ATOM
                                 74.678
                                        21.443
                                                 33.562 1.00 40.16
ATOM
       4332
                 VAL B 113
                                 75.104 21.010
ATOM
       4333
            N
                 PHE B 114
                                 73.590
                                        22.110
                                                 32.538
                                                        1.00 39.61
ATOM
       4334
            CA PHE B 114
                                 72.740
                                        22.401
                                                 33.726
                                                        1.00 37.70
ATOM
       4335
             CB
                PHE B 114
                                 72.571 23.888
                                                 33.751
                                                         1.00 37.50
                                                                              С
ATOM
       4336
             CG PHE B 114
                                 73.801
                                        24.649
                                                 33.987
                                                         1.00 38.79
ATOM
       4337
             CD1 PHE B 114
                                 74.345 25.235
                                                 33.044
                                                         1.00 36.00
ATOM
       4338
             CE1 PHE B 114
                                 75.567
                                        26.032
                                                 33.294
                                                         1.00 32.54
ATOM
       4339
             CZ PHE B 114
                                76.111
                                        26.095
                                                 34.503
                                                         1.00 33.29
MOTA
       4340
             CE2 PHE B 114
                                 75.604
                                         25.492
                                                 35.460
                                                         1.00 31.08
ATOM
       4341
             CD2 PHE B 114
                                 74.421
                                         24.777
                                                 35.276
                                                         1.00 36.11
       4342
                 PHE B 114
                                 71.346
                                                 33.675
                                                         1.00 38.05
ATOM
             С
                                         21.863
       4343
                 PHE B 114
                                 70.510
ATOM
             0
                                        22.304
                                                 34.400
                                                         1.00 42.69
                                                 32.759
MOTA
       4344
                 SER B 115
                                 71.029
                                         20.991
                                                         1.00 39.05
       4345
MOTA
             CA
                 SER B 115
                                 69.798
                                        20.329
                                                 32.597
                                                         1.00 35.09
ATOM
       4346
             СВ
                 SER B 115
                                 69.861
                                         19.656
                                                 31.354
                                                         1.00 37.40
ATOM
       4347
             OG
                 SER B 115
                                 69.243
                                        20.455
                                                 30.499
                                                         1.00 41.19
ATOM
       4348
                 SER B 115
                                 69.695
                                        19.234
                                                 33.659
                                                         1.00 34.07
                                                                              C
ATOM
       4349
                 SER B 115
                                 70.611
                                        18.943
                                                 34.206
                                                         1.00 37.46
ATOM
       4350
                 ASN B 116
                                 68.565
                                        18.685
                                                 33.943
                                                         1.00 34.04
ATOM
       4351
             CA
                ASN B 116
                                 68.404
                                        17.640
                                                 34.915
                                                         1.00 35.27
                                                                              C
ATOM
       4352
             CB
                ASN B 116
                                 68.163
                                        18.092
                                                 36.206
                                                         1.00 33.60
ATOM
       4353
             CG
                ASN B 116
                                 69.340
                                        18.314
                                                 36.986
                                                         1.00 32.18
                                                                              C
       4354
             OD1 ASN B 116
                                70.012
                                        17.395
                                                 37.369
                                                         1.00 42.43
ATOM
                                                                              0
ATOM
       4355
             ND2 ASN B 116
                                 69.610
                                        19.535
                                                 37.350
                                                         1.00 32.04
                                                                              N
             C ASN B 116
                                67.167
                                        16.876
                                                 34.370
                                                         1.00 41.22
                                                                              С
ATOM
       4356
                                                                        ATOM
       4357
             0
                 ASN B 116
                                66.569
                                        17.316
                                                33.435
                                                         1.00 47.12
                 GLY B 117
                                66.900
       4358
                                                34.818
ATOM
             N
                                        15.671
                                                         1.00 44.74
             CA GLY B 117
                                65.868
ATOM
       4359
                                        14.796
                                                34.257
                                                         1.00 43.44
ATOM
       4360
            С
                 GLY B 117
                                65.843
                                        14.311
                                                32.892
                                                         1.00 46.23
ATOM
       4361
             0
                 GLY B 117
                                66.891
                                        14.148
                                                 32.305
                                                         1.00 46.99
ATOM
       4362
             N
                 LYS B 118
                                64.638
                                        13.946
                                                32.405
                                                         1.00 47.48
MOTA
       4363 CA LYS B 118
                                 64.484
                                        13.571
                                                31.031
                                                        1.00 48.80
ATOM
       4364
             СВ
                LYS B 118
                                62.965
                                        13.435
                                                30.521
                                                         1.00 50.03
ATOM
       4365
            ·CG
                LYS B 118
                                 62.076
                                        14.274
                                                31.317
                                                         1.00 58.67
       4366
             CD
                                62.891
                                        15.703
                                                         1.00 66.47
ATOM
                LYS B 118
                                                31.980
                                62.726
ATOM
       4367
             CE
                LYS B 118
                                        15.983
                                                33.556
                                                         1.00 66.60
ATOM
       4368
             NZ
                LYS B 118
                                 61.796
                                        14.992
                                                34.366
                                                         1.00 51.23
ATOM
       4369
             С
                 LYS B 118
                                65.165
                                        14.600
                                                30.150
                                                         1.00 47.75
ATOM
       4370
             0
                 LYS B 118
                                65.788
                                        14.288
                                                29.164
                                                         1.00 49.23
ATOM
       4371
                 LYS B 119
                                65.008
                                        15.841
                                                30.405
                                                         1.00 46.87
             N
                                                                              N
ATOM
       4372
             CA
                 LYS B 119
                                65.547
                                        16.711
                                                29.403
                                                         1.00 46.82
                                                                              С
ATOM
       4373
             СВ
                                65.227
                                        18.167
                                                         1.00 47.75
                 LYS B 119
                                                29.664
                                                                              C
ATOM
       4374
             CG
                 LYS B 119
                                66.046
                                        19.136
                                                28.850
                                                         1.00 50.52
                                                                              C
ATOM
       4375
             CD
                LYS B 119
                                65.353
                                        20.438
                                                28.687
                                                         1.00 54.20
                                                                              C
ATOM
                                        21.290
       4376
             CE
                LYS B 119
                                66.434
                                                28.254
                                                        1.00 58.32
                                                                              C
                                                        1.00 70.56
ATOM
       4377
                LYS B 119
                                65.850
             NZ
                                        22.593
                                                27,903
                                                                              N
                                67.061
                                                        1.00 44.52
ATOM
       4378
             С
                 LYS B 119
                                        16.509
                                                29.283
                                                                              C
MOTA
       4379
             ٥
                 LYS B 119
                                67.558
                                        16.568
                                                28.105
                                                        1.00 43.90
                                                                              0
ATOM
       4380
             N
                 TRP B 120
                                67.740
                                        16.323
                                                30.407
                                                        1.00 39.73
                                                                              N
MOTA
       4381
             CA TRP B 120
                                69.151
                                        16.056
                                                30.339
                                                        1.00 40.41
                                                                              С
ATOM
       4382
             CB TRP B 120
                                69.736
                                        16.163
                                                31.711
                                                        1.00 42.90
                                                                              С
ATOM
       4383
             CG
                 TRP B 120
                                71.173
                                        15.618
                                                31.876
                                                        1.00 39.35
                                                                              С
ATOM
             CD1 TRP B 120
                                72.173
                                        16.165
                                                31.495
                                                        1.00 43.23
                                                                              C
       4384
ATOM
       4385
             NE1 TRP B 120
                                73.315
                                        15.463
                                                31.792
                                                        1.00 40.10
                                                                              N
             CE2 TRP B 120
                                72.927
                                                32.467
                                                        1.00 38.65
ATOM
       4386
                                        14.420
ATOM
       4387
             CD2 TRP B 120
                                71.582
                                        14.489
                                                32.538
                                                        1.00 38.69
                                                                              С
ATOM
       4388
             CE3 TRP B 120
                                70.926
                                        13.493
                                                33.216
                                                        1.00 41.00
ATOM
       4389
             CZ3 TRP B 120
                                71.640
                                        12.530
                                                33.731
                                                        1.00 35.97
ATOM
       4390
             CH2 TRP B 120
                                73.037
                                        12.454
                                                33.614
                                                        1.00 31.63
ATOM
       4391
             CZ2 TRP B 120
                                73.679
                                        13.403
                                                32.997
                                                        1.00 41.49
                 TRP B 120
                                69.504
                                        14.724
                                                29.737
                                                        1.00 41.85
ATOM
       4392
             C
                                70.185
                                        14.568
                                                28.690
                                                        1.00 43.19
                                                                              0
ATOM
       4393
                 TRP B 120
             0
                                68.935
                                        13.708
                                                30.298
                                                        1.00 44.12
ATOM
       4394
             N
                 LYS B 121
                                69.036
ATOM
       4395
                                        12.319
                                                29.787
                                                        1.00 45.20
             CA
                LYS B 121
                                67.891
                                                30.384
                                                        1.00 46.97
MOTA
       4396
             CB
                 LYS B 121
                                        11.455
                                68.253 10.561
                                                31.667
                                                        1.00 53.32
ATOM
       4397
             CG
                 LYS B 121
                                                        1.00 73.89
ATOM
       4398
             CD
                 LYS B 121
                                69.463
                                         9.622
                                                31.295
                                                                              c
MOTA
       4399
             CE
                LYS B 121
                                70.410
                                         8.919
                                                32,600
                                                        1.00 77.84
                                                                              C
MOTA
       4400
             NZ
                                71.873
                                         8.354
                                                32.159
                                                        1.00 71.04
                                                                              N
                 LYS B 121
ATOM
       4401
             С
                 LYS B 121
                                68.985
                                       12.253
                                                28.274
                                                        1.00 45.20
ATOM
       4402
             0
                 LYS B 121
                                69.939
                                        11.718
                                                27.540
                                                        1.00 46.68
                                                                              0
                                67.904
                                        12.763
                                                27.733
                                                        1.00 43.59
ATOM
       4403
                 GLU B 122
                                67.814
                                        12.825
                                                26.317
                                                        1.00 42.90
MOTA
       4404
             CA
                GLU B 122
                                                                              C
                                       13.260
                                                        1.00 41.76
ATOM
       4405
                 GLU B 122
             CB
```

Supplemental Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control

|    |              |              |           |     |   |            | Fi               | igure            | 2                |                          |        |
|----|--------------|--------------|-----------|-----|---|------------|------------------|------------------|------------------|--------------------------|--------|
|    | ATOM         | 4406         | CG        |     |   | 122        | 65.369           | 12.222           | 26.198           | 1.00 50.86               | С      |
|    | MOTA         | 4407         | CD        |     |   | 122        | 63.938           | 12.665           | 25.750           | 1.00 56.11               | C      |
|    | ATOM<br>ATOM | 4408<br>4409 |           |     |   | 122<br>122 | 63.300<br>63.496 | 13.375<br>12.318 | 26.586<br>24.654 | 1.00 64.97<br>1.00 54.97 | 0      |
|    | ATOM         | 4410         | C         |     |   | 122        | 68.886           | 13.658           | 25.648           | 1.00 41.06               | c      |
|    | ATOM         | 4411         | ŏ         |     |   | 122        | 69.637           | 13.196           | 24.804           | 1.00 48.44               | ō      |
|    | ATOM         | 4412         | N         |     |   | 123        | 69.039           | 14.854           | 25.964           | 1.00 36.24               | N      |
|    | ATOM         | 4413         | CA        |     |   | 123        | 69.934           | 15.616           | 25.153           | 1.00 33.94               | C      |
|    | MOTA         | 4414         | CB<br>CC1 |     |   | 123<br>123 | 69.791           | 17.148           | 25.515           | 1.00 32.42<br>1.00 33.95 | C<br>C |
|    | ATOM<br>ATOM | 4415<br>4416 |           |     |   | 123        | 68.531<br>68.247 | 17.579<br>18.979 | 24.901<br>25.340 | 1.00 47.27               | c      |
|    | ATOM         | 4417         |           |     |   | 123        | 70.670           | 18.039           | 24.716           | 1.00 38.07               | č      |
|    | MOTA         | 4418         | С         |     |   | 123        | 71.238           | 15.147           | 25.290           | 1.00 31.77               | С      |
|    | ATOM         | 4419         | 0         |     |   | 123        | 72.060           | 15.226           | 24.411           | 1.00 32.60               | 0      |
|    | ATOM<br>ATOM | 4420<br>4421 | N<br>CA   |     |   | 124<br>124 | 71.531<br>72.867 | 14.597<br>14.088 | 26.440<br>26.572 | 1.00 34.66<br>1.00 33.26 | N<br>C |
|    | ATOM         | 4422         | CB        |     |   | 124        | 73.208           | 13.769           | 27.969           | 1.00 30.75               | c      |
|    | ATOM         | 4423         | CG        | ARG |   |            | 74.762           | 13.153           | 28.159           | 1.00 34.15               | Ċ      |
|    | ATOM         | 4424         | CD        |     |   | 124        | 75.017           | 12.798           | 29.493           | 1.00 32.20               | С      |
|    | ATOM         | 4425         | NE        |     |   | 124        | 76.274           | 12.062           | 29.710           | 1.00 36.67               | N      |
|    | ATOM<br>ATOM | 4426<br>4427 | CZ        |     |   | 124<br>124 | 77.342<br>77.520 | 12.558<br>13.885 | 30.211<br>30.462 | 1.00 35.77<br>1.00 46.91 | С<br>N |
|    | ATOM         | 4428         |           |     |   | 124        | 78.319           | 11.819           | 30.460           | 1.00 39.39               | N N    |
|    | ATOM         | 4429         | С         | ARG |   |            | 73.148           | 12.951           | 25.701           | 1.00 33.88               | c      |
|    | ATOM         | 4430         | 0         |     |   | 124        | 74.265           | 12.791           | 25.188           | 1.00 37.19               | 0      |
|    | ATOM         | 4431         | N         |     |   | 125        | 72.160           | 12.110           | 25.588           | 1.00 38.21               | N      |
|    | MOTA<br>MOTA | 4432<br>4433 | CA<br>CB  | ARG |   | 125<br>125 | 72.332<br>71.149 | 10.913<br>10.110 | 24.821<br>24.946 | 1.00 41.77<br>1.00 46.58 | c<br>c |
|    | ATOM         | 4434         | CG        |     |   | 125        | 71.093           | 9.115            | 23.973           | 1.00 53.89               | č      |
|    | MOTA         | 4435         | CD        | ARG | В | 125        | 70.410           | 7.830            | 24.522           | 1.00 64.37               | С      |
|    | ATOM         | 4436         | NE        |     |   | 125        | 70.394           | 7.027            | 23.238           | 1.00 83.91               | N      |
| ٠. | ATOM         | 4437         | CZ        |     |   | 125<br>125 | 69.979<br>69.485 | 5.727            | 23.100           | 1.00 91.13<br>1.00 92.30 | C<br>N |
|    | ATOM<br>ATOM | 4439         |           |     |   | 125        | 70.020           | 5.016<br>5.139   | 24.198           | 1.00 89.37               | N      |
|    | ATOM         | 4440         | C         |     |   | 125        | 72.522           | 11.253           | 23.456           | 1.00 40.62               | Ċ      |
|    | ATOM         | 4441         | 0         | ARG | В | 125        | 73.570           | 10.880           | 22.921           | 1.00 45.90               | 0      |
|    |              | 4442         | N         |     |   | 126        | 71.688           | 12.109           | 22.901           | 1.00 36.32               | N      |
|    | ATOM         | 4443         | CA        |     |   | 126        | 71.896           | 12.597           | 21.516           | 1.00 35.36               | C      |
|    | ATOM         | 4444         | CB<br>CG  | PHE |   | 126<br>126 | 70.900<br>71.046 | 13.720<br>14.314 | 21.203<br>19.860 | 1.00 37.33<br>1.00 39.93 | c      |
|    | ATOM         | 4446         |           |     |   | 126        | 71.833           | 15.363           | 19.694           | 1.00 50.13               | č      |
|    | ATOM         | 4447         | CE1       | PHE | В | 126        | 72.038           | 15.980           | 18.428           | 1.00 55.83               | С      |
|    | ATOM         | 4448         | CZ        |     |   | 126        | 71.392           | 15.462           | 17.334           | 1.00 50.49               | C      |
|    | ATOM<br>ATOM | 4449<br>4450 | CE2       |     |   | 126        | 70.516<br>70.378 | 14.302<br>13.788 | 17.575<br>18.762 | 1.00 48.08<br>1.00 42.33 | C<br>C |
|    | ATOM         | 4451         | C         |     |   | 126        | 73.208           | 13.167           | 21.229           | 1.00 36.06               | č      |
|    | ATOM         | 4452         | Ō         |     |   | 126        | 73.780           | 12.955           | 20.183           | 1.00 41.04               | Ō      |
|    | ATOM         | 4453         | N         | SER |   | 127        | 73.767           | 13.912           | 22.144           | 1.00 33.94               | N      |
|    | ATOM<br>ATOM | 4454         | CA<br>CB  | SER |   | 127        | 75.024<br>75.273 | 14.480           | 21.941<br>23.093 | 1.00 32.94<br>1.00 36.19 | C      |
|    | ATOM         | 4455<br>4456 | OG        | SER |   | 127<br>127 | 74.484           | 15.420<br>16.625 | 22.884           | 1.00 37.03               | ŏ      |
|    | ATOM         | 4457         | c         |     |   | 127        | 76.109           | 13.547           | 21.914           | 1.00 33.04               | c      |
|    | ATOM         | 4458         | 0         |     |   | 127        | 76.948           | 13.579           | 20.957           | 1.00 35.34               | 0      |
|    | ATOM         | 4459         | N         |     |   | 128        | 76.119           | 12.628           | 22.846<br>22.794 | 1.00 32.38<br>1.00 32.90 | N<br>C |
|    | ATOM<br>ATOM | 4460<br>4461 | CA<br>CB  |     |   | 128<br>128 | 77.155<br>76.939 | 11.557<br>10.576 | 23.882           | 1.00 32.90               | č      |
|    | ATOM         | 4462         | CG        |     |   | 128        | 77.448           | 11.106           | 25.205           | 1.00 33.92               | č      |
|    | ATOM         | 4463         | CD1       | LEU | В | 128        | 77.214           | 10.269           | 26.297           | 1.00 34.30               | С      |
|    | MOTA         | 4464         | CD2       |     |   |            | 79.036           | 11.287           | 25.096           | 1.00 36.50               | . с    |
|    | ATOM<br>ATOM | 4465<br>4466 | C<br>0    |     |   | 128<br>128 | 77.111<br>78.077 | 10.929<br>10.689 | 21.451<br>20.758 | 1.00 35.66<br>1.00 35.61 | C<br>0 |
|    | ATOM         | 4467         | N         |     |   | 129        | 75.963           | 10.728           | 20.909           | 1.00 40.15               | N      |
|    | ATOM         | 4468         | CA        |     |   | 129        | 75.975           | 10.133           | 19.570           | 1.00 43.78               | Ċ      |
|    | MOTA         | 4469         | CB        |     |   | 129        | 74.609           | 9.887            | 19.057           | 1.00 50.42               | c      |
|    | MOTA         | 4470         | CG        |     |   | 129        | 74.294           | 8.355            | 18.731           | 1.00 55.47               | C      |
|    | MOTA<br>MOTA | 4471<br>4472 | SD<br>CE  | MET |   | 129<br>129 | 74.475<br>72.303 | 7.685<br>7.261   | 20.370           | 1.00 72.27<br>1.00 70.24 | s<br>C |
|    | ATOM         | 4473         |           | MET |   |            | 76.565           | 10.830           | 18.498           | 1.00 43.11               | č      |
|    | ATOM         | 4474         |           | MET |   |            | 77.401           | 10.237           | 17.824           | 1.00 44.84               | 0      |
|    | MOTA         | 4475         | N         | THR |   |            | 76.122           | 12.067           | 18.274           | 1.00 39.24               | N      |
|    | ATOM         | 4476         | CA        | THR |   |            | 76.770           | 12.884           | 17.275           | 1.00 37.48               | c      |
|    | MOTA<br>MOTA | 4477<br>4478 | CB<br>OG1 | THR |   |            | 76.095<br>76.548 | 14.242<br>14.985 | 17.306<br>18.555 | 1.00 40.70<br>1.00 42.11 | С<br>О |
|    | ATOM         | 4479         | CG2       |     |   |            | 74.504           | 13.995           | 17.448           | 1.00 40.47               | č      |
|    | MOTA         | 4480         | c         | THR | В | 130        | 78.182           | 13.046           | 17.612           | 1.00 36.33               | С      |
|    | MOTA         | 4481         | 0         | THR | В | 130        | 78.927           | 13.277           | 16.777           | 1.00 42.06               | 0      |
|    |              |              |           |     |   |            |                  |                  |                  |                          |        |

|              |              |           |            |   |                | Fi               | gure             | 2                |                          |        |
|--------------|--------------|-----------|------------|---|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 4482         | N         | LEU        | В | 131            | 78.610           | 12.923           | 18.834           | 1.00 34.35               | N      |
| MOTA         | 4483         | CA        |            |   | 131            | 80.042           | 13.074           | 19.060           | 1.00 34.99               | c      |
| ATOM<br>ATOM | 4484<br>4485 | CB        |            |   | 131<br>131     | 80.356<br>80.244 | 13.546<br>15.078 | 20.565<br>20.645 | 1.00 31.82<br>1.00 37.62 | c<br>c |
| ATOM         | 4486         |           | LEU        |   |                | 80.614           | 15.423           | 21.904           | 1.00 45.68               | č      |
| ATOM         | 4487         |           | LEU        |   |                | 80.998           | 15.963           | 19.734           | 1.00 38.54               | С      |
| ATOM         | 4488         | C         |            |   | 131            | 80.964           | 11.905           | 18.779           | 1.00 34.21               | C      |
| ATOM<br>ATOM | 4489<br>4490 | 0<br>N    |            |   | 131<br>132     | 82.143<br>80.396 | 11.905<br>10.830 | 18.994<br>18.428 | 1.00 33.77<br>1.00 35.61 | О<br>И |
| ATOM         | 4491         | CA        |            |   | 132            | 81.189           | 9.634            | 18.133           | 1.00 33.24               | Ċ      |
| MOTA         | 4492         | CB        |            |   | 132            | 80.093           | 8.542            | 17.770           | 1.00 35.05               | Ç      |
| ATOM         | 4493<br>4494 | CG        |            |   | 132<br>132     | 79.466<br>78.358 | 7.855<br>6.927   | 18.800<br>18.258 | 1.00 33.85<br>1.00 42.07 | C      |
| ATOM<br>ATOM | 4495         | CD<br>NE  |            |   | 132            | 77.779           | 7.359            | 17.102           | 1.00 47.85               | N      |
| ATOM         | 4496         | CZ        |            |   | 132            | 76.551           | 7.067            | 16.638           | 1.00 61.03               | С      |
| ATOM         | 4497         |           | ARG        |   |                | 75.829           | 6.289            | 17.379           | 1.00 66.66               | N      |
| ATOM<br>ATOM | 4498<br>4499 | NH2<br>C  | ARG        |   | 132            | 75.998<br>81.983 | 7.589<br>9.836   | 15.429<br>16.859 | 1.00 55.98<br>1.00 31.97 | N<br>C |
| ATOM         | 4500         | ŏ         |            |   | 132            | 81.553           | 10.395           | 15.857           | 1.00 28.82               | ő      |
| ATOM         | 4501         | N         |            |   | 133            | 83.171           | 9.300            | 16.821           | 1.00 32.54               | N      |
| ATOM         | 4502         | CA        |            |   | 133            | 84.108           | 9.591            | 15.732           | 1.00 29.60               | c      |
| MOTA<br>MOTA | 4503<br>4504 | CB        |            |   | 133<br>133     | 85.268<br>86.317 | 8.775<br>9.270   | 15.768<br>14.926 | 1.00 24.69<br>1.00 30.80 | C      |
| ATOM         | 4505         |           | ASN        |   |                | 87.067           | 8.533            | 14.461           | 1.00 37.42               | ō      |
| ATOM         | 4506         |           | ASN        |   |                | 86.450           | 10.509           | 14.732           | 1.00 31.83               | N      |
| MOTA<br>MOTA | 4507<br>4508 | С<br>0    |            |   | 133<br>133     | 83.484<br>83.760 | 9.543<br>10.343  | 14.421<br>13.625 | 1.00 30.46<br>1.00 31.49 | C<br>0 |
| ATOM         | 4509         | N         |            |   | 134            | 82.623           | 8.625            | 14.181           | 1.00 32.64               | N      |
| MOTA         | 4510         | CA        |            |   | 134            | 81.892           | 8.581            | 12.857           | 1.00 35.13               | С      |
| ATOM         | 4511         | СВ        |            |   | 134            | 82.059           | 7.322            | 12.135           | 1.00 32.18               | C      |
| MOTA<br>MOTA | 4512<br>4513 | CG<br>CD1 |            |   | 134 :<br>134 : | 83.479<br>83.970 | 7.045<br>7.417   | 11.777<br>10.634 | 1.00 29.88<br>1.00 32.97 | C      |
| ATOM         | 4514         |           |            |   | 134            | 85.365           | 7.281            | 10.229           | 1.00 19.90               | č      |
| ATOM         | 4515         | CZ        |            |   | 134            |                  | 6.721            | 10.997           | 1.00 20.67               | С      |
| ATOM         | 4516         |           |            |   | 134            | 85.705           | 6.194            | 12.217           | 1.00 27.25               | C      |
| ATOM<br>ATOM | 4517<br>4518 | CDZ       |            |   | 134<br>134     | 84.340<br>80.393 | 6.412<br>8.823   | 12.612<br>13.093 | 1.00 34.80<br>1.00 37.67 | c      |
| MOTA         | 4519         | ō         |            |   | 134            | 79.595           | 8.528            | 12.322           | 1.00 38.93               | Ō      |
| ATOM         | 4520         | N         |            |   | 135            |                  | 9.433            | 14.181           | 1.00 41.41               | . N    |
| ATOM<br>ATOM | 4521<br>4522 | CA<br>C   |            |   | 135<br>135     | 78.686<br>77.940 | 9.804<br>10.810  | 14.442<br>13.485 | 1.00 44.83               | C      |
| ATOM         | 4523         | ō         |            |   | 135            | 76.622           | 11.080           | 13.747           | 1.00 52.11               | ŏ      |
| ATOM         | 4524         | N         | MET        | В | 136            | 78.560           | 11.284           | 12.375           | 1.00 50.97               | N      |
| ATOM         | 4525         | CA        | MET        |   |                | 77.725           | 12.134           | 11.527           | 1.00 51.04               | C      |
| MOTA         | 4526<br>4527 | CB<br>CG  | MET<br>MET |   |                | 77.304<br>78.169 | 13.392<br>14.546 | 12.401<br>12.417 | 1.00 50.71<br>1.00 49.77 | C      |
| ATOM         | 4528         | SD        | MET        |   |                | 78.010           | 15.480           | 14.017           | 1.00 50.48               | S      |
| MOTA         | 4529         | CΕ        | MET        |   |                | 79.783           | 15.823           | 14.271           | 1.00 39.26               | C      |
| ATOM ·       | 4530<br>4531 | C<br>O    | MET<br>MET |   |                | 78.260<br>79.090 | 12.500<br>13.490 | 10.192<br>10.064 | 1.00 52.97<br>1.00 54.60 | C<br>0 |
| ATOM         | 4532         | И         | GLY        |   |                | 77.785           | 11.768           | 9.152            | 1.00 54.67               | N      |
| ATOM         | 4533         | CA        | GLY        |   |                | 78.215           | 12.078           | 7.793            | 1.00 56.58               | C      |
| ATOM         | 4534         | C         | GLY        |   |                | 79.511           | 11.296           | 7.622            | 1.00 56.21               | c<br>o |
| MOTA<br>MOTA | 4535<br>4536 | N<br>O    | GLY<br>LYS |   |                | 79.809<br>80.206 | 10.642<br>11.504 | 8.455<br>6.514   | 1.00 55.01<br>1.00 57.04 | N      |
| ATOM         | 4537         | CA        | LYS        |   |                | 81.367           | 10.871           | 6.054            | 1.00 58.31               | С      |
| ATOM         | 4538         | СВ        | LYS        |   |                | 81.310           | 10.948           | 4.467            | 1.00 62.38               | C      |
| ATOM<br>ATOM | 4539<br>4540 | CG<br>CD  | LYS<br>LYS |   |                | 79.758<br>79.864 | 10.684           | 3.708<br>2.163   | 1.00 65.76<br>1.00 77.13 | C<br>C |
| ATOM         | 4541         | CE        | LYS        |   |                | 80.729           | 11.436           | 1.445            | 1.00 79.91               | č      |
| ATOM         | 4542         | NZ        | LYS        |   |                | 81.503           | 10.642           | 0.422            | 1.00 71.84               | N      |
| ATOM         | 4543         | C         | LYS        |   |                | 82.651           | 11.480           | 6.394            | 1.00 57.84<br>1.00 57.54 | C<br>0 |
| ATOM<br>ATOM | 4544<br>4545 | O<br>N    | LYS<br>ARG |   |                | 83.744<br>82.577 | 11.044           | 5.839<br>7.220   | 1.00 54.92               | N      |
| ATOM         | 4546         | CA        | ARG        |   |                | 83.740           | 13.180           | 7.829            | 1.00 48.10               | Ċ      |
| MOTA         | 4547         | CB        | ARG        |   |                | 83.563           | 14.629           | 7.632            | 1.00 50.48               | c      |
| ATOM         | 4548         | CG        | ARG        |   |                | 84.905<br>84.621 | 15.574<br>17.132 | 7.913<br>7.275   | 1.00 51.85<br>1.00 65.78 | c<br>c |
| ATOM<br>ATOM | 4549<br>4550 | CD<br>NE  | ARG<br>ARG |   |                | 85.560           | 18.216           | 7.757            | 1.00 65.78               | N      |
| ATOM         | 4551         | CZ        | ARG        |   |                | 86.862           | 18.068           | 7.627            | 1.00 52.90               | С      |
| ATOM         | 4552         |           | ARG        |   |                | 87.638           | 18.980           | 8.106            | 1.00 43.28               | N      |
| ATOM<br>ATOM | 4553<br>4554 | NH2<br>C  | ARG<br>ARG |   |                | 87.379<br>83.844 | 16.957<br>12.813 | 6.938<br>9.331   | 1.00 61.19<br>1.00 40.92 | N<br>C |
| ATOM         | 4555         | 0         | ARG        |   |                | 83.040           | 12.974           | 10.106           | 1.00 39.93               | ŏ      |
| MOTA         | 4556         | N         | SER        | В | 140            | 84.906           | 12.262           | 9.739            | 1.00 37.53               | N      |
| MOTA         | 4557         | CA        | SER        | В | 140            | 85.047           | 11.913           | 11.140           | 1.00 31.57               | С      |

|              |              |           |            |   |            | Fi               | gure             | 2                |      |                |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|
| ATOM         | 4558         | СВ        | SER        | В | 140        | 86.176           | 10.771           | 11.271           | 1.00 | 31.94          | С      |
| ATOM         | 4559         | OG        | SER        |   | 140        | 87.479           | 11.158           | 10.873           |      | 24.52          | o<br>c |
| MOTA         | 4560<br>4561 | С<br>0    | SER<br>SER |   | 140<br>140 | 85.434<br>85.915 | 13.011<br>13.973 | 12.058<br>11.652 |      | 26.58<br>24.35 | 0      |
| ATOM         | 4562         | N         | ILE        |   | 141        | 85.182           | 12.878           | 13.298           |      | 25.40          | N      |
| MOTA         | 4563         | CA        | ILE        |   | 141        | 85.634           | 13.938           | 14.199           |      | 29.22          | c      |
| ATOM         | 4564<br>4565 | CB<br>CG1 | ILE        |   | 141<br>141 | 85.471<br>84.084 | 13.643<br>13.455 | 15.668           |      | 31.94<br>36.62 | C<br>C |
| ATOM<br>ATOM | 4566         |           | ILE        |   | 141        | 83.377           | 14.731           | 16.040<br>15.989 |      | 43.89          | c      |
| ATOM         | 4567         |           | ILE        |   | 141        | 86.069           | 14.714           | 16.477           |      | 32.44          | С      |
| MOTA         | 4568         | C         | ILE        |   | 141        | 87.177           | 13.860           | 14.059           |      | 29.06          | C      |
| ATOM<br>ATOM | 4569<br>4570 | O<br>N    | ILE<br>GLU |   | 141        | 87.821<br>87.784 | 14.792<br>12.738 | 14.083<br>13.951 |      | 32.25<br>29.76 | O<br>N |
| ATOM         | 4571         | CA        | GLU        |   | 142        | 89.177           | 12.798           | 13.878           |      | 29.75          | č      |
| MOTA         | 4572         | CB        | GLU        |   | 142        | 89.854           | 11.482           | 14.255           |      | 28.57          | С      |
| ATOM         | 4573<br>4574 | CG<br>CD  | GLU        |   | 142<br>142 | 91.282<br>91.914 | 11.386           | 13.898<br>14.137 |      | 30.13<br>35.25 | C<br>C |
| ATOM<br>ATOM | 4575         |           | GLU        |   | 142        | 91.220           | 9.006            | 14.137           |      | 41.22          | Ö      |
| MOTA         | 4576         |           | GLU        |   | 142        | 93.195           | 9.929            | 14.034           |      | 40.48          | o      |
| MOTA         | 4577         | C         | GLU        |   | 142        | 89.701           | 13.518           | 12.804           |      | 29.53          | C      |
| ATOM<br>ATOM | 4578<br>4579 | O<br>N    | GLU<br>ASP |   | 142<br>143 | 90.762<br>88.961 | 14.130<br>13.574 | 12.911<br>11.709 |      | 29.57<br>36.74 | O<br>N |
| ATOM         | 4580         | CA        | ASP        |   | 143        | 89.428           | 14.386           | 10.511           |      | 37.06          | c c    |
| MOTA         | 4581         | СВ        | ASP        |   |            | 88.573           | 14.288           | 9.286            |      | 38.80          | С      |
| MOTA         | 4582         | CG<br>OD1 | ASP        |   | 143        | 88.935<br>90.193 | 13.089<br>12.895 | 8.415            |      | 51.24          | C      |
| MOTA<br>MOTA | 4583<br>4584 |           | ASP<br>ASP |   |            | 88.003           | 12.252           | 8.064<br>7.968   |      | 58.04<br>70.15 | 0      |
| MOTA         | 4585         | С         | ASP        |   |            | 89.556           | 15.816           | 10.897           |      | 34.68          | c      |
| ATOM         | 4586         | 0         | ASP        |   |            | 90.758           | 16.398           |                  |      | 37.09          | 0      |
| ATOM<br>ATOM | 4587<br>4588 | N<br>CA   | ARG        |   | 144        | 88.392<br>88.233 | 16.317<br>17.674 | 11.320<br>11.917 |      | 28.48<br>25.06 | N<br>C |
| ATOM         | 4589         | СВ        | ARG        |   | 144        | 86.900           |                  | 12.509           |      |                | č      |
| ATOM         | 4590         | CG        | ARG        |   | 144        | 85.678           | 17.732           | 11.556           |      |                | . с    |
| ATOM         | 4591         | CD        | ARG        |   | 144        | 84.402           | 17.948           | 12.216           |      | 26.08          | Ç      |
| ATOM<br>ATOM | 4592<br>4593 | NE<br>C2  | ARG<br>ARG |   | 144<br>144 | 83.244<br>82.471 | 17.219<br>17.440 | 11.849<br>10.872 |      | 27.90<br>30.52 | N<br>C |
| ATOM         | 4594         |           | ARG        |   | 144        | 82.674           | 18.398           | 10.079           |      | 40.81          | N      |
| ATOM         | 4595         |           | ARG        |   |            | 81.477           | 16.703           | 10.701           |      | 38.85          | N      |
| ATOM<br>ATOM | 4596<br>4597 | C<br>O    | ARG<br>ARG |   | 144<br>144 | 89.374<br>90.124 | 18.853           | 12.860<br>12.617 |      | 25.85          | C<br>0 |
| ATOM         | 4598         | N         | VAL        |   |            | 89.703           | 17.142           | 13.873           | 1.00 |                | N      |
| ATOM         | 4599         | CA        | VAL        |   | 145        | 90.728           | 17.578           | 14.665           |      | 19.32          | C      |
| ATOM<br>ATOM | 4600<br>4601 | CB        | VAL<br>VAL |   | 145        | 90.770<br>91.820 | 16.785<br>17.153 | 15.890<br>16.710 |      | 18.87<br>16.20 | c<br>c |
| ATOM         | 4602         |           | VAL        |   | 145        | 89.701           | 16.969           | 16.622           |      | 19.56          | č      |
| MOTA         | 4603         | С         | VAL        |   | 145        | 91.973           | 17.557           | 13.982           | 1.00 | 25.68          | С      |
| ATOM         | 4604         | 0         | VAL        |   |            | 92.813           | 18.494           | 14.221           |      | 30.26          | 0      |
| ATOM<br>ATOM | 4605<br>4606 | N<br>CA   | GLN<br>GLN |   | 146<br>146 | 92.276<br>93.643 | 16.603<br>16.687 | 13.073<br>12.285 |      | 27.14<br>26.50 | N<br>C |
| ATOM         | 4607         | CB        |            |   | 146        | 93.807           | 15.543           | 11.406           |      | 26.46          | С      |
| ATOM         | 4608         | CG        |            |   | 146        | 93.736           | 14.142           | 12.227           |      | 32.82          | č      |
| ATOM<br>ATOM | 4609<br>4610 | CD        | GLN<br>GLN |   | 146<br>146 | 94.017<br>95.106 | 12.986<br>12.604 | 11.466<br>11.480 |      | 36.97<br>34.49 | C<br>0 |
| ATOM         | 4611         |           | GLN        |   |            | 92.966           | 12.393           | 10.724           |      | 40.06          | N      |
| ATOM         | 4612         | С         | GLN        |   |            | 93.774           | 17.834           | 11.404           |      | 27.30          | c      |
| ATOM         | 4613         | 0         | GLN        |   |            | 94.881           | 18.409           | 11.235           |      | 27.70          | 0      |
| ATOM<br>ATOM | 4614<br>4615 | N<br>CA   | GLU<br>GLU |   |            | 92.659<br>92.726 | 18.277<br>19.504 | 10.871<br>10.068 |      | 28.08<br>28.92 | N<br>C |
| ATOM         | 4616         | СВ        | GLU        |   |            | 91.441           | 19.755           | 9.273            |      | 29.57          | С      |
| ATOM         | 4617         | ÇG        | GLU        |   |            | 91.602           | 20.986           | 8.436            |      | 28.44          | c      |
| ATOM<br>ATOM | 4618<br>4619 | CD        | GLU<br>GLU |   |            | 90.180<br>89.062 | 21.537<br>21.228 | 7.892<br>8.450   |      | 38.61<br>40.53 | c<br>0 |
| ATOM         | 4620         |           | GLU        |   |            | 90.162           | 22.379           | 6.910            |      | 42.19          | ő      |
| MOTA         | 4621         | С         | GLU        |   |            | 93.033           | 20.730           | 10.924           |      | 30.33          | С      |
| ATOM         | 4622         | 0         | GLU        |   |            | 94.010           | 21.482           | 10.579           |      | 32.59          | 0      |
| MOTA<br>MOTA | 4623<br>4624 | N<br>CA   | GLU<br>GLU |   |            | 92.359<br>92.696 | 20.913           | 12.036<br>12.915 |      | 24.62<br>26.05 | N<br>C |
| ATOM         | 4625         | CB        | GLU        |   |            | 91.828           | 22.105           | 14.102           | 1.00 | 25.13          | C      |
| ATOM         | 4626         | CG        | GLU        | В | 148        | 91.819           | 23.402           | 14.770           |      | 29.49          | С      |
| ATOM<br>ATOM | 4627         | CD        | GLU<br>GLU |   |            | 91,293<br>90,280 | 24.516           | 13.861<br>13.104 |      | 35.44<br>38.52 | C<br>O |
| ATOM         | 4628<br>4629 |           | GLU        |   |            | 91.839           | 25.626           | 13.104           |      | 26.16          | 0      |
| ATOM         | 4630         | c         | GLU        | В | 148        | 94.039           | 21.903           | 13.357           | 1.00 | 25.34          | С      |
| MOTA         | 4631         | 0         | GLU        |   |            | 94.825           | 22.747           | 13.567           |      | 27.01          | 0      |
| ATOM<br>ATOM | 4632<br>4633 | N<br>Ca   | ALA<br>ALA |   |            | 94.408<br>95.821 | 20.754           | 13.495<br>13.969 |      | 29.08<br>31.51 | N<br>C |
| 017          | CLOF         | UM        | THE        | 9 | 117        | ,,,,,,,          | _0.013           | 13.303           | 2.00 |                | C      |

is.

```
Figure 2
        4634 CB ALA B 149
 MOTA
                                 95.949 19.189 14.228 1.00 29.77
        4635
                  ALA B 149
 ATOM
              C
                                 96.896 21.084
                                                 12.954 1.00 32.30
                  ALA B 149
 ATOM
        4636
              ٥
                                  98.029
                                          21.603
                                                 13.303 1.00 30.46
 MOTA
        4637
              N
                  ARG B 150
                                 96.628
                                          20.940
                                                 11.644
                                                         1.00 35.28
                                                 10.816
 MOTA
        4638
             CA
                 ARG B 150
                                  97.748
                                          21.498
                                                         1.00 36.88
 ATOM
        4639
              СВ
                  ARG B 150
                                  97.924
                                                   9.504
                                                          1.00 36.95
                                         20.840
 ATOM
        4640
              CG
                  ARG B 150
                                  96.966
                                                   8.608
                                                          1.00 44.66
                                         21.008
                                                          1.00 49.23
 MOTA
        4641
              CD
                  ARG B 150
                                 97.225
                                         20.497
                                                   7.083
 MOTA
        4642
              NE
                  ARG B 150
                                         21.560
                                 96.425
                                                   6.322
                                                          1.00 50.58
 ATOM
        4643
              CZ
                  ARG B 150
                                 95.214
                                         21.353
                                                   5.893
                                                          1.00 53.67
 ATOM
        4644
              NH1 ARG B 150
                                 94.571
                                         22.326
                                                   5.235
                                                          1.00 56.31
        4645
              NH2 ARG B 150
 MOTA
                                 94.585
                                         20.155
                                                   6.113
                                                          1.00 53.86
 ATOM
        4646
              С
                  ARG B 150
                                 97.594
                                         23.009
                                                 10.807
                                                          1.00 39.81
                                                                               C
 ATOM
        4647
              0
                  ARG B 150
                                 98.515
                                                          1.00 43.30
                                         23.834
                                                 11.068
                                                                               O
        4648
                  CYS B 151
                                         23.470
                                                 10.706
 ATOM
                                 96.364
                                                          1.00 38.34
                                                 10.790
 ATOM
        4649
              CA
                  CYS B 151
                                 96.216
                                         24.879
                                                          1.00 36.12
        4650
                  CYS B 151
                                 94.770
 ATOM
              CB
                                         25.244
                                                 10.830
                                                          1.00 37.05
 ATOM
        4651
              SG
                 CYS B 151
                                 94.094
                                                         1.00 42.05
                                         24.801
                                                  9.195
 ATOM
        4652
                  CYS B 151
                                 96.852
              С
                                         25.392
                                                 12.023
                                                          1.00 38.35
 ATOM
        4653
              0
                  CYS B 151
                                 97.488
                                         26.188
                                                 11.829
                                                         1.00 45.10
                                 96.729
 ATOM
        4654
             N
                  LEU B 152
                                         24.930
                                                 13.289
                                                         1.00 38.16
 ATOM
             CA
        4655
                 LEU B 152
                                 97.343
                                         25.508
                                                 14.399
                                                         1.00 37.55
                                 97.055
ATOM
        4656
             CB
                 LEU B 152
                                         24.563
                                                 15.494
                                                         1.00 38.94
                 LEU B 152
MOTA
        4657
             CG
                                 97.155
                                         25.054
                                                 16.922
                                                         1.00 44.58
ATOM
        4658
             CD1 LEU B 152
                                 96.766
                                         23.784
                                                 17.930
                                                         1.00 50.92
ATOM
       4659
             CD2 LEU B 152
                                 98.502
                                         25.392
                                                 17.110
                                                         1.00 48.68
ATOM
       4660
             C LEU B 152
                                 98.906
                                         25.600
                                                 14.123
                                                         1.00 38.07
                                                                               С
ATOM
       4661
             0
                 LEU B 152
                                 99.554
                                         26.480
                                                 14.461
                                                         1.00 33.21
                                                                               0
ATOM
       4662
             N
                 VAL B 153
                                 99.447
                                         24.634
                                                 13.425
                                                         1.00 40.14
ATOM
       4663
                VAL B 153
                                100.880
                                                 13.230
             CA
                                         24.549
                                                         1.00 40.88
                                                                               С
MOTA
       4664
             СВ
                 VAL B 153
                                101.249
                                         23.202
                                                 12.579
                                                         1.00 40.13
                                                                               С
ATOM
       4665
             CG1 VAL B 153
                                102.631
                                         23.160
                                                 12.278
                                                         1.00 35.93
                                                                               C
                                                                         MOTA
       4666
             CG2 VAL B 153
                                100.964
                                         22.137
                                                 13.492
                                                         1.00 38.99
                                         25.610
                                                 12.250
MOTA
       4667
                 VAL B 153
                                101.284
                                                         1.00 45.51
                                                                               С
                                                         1.00 45.08
ATOM
       4668
             0
                 VAL B 153
                                102.317
                                         26.199
                                                 12.341
                                                                               ٥.
                                                                             , N
ATOM
       4669
             N
                 GLU B 154
                                                         1.00 49.31
                                100.443
                                         25.883
                                                11.263
ATOM
       4670
             CA GLU B 154
                                100.689
                                                         1.00 49.94
                                         26.990
                                                                               С
                                                 10.338
ATOM
       4671
                 GLU B 154
             CB
                                 99.718
                                         26,979
                                                  9.086
                                                         1.00 53.63
                                                                               С
ATOM
       4672
                 GLU B 154
                                100.017
             CG
                                         25.820
                                                  7.966
                                                         1.00 61.63
                                                                               C
ATOM
       4673
             CD
                 GLU B 154
                                 98.764
                                         25.153
                                                  7.161
                                                         1.00 65.53
ATOM
       4674
             OE1 GLU B 154
                                 98.869
                                         24.124
                                                  6.457
                                                         1.00 72.55
ATOM
       4675
             OE2 GLU B 154
                                 97.610
                                         25.563
                                                  7.199
                                                         1.00 64.07
ATOM
       4676
             С
                 GLU B 154
                                100.634
                                         28.230
                                                 11.108
                                                         1.00 47.18
ATOM
       4677
             0
                 GLU B 154
                                101.535
                                         28.974
                                                 11.119
                                                         1.00 50.34
MOTA
       4678
                 GLU B 155
                                 99.632
             N
                                         28.463
                                                 11.861
                                                         1.00 46.20
ATOM
       4679
             CA
                 GLU B 155
                                 99.628
                                         29.634
                                                 12.687
                                                         1.00 46.40
ATOM
       4680
                 GLU B 155
             СВ
                                 98.416
                                         29.630
                                                 13.513
                                                         1.00 44.02
ATOM
       4681
                 GLU B 155
             CG
                                 97.338
                                         30.143
                                                 12.751
                                                         1.00 52.37
ATOM
       4682
                 GLU B 155
                                 97.314
                                         31.740
                                                 12.510
                                                         1.00 61.99
       4683
ATOM
             OE1 GLU B 155
                                 97.362
                                         32.095
                                                 11.298
                                                         1.00 56.10
ATOM
       4684
             OE2 GLU B 155
                                 97.148
                                         32.642
                                                 13.492
                                                         1.00 65.70
ATOM
       4685
             С
                 GLU B 155
                                100.899
                                         29.788
                                                 13.624
                                                         1.00 45.65
ATOM
       4686
             0
                 GLU B 155
                                101.342
                                         30.852
                                                 13.942
                                                         1.00 46.51
                                                                               Ω
ATOM
       4687
             N
                 LEU B 156
                                         28.719
                                                         1.00 44.63
                                101.433
                                                 14.112
                                                                              N
                                102.513
ATOM
       4688
                LEU B 156
                                                 15.021
                                                         1.00 44.43
             CA
                                         28.897
                                                                               C
ATOM
       4689
             СВ
                 LEU B 156
                                                         1.00 42.47
                                102.755
                                         27.637
                                                 15.911
                                                                              С
                                                         1.00 41.93
ATOM
       4690
             CG
                LEU B 156
                                101.648
                                                 16.880
                                         27.187
                                                                              С
ATOM
       4691
             CD1 LEU B 156
                                                 17.684
                                                         1.00 46.03
                                102.038
                                         25.989
                                                                              С
ATOM
       4692
             CD2 LEU B 156
                                101.291
                                         28.219
                                                 17.930
                                                         1.00 47.74
                                                                              С
ATOM
       4693
             С
                 LEU B 156
                                103.653
                                         29.293
                                                 14.133
                                                         1.00 44.17
                                                                              C
ATOM
       4694
             0
                 LEU B 156
                                104.544
                                         30.058
                                                 14.454
                                                         1.00 41.78
                                                                               0
ATOM
       4695
             N
                 ARG B 157
                                103.622
                                         28.791
                                                 12.941
                                                         1.00 47.67
ATOM
       4696
             CA
                 ARG B 157
                                104.746
                                         29.082
                                                11.985
                                                         1.00 46.75
ATOM
       4697
             СВ
                ARG B 157
                                104.558
                                        28.274
                                                10.811
                                                         1.00 44.02
                                105.700
                                        27.609
ATOM
       4698
             CG
                ARG B 157
                                                10.219
                                                         1.00 44.34
ATOM
       4699
             CD
                ARG B 157
                                105.121
                                        26.920
                                                 9.000
                                                        1.00 48.85
ATOM
       4700
             NE
                ARG B 157
                                104.929
                                         25.479
                                                  9.056
                                                         1.00 50.53
MOTA
       4701
             CZ
                 ARG B 157
                                105.948
                                         24.693
                                                  9.393
                                                         1.00 53.40
                                107.146
ATOM
       4702
             NH1 ARG B 157
                                         25.226
                                                  9.647
                                                         1.00 51.81
                               105.752
ATOM
       4703
             NH2 ARG B 157
                                        23.377
                                                  9.480
                                                         1.00 53.01
                                                                              N
ATOM
                 ARG B 157
                               104.870
                                        30.586
                                                11.670
       4704
             С
                                                         1.00 49.72
ATOM
       4705
             0
                 ARG B 157
                               105.904
                                         31.054
                                                11.488
                                                         1.00 50.89
ATOM
                 LYS B 158
                               103.808
                                         31.336
                                                11.678
                                                         1.00 52.03
       4706
             N
                                        32.755 .11.419
ATOM
       4707
             CA
                LYS B 158
                               103.851
                                                         1.00 52.77
                                        33,244
ATOM
       470R
             CB
                 LYS B 158
                               102.440
                                                11.134
                                                         1.00 52.54
                               101.881 32.820
ATOM
       4709
             CG
                 LYS B 158
                                                 9.878
                                                        1.00 52.64
```

11.15

45 C 140

A ...

: -:-

is and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of

trains.

age Same

764 87 C

F1 1

```
Figure 2
ATOM
        4710
             CD
                 LYS B 158
                                 100.363 32.372
                                                    9.921 1.00 61.11
ATOM
        4711
              CE
                 LYS B 158
                                  99.754
                                          32.059
                                                    8.496
                                                           1.00 71.94
        4712
                  LYS B 158
ATOM
              NZ
                                  98.626
                                          33.123
                                                    8.183
                                                           1.00 81.39
        4713
ATOM
                  LYS B 158
                                 104.411
                                          33.485
                                                  12.572
                                                           1.00 54.51
                                                                                 c
ATOM
        4714
                  LYS B 158
                                 104.855
                                          34.529
                                                   12.494
                                                           1.00 61.71
ATOM
        4715
                  THR B 159
                                 104.382
                                          32.973
                                                   13.694
                                                           1.00 53.68
ATOM
        4716
              CA
                  THR B 159
                                 105.060
                                          33.756
                                                   14.693
                                                           1.00 52.09
ATOM
        4717
                  THR B 159
              СВ
                                 104.967
                                          33.023
                                                   15.990
                                                           1.00 52.39
MOTA
        4718
              OG1 THR B 159
                                 105.495
                                          31.714
                                                   15.813
                                                           1.00 58.41
ATOM
        4719
              CG2 THR B 159
                                 103.494
                                          32.882
                                                   16.412
                                                           1.00 46.11
ATOM
       4720
                  THR B 159
              C
                                 106.456
                                          33.937
                                                   14.425
                                                           1.00 49.47
                                 107.102
ATOM
        4721
              0
                  THR B 159
                                          34.483
                                                   15.222
                                                           1.00 47.60
ATOM
       4722
              N
                  LYS B 160
                                 106.873
                                          33.437
                                                   13.312
                                                           1.00 51.05
ATOM
        4723
              CA
                 LYS B 160
                                 108.178
                                          33.663
                                                   12.887
                                                           1.00 52.48
ATOM
       4724
              CB
                  LYS B 160
                                 108.185
                                          35.089
                                                   12.428
                                                           1.00 56.02
ATOM
       4725
              CG
                  LYS B 160
                                 107.487
                                          35.389
                                                   11.074
                                                           1.00 63.34
ATOM
       4726
             CD
                 LYS B 160
                                 108.031
                                          36.824
                                                   10.417
                                                           1.00 71.08
ATOM
       4727
              CE
                 LYS B 160
                                 109.474
                                          36.651
                                                   9.757
                                                           1.00 79.11
ATOM
       4728
             NZ
                  LYS B 160
                                 110.208
                                          38.075
                                                    9.343
                                                           1.00 85.01
ATOM
       4729
             С
                  LYS B 160
                                 109.306
                                          33.385
                                                   13.918
                                                           1.00 50.75
ATOM
       4730
             0
                  LYS B 160
                                 110.492
                                          33.589
                                                  13.658
                                                          1.00 49.62
ATOM
       4731
              N
                  ALA B 161
                                 109.008
                                          32.732
                                                  14.996
                                                           1.00 48.83
MOTA
       4732
              CA
                  ALA B 161
                                 110.041
                                          32.275
                                                  15.888
                                                           1.00 47.64
                                                                                 С
ATOM
       4733
              CB
                  ALA B 161
                                 111.138
                                          31.860
                                                  15.274
                                                           1.00 45.23
       4734
                  ALA B 161
                                 110.384
MOTA
                                          33,228
                                                  16.921
                                                           1.00 49.53
                                                                                 С
ATOM
       4735
                  ALA B 161
                                 111.321
                                          33.055
                                                  17.542
                                                           1.00 52.07
                                                                                 0
MOTA
       4736
                  SER B 162
                                 109.553
                                          34.207
                                                  17.168
                                                           1.00 50.59
                                                                                 N
ATOM
       4737
             CA
                  SER B 162
                                 109.778
                                          35.159
                                                  18.140
                                                           1.00 50.86
                                                                                 С
ATOM
       4738
             CB.
                  SER B 162
                                 109.476
                                          36.517
                                                  17.510
                                                           1.00 52.96
                                                                                 С
ATOM
       4739
             OG
                  SER B 162
                                 108.060
                                                  17.272
                                                          1.00 58.20
                                          36.686
                                                                                 0
       4740
                  SER B 162
ATOM
             С
                                 108.861
                                          35.031
                                                  19,270
                                                          1.00 49.63
                                                                                 С
       4741
                                107.866
ATOM
                  SER B 162
                                          34.662
             0
                                                  19.065
                                                          1.00 51.04
                                                                                 0
       4742
                  PRO B 163
                                 109.182
ATOM
             N
                                          35.529
                                                  20.438
                                                          1.00 48.65
                                                                                 N
ATOM
       4743
             CA
                  PRO B 163
                                108.545
                                          35.319
                                                  21.627
                                                          1.00 46.81
       4744
                  PRO B 163
ATOM
             CB
                                109.089
                                          36.435
                                                  22.427
                                                          1.00 49.46
       4745
ATOM
             CG
                  PRO R 163
                                 110.376
                                          36.617
                                                  22.010
                                                          1.00 46.20
ATOM
       4746
             CD
                 PRO B 163
                                 110.252
                                          36.485
                                                  20.643
                                                          1.00 48.41
MOTA
       4747
             С
                  PRO B 163
                                 107.225
                                          35.565
                                                  21.396
                                                          1.00 46.95
ATÓM
       4748
             0
                  PRO B 163
                                 106.896
                                          36.357
                                                  20.603
                                                          1.00 49.30
ATOM
       4749
             N
                  CYS B 164
                                 106.422
                                          34.797
                                                  22,137
                                                          1.00 49.04
ATOM
       4750
             CA
                  CYS B 164
                                 105.007
                                          34.781
                                                  22.018
                                                          1.00 44.62
ATOM
       4751
                                 104.720
             CB
                 CYS B 164
                                          33.988
                                                  20.857
                                                          1.00 43.60
ATOM
       4752
             SG
                 CYS B 164
                                103.455
                                          32.773
                                                  20.911
                                                          1.00 38.18
ATOM
       4753
             С
                  CYS B 164
                                 104.202
                                          34.267
                                                  23.135
                                                          1.00 40.76
                                                                                 C
ATOM
       4754
             0
                  CYS B 164
                                104.678
                                          33.612
                                                  23.793
                                                          1.00 39.64
ATOM
       4755
             N
                 ASP B 165
                                102.969
                                          34.709
                                                  23.313
                                                          1.00 37.54
                                                                                 N
ATOM
       4756
             CA
                 ASP B 165
                                 102.028
                                          34.381
                                                          1.00 36.63
                                                  24.411
ATOM
       4757
             СВ
                 ASP B 165
                                 101.323
                                          35.597
                                                  25.057
                                                          1.00 31.80
                                                                                C
MOTA
       4758
             CG
                 ASP B 165
                                                  25.971
                                                          1.00 39.27
                                100.163
                                          35.239
                                                                                C
ATOM
       4759
             OD1 ASP B 165
                                                  26.776
                                 99.438
                                          36.096
                                                          1.00 38.76
                                                                                 0
ATOM
       4760
             OD2 ASP B 165
                                 99.866
                                          33.956
                                                  26,168
                                                          1.00 44.60
                                                                                0
ATOM
       4761
                 ASP B 165
             С
                                101.036
                                          33.495
                                                  23.675
                                                          1.00 38.59
                                                                                C
ATOM
       4762
             0
                 ASP B 165
                                100.155
                                          33.946
                                                  22.790
                                                          1.00 40.57
                                                                                 o
ATOM
       4763
             N
                 PRO B 166
                                101.171
                                          32.188
                                                  23.923
                                                          1.00 35.97
                                                                                N
ATOM
       4764
             CA
                 PRO B 166
                                100.400
                                          31.141
                                                  23.213
                                                          1.00 31.62
                                                                                C
ATOM
       4765
             СВ
                 PRO B 166
                                100.991
                                          29.937
                                                  23.779
                                                          1.00 36.05
                                                                                ¢
ATOM
       4766
             CG
                 PRO B 166
                                101.166
                                          30.271
                                                  25.253
                                                          1.00 34.73
ATOM
       4767
             CD
                 PRO B 166
                                101.955
                                          31.616
                                                  24.988
                                                          1.00 36.92
                                                                                С
ATOM
       4768
             С
                 PRO B 166
                                 98.970
                                          31.259
                                                  23.623
                                                          1.00 24.78
ATOM
       4769
             0
                 PRO B 166
                                 98.102
                                          30.752
                                                  23.092
                                                          1.00 24.22
MOTA
       4770
             N
                 THR B 167
                                 98.648
                                          32.034
                                                  24.538
                                                          1.00 21.08
ATOM
       4771
                                 97.178
             CA
                 THR B 167
                                          31.984
                                                  24.827
                                                          1.00 19.90
ATOM
       4772
             CB
                 THR B 167
                                 96.796
                                         33.059
                                                  25.641
                                                          1.00 18.63
ATOM
       4773
             OG1 THR B 167
                                 97.642
                                         33.237
                                                  26.789
                                                          1.00 23.25
                                                                                0
ATOM
       4774
                                 95.619
                                         32.880
                                                  26.098
             CG2 THR B 167
                                                          1.00 22.87
                                                                                C
ATOM
       4775
             С
                 THR B 167
                                 96.181
                                         32.065
                                                  23.807
                                                          1.00 26.13
ATOM
       4776
                                                  23.751
             ٥
                 THR B 167
                                 95.355
                                         31.351
                                                          1.00 37.62
                                                                                0
ATOM
       4777
             N
                 PHE B 168
                                 96.163
                                         32.960
                                                  22.866
                                                          1.00 30.70
ATOM
       4778
             CA
                PHE B 168
                                 95.131
                                         33.179
                                                  21.969
                                                          1.00 28.79
ATOM
       4779
             CB
                 PHE B 168
                                 95.403
                                         34.531
                                                  21.286
                                                         1.00 31.91
ATOM
       4780
             CG
                 PHE B 168
                                 94.487
                                         34.848
                                                  20.181
                                                          1.00 32.40
ATOM
       4781
             CD1 PHE B 168
                                 94.927
                                         34.834
                                                  18.965
                                                          1.00 34.00
ATOM
       4782
             CE1 PHE B 168
                                 93.999
                                         35.071
                                                  18.011
                                                          1.00 35.99
ATOM
       4783
             CZ PHE B 168
                                 92.666
                                         35.355
                                                 18.377
                                                          1.00 24.97
ATOM
       4784
             CE2 PHE B 168
                                 92.308
                                         35.395
                                                  19.495
                                                          1.00 26.27
                                                  20.451
ATOM
                                 93.150 35.151
                                                          1.00 30.65
```

|              |                |           |             |   |              | Fi               | .gure            | 2                |                          |        |
|--------------|----------------|-----------|-------------|---|--------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 4786           | С         |             |   | 168          | 95.033           | 32.160           | 20.929           | 1.00 29.57               | C      |
| ATOM<br>ATOM | 4787<br>4788   | O<br>N    |             |   | 168<br>169   | 93.895<br>96.183 | 31.730<br>31.932 | 20.620<br>20.313 | 1.00 27.47<br>1.00 29.02 | O<br>N |
| ATOM         | 4789           | CA        | ILE         |   |              | 96.340           | 30.976           | 19.272           | 1.00 27.44               | č      |
| ATOM<br>ATOM | 4790           | CB        |             |   | 169          | 97.707           | 30.841           | 19.013           | 1.00 27.00               | c      |
| ATOM         | 4791<br>4792   |           | ILE         |   |              | 98.132<br>99.829 | 31.801<br>31.655 | 17.947<br>17.390 | 1.00 31.87<br>1.00 27.35 | C      |
| ATOM         | 4793           | CG2       | ILE         | В | 169          | 97.922           | 29.568           | 18.418           | 1.00 36.89               | C      |
| ATOM<br>ATOM | 4794<br>4795   | 0         |             |   | 169<br>169   | 95.916<br>95.164 | 29.571<br>28.871 | 19.848<br>19.204 | 1.00 28.15<br>1.00 29.47 | c<br>0 |
| ATOM         | 4796           | N         |             |   | 170          | 96.343           | 29.186           | 21.032           | 1.00 25.54               | N      |
| ATOM         | 4797           | CA        |             |   | 170          | 95.983           | 27.913           | 21.565           | 1.00 22.81               | C      |
| ATOM<br>ATOM | 4798<br>4799   | CB<br>CG  | LEU         |   | 170<br>170   | 96.727<br>97.814 | 27.662<br>26.702 | 22.752<br>22.726 | 1.00 24.41<br>1.00 28.75 | C<br>C |
| ATOM         | 4800           |           | LEU         |   |              | 98.158           | 26.516           | 21.360           | 1.00 29.89               | č      |
| ATOM         | 4801           |           | LEU         |   | 170<br>170   | 99.047           | 27.075           | 23.534           | 1.00 31.78               | c      |
| ATOM<br>ATOM | 4802<br>4803   | С<br>0    |             |   | 170          | 94.578<br>93.966 | 28.060<br>27.141 | 21.983<br>22.357 | 1.00 25.41<br>1.00 26.24 | C<br>O |
| ATOM         | 4804           | N         | GLY         |   |              | 93.966           | 29.215           | 22.055           | 1.00 26.86               | N      |
| MOTA<br>MOTA | 4805<br>4806   | CA<br>C   | GLY<br>GLY  |   |              | 92.529<br>91.746 | 29.096<br>28.922 | 22.379<br>21.057 | 1.00 26.29<br>1.00 27.95 | C<br>C |
| ATOM         | 4807           | Ö         | GLY         |   |              | 90.466           | 28.595           | 20.822           | 1.00 27.33               | 0      |
| ATOM         | 4808           | N         | CYS         |   |              | 92.445           | 29.246           | 20.048           | 1.00 29.75               | N      |
| MOTA<br>MOTA | 4809<br>4810   | CA<br>CB  | CYS         |   |              | 91.573<br>92.459 | 29.370<br>30.132 | 18.809<br>17.702 | 1.00 34.69<br>1.00 38.03 | C<br>C |
| ATOM         | 4811           | SG        | CYS         | В | 172          | 92.228           | 31.865           | 17.740           | 1.00 40.36               | s      |
| ATOM         | 4812           | C         | CYS         |   |              | 91.256           | 27.977           | 18.251           | 1.00 32.91               | c      |
| MOTA<br>MOTA | 4813<br>4814   | 0<br>N    |             |   | 173          | 90.246<br>92.248 | 27.725<br>27.099 | 17.837<br>18.380 | 1.00 32.86<br>1.00 30.46 | O<br>N |
| ATOM         | 4815           | CA        | ALA         | В | 173          | 92.172           | 25.711           | 17.952           | 1.00 28.93               | С      |
| ATOM<br>ATOM | 4816<br>4817   |           | ALA<br>ALA  |   |              | 93.542<br>90.998 | 25.129<br>24.919 | 18.334<br>18.474 | 1.00 31.28<br>1.00 25.46 | C      |
| ATOM         | 4818           | _         |             |   |              | 90.165           | 24.459           | 17.751           | 1.00 25.36               | Ö      |
| MOTA         | 4819           |           | PRO         |   |              | 90.869           | 24.858           | 19.740           | 1.00 23.81               | · N    |
| ATOM<br>ATOM | 4820 .<br>4821 |           |             |   | 174          | 89.810<br>90.139 | 24.181<br>24.114 | 20.312<br>21.780 | 1.00 24.54<br>1.00 21.43 | C      |
| ATOM         | 4822           |           |             |   |              | 91.447           | 24.724           | 21.935           | 1.00 26.69               | č      |
| ATOM         | 4823           |           | PRO         |   |              | 91.641           | 25.559           | 20.671           | 1.00 25.01               | c      |
| ATOM<br>ATOM | 4824 ± 4825 ±  |           | PRO<br>PRO  |   |              | 88.511<br>87.456 | 24.829<br>24.215 | 20.006<br>19.800 | 1.00 26.26<br>1.00 27.84 | C      |
| MOTA         | 4826           | N .       | CYS         | В | 175          | 88.487           | 26.087           | 19.889           | 1.00 30.09               | N      |
| ATOM<br>ATOM | 4827<br>4828   | CA<br>CB  | CYS         |   |              | 87.160<br>87.252 | 26.704<br>28.198 | 19.533<br>19.567 | 1.00 31.67<br>1.00 35.10 | C      |
| ATOM         | 4829           | SG        | CYS         |   |              | 85.647           | 29.010           | 19.387           | 1.00 41.52               | s      |
| ATOM         | 4830           | C         | CYS         |   |              | 86.717           | 26.335           | 18.179           | 1.00 28.66               | c      |
| ATOM<br>ATOM | 4831<br>4832   | O<br>N    | CYS<br>ASN  |   |              | 85.448<br>87.648 | 26.101<br>26.343 | 17.825<br>17.340 | 1.00 29.08<br>1.00 26.22 | О<br>И |
| ATOM         | 4833           | CA        | ASN         |   | 176          | 87.337           | 25.979           | 15.898           | 1.00 27.87               | č      |
| ATOM         | 4834           | CB        | ASN         |   |              | 88.583           | 26.231           | 15.084           | 1.00 30.58               | C      |
| ATOM<br>ATOM | 4835<br>4836   | CG<br>OD1 | ASN<br>'ASN |   | 176          | 88.384<br>87.273 | 27.164<br>27.552 | 13.862<br>13.538 | 1.00 32.62<br>1.00 32.59 | C<br>0 |
| MOTA         | 4837           |           | ASN         | В | 176          | 89.567           | 27.321           | 13.046           | 1.00 28.60               | N      |
| ATOM<br>ATOM | 4838<br>4839   | С<br>0    | ASN<br>ASN  |   |              | 86.927<br>86.092 | 24.479<br>24.080 | 15.783<br>14.996 | 1.00 25.44<br>1.00 26.43 | C      |
| ATOM         | 4840           | N         | VAL         |   |              | 87.486           | 23.658           | 16.577           | 1.00 25.03               | N      |
| ATOM         | 4841           | CA        | VAL         |   |              | 87.099           | 22.283           | 16.503           | 1.00 23.19               | C      |
| ATOM -       | 4842<br>4843   | CB<br>CG1 | VAL<br>VAL  |   |              | 87.785<br>87.062 | 21.431<br>20.155 | 17.459<br>17.601 | 1.00 22.29<br>1.00 31.48 | C<br>C |
| ATOM         | 4844           |           | VAL         | В | 177          | 89.136           | 21.092           | 17.060           | 1.00 20.77               | С      |
| ATOM<br>ATOM | 4845<br>4846   | С<br>0    | VAL<br>VAL  |   |              | 85.705<br>84.926 | 22.271           | 16.790           | 1.00 23.32               | C<br>0 |
| MOTA         | 4847           | N         | ILE         |   |              | 85.264           | 21.693<br>22.931 | 16.100<br>17.841 | 1.00 22.25<br>1.00 27.73 | N      |
| MOTA         | 4848           | CA        | ILE         | В | 178          | 83.713           | 22.924           | 18.113           | 1.00 23.65               | C      |
| ATOM<br>ATOM | 4849<br>4850   | CB<br>CG1 | ILE         |   |              | 83.352<br>83.385 | 23.588           | 19.385           | 1.00 23.56<br>1.00 27.91 | C      |
| ATOM         | 4851           |           | ILE         |   |              | 84.643           | 22.611           | 20.791           | 1.00 39.44               | С      |
| ATOM         | 4852           |           | ILE         |   |              | 81.862           | 23.809           | 19.280           | 1.00 26.78               | C      |
| ATOM<br>ATOM | 4853<br>4854   | С<br>0    | ILE         |   |              | 83.019<br>81.986 | 23.496<br>23.064 | 16.978<br>16.541 | 1.00 22.88<br>1.00 25.28 | c<br>0 |
| MOTA         | 4855           | N         | CYS         |   |              | 83.592           | 24.555           | 16.358           | 1.00 28.73               | N      |
| ATOM         | 4856           | CA        | CYS         |   |              | 82.884<br>83.619 | 25.158           | 15.108           | 1.00 28.34               | C      |
| ATOM<br>ATOM | 4857<br>4858   | CB<br>SG  | CYS         |   | 179<br>179 . | 83.619<br>83.641 | 26.319<br>27.812 | 14.513<br>15.597 | 1.00 27.25<br>1.00 39.46 | C<br>S |
| ATOM         | 4859           | С         | CYS         | В | 179          | 82.563           | 24.155           | 14.001           | 1.00 26.94               | С      |
| ATOM<br>ATOM | 4860<br>4861   |           | CYS<br>SER  |   |              | 81.365<br>83.574 | 24.065<br>23.371 | 13.326<br>13.821 | 1.00 27.96<br>1.00 26.66 | O<br>N |
| VI OW        | 4861           | N         | SEK         | 9 | 100          | 67.5/4           | ~J.J/I           | 13.021           | 1.00 20.00               | 14     |

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTRO

· · \* \* 165 ·

ATOM

4937

CB

**ASP B 188** 

```
Figure 2
                                 83.554 22.343 12.785 1.00 25.98
       4862 CA SER B 180
ATOM
                                                                                С
                                 84.876 21.706
                                                 12.713
                                                         1.00 24.43
ATOM
       4863
             CB
                 SER B 180
                                                          1.00 32.83
ATOM
       4864
             OG
                 SER B 180
                                 84.887
                                        21.117
                                                 11.399
ATOM
       4865
             С
                 SER B 180
                                 82.547
                                         21.396
                                                 13.166
                                                          1.00 29.47
                 SER B 180
                                 81.666 21.163
                                                 12.415
                                                          1.00 36.80
ATOM
       4866
                 ILE B 181
                                 82.535
                                         20.809
                                                 14.358
                                                          1.00 28.88
ATOM
       4867
             N
                 ILE B 181
                                 81.544
                                         19.886
                                                 14.679
                                                          1.00 25.12
ATOM
       4868
             CA
ATOM
       4869
             СВ
                 ILE B 181
                                 81.800
                                         19.426
                                                 16.036
                                                          1.00 26.75
                                 82.979
                                         18.451
                                                 16.033
ATOM
       4870
             CG1 ILE B 181
                                                          1.00 26.17
                                 83.642
MOTA
       4871
             CD1 ILE B 181
                                         18.396
                                                 17.377
                                                          1.00 30.37
MOTA
       4872
             CG2 ILE B 181
                                 80.692
                                         18.673
                                                 16.527
                                                          1.00 31.53
MOTA
       4873
             С
                 ILE B 181
                                 80.188
                                         20.461
                                                 14.614
                                                          1.00 29.49
ATOM
       4874
                 ILE B 181
                                 79.166
                                         19.696
                                                 14.333
                                                          1.00 27.23
             0
                                                          1.00 33.16
ATOM
       4875
                 ILE B 182
                                 79.973
                                         21.776
                                                 14.971
             N
                                 78.512
       4876
                 ILE B 182
                                         22.252
                                                 14.987
                                                          1.00 29.70
ATOM
             CA
                                 78.225
                                         23.272
                                                 15.934
                                                          1.00 30.25
ATOM
       4877
             CB
                 ILE B 182
             CG1 ILE B 182
                                 78.932
                                         23.134
                                                 17.335
                                                          1.00 30.01
ATOM
       4878
ATOM
       4879
             CD1 ILE B 182
                                 78.171
                                         22.620.
                                                 18.233
                                                          1.00 31.35
             CG2 ILE B 182
                                 76.862
                                         23.502
                                                 15.947
                                                          1.00 29.01
                                                                                c
ATOM
       4880
                                 78.094
                                         22.769
                                                 13.627
                                                          1.00 32.50
ATOM
       4881
                 ILE B 182
             С
                                 76.959
ATOM
                 ILE B 182
                                         22.440
                                                 13.168
                                                          1.00 31.00
                                                                                0
       4882
             0
                                 78.944
                                         23.571
                                                 12.959
                                                          1.00 31.69
ATOM
                 PHE B 183
       4883
             N
                                                                               N
                                 78.528
                                                 11.731
                                                          1.00 32.77
ATOM
       4884
             CA
                 PHE B 183
                                         24.210
                                                                               C
                                 79.172
                                         25.707
                                                 11.642
                                                          1.00 34.05
ATOM
       4885
             CB
                 PHE B 183
                                 78.961
                                         26.564
                                                 12.793
                                                          1.00 29.87
ATOM
       4886
             CG
                 PHE B 183
                                                                               С
                                 79.881
                                         27.371
                                                 13.310
                                                          1.00 30.53
                                                                               С
ATOM
       4887
             CD1 PHE B 183
ATOM
       4888
             CE1 PHE B 183
                                 79.626
                                         28.070
                                                 14.442
                                                         1.00 37.12
                                                                               С
ATOM
       4889
             CZ PHE B 183
                                 78.343
                                         27.955
                                                 15.055
                                                         1.00 36.76
                                                                               C
ATOM
       4890
             CE2 PHE B 183
                                 77.411
                                         27.170
                                                 14.523
                                                         1.00 35.12
                                                                               С
ATOM
       4891
             CD2 PHE B 183
                                 77.704
                                         26.490
                                                 13.406
                                                         1.00 37.30
                                                                                ¢
                                                                                 $1.7.3
ATOM
       4892
             С
                 PHE B 183
                                 78.977
                                         23.522
                                                 10.435
                                                         1.00 35.81
                                                                               C
ATOM
       4893
                 PHE B 183
                                 78.553
                                         23.868
                                                  9.401
                                                         1.00 40.32
                                                                               79.918
                                         22.679
                                                         1.00 39.93
MOTA
       4894
                 HIS B 184
                                                 10.489
                                 80.539
                                                  9.507
                                                         1.00 46.66
ATOM
       4895
             CA
                 HIS B 184
                                        21.838
ATOM
       4896
             СВ
                 HIS B 184
                                 79.753
                                         21.456
                                                  8.303
                                                         1.00 50.11
                                 80.318
                                        20.269
MOTA
       4897
             CG
                HIS B 184
                                                  7.565
                                                         1.00 54.75
ATOM
       4898
             ND1 HIS B 184
                                 80.415
                                         20.246
                                                  6.180
                                                         1.00 61.14
                                                                               C ·
                                 80.901
ATOM
       4899
             CE1 HIS B 184
                                         19.060
                                                  5.806
                                                         1.00 68.11
                                                                               N 1 2 1 1 1 2 2 2
ATOM
       4900
             NE2 HIS B 184
                                 81.050
                                         18.291
                                                  6.898
                                                         1.00 71.29
                                 80.692
                                                  8.013
                                                         1.00 59.57
MOTA
             CD2 HIS B 184
                                         19.017
                                                                               С
       4901
                                                                                 ...
                                                         1.00 49.83
ATOM
                                 81.829
                                         22.169
                                                  9.092
                                                                               С
       4902
                 HIS B 184
             C
ATOM
                                 82.592
                                                  8.762
                                                         1.00 57.32
       4903
                                         21.295
             0
                 HIS B 184
                                                                               ٥
ATOM
                                                         1.00 49.19
       4904
                                 82.114
                                         23.436
                                                  9.117
             N
                 LYS B 185
                                                                               N
ATOM
       4905
             CA
                LYS B 185
                                 83.380
                                         23.855
                                                  8.773
                                                         1.00 46.18
                                                                               С
ATOM
       4906
             СВ
                 LYS B 185
                                 82.954
                                         24.543
                                                  7.481
                                                         1.00 52.96
MOTA
       4907
             CG
                 LYS B 185
                                 83.612
                                         25.967
                                                  7.138
                                                         1.00 59.65
                                                                               C
ATOM
       4908
             CD
                 LYS B 185
                                 82.778
                                         26.639
                                                  5.936
                                                         1.00 66.28
                                                                               c
MOTA
       4909
             CE
                 LYS B 185
                                 83.602
                                         28.052
                                                  5.568
                                                         1.00 72.61
                                                                               C
                                        29.106
ATOM
       4910
             NZ
                 LYS B 185
                                 83.876
                                                  6.786
                                                         1.00 56.39
                                                                               N
MOTA
       4911
                 LYS B 185
                                 84.008
                                         24.826
                                                  9.754
                                                          1.00 41.07
                                                                               С
             С
ATOM
       4912
                 LYS B 185
                                 83.402 25.694
                                                 10.278
                                                         1.00 43.29
                                                                               0
ATOM
       4913
             N
                 ARG B 186
                                 85.265
                                         24.751
                                                  9.918
                                                          1.00 37.63
ATOM
       4914
                                 86.025
                                         25.682
                                                 10.690
                                                         1.00 35.62
                 ARG B 186
       4915
                                 87.417
                                         25.226
                                                 10.781
                                                          1.00 33.61
ATOM
             СВ
                 ARG B 186
                                 88.041
                                         25.065
                                                         1.00 29.63
ATOM
       4916
             CG
                 ARG B 186
                                                  9.601
                                         24.576
                                                  9.537
ATOM
       4917
             CD
                 ARG B 186
                                 89.425
                                                         1.00 26.57
ATOM
       4918
                 ARG B 186
                                 90.297
                                         25.092
                                                 10.546
                                                         1.00 39.46
             NE
ATOM
       4919
                 ARG B 186
                                 91.107
                                         26.192
                                                 10.472
                                                          1.00 47.38
             CZ
                                                         1.00 37.49
ATOM
       4920
             NH1 ARG B 186
                                 91.071
                                         26.904
                                                  9.429
ATOM
       4921
             NH2 ARG B 186
                                 91.942
                                         26.575
                                                 11.520
                                                         1.00 48.25
                                         27.066
                                                 10.035
                                                         1.00 39.08
                 ARG B 186
                                 86.141
ATOM
       4922
             С
                                 85.825
                                                  8.867
                                                          1.00 38.74
ATOM
       4923
                 ARG B 186
                                         27.163
             0
                                         28.066
                                                 10.799
                                                          1.00 39.88
                 PHE B 187
                                 86.553
ATOM
       4924
             N
                                         29.383
                                                 10.390
                                                         1.00 41.05
ATOM
       4925
             CA
                 PHE B 187
                                 86.684
                                                 11.376
                                                         1.00 42.80
ATOM
       4926
             CB
                 PHE B 187
                                 86.225
                                         30.372
                                                         1.00 39.62
MOTA
       4927
             CG
                 PHE B 187
                                 84.699
                                         30.327
                                                 11.530
MOTA
       4928
             CD1 PHE B 187
                                 84.126
                                        29.770
                                                 12.666
                                                         1.00 36.18
             CE1 PHE B 187
ATOM
       4929
                                 82.774
                                         29.661
                                                 12.854
                                                         1.00 37.51
MOTA
       4930
             CZ PHE B 187
                                 81.943
                                         30.130
                                                 11.904
                                                         1.00 41.90
       4931
             CE2 PHE B 187
                                 82.545
                                         30.731
                                                 10.728
                                                         1.00 42.53
MOTA
       4932
                                 83.944
                                         30.794
                                                 10.601
                                                         1.00 37.81
ATOM
             CD2 PHE B 187
ATOM
       4933
                 PHE B 187
                                 88.069
                                         29.555
                                                 10.254
                                                          1.00 44.70
ATOM
       4934
                 PHE B 187
                                 88.755
                                         28.653
                                                 10.438
                                                         1.00 49.78
ATOM
       4935
             N
                 ASP B 188
                                 88.519
                                         30.686
                                                  9.834
                                                         1.00 47.01
ATOM
       4936
             CA
                 ASP B 188
                                 89.940
                                         30.985
                                                  9.574
                                                         1.00 49.09
```

31.854

8.206

1.00 51.42

90.067

```
Figure 2
ATOM
        4938
              CG ASP B 188
                                  91.498 32.240
                                                    7.865
                                                          1.00 50.74
                                                                                 С
ATOM
        4939
              OD1 ASP B 188
                                  92.177
                                           32.971
                                                    8.621
                                                           1.00 57.77
ATOM
              OD2 ASP B 188
                                  92.086
        4940
                                          31.801
                                                    6.880
                                                           1.00 53.72
ATOM
        4941
              C
                  ASP B 188
                                  90.193
                                           31.905
                                                   10.769
                                                           1.00 47.39
                                                   11.099
ATOM
        4942
                  ASP B 188
                                  89.268
              ٥
                                          32.691
                                                           1.00 44.15
ATOM
        4943
              N
                  TYR B 189
                                  91.369
                                          31.829
                                                   11.383
                                                           1.00 44.98
                                  91.550
ATOM
        4944
              CA
                  TYR B 189
                                          32.459
                                                   12.638
                                                           1.00 45.78
ATOM
                  TYR B 189
                                  92.948
        4945
              CB
                                          32.139
                                                   13.159
                                                           1.00 46.54
ATOM
        4946
              CG
                  TYR B 189
                                  93.249
                                          30.617
                                                   13.553
                                                           1.00 53.71
ATOM
        4947
              CD1 TYR B 189
                                  94.495
                                          30.148
                                                  13.751
                                                           1.00 55.90
ATOM
        494R
              CE1 TYR B 189
                                  94.717
                                          28.849
                                                   14.115
                                                           1.00 52.29
ATOM
        4949
              CZ TYR B 189
                                  93.751
                                          28.033
                                                  14.295
                                                           1.00 47.90
ATOM
        4950
              OH TYR B 189
                                  93.988
                                          26.694
                                                   14.710
                                                           1.00 48.67
                                                                                 0
ATOM
        4951
              CE2 TYR B 189
                                  92.580
                                          28.420
                                                  14.099
                                                           1.00 48.21
                                                                                 C
ATOM
        4952
              CD2 TYR B 189
                                  92.276
                                          29.692
                                                   13.769
                                                           1.00 51.61
                                                                                 C
ATOM
        4953
              С
                  TYR B 189
                                  91.338
                                          33.816
                                                   12.521
                                                           1.00 47.09
                                                                                 C
ATOM
        4954
              ٥
                  TYR B 189
                                  91.330
                                          34.617
                                                   13.488
                                                           1.00 53.56
                                                                                 0
ATOM
        4955
              N
                  LYS B 190
                                  91.171
                                          34.253
                                                   11.318
                                                           1.00 52.73
                                                                                 N
ATOM
        4956
              CA
                  LYS B 190
                                  90.953
                                          35.804
                                                   11.038
                                                           1.00 53.79
                                                                                 C
ATOM
        4957
              СВ
                  LYS B 190
                                  91.672
                                          36.202
                                                    9.866
                                                           1.00 53.51
                                                                                 С
MOTA
        4958
                  LYS B 190
                                  93.027
              CG
                                          36.867
                                                  10.286
                                                           1.00 59.42
                                                                                 С
ATOM
        4959
              CD
                  LYS B 190
                                  93.683
                                          37.441
                                                    8.948
                                                           1.00 72.93
                                                                                 C
        4960
              CE
                  LYS B 190
ATOM
                                  92.494
                                          37.915
                                                    7.662
                                                           1.00 72.14
                                                                                 C
ATOM
        4961
              NZ
                  LYS B 190
                                  92.987
                                          38.470
                                                    6.302
                                                           1.00 69.21
ATOM
        4962
              С
                  LYS B 190
                                  89.536
                                          36.257
                                                  10.859
                                                           1,00 50.95
                                                                                 C
ATOM
        4963
              0
                  LYS B 190
                                  89.174
                                          37.181
                                                  11.327
                                                           1.00 50.20
                                  88.736
ATOM
        4964
                  ASP B 191
                                          35.463
                                                  10.205
                                                           1.00 50.56
                                                                                 N
ATOM
        4965
              CA
                 ASP B 191
                                  87.343
                                          35.675
                                                  10.018
                                                           1.00 47.11
ATOM
        4966
              CB
                 ASP B 191
                                  86.716
                                          34.457
                                                   9.548
                                                           1.00 47.93
                                                                                 С
MOTA
        4967
              CG
                  ASP B 191
                                  85.361
                                          34.682
                                                    9.302
                                                           1.00 55.14
                                                                                 C
ATOM
              OD1 ASP B 191
        4968
                                  84.872
                                          34.262
                                                   8.207
                                                           1.00 58.72
                                                                                 0
ATOM
              OD2 ASP B 191
                                  84.694
       4969
                                                  10.137
                                          35.380
                                                           1.00 55.89
                                                                                 0
ATOM .
        4970
                  ASP B 191
              C
                                  86.694
                                          36.198
                                                  11.087
                                                           1.00 48.48
                                                                                 С
ATOM
        4971
              ٥
                  ASP B 191
                                  86.691
                                          35.809
                                                  12.056
                                                           1.00 54.95
                                                                                 0
ATOM
        4972
              N
                  GLN B 192
                                  86.021
                                          37.254
                                                  10.965
                                                           1.00 54.15
                                                                                 N
ATOM
       4973
              CA
                  GLN B 192
                                  85.437
                                          38.058
                                                  12.122
                                                           1.00 50.00
ATOM
        4974
              СВ
                 GLN B 192
                                  84.929
                                          39.471
                                                  11.507
                                                           1.00 49.88
ATOM
        4975
              CG
                  GLN B 192
                                  84.521
                                          40.570
                                                  12.314
                                                           1.00 49.45
                                                                                 ¢
ATOM
        4976
              CD
                  GLN B 192
                                  85.600
                                          41.008
                                                  13.384
                                                           1.00 56.50
                                                                                 C
ATOM
       4977
              OE1 GLN B 192
                                  86.769
                                          41.272
                                                  13.101
                                                           1.00 51.04
                                                                                 0
ATOM
        4978
              NE2
                 GLN B 192
                                  85.118
                                          41.075
                                                  14.674
                                                           1.00 57.54
                                                                                 N
ATOM
        4979
                  GLN B 192
                                  84.355
                                          37.421
                                                  12.813
                                                           1.00 48.10
                                                                                 C
ATOM
        4980
              0
                  GLN B 192
                                  84.099
                                          37.836
                                                  13.992
                                                           1.00 50.64
                                                                                 ٥
ATOM
        4981
              N
                  GLN B 193
                                  83.591
                                          36.561
                                                  12.166
                                                           1.00 45.32
                                                                                 N
ATOM
        4982
              CA
                 GLN B 193
                                  82.485
                                          35.892
                                                  12.903
                                                           1.00 43.85
                                                                                 C
ATOM
        4983
             СВ
                 GLN B 193
                                  81.838
                                          34.796
                                                  12.108
                                                           1.00 45.20
                                                                                 С
ATOM
        4984
             CG
                 GLN B 193
                                  81.543
                                          35.006
                                                  10.647
                                                           1.00 53.51
                                                                                 С
ATOM
       4985
             CD
                 GLN B 193
                                  80.833
                                          33.763
                                                   9.866
                                                           1.00 60.90
                                                                                 C
ATOM
        4986
             OE1 GLN B 193
                                  79.798
                                                  10.377
                                          33.039
                                                           1.00 50.73
ATOM
                                  81.407
       4987
             NE2 GLN B 193
                                          33.510
                                                   8.591
                                                           1.00 69.24
                                                                                 N
ATOM
       4988
                 GLN B 193
                                  83.210
             С
                                          35.136
                                                  14.071
                                                           1.00 42.67
ATOM
       4989
                                  82.773
             ٥
                 GLN B 193
                                          35.167
                                                  15.279
                                                           1.00 44.75
ATOM
                                         34.548
33.773
                                                           1.00 36.24
       4990
             N
                  PHE B 194
                                  84.346
                                                  13.693
ATOM
       4991
             CA
                 PHE B 194
                                  85.118
                                                  14.489
                                                          1.00 34.67
                                                                                 С
ATOM
       4992
             CB
                 PHE B 194
                                  86.211
                                          33.140
                                                  13.736
                                                          1.00 35.28
                                                                                 C
ATOM
       4993
             CG
                 PHE B 194
                                  87.037
                                          32.264
                                                  14.531
                                                          1.00 36.00
                                                                                 C
ATOM
       4994
             CD1 PHE B 194
                                  88.361
                                          32.487
                                                  14.631
                                                          1.00 33.55
ATOM
       4995
             CE1 PHE B 194
                                 89.156
                                          31.604
                                                  15.425
                                                          1.00 38.73
ATOM
       4996
             CZ PHE B 194
                                  88.525
                                         30.570
                                                  16.211
                                                          1.00 34.04
ATOM
       4997
             CE2 PHE B 194
                                 87.214
                                         30.406
                                                  16.125
                                                           1.00 30.12
ATOM
       4998
             CD2 PHE B 194
                                 86.460
                                          31.218
                                                  15.240
                                                           1.00 30.17
ATOM
       4999
                  PHE B 194
                                 85.546
                                          34.510
                                                  15.574
                                                           1.00 37.13
             С
ATOM
       5000
                                 85.245
                  PHE B 194
                                          34.185
                                                  16.814
                                                          1.00 42.91
ATOM
       5001
                                 86.225
                 LEU B 195
                                          35.563
                                                  15.296
                                                          1.00 40.69
ATOM
       5002
             CA
                 LEU B 195
                                 86.752
                                          36.495
                                                  16.407
                                                          1.00 38.12
ATOM
       5003
             СВ
                 LEU B 195
                                 87.573
                                          37.613
                                                  15.992
                                                          1.00 32.00
ATOM
       5004
             CG
                 LEU B 195
                                 88.737
                                          37.164
                                                  15.351
                                                          1.00 38.95
ATOM
       5005
             CD1 LEU B 195
                                 88.942
                                          37.720
                                                  14.010
                                                          1.00 45.07
ATOM
       5006
             CD2 LEU B 195
                                 89.933
                                         37.354
                                                  16.089
                                                          1.00 46.27
ATOM
       5007
                                 85.617
                                                          1.00 40.11
                 LEU B 195
                                         36.95B
                                                  17.318
             С
ATOM
       5008
             ٥
                 LEU B 195
                                 85.841
                                          37.035
                                                  18.578
                                                          1.00 38.57
                                                                                 ٥
                                          37.221
                                                  16.781
                                                          1.00 37.74
ATOM
       5009
             N
                 ASN B 196
                                 84.427
ATOM
       5010
             CA
                 ASN B 196
                                 83.466
                                          37.607
                                                  17.824
                                                          1.00 40.31
                                                                                 C
ATOM
       5011
             CB
                 ASN B 196
                                 82.111
                                          38.277
                                                  17,349
                                                          1.00 42.69
ATOM
       5012
             CG
                 ASN B 196
                                 82.314
                                          39.353
                                                  16.380
                                                          1.00 40.11
                                                                                 C
ATOM
       5013
             OD1 ASN B 196
                                 81.520
                                         39.377
                                                  15.404
                                                          1.00 38.61
```

\*\* \*\*\*\*

1000

7000

ATOM :

AT MA

4

ANYON.

 $E_{i}(\omega),$ 

ASION >

PALCHE!

MOM.

. . . .

Figure 2 ATOM 5014 ND2 ASN B 196 1.00 36.68 83.463 40.206 16.550 ATOM 5015 **ASN B 196** 18.807 1.00 38.99 c 83.076 36.596 C ATOM 5016 0 **ASN B 196** 83.122 36.819 19.892 1.00 42.85 ATOM 5017 N LEU B 197 82,745 35.429 18.370 1.00 41.46 N ATOM LEU B 197 5018 CA 82.505 34.250 19,190 1.00 38.53 **ATOM** 5019 CB LEU B 197 82.509 33.131 18.251 1.00 41.95 ATOM 5020 CG LEU B 197 82.272 31.731 18.895 1.00 45.89 ATOM 5021 CD1 LEU B 197 81.231 32.068 19.915 1.00 50.50 ATOM 5022 CD2 LEU B 197 81.786 30.571 17.775 1.00 46.48 ATOM 5023 C **LEU B 197** 83.653 34.044 20.131 1.00 38.42 ATOM 5024 ი **LEU B 197** 83.583 33.822 21.309 1.00 36.89 ATOM 5025 N **MET B 198** 84.810 34.088 19.637 1.00 39.61 MOTA 5026 ÇA MET B 198 85.890 33.814 20.623 1.00 42.01 MOTA 5027 СВ MET B 198 87.095 19.796 33.806 1.00 44.36 MOTA 5028 MET B 198 88.276 CG 33.448 20.339 1.00 51.78 ATOM 5029 SD MET B 198 1.00 49.12 88.603 32.026 19.873 MOTA 5030 CE MET B 198 87.917 31.324 21.376 1.00 49.40 5031 ATOM MET B 198 85.963 34.796 21.761 1.00 43.73 C ATOM 5032 **MET B 198** 86.285 34.508 23.024 1.00 41.99 ATOM 5033 **GLU B 199** 85.538 36.015 21.407 1.00 45.98 ATOM 5034 CA **GLU B 199** 85.529 37.189 22.371 1.00 43.95 C ATOM 5035 СВ **GLU B 199** 38.473 85.275 21.562 1.00 46.58 C 5036 ATOM CG GLU B 199 39.820 85.010 22.299 1.00 50.97 С ATOM 5037 CD GLU B 199 84.790 40.965 21.307 1.00 61.67 С ATOM 5038 OE1 GLU B 199 85.755 41.203 20.467 1.00 59.01 0 ATOM 5039 OE2 GLU B 199 83.663 41.659 21.326 1.00 67.58 5040 ATOM C **GLU B 199** 84.465 37.000 23.406 1.00 40.26 ATOM 5041 O GLU B 199 84.661 37.096 24.638 1.00 42.05 ATOM 5042 N LYS B 200 83.303 36.796 22.954 1.00 36.85. N ATOM 5043 CA LYS B 200 82.317 36.655 23.921 1.00 37.38 ATOM 5044 CB LYS B 200 81.074 36.432 23.126 1.00 38.11 ATOM 5045 CG LYS B 200 80.627 37.492 22.395 1.00 37.64 ATOM 5046 CD LYS B 200 80.147 38.651 -23.240 1.00 44.15 С ATOM 5047 LYS B 200 80.499 39.950 CE 22.765 1.00 46.55 С ATOM 5048 80.709 40.041 21.232 NZ LYS B 200 1.00 51.91 ATOM 5049 C LYS B 200 82.654 35.446 24.905 1.00 37.41 ATOM 5050 0 LYS B 200 82.318 35.520 26.185 1.00 38.93 0 ATOM 5051 N **LEU B 201** 83.307 34.320 24.382 1.00 34.66 N ATOM 5052 CA LEU B 201 83:674 33.200 25.277 1.00 31.70 32.037 24.573 ATOM 5053 СВ LEU B 201 84.248 1.00 31.13 C ATOM 5054 CG LEU B 201 31.287 23.748 83,171 1.00 38.52 ATOM 5055 CD1 LEU B 201 83.720 30.318 22.783 1.00 33.75 С ATOM 5056 CD2 LEU B 201 82.086 30.619 24.462 1.00 32.68 MOTA 5057 С **LEU B 201** 84.741 33.654 26.220 1.00 31.23 ATOM 5058 0 LEU B 201 84.790 33.339 27.265 1.00 26.42 ATOM 5059 N **ASN B 202** 85.693 34.460 25.777 1.00 37.17 ATOM 5060 CA **ASN B 202** 86.699 34.860 26.667 1.00 36.03 ATOM 5061 СВ ASN B 202 87.770 35.458 25.971 1.00 37.73 ATOM 5062 CG **ASN B 202** 88.500 34.563 25.097 1.00 39.75 ATOM 5063 OD1 ASN B 202 89.095 35.076 24.082 1.00 43.17 ATOM 5064 ND2 ASN B 202 88.647 33.306 25.503 1.00 34.56 ATOM 5065 С **ASN B 202** 86.221 35.851 27.644 1.00 39.18 ATOM 5066 **ASN B 202** 86.619 35.778 28.840 1.00 41.32 ATOM 5067 **GLU B 203** 85.300 36.714 27.293 1.00 39.01 ATOM 5068 CA GLU B 203 84.898 37.672 28.287 1.00 38.41 C ATOM 5069 СВ **GLU B 203** 83.899 38.571 27.494 1.00 40.22 С ATOM 5070 **GLU B 203** 83.602 39.889 28.200 CG 1.00 51.10 C ATOM 5071 CD **GLU B 203** 82.339 40.551 27,725 1.00 59.83 C ATOM 5072 OE1 GLU B 203 82.095 40.669 26.366 1.00 57.64 0 ATOM 28.775 5073 OE2 GLU B 203 81.653 40.959 1.00 61.55 0 ATOM 5074 GLU B 203 С 84.246 36.931 29.436 1.00 38.30 С ATOM 5075 0 GLU B 203 84.468 37.159 30.637 1.00 42.31 ATOM 5076 N **ASN B 204** 83.350 36.069 29.095 1.00 38.76 ATOM 5077 CA **ASN B 204** 82.710 35.198 30.030 1.00 39.81 ATOM 5078 СВ **ASN B 204** 81.877 34.259 29.290 1.00 39.37 ATOM 5079 CG **ASN B 204** 80.522 34.776 29.005 1.00 44.17 ATOM 5080 OD1 ASN B 204 79.625 34.032 28.587 1.00 49.17 ATOM 5081 ND2 ASN B 204 80.297 36.032 29.255 1.00 45.28 ATOM 5082 c **ASN B 204** 83.771 34.466 30.916 1.00 39.28 C ATOM 5083 **ASN B 204** 83.601 34.333 32.123 1.00 39.18 0 ATOM 5084 N ILE B 205 84.941 34.107 30.436 1.00 38.30 N MOTA 5085 85.822 CA ILE B 205 33.347 31.355 1.00 40.02 C 5086 ATOM СВ ILE B 205 86.996 32.784 30.599 1.00 41.30 С 5087 ATOM CG1 ILE B 205 86.444 31.690 29.822 1.00 37.05 C ATOM 5088 CD1 ILE B 205 87.474 31.659 28.585 1.00 45.48 С ATOM 5089 CG2 ILE B 205 88.011 32.202 31.318 1.00 40.70

|   |              |                            |           |            |   |            | Fi               | gure             | 2                |      |                |                                                                 |
|---|--------------|----------------------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|-----------------------------------------------------------------|
|   | ATOM         | 5090                       | С         |            |   | 205        | 86.279           | _                | 32.271           |      | 41.83          | С                                                               |
|   | MOTA         | 5091                       | 0         |            |   | 205        | 86.409           | 33.972           | 33.442           | _    | 46.84          | 0                                                               |
|   | ATOM<br>ATOM | 5092<br>5093               | N<br>CA   |            |   | 206<br>206 | 86.669<br>87.169 | 35.402<br>36.458 | 31.780<br>32.686 |      | 44.78<br>43.51 | N<br>C                                                          |
|   | ATOM         | 5094                       | CB        |            |   | 206        | 87.619           | 37.576           | 31.875           |      | 41.31          | č                                                               |
|   | MOTA         | 5095                       | CG        | GLU        | В | 206        | 88.006           | 38.661           | 32.796           | 1.00 | 57.30          | Ċ                                                               |
|   | ATOM         | 5096                       | CD        |            |   | 206        | 88.503           | 39.960           | 32.123           |      | 67.77          | Ç                                                               |
|   | MOTA<br>MOTA | 5097<br>5098               |           | GLU<br>GLU |   |            | 88.458<br>88.951 | 41.036<br>39.863 | 32.843<br>31.005 |      | 74.34<br>70.69 | 0<br>0                                                          |
|   | ATOM         | 5099                       | C         |            |   | 206        | 86.073           | 36.847           | 33.689           |      | 43.07          | c                                                               |
|   | ATOM         | 5100                       | 0         |            |   | 206        | 86.217           | 36.793           | 34.918           |      | 41.75          | ō                                                               |
|   | ATOM         | 5101                       | N         |            |   | 207        | 84.918           | 37.241           | 33.215           |      | 41.17          | N                                                               |
|   | MOTA<br>MOTA | 5102<br>5103               | CA<br>CB  |            |   | 207<br>207 | 83.973<br>82.500 | 37.549<br>37.771 | 34.340<br>33.835 |      | 42.23<br>43.47 | C<br>C                                                          |
|   | ATOM         | 5103                       |           | ILE        |   |            | 82.423           | 39.141           | 33.167           |      | 41.32          | Č                                                               |
|   | ATOM         | 5105                       | CD1       | ILE        | В | 207        | 81.467           | 39.129           | 31.960           |      | 47.79          | Ċ                                                               |
|   | ATOM         | 5106                       |           | ILE        |   |            | 81.555           | 37.589           | 34.904           |      | 40.73          | C                                                               |
|   | ATOM<br>ATOM | 5107<br>5108               | C<br>O    |            |   | 207<br>207 | 83.949<br>83.978 | 36.378<br>36.550 | 35.336<br>36.519 |      | 42.48<br>45.93 | с<br>0                                                          |
|   | ATOM         | 5109                       | N         |            |   | 208        | 83.876           | 35.136           | 34.921           |      | 41.51          | N                                                               |
|   | MOTA         | 5110                       | CA        | LEU        |   |            | 83.598           | 34.063           | 35.911           |      | 40.38          | С                                                               |
|   | ATOM         | 5111                       | CB        | LEU        |   |            | 83.244           | 32.856           | 35.201           |      | 35.11          | <b>C</b> .                                                      |
|   | ATOM<br>ATOM | 5112<br>5113               | CG<br>CD1 | LEU<br>LEU |   |            | 81.908<br>81.401 | 32.952<br>31.999 | 34.822<br>33.979 |      | 37.51<br>36.32 | C<br>C                                                          |
|   | ATOM         | 5114                       |           | LEU        |   |            | 81.121           | 32.979           | 35.950           |      | 42.80          | Č                                                               |
|   | ATOM         | 5115                       | С         |            |   | 208        | 84.801           | 33.675           | 36.774           |      | 44.71          | C                                                               |
|   | ATOM         | 5116                       | 0         | LEU        |   |            | 84.620           | 32.830           | 37.664           |      | 46.25          | 0 .                                                             |
|   | ATOM<br>ATOM | 511 <sub>.</sub> 7<br>5118 | N<br>CA   | SER        |   | 209<br>209 | 85.999<br>87.156 | 34.215<br>33.945 | 36.486<br>37.247 |      | 45.48<br>47.28 | N<br>C                                                          |
|   | ATOM         | 5119                       | СВ        | SER        |   |            | 88.252           | 33.802           | 36.341           |      | 46.17 /;"      | C C                                                             |
|   | MOTA         | 5120                       | OG        | SER        |   |            | 88.311           | 34.842           | 35.449           |      | 56.62 . 9      | 3 + 140 1,                                                      |
|   | MOTA         | 5121                       | C         |            |   | 209        | 87.524           | 35.034           | 38.337           |      | 52.92          | 10. 6 f(C) 13 t                                                 |
|   | ATOM<br>ATOM | 5122<br>5123               | O<br>N    | SER        |   | 210        | 88.668<br>86.557 | 35.189<br>35.779 | 38.773<br>38.780 |      | 54.76 T        | 13 0 6 € 1 <b>0</b> 13 € 15 € 15 € 15 € 15 € 15 € 15 € 15 €     |
|   | ATOM         | 5124                       | CA        | SER        |   |            | 86.715           | 36.765           | 39.775           |      | 57.71          | , c                                                             |
|   | MOTA         | 5125                       | CB        | SER        |   |            | 85.682           | 37.960           | 39.582           |      |                | 15 (12 <b>C</b> 7)                                              |
|   | ATOM         | 5126                       | OG        | SER        |   |            | 86.290           | 38.854           | 38.527           |      |                | 1 3 1 10 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |
|   | ATOM<br>ATOM | 5127<br>5128               | С<br>0    | SER<br>SER |   |            | 86.465<br>85.474 | 36.267<br>35.855 | 41.057<br>41.338 |      | 57.28          | , 1, 6 1, 1,51 <b>C</b> ≥ 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |
|   | ATOM         | 5129                       | N         | PRO        |   |            | 87.419           | 36.359           | 41.911           |      | 54.81          | N                                                               |
|   | MOTA         | 5130                       | CA        | PRO        |   |            | 87.193           | 35.887           | 43.220           |      | 54.25          | ↑ C →                                                           |
|   | ATOM         | 5131                       | CB        | PRO        |   |            | 88.393           | 36.366           | 43.876           |      | 54.98<br>54.94 | C<br>C                                                          |
|   | ATOM<br>ATOM | 5132<br>5133               | CG<br>CD  | PRO<br>PRO |   |            | 89.359<br>88.762 | 36.251<br>36.919 | 42.743<br>41.734 |      | 51.62          | Č                                                               |
|   | ATOM         | 5134                       | C         | PRO        | В | 211        | 85.982           | 36.426           | 43.832           |      | 54.02          | C                                                               |
|   | ATOM         | 5135                       | 0         | PRO        |   |            | 85.344           | 36.004           | 44.635           |      | 53.81          | 0                                                               |
|   | ATOM<br>ATOM | 5136<br>5137               | N<br>CA   | TRP        |   |            | 85.530<br>84.402 | 37.429<br>37.993 | 43.304<br>43.929 |      | 57.94<br>59.87 | N<br>C                                                          |
|   | MOTA         | 5138                       | CB        | TRP        |   |            | 84.467           | 39.620           | 43.833           |      | 63.13          | Č                                                               |
|   | ATOM         | 5139                       | CG        | TRP        |   |            | 83.404           | 40.486           | 43.323           |      | 70.30          | С                                                               |
|   | ATOM         | 5140                       |           | TRP        |   |            | 83.066           | 40.711           | 42.006           |      | 80.82          | C                                                               |
|   | ATOM<br>ATOM | 5141<br>5142               | -         | TRP<br>TRP |   |            | 82.045<br>81.723 | 41.610<br>42.015 | 41.874<br>43.150 |      | 79.60<br>88.03 | N<br>C                                                          |
|   | ATOM         | 5143                       |           | TRP        |   |            | 82.583           | 41.318           | 44.079           |      | 80.97          | č                                                               |
|   | MOTA         | 5144                       |           | TRP        |   |            | 82.460           | 41.587           | 45.489           |      | 83.31          | Ç                                                               |
|   | ATOM         | 5145                       |           | TRP        |   |            | 81.484           | 42.563           | 45.966           |      | 82.83          | C                                                               |
|   | ATOM<br>ATOM | 5146<br>5147               |           | TRP<br>TRP |   |            | 80.662<br>80.752 | 43.230<br>42.994 | 45.055<br>43.602 |      | 91.35<br>94.54 | C<br>C                                                          |
|   | ATOM         | 5148                       | c         | TRP        |   |            | 83.267           | 37.253           | 43.628           |      | 57.57          | , c                                                             |
|   | MOTA         | 5149                       |           | TRP        |   |            | 82.275           | 37.407           | 44.242           |      | 59.49          | 0                                                               |
|   | MOTA<br>MOTA | 5150<br>5151               | N<br>C    | ILE        |   |            | 83.383<br>82.141 | 36.247<br>35.538 | 42.820<br>42.433 |      | 56.92<br>54.05 | N<br>C                                                          |
|   | ATOM         | 5152                       | CA<br>CB  | ILE        |   |            | 82.414           | 34.610           | 41.304           |      | 52.51          | č                                                               |
|   | MOTA         | 5153                       |           | ILE        |   |            | 82.455           | 35.268           | 40.018           |      | 53.47          | С                                                               |
|   | MOTA         | 5154                       |           | ILE        |   |            | 81.170           | 35.570           | 39.418           |      | 50.39          | c                                                               |
|   | MOTA         | 5155                       |           | ILE        |   |            | 81.210<br>81.629 | 33.634<br>34.659 | 41.039<br>43.539 |      | 56.73<br>55.58 | c<br>c                                                          |
|   | MOTA<br>MOTA | 5156<br>5157               |           | ILE        |   |            | 80.486           | 34.273           | 43.535           |      | 57.97          | o                                                               |
|   | ATOM         | 5158                       |           | GLN        |   |            | 82.506           | 34.201           | 44.358           |      | 55.36          | n                                                               |
| į | MOTA         | 5159                       | CA        | GLN        | В | 214        | 82.104           | 33.329           | 45.405           |      | 52.57          | Ç                                                               |
|   |              | 5160                       |           | GLN        |   |            | 83.416           | 32.663<br>31.211 | 45.916<br>46.331 |      | 53.68<br>60.81 | c<br>c                                                          |
|   |              | 5161<br>5162               |           | GLN<br>GLN |   |            | 83.280<br>82.380 | 30.476           | 45.370           |      | 68.03          | c                                                               |
|   |              | 5163                       |           | GLN        |   |            | 82.616           | 30.515           | 44.182           |      | 73.32          | ŏ                                                               |
| i | MOTA         | 5164                       | NE2       | GLN        | В | 214        | 81.299           | 29.875           | 45.882           |      | 68.73          | N                                                               |
| i | MOTA         | 5165                       | С         | GLN        | В | 214        | 81.259           | 34.091           | 46.489           | 1.00 | 47.59          | С                                                               |
|   |              |                            |           |            |   |            |                  |                  |                  |      |                |                                                                 |

|              |              |           |         |                | Fi               | .gure            | 2                |                          |        |
|--------------|--------------|-----------|---------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5166         | 0         | GLN     | B 214          | 80.419           | 33.574           | 47.127           | 1.00 45.61               | 0      |
| MOTA         | 5167         | N         |         | B 215          | 81.510           | 35.337           | 46.684           | 1.00 47.01               | N      |
| MOTA         | 5168         | CA        |         | B 215          | 80.660           | 36.134           | 47.521<br>47.273 | 1.00 48.86<br>1.00 51.79 | C<br>C |
| ATOM<br>ATOM | 5169<br>5170 | CB        | VAL     | B 215          | 80.942<br>80.303 | 37.555<br>38.472 | 48.228           | 1.00 52.35               | č      |
| ATOM         | 5171         |           | VAL     |                | 82.421           | 37.785           | 47.372           | 1.00 58.11               | С      |
| ATOM         | 5172         | С         |         | B 215          | 79.238           | 35.938           | 47.169           | 1.00 46.22               | С      |
| MOTA         | 5173         | 0         |         | B 215          | 78.471           | 35.637           | 47.923           | 1.00 48.67               | . 0    |
| MOTA         | 5174         | N         |         | B 216<br>B 216 | 78.897<br>77.529 | 35.961<br>35.681 | 45.938<br>45.478 | 1.00 48.17<br>1.00 46.93 | N<br>C |
| MOTA<br>MOTA | 5175<br>5176 | CA<br>CB  |         | B 216          | 77.378           | 35.733           | 44.027           | 1.00 45.34               | č      |
| ATOM         | 5177         | CG        |         | B 216          | 77.509           | 37.084           | 43.325           | 1.00 51.31               | С      |
| ATOM         | 5178         |           | TYR     |                | 76.668           | 38.076           | 43.619           | 1.00 54.83               | Č      |
| MOTA         | 5179         |           | TYR     |                | 76.813           | 39.309           | 43.005<br>42.112 | 1.00 58.83<br>1.00 56.28 | C<br>C |
| ATOM<br>ATOM | 5180<br>5181 | CZ<br>OH  |         | B 216<br>B 216 | 77.794<br>77.814 | 39.502<br>40.767 | 41.590           | 1.00 58.28               | Ö      |
| ATOM         | 5182         |           | TYR     |                | 78.638           | 38.494           | 41.774           | 1.00 48.13               | č      |
| ATOM         | 5183         |           | TYR     |                | 78.494           | 37.340           | 42.377           | 1.00 50.58               | С      |
| ATOM         | 5184         | C         |         | B 216          | 77.065           | 34.364           | 45.876           | 1.00 48.53               | C      |
| MOTA         | 5185         | O<br>N    |         | B 216<br>B 217 | 75.922<br>77.895 | 34.213<br>33.340 | 46.218<br>45.890 | 1.00 51.99<br>1.00 47.71 | O<br>N |
| ATOM<br>ATOM | 5186<br>5187 | CA        |         | B 217          | 77.388           | 32.067           |                  | 1.00 45.99               | č      |
| ATOM         | 5188         | СВ        |         | B 217          | 78.387           | 30.977           | 45.855           | 1.00 46.40               | С      |
| ATOM         | 5189         | CG        |         | B 217          | 78.436           | 30.743           | 44.349           | 1.00 43.33               | C      |
| MOTA         | 5190         |           | ASN     |                | 77.532           | 31.108           | 43.617           | 1.00 38.06<br>1.00 47.56 | О<br>И |
| ATOM<br>ATOM | 5191<br>5192 | C ND2     | ASN ASN | B 217          | 79.579<br>77.087 | 30.179<br>31.968 | 43.914<br>47.663 | 1.00 47.38               | C      |
| ATOM         | 5193         | ō         |         | B 217          | 76.269           | 31.152           | 48.063           | 1.00 47.81               | ŏ      |
| MOTA         | 5194         | N         |         | B 218          | 77.716           | 32.808           | 48.469           | 1.00 49.23               | N      |
| MOTA         | 5195         | CA        |         | B 218          | 77.379           | 32.673           | 49.824           | 1.00 50.73               | C      |
| ATOM         | 5196         | CB        |         | B 218          | 78.560           | 33.187           | 50.684           | 1.00 55.39<br>1.00 57.82 | C      |
| ATOM<br>ATOM | 5197<br>5198 | CG<br>OD1 | ASN     | B 218<br>B 218 | 79.648<br>79.444 | 32.197<br>31.086 | 50.785<br>51.420 | 1.00 57.82               | ō      |
| ATOM         | 5199         |           | ASN     |                | 80.793           | 32.543           | 50.166           | 1.00 46.86               | . N    |
| ATOM         | 5200         | С         |         | B 218          | 76.214           | 33.597           | 50.152           | 1.00 51.14               | С      |
| ATOM         | 5201         | 0         |         | B 218          | 75.313           | 33.244           | 51.051           | 1.00 50.02               | 0      |
| A.O.         | 5202<br>5203 | N<br>CA   |         | B 219<br>B 219 | 76.215<br>75.252 | 34.764<br>35.624 | 49.478<br>49.766 | 1.00 45.17<br>1.00 43.17 | N<br>C |
| ATOM<br>ATOM | 5204         | CB        |         | B 219          | 76.001           | 36.790           | 50.232           | 1.00 46.41               | č      |
| MOTA         | 5205         | CG        |         | B 219          | 76.926           | 36.571           | 51.368           | 1.00 48.23               | С      |
| MOTA         | 5206         |           | PHE     |                | 78.110           | 37.301           | 51.370           | 1.00 53.43               | C      |
| MOTA         | 5207         |           | PHE     |                | 79.046<br>78.797 | 37.249<br>36.429 | 52.436<br>53.519 | 1.00 59.73<br>1.00 56.38 | C<br>C |
| ATOM         | 5208<br>5209 | CZ<br>CE2 | PHE     | B 219          | 77.544           | 35.642           | 53.526           | 1.00 61.32               | č      |
| ATOM         | 5210         |           | PHE     |                | 76.621           | 35.754           | 52.397           | 1.00 51.71               | c      |
| MOTA         | 5211         | С         |         | B 219          | 74.374           | 36.003           | 48.531           | 1.00 43.72               | C      |
| ATOM         | 5212         | 0         |         | B 219          | 74.347           | 37.133           | 48.085           | 1.00 44.71<br>1.00 41.46 | О<br>И |
| ATOM<br>ATOM | 5213<br>5214 | N<br>CA   |         | B 220<br>B 220 | 73.603<br>72.834 | 35.086<br>35.313 | 48.002<br>46.840 | 1.00 41.48               | C      |
| ATOM         | 5215         | СВ        |         | B 220          | 71.780           | 34.218           | 46.938           | 1.00 43.44               | c      |
| ATOM         | 5216         | CG        |         | B 220          | 71.810           | 33.641           | 48.319           | 1.00 37.54               | c      |
| ATOM         | 5217         | CD        |         | B 220          | 73.237           | 33.797           | 48.605           | 1.00 41.05               | C<br>C |
| MOTA<br>MOTA | 5218<br>5219 | С<br>0    |         | B 220<br>B 220 | 72.103<br>71.790 | 36.609<br>37.211 | 46.832<br>45.844 | 1.00 45.40<br>1.00 51.16 | Ö      |
| ATOM         | 5220         | N         |         | B 221          | 71.784           | 37.188           | 47.911           | 1.00 46.21               | N      |
| MOTA         | 5221         | CA        |         | B 221          | 71.107           | 38.430           | 47.678           | 1.00 44.89               | С      |
| MOTA         | 5222         | СВ        |         | B 221          | 70.686           | 38.922           | 49.158           | 1.00 49.67               | C<br>C |
| ATOM<br>ATOM | 5223         | C<br>O    |         | B 221<br>B 221 | 72.043<br>71.527 | 39.442<br>40.254 | 47.199<br>46.773 | 1.00 43.68<br>1.00 46.61 | 0      |
| ATOM         | 5224<br>5225 | N         |         | B 222          | 73.340           | 39.493           | 47.292           | 1.00 41.22               | N      |
| ATOM         | 5226         | CA        |         | B 222          | 74.073           | 40.609           | 46.764           | 1.00 41.29               | С      |
| ATOM         | 5227         | СВ        |         | B 222          | 75.580           | 40.385           | 47.095           | 1.00 43.94               | C      |
| ATOM         | 5228         | CG        |         | B 222          | 75.965           | 40.542           | 48.560<br>48.799 | 1.00 52.58<br>1.00 55.74 | C<br>C |
| ATOM<br>ATOM | 5229<br>5230 |           | LEU     |                | 77.337<br>75.929 | 39.937<br>42.012 | 48.942           | 1.00 57.36               | č      |
| ATOM         | 5231         | C         |         | B 222          | 73.974           | 40.664           | 45.263           | 1.00 41.92               | Ċ      |
| MOTA         | 5232         | 0         | LEU     | B 222          | 74.368           | 41.603           | 44.540           | 1.00 39.34               | 0      |
| ATOM         | 5233         | N         |         | B 223          | 73.274           | 39.617           | 44.783           | 1.00 44.50               | . и    |
| ATOM<br>ATOM | 5234<br>5235 | CA<br>CB  |         | B 223<br>B 223 | 73.080<br>72.481 | 39.577<br>38.255 | 43.330<br>42.878 | 1.00 47.12<br>1.00 49.19 | C<br>C |
| MOTA         | 5236         | CG        |         | B 223          | 73.356           | 37.016           | 42.806           | 1.00 47.55               | č      |
| ATOM         | 5237         |           | LEU     |                | 72.504           | 35.752           | 42.776           | 1.00 43.49               | С      |
| MOTA         | 5238         |           | LEU     |                | 74.226           | 37.078           | 41.553           | 1.00 42.66               | C      |
| ATOM         | 5239<br>5240 | C         |         | B 223          | 72.147<br>72.595 | 40.771<br>41.679 | 42.921<br>42.145 | 1.00 49.39<br>1.00 54.95 | С<br>0 |
| ATOM<br>ATOM | 5240<br>5241 | N<br>0    |         | B 223<br>B 224 | 71.097           | 40.778           | 43.719           | 1.00 51.24               | N      |
|              |              |           |         | •              |                  |                  |                  |                          |        |

|              |              |           |            |   |            | Fi               | gure             | 2                |      |                |            |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|------------|
| ATOM         | 5242         | CA        |            |   | 224        | 69.865           | 41.598           | 43.605           |      | 48.49          | С          |
| MOTA         | 5243         | CB        |            |   | 224        | 68.782           | 41.316           | 44.576           |      | 50.55          | c          |
| ATOM<br>ATOM | 5244<br>5245 | CG<br>OD1 | ASP        |   | 224        | 67.690<br>67.333 | 40.367<br>40.085 | 44.220<br>43.069 |      | 51.62<br>54.10 | C          |
| ATOM         | 5246         |           | ASP        |   |            | 67.103           | 39.804           | 45.202           |      | 54.50          | ŏ          |
| ATOM         | 5247         | С         | ASP        | В | 224        | 70.289           | 43.035           | 43.572           |      | 47.89          | С          |
| ATOM         | 5248         | 0         |            |   | 224        | 71.032           | 43.479           | 42.698           |      | 52.78          | 0          |
| ATOM         | 5249         | N         |            |   | 225        | 72.340           | 43.278           | 44.395           |      | 56.51          | С<br>И     |
| ATOM<br>ATOM | 5250<br>5251 | CA<br>CB  |            |   | 225<br>225 | 72.613<br>72.988 | 44.704<br>45.104 | 44.480<br>45.931 |      | 57.05<br>57.56 | c          |
| ATOM         | 5252         | CG        |            |   | 225        | 71.818           | 45.100           | 46.983           |      | 60.78          | č          |
| ATOM         | 5253         |           | TYR        | В | 225        | 71.404           | 43.958           | 47.597           |      | 67.95          | . <b>C</b> |
| MOTA         | 5254         |           | TYR        |   |            | 70.403           | 43.945           | 48.585           |      | 67.33          | c          |
| MOTA<br>MOTA | 5255<br>5256 | CZ<br>OH  |            |   | 225<br>225 | 69.792<br>68.767 | 45.136<br>45.155 | 48.919<br>49.931 |      | 70.24<br>65.29 | C<br>0     |
| MOTA         | 5257         |           | TYR        |   |            | 70.226           | 46.263           | 48.265           |      | 64.59          | č          |
| MOTA         | 5258         | CD2       | TYR        | В | 225        | 71.218           | 46.222           | 47.373           | 1.00 | 61.98          | С          |
| MOTA         | 5259         | C         |            |   | 225        | 73.794           | 44.893           | 43.732           |      | 58.10          | C          |
| ATOM<br>ATOM | 5260<br>5261 | O<br>N    |            |   | 225<br>226 | 74.704<br>73.989 | 45.644<br>44.135 | 44.138<br>42.761 |      | 64.90<br>57.03 | O<br>N     |
| ATOM         | 5262         | CA        |            |   | 226        | 75.130           | 44.386           | 41.891           |      | 58.47          | č          |
| ATOM         | 5263         | CB        |            |   | 226        | 76.386           | 43.839           | 42.458           |      | 59.49          | С          |
| ATOM         | 5264         | CG        |            |   | 226        | 76.840           | 44.517           | 43.670           |      | 64.82          | . с        |
| ATOM         | 5265         |           | PHE        |   |            | 76.437<br>76.845 | 44.087<br>44.721 | 44.915<br>46.074 | 1.00 | 67.88          | C<br>C     |
| ATOM<br>ATOM | 5266<br>5267 | CZ        |            |   | 226        | 77.658           | 45.755           | 45.937           |      | 72.46          | č          |
| ATOM         | 5268         |           | PHE        |   |            | 78.109           | 46.183           | 44.669           |      | 74.42          | C          |
| ATOM         | 5269         |           | PHE        |   |            | 77.700           | 45.562           | 43.556           | 1.00 |                | C          |
| ATOM         | 5270         | C         |            |   | 226        | 74.767           | 43.494           | 40.733           | 1.00 |                | C          |
| ATOM<br>ATOM | 5271<br>5272 | 0<br>N    |            |   | 226<br>227 | 75.315<br>73.833 | 42.481<br>43.776 | 40.754<br>39.869 | 1.00 | 52.80          | O<br>N     |
| ATOM         | 5273         | CA        |            |   | 227        | 73.487           | 42.853           | 38.806           | 1.00 |                | Č          |
| ATOM         | 5274.        |           |            |   | 227        | 72.069           | 43.306           | 38.325           | 1.00 |                | С          |
| ATOM         | 5275         | CG        |            |   | 227        | 71.643           | 44.361           | 39.379           | 1.00 |                | C          |
| ATOM<br>ATOM | 5276<br>5277 | CD<br>C   |            |   | 227        | 73.013<br>74.449 | 44.974           | 39.844<br>37.642 | 1.00 |                | C          |
| ATOM         | 5278         | ŏ         |            |   | 227        | 74.545           | 42.079           | 36.810           | 1.00 |                | ŏ          |
| MOTA         | 5279         | N         |            |   | 228        | 75.267           | 43.743           | 37.729           | 1.00 |                | N          |
| ATOM         | 5280         | CA        |            |   | 228        | 76.141           | 43.912           | 36.670           | 1.00 |                | C          |
| MOTA<br>MOTA | 5281<br>5282 | С<br>0    |            |   | 228<br>228 | 76.791<br>76.813 | 42.593<br>42.297 | 36.279<br>35.104 | 1.00 |                | C<br>0     |
| ATOM         | 5283         | N         |            |   | 229        | 77.362           | 41.755           | 37.132           | 1.00 |                | N          |
| ATOM         | 5284         | CA        |            |   | 229        | 77.865           | 40.366           | 36.629           | 1.00 |                | Ç          |
| ATOM         | 5285         | CB        |            |   | 229        | 78.568<br>79.870 | 39.784           | 37.821<br>37.903 | 1.00 |                | C<br>0     |
| ATOM<br>ATOM | 5286<br>5287 |           | THR        |   |            | 78.873           | 40.428<br>38.312 | 37.684           | 1.00 |                | c          |
| ATOM         | 5288         | C         |            |   | 229        | 76.690           | 39.569           | 36.369           | 1.00 |                | Ċ          |
| MOTA         | 5289         | 0         |            |   | 229        | 75.877           | 39.523           | 37.246           | 1.00 |                | 0          |
| ATOM<br>ATOM | 5290         | N         |            |   | 230<br>230 | 76.502           | 38.961           | 35.294           | 1.00 |                | N<br>C     |
| ATOM         | 5291<br>5292 | CA<br>CB  |            |   | 230        | 75.299<br>74.612 | 38.322<br>37.764 | 35.138<br>36.323 | 1.00 |                | c          |
| ATOM         | 5293         | CG        |            |   | 230        | 73.402           | 38.389           | 36.720           | 1.00 |                | Ċ          |
| MOTA         | 5294         |           | HIS        |   |            | 72.626           | 37.881           | 37.750           | 1.00 |                | N          |
| ATOM<br>ATOM | 5295<br>5296 |           | HIS<br>HIS |   |            | 71.610<br>71.688 | 38.705<br>39.751 | 38.042<br>37.256 | 1.00 |                | С<br>И     |
| ATOM         | 5297         |           | HIS        |   |            | 72.798           | 39.545           | 36.365           | 1.00 |                | c c        |
| ATOM         | 5298         | c         |            |   | 230        | 74.419           | 38.883           | 34.132           | 1.00 |                | С          |
| MOTA         | 5299         | 0         |            |   | 230        | 73.778           | 38.108           | 33.332           | 1.00 |                | 0          |
| MOTA<br>MOTA | 5300<br>5301 | N<br>CA   | ASN<br>ASN |   |            | 74.410           | 40.191<br>40.839 | 34.029<br>33.069 | 1.00 |                | N<br>C     |
| ATOM         | 5302         | СВ        | ASN        |   |            | 73.482           | 42.334           | 33.412           | 1.00 |                | č          |
| ATOM         | 5303         | CG        | ASN        |   |            | 72.279           | 42.591           | 34.222           | 1.00 |                | C          |
| ATOM         | 5304         |           | ASN        |   |            | 71.561           | 41.765           | 34.385           | 1.00 |                | 0          |
| ATOM<br>ATOM | 5305<br>5306 | ND2       | ASN<br>ASN |   |            | 72.123<br>74.707 | 43.810<br>40.635 | 34.796<br>31.982 | 1.00 |                | N<br>C     |
| ATOM         | 5307         | Ö         | ASN        |   |            | 74.757           | 40.274           | 30.952           | 1.00 |                | ŏ          |
| ATOM         | 5308         | N         | LYS        | В | 232        | 76.027           | 40.809           | 32.177           | 1.00 | 43.74          | N          |
| ATOM         | 5309         | ÇA        | LYS        |   |            | 76.894           | 40.626           | 31.076           | 1.00 |                | C          |
| ATOM         | 5310         | CB        | LYS<br>LYS |   |            | 78.301 78.516    | 41.020<br>42.334 | 31.390<br>31.825 | 1.00 |                | c<br>c     |
| ATOM<br>ATOM | 5311<br>5312 | CG<br>CD  | LYS        |   |            | 79.301           | 42.334           | 33.262           | 1.00 |                | C          |
| ATOM         | 5313         | CE        | LYS        |   |            | 80.955           | 42.726           | 33.235           | 1.00 | 58.85          | С          |
| ATOM         | 5314         | NZ        | LYS        |   |            | 81.679           | 42.559           | 34.634           | 1.00 |                | N          |
| ATOM<br>ATOM | 5315<br>5316 | С<br>0    | LYS<br>LYS |   |            | 76.881<br>76.940 | 39.039<br>38.730 | 30.605<br>29.393 | 1.00 |                | Ç<br>O     |
| ATOM         | 5317         | N         | LEU        |   |            | 76.794           | 38.100           | 31.519           | 1.00 |                | N          |
|              |              |           |            | _ |            |                  |                  | +                |      |                | •          |

|              |              |            |     |   |            | Fi                 | igure            | 2                |                          |        |
|--------------|--------------|------------|-----|---|------------|--------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 5318         | CA         | LEU |   |            | 76.827             | 36.782           | 31.146           | 1.00 39.19               | С      |
| ATOM         | 5319         | CB         |     |   | 233        | 76.838             | 35.927           | 32.370           | 1.00 39.77               | C      |
| MOTA<br>MOTA | 5320<br>5321 | CG         |     |   | 233        | 78.130<br>78.084   | 36.008<br>35.349 | 33.116<br>34.493 | 1.00 38.26<br>1.00 32.84 | C<br>C |
| ATOM         | 5322         |            |     |   | 233        | 79.192             | 35.362           | 32.173           | 1.00 32.04               | č      |
| ATOM         | 5323         | С          |     |   | 233        | 75.605             | 36.584           | 30.344           | 1.00 40.96               | č      |
| MOTA         | 5324         | 0          | LEU | В | 233        | 75.675             | 36.027           | 29.218           | 1.00 40.48               | 0      |
| ATOM         | 5325         | N          |     |   | 234        | 74.458             | 37.054           | 30.876           | 1.00 42.83               | N      |
| ATOM         | 5326         | CA         |     |   | 234        | 73.153             | 36.978           | 30.112           | 1.00 40.11               | C      |
| ATOM<br>ATOM | 5327<br>5328 | CB<br>CG   |     |   | 234        | 72.034<br>71.490   | 37.593<br>36.628 | 30.783<br>31.824 | 1.00 37.95<br>1.00 40.68 | c<br>c |
| ATOM         | 5329         |            |     |   | 234        | 70.506             | 37.228           | 32.691           | 1.00 43.89               | č      |
| ATOM         | 5330         | CD2        | LEU | В | 234        | 70.951             | 35.472           | 31.296           | 1.00 44.72               | Ċ      |
| MOTA         | 5331         | С          |     |   | 234        | 73.296             | 37.518           | 28.741           | 1.00 40.31               | С      |
| ATOM<br>ATOM | 5332<br>5333 | O<br>N     |     |   | 234<br>235 | 72.899<br>73.927   | 36.821<br>38.653 | 27.748<br>28.660 | 1.00 42.30<br>1.00 38.92 | 0      |
| ATOM         | 5334         | CA         |     |   | 235        | 73.979             | 39.329           | 27.451           | 1.00 40.97               | . N    |
| ATOM         | 5335         | СВ         |     |   | 235        | 74.467             | 40.775           | 27.684           | 1.00 43.64               | č      |
| ATOM         | 5336         | CG         |     |   | 235        | 74.881             | 41.536           | 26.572           | 1.00 52.59               | С      |
| ATOM         | 5337         | CD         |     |   | 235        | 75.693             | 42.903           | 26.700           | 1.00 60.99               | C      |
| MOTA<br>MOTA | 5338<br>5339 | CE<br>NZ   |     |   | 235<br>235 | 74.705<br>74.270   | 44.173<br>44.684 | 26.932<br>28.389 | 1.00 64.49<br>1.00 55.78 | C<br>N |
| ATOM         | 5340         | C          |     |   | 235        | 74.758             | 38.591           | 26.554           | 1.00 33.78               | C      |
| ATOM         | 5341         | 0          |     |   | 235        | 74.391             | 38.248           | 25.387           | 1.00 44.63               | ō      |
| ATOM         | 5342         | N          |     |   | 236        | 75.901             | 38.250           | 27.036           | 1.00 42.45               | N      |
| ATOM         | 5343         | CA         |     |   | 236        | 76.874             | 37.523           | 26.152           | 1.00 39.52               | C      |
| ATOM<br>ATOM | 5344<br>5345 | CB<br>CG   |     |   | 236<br>236 | 78.085<br>78.919   | 37.328<br>38.525 | 26.935<br>26.872 | 1.00 40.76<br>1.00 41.69 | c<br>c |
| MOTA         | 5346         |            |     |   | 236        | 80.021             | 38.566           | 27.314           | 1.00 46.06               | Ö      |
| MOTA         | 5347         |            |     |   | 236        | 78.439             | 39.451           |                  | 1.00 42.69               | N      |
| ATOM         | 5348         | С          |     |   | 236        | 76.308             | 36.224           | 25.674           |                          | С      |
| MOTA         | 5349         | 0          |     |   | 236        | 76.394             | 35.950           | 24.536           | 1.00 37.64               | 0      |
| ATOM<br>ATOM | 5350<br>5351 | N<br>CA    |     |   | 237<br>237 | 75.609<br>75.110   | 35.506<br>34.287 | 26.526<br>26.092 | 1.00 37.63<br>1.00 39.84 | N<br>C |
| MOTA         | 5352         | CB         |     |   | 237        | 74.501             | 33.467           | 27.156           | 1.00 39.21               | c      |
| ATOM         | 5353         |            | VAL |   |            | 73.715             | 32.309           | 26.519           | 1.00 41.58               | č      |
| MOTA         | 5354         |            | VAL |   |            | 75.593             | 32.886           | 27:946           | 1.00 34.72               | С      |
| ATOM         | 5355         | C          |     |   | 237        | 74.186             | 34.531           | 24.910           | 1.00 43.75               | C      |
| MOTA<br>MOTA | 5356<br>5357 | O<br>N     |     |   | 237<br>238 | 74.377<br>73.344   | 34.002           | 23.805<br>25.083 | 1.00 44.89               | O<br>N |
| ATOM         | 5358         | CA         |     |   | 238        | 72.410             | 35.913           | 24.022           | 1.00 41.07               | č      |
| ATOM         | 5359         | СВ         | ALA | В | 238        | 71.489             | 37.092           | 24.501           | 1.00 40.87               | С      |
| ATOM         | 5360         | С          |     |   | 238        | 73.088             | 36.308           | 22.800           | 1.00 35.85               | C      |
| ATOM<br>ATOM | 5361<br>5362 | O<br>N     |     |   | 238<br>239 | 72.728<br>74.105 / | 35.982           | 21.681<br>22.896 | 1.00 37.72<br>1.00 33.90 | 0<br>N |
| ATOM         | 5363         | CA         |     |   | 239        | 74.811             | 37.235           | 21.558           | 1.00 32.70               | Č      |
| ATOM         | 5364         | CB         | PHE |   | 239        | 76.065             | 38.113           | 21.801           | 1.00 32.73               | С      |
| ATOM         | 5365         | CG         |     |   | 239        | 76.894             | 38.381           | 20.657           | 1.00 32.54               | C      |
| ATOM         | 5366         | CD1<br>CE1 | PHE |   |            | 77.779             | 37.384           | 20.170           | 1.00 45.49               | c<br>c |
| atom<br>Atom | 5367<br>5368 | CZ         | PHE |   | 239        | 78.634<br>78.474   | 37.573<br>38.916 | 19.082<br>18.426 | 1.00 30.38<br>1.00 34.37 | c      |
| ATOM         | 5369         |            | PHE |   | 239        | 77.597             | 39.817           | 18.874           | 1.00 26.74               | č      |
| ATOM         | 5370         | CD2        | PHE |   |            | 76.823             | 39.537           | 20.010           | 1.00 29.85               | С      |
| ATOM         | 5371         | С          |     |   | 239        | 75.186             | 35.965           | 20.867           | 1.00 33.03               | C      |
| ATOM<br>ATOM | 5372<br>5373 | O<br>N     |     |   | 239<br>240 | 74.892<br>75.651   | 35.749<br>34.993 | 19.785<br>21.653 | 1.00 37.01<br>1.00 37.05 | O<br>N |
| ATOM         | 5374         | CA         |     |   | 240        | 76.024             | 33.639           | 21.190           | 1.00 36.55               | c c    |
| ATOM         | 5375         | CB         |     |   | 240        | 76.726             | 32.913           | 22.324           | 1.00 37.05               | c      |
| MOTA         | 5376         | CG         |     |   | 240        | 78.287             | 33.195           | 22.304           | 1.00 37.04               | С      |
| ATOM         | 5377         | SD         |     |   | 240        | 79.144             | 32.594           | 23.640           | 1.00 54.67               | s      |
| ATOM<br>ATOM | 5378<br>5379 | CE<br>C    |     |   | 240<br>240 | 78.265<br>74.804   | 32.682<br>32.906 | 24.953<br>20.669 | 1.00 47.01<br>1.00 38.11 | C<br>C |
| ATOM         | 5380         | ō          |     |   | 240        | 74.760             | 32.541           | 19.472           | 1.00 42.72               | ō      |
| ATOM         | 5381         | N          | LYS | В | 241        | 73.772             | 32.784           | 21.432           | 1.00 33.44               | N      |
| MOTA         | 5382         | CA         |     |   | 241        | 72.620             | 32.055           | 20.987           | 1.00 33.25               | C      |
| ATOM<br>ATOM | 5383<br>5384 | CB<br>CG   |     |   | 241<br>241 | 71.599<br>71.139   | 32.121<br>31.078 | 21.982<br>22.698 | 1.00 31.09<br>1.00 31.11 | c<br>c |
| ATOM         | 5385         | CD         |     |   | 241        | 71.028             | 31.397           | 23.971           | 1.00 32.37               | c      |
| ATOM         | 5386         | CE         |     |   | 241        | 70.304             | 30.451           | 24.827           | 1.00 41.02               | č      |
| ATOM         | 5387         | NZ         | LYS | В | 241        | 68.853             | 30.888           | 25.107           | 1.00 44.34               | N      |
| ATOM         | 5388         | C          |     |   | 241        | 72.092             | 32.591           | 19.634           | 1.00 37.30               | C      |
| MOTA<br>MOTA | 5389<br>5390 | O<br>N     | LYS |   | 241        | 71.712<br>72.147   | 31.930<br>33.879 | 18.743<br>19.448 | 1.00 35.77<br>1.00 43.20 | 0<br>N |
| ATOM         | 5391         | CA         |     |   | 242        | 71.466             | 34.494           | 18.239           | 1.00 41.30               | C .v   |
| MOTA         | 5392         | СВ         |     |   | 242        | 71.234             | 35.974           | 18.505           | 1.00 40.38               | Ċ      |
| MOTA         | 5393         | OG         | SER | B | 242        | 71.375             | 36.671           | 17.461           | 1.00 45.95               | 0      |
|              |              |            |     |   |            |                    |                  |                  |                          |        |

- 1 - 5

ing great

12 35 8

. , ... .

```
Figure 2
        5394
                 SER B 242
                                 72.333 34.283 17.109 1.00 39.41
 ATOM
             С
        5395
                 SER B 242
 ATOM
             0
                                                 16.030 1.00 38.87
                                 71.883
                                         33.909
 ATOM
        5396
                 TYR B 243
                                 73.638
                                         34.430
                                                 17.340 1.00 40.63
 ATOM
        5397
             CA
                 TYR B 243
                                 74.655
                                         34.045
                                                 16.193
                                                         1.00 38.09
 ATOM
       5398
             CB TYR B 243
                                 75.988
                                         34.196
                                                 16.715
                                                         1.00 30.95
 ATOM
        5399
             CG
                 TYR B 243
                                 76.941
                                         33.717
                                                 15.750
                                                         1.00 39.34
 ATOM
        5400
             CD1 TYR B 243
                                 76.927
                                         34.112
                                                 14.541
                                                         1.00 39.67
 ATOM
        5401
             CE1 TYR B 243
                                 77.840
                                         33.639
                                                 13.644
                                                         1.00 42.26
 ATOM
        5402
             CZ TYR B 243
                                         32.774
                                 78.789
                                                 13.944
                                                         1.00 45.06
 MOTA
        5403
             OH
                 TYR B 243
                                 79.738
                                         32.304
                                                 13.000
                                                         1.00 51.27
 MOTA
        5404
             CE2 TYR B 243
                                 78.838
                                         32.344
                                                 15.157
                                                         1.00 44.08
                                                                               C
       5405
             CD2 TYR B 243
 ATOM
                                 77.916
                                         32.805
                                                 16.068
                                                         1.00 41.76
                                                                               C
 ATOM
       5406
                 TYR B 243
                                 74.439
                                         32.622
                                                 15.682
                                                         1.00 41.00
                                                                               С
ATOM
       5407
                 TYR B 243
                                 74.297
                                                         1.00 45.00
                                         32.407
                                                 14.595
                                                                               ٥
ATOM
       5408
                 ILE B 244
                                 74.353
                                         31.635
                                                 16.605
                                                         1.00 42.55
                                                                               N
ATOM
       5409
             CA
                 ILE B 244
                                         30.366
                                                 16.318
                                 74.045
                                                         1.00 39.95
                                                                               C
                 ILE B 244
ATOM
       5410
             СВ
                                 74.076
                                         29.554
                                                 17.591
                                                         1.00 39.98
                                                                               ¢
MOTA
       5411
             CG1 ILE B 244
                                 75.529
                                         29.171
                                                 17.973
                                                         1.00 40.28
                                                                               C
             CD1 ILE B 244
ATOM
       5412
                                 75.620
                                         28.782
                                                 19.235
                                                         1.00 43.96
                                                                               C
ATOM
       5413
             CG2 ILE B 244
                                                         1.00 42.08
                                 73.503
                                         28.188
                                                 17.305
ATOM
                 ILE B 244
       5414
             С
                                 72.824
                                         30.200
                                                15.634
                                                         1.00 40.82
                                                                               C
ATOM
       5415
             0
                 ILE B 244
                                 72.684
                                         29.371
                                                 14.782
                                                         1.00 42.69
ATOM
       5416
             N
                 LEU B 245
                                 71.810
                                         30.908
                                                 16.009
                                                         1.00 45.80
ATOM
       5417
             CA LEU B 245
                                 70.374
                                         30.746
                                                 15.378
                                                         1.00 45.20
ATOM
       5418
             CB
                LEU B 245
                                 69.422
                                         31.567
                                                 16.124
                                                         1.00 45.16
ATOM
       5419
             CG LEU B 245
                                 67.929
                                         31.432
                                                 16.034
                                                         1.00 52.06
                                                                              С
ATOM
       5420
             CD1 LEU B 245
                                 67.528
                                        32.158
                                                 14.923
                                                         1.00 58.17
                                                                              С
ATOM
       5421
             CD2 LEU B 245
                                 67.503
                                        30.040
                                                 15.799
                                                         1.00 51.00
                                                                              С
MOTA
       5422
             C
                 LEU B 245
                                 70.458
                                        31.185
                                                 13.972
                                                         1.00 45.45
                                                                              С
ATOM
             0
                 LEU B 245
                                70.025
       5423
                                        30.624
                                                 13.045
                                                         1.00 46.92
                                                                              0
ATOM
       5424
             N
                 GLU B 246
                                 71.172
                                         32.175
                                                 13.763
                                                         1.00 45.09
                                                                              N
                                                                       N
C
ATOM
       5425
             CA
                 GLU B 246
                                 71.327
                                         32.510
                                                 12.424
                                                         1.00 48.56
ATOM
       5426
             СВ
                 GLU B 246
                                72.170
                                                 12.330
                                        33.856
                                                         1.00 53.10
                                                                              Č to
ATOM
       5427
             CG
                GLU B 246
                                72.806
                                        34.385
                                                 11.077
                                                         1.00 59.97
                                                                        C
ATOM
       5428
             CD
                 GLU B 246
                                74.044
                                                         1.00 73.68
                                        35.248
                                                 11.376
ATOM
       5429
             OE1 GLU B 246
                                73.947
                                        35.955
                                                 12.511
                                                         1.00 68.34
                                                                       · 64 · 0
       5430
MOTA
             OE2 GLU B 246
                                75.061
                                        35.230
                                                 10.446
                                                         1.00 79.80
                                                                       71.990
ATOM
       5431
             С
                 GLU B 246
                                        31.379
                                                 11.748
                                                         1.00 47.47
                                                                              С
ATOM
       5432
             0
                 GLU B 246
                                71.680
                                        31.036
                                                 10.692
                                                         1.00 50.24
ATOM
                                                 12.363
       5433
             N
                 LYS B 247
                                72.891
                                        30.696
                                                         1.00 47.92
ATOM
       5434
             CA
                 LYS B 247
                                73.487
                                        29.532
                                                 11.679
                                                         1.00 45.25
ATOM
       5435
             СВ
                 LYS B 247
                                74.665
                                        29.035
                                                 12.456
                                                         1.00 44.35
ATOM
       5436
             CG
                 LYS B 247
                                75.918
                                        29.123
                                                 11.665
                                                         1.00 46.29
                                                                              С
ATOM
       5437
             CD
                 LYS B 247
                                76.315
                                        30.523
                                                 11.389
                                                         1.00 47.79
ATOM
                 LYS B 247
                                77.741
       5438
             CE
                                        30.724
                                                 10.924
                                                         1.00 42.42
                                                                              C
MOTA
       5439
             NZ
                 LYS B 247
                                77.921
                                        30.443
                                                  9.421
                                                         1.00 50.13
                                                                              N
                                        28.396
MOTA
       5440
             С
                 LYS B 247
                                72.417
                                                 11.577
                                                         1.00 45.31
                                                                              C
ATOM
       5441
             0
                 LYS B 247
                                72.437
                                        27.634
                                                10.518
                                                         1.00 40.35
                                                                              ٥
ATOM
       5442
                 VAL B 248
                                71.492
                                        28.220
                                                         1.00 43.58
                                                12.618
                                                                              N
ATOM
       5443
             CA
                 VAL B 248
                                70.624
                                        27.158
                                                        1.00 44.52
                                                12.380
                                                                              С
ATOM
       5444
             СВ
                 VAL B 248
                                69.927
                                        26.617
                                                        1.00 45.17
                                                13.541
                                                                              C
ATOM
       5445
             CG1 VAL B 248
                                                14.779
                                70.718
                                                         1.00 42.11
                                        26.626
                                                                              С
MOTA
       5446
             CG2 VAL B 248
                                68.709
                                        27.057
                                                13.531
                                                        1.00 47.50
                                                                              С
ATOM
       5447
                 VAL B 248
             С
                                69.731
                                        27.396
                                                11.255
                                                        1.00 47.42
                                                                              C
       5448
ATOM
                 VAL B 248
                                                        1.00 47.21
             0
                                69.140
                                        26.552
                                                10.623
                                                                              0
ATOM
       5449
             N
                 LYS B 249
                                69.589
                                        28.636
                                                10.936
                                                        1.00 53.22
ATOM
       5450
             CA
                LYS B 249
                                68.644
                                        28.965
                                                 9.853
                                                        1.00 52.33
                                                                              С
ATOM
       5451
             СВ
                LYS B 249
                                68.240 30.392
                                                 9.986
                                                        1.00 51.96
ATOM
       5452
             CG
                LYS B 249
                                67.064 30.554
                                                10.943
                                                        1.00 49.62
ATOM
       5453
             CD
                LYS B 249
                                66.803 32.089
                                                11.021 1.00 57.51
ATOM
       5454
             CE
                LYS B 249
                                65.646
                                        32.513
                                                11.966
                                                        1.00 59.49
ATOM
       5455
                LYS B 249
                                64.265 31.842
            NZ
                                                11.491
                                                        1.00 69.94
ATOM
       5456
             С
                LYS B 249
                                69.351 28.713
                                                 8.578
                                                        1.00 53.70
ATOM
       5457
                LYS B 249
                                68.678 28.170
                                                 7.734
                                                        1.00 60.27
                                70.623 29.059
71.288 28.770
ATOM
       5458
            N
                GLU B 250
                                                 8.391
                                                        1.00 50.17
ATOM
       5459
                GLU B 250
                                                 7.136
            CA
                                                        1.00 50.08
                                                                              C
ATOM
                                72.797
                                        29.141
       5460
                GLU B 250
                                                        1.00 49.44
            CB
                                                 7.084
                                73.256
ATOM
       5461
            CG
                GLU B 250
                                        30.585
                                                 7.210
                                                        1.00 52.01
                                                                              С
ATOM
       5462
                GLU B 250
                                74.758 30.904
                                                 7.556
                                                       1.00 57.66
            CD
ATOM
                                       32.103
                                                 7.767
      5463
            OE1 GLU B 250
                                75.089
                                                        1.00 70.61
ATOM
                                75.710 30.066
                                                 7.596
      5464
            OE2 GLU B 250
                                                       1.00 65.18
ATOM
      5465
            С
                GLU B 250
                                71.277
                                       27.219
                                                 7.041
                                                       1.00 51.10
ATOM
       5466
                GLU B 250
                                71.357
                                        26.579
                                                 5.995
                                                       1.00 55.20
ATOM
      5467
            N
                HIS B 251
                                71.201
                                       26.543
                                                 8.146
                                                        1.00 48.92
ATOM
       5468
            CA
                HIS B 251
                                71.188
                                       25.140
                                                 7.950
                                                       1.00 46.59
ATOM
                                71.599
                                       24.418
                                                 9.230
                                                        1.00 46.55
       5469
            CB
                HIS B 251
```

```
Figure 2
       ATOM
              5470
                   CG HIS B 251
                                        73.052 24.201
                                                          9.379 1.00 37.09
       ATOM
              5471
                    ND1 HIS B 251
                                        73.974 25.198
                                                          9.352
                                                                 1.00 38.78
       ATOM
              5472
                    CE1 HIS B 251
                                        75.194 24.661
                                                          9.421
                                                                 1.00 33.66
       ATOM
              5473
                    NE2 HIS B 251
                                        75.088
                                                23.342
                                                          9.540
                                                                 1.00 31.07
       ATOM
              5474
                    CD2 HIS B 251
                                        73.754
                                                23.059
                                                          9.528
                                                                 1.00 41.19
                                                                                       C
       MOTA
              5475
                        HIS B 251
                                        69.817
                                                          7.454
                                                24.747
                                                                 1.00 49.00
                                                                                       C
       MOTA
              5476
                        HIS B 251
                                        69.766
                                                          6.478
                                                24.169
                                                                 1.00 48.40
                                                                                       0
       ATOM
              5477
                    N
                        GLN B 252
                                        68.709
                                                25.163
                                                          8.100
                                                                 1.00 51.94
                                                                                       N
       ATOM
              5478
                        GLN B 252
                                        67.410
                                                24.677
                                                          7.780
                                                                 1.00 54.13
                                                                                       С
       ATOM
              5479
                    CB
                        GLN B 252
                                        66.418
                                                25.352
                                                          8.608
                                                                 1.00 54.78
       ATOM
              5480
                    CG
                        GLN B 252
                                        66.647
                                                25.437
                                                         10.056
                                                                 1.00 60.50
                                                                                       С
       MOTA
              5481
                        GLN B 252
                                        65.416
                                                25.978
                                                         10.817
                                                                 1.00 60.87
       ATOM
              5482
                    OE1 GLN B 252
                                        64.684
                                                25.263
                                                         11.333
                                                                 1.00 57.60
                                                                                       0
       ATOM
              5483
                    NE2 GLN B 252
                                        65.222
                                                27.291
                                                         10.799
                                                                 1.00 72.58
       ATOM
              5484
                    С
                        GLN B 252
                                        67.049
                                                24.795
                                                          6.308
                                                                 1.00 57.73
                                                                                       C
       ATOM
              5485
                    0
                        GLN B 252
                                        66.161
                                                          5.755
                                                24.191
                                                                 1.00 56.42
       ATOM
              5486
                        GLU B 253
                                        67.784
                    N
                                                25,602
                                                          5.644
                                                                 1.00 61.69
                                                                                       N
       MOTA
              5487
                    CA
                        GLU B 253
                                        67.505 25.813
                                                          4.235
                                                                 1.00 64.80
       ATOM
              5488
                    СВ
                        GLU B 253
                                        68.136 27.207
                                                          3.796
                                                                 1.00 65.79
                        GLU B 253
                                                          2.420
       ATOM
              5489
                    CG
                                        67.744
                                                27.768
                                                                 1.00 73.29
                        GLU B 253
                                        68.535 27.128
       ATOM
              5490
                    CD
                                                         1.238
                                                                 1.00 82.37
                    OE1 GLU B 253
                                        68.258
       MOTA
              5491
                                                         0.000
                                                                 1.00 77.76
                                                27.321
                    OE2 GLU B 253
       ATOM
              5492
                                        69.488 26.383
                                                         1.545
                                                                 1.00 81.74
                                                                                       0
       ATOM
              5493
                        GLU B 253
                                        68.169
                                                          3.501
                                                                1.00 66.34
                    С
                                                24.671
       ATOM
              5494
                    0
                        GLU B 253
                                        67.525
                                                23.818
                                                         3.102
                                                                 1.00 65.47
       ATOM
              5495
                        SER B 254
                                        69.505 24.666
                    N
                                                         3.392
                                                                1.00 69.12
       ATOM
              5496
                    CA
                        SER B 254
                                        70.277 23.633
                                                         2.611
                                                                 1.00 71.67
                                        71.685 24.114
       ATOM
              5497
                    CB
                        SER B 254
                                                         2.426
                                                                 1.00 74.29
       ATOM
              5498
                    OG
                        SER B 254
                                        71.917 24.808
                                                         1.175
                                                                 1.00 83.24
      ATOM
              5499
                        SER B 254
                                        70.448 22.277
                                                         3.156
                                                                 1.00 68.57
      ATOM
              5500
                    Ó
                        SER B 254
                                        70.889
                                               21.357
                                                         2.525
                                                                 1.00 69.26
ATOM ATOM
              5501
                        MET B 255
                                        70.057
                                                22.178
                                                          4.341
                                                                 1.00 71.74
              5502
                        MET B 255
                                        69.948
                                               20.904
                    CA
                                                          5.045
                                                                 1.00 73.35
              5503
                        MET B 255
                                        68.963 21.079
                                                          6.266
      ATOM
                    CB
                                                                 1.00 72.53
                                        69.429
       ATOM
              5504
                                               20.429
                        MET B 255
                                                         7.493
                                                                 1.00 76.18
              5505
                        MET B 255
                                        68.591 19.005
       ATOM
                                                         7.858
                                                                 1.00 74.57
     . ATOM
              5506
                    CE
                        MET B 255
                                        66.824 19.585
                                                         7.857
                                                                 1.00 75.36
      ATOM
              5507
                    С
                        MET B 255
                                        69.341 19.938
                                                         4.085
                                                                 1.00 72.30
                                                                                      C
                                        68.541 20.318
69.638 18.678
      ATOM
              5508
                    0
                        MET B 255
                                                         3.247
                                                                 1.00 74.17
                                                                                       0
      ATOM
              5509
                        ASP B 256
                                                         4.300
                    N
                                                                 1.00 71.30
                                                                                      N
       ATOM
              5510
                    CA
                        ASP B 256
                                        69.187 17.494
                                                         3.491
                                                                 1.00 68.31
                                        70.029 17.417
                    CB . ASP B 256
       ATOM
              5511
                                                         2.237
                                                                 1.00 68.44
                                                                                      С
                                        70.070 16.037
69.106 15.264
       ATOM
                        ASP B 256
              5512
                    CG
                                                         1.528
                                                                1.00 69.95
       ATOM
                    OD1 ASP B 256
                                                         1.407
              5513
                                                                1.00 66.96
                                                                                      ٥
       ATOM
              5514
                    OD2 ASP B 256
                                        71,167 15,729
                                                         0.999
                                                                 1.00 74.36
       ATOM
                                        69.318
              5515
                    C
                        ASP B 256
                                               16.293
                                                         4.395
                                                                 1.00 65.01
                                                                                      С
                                        70.404 15.990
       ATOM
              5516
                    0
                        ASP B 256
                                                         4.838
                                                                1.00 64.85
                                                                                      0
       ATOM
              5517
                    N
                        MET B 257
                                        68.232 15.597
                                                         4.548
                                                                1.00 63.05
      ATOM
              5518
                    CA
                        MET B 257
                                        67.949
                                               14.650
                                                         5.505
                                                                1.00 63.75
      ATOM
              5519
                    CB
                        MET B 257
                                        66.499
                                               14.364
                                                         5.423
                                                                1.00 68.24
      ATOM
              5520
                    CG
                        MET B 257
                                        65.499
                                               15.422
                                                         6.058
                                                                1.00 75.16
      ATOM
              5521
                    SD
                        MET B 257
                                        65.791
                                               15.712
                                                         7.796
                                                                1.00 83.85
      ATOM
              5522
                        MET B 257
                                        64.538
                                               17.182
                                                         7.947
                                                                1.00 84.59
                    CE
      ATOM
              5523
                        MET B 257
                                        68.501
                                               13.415
                                                         5.489
                                                                1.00 61.30
                    С
                        MET B 257
      ATOM
              5524
                                        68.456
                                                                1.00 65.52
                                               12.832
                                                         6.558
      MOTA
              5525
                        ASN B 258
                                        69.020
                                                                1.00 61.13
                    N
                                               12.959
                                                         4.369
                        ASN B 258
      ATOM
              5526
                                        69.691
                                               11.655
                                                         4.231
                                                                1.00 61.17
      ATOM
              5527
                    CB
                        ASN B 258
                                        69.429
                                               11.158
                                                         2.836
                                                                1.00 62.69
                                       67.983
      ATOM
              5528
                    CG
                        ASN B 258
                                               11.337
                                                         2.314
                                                                1.00 66.80
      ATOM
              5529
                    OD1 ASN B 258
                                       66.976
                                               11.169
                                                         3.010
                                                                1.00 66.88
                                                                                      0
      ATOM
              5530
                    ND2 ASN B 258
                                       67.886
                                               11.702
                                                         1.038
                                                                1.00 72.74
      ATOM
              5531
                        ASN B 258
                                       71.169
                                               11.891
                                                         4.284
                                                                1.00 58.99
                    C
                        ASN B 258
                                               11.062
                                                         4.093
                                                                1.00 60.61
      ATOM
              5532
                                       72.016
      ATOM
                                       71.500 13.088
                                                         4.502
                                                                1.00 57.66
              5533
                        ASN B 259
                    N
                        ASN B 259
                                              13.525
                                                         4.460
                                                                1.00 58.24
                                                                                      c
      ATOM
              5534
                    CA
                                       72.855
                                       73.035
                                               14.206
      ATOM
                        ASN B 259
                                                         3,121
                                                                1.00 57.76
              5535
                    CB
                                       72.925
                                                         1.981
                                                                1.00 60.95
      ATOM
              5536
                    CG
                        ASN B 259
                                               13.193
                                                         1.765
      ATOM
              5537
                    OD1 ASN B 259
                                       73.850
                                               12.396
                                                                1.00 50.64
      ATOM
              5538
                   ND2 ASN B 259
                                       71.709
                                               13.062
                                                         1.364
                                                                1.00 64.16
      ATOM
              5539
                        ASN B 259
                                       73.255
                                              14.526
                                                         5.521
                                                                1.00 59.35
      ATOM
              5540
                        ASN B 259
                                       73.765
                                               15.589
                                                         5.181
                                                                1.00 64.75
      ATOM
              5541
                                       73.072
                                               14.231
                                                         6.774
                                                                1.00 55.35
      ATOM
              5542
                   CA
                        PRO B 260
                                       73.533
                                               15.100
                                                         7.819
                                                                1.00 53.28
      ATOM
              5543
                   СВ
                        PRO B 260
                                       72.993
                                               14.420
                                                         9.025
                                                                1.00 55.43
                                               13.078
                                                         8.695
                                                                1.00 54.79
      ATOM
             5544
                   CG
                        PRO B 260
                                       72.952
```

ACCIDENCE A

4.

\$40 -

9

THE BUYEN THE

MORA

7570 t

W. Sistema

ARTY '

AFOR

3773

13.065

72.393

7.302

1.00 53.54

MOTA

5545

CD

PRO B 260

Figure 2 5546 С PRO B 260 74.980 15.128 7.937 1.00 51.86 C ATOM PRO B 260 75.584 14.083 7.823 1.00 48.56 0 ٥ 5547 ATOM 1.00 50.80 75.512 16.355 8.214 **GLN B 261** ATOM 5548 1.00 47.67 76.975 8.289 **GLN B 261** 16.542 CA ATOM 5549 1.00 46.55 77.388 17.281 7.153 **GLN B 261** ATOM 5550 CB 5.795 1.00 53.79 77.002 MOTA 5551 CG GLN B 261 16.668 4.560 1.00 62.49 **GLN B 261** 77.671 17.517 ATOM 5552 CD 4.259 1.00 65.87 OE1 GLN B 261 78.887 17.407 MOTA 5553 3.954 1.00 69.78 76.850 18.435 ATOM 5554 NE2 GLN B 261 9.544 1.00 44.39 77.528 17.217 MOTA 5555 **GLN B 261** С 9.723 1.00 44.86 78.736 0 5556 0 **GLN B 261** 17.320 ATOM 10.450 1.00 40.85 76.657 5557 **ASP B 262** 17.628 ATOM N 11.619 1.00 38.42 C ATOM 5558 CA **ASP B 262** 77.093 18.340 ATOM 5559 CB **ASP B 262** 77.594 19.739 11.253 1.00 36.85 **ASP B 262** 76.569 20.609 10.673 1.00 41.68 C MOTA 5560 CG ATOM 5561 OD1 ASP B 262 76.874 21.543 9.906 1.00 36.08 0 OD2 ASP B 262 75.345 20.383 10.956 1.00 41.86 0 MOTA 5562 76.096 18.344 12.693 1.00 35.66 С ATOM 5563 c **ASP B 262** 75.012 17.893 12.462 1.00 37.30 O ٥ ASP B 262 ATOM 5564 1.00 33.03 76.439 18.792 13.874 ATOM 5565 PHE B 263 75.477 18.707 15.031 1.00 33.21 C ATOM CA PHE B 263 5566 19.361 16.197 5567 PHE B 263 76.092 1.00 36.50 CB ATOM PHE B 263 75.524 19.147 17.432 1.00 38.49 ATOM CG 5568 18.198 18.286 75.995 1.00 42.25 ATOM CD1 PHE B 263 5569 75.430 17.981 19.507 1.00 36.46 CE1 PHE B 263 ATOM 5570 1.00 40.08 74.512 18.715 19.888 ATOM 5571 CZ PHE B 263 74.060 19.683 19.161 1.00 40.95 С ATOM 5572 CE2 PHE B 263 74.557 19.908 17.884 1.00 47.27 C ATOM 5573 CD2 PHE B 263 74.176 PHE B 263 19.325 14.725 1.00 37.40 C ATOM 5574 С 73.051 15.023 1.00 37.72 0 18.807 MOTA 5575 0 PHE B 263 74.178 14.055 1.00 39.06 N MOTA 5576 N ILE B 264 20.479 С 21.043 1.00 37.92 MOTA 5577 CA **ILE B 264** 72.946 13.699 1.00 40.59 C MOTA 5578 CB ILE B 264 73.214 22.262 13.024 С MOTA 5579 CG1 ILE B 264 73.916 23.230 13.957 1.00 39.54 CD1 ILE B 264 74.215 24.696 13.301 1.00 35.47 C ATOM 5580 71.867 22.969 12.500 1.00 48.95 С ATOM 5581 CG2 ILE B 264 72.177 ATOM ILE B 264 20.134 12.853 1.00 36.80 С 5582 С 19.786 13.165 1.00 41.55 0 5583 0 ILE B 264 71.115 MOTA 1.00 38.37 **ASP B 265** 72.695 19.689 11.761 MOTA 5584 N 71.894 18.792 10.775 1.00 36.03 С ATOM 5585 CA ASP B 265 **ASP B 265** 72.790 18.190 9.719 1.00 34.86 ATOM 5586 CB 73.173 19.135 8.651 1.00 42.32 ATOM ASP B 265 5587 CG 20.214 8.525 1.00 37.09 OD1 ASP B 265 72.367 ATOM 5588 1.00 42.52 0 OD2 ASP B 265 74.262 18.876 7.816 ATOM 5589 1.00 35.37 17.676 11.623 71.395 MOTA 5590 С **ASP B 265** 17.410 11.558 70.293 1.00 33.49 ATOM 5591 o **ASP B 265** 17.055 12.452 1.00 36.16 ATOM 5592 N CYS B 266 72.220 15.961 1.00 40.84 C ATOM 5593 CA CYS B 266 71.652 13.224 15.203 13.999 1.00 39.08 ATOM 5594 CB CYS B 266 72.686 1.00 47.72 MOTA 5595 CYS B 266 73.937 14.511 12.917 SG 1.00 43.25 ATOM 5596 С CYS B 266 70.505 16.493 14.279 CYS B 266 69.521 15.925 14.475 1.00 43.70 ATOM 5597 0 N ATOM N PHE B 267 70.673 17.615 14.938 1.00 44.75 5598 1.00 44.97 ATOM 5599 CA PHE B 267 69.626 17.973 15.837 ATOM 5600 СВ PHE B 267 70.159 19.129 16.684 1.00 43.89 C 19.417 17.863 1.00 40.32 ATOM 5601 CG PHE B 267 69.410 ATOM 5602 CD1 PHE B 267 69.772 18.967 19.006 1.00 41.39 С 19.275 20.050 1.00 42.24 **CE1 PHE B 267** 69.066 ATOM 5603 19.994 1.00 41.04 ATOM CZ PHE B 267 67.923 20.064 5604 67.555 20.558 18.858 1.00 44.13 ATOM 5605 CE2 PHE B 267 ATOM CD2 PHE B 267 68.319 20.214 17.778 1.00 47.15 5606 68.427 18.333 14.936 1.00 46.76 ATOM 5607 С PHE B 267 1.00 45.55 15.244 MOTA 5608 0 PHE B 267 67.267 18.030 18.987 13.809 1.00 46.80 MOTA 5609 N **LEU B 268** 68.683 13.023 1.00 47.49 ATOM 5610 CA **LEU B 268** 67.578 19.358 11.856 ATOM 5611 СВ **LEU B 268** 68.102 20.051 1.00 48.04 **LEU B 268** 67.621 21.447 11.617 1.00 44.42 ATOM 5612 CG 66.860 22.006 12.943 1.00 43.94 ATOM 5613 CD1 LEU B 268 1.00 46.96 68.780 22.245 11.305 ATOM 5614 CD2 LEU B 268 66.775 18.058 12.619 1.00 52.76 ATOM 5615 **LEU B 268** C 1.00 53.90 65.548 17.906 12.815 **LEU B 268** ATOM 5616 67.427 17.007 12.166 1.00 54.94 **MET B 269** ATOM 5617 N 11.904 1.00 56.40 ATOM 5618 **MET B 269** 66.596 15.845 CA MET B 269 67.229 14.914 10.841 1.00 59.11 ATOM 5619 CB 68.464 14.317 11.166 1.00 59.58 MET B 269 ATOM 5620 CG 69.016 13.217 9.813 1.00 66.28 ATOM 5621 SD MET B 269

31,

9118

v et 9

112

FLE SUM SEA

713

i.i.t.

|              |              |          |            |   |            | Fi               | igure             | 2                |                          |        |
|--------------|--------------|----------|------------|---|------------|------------------|-------------------|------------------|--------------------------|--------|
| MOTA         | 5622         | CE       |            |   | 269        | 69.860           | 14.509            | 8.605            | 1.00 63.16               | c      |
| ATOM<br>ATOM | 5623<br>5624 | С<br>О   |            |   | 269<br>269 | 66.061<br>65.146 | 15.054<br>14.261  | 12.954<br>12.813 | 1.00 56.00<br>1.00 58.00 | C<br>0 |
| ATOM         | 5625         | N        |            |   | 270        | 66.583           | 15.210            | 14.092           | 1.00 58.41               | N      |
| ATOM         | 5626         | CA       |            |   | 270        | 66.066           | 14.445            | 15.274           | 1.00 56.54               | С      |
| ATOM<br>ATOM | 5627<br>5628 | CB<br>CG |            |   | 270<br>270 | 67.057<br>66.619 | 14.536            | 16.445<br>17.776 | 1.00 56.24<br>1.00 54.64 | C<br>C |
| ATOM         | 5629         | CD       | LYS        |   |            | 66.342           | 12.742            | 17.781           | 1.00 54.88               | c      |
| MOTA         | 5630         | CE       |            |   | 270        | 66.308           | 12.138            | 19.292           | 1.00 49.82               | С      |
| ATOM         | 5631<br>5632 | NZ<br>C  |            |   | 270<br>270 | 66.271           | 10.741            | 19.266           | 1.00 39.60               | N      |
| ATOM<br>ATOM | 5633         | 0        |            |   | 270        | 64.816<br>64.039 | 15.057<br>14.471  | 15.595<br>16.175 | 1.00 54.88<br>1.00 57.35 | C      |
| ATOM         | 5634         | N        | MET        | В | 271        | 64.607           | 16.266            | 15.230           | 1.00 56.48               | N      |
| ATOM         | 5635         | CA       | MET<br>MET |   | 271        | 63.325           | 16.914            | 15.560           | 1.00 58.56               | C      |
| ATOM<br>ATOM | 5636<br>5637 | CB<br>CG | MET        |   |            | 63.421<br>64.203 | 18.397<br>18.929  | 15.368<br>16.364 | 1.00 55.83<br>1.00 56.85 | C<br>C |
| MOTA         | 5638         | SD       | MET        | В | 271        | 64.541           | 20.778            | 16.147           | 1.00 61.02               | . S    |
| ATOM         | 5639         | CE       | MET        |   |            | 62.966           | 21.476            | 16.467           | 1.00 57.01               | • С    |
| ATOM<br>ATOM | 5640<br>5641 | C<br>0   | MET<br>MET |   |            | 62.293<br>61.182 | 16.416<br>16.323  | 14.551<br>14.877 | 1.00 62.95<br>1.00 67.14 | c<br>o |
| ATOM         | 5642         | N        | GLU        |   |            | 62.645           | 16.062            | 13.348           | 1.00 64.05               | N      |
| ATOM         | 5643         | CA       | GLU        |   |            | 61.696           | 15.506            | 12.445           | 1.00 65.87               | C      |
| MOTA<br>MOTA | 5644<br>5645 | CB<br>CG | GLU        |   |            | 62.373<br>61.416 | 15.037<br>14.985  | 11.115<br>9.898  | 1.00 67.95<br>1.00 73.52 | C<br>C |
| ATOM         | 5646         | CD.      |            |   |            | 60.754           | 16.321            | 9.631            | 1.00 76.43               | č      |
| ATOM         | 5647         |          | GLU        |   |            | 60.932           | 17.221            | 10.490           | 1.00 74.35               | 0      |
| MOTA<br>MOTA | 5648<br>5649 | OE2      | GLU<br>GLU |   |            | 60.109<br>61.111 | 16.448<br>14.251  | 8.554<br>13.138  | 1.00 76.63               | o<br>C |
| ATOM         | 5650         | ō        | GLU        |   |            | 59.927           | 14.119            |                  | 1.00 69.75               | ŏ      |
| MOTA         | 5651         | N        | LYS        |   |            | 61.882           |                   | 13.598           | 1.00 64.99               | N      |
| ATOM<br>ATOM | 5652<br>5653 | CA<br>CB | LYS<br>LYS |   |            | 61.267<br>62.347 | 12.283<br>-11.294 |                  | 1.00 65.01               | C      |
| ATOM         | 5654         | CG       | LYS        |   |            | 63.499           | 11.011            |                  | 1.00 70.86               | · . c  |
| ATOM         | 5655         | CD       | LYS        |   |            | 64.574           | 9.949             | 14.277           | 1.00 75.39               | C      |
| MOTA         | 5656         | CE       | LYS        |   |            | 63.987           | 8.541             |                  | 1.00 77.05               | C      |
| ATOM<br>ATOM | 5657<br>5658 | NZ<br>C  | LYS<br>LYS |   |            | 64.592<br>60.812 | 7.620<br>13.059   | 15.697<br>15.620 | 1.00 73.14<br>1.00 64.93 | N<br>C |
| ATOM         | 5659         | ō        | LYS        |   |            | 61.016           |                   | 15.745           | 1.00 63.18               | ō      |
| MOTA         | 5660         | N        | GLU        |   |            |                  | 12.389            |                  | 1.00 66.40               | N      |
| ATOM<br>ATOM | 5661<br>5662 | CA<br>CB | GLU        |   |            | 59.744<br>60.830 | 13.140<br>14.010  | 17.722           | 1.00 67.79<br>1.00 68.21 | C<br>C |
| ATOM         | 5663         | CG       | GLU        |   |            | 62.168           | 13.377            | 18.554           | 1.00 69.48               | č      |
| ATOM         | 5664         | CD       | GLU        |   | 274        | 62.179           | 12.200            | 19.551           | 1.00 73.95               | C      |
| ATOM<br>ATOM | 5665<br>5666 |          | GLU        |   |            | 61.520<br>62.818 | 12.343<br>11.131  | 20.606<br>19.305 | 1.00 81.32<br>1.00 67.38 | 0      |
| ATOM         | 5667         | c        | GLU        |   |            | 58.686           | 14.117            | 17.284           | 1.00 68.66               | č      |
| ATOM         | 5668         | 0        | GLU        |   |            | 57.786           | 14.443            | 18.057           | 1.00 68.66               | 0      |
| ATOM -       | 5669<br>5670 | N<br>CA  | LYS        |   | 275<br>275 | 58.798<br>57.796 | 14.643<br>15.652  | 16.083<br>15.608 | 1.00 70.28<br>1.00 73.49 | N<br>C |
| ATOM         | 5671         | CB       | LYS        |   |            | 57.910           | 15.897            | 14.118           | 1.00 73.43               | č      |
| ATOM         | 5672         | CG       |            |   | 275        | 56.661           | 15.727            | 13.340           | 1.00 74.78               | Ç      |
| ATOM<br>ATOM | 5673<br>5674 | CE       | LYS        |   | 275        | 56.494<br>57.554 | 16.745<br>16.556  | 12.146<br>10.986 | 1.00 76.55<br>1.00 77.81 | C<br>C |
| ATOM         | 5675         | NZ       | LYS        |   |            | 57.629           | 17.810            | 10.070           | 1.00 79.12               | N      |
| ATOM         | 5676         | С        | LYS        |   |            | 56.358           | 15.374            | 15.880           | 1.00 75.02               | C      |
| ATOM<br>ATOM | 5677<br>5678 | N<br>N   | LYS<br>HIS |   |            | 55.571<br>56.029 | 16.297<br>14.113  | 15.930<br>16.061 | 1.00 76.27<br>1.00 75.47 | 0<br>N |
| ATOM         | 5679         | CA       | HIS        |   |            | 54.663           | 13.745            | 16.384           | 1.00 76.44               | Č      |
| ATOM         | 5680         | CB       | HIS        |   |            | 54.441           | 12.388            | 15.860           | 1.00 77.28               | С      |
| ATOM<br>ATOM | 5681<br>5682 | CG       | HIS        |   |            | 54.364<br>54.101 | 12.411<br>13.594  | 14.368<br>13.680 | 1.00 82.81<br>1.00 83.03 | C<br>N |
| MOTA         | 5683         |          | HIS        |   |            | 54.101           | 13.341            | 12.374           | 1.00 79.27               | C      |
| MOTA         | 5684         |          | HIS        |   |            | 54.370           | 12.053            | 12.194           | 1.00 80.04               | N      |
| ATOM         | 5685         |          | HIS        |   |            | 54.539           | 11.443            | 13.421           | 1.00 82.53               | C      |
| ATOM<br>ATOM | 5686<br>5687 | С<br>0   | HIS<br>HIS |   |            | 54.453<br>53.436 | 13.784<br>14.334  | 17.900<br>18.359 | 1.00 77.31<br>1.00 80.32 | C<br>0 |
| ATOM         | 5688         | N        | ASN        |   |            | 55.406           | 13.269            | 18.683           | 1.00 76.29               | N      |
| ATOM         | 5689         | CA       | ASN        |   |            | 55.370           | 13.333            | 20.165           | 1.00 77.08               | C      |
| ATOM<br>ATOM | 5690<br>5691 | CB<br>CG | ASN<br>ASN |   |            | 56.268<br>56.149 | 12.196<br>10.893  | 20.704<br>19.844 | 1.00 79.19<br>1.00 84.16 | C      |
| ATOM         | 5692         |          | ASN        |   |            | 56.303           | 10.959            | 18.593           | 1.00 90.43               | Ö      |
| ATOM         | 5693         | ND2      | ASN        | В | 277        | 55.843           | 9.728             | 20.500           | 1.00 89.14               | N      |
| ATOM<br>ATOM | 5694<br>5695 | 0        | ASN<br>ASN |   |            | 55.809<br>56.835 | 14.753<br>14.969  | 20.646<br>21.265 | 1.00 75.95<br>1.00 69.68 | c<br>o |
| ATOM         | 5696         | N        | GLN        |   |            | 54.948           | 15.715            | 20.316           | 1.00 69.68               | N      |
| ATOM         | 5697         | CA       | GLN        |   |            | 55.203           | 17.139            | 20.506           | 1.00 79.26               | Ċ      |

|              |              |          |     |   |            |    | F              | igure  | 2                |      |                |          |        |
|--------------|--------------|----------|-----|---|------------|----|----------------|--------|------------------|------|----------------|----------|--------|
| ATOM         | 5698         | СВ       | GLN | В | 278        | 54 | 1.150          |        | 19.933           | 1.00 | 79.94          |          | c      |
| ATOM         | 5699         | CG       | GLN |   | 278        |    | .895           |        | 19.418           | 1.00 | 79.91          |          | С      |
| ATOM         | 5700         | CD       |     |   | 278        |    | .811           |        | 18.160           |      | 79.04          |          | C      |
| ATOM         | 5701         |          | GLN |   |            |    | . 887          |        | 17.263           |      | 80.51<br>78.35 |          | О<br>N |
| ATOM<br>ATOM | 5702<br>5703 | NE2      | GLN |   | 278        |    | 5.463<br>5.539 |        | 18.036<br>21.799 |      | 79.74          |          | C      |
| ATOM         | 5704         | ŏ        |     |   | 278        |    | . 987          |        | 21.835           |      | 81.74          |          | ŏ      |
| ATOM         | 5705         | N        |     |   | 279        |    | . 243          |        | 22.891           | 1.00 | 77.32          |          | N      |
| ATOM         | 5706         | CA       |     |   | 279        |    | .896           |        | 24.073           |      | 76.47          |          | Ç      |
| ATOM         | 5707         | CB       |     |   | 279        |    | . 539          |        | 25.201           |      | 78.10<br>77.32 |          | C      |
| MOTA<br>MOTA | 5708<br>5709 | CG       |     |   | 279<br>279 |    | 1.215<br>1.268 |        | 24.623<br>23.142 |      | 75.66          | •        | c<br>c |
| ATOM         | 5710         | C        |     |   | 279        |    | . 468          |        | 23.820           |      |                |          | č      |
| ATOM         | 5711         | ō        |     |   | 279        |    | . 095          |        | 24.588           |      | 76.84          |          | 0      |
| MOTA         | 5712         | N        |     |   | 280        |    | .064           |        | 22.855           |      | 66.52          |          | N      |
| ATOM         | 5713         | CA       |     |   | 280        |    | . 562          |        | 22.557           |      | 64.40          |          | C      |
| ATOM         | 5714         | CB<br>OG |     |   | 280        |    | .063           |        | 21.085<br>20.618 |      | 64.40          |          | C<br>0 |
| ATOM<br>ATOM | 5715<br>5716 | C        |     |   | 280<br>280 |    | . 642          |        | 23.232           |      | 62.52          |          | Č      |
| ATOM         | 5717         | ŏ        |     |   | 280        |    | .575           |        | 23.298           |      | 61.42          |          | ō      |
| ATOM         | 5718         | N        | GLU | В | 281        | 61 | .678           | 17.302 | 23.667           |      | 60.81          | ,        | N      |
| ATOM         | 5719         | CA       |     |   | 281        |    | .917           |        | 24.327           |      | 57.90          |          | c      |
| ATOM         | 5720         | CB       | GLU |   |            |    | 718            |        | 24.831           |      | 58.64          |          | c<br>c |
| ATOM<br>ATOM | 5721<br>5722 | CG<br>CD |     |   | 281<br>281 |    | .012<br>.834   |        | 26.255<br>27.161 |      | 67.05<br>71.61 |          | c      |
| ATOM         | 5723         |          | GLU |   |            |    | . 483          |        | 27.168           |      | 69.02          |          | ŏ      |
| ATOM         | 5724         |          | GLU |   |            |    | .316           |        | 27.921           |      | 82.52          |          | 0      |
| ATOM         | 5725         | С        |     |   | 281        |    | .830           |        | 23.334           |      | 54.35          |          | C      |
| MOTA         | 5726         | 0        |     |   | 281        |    | .542           |        | 23.642           |      | 53.40          |          | 0      |
| MOTA         | 5727         | N        |     |   | 282<br>282 |    | 1.766<br>1.525 |        | 22.078<br>21.122 |      | 50.73<br>47.76 |          | N<br>C |
| ATOM<br>ATOM | 5728<br>5729 | CA<br>CB |     |   | 282        |    | .933           |        | 20.101           |      | 44.65          |          | , C    |
| ATOM         | 5730         | CG       |     |   | 282        |    | .802           |        | 20.637           |      | 39.02          | · :      | ċ.     |
| ATOM         | 5731         | CD1      | PHE |   |            |    | .277           |        | 21.256           | 1.00 | 44.15          |          | С      |
| ATOM         | 5732         |          | PHE |   |            |    | . 952          |        | 21.766           |      | 39.80          |          | C,     |
| ATOM         | 5733         | CZ       |     |   | 282        |    | . 228          |        | 21.654           |      | 46.74          | <b>.</b> |        |
| MOTA<br>MOTA | 5734<br>5735 |          | PHE |   |            |    | .776<br>.030   |        | 21.073<br>20.576 |      | 40.33          |          | C<br>C |
| ATOM         | 5736         | Ç        |     |   | 282        |    | .759           |        | 20.388           |      | 48.91          |          | · ·    |
| ATOM         | 5737         | ŏ        |     |   | 282        |    | .855           |        | 19.556           |      | 53.37          |          | 0      |
| MOTA         | 5738         | N        |     |   | 283        |    | .168           |        | 20.497           |      | 44.90          |          | N      |
| MOTA         | 5739         | ÇA       |     |   | 283        |    | . 619          |        | 19.836           |      | 40.71          |          | C      |
| ATOM         | 5740         | CB       | THR |   | 283        |    | .730<br>.655   |        | 20.800<br>21.757 |      | 39.21<br>41.87 |          | С<br>0 |
| MOTA<br>MOTA | 5741<br>5742 |          | THR |   |            |    | .827           |        | 21.657           |      | 40.88          |          | Č      |
| ATOM         | 5743         | c        |     |   | 283        |    | . 699          |        | 19.557           |      | 41.23          |          | С      |
| ATOM         | 5744         | 0        | THR | В | 283        | 65 | .703           | 23.456 | 20.168           |      | 40.12          |          | 0      |
| ATOM         | 5745         | N        |     |   | 284        |    | .477           |        | 18.608           |      | 41.87          |          | N      |
| ATOM         | 5746         | CA       | ILE |   |            |    | .482           |        | 18.323<br>17.477 |      | 40.90          |          | C<br>C |
| MOTA<br>MOTA | 5747<br>5748 | CB       | ILE |   | 284        |    | .921<br>.309   |        | 16.180           |      | 40.70          |          | Ċ      |
| ATOM         | 5749         |          | ILE |   |            |    | .161           |        | 15.388           |      | 47.84          |          | č      |
| MOTA         | 5750         |          | ILE |   |            |    | .993           |        | 17.006           |      | 45.38          |          | С      |
| ATOM         | 5751         | С        |     |   | 284        |    | .067           |        | 19.572           |      | 42.12          |          | C      |
| ATOM         | 5752         | 0        | ILE |   |            |    | .185           |        | 19.673           |      | 43.77          |          | O<br>N |
| MOTA<br>MOTA | 5753<br>5754 | N<br>CA  |     |   | 285<br>285 |    | .325           |        | 20.585<br>21.780 |      | 43.57<br>47.57 |          | C      |
| ATOM         | 5755         | СВ       | GLU |   |            |    | . 689          |        | 22.787           |      | 51.85          |          | č      |
| ATOM         | 5756         | CG       |     |   | 285        |    | .010           |        | 22.893           | 1.00 | 64.14          |          | С      |
| MOTA         | 5757         | CD       |     |   | 285        |    | .330           |        | 24.196           |      | 70.85          |          | C      |
| ATOM         | 5758         |          | GLU |   |            |    | .391           |        | 25.038           |      | 64.74          |          | 0      |
| ATOM         | 5759         |          | GLU |   |            |    | .590<br>.889   |        | 24.298<br>22.367 |      | 77.83<br>43.48 |          | 0<br>C |
| MOTA<br>MOTA | 5760<br>5761 | С<br>0   |     |   | 285<br>285 |    | .036           |        | 22.582           |      | 37.79          |          | ŏ      |
| ATOM         | 5762         | N        |     |   | 286        |    | . 446          |        | 22.631           |      | 40.49          |          | N      |
| ATOM         | 5763         | CA       |     |   | 286        | 67 | . 432          | 23.521 | 23.127           | 1.00 | 41.15          |          | С      |
| MOTA         | 5764         | СВ       |     |   | 286        |    | .968           |        | 23.487           |      | 41.62          |          | C      |
| ATOM         | 5765         | OG       |     |   | 286        |    | .830           |        | 22.891           |      | 41.96          |          | 0      |
| ATOM         | 5766<br>5767 | C        |     |   | 286<br>286 |    | .659<br>.762   |        | 22.287<br>22.799 |      | 41.86          |          | С<br>0 |
| MOTA<br>MOTA | 5767<br>5768 | И<br>О   | LEU |   |            |    | .499           |        | 20.979           |      | 43.68          |          | N      |
| ATOM         | 5769         | CA       | LEU |   |            |    | . 621          |        | 20.040           | 1.00 | 39.97          |          | Ċ      |
| ATOM         | 5770         | СВ       | LEU | В | 287        | 69 | .145           | 23.438 | 18.589           |      | 38.07          |          | C      |
| MOTA         | 5771         | CG       | LEU |   |            |    | .248           |        | 17.604           |      | 41.22          |          | C      |
| MOTA         | 5772         |          | LEU |   |            |    | .389           |        | 17.890           |      | 45.04          |          | c      |
| MOTA         | 5773         | CD2      | LEU | В | 287        | 69 | .847           | 23.334 | 16.324           | 1.00 | 45.31          |          | С      |

|              |                |           |     |     |                | F                | igure            | 2                |                          |        |
|--------------|----------------|-----------|-----|-----|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5774           | С         |     |     | 3 287          | 70.413           |                  |                  | 1.00 40.42               | С      |
| ATOM         | 5775<br>5776   | 0         |     |     | 3 287          | 71.521           |                  | 20.688           |                          | 0      |
| ATOM<br>ATOM | 5776<br>5777   | N<br>CA   |     |     | 3 288<br>3 288 | 69.865<br>70.757 |                  | 20.432           | 1.00 40.42<br>1.00 41.83 | N      |
| ATOM         | 5778           | CB        |     |     | 288            | 69.940           |                  |                  | 1.00 41.83               | c<br>c |
| ATOM         | 5779           | CG        |     |     | 288            | 69.698           |                  | 19.588           | 1.00 51.12               | č      |
| ATOM         | 5780           | ÇD        |     |     | 288            | 68.828           |                  |                  | 1.00 65.84               | Ċ      |
| MOTA         | 5781           |           |     |     | 288            | 68.181           |                  | 20.980           | 1.00 57.03               | 0      |
| MOTA<br>MOTA | 5782<br>5783   | C         |     |     | 3 288<br>3 288 | 68.794<br>71.491 |                  | 18.941<br>22.074 | 1.00 72.45               | 0      |
| MOTA         | 5784           | ŏ         |     |     | 288            | 72.705           |                  | 22.279           | 1.00 39.15<br>1.00 41.40 | c<br>o |
| ATOM         | 5785           | N         | ASI | N E | 289            | 70.738           |                  | 23.021           | 1.00 36.86               | N      |
| ATOM         | 5786           | CA        |     |     | 289            | 71.330           |                  | 24.306           | 1.00 34.87               | С      |
| ATOM         | 5787           | CB        |     |     | 289            | 70.439           |                  | 25.316           | 1.00 36.17               | Ç      |
| MOTA<br>MOTA | 5788<br>5789   | CG        |     |     | 289            | 69.289<br>68.183 |                  | 25.683<br>26.236 | 1.00 41.11<br>1.00 38.74 | C      |
| ATOM         | 5790           |           |     |     | 289            | 69.551           | 27.879           | 25.542           | 1.00 34.17               | O<br>N |
| ATOM         | 5791           | С         |     |     | 289            | 72.388           | 25.048           | 24.312           | 1.00 34.45               | č      |
| MOTA         | 5792           | 0         |     |     | 289            | 73.380           | 25.300           | 24.895           | 1.00 34.41               | 0      |
| ATOM         | 5793           | N         |     |     | 290            | 72.208           | 23.935           | 23.616           | 1.00 31.03               | N      |
| ATOM<br>ATOM | 5794<br>5795   | CA<br>CB  |     |     | 290            | 73.139<br>72.546 | 22.993<br>21.477 | 23.634<br>23.184 | 1.00 31.72               | C      |
| ATOM         | 5796           |           |     |     | 290            | 71.349           | 21.028           | 24.022           | 1.00 38.14<br>1.00 34.21 | c<br>0 |
| ATOM         | 5797           |           |     |     | 290            | 73.624           | 20.370           | 23.359           | 1.00 35.09               | , c    |
| ATOM         | 5798           | С         | THE | B   | 290            | 74.349           | 23.317           | 22.930           | 1.00 29.42               | ·c     |
| ATOM         | 5799           | 0         |     |     | 290            | 75.436           | 22.837           | 23.227           | 1.00 35.68               | 0      |
| ATOM<br>ATOM | 5800<br>5801   | N         |     |     | 291            | 74.314           | 24.124           | 22.016           | 1.00 28.51               | N      |
| ATOM         | 5802           | CA<br>CB  |     |     | 291            | 75.538<br>75.209 | 24.414<br>25.078 | 21.342<br>19.931 | 1.00 28.74<br>1.00 32.49 | C      |
| ATOM         | 5803           | č         |     |     | 291            | 76.236           | 25.428           | 22.110           | 1.00 32.43               | c      |
| ATOM ;       | 5804           | 0         |     |     | 291            | 77.412           | 25.366           | 22.141           | 1.00 35.59               | ŏ      |
| ATOM         | 5805           | N         |     |     | 292            | 75.638           | 26.395           | 22.801           | 1.00 34.17               | N      |
| ATOM :       |                | CA        |     |     | 292            | 76.568           | 27.262           | 23.620           | 1.00 33.96               | C      |
| ATOM         | 5807<br>5808   | CB<br>CG1 |     |     | 292<br>292     | 75.910<br>75.476 | 28.543<br>29.480 | 24.273<br>23.117 | 1.00 37.57<br>1.00 35.79 | C<br>C |
| ATOM         | 5809           |           |     |     | 292            | 74.808           | 28.111           | 25.036           | 1.00 38.04               | c      |
| ATOM         | 5810           |           |     |     | 292            | 77.168           | 26.514           | 24.719           | 1.00 30.43               | č      |
| ATOM         | 5811           | ,0        |     |     | 292            | 78.354           | 26.607           | 24.947           | 1.00 31.96               | 0      |
| ATOM         | 5812           | N         |     |     | 293            | 76.478           | 25.686           | 25.358           | 1.00 29.84               | N      |
| MOTA MOTA    | 5813<br>· 5814 | CA<br>CB  |     |     | 293<br>293     | 77.184<br>76.220 | 24.807<br>23.668 | 26.363<br>26.741 | 1.00 27.22<br>1.00 30.41 | C      |
| ATOM         | 5815           | CG        |     |     | 293            | 75.178           | 24.092           | 27.787           | 1.00 33.86               | C      |
| ATOM         | 5816           |           |     |     | 293            | 74.227           | 23.305           | 28.179           | 1.00 45.95               | ŏ      |
| MOTA         | 5817           |           |     |     | 293            | 75.235           | 25.321           | 28.270           | 1.00 43.80               | 0      |
| ATOM         | 5818           | C         |     |     | 293            | 78.400           | 24.175           | 25.764           | 1.00 27.72               | Ç      |
| ATOM<br>ATOM | 5819<br>5820   | O<br>N    |     |     | 293<br>294     | 79.456<br>78.340 | 24.173<br>23.662 | 26.433<br>24.522 | 1.00 30.66               | 0      |
| ATOM         | 5821           | CA        |     |     | 294            | 79.491           | 23.051           | 23.882           | 1.00 26.00<br>1.00 25.56 | N<br>C |
| ATOM         | 5822           | CB        |     |     | 294            | 79.170           | 22.369           | 22.575           | 1.00 24.91               | č      |
| MOTA         | 5823           | CG        |     |     | 294            | 78.056           | 21.284           | 22.753           | 1.00 23.28               | С      |
| ATOM         | 5824           |           |     |     | 294            | 78.018           | 20.746           | 21.491           | 1.00 29.83               | C      |
| ATOM<br>ATOM | 5825<br>5826   | CD2       |     |     | 294<br>294     | 78.552<br>80.486 | 20.205<br>23.998 | 23.668<br>23.591 | 1.00 32.55<br>1.00 29.70 | C<br>C |
| ATOM         | 5827           | ō         |     |     | 294            | 81.651           | 23.588           | 23.870           | 1.00 36.70               | 0      |
| ATOM         | 5828           | N         | PHE | В   | 295            | 80.251           | 25.234           | 23.106           | 1.00 25.64               | N      |
| MOTA         | 5829           | CA        |     |     | 295            | 81.423           | 26.135           | 22.979           | 1.00 23.69               | С      |
| MOTA         | 5830           | CB        |     |     | 295            | 81.071           | 27.465           | 22.246           | 1.00 29.72               | c      |
| MOTA<br>MOTA | 5831<br>5832   | CG        | PHE |     | 295<br>295     | 80.812<br>81.780 | 27.402<br>27.437 | 20.759<br>19.974 | 1.00 22.77<br>1.00 25.27 | C<br>C |
| ATOM         | 5833           |           | PHE |     |                | 81.617           | 27.354           | 18.614           | 1.00 29.22               | c      |
| ATOM         | 5834           | CZ        |     |     | 295            | 80.462           | 27.213           | 18.134           | 1.00 27.95               | č      |
| ATOM         | 5835           |           | PHE |     |                | 79.406           | 27.113           | 18.955           | 1.00 27.25               | С      |
| ATOM         | 5836           |           | PHE |     |                | 79.592           | 27.200           | 20.272           | 1.00 22.54               | c      |
| MOTA<br>MOTA | 5837<br>5838   | С<br>0    |     |     | 295<br>295     | 81.904<br>83.025 | 26.429<br>26.684 | 24.261<br>24.445 | 1.00 24.23<br>1.00 29.09 | C<br>0 |
| ATOM         | 5839           | N         |     |     | 296            | 81.132           | 26.408           | 25.265           | 1.00 27.81               | ห      |
| ATOM         | 5840           | CA        |     |     | 296            | 81.713           | 26.925           | 26.559           | 1.00 30.04               | Č      |
| MOTA         | 5841           | C         |     |     | 296            | 82.460           | 25.911           | 27.262           | 1.00 31.83               | С      |
| ATOM         | 5842           | 0         |     |     | 296            | 83.545           | 26.114           | 27.757           | 1.00 33.90               | 0      |
| ATOM<br>ATOM | 5843<br>5844   | N<br>Ca   |     |     | 297<br>297     | 81.841<br>82.590 | 24.760<br>23.564 | 27.323<br>27.860 | 1.00 33.26<br>1.00 32.86 | и<br>С |
| ATOM         | 5845           | CB        |     |     | 297            | 81.618           | 22.459           | 27.966           | 1.00 32.80               | c      |
| ATOM         | 5846           | C         |     |     | 297            | 83.679           | 23.158           | 26.865           | 1.00 32.40               | č      |
| MOTA         | 5847           | 0         |     |     | 297            | 84.694           | 22.693           | 27.296           | 1.00 37.22               | 0      |
| ATOM         | 5848           | N         |     |     | 298            | 83.539           | 23.283           | 25.565           | 1.00 31.83               | И      |
| ATOM         | 5849           | CA        | GLY | В   | 275            | 84.667           | 22.724           | 24.730           | 1.00 34.42               | С      |
|              |                |           |     |     |                |                  |                  |                  |                          |        |

|              |                           |           |            |   |            |    | Fi             | gure.            | 2                |      |                |        |
|--------------|---------------------------|-----------|------------|---|------------|----|----------------|------------------|------------------|------|----------------|--------|
| MOTA         | 5850                      | С         | GLY        | В | 298        | 85 | .905           | 23.565           | 24.622           | 1.00 | 36.37          | С      |
| ATOM         | 5851                      | 0         |            |   | 298        |    | .898           | 23.151           | 24.115           |      | 39.31          | · 0    |
| ATOM<br>ATOM | 5852<br>5853              | N<br>Ca   |            |   | 299<br>299 |    | .868<br>5.878  | 24.762<br>25.733 | 25.197<br>24.943 |      | 37.45<br>32.98 | N<br>C |
| ATOM         | 5854                      | СВ        |            |   | 299        |    | .028           | 27.010           | 24.614           |      | 30.73          | č      |
| ATOM         | 5855                      | OG1       |            |   | 299        |    | .489           | 26.693           | 23.260           |      | 27.78          | 0      |
| ATOM         | 5856                      | CG2       |            |   |            |    | .020           | 28.048           | 24.217           |      | 43.47          | C      |
| ATOM<br>ATOM | 5857<br>5858              | С<br>0    |            |   | 299<br>299 |    | .854<br>.053   | 25.970<br>25.607 | 25.943<br>25.855 |      | 30.46<br>31.55 | C<br>O |
| ATOM         | 5859                      | N         |            |   | 300        |    | .452           | 26.563           | 26.975           |      | 28.62          | N      |
| ATOM         | 5860                      | CA        |            |   | 300        |    | .468           | 26.980           | 28.045           |      | 30.15          | С      |
| ATOM         | 5861                      | СВ        |            |   | 300        |    | .615           | 27.454           | 29.174           |      | 32.83          | c      |
| ATOM<br>ATOM | 5862<br>5863              | CG<br>CD  | GLU        |   | 300<br>300 |    | .921           | 28.673<br>29.024 | 30.045<br>30.417 |      | 41.99<br>59.17 | c<br>c |
| ATOM         | 5864                      |           | GLU        |   | 300        |    | .784           | 28.959           | 31.798           |      | 54.30          | ŏ      |
| MOTA         | 5865                      | OE2       |            |   |            |    | .242           | 29.419           | 29.333           |      | 56.97          | 0      |
| MOTA         | 5866                      | C         | GLU        |   | 300        |    | .423           | 25.888           | 28.560           |      | 31.17          | C      |
| MOTA<br>MOTA | 5867<br>5868              | N<br>N    |            |   | 300<br>301 |    | .595<br>.873   | 26.006<br>24.726 | 28.523<br>29.083 |      | 29.34          | О<br>И |
| ATOM         | 5869                      | CA        | THR        |   |            |    | .623           | 23.681           | 29.717           |      | 28.83          | ċ      |
| MOTA         | 5870                      | СВ        | THR        |   | 301        |    | .723           | 22.643           | 30.183           |      | 33.00          | Ç      |
| ATOM         | 5871                      |           | THR        |   | 301        |    | .606           | 23.071           | 30.972           |      | 33.84          | . 0    |
| ATOM<br>ATOM | 5872<br>5873              | C         | THR        |   | 301<br>301 |    | .436           | 22.014           | 31.331<br>28.794 |      | 41.73 26.35    | C      |
| ATOM         | 5874                      | ō         | THR        |   |            |    | . 689          | 22.936           | 29.136           |      | 27.00          | ō      |
| ATOM         | 5875                      | N         | THR        |   |            |    | .081           | 22.905           | 27.559           |      | 21.83          | N      |
| ATOM         | 5876                      | CA        | THR        |   | 302        |    | .931           | 22.332           | 26.582           |      | 20.45          | C      |
| ATOM<br>ATOM | 5877<br>5878              | CB<br>OG1 | THR        |   | 302<br>302 |    | .248           | 22.170<br>21.437 | 25.404<br>25.524 |      | 20.95          | C<br>0 |
| ATOM         | 5879                      |           | THR        |   |            |    | .008           | 21.511           | 24.377           |      | 24.25          | č      |
| ATOM         | 5880                      | C.        |            |   | 302        |    | .060           | 23.252           | 26.362           |      | 23.28          | С      |
| ATOM         | 5881                      | 0         |            |   | 302        |    | .263           | 22.929           | 26.243           |      | 26.38          | 0      |
| ATOM<br>ATOM | 5882<br>5883              | N '       | SER        |   | 303<br>303 |    | .694<br>.706   | 24.502<br>25.539 | 26.355<br>25.994 |      | 26.00          | ท<br>C |
| ATOM         | 5884                      | CB        |            |   | 303        |    | .013           | 26.840           | 25.808           |      | 29.31          | č      |
| MOTA         | 5885                      | OG        | SER        |   |            |    | .876           | 27.456           | 24.798           |      | 34.33          | 0      |
| ATOM         | 5886                      | Ċ.        | SER        |   |            |    | . 674          | 25.754           | 27.000           |      | 25.95          | C      |
| ATOM<br>ATOM | 5887<br>5888              | O<br>N    | SER<br>THR |   |            |    | .838<br>.131   | 25.672<br>25.871 | 26.842<br>28.205 |      | 23.63          | O<br>N |
| ATOM         | 5889                      | CA        | THR        |   | 304        | 94 | .027           | 25.952           | 29.332           |      | 28.92          | č      |
| MOTA         | 5890                      | CB        | THR        |   |            |    | .158           | 25.998           | 30.583           |      | 25.97          | C      |
| ATOM         | 5891                      |           | THR        |   | 304        |    | .262<br>.984   | 27.105<br>26.319 | 30.350<br>31.653 |      | 28.70          | o<br>c |
| ATOM<br>ATOM | 5892<br>5893              | C         | THR<br>THR |   | 304<br>304 |    | .979           | 24.751           | 29.402           |      | 29.81          | č      |
| ATOM         | 5894                      | ō         | THR        |   | 304        |    | .120           | 24.981           | 29.494           |      | 32.82          | Ō      |
| ATOM         | 5895                      | N         | THR        |   | 305        |    | .486           | 23.486           | 29.326           |      | 28.94          | N      |
| ATOM<br>ATOM | 5896<br>5897              | CA<br>CB  | THR        |   | 305<br>305 |    | .339<br>.451   | 22.346           | 29.416<br>29.059 |      | 24.65<br>27.42 | C<br>C |
| ATOM         | 5898                      | OG1       | THR        |   | 305        |    | .486           | 20.978           | 30.074           |      | 32.73          | ō      |
| ATOM         | 5899                      | CG2       | THR        |   | 305        |    | .291           | 19.902           | 29.164           | 1.00 | 28.75          | С      |
| ATOM         | 5900                      | С         | THR        |   | 305        |    | .439           | 22.458           | 28.401           |      | 24.93          | C      |
| ATOM<br>ATOM | 5901<br>5902              | O<br>N    | THR<br>LEU |   | 305<br>306 |    | .650<br>.089   | 22.374           | 28.744<br>27.106 |      | 26.01<br>24.77 | O<br>พ |
| ATOM         | 5903                      | CA        | LEU        |   |            |    | .097           | 22.974           | 26.162           |      | 25.62          | č      |
| ATOM         | 5904                      | CB        | LEU        | В | 306        | 96 | .595           | 23.484           | 24.914           |      | 23.23          | С      |
| MOTA         | 5905                      | CG        | LEU        |   |            |    | .702           | 22.589           | 24.288           |      | 24.92          | C      |
| MOTA<br>MOTA | 5906<br>5 <del>9</del> 07 |           | LEU        |   |            |    | .269<br>.419   | 23.427           | 23.026<br>23.758 |      | 29.73<br>31.40 | C      |
| ATOM         | 5908                      | C         | LEU        |   |            |    | .175           | 23.989           | 26.725           |      | 28.48          | č      |
| ATOM         | 5909                      | 0         | LEU        | В | 306        |    | . 391          | 23.656           | 26.741           |      | 28.95          | 0      |
| ATOM         | 5910                      | N         | ARG        |   |            |    | .711           | 25.165           | 27.173           |      | 26.94          | N      |
| MOTA<br>MOTA | 5911<br>5912              | CA<br>CB  | ARG<br>ARG |   |            |    | . 645<br>. 908 | 26.166<br>27.448 | 27.587<br>28.030 |      | 26.55<br>27.97 | c<br>c |
| ATOM         | 5913                      | CG        | ARG        |   |            |    | .714           | 28.870           | 27.945           |      | 29.24          | č      |
| ATOM         | 5914                      | CD        | ARG        | ₽ | 307        |    | . 975          | 29.928           | 29.079           |      | 30.28          | , с    |
| ATOM         | 5915                      | NE        | ARG        |   |            |    | .596           | 29.716           | 28.757           |      | 31.43          | N      |
| ATOM<br>ATOM | 5916<br>5917              | CZ<br>NH1 | ARG<br>ARG |   |            |    | .625<br>.714   | 29.966<br>30.525 | 29.458<br>30.558 |      | 30.55          | C<br>N |
| ATOM         | 5918                      |           | ARG        |   |            |    | .445           | 29.627           | 29.011           |      | 42.17          | N.     |
| ATOM         | 5919                      | С         | ARG        | В | 307        | 99 | . 393          | 25.681           | 28.649           | 1.00 | 28.78          | С      |
| ATOM         | 5920                      | 0         | ARG        |   |            |    | .614           | 25.968           | 28.747           |      | 34.07          | 0      |
| MOTA<br>MOTA | 5921<br>5922              | N<br>CA   | TYR<br>TYR |   |            |    | .832<br>.594   | 24.898<br>24.432 | 29.537<br>30.697 |      | 28.02<br>24.37 | N<br>C |
| ATOM         | 5923                      | CB        | TYR        |   |            |    | .711           | 23.943           | 31.744           |      | 22.92          | č      |
| MOTA         | 5924                      | CG        | TYR        | В | 308        | 99 | .050           | 24.356           | 33.130           | 1.00 | 19.09          | С      |
| MOTA         | 5925                      | CD1       | TYR        | В | 308        | 98 | .051           | 24.685           | 34.032           | 1.00 | 24.46          | С      |

|              |              |           |            |   |            | Fi                 | gure             | 2                |                          |          |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|--------------------------|----------|
| ATOM         | 5926         | CE1       | TYR        | В | 308        | 98.366             | 25.085           | 35.316           | 1.00 25.95               | С        |
| ATOM         | 5927         | CZ        |            |   | 308        | 99.613             | 25.146           | 35.692           | 1.00 24.73               | С        |
| ATOM         | 5928         | OH        |            |   | 308        | 99.993             | 25.514           | 36.956           | 1.00 26.04<br>1.00 21.86 | 0        |
| ATOM<br>ATOM | 5929<br>5930 |           | TYR<br>TYR |   |            | 100.653<br>100.320 | 24.811<br>24.436 | 34.790<br>33.536 | 1.00 21.86               | c<br>c   |
| ATOM         | 5931         | C         |            |   | 308        | 100.502            | 23.305           | 30.205           | 1.00 25.64               | č        |
| ATOM         | 5932         | 0         |            |   | 308        | 101.686            | 23.124           | 30.783           | 1.00 26.50               | 0        |
| ATOM         | 5933         | N         |            |   | 309        | 100.087            | 22.561           | 29.172           | 1.00 20.90               | N        |
| atom<br>Atom | 5934<br>5935 | CA<br>CB  |            |   | 309<br>309 | 101.156<br>100.620 | 21.610 20.753    | 28.691<br>27.694 | 1.00 22.52<br>1.00 26.60 | c<br>c   |
| ATOM         | 5936         | c         |            |   | 309        | 102.420            | 22.214           | 28.221           | 1.00 25.51               | č        |
| MOTA         | 5937         | 0         |            |   | 309        | 103.477            | 21.979           | 28.684           | 1.00 30.50               | 0        |
| ATOM         | 5938         | N         | LEU        |   | 310        | 102.408            | 23.150           | 27.326           | 1.00 27.80               | N        |
| ATOM<br>ATOM | 5939<br>5940 | CA<br>CB  | LEU        |   | 310<br>310 | 103.595<br>103.174 | 23.769<br>24.863 | 26.843<br>25.936 | 1.00 27.09<br>1.00 29.98 | C<br>C   |
| ATOM         | 5941         | CG        | LEU        |   | 310        | 102.314            | 24.396           | 24.715           | 1.00 32.16               | č        |
| MOTA         | 5942         |           | LEU        |   |            | 102.017            | 25.658           | 23.643           | 1.00 32.74               | С        |
| MOTA         | 5943         |           | LEU        |   |            | 103.117            | 23.449           | 23.994           | 1.00 35.85               | c        |
| ATOM<br>ATOM | 5944<br>5945 | С<br>0    |            |   | 310<br>310 | 104.369<br>105.626 | 24.354<br>24.330 | 27.963<br>28.012 | 1.00 30.58<br>1.00 36.06 | c<br>o   |
| ATOM         | 5946         | N         | LEU        |   |            | 103.767            | 24.982           | 28.910           | 1.00 31.33               | N        |
| ATOM         | 5947         | CA        | LEU        | В | 311        | 104.571            | 25.566           | 30.033           | 1.00 29.07               | С        |
| MOTA         | 5948         | CB        | LEU        |   |            | 103.560            | 26.200           | 31.094           | 1.00 28.95               | c        |
| ATOM         | 5949<br>5950 | CG<br>CD1 | LEU        |   |            | 104.253<br>105.310 | 26.776<br>27.674 | 32.332<br>31.907 | 1.00 22.90<br>1.00 20.55 | c<br>c   |
| ATOM         | 5951         |           | LEU        |   |            | 103.357            | 27.398           | 33.244           | 1.00 19.07               | č        |
| ATOM         | 5952         | С         | LEU        | В | 311        | 105.356            | 24.383           | 30.675           | 1.00 30.47               | , c      |
| ATOM         | 5953         | 0         | LEU        |   |            | 106.518            | 24.329           | 30.807           | 1.00 29.65               | 0        |
| ATOM<br>ATOM | 5954<br>5955 | N<br>CA   | LEU        |   |            | 104.661<br>105.346 | 23.325           | 31.068<br>31.681 | 1.00 34.56<br>1.00 29.00 | , N<br>C |
| ATOM         | 5956         | CB        | LEU        |   |            | 104.340            | 21.118           | 31.875           | 1.00 18.45               | Č        |
| MOTA         | 5957         | CG        | LEU        |   |            | 103.485            | 21.553           | 32.931           | 1.00 18.35               | Ċ        |
| MOTA         | 5958         |           | LEU        |   |            | 102.177            | 20.782           | 33.271           | 1.00 23.01               | C        |
| ATOM<br>ATOM | 5959<br>5960 | CD2       | LEU        |   |            | 104.199<br>106.503 | 21.553           | 34.240<br>30.727 | 1.00 16.76<br>1.00 29.86 | C        |
| ATOM         | 5961         | 0         | LEU        |   |            | 100.503            | 21.412           | 31.113           | 1.00 29.86               | 0        |
| ATOM         | 5962         | N         | LEU        |   |            | 106.247            |                  | 29.474           | 1.00 30.96               | · N      |
| MOTA         | 5963         | CA        | LEU        |   |            | 107.231            | 21.044           | 28.557           | 1.00 33.61               | С        |
| ATOM         | 5964         | CB        | LEU        |   |            | 106.556            |                  | 27.179           | 1.00 31.30               | C        |
| ATOM<br>ATOM | 5965<br>5966 | CG<br>CD1 | LEU        |   |            | 105.446<br>104.882 | 19.769<br>19.377 | 27.096<br>25.757 | 1.00 32.15<br>1.00 33.03 | C<br>C   |
| ATOM         | 5967         |           | LEU        |   |            | 106.141            | 18.493           | 27.366           | 1.00 45.39               | č        |
| ATOM         | 5968         | C         | LEU        |   |            | 108.361            | 22.101           | 28.452           | 1.00 36.42               | С        |
| ATOM         | 5969         | 0         | LEU        |   |            | 109.511            | 21.778           | 28.058           | 1.00 39.99               | 0        |
| ATOM<br>ATOM | 5970<br>5971 | N<br>CA   | LEU        |   |            | 108.136<br>109.357 | 23.378 24.317    | 28.718<br>28.660 | 1.00 36.62<br>1.00 32.68 | N<br>C   |
| ATOM         | 5972         | CB        | LEU        |   |            | 108.892            | 25.754           | 28.701           | 1.00 32.35               | č        |
| ATOM         | 5973         | CG        | LEU        |   | 314        | 108.564            | 26.566           | 27.598           | 1.00 28.76               | С        |
| ATOM         | 5974         |           | LEU        |   |            | 108.292            | 27.813           | 28.076           | 1.00 37.20               | C        |
| ATOM<br>ATOM | 5975<br>5976 | CDZ       | LEU        |   | 314        | 109.748<br>110.046 | 26.733<br>24.083 | 26.515<br>29.957 | 1.00 35.27<br>1.00 32.85 | C        |
| ATOM         | 5977         | ō         | LEU        |   |            | 111.095            | 24.046           | 30.040           | 1.00 35.93               | ō        |
| ATOM         | 5978         | N         | LYS        | В | 315        | 109.376            | 23.939           | 31.009           | 1.00 34.20               | N        |
| ATOM<br>ATOM | 5979         | CA        | LYS        |   |            | 110.038            | 23.680           | 32.215           | 1.00 37.62               | C        |
| ATOM         | 5980<br>5981 | CB<br>CG  | LYS<br>LYS |   |            | 109.096<br>109.841 | 23.661<br>23.399 | 33.381<br>34.648 | 1.00 34.70<br>1.00 37.51 | c<br>c   |
| ATOM         | 5982         | CD        | LYS        |   |            | 109.470            | 24.462           | 35.467           | 1.00 35.02               | č        |
| ATOM         | 5983         | CE        | LYS        |   |            | 109.917            | 24.299           | 36.909           | 1.00 42.87               | c        |
| ATOM         | 5984         | NZ        | LYS        |   |            | 110.993            | 25.454           | 37.308           | 1.00 52.67               | N        |
| MOTA<br>MOTA | 5985<br>5986 | 0         | LYS<br>LYS |   |            | 110.831<br>111.823 | 22.398<br>22.427 | 32.264<br>32.933 | 1.00 40.47               | c<br>0   |
| MOTA         | 5987         | N         | HIS        |   |            | 110.363            | 21.294           | 31.626           | 1.00 41.49               | Й        |
| ATOM         | 5988         | CA        | HIS        |   |            | 111.023            | 19.890           | 31.670           | 1.00 38.04               | С        |
| ATOM         | 5989         | СВ        | HIS        |   |            | 110.054            | 18.917           | 32.230           | 1.00 36.08               | C        |
| MOTA<br>MOTA | 5990<br>5991 | CG<br>INN | HIS<br>HIS |   |            | 109.471<br>110.091 | 19.352<br>19.196 | 33.577<br>34.756 | 1.00 38.16<br>1.00 35.95 | C<br>N   |
| ATOM         | 5992         |           | HIS        |   |            | 109.313            | 19.136           | 35.761           | 1.00 33.95               | C        |
| ATOM         | 5993         |           | HIS        |   |            | 108.205            | 20.046           | 35.260           | 1.00 35.18               | N        |
| ATOM         | 5994         |           | HIS        |   |            | 108.288            | 19.934           | 33.893           | 1.00 44.41               | C        |
| ATOM         | 5995         | C         | HIS        |   |            | 111.587            | 19.490           | 30.296<br>29.526 | 1.00 39.84<br>1.00 40.46 | C<br>0   |
| ATOM<br>ATOM | 5996<br>5997 | O<br>N    | HIS<br>PRO |   |            | 111.161<br>112.648 | 18.757<br>20.104 | 29.526           | 1.00 40.46               | N        |
| ATOM         | 5998         | CA        | PRO        |   |            | 113.173            | 19.790           | 28.614           | 1.00 41.68               | č        |
| ATOM         | 5999         | СВ        | PRO        | В | 317        | 114.419            | 20.688           | 28.539           | 1.00 40.08               | С        |
| ATOM         | 6000         | CG        | PRO        |   |            | 114.705            | 20.991           | 29.887           | 1.00 39.75               | c        |
| ATOM         | 6001         | CD        | PRO        | В | 317        | 113.416            | 21.198           | 30.665           | 1.00 42.04               | С        |

のでは、 のでは、かか ののもとか。 は120年 では、 ではない。 ではない。 ではまない。 は20年 は20年 ではまない。 は20年 ではまない。 は20年 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではまない。 ではない。 |              |              |          |              |   |            | E.                 | auro             | 2                |      |                |              |
|--------------|--------------|----------|--------------|---|------------|--------------------|------------------|------------------|------|----------------|--------------|
| ATOM         | 6002         | С        | PRO          | R | 317        | 113.478            | gure<br>18.383   | 28.430           | 1 00 | 44.20          | С            |
| ATOM         | 6003         | ō        | PRO          |   |            | 113.316            | 17.771           | 27.441           |      | 44.39          | ō            |
| ATOM         | 6004         | N        | GLU          |   |            | 113.929            | 17.833           | 29.475           |      | 47.74          | N            |
| ATOM         | 6005         | CA       | GLU          |   |            | 114.183            | 16.384           | 29.518           |      | 50.33          | C            |
| ATOM         | 6006         | CB       | GLU          |   |            | 114.543            | 15.991           | 31.048           |      | 54.31          | c<br>c       |
| ATOM<br>ATOM | 6007<br>6008 | CG       | GLU          |   |            | 115.928<br>116.944 | 15.258<br>15.866 | 31.179<br>32.272 |      | 61.52<br>77.92 | c            |
| ATOM         | 6009         |          | GLU          |   |            | 118.182            | 16.189           | 31.867           |      | 78.52          | ō            |
| ATOM         | 6010         |          | GLU          |   |            | 116.617            | 15.958           | 33.602           | 1.00 | 75.56          | 0            |
| ATOM         | 6011         | С        | GLU          |   |            | 112.931            | 15.564           | 29.028           |      | 46.04          | C            |
| ATOM         | 6012<br>6013 | O<br>N   | GLU<br>VAL   |   |            | 113.067<br>111.748 | 14.738<br>15.798 | 28.189<br>29.536 |      | 48.65<br>40.01 | N<br>O       |
| MOTA         | 6013         | CA       | VAL          |   |            | 110.540            | 15.128           | 29.094           |      | 37.33          | Č            |
| ATOM         | 6015         | СВ       | VAL          |   |            | 109.491            | 15.661           | 29.910           |      | 35.72          | С            |
| MOTA         | 6016         |          | VAL          |   |            | 108.182            | 15.097           | 29.474           |      | 36.88          | C            |
| ATOM         | 6017         |          | VAL          |   |            | 109.798            | 15.358           | 31.337           |      | 30.19          | C            |
| MOTA<br>MOTA | 6018<br>6019 | С<br>0   | VAL<br>VAL   |   |            | 110.197<br>109.783 | 15.529<br>14.701 | 27.657<br>26.777 |      | 37.76<br>38.33 | Ö            |
| ATOM         | 6020         | N        | THR          |   |            | 110.508            | 16.785           | 27.338           |      | 35.43          | N            |
| ATOM         | 6021         | CA       | THR          |   |            | 110.166            | 17.136           | 25.997           |      | 34.62          | С            |
| ATOM         | 6022         | CB       | THR          |   |            | 110.195            | 18.544           | 25.957           |      | 36.21          | C            |
| MOTA<br>MOTA | 6023<br>6024 |          | THR<br>THR   |   |            | 109.068<br>110.079 | 19.057<br>19.116 | 26.816<br>24.561 |      | 36.28<br>32.43 | 0<br>C       |
| ATOM         | 6025         | C        | THR          |   |            | 110.956            | 16.363           | 25.061           |      | 33.70          | č            |
| ATOM         | 6026         | 0        | THR          |   |            | 110.552            | 15.894           | 24.078           | 1.00 | 34.63          | o            |
| MOTA         | 6027         | N        | ALA :        |   |            | 112.125            | 16.020           | 25.433           |      | 35.94          | N            |
| ATOM         | 6028         | CA       | ALA          |   |            | 112.966            | 15.289           | 24.408           |      | 34.66          | C            |
| MOTA<br>MOTA | 6029<br>6030 | CB<br>C  | ALA<br>ALA   |   |            | 114.350<br>112.467 | 15.263<br>13.910 | 24.701<br>24.280 |      | 31.43          | C            |
| ATOM         | 6031         | ŏ        | ALA          |   |            | 112.218            | 13.496           | 23.145           |      | 39.32          | Ö            |
| MOTA         | 6032         | N        | LYS          |   |            | 112.260            | 13.213           | 25.352           |      | 32.86          | N            |
| ATOM         | 6033         | CA       | LYS          |   |            | 111.754            | 11.883           | 25.112           |      | 34968          | 516 13 11 CT |
| ATOM         | 6034         | CB       | LYS          |   |            | 111.567            | 11.150<br>10.897 | 26.358           |      | 35:59          |              |
| MOTA<br>MOTA | 6035<br>6036 | CG<br>CD | LYS :        |   |            | 112.815<br>112.404 | 10.236           | 27.085<br>28.406 | 1.00 | 40.84          | 11. 16.00 C  |
| ATOM         | 6037         | CE       | LYS          |   |            | 113.521            | 10.285           | 29.408           |      |                | C            |
| ATOM         | 6038         | NZ       | LYS          |   |            | 113.037            | 9.647            | 30.732           |      | 61::50         | 7 ( ) N      |
| MOTA         | 6039         | C        | LYS          |   |            | 110.480            | 11.825           | 24.229           |      |                | C            |
| MOTA<br>MOTA | 6040<br>6041 | N<br>N   | LYS  <br>VAL |   |            | 110.416<br>109.562 | 11.088<br>12.742 | 23.253<br>24.445 |      | 34:11          | 1333/4 P 0   |
| ATOM         | 6042         | CA       | VAL          |   |            | 108.403            | 12.856           | 23.544           |      | 30.04          |              |
| ATOM         | 6043         | СВ       | VAL          |   |            | 107.506            | 14.071           | 23.909           |      | 25.83          | Ċ            |
| MOTA         | 6044         |          | VAL          |   |            | 106.348            | 14.146           | 23.018           |      | 28.67          | C            |
| MOTA         | 6045         |          | VAL :        |   |            | 107.034            | 13.776           | 25.249<br>22.204 |      | 26.89<br>31.79 | C<br>C       |
| ATOM<br>ATOM | 6046<br>6047 | С<br>0   | VAL :        |   |            | 108.873            | 13.055<br>12.430 | 21.286           |      | 35.62          | Ö            |
| ATOM         | 6048         | N        | GLN          |   |            | 109.774            | 13.926           | 22.005           |      | 31.80          | N            |
| ATOM         | 6049         | CA       | GLN :        |   |            | 110.060            | 14.140           | 20.637           |      | 35.18          | С            |
| MOTA         | 6050         | СВ       | GLN          |   |            | 110.983            | 15.380           | 20.414           |      | 35.95          | C            |
| ATOM<br>ATOM | 6051<br>6052 | CG<br>CD | GLN :        |   | 324<br>324 | 110.274<br>110.848 | 16.489<br>17.844 | 19.801<br>20.102 |      | 37.36<br>43.87 | C<br>C       |
| ATOM         | 6053         |          | GLN          |   |            | 110.445            | 18.814           | 19.513           |      | 44.59          | ō            |
| MOTA         | 6054         | NE2      | GLN :        | В | 324        | 111.800            | 17.911           | 21.024           | 1.00 | 40.35          | N            |
| ATOM         | 6055         | С        | GLN I        |   |            | 110.611            | 12.904           | 20.056           |      | 38.13          | C            |
| ATOM<br>ATOM | 6056<br>6057 | N<br>O   | GLN I        |   |            | 110.251            | 12.629<br>12.071 | 18.839<br>20.856 |      | 39.63<br>39.78 | O<br>N       |
| ATOM         | 6058         | CA       | GLU I        |   |            | 111.968            | 10.789           | 20.223           |      | 41.57          | č            |
| ATOM         | 6059         | CB       | GLU          |   |            | 112.720            | 9.931            | 21.123           |      | 45.73          | С            |
| ATOM         | 6060         | CG       | GLU 1        |   |            | 114.259            | 10.247           | 21.375           |      | 56.02          | C            |
| ATOM<br>ATOM | 6061<br>6062 | CD       | GLU I        |   |            | 114.898<br>114.938 | 9.572<br>10.175  | 22.726<br>23.918 |      | 66.74<br>66.20 | C<br>0       |
| ATOM         | 6063         |          | GLU I        |   |            | 115.397            | 8.370            | 22.610           |      | 76.45          | ŏ            |
| ATOM         | 6064         | c        | GLU          |   |            | 110.853            | 9.944            | 19.816           | 1.00 | 42.39          | С            |
| ATOM         | 6065         | 0        | GLU 1        |   |            | 110.737            | 9.487            | 18.698           |      | 44.18          | . 0          |
| ATOM         | 6066         | N<br>CA  | GLU I        |   |            | 109.893            | 9.798<br>9.033   | 20.683<br>20.284 |      | 41.15          | N<br>C       |
| ATOM<br>ATOM | 6067<br>6068 | CA<br>CB | GLU I        |   |            | 108.776            | 9.033            | 21.426           |      | 44.41          | Č            |
| ATOM         | 6069         | CG       | GLU I        |   |            | 107.059            | 7.728            | 21.629           |      | 49.69          | С            |
| MOTA         | 6070         | ÇD       | GLU I        | В | 326        | 106.656            | 7.437            | 23.043           |      | 49.05          | c            |
| MOTA         | 6071         |          | GLU I        |   |            | 107.369            | 6.688            | 23.657           |      | 53.58          | 0            |
| ATOM<br>ATOM | 6072<br>6073 | OE2<br>C | GLU I        |   |            | 105.600<br>108.146 | 7.862<br>9.579   | 23.476<br>19.029 |      | 54.47<br>41.02 | o<br>c       |
| ATOM         | 6074         | o        | GLU I        |   |            | 107.819            | 8.871            | 18.099           |      | 44.67          | ő            |
| ATOM         | 6075         | N        | ILE          |   |            | 107.914            | 10.848           | 18.866           | 1.00 | 40.75          | N            |
| MOTA         | 6076         | CA       | ILE I        |   |            | 107.290            | 11.216           | 17.625           |      | 37.74          | C            |
| MOTA         | 6077         | CB       | ILE          | В | 327        | 106.967            | 12.701           | 17.670           | 1.00 | 39.21          | С            |

8.3

APR 1

า (สณิสัย (เลิงกับ)

\$25% 4 mar 37.

्रेष्ट्रीय के प्रतिस्था विष्टुर्वे के प्रतिस्था

HURSEL HIELE

```
Figure 2
                                106.108 13.084 18.898 1.00 34.25
             CG1 ILE B 327
       6078
MOTA
                                105.704
                                                         1.00 26.88
                                                  18.985
ATOM
       6079
             CD1 ILE B 327
                                         14.495
                                                          1.00 35.91
ATOM
       6080
             CG2 ILE B 327
                                106.315
                                         13.213
                                                  16.467
MOTA
       6081
             С
                 ILE B 327
                                108.203
                                         10.926
                                                  16.463
                                                          1.00 39.03
                                                          1.00 37.15
       6082
                  ILE B 327
                                107.787
                                         10.424
                                                  15.470
MOTA
                                                          1.00 42.90
ATOM
       6083
             N
                  GLU B 328
                                109.487
                                         11.236
                                                  16.507
                                                          1.00 41.86
       6084
             CA
                 GLU B 328
                                110.392
                                         10.973
                                                  15.284
ATOM
ATOM
       6085
             СВ
                 GLU B 328
                                111.789
                                         10.977
                                                  15.536
                                                          1.00 42.34
                 GLU B 328
                                112.547
                                          12.254
                                                  15.525
                                                          1.00 54.94
ATOM
       6086
ATOM
       6087
             CD
                 GLU B 328
                                112.500
                                         12.936
                                                  14.264
                                                          1.00 68.27
MOTA
       6088
             OE1 GLU B 328
                                113.180
                                         13.995
                                                  14.229
                                                          1.00 72.66
                                          12.396
                                                  13.329
                                                          1.00 80.92
MOTA
       6089
             OE2 GLU B 328
                                111.808
                                                          1.00 43.45
       6090
                  GLU B 328
                                110.334
                                          9.600
                                                  14.859
ATOM
             С
                                                  13.724
                                                          1.00 42.61
       6091
             0
                  GLU B 328
                                110.405
                                           9.375
ATOM
                                                          1.00 44.09
       6092
                  ARG B 329
                                110.325
                                          8.616
                                                  15.818
ATOM
             N
                 ARG B 329
                                110.303
                                           7.201
                                                  15.481
                                                          1.00 40.96
ATOM
       6093
             CA
                                                  16.586
                                                          1.00 44.26
       6094
             CB
                 ARG B 329
                                110.904
                                           6.442
ATOM
                 ARG B 329
                                110.576
                                          5.007
                                                  16.748
                                                          1.00 44.01
       6095
             CG
ATOM
                                           4.430
                                                  17.814
                                                          1.00 43.11
       6096
             CD
                 ARG B 329
                                111.516
ATOM
                                                          1.00 49.53
                                           5.132
                                                  19.013
       6097
                 ARG B 329
                                111.340
MOTA
             NE
                                                  19.930
                                                          1.00 56.39
                                110.373
                                           4.923
ATOM
       6098
             CZ
                 ARG B 329
                                                  21.062
                                                          1.00 53.08
                                           5.688
             NH1 ARG B 329
                                110.270
ATOM
       6099
                                                  19.725
                                                          1.00 64.06
MOTA
       6100
             NH2 ARG B 329
                                109.503
                                           3.924
                                                  15.134
                                           6.68B
                                                          1.00 41.43
ATOM
       6101
             С
                 ARG B 329
                                108.966
                                                  14.213
                                                          1.00 43.81
MOTA
       6102
             ٥
                 ARG B 329
                                108.838
                                          5.928
                                                  15.730
                                                          1.00 39.61
ATOM
       6103
             N
                  VAL B 330
                                107.910
                                          7.035
                                                          1.00 38.47
ATOM
       6104
             CA
                 VAL B 330
                                106.657
                                          6.335
                                                  15.323
                                                                                  TOUR
SECTION OF
SECTION OF THE
                                                          1.00 39.12
MOTA
       6105 CB VAL B 330
                                105.610
                                          6.401
                                                  16.533
       6106
             CG1 VAL B 330
                                104.313
                                          5.841
                                                  16.091
                                                          1.00 31.48
                                                                                С
ATOM
       6107
             CG2 VAL B 330
                                106.109
                                          5.664
                                                  17.711
                                                          1.00 33.06
                                                                                С
ATOM
       6108
                 VAL B 330
                                105.903
                                          7.012
                                                  14.206
                                                          1.00 41.20
                                                                                С
ATOM
       6109
                 VAL B 330
                                105.083
                                           6.409
                                                  13.435
                                                          1.00 39.95
                                                                                ٥
ATOM
                                          8.326
                                                  14.186
                                                          1.00 43.73
       6110
             N
                 ILE B 331
                                106.043
                                                          1.00 46.75
ATOM
       6111
             CA
                 ILE B 331
                                105.508
                                          9.159
                                                  13.087
MOTA
             СВ
                 ILE B 331
                                104.742
                                         10.312
                                                  13.859
                                                          1.00 43.42
       6112
                                103.672
                                          9.735
                                                  14.658
                                                          1.00 42.24
ATOM
       6113
             CG1 ILE B 331
                                                  15.769
                                                          1.00 44.25
ATOM
             CD1 ILE B 331
                                103,008
                                         10.662
       6114
                                         11.153
                                                  12.798
                                                          1.00 49.74
ATOM
       6115
            CG2 ILE B 331
                                104.078
                                          9.810
                                                          1.00 46.90
                                106.716
                                                  12.397
                                                                                С
ATOM
       6116
            С
                 ILE B 331
                                107.760
                                                  12.975
                                                          1.00 51.15
ATOM
       6117
             0
                 ILE B 331
                                         10.094
                                                                                ٥
                                                          1.00 48.52
MOTA
       6118 N
                 GLY B 332
                                106.741
                                         10.093
                                                  11.226
ATOM
       6119
             CA
                 GLY B 332
                                108.021
                                         10.797
                                                  10.939
                                                          1.00 48.93
                                                                                С
ATOM
       6120
             С
                 GLY B 332
                                107.880
                                         12.285
                                                  10.924
                                                         1.00 48.86
ATOM
       6121
                 GLY B 332
                                107.181
                                         12.693
                                                  11.707
                                                          1.00 46.81
             0
       6122
                 ARG B 333
                                108.466
                                         13.061
                                                  9.990
                                                         1.00 52.77
MOTA
             N
       6123
                 ARG B 333
                                108.237
                                          14.486
                                                   9.971
                                                          1.00 53.62
                                                                                C
ATOM
             CA
                 ARG B 333
                                109.458
                                          15.172
                                                  9.576
                                                          1.00 56.46
                                                                                c
ATOM
       6124
             СВ
                 ARG B 333
                                110.576
                                          15.301
                                                  10.617
                                                          1.00 64.37
ATOM
       6125
             CG
ATOM
       6126
             CD
                 ARG B 333
                                110.992
                                          16.730
                                                  10.914
                                                          1.00 74.80
                                111.782
                                                  12.177
                                                          1.00 88.37
ATOM
       6127
             NE
                 ARG B 333
                                          16.788
ATOM
       6128
             CZ
                 ARG B 333
                                112.965
                                          16.157
                                                  12.404
                                                          1.00 90.30
                                                          1.00 95.66
MOTA
       6129
             NH1 ARG B 333
                                113.507
                                          15.357
                                                  11.432
                                                  13.596
                                                          1.00 85.19
             NH2 ARG B 333
                                113.574
                                         16.305
ATOM
       6130
                 ARG B 333
                                107.292
                                         14.605
                                                   8.867
                                                          1.00 56.34
ATOM
       6131
             C
                                                   8.758
                                                          1.00 57.97
                 ARG B 333
                                106.577
                                          15.535
ATOM
       6132
             ٥
                                107.198
                                                          1.00 57.91
                                                   8.029
ATOM
       6133
             N
                 ASN B 334
                                         13.587
                                106.295
                                         13.753
                                                   6.933
                                                          1.00 59.00
ATOM
       6134
             CA
                 ASN B 334
                                                   5.826
                                                          1.00 60.68
                                                                                С
ATOM
       6135
             CB
                 ASN B 334
                                106.616
                                         12.745
                                                          1.00 66.92
ATOM
       6136
             CG
                 ASN B 334
                                108.123
                                         12.969
                                                   5.298
                                                          1.00 79.46
ATOM
       6137
             OD1 ASN B 334
                                108.993
                                         12.047
                                                   5.329
                                                                                0
                                                          1.00 68.58
ATOM
       6138
             ND2 ASN B 334
                                108.452
                                         14.209
                                                   4.978
                 ASN B 334
                                104.865
                                         13.750
                                                   7.344
                                                          1.00 55.63
ATOM
       6139
ATOM
       6140
                  ASN B 334
                                104.402
                                          14.771
                                                   7.564
                                                          1.00 57.81
ATOM
       6141
                 ARG B 335
                                104.176
                                         12.644
                                                   7.473
                                                          1.00 50.76
                                102.779
                                                   7.836
                                                          1.00 46.31
ATOM
       6142
             CA
                 ARG B 335
                                          12.614
ATOM
       6143
             CB
                 ARG B 335
                                102.270
                                         11.144
                                                   7.878
                                                          1.00 45.96
                                                   8.835
                                                          1.00 43.57
             CG
                 ARG B 335
                                102.993
                                         10.319
ATOM
       6144
                                                   9.020
                                                          1.00 47.67
                 ARG B 335
                                102.538
                                          8.828
ATOM
       6145
             CD
                                          8.593
                                                  10.217
                                                          1.00 49.76
       6146
                 ARG B 335
                                101.823
ATOM
             NE
             CZ
                 ARG B 335
                                102,102
                                          7.900
                                                  11.192
                                                          1.00 41.25
ATOM
       6147
                                          7,209
                                                  11.237
                                                          1.00 51.17
             NH1 ARG B 335
                                103.115
ATOM
       6148
                                                  12.162
                                                          1.00 45.85
ATOM
       6149
             NH2 ARG B 335
                                101.304
                                          7.939
                                                   9.164
                                                          1.00 44.75
ATOM
       6150
             С
                 ARG B 335
                                102.420
                                         13.248
                                                          1.00 43.66
                                                  10.198
ATOM
       6151
             0
                 ARG B 335
                                103.224
                                         13.414
                                                          1.00 41.62
                                                  9.260
ATOM
       6152
             N
                 SER B 336
                                101.185
                                         13.582
MOTA
             CA
                 SER B 336
                                100.804
                                        14.075
                                                 10.546
                                                         1.00 39.66
       6153
```

10.365% Profession organisation (1996) as the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first

- To The wife
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Service (1997)
- The Lab of Ser

1.1.1684 P. C. 3.1

|              |              |          |            |   |                | Fi                 | .gure            | 2                |                          |        |
|--------------|--------------|----------|------------|---|----------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 6154         | СВ       |            |   | 336            | 99.744             | -                | 10.292           | 1.00 44.45               | С      |
| ATOM         | 6155         | OG       |            |   | 336            | 98.693             | 14.480           | 9.725            | 1.00 44.75               | 0      |
| ATOM<br>ATOM | 6156<br>6157 | C<br>O   |            |   | 3 336<br>3 336 | 100.282<br>100.015 | 13.002<br>11.787 | 11.489<br>11.063 | 1.00 36.54<br>1.00 37.19 | C<br>0 |
| ATOM         | 6158         | N        |            |   | 3 337          | 100.013            | 13.281           | 12.766           | 1.00 37.19               | N      |
| ATOM         | 6159         | CA       |            |   | 3 337          | 99.932             | 12.261           | 13.718           | 1.00 27.52               | Ċ      |
| MOTA         | 6160         | СВ       |            |   | 3 337          | 100.187            | 12.915           | 15.022           | 1.00 32.99               | С      |
| ATOM         | 6161         | CG       |            |   | 3 337          | 101.284            | 14.061           | 14.648           | 1.00 37.95               | c      |
| ATOM<br>ATOM | 6162<br>6163 | CD       |            |   | 3 337<br>3 337 | 100.905<br>98.541  | 14.482           | 13.319           | 1.00 30.45<br>1.00 27.53 | C      |
| ATOM         | 6164         | Ö        |            |   | 337            | 97.843             | 11.860           | 13.693<br>12.979 | 1.00 27.33               | c<br>o |
| ATOM         | 6165         | N        |            |   | 338            | 98.148             | 10.740           | 14.327           | 1.00 25.41               | N      |
| MOTA         | 6166         | CA       |            |   | 338            | 96.773             | 10.315           | 14.311           | 1.00 25.89               | С      |
| ATOM         | 6167         | CB       |            |   | 338            | 96.378             | 9.719            | 13.107           | 1.00 28.50               | C      |
| ATOM<br>ATOM | 6168<br>6169 | SG<br>C  |            |   | 338            | 97.019<br>96.526   | 7.962<br>9.471   | 12.916<br>15.476 | 1.00 40.26<br>1.00 25.10 | s<br>C |
| ATOM         | 6170         | Ö        |            |   | 338            | 97.475             | 9.062            | 16.083           | 1.00 27.04               | 0      |
| ATOM         | 6171         | N        |            |   | 339            | 95.297             | 9.382            | 15.954           | 1.00 25.57               | Ŋ      |
| ATOM         | 6172         | CA       |            |   | 339            | 95.060             | 8.702            | 17.219           | 1.00 26.48               | С      |
| ATOM         | 6173         | CB       |            |   | 339            | 93.636             | 8.573            | 17.353           | 1.00 28.31               | c      |
| ATOM<br>ATOM | 6174<br>6175 | CG<br>SD |            |   | 339            | 92.909<br>93.908   | 9.913<br>10.779  | 17.590<br>18.753 | 1.00 33.54<br>1.00 33.60 | C<br>S |
| ATOM         | 6176         | CE       |            |   | 339            | 93.934             | 9.912            | 20.112           | 1.00 38.01               | C      |
| ATOM         | 6177         | С        |            |   | 339            | 95.769             | 7.295            | 17.303           | 1.00 28.66               | č      |
| ATOM         | 6178         | 0        |            |   | 339            | 96.272             | 6.865            | 18.245           | 1.00 29.58               | 0      |
| ATOM         | 6179         | N        |            |   | 340            | 95.839             | 6.523            | 16.282           | 1.00 33.29               | N      |
| MOTA<br>MOTA | 6180<br>6181 | CA<br>CB |            |   | 340            | 96.455<br>96.474   | 5.229<br>4.525   | 16.343           | 1.00 32.33               | c      |
| ATOM         | 6182         | CG       |            |   | 340            | 95.254             | 3.553            | 15.013<br>14.753 | 1.00 36.29<br>1.00 37.37 | C<br>C |
| ATOM         | 6183         | CD       |            |   | 340            | 95.254             | 3.045            | 13.322           | 1.00 44.98               | č      |
|              | 6184         |          |            |   | 340            | 96.247             | 2.428            | 12.952           | 1.00 55.93               | 0      |
| ATOM         | 6185         |          |            |   |                | 94.134             | 3.216            | 12.565           | 1.00 44.71               | N      |
| ATOM<br>ATOM | 6186<br>6187 |          |            |   | 340            | 97.857<br>98.360   | 5.381<br>4.336   | 16.699<br>17.149 | 1.00 33.47<br>1.00 38.64 | C<br>0 |
| ATOM         | 6188         | N        |            |   | 341            | 98.575             | 6.461            | 16.530           | 1.00 28.92               | N      |
| MOTA         | 6189         |          |            |   | 341            | 99.915             | 6.381            | 17.091           | 1.00 31.50               | Č      |
| ATOM         | 6190         |          |            |   | 341            | 100.838            | 7.496            | 16.607           | 1.00 34.04               | С      |
| ATOM         | 6191         |          |            |   |                | 100.717            | 7.607            | 15.043           | 1.00 37.87               | C      |
| ATOM<br>ATOM | 6193         |          |            |   |                | 100.937<br>100.336 | 6.561<br>8.598   | 14.361<br>14.473 | 1.00 44.23<br>1.00 44.12 | 0      |
| ATOM         | 6194         | C        |            |   | 341            | 100.073            | 6.313            | 18.579           | 1.00 32.43               | č      |
| ATOM         | 6195         | 0        |            |   | 341            | 101.166            | 6.082            | 19.062           | 1.00 29.56               | Ō      |
| ATOM         | 6196         | N        |            |   | 342            | 98.979             | 6.589            | 19.286           | 1.00 30.65               | N      |
| ATOM<br>ATOM | 6197<br>6198 | CA<br>CB |            |   | 342<br>342     | 99.129<br>97.909   | 6.799<br>7.577   | 20.614           | 1.00 31.72               | C      |
| ATOM         | 6199         | CG       |            |   | 342            | 98.015             | 7.691            | 21.252<br>22.767 | 1.00 32.04<br>1.00 30.84 | C<br>C |
| ATOM         | 6200         | CD       |            |   | 342            | 97.129             | 8.486            | 23.254           | 1.00 33.09               | č      |
| ATOM         | 6201         | NE       |            |   | 342            | 95.842             | 8.048            | 23.004           | 1.00 26.13               | N      |
| ATOM         | 6202         | CZ       |            |   | 342            | 94.784             | 8.653            | 23.574           | 1.00 34.77               | C      |
| ATOM<br>ATOM | 6203<br>6204 |          |            |   | 342<br>342     | 94.996<br>93.527   | 9.754<br>8.143   | 24.335<br>23.401 | 1.00 35.50<br>1.00 31.31 | N<br>N |
| ATOM         | 6205         | C        |            |   | 342            | 99.564             | 5.560            | 21.320           | 1.00 34.15               | Č      |
| ATOM         | 6206         | 0        |            |   | 342            | 100.526            | 5.565            | 22.101           | 1.00 37.32               | ō      |
| ATOM         | 6207         | N        |            |   | 343            | 98.890             |                  | 21.019           |                          | N      |
| MOTA<br>MOTA | 6208<br>6209 | CA<br>CB |            |   | 343<br>343     | 99.166<br>98.317   | 3.200<br>2.211   | 21.533 20.838    | 1.00 38.86<br>1.00 40.06 | C<br>C |
| ATOM         | 6210         | OG       |            |   | 343            | 99.110             | 2.211            | 19.694           | 1.00 56.60               | o      |
| ATOM         | 6211         | C        |            |   | 343            | 100.515            | 2.762            | 21.314           | 1.00 37.44               | č      |
| MOTA         | 6212         | 0        |            |   | 343            | 100.801            | 1.874            | 21.940           | 1.00 44.43               | 0      |
| ATOM         | 6213         | N        |            |   | 344            | 101.294            | 3.277            | 20.410           | 1.00 37.18               | N      |
| ATOM<br>ATOM | 6214<br>6215 | CA<br>CB |            |   | 344<br>344     | 102.776<br>103.239 | 3.037<br>3.042   | 20.236<br>18.701 | 1.00 37.43<br>1.00 39.77 | C<br>C |
| ATOM         | 6216         | CG       |            |   | 344            | 102.413            | 2.148            | 17.882           | 1.00 42.51               | č      |
| ATOM         | 6217         |          | HIS        |   |                | 102.162            | 0.877            | 18.357           | 1.00 53.27               | N      |
| MOTA         | 6218         |          | HIS        |   |                | 101.301            | 0.230            | 17.599           | 1.00 44.85               | С      |
| ATOM         | 6219         |          | HIS        |   |                | 100.988            | 1.082            | 16.697           | 1.00 46.83               | И      |
| ATOM<br>ATOM | 6220<br>6221 | CD2      | HIS        |   | 344<br>344     | 101.643<br>103.570 | 2.312<br>4.246   | 16.870<br>20.853 | 1.00 45.48<br>1.00 38.89 | C<br>C |
| ATOM         | 6222         | 0        | HIS        |   |                | 103.570            | 4.246            | 20.853           | 1.00 35.86               | 0      |
| ATOM         | 6223         | N        | MET        |   |                | 102.873            | 5.230            | 21.449           | 1.00 37.24               | ท      |
| ATOM         | 6224         | CA       | MET        | В | 345            | 103.647            | 6.295            | 21.959           | 1.00 37.78               | С      |
| ATOM         | 6225         | CB       | MET        |   |                | 103.290            | 7.482            | 21.216           | 1.00 37.05               | C      |
| MOTA<br>MOTA | 6226<br>6227 | CG<br>SD | MET<br>MET |   |                | 103.812<br>103.255 | 7.455<br>8.955   | 19.854<br>19.013 | 1.00 33.25<br>1.00 32.50 | C<br>S |
| ATOM         | 6228         | CE       | MET        |   |                | 104.520            | 9.988            | 19.013           | 1.00 32.30               | C      |
| ATOM         | 6229         | c        | MET        |   |                | 103.374            | 6.512            | 23.509           | 1.00 38.95               | č      |
|              |              |          |            |   |                |                    |                  |                  |                          |        |

TO COMPANY OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE

PCT/GB02/04872 WO 03/035693 180/514

|              |              |          |        |     | Figure 2                             | 2                |                          |   |        |
|--------------|--------------|----------|--------|-----|--------------------------------------|------------------|--------------------------|---|--------|
| ATOM         | 6230         | 0        | MET E  |     | 102.969 7.533                        | 23.952           | 1.00 36.68               |   | 0      |
| ATOM<br>ATOM | 6231<br>6232 | N<br>CA  | PRO E  |     | 103.759 5.531<br>103.344 5.451       | 24.321 25.684    | 1.00 37.02<br>1.00 32.08 |   | N<br>C |
| ATOM         | 6233         | CB       | PRO E  | 346 | 103.939 4.082                        | 26.080           | 1.00 31.27               |   | С      |
| MOTA         | 6234         | CG       | PRO E  |     | 105.099 3.962                        | 25.310<br>23.938 | 1.00 31.77               |   | C      |
| ATOM<br>ATOM | 6235<br>6236 | CD<br>C  | PRO E  |     | 104.826 4.560<br>103.957 6.586       | 26.417           | 1.00 33.83               |   | c      |
| ATOM         | 6237         | 0        | PRO E  |     | 103.277 7.135                        | 27.373           | 1.00 35.50               |   | 0      |
| ATOM<br>ATOM | 6238<br>6239 | N<br>CA  | TYR E  |     | 105.196 6.931<br>105.767 7.965       | 26.124<br>26.934 | 1.00 27.29               |   | N<br>C |
| ATOM         | 6240         | CB       | TYR E  |     | 107.193 8.251                        | 26.601           | 1.00 30.53               |   | С      |
| ATOM         | 6241         | CG       | TYR E  |     | 107.834 9.203                        | 27.541           | 1.00 33.44               |   | C      |
| ATOM<br>ATOM | 6242<br>6243 |          | TYR E  |     | 108.219 8.838<br>108.844 9.845       | 28.777           | 1.00 38.40               |   | C<br>C |
| ATOM         | 6244         | CZ       | TYR E  | 347 | 109.051 11.122                       | 29.277           | 1.00 34.98               |   | С      |
| ATOM<br>ATOM | 6245<br>6246 | OH       | TYR E  |     | 109.566 12.059<br>108.660 11.445     | 30.070<br>28.030 | 1.00 37.22<br>1.00 38.62 |   | 0      |
| ATOM         | 6247         |          | TYR E  |     | 108.052 10.501                       | 27.204           | 1.00 37.42               |   | c      |
| ATOM         | 6248         | C        | TYR E  |     | 104.891 9.251                        | 26.781           | 1.00 31.53               |   | С      |
| MOTA<br>MOTA | 6249<br>6250 | 0<br>N   | TYR E  |     | 104.489 9.880<br>104.592 9.602       | 27.735<br>25.594 | 1.00 33.54<br>1.00 31.52 |   | O<br>N |
| ATOM         | 6251         | CA       | THR E  |     | 103.743 10.716                       | 25.339           | 1.00 36.42               |   | Ċ      |
| ATOM         | 6252         | CB       | THR E  |     | 103.497 10.845                       | 23.807           | 1.00 37.44               |   | C<br>O |
| MOTA<br>MOTA | 6253<br>6254 |          | THR E  |     | 104.757 11.041<br>102.745 12.094     | 23.279           | 1.00 37.55<br>1.00 37.43 |   | c      |
| MOTA         | 6255         | С        | THR E  |     | 102.413 10.604                       | 26.054           | 1.00 36.19               |   | С      |
| ATOM<br>ATOM | 6256<br>6257 | О<br>И   | THR E  |     | 102.119 11.520<br>101.628 9.548      | 26.787<br>25.841 | 1.00 42.59<br>1.00 32.09 |   | N<br>O |
| ATOM         | 6258         | CA       | ASP E  |     | 100.408 9.359                        |                  | 1.00 31.20               |   | Ċ      |
| ATOM         | 6259         | CB       | ASP B  |     | 100.012 7.954                        | 26.157           | 1.00 33.91               |   | C      |
| ATOM<br>ATOM | 6260<br>6261 | CG       | ASP E  |     | 98.477 7.580<br>97.652 8.421         | 26.204           | 1.00 39.40               |   | C<br>O |
| ATOM         | 6262         |          | ASP E  |     | 98.076 6.421                         | 25.856           | 1.00 35.41               | - | ŏ.     |
| ATOM         | 6263         | C        | ASP E  |     | 100.682 9.578                        |                  | 1.00 30.87               |   | C      |
| MOTA<br>MOTA | 6264<br>6265 | о<br>И   | ASP B  |     | 99.859 10.112<br>101.836 9.177       | 28.761           | 1.00 32.16<br>1.00 30.80 |   | O<br>N |
| ATOM         | 6266         | CA       | ALA B  | 350 | 102'.034 % 9.458 %                   | 29.917           | 1.00 28.60               |   | C      |
| ATOM<br>ATOM | 6267<br>6268 | CB<br>C  | ALA B  |     | 103.222 : 8.724 : 102.299 : 10.867 = | 30.339           | 1.00 33.08<br>1.00 29.57 | • | C      |
| ATOM         | 6269         | Ö        | ALA B  |     | 101.781 11.452                       |                  | 1.00 35.21               |   | ŏ      |
| ATOM         | 6270         | N        | VAL B  |     | 103.005 11.577                       |                  | 1.00 24.12               |   | N      |
| MOTA<br>MOTA | 6271<br>6272 | CA<br>CB | VAL B  |     | 103.076 13.010<br>103.971 13.677     | 29.437<br>28.469 | 1.00 21.99<br>1.00 23.84 |   | C      |
| MOTA         | 6273         |          | VAL B  |     | 104.010 14.958                       | 28.721           | 1.00 25.91               |   | С      |
| MOTA         | 6274         |          | VAL B  |     | 105.427 13.206                       | 28.679           | 1.00 27.35<br>1.00 21.89 |   | C      |
| MOTA<br>MOTA | 6275<br>6276 | C<br>0   | VAL B  |     | 101.603 13.620<br>101.227 14.501     | 29.397           | 1.00 21.03               |   | С<br>0 |
| MOTA         | 6277         | N        | VAL B  | 352 | 100.734 13.312                       | 28.480           | 1.00 23.79               |   | N      |
| MOTA<br>MOTA | 6278<br>6279 | CA<br>CB | VAL B  |     | 99.455 14.086<br>98.660 13.808       | 28.514 27.362    | 1.00 25.37<br>1.00 29.21 |   | C      |
| ATOM         | 6280         |          | VAL B  |     | 97.420 14.643                        | 27.356           | 1.00 30.79               |   | č      |
| ATOM         | 6281         |          | VAL B  |     | 99.504 14.165                        | 25.975           | 1.00 28.05               |   | С      |
| ATOM<br>ATOM | 6282<br>6283 | 0        | VAL B  |     | 98.711 13.794<br>98.286 14.660       | 29.738           | 1.00 26.68               |   | C      |
| ATOM         | 6284         | N        | HIS B  | 353 | 98.689 12.546                        | 30.196           | 1.00 29.05               |   | N      |
| MOTA         | 6285         | CA       | HIS B  |     | 97.990 12.183<br>98.084 10.634       | 31.409           | 1.00 26.78<br>1.00 24.51 |   | c      |
| MOTA<br>MOTA | 6286<br>6287 | CB<br>CG | HIS B  |     | 97.153 9.831                         | 30.896           | 1.00 22.85               |   | c      |
| ATOM         | 6288         | ND1      | HIS B  | 353 | 95.881 9.463                         | 31.431           | 1.00 23.11               |   | N      |
| MOTA<br>MOTA | 6289<br>6290 |          | HIS B  |     | 95.226 8.839<br>95.992 8.808         | 30.407<br>29.317 | 1.00 23.10<br>1.00 21.86 |   | C<br>N |
| ATOM         | 6291         |          | HIS B  |     | 97.201 9.447                         | 29.561           | 1.00 19.97               |   | c      |
| MOTA         | 6292         | C        | HIS B  |     | 98.593 12.961                        | 32.553           | 1.00 26.47               |   | C      |
| ATOM<br>ATOM | 6293<br>6294 | O<br>N   | HIS B  |     | 97.947 13.433<br>99.891 12.979       | 33.444<br>32.622 | 1.00 27.98<br>1.00 29.31 |   | 0<br>N |
| MOTA         | 6295         | CA       | GLU B  | 354 | 100.463 13.710                       | 33.836           | 1.00 30.26               |   | С      |
| ATOM         | 6296         | CB       | GLU B  |     | 101.918 13.507<br>102.645 14.105     | 34.016<br>35.265 | 1.00 28.81               |   | C<br>C |
| ATOM<br>ATOM | 6297<br>6298 | CG<br>CD | GLU B  |     | 102.129 13.601                       | 36.521           | 1.00 31.39               |   | C      |
| MOTA         | 6299         | OE1      | GLU B  | 354 | 101.176 12.926                       | 36.338           | 1.00 31.38               |   | 0      |
| MOTA<br>MOTA | 6300<br>6301 | OE2<br>C | GLU B  |     | 102.675 . 13.817<br>100.141 15.161   | 37.654<br>33.701 | 1.00 35.07<br>1.00 30.92 |   | o<br>C |
| MOTA         | 6302         | 0        | GLU B  |     | 99.887 15.687                        | 34.817           | 1.00 34.48               |   | ō      |
| MOTA         | 6303         | N        | VAL B  | 355 | 100.012 15.795                       | 32.466           | 1.00 24.88               |   | N      |
| ATOM<br>ATOM | 6304<br>6305 | CA<br>CB | VAL B  |     | 99.678 17.122<br>99.716 17.715       | 32.509<br>31.132 | 1.00 21.42<br>1.00 24.56 |   | C<br>C |
| 017          | 5505         | -u       | 417H D | 555 |                                      |                  |                          |   | -      |

|              |              |           |            |   |            | Fi                 | gure             | 2                |      |                |     |        |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|-----|--------|
| ATOM         | 6306         | CG1       | VAL        | В | 355        | 99.084             | 19.094           | 31.187           | 1.00 | 29.40          |     | С      |
| MOTA         | 6307         |           | VAL        |   |            | 101.071            | 17.919           | 30.530           |      | 26.35          |     | С      |
| ATOM         | 6308         | C         | VAL        |   |            | 98.329             | 17.238           | 33.151           |      | 23.30          |     | C      |
| MOTA         | 6309<br>6310 | O<br>N    | VAL<br>GLN |   | 355<br>356 | 98.095<br>97.287   | 17.949<br>16.616 | 34.026<br>32.642 |      | 22.96<br>26.45 |     | O<br>N |
| ATOM         | 6311         | CA        |            |   | 356        | 95.986             | 16.798           | 33.187           |      | 23.18          |     | Ċ      |
| ATOM         | 6312         | СВ        | GLN        |   | 356        | 95.025             | 15.834           | 32.473           |      | 23.70          |     | C      |
| ATOM         | 6313         | CG        | GLN        |   |            | 94.954             | 15.954           | 31.045           |      | 27.10          |     | C      |
| MOTA         | 6314         | CD        | GLN        |   | 356        | 93.529             | 15.645           | 30.573           |      | 30.99          |     | C      |
| MOTA<br>MOTA | 6315<br>6316 |           | GLN<br>GLN |   | 356<br>356 | 93.374<br>92.521   | 14.616<br>16.485 | 30.058<br>30.783 |      | 31.55<br>27.70 |     | O<br>N |
| ATOM         | 6317         | C         | GLN        |   |            | 95.995             | 16.503           | 34.644           |      | 26.90          |     | C      |
| ATOM         | 6318         | ō         | GLN        |   |            | 95.444             | 17.152           | 35.421           |      | 35.44          |     | 0      |
| ATOM         | 6319         | N         |            |   | 357        | 96.582             | 15.469           | 35.137           |      | 32.11          |     | N      |
| MOTA         | 6320         | CA        | ARG        |   | 357        | 96.580             | 15.067           | 36.586           |      | 30.29<br>29.40 |     | C      |
| ATOM<br>ATOM | 6321<br>6322 | CB<br>CG  | ARG        |   | 357<br>357 | 97.540<br>97.257   | 13.808<br>13.202 | 36.846<br>38.245 |      | 28.85          |     | c      |
| ATOM         | 6323         | CD        | ARG        |   | 357        | 98.291             | 12.472           | 38.780           |      | 23.84          |     | č      |
| ATOM         | 6324         | NE        | ARG        |   | 357        | 99.511             | 13.194           | 38.790           |      | 27.71          |     | N      |
| ATOM         | 6325         | CZ        | ARG        |   |            | 99.868             | 13.944           | 39.796           |      | 33.47          |     | C      |
| ATOM         | 6326         |           | ARG        |   | 357        | 100.985            | 14.605           | 39.794           |      | 31.91          |     | N<br>N |
| ATOM<br>ATOM | 6327<br>6328 | NH2       | ARG<br>ARG |   | 357<br>357 | 99.062<br>97.124   | 14.091<br>16.096 | 40.810<br>37.439 |      | 34.58<br>29.42 |     | C      |
| ATOM         | 6329         | ō         | ARG        |   |            | 96.527             | 16.342           | 38.356           |      | 35.70          |     | ō      |
| MOTA         | 6330         | N         | TYR        |   |            | 98.301             | 16.564           | 37.164           | 1.00 | 30.38          |     | N      |
| ATOM         | 6331         | CA        | TYR        |   |            | 99.055             | 17.522           | 37.966           |      | 33.09          |     | C      |
| ATOM         | 6332         | CB        | TYR        |   |            | 100.408            | 17.754<br>18.856 | 37.342<br>37.917 |      | 34.70<br>37.59 | ٠,  | C      |
| ATOM<br>ATOM | 6333<br>6334 | CG<br>CD1 | TYR<br>TYR |   |            | 101.262<br>101.205 | 20.079           | 37.414           |      | 43.12          | 1   | c      |
| ATOM         | 6335         |           | TYR        | - | 358        | 102.009            | 21.090           | 37.915           |      | 37.26          |     | č      |
| ATOM         | 6336         | CZ        | TYR        | В | 358        | 102.854            | 20.916           | 38.902           |      | 34.77          |     | С      |
| ATOM         | 6337         | OH        | TYR        |   |            | 103.523            | 22.093           | 33.331           |      | 41.60          |     | 0      |
| ATOM<br>ATOM | 6338<br>6339 |           | TYR<br>TYR |   | 358<br>358 | 103.021<br>102.208 | 19.746<br>18.634 | 39.484<br>38.921 |      |                | . 1 | C      |
| ATOM         | 6340         | C         | TYR        |   |            | 98.323             | 18.818           | 38.007           |      | 32.08          |     | č      |
| MOTA         | 6341         | ō         | TYR        |   | 358        | 98.295             | 19.328           | 39.063           | 1.00 | 33.82          | **  | 0      |
| MOTA         | 6342         | N         | ILE        |   |            | 97.784             | 19.340           | 36.909           |      |                |     | N      |
| ATOM         | 6343         | CA        | ILE        |   |            | 97.153             | 20.693           | 36.900<br>35.560 |      | 24.53          |     | C      |
| MOTA<br>MOTA | 6344<br>6345 | CB        | ILE        |   | 359<br>359 | 97.014<br>96.101   | 21.327 20.604    | 34.751           |      | 21.91          |     | c      |
| ATOM         | 6346         |           | ILE        |   |            | 96.197             | 21.131           | 33.234           |      | 21.82          |     | č      |
| ATOM         | 6347         |           | ILE        |   | 359        | 98.338             | 21.574           | 34.720           | 1.00 | 26.99          |     | С      |
| ATOM         | 6348         | С         | ILE        |   | 359        | 95.800             | 20.731           | 37.549           |      | 27.11          |     | C      |
| ATOM         | 6349         | 0         | ILE        |   |            | 95.271<br>95.155   | 21.671<br>19.653 | 37.845<br>37.693 |      | 25.17<br>27.33 |     | . N    |
| ATOM<br>ATOM | 6350<br>6351 | N<br>Ca   | ASP<br>ASP |   | 360<br>360 | 93.869             | 19.714           | 38.327           |      | 26.30          |     | Č      |
| ATOM         | 6352         | CB        | ASP        |   | 360        | 94.119             | 19.504           | 39.825           |      | 26.81          |     | Č      |
| ATOM         | 6353         | CG        | ASP        |   | 360        | 92.841             | 19.325           | 40.593           |      | 35.85          |     | С      |
| ATOM         | 6354         |           | ASP        |   | 360        | 92.684             | 19.658           | 41.855           |      | 50.73          |     | 0      |
| ATOM<br>ATOM | 6355<br>6356 | C         | ASP<br>ASP |   | 360<br>360 | 91.830<br>93.044   | 18.943           | 39.916<br>38.129 |      | 57.29<br>26.53 |     | c      |
| ATOM         | 6357         | ō         | ASP        |   | 360        | 92.777             | 21.591           | 39.040           |      | 32.47          |     | ō      |
| MOTA         | 6358         | N         | LEU        |   | 361        | 92.586             | 21.184           | 36.958           |      | 27.48          |     | N      |
| ATOM         | 6359         | CA        | LEU        |   |            | 91.846             | 22.198           | 36.476           |      | 25.40          |     | C      |
| ATOM<br>ATOM | 6360<br>6361 | CB<br>CG  | LEU<br>LEU |   |            | 91.776<br>92.650   | 22.093           | 34.923<br>34.306 |      | 22.51<br>25.72 |     | C      |
| ATOM         | 6362         |           | LEU        |   |            | 93.967             | 23.074           | 34.750           |      | 22.74          |     | Č      |
| ATOM         | 6363         |           | LEU        |   |            | 92.598             | 22.948           | 32.996           | 1.00 | 33.53          |     | Ç      |
| MOTA         | 6364         | С         | LEU        |   |            | 90.493             | 22.297           | 37.022           |      | 30.55          |     | C      |
| ATOM         | 6365         | 0         | LEU        |   |            | 89.972             | 23.413           | 37.090<br>37.412 |      | 34.20<br>29.76 |     | O<br>N |
| ATOM<br>ATOM | 6366<br>6367 | N<br>CA   | LEU        |   |            | 89.771<br>88.467   | 21.295<br>21.596 | 37.949           |      | 22.30          |     | c      |
| ATOM         | 6368         | CB        | LEU        |   |            | 87.601             | 20.936           | 37.087           |      | 22.01          |     | С      |
| ATOM         | 6369         | CG        | LEU        | В | 362        | 87.539             | 21.829           | 35.823           | 1.00 | 33.11          |     | С      |
| ATOM         | 6370         |           | LEU        |   |            | 86.434             | 21.463           | 34.764           |      | 34.94          |     | C      |
| ATOM         | 6371         |           | LEU        |   |            | 87.016             | 23.130           | 35.994<br>39.192 |      | 27.69<br>26.66 |     | C      |
| MOTA<br>MOTA | 6372<br>6373 | C<br>O    | LEU        |   |            | 88.439<br>87.768   | 20.834           | 39.192           |      | 30.03          |     | Ö      |
| ATOM         | 6374         | N         | PRO        |   |            | 89.059             | 21.330           | 40.218           |      | 28.99          |     | N      |
| MOTA         | 6375         | CA        | PRO        | В | 363        | 89.300             | 20.713           | 41.547           |      | 29.80          |     | С      |
| MOTA         | 6376         | CB        | PRO        |   |            | 89.989             | 21.897           | 42.378           |      | 29.83          |     | C      |
| ATOM<br>ATOM | 6377<br>6378 | CG<br>CD  | PRO<br>PRO |   |            | 90.459<br>89.673   | 22.792<br>22.676 | 41.564<br>40.162 |      | 32.59<br>32.82 |     | C<br>C |
| ATOM         | 6379         | CD        | PRO        |   |            | 88.044             | 20.191           | 42.150           |      | 29.28          |     | č      |
| ATOM         | 6380         | ō         | PRO        |   |            | 88.029             | 19.316           | 42.897           | 1.00 | 35.27          |     | 0      |
| MOTA         | 6381         | N         | THR        |   |            | 86.990             | 20.780           | 41.905           | 1.00 | 31.89          |     | N      |

|              |                           |           |            |   |            | Fi               | .gure            | 2                |      |                |                                         |        |
|--------------|---------------------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|-----------------------------------------|--------|
| MOTA         | 6382                      | CA        |            |   | 364        | 85.637           | 20.286           | 42.304           |      | 32.11          |                                         | С      |
| MOTA         | 6383                      | CB        | THR        |   | 364        | 84.973<br>84.831 | 21.316 22.628    | 43.273<br>42.795 |      | 32.37          |                                         | C      |
| ATOM<br>ATOM | 6384 <sub>.</sub><br>6385 |           | THR        |   |            | 85.707           | 21.579           | 44.354           |      | 35.85<br>29.09 |                                         | o<br>C |
| ATOM         | 6386                      | C         |            |   | 364        | 85.006           | 20.355           | 40.901           |      | 34.80          |                                         | Č      |
| MOTA         | 6387                      | 0         |            |   | 364        | 84.981           | 21.583           | 39.966           |      | 41.88          |                                         | 0      |
| ATOM<br>ATOM | 6388<br>6389              | N<br>CA   |            |   | 365<br>365 | 84.796<br>84.264 | 19.250<br>19.147 | 40.384<br>39.071 |      | 33.30<br>35.29 |                                         | N<br>C |
| ATOM         | 6390                      | CB        |            |   | 365        | 83.817           | 17.693           | 39.017           |      | 34.47          |                                         | c      |
| ATOM         | 6391                      | OG        |            |   | 365        | 82.645           | 17.514           | 38.313           |      | 35.77          |                                         | Ö      |
| MOTA         | 6392                      | C         |            |   | 365        | 83.070           | 20.052           | 39.032           |      | 32.61          |                                         | C      |
| ATOM<br>ATOM | 6393<br>6394              | O<br>N    |            |   | 365<br>366 | 82.931<br>82.235 | 20.528           | 39.997<br>38.162 |      | 47.51<br>27.70 |                                         | O<br>N |
| ATOM         | 6395                      | CA        |            |   | 366        | 81.123           | 20.897           | 38.355           |      | 28.50          |                                         | C      |
| ATOM         | 6396                      | СВ        | LEU        | В | 366        | 80.233           | 21.022           | 37.080           |      | 29.39          |                                         | С      |
| ATOM         | 6397                      | CG        |            |   | 366        | 80.481           | 22.089           | 36.096           |      | 32.42          |                                         | C      |
| ATOM<br>ATOM | 6398<br>6399              |           | LEU<br>LEU |   | 366        | 81.879<br>79.845 | 22.281<br>21.663 | 35.928<br>34.674 |      | 27.83<br>32.01 |                                         | C      |
| ATOM         | 6400                      | c         | LEU        |   | 366        | 80.266           | 20.269           | 39.384           |      | 30.73          |                                         | č      |
| MOTA         | 6401                      | 0         |            |   | 366        | 80.210           | 19.172           | 39.407           |      | 35.79          |                                         | 0      |
| MOTA<br>MOTA | 6402<br>6403              | N<br>CA   |            |   | 367<br>367 | 79.436<br>78.586 | 20.956<br>20.426 | 40.085<br>41.112 |      | 32.78<br>35.80 |                                         | N<br>C |
| ATOM         | 6404                      | CB        |            |   | 367        | 77.927           | 21.758           | 41.772           |      | 38.40          |                                         | c      |
| MOTA         | 6405                      | CG        |            |   | 367        | 78.869           | 22.733           | 41.429           |      | 40.66          |                                         | С      |
| MOTA         | 6406                      | CD        |            |   | 367        | 79.231           | 22.399           | 39.901           |      | 32.47          |                                         | С      |
| MOTA         | 6407                      | C         |            |   | 367<br>367 | 77.462<br>76.714 | 19.598<br>19.952 | 40.769<br>39.840 |      | 34.91<br>32.43 |                                         | 0      |
| MOTA<br>MOTA | 6408<br>6409              | O<br>N    |            |   | 368        | 77.265           | 18.547           | 41.672           |      | 35.94          |                                         | N.     |
|              | 6410                      | CA        | HIS        |   |            | 76.228           | 17.553           | 41.472           |      | 34.16          |                                         | c      |
| ATOM         | 6411                      | СВ        | HIS        |   |            | 76.912           | 16.269           | 41.694           |      | 37.39          | - 1                                     |        |
| MOTA<br>MOTA | 6412<br>6413              | CG        | HIS        |   | 368        | 77.754<br>77.433 | 15.692<br>14.543 | 40.545<br>39.920 | 1.00 | 34.21<br>31.77 | n grafi i jire<br>Dina <b>r</b> es ni h |        |
| ATOM         | 6414                      |           | HIS        |   |            | 78.317           | 14.337           | 38.954           | 1.00 | 37.86          |                                         | C.     |
| ATOM         | 6415                      |           | HIS        |   |            | 79.232           | 15.277           | 38.971           |      | 31.30          | Gar.                                    |        |
| ATOM         | 6416                      |           | HIS        |   |            | 78.904           | 16.117           | 39.983           |      | 33.76          |                                         |        |
| ATOM<br>ATOM | 6417<br>6418              | C<br>O    |            |   | 368<br>368 | 75.124<br>75.126 | 17.711<br>18.435 | 42.550<br>43.432 |      | 37.73          |                                         | . C    |
| ATOM         | 6419                      | N         |            |   | 369        | 74.101           | 16.977           | 42.470           |      | 40.21          |                                         | . N:   |
| ATOM         | 6420                      | CA        |            |   | 369        | 73.065           | 17.073           | 43.460           |      |                |                                         |        |
| ATOM         | 6421                      | СВ        |            |   | 369        | 72.022           | 18.027           | 43.051           |      | 42.78          |                                         | C.     |
| MOTA<br>MOTA | 6422<br>6423              | С<br>0    | ALA<br>ALA |   | 369<br>369 | 72.358<br>72.104 | 15.736<br>15.136 | 43.538<br>42.458 |      | 45.75<br>47.82 |                                         | 0      |
| ATOM         | 6424                      | N         | VAL        |   |            | 72.028           | 15.319           | 44.772           |      | 45.56          |                                         | N      |
| ATOM         | 6425                      | CA        | VAL        |   | 370        | 71.452           | 13.999           | 44.972           |      | 47.96          |                                         | C      |
| ATOM<br>ATOM | 6426<br>6427              | CB        | VAL<br>VAL |   |            | 71.529<br>72.910 | 13.513<br>13.254 | 46.434<br>46.803 |      | 45.96<br>44.89 |                                         | C      |
| ATOM         | 6428                      |           | VAL        |   |            | 71.007           | 14.518           | 47.350           |      | 55.24          |                                         | č      |
| ATOM         | 6429                      | С         | VAL        |   |            | 70.097           | 13.954           | 44.397           | 1.00 | 48.45          |                                         | С      |
| ATOM         | 6430                      | 0 .       | VAL        |   |            | 69.315           | 14.828           | 44.594           |      | 45.56          |                                         | 0      |
| ATOM<br>ATOM | 6431 ·                    | CA        | THR<br>THR |   |            | 69.841<br>68.591 | 12.924<br>12.958 | 43.652<br>42.898 |      | 50.53<br>53.46 |                                         | N<br>C |
| ATOM         | 6433                      | CB        | THR        |   |            | 68.916           | 12.196           | 41.673           |      | 54.06          |                                         | č      |
| MOTA         | 6434                      |           | THR        |   |            | 68.026           | 12.462           | 40.721           |      | 52.36          |                                         | 0      |
| ATOM         | 6435                      |           | THR        |   |            | 68.894           |                  | 41.869           |      | 63.01          |                                         | C      |
| MOTA<br>MOTA | 6436<br>6437              | Ċ.        | THR        |   |            | 67.387<br>66.350 | 12.430<br>12.290 | 43.608<br>43.077 |      | 54.67<br>55.42 |                                         | 0      |
| ATOM         | 6438                      | N         | CYS        |   |            | 67.502           | 12.140           | 44.860           |      | 57.41          |                                         | N      |
| MOTA         | 6439                      | CA        | CYS        |   |            | 66.387           | 11.518           | 45.582           |      | 57.87          |                                         | C      |
| MOTA<br>MOTA | 6440<br>6441              | CB<br>SG  | CYS        |   |            | 66.083<br>67.391 | 10.122<br>8.811  | 45.066<br>45.096 |      | 57.09<br>59.55 |                                         | C<br>S |
| ATOM         | 6442                      | C         | CYS        |   |            | 66.943           | 11.336           | 46.960           |      | 60.50          |                                         | č      |
| MOTA         | 6443                      | 0         | CYS        | В | 372        | 68.227           | 11.191           | 47.127           |      | 60.23          |                                         | 0      |
| ATOM         | 6444                      | N         | ASP        |   |            | 66.054           | 11.340           | 47.954           |      | 62.02          |                                         | N      |
| ATOM<br>ATOM | 6445<br>6446              | CA<br>CB  | ASP<br>ASP |   |            | 66.563<br>65.403 | 11.111<br>10.924 | 49.333<br>50.231 |      | 63.98<br>65.07 |                                         | C      |
| ATOM         | 6447                      | CG        | ASP        |   |            | 64.549           | 12.246           | 50.326           |      | 66.28          |                                         | č      |
| ATOM         | 6448                      | OD1       | ASP        | В | 373        | 63.323           | 12.266           | 50.027           |      | 73.53          |                                         | 0      |
| ATOM         | 6449                      |           | ASP        |   |            | 65.033           | 13.294           | 50.663           |      | 56.39<br>63.03 |                                         | 0      |
| ATOM<br>ATOM | 6450<br>6451              | С<br>0    | ASP<br>ASP |   |            | 67.366<br>66.790 | 9.860<br>8.894   | 49.366<br>49.131 |      | 62.71          |                                         | C      |
| ATOM         | 6452                      | N         | ILE        |   |            | 68.668           | 9.895            | 49.623           |      | 62.03          |                                         | N      |
| ATOM         | 6453                      | CA        | ILE        | B | 374        | 69.444           | 8.723            | 49.590           |      | 61.50          |                                         | С      |
| MOTA         | 6454<br>6455              | CB<br>CC1 | ILE        |   |            | 70.617<br>71.195 | 8.810<br>7.419   | 48.512<br>48.219 |      | 61.66<br>63.87 |                                         | C      |
| ATOM<br>ATOM | 6455<br>6456              |           | ILE        |   |            | 70.108           | 6.390            | 47.843           |      | 73.47          |                                         | c      |
| ATOM         | 6457                      |           | ILE        |   |            | 71.886           | 9.580            | 49.024           |      | 53.17          |                                         | c      |
|              |                           |           |            |   |            |                  |                  |                  |      |                |                                         |        |

|              |              |          |     |                | Fi               | gure             | 2                |                          |        |
|--------------|--------------|----------|-----|----------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 6458         | С        | ILE | B 374          | 70.099           | 8.587            | 50.904           | 1.00 64.43               | С      |
| MOTA         | 6459         | 0        |     | B 374          | 70.142           | 9.561            | 51.643           | 1.00 61.69               | 0      |
| ATOM         | 6460         | N        |     | B 375          | 70.654           | 7.368<br>7.193   | 51.206<br>52.427 | 1.00 67.14<br>1.00 68.63 | พ<br>C |
| MOTA<br>MOTA | 6461<br>6462 | CA<br>CB |     | B 375<br>B 375 | 71.422<br>70.745 | 6.188            | 53.344           | 1.00 71.83               | č      |
| ATOM         | 6463         | CG       |     | B 375          | 71.099           | 6.217            | 54.868           | 1.00 78.66               | С      |
| MOTA         | 6464         | CD       |     | в 375          | 70.473           | 4.727            | 55.533           | 1.00 86.26               | С      |
| ATOM         | 6465         | CE       |     | B 375          | 70.681           | 4.582            | 57.108           | 1.00 88.57               | C      |
| ATOM         | 6466         | NZ       |     | B 375          | 70.251           | 3.187            | 57.686<br>52.066 | 1.00 93.39<br>1.00 65.28 | N<br>C |
| ATOM<br>ATOM | 6467<br>6468 | C<br>O   |     | B 375<br>B 375 | 72.818<br>72.946 | 6.735<br>5.729   | 51.414           | 1.00 61.94               | ŏ      |
| ATOM         | 6469         | N        |     | B 376          | 73.815           | 7,498            | 52.534           | 1.00 62.32               | N      |
| ATOM         | 6470         | CA       |     | B 376          | 75.171           | 7.304            | 52.169           | 1.00 60.89               | С      |
| MOTA         | 6471         | СВ       |     | B 376          | 75.612           | 8.533            | 51.212           | 1.00 59.92               | c      |
| MOTA         | 6472         | CG       |     | B 376<br>B 376 | 76.974<br>77.268 | 8.468<br>7.615   | 50.682<br>49.773 | 1.00 52.09<br>1.00 56.56 | C<br>C |
| MOTA<br>MOTA | 6473<br>6474 |          |     | B 376          | 78.557           | 7.546            | 49.265           | 1.00 58.71               | č      |
| MOTA         | 6475         | CZ       |     | B 376          | 79.488           | 8.360            | 49.722           | 1.00 60.93               | С      |
| ATOM         | 6476         |          |     | в 376          | 79.181           | 9.257            | 50.673           | 1.00 57.15               | C      |
| ATOM         | 6477         |          |     | B 376          | 77.913           | 9.282            | 51.107           | 1.00 52.64               | C      |
| MOTA         | 6478<br>6479 | 0        |     | B 376<br>B 376 | 76.062<br>76.039 | 7.175<br>8.023   | 53.322<br>54.225 | 1.00 60.25<br>1.00 59.39 | C      |
| MOTA<br>MOTA | 6480         | N        |     | B 377          | 76.885           | 6.144            | 53.306           | 1.00 62.62               | N      |
| ATOM         |              | CA       |     | в 377          | 77.821           | 5.946            | 54.416           | 1.00 65.32               | С      |
| ATOM         | 6482         | СВ       |     | в 377          | 79.085           | 6.795            | 54.242           | 1.00 63.93               | c      |
| ATOM         | 6483         | CG       |     | B 377          | 79.639           | 6.630            | 52.820           | 1.00 66.53               | C<br>C |
| MOTA<br>MOTA | 6484<br>6485 | CD<br>NE |     | B 377<br>B 377 | 80.742<br>81.911 | 5.609<br>6.165   | 52.652<br>53.210 | 1.00 50.05<br>1.00 49.30 | n      |
| ATOM         | 6486         | CZ       |     | B 377          | 82.959           | 6.159            | 52.482           | 1.00 49.36               | Ċ      |
| ATOM         | 6487         |          |     | B 377          | 82.887           | 5.567            | 51.309           | 1.00 52.35               | N      |
| ATOM         |              |          |     | B 377          | 84.109           | 6.672            | 52.929           | 1.00 49.07               | N      |
| ATOM         |              | C        |     | B 377          | 77.047           | 6.114            | 55.766           | 1.00 66.61<br>1.00 65.46 | C<br>0 |
| ATOM .       | 6490<br>6491 | N<br>N   |     | B 377<br>B 378 | 77.562<br>75.785 | 6.667<br>5.628   | 56.737<br>55.798 | 1.00 68.90               | N      |
| ATOM         | 6492         | CA       |     | B 378          | 75.005           | 5.803            | 56.987           | 1.00 70.66               | Ċ      |
| ATOM         |              | СВ       |     | B 378          | 75.642           | 5.077            | 58.204           | 1.00 72.20               | С      |
| ATOM         |              | CG       |     | в 378          | 74.727           | 5.064            | 59.416           | 1.00 81.00               | C      |
| ATOM         | 6495         |          |     | B 378          | 75.138           | 5.562            | 60.510           | 1.00 87.51<br>1.00 89.92 | О<br>И |
| ATOM         | 6497         | ND2      |     | B 378<br>B 378 | 73.382<br>74.968 | 4.597<br>7.255   | 59.232<br>57.305 | 1.00 69.38               | C      |
| ATOM         | 6498         | ŏ        |     | B 378          | 75.362           | 7.633            | 58.391           | 1.00 69.71               | ō      |
| MOTA         | 6499         | N        |     | в 379          | 74.508           | 8.064            | 56.361           | 1.00 68.88               | N      |
| ATOM         | 6500         | CA       |     | B 379          | 74.380           | 9.443            | 56.610           | 1.00 68.26               | C      |
| ATOM         | 6501         | CB       |     | B 379<br>B 379 | 75.467<br>76.717 | 10.102<br>10.077 | 56.048<br>56.931 | 1.00 67.11<br>1.00 68.42 | C<br>C |
| MOTA ·       | 6502<br>6503 |          |     | B 379          | 77.893           | 9.513            | 56.584           | 1.00 62.45               | č      |
| ATOM         | 6504         |          |     | B 379          | 78.969           | 9.625            | 57.455           | 1.00 59.39               | С      |
| ATOM         | 6505         | CZ       |     | B 379          | 78.809           | 10.234           | 58.601           | 1.00 62.71               | C      |
| ATOM         | 6506         | OH       |     | B 379          | 79.746           | 10.423<br>10.699 | 59.531<br>58.948 | 1.00 66.77<br>1.00 60.06 | o<br>c |
| MOTA<br>MOTA | 6507<br>6508 |          |     | B 379<br>B 379 | 77.690<br>76.679 | 10.654           | 58.157           | 1.00 66.48               | č      |
| ATOM         | 6509         | C        |     | B 379          | 73.128           | 10.186           | 56.251           | 1.00 70.84               | c      |
| MOTA         | 6510         | 0        | TYR | в 379          | 72.610           | 10.958           | 57.185           | 1.00 79.39               | 0      |
| ATOM         | 6511         | N        |     | В 380          | 72.565           | 10.020           | 55.039           | 1.00 69.86<br>1.00 70.63 | N<br>C |
| ATOM<br>ATOM | 6512<br>6513 | CA<br>CB |     | B 380<br>B 380 | 71.366<br>70.260 | 10.775<br>10.643 | 54.638<br>55.612 | 1.00 70.83               | c      |
| ATOM         | 6514         | CG       |     | B 380          | 69.785           | 11.709           | 56.483           | 1.00 74.56               | Č      |
| ATOM         |              |          |     | B 380          | 68.282           | 12.188           | 56.049           | 1.00 82.10               | C      |
| ATOM         | 6516         |          |     | B 380          | 69.903           | 11.385           | 58.031           | 1.00 79.32               | C      |
| ATOM         |              | С        |     | B 380          | 71.473           | 12.229<br>13.196 | 54.147<br>54.843 | 1.00 68.97<br>1.00 65.73 | С<br>О |
| MOTA<br>MOTA |              | O<br>N   |     | B 380<br>B 381 | 71.575<br>71.371 | 12.249           | 52.847           | 1.00 66.78               | n      |
| ATOM         | 6520         | CA       |     | B 381          | 71.239           | 13.383           | 52.126           | 1.00 63.10               | С      |
| MOTA         | 6521         | СВ       |     | B 381          | 72.249           | 13.409           | 51.082           | 1.00 63.25               | C      |
| ATOM         | 6522         |          |     | B 381          | 73.646           | 13.077           | 51.542           | 1.00 60.56<br>1.00 57.37 | c<br>c |
| MOTA         |              |          |     | B 381<br>B 381 | 74.288<br>72.305 | 12.081<br>14.982 | 50.668<br>50.532 | 1.00 57.37               | c      |
| MOTA<br>MOTA |              | CG2      |     | B 381          | 69.795           | 13.421           | 51.532           | 1.00 62.19               | č      |
| ATOM         |              | ō        |     | B 381          | 69.273           | 12.559           | 50.760           | 1.00 59.67               | 0      |
| ATOM         |              | N        | PRO | в 382          | 69.158           | 14.502           | 51.912           | 1.00 60.19               | N      |
| ATOM         |              | CA       |     | B 382          | 67.855           | 14.834           | 51.349           | 1.00 57.25               | C<br>C |
| MOTA<br>MOTA |              | CB<br>CG |     | B 382<br>B 382 | 67.394<br>68.788 | 15.852<br>16.597 | 52.255<br>52.824 | 1.00 56.73<br>1.00 60.86 | Č      |
| ATOM         |              | CD       |     | B 382          | 69.670           | 15.506           | 52.919           | 1.00 59.75               | č      |
| MOTA         |              | c        |     | B 382          | 67.967           | 15.288           | 49.886           | 1.00 57.11               | С      |
| MOTĄ         |              | 0        | PRO | в 382          | 68.934           | 15.990           | 49.550           | 1.00 53.51               | 0      |
|              |              |          |     |                |                  |                  |                  |                          |        |

|              |              |           |            |   |            |     | г.               |                  | 2                |                          |        |
|--------------|--------------|-----------|------------|---|------------|-----|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 6534         | N         | LYS        | P | 383        |     | 67.030           | gure<br>14.690   | 2<br>49.057      | 1.00 55.92               | N      |
| ATOM         | 6535         | CA        |            |   | 383        |     | 66.845           | 14.855           | 47.696           | 1.00 52.81               | c      |
| ATOM         | 6536         | CB        | LYS        | В | 383        |     | 65.489           | 14.438           | 47.395           | 1.00 54.10               | С      |
| ATOM         | 6537         | CG        |            |   | 383        |     | 65.090           | 14.980           | 46.117           | 1.00 59.95               | C      |
| MOTA<br>MOTA | 6538<br>6539 | CD        |            |   | 383<br>383 |     | 63.611<br>63.433 | 14.578           | 45.603<br>44.164 | 1.00 65.71               | C<br>C |
| ATOM         | 6540         | NZ        | LYS        |   |            |     | 62.122           | 15.412<br>15.173 | 43.434           | 1.00 64.99<br>1.00 61.06 | ห      |
| ATOM         | 6541         | c         |            |   | 383        |     | 66.937           | 16.302           | 47.338           | 1.00 51.46               | c<br>c |
| ATOM         | 6542         | 0         |            |   | 383        |     | 66.350           | 17.134           | 47.921           | 1.00 54.68               | 0      |
| ATOM         | 6543         | N         |            |   | 384        |     | 67.775           | 16.612           | 46.394           | 1.00 47.24               | N      |
| ATOM<br>ATOM | 6544<br>6545 | CA<br>C   |            | _ | 384<br>384 |     | 68.112<br>69.362 | 17.932<br>18.459 | 45.967<br>46.547 | 1.00 41.91<br>1.00 40.66 | C<br>C |
| ATOM         | 6546         | ō         |            |   | 384        |     | 69.795           | 19.459           | 46.082           | 1.00 42.64               | Ö      |
| ATOM         | 6547         | N         |            | _ | 385        |     | 69.999           | 17.865           | 47.532           | 1.00 39.77               | N      |
| ATOM         | 6548         | CA        | -          |   | 385        |     | 71.120           | 18.524           | 48.192           | 1.00 38.84               | c      |
| atom<br>Atom | 6549<br>6550 | CB        |            |   | 385<br>385 |     | 71.617<br>70.611 | 17.733<br>17.577 | 49.442<br>50.487 | 1.00 40.16<br>1.00 40.26 | C<br>0 |
| ATOM         | 6551         |           |            |   | 385        |     | 72.707           | 18.496           | 50.080           | 1.00 40.64               | č      |
| ATOM         | 6552         | С         | THR        | В | 385        |     | 72.326           | 18.650           | 47.289           | 1.00 41.47               | С      |
| ATOM         | 6553         | 0         |            |   | 385        |     | 72.795           | 17.788           | 46.685           | 1.00 43.37               | 0      |
| ATOM<br>ATOM | 6554<br>6555 | N<br>CA   |            |   | 386<br>386 |     | 72.904<br>74.124 | 19.814<br>19.989 | 47.222<br>46.513 | 1.00 40.64<br>1.00 36.14 | N<br>C |
| MOTA         | 6556         | CB        |            |   | 386        |     | 74.545           | 21.401           | 46.500           | 1.00 35.24               | č      |
| ATOM         | 6557         |           |            |   | 386        |     | 73.503           | 22.236           | 45.888           | 1.00 37.32               | Ō      |
| MOTA         | 6558         |           |            |   | 386        |     | 75.684           | 21.524           | 45.611           | 1.00 32.60               | C      |
| ATOM         | 6559         | C         | THR        |   | 386        |     | 75.282<br>75.521 | 19.245           | 46.893<br>47.968 | 1.00 34.63               | C      |
| ATOM<br>ATOM | 6560<br>6561 | O<br>N    |            |   | 386<br>387 |     | 76.064           | 19.239<br>18.583 | 47.908           | 1.00 40.10<br>1.00 35.01 | O<br>N |
| MOTA         | 6562         | CA        |            |   | 387        |     | 77.281           | 17.746           | 46.273           | 1.00 31.92               | c      |
| ATOM         | 6563         | СВ        |            |   | 387        |     | 76.997           | 16.479           | 45.700           | 1.00 30.56               | С      |
| ATOM         | 6564         |           |            |   | 387        |     | 75.523           | 16.137           | 46.010           | 1.00 35.46               | C      |
| atom<br>atom | 6565<br>6566 |           |            |   | 387<br>387 | ÷   | 75.376<br>77.910 | 15.496<br>15.431 | 47.468<br>46.147 | 1.00 39.17<br>1.00 29.08 | C<br>C |
| ATOM         | 6567         | c         |            |   | 387        |     | 78.526           | 18.278           | 45.592           | 1.00 34.05               | č      |
| ATOM         | 6568         | 0         |            |   | 1387 →     |     | 78.464           | 18.519           | 44.442           | 1.00 36.19               | 0      |
| ATOM         | 6569         |           |            |   | 388        | ٠., | 79.604           | 18.465           | 46.227           | 1.00 32.69               | N      |
| ATOM<br>ATOM | 6570<br>6571 | CB.       | LEU        |   | 388<br>388 |     | 80.741<br>81.438 | 18.792<br>19.987 | 45.548<br>46.305 | 1.00 34.47<br>1.00 42.95 | C<br>C |
| ATOM         | 6572         | CG        |            |   | 388        |     | 80.884           | 21.420           | 46.319           | 1.00 38.48               | č      |
| MOTA         | 6573         | CD1       | LEU        | В | 388 1      | •   | 81.959           | 22.223           | 46.588           | 1.00 42.06               | С      |
| ATOM         | 6574         |           | LEU        |   |            |     | 80.483           | 21.691           | 44.896           | 1.00 37.27               | c      |
| ATOM<br>ATOM | 6575<br>6576 | 0         |            |   | 388<br>388 |     | 81.762<br>82.006 | 17.615<br>17.255 | 45.713<br>46.803 | 1.00 36.98<br>1.00 38.12 | C<br>0 |
| ATOM         | 6577         | N         |            |   | 389        |     | 82.352           | 17.035           | 44.580           | 1.00 40.08               | N      |
| MOTA         | 6578         | CA        |            |   | 389        |     | 83.240           | 15.900           | 44.397           | 1.00 31.70               | С      |
| ATOM         | 6579         | CB        |            |   | 389        |     | 82.992           | 15.375<br>14.830 | 43.015           | 1.00 33.51               | C<br>C |
| ATOM<br>ATOM | 6580<br>6581 |           | ILE        |   | 389<br>389 |     | 81.649<br>81.044 | 14.830           | 42.789<br>43.980 | 1.00 35.31<br>1.00 42.60 | C      |
| ATOM         | 6582         |           | ILE        |   |            |     | 83.833           | 14.098           | 42.681           | 1.00 34.19               | Ċ      |
| ATOM         | 6583         | С         | ILE        |   | 389        |     | 84.583           | 16.483           | 44.296           | 1.00 31.76               | Ç      |
| MOTA<br>MOTA | 6584<br>6585 | O<br>N    | ILE        |   |            |     | 84.874<br>85.492 | 17.226<br>16.054 | 43.502<br>45.090 | 1.00 29.61<br>1.00 31.18 | О<br>N |
| ATOM         | 6586         | CA        | SER        |   |            |     | 86.793           | 16.576           | 45.123           | 1.00 28.24               | Č      |
| ATOM         | 6587         | СВ        | SER        |   |            |     | 87.243           | 16.569           | 46.532           | 1.00 22.46               | С      |
| MOTA         | 6588         | OG        |            |   | 390        |     | 88.654           | 16.916           | 46.529           | 1.00 29.51               | 0      |
| MOTA<br>MOTA | 6589<br>6590 | С<br>0    |            |   | 390<br>390 |     | 87.658<br>88.416 | 15.953<br>15.067 | 44.164<br>44.473 | 1.00 29.33<br>1.00 31.88 | C<br>0 |
| ATOM         | 6591         | N         |            |   | 391        |     | 87.670           | 16.391           | 42.892           | 1.00 31.90               | N      |
| ATOM         | 6592         | CA        | LEU        |   |            |     | 88.711           | 15.706           | 41.968           | 1.00 28.63               | С      |
| ATOM         | 6593         | CB        | LEU        |   |            |     | 88.568           | 16.128           | 40.629           | 1.00 24.88               | С      |
| MOTA<br>MOTA | 6594<br>6595 | CG<br>CD1 | LEU        |   |            |     | 87.183<br>87.148 | 15.958<br>15.881 | 40.161<br>38.575 | 1.00 27.13<br>1.00 27.91 | C<br>C |
| ATOM         | 6596         |           | LEU        |   |            |     | 86.609           | 14.679           | 40.545           | 1.00 29.80               | č      |
| ATOM         | 6597         | c         | LEU        |   |            |     | 90.158           | 15.783           | 42.509           | 1.00 31.77               | Ċ      |
| ATOM         | 6598         | 0         | LEU        |   |            |     | 90.948           | 14.924           | 42.389           | 1.00 35.17               | 0      |
| ATOM         | 6599         | N         | THR        |   |            |     | 90.559           | 16.834           | 43.143           | 1.00 34.62<br>1.00 32.39 | И      |
| ATOM<br>ATOM | 6600<br>6601 | CA<br>CB  | THR<br>THR |   |            |     | 92.010<br>92.261 | 16.876<br>18.032 | 43.590<br>44.582 | 1.00 32.39               | C<br>C |
| ATOM         | 6602         |           | THR        |   |            |     | 91.528           | 19.113           | 44.142           | 1.00 33.46               | ő      |
| ATOM         | 6603         |           | THR        | В | 392        |     | 93.606           | 18.498           | 44.485           | 1.00 30.85               | С      |
| ATOM         | 6604         | C         | THR        |   |            |     | 92.339           | 15.733           | 44.428           | 1.00 33.47               | c      |
| ATOM<br>ATOM | 6605<br>6606 | O<br>N    | THR        |   |            |     | 93.459<br>91.349 | 15.275<br>15.391 | 44.485<br>45.273 | 1.00 33.16<br>1.00 33.58 | О<br>И |
| ATOM         | 6607         | CA        | SER        |   |            |     | 91.608           | 14.314           | 46.218           | 1.00 28.88               | C      |
| ATOM         | 6608         | CB        | SER        | В | 393        |     | 90.530           | 14.117           | 47.288           | 1.00 26.14               | С      |
| ATOM         | 6609         | OG        | SER        | В | 393        |     | 89.436           | 13.704           | 46.564           | 1.00 25.76               | 0      |
|              |              |           |            |   |            |     |                  |                  |                  |                          |        |

|              |              |           |            |   |            | Fi                 | gure             | 2                |                          |        |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 6610         | C         |            |   | 393        | 91.823             | 13.060           | 45.456           | 1.00 31.32               | C      |
| ATOM<br>ATOM | 6611<br>6612 | N<br>0    |            |   | 393<br>394 | 92.647<br>91.224   | 12.249<br>12.826 | 45.905<br>44.310 | 1.00 37.73<br>1.00 30.26 | O<br>N |
| ATOM         | 6613         | CA        |            |   | 394        | 91.551             | 11.659           | 43.598           | 1.00 29.91               | č      |
| MOTA         | 6614         | CB        | VAL        |   |            | 90.409             | 11.260           | 42.730           | 1.00 29.72               | C      |
| MOTA<br>MOTA | 6615<br>6616 |           | VAL<br>VAL |   |            | 90.791<br>89.269   | 10.061<br>10.900 | 42.026<br>43.619 | 1.00 31.98<br>1.00 32.76 | C<br>C |
| ATOM         | 6617         | C         | VAL        |   |            | 92.793             | 11.921           | 42.730           | 1.00 32.70               | č      |
| MOTA         | 6618         | 0         |            |   | 394        | 93.662             | 11.172           | 42.668           | 1.00 38.59               | 0      |
| ATOM<br>ATOM | 6619<br>6620 | N         |            |   | 395<br>395 | 92.938<br>94.076   | 13.029           | 42.067           | 1.00 33.72<br>1.00 30.87 | N      |
| ATOM         | 6621         | CA<br>CB  |            |   | 395        | 93.755             | 13.250<br>14.502 | 41.074<br>40.297 | 1.00 30.47               | C<br>C |
| MOTA         | 6622         | ÇG        |            |   | 395        | 93.206             | 14.437           | 38.900           | 1.00 33.48               | С      |
| ATOM         | 6623<br>6624 |           | LEU        |   |            | 92.212             | 13.679           | 38.745           | 1.00 34.48               | C      |
| ATOM<br>ATOM | 6625         | CD2       | LEU        |   | 395        | 92.678<br>95.349   | 15.788<br>13.350 | 38.302<br>41.733 | 1.00 30.63<br>1.00 28.87 | c<br>c |
| ATOM         | 6626         | 0         | LEU        | В | 395        | 96.466             | 13.272           | 41.172           | 1.00 27.36               | ō      |
| ATOM         | 6627         | N         |            |   | 396        | 95.248             | 13.592           | 43.000           | 1.00 30.52               | N      |
| ATOM<br>ATOM | 6628<br>6629 | CA<br>CB  |            |   | 396<br>396 | 96.530<br>96.629   | 13.850<br>15.181 | 43.823           | 1.00 28.58<br>1.00 28.09 | C<br>C |
| MOTA         | 6630         | CG        | HIS        | В | 396        | 96.903             | 16.201           | 43.393           | 1.00 30.36               | Ċ      |
| ATOM         | 6631         |           | HIS        |   |            | 98.092             | 16.860           | 43.356           | 1.00 32.62               | N      |
| ATOM<br>ATOM | 6632<br>6633 |           | HIS        |   |            | 98.133<br>97.022   | 17.633<br>17.478 | 42.267<br>41.607 | 1.00 34.45               | C<br>N |
| ATOM         | 6634         |           | HIS        |   |            | 96.208             | 16.621           | 42.329           | 1.00 32.02               | c      |
| ATOM         | 6635         | С         |            |   | 396        | 96.548             | 12.846           | 45.032           | 1.00 31.16               | c      |
| ATOM<br>ATOM | 6636<br>6637 | O<br>N    |            |   | 396<br>397 | 97.328<br>95.847   | 13.162<br>11.619 | 45.847<br>44.999 | 1.00 29.37<br>1.00 33.30 | О<br>N |
| ATOM         | 6638         | CA        |            |   | 397        | 96.045             | 10.548           | 45.989           | 1.00 34.68               | č      |
| MOTA         | 6639         | CB        |            |   | 397        | 95.296             | 9.401            | 45.523           | 1.00 37.59               | С      |
| ATOM<br>ATOM | 6640<br>6641 | CG        | ASP<br>ASP |   | 397        | 95.119<br>96.203   | 8.394<br>7.644   | 46.580           | 1.00 36.73<br>1.00 44.98 | C<br>0 |
| ATOM         | 6642         |           | ASP        |   |            | 94.015             |                  | 47.197           | 1.00 35.24               | Ö      |
| MOTA         | 6643         | С         |            |   | 397        | 97.458             | 10.231           | 46.280           | 1.00 35.24               | С      |
| ATOM         | 6644         | 0         |            |   | 397        | 98.131             |                  | 45.347           | 1.00 39.37               | 01     |
| ATOM<br>ATOM | 6645<br>6646 | N<br>Ca   | ASN        |   | 398<br>398 | 97.982<br>99.415   | 10.314           | 47:469<br>47:845 | 1.00 36.79<br>1.00 40.19 | N C    |
| ATOM         | 6647         | CB        |            |   | 398        | 99.625             | 10.033           | 49.451           | 1.00 44.84               | Ċ      |
| ATOM         | 6648         | CG        |            |   | 398        |                    | .11.190,         |                  | 1.00 60.57               | c      |
| MOTA<br>MOTA | 6649<br>6650 |           | ASN<br>ASN |   | 398<br>398 | 98.545<br>100.942  | 11.800<br>11.777 | 50.403<br>49.970 | 1:00 80.86<br>1:00 74.93 | O<br>N |
| ATOM         | 6651         | C         |            |   | 398        | 99.859             | 8.739            | 47.672           | 1.00 40.37               | Ċ      |
| ATOM         | 6652         | 0         | ASN        |   |            | 101.007            | 8.534            | 47.502           | 1.00 42.29               | 0      |
| MOTA<br>MOTA | 6653<br>6654 | N<br>CA   |            |   | 399<br>399 | 99.014<br>99.547   | 7.763<br>6.432   | 47.815<br>47.682 | 1.00 36.80<br>1.00 42.91 | N<br>C |
| ATOM         | 6655         | СВ        | LYS        |   |            | 98.576             | 5.351            | 48.307           | 1.00 43.43               | č      |
| MOTA         | 6656         | ÇG        |            |   | 399        | 98.357             | 5.617            | 49.720           | 1.00 49.69               | С      |
| MOTA<br>MOTA | 6657<br>6658 | CD        |            |   | 399<br>399 | 98.250<br>97.358   | 4.297<br>3.145   | 50.590<br>49.758 | 1.00 61.52<br>1.00 67.54 | C<br>C |
| ATOM         | 6659         | NZ        |            |   | 399        | 98.199             | 2.318            | 48.510           | 1.00 66.85               | N      |
| ATOM         | 6660         | С         | LYS        |   |            | 99.632             | 6.109            | 46.192           | 1.00 42.55               | С      |
| ATOM<br>ATOM | 6661<br>6662 | O<br>N    | LYS<br>GLU |   | 399        | 100.658<br>98.502  | 5.802<br>6.217   | 45.769<br>45.461 | 1.00 42.20<br>1.00 41.37 | О<br>И |
| ATOM         | 6663         | CA        | GLU        |   |            | 98.437             | 6.104            | 43.992           | 1.00 41.09               | Č      |
| MOTA         | 6664         | CB        | GLU        | В | 400        | 97.016             | 6.344            | 43.472           | 1.00 42.29               | С      |
| ATOM         | 6665         | CG        | GLU        |   |            | 96.874             | 6.065            | 42.052           | 1.00 50.47               | C<br>C |
| ATOM<br>ATOM | 6666<br>6667 |           | GLU        |   |            | 96.895<br>96.816   | 4.643<br>4.295   | 41.720<br>40.527 | 1.00 49.79<br>1.00 51.29 | Ö      |
| ATOM         | 6668         |           | GLU        |   |            | 96.960             | 3.906            | 42.639           | 1.00 49.26               | 0      |
| ATOM         | 6669         | С         | GLU        |   |            | 99.378             | 6.960            | 43.233           | 1.00 41.23               | C      |
| ATOM<br>ATOM | 6670<br>6671 | N         | GLU<br>PHE |   |            | 99.669<br>99.915   | 6.577<br>8.074   | 42.168<br>43.755 | 1.00 44.35<br>1.00 39.78 | O<br>N |
| ATOM         | 6672         | CA        | PHE        |   |            | 100.876            | 8.897            | 43.016           | 1.00 40.09               | С      |
| MOTA         | 6673         | CB        | PHE        |   |            | 100.211            | 10.072           | 42.209           | 1.00 33.08               | C      |
| ATOM<br>ATOM | 6674<br>6675 | CG<br>CD1 | PHE        |   |            | 99.118<br>97.859   | 9.672<br>9.914   | 41.241<br>41.512 | 1.00 26.62<br>1.00 21.86 | c<br>c |
| ATOM         | 6676         |           | PHE        |   |            | 96.942             | 9.544            | 40.800           | 1.00 24.05               | č      |
| MOTA         | 6677         | CZ        | PHE        |   |            | 97.271             | 8.970            | 39.531           | 1.00 30.16               | C      |
| ATOM<br>ATOM | 6678<br>6679 |           | PHE<br>PHE |   |            | 98.461<br>99.390   | 8.790<br>9.131   | 39.241<br>40.059 | 1.00 27.60<br>1.00 28.31 | c<br>c |
| ATOM         | 6680         | CDZ       | PHE        |   |            | 101.970            | 9.131            | 43.955           | 1.00 28.31               | c      |
| ATOM         | 6681         | 0         | PHE        | В | 401        | 101.885            | 10.441           | 44.484           | 1.00 44.24               | 0      |
| MOTA         | 6682         | N         | PRO        |   |            | 102.991            | 8.778            | 44.218           | 1.00 50.09               | N      |
| ATOM<br>ATOM | 6683<br>6684 | CA<br>CB  | PRO<br>PRO |   |            | 103.962<br>105.164 | 9.270<br>8.571   | 45.209<br>44.836 | 1.00 51.87<br>1.00 53.37 | c<br>c |
| ATOM         | 6685         | CG        | PRO        |   |            | 104.511            | 7.108            | 44.636           | 1.00 49.69               | č      |

|              |              |           |            |   |            | Fi                 | igure            | 2                |                          |             |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|--------------------------|-------------|
| ATOM         | 6686         | CD        |            |   | 402        | 103.255            | 7.370            | 43.808           | 1.00 50.68               | С           |
| ATOM<br>ATOM | 6687<br>6688 | C<br>0    |            |   | 402<br>402 | 104.168<br>103.619 | 10.764<br>11.469 | 45.256<br>46.002 | 1.00 53.69<br>1.00 58.32 | C<br>0      |
| ATOM         | 6689         | Ŋ         |            |   | 403        | 104.825            | 11.445           | 44.491           | 1.00 58.32               | и<br>И      |
| ATOM         | 6690         | CA        | ASN        | В | 403        | 104.780            | 12.838           | 44.975           | 1.00 51.59               | С           |
| ATOM         | 6691         | CB        |            |   | 403        | 106.195            | 13.379           | 44.675           | 1.00 55.72               | C           |
| ATOM<br>ATOM | 6692<br>6693 | CG<br>OD1 | ASN        |   | 403<br>403 | 107.283<br>106.873 | 12.503<br>11.688 | 45.435<br>46.181 | 1.00 60.15<br>1.00 61.24 | c           |
| ATOM         | 6694         |           | ASN        |   |            | 108.584            | 12.625.          |                  | 1.00 63.74               | N           |
| ATOM         | 6695         | C         |            |   | 403        | 103.773            | 13.565           | 44.200           | 1.00 48.18               | C           |
| ATOM<br>ATOM | 6696<br>6697 | N .       |            |   | 403<br>404 | 104.101<br>102.622 | 14.214<br>13.632 | 43.328<br>44.590 | 1.00 46.93<br>1.00 45.01 | O<br>N      |
| ATOM         | 6698         | CA        |            |   | 404        | 101.474            | 14.055           | 43.826           | 1.00 45.27               | c<br>c      |
| MOTA         | 6699         | CB        | PRO        |   |            | 100.284            | 13.845           | 44.759           | 1.00 42.20               | C           |
| ATOM<br>ATOM | 6700<br>6701 | CG<br>CD  |            |   | 404<br>404 | 100.866<br>102.404 | 13.590<br>13.793 | 46.001<br>45.952 | 1.00 45.78<br>1.00 47.38 | C<br>C      |
| ATOM         | 6702         | Ċ         | PRO        |   |            | 101.640            | 15.517           | 43.441           | 1.00 46.83               | č           |
| MOTA         | 6703         | 0         |            |   | 404        | 101.067            | 15.951           | 42.437           | 1.00 46.59               | 0           |
| ATOM<br>ATOM | 6704<br>6705 | N<br>CA   |            |   | 405<br>405 | 102.437<br>102.635 | 16.272<br>17.667 | 44.149<br>43.823 | 1.00 48.64               | N<br>C      |
| MOTA         | 6706         | СВ        |            |   | 405        | 103.017            | 18.468           | 45.014           | 1.00 48.85               | č           |
| ATOM .       | 6707         | CG        |            |   | 405        | 101.916            | 18.498           | 46.109           | 1.00 67.79               | С           |
| ATOM         | 6708<br>6709 | CD        | GLU<br>GLU |   | 405        | 100.484<br>100.225 | 18.961<br>20.145 | 45.685<br>45.885 | 1.00 73.11<br>1.00 76.32 | C           |
| ATOM<br>ATOM | 6710         |           | GLU        |   |            | 99.642             | 18.146           | 45.154           | 1.00 70.32               | Ö           |
| ATOM         | 6711         | С         | GLU        |   |            | 103.660            | 17.820           | 42.910           | 1.00 45.07               | c           |
| MOTA         | 6712         | 0         | GLU        |   |            | 103.930            | 18.921           | 42.591           | 1.00 49.01               | O<br>N      |
| ATOM<br>ATOM | 6713<br>6714 | N<br>CA   | MET        |   | 406<br>406 | 104.310<br>105.305 | 16.816<br>17.118 | 42.429<br>41.383 | 1.00 44.09<br>1.00 46.52 | . 50        |
| ATOM         | 6715         | СВ        | MET        |   |            | 106.601            | 16.449           | 41.573           | 1.00 48.06               | C           |
| ATOM         | 6716         | CG        | MET        |   |            | 107.146            | 16.352           | 43.000           | 1.00 61.56               |             |
| ATOM<br>ATOM | 6717<br>6718 | SD<br>CE  | MET<br>MET |   |            | 108.110<br>109.344 | 17.682<br>17.824 | 43.319<br>41.927 | 1.00 70.70<br>1.00 61.49 |             |
| ATOM         | 6719         | c         | MET        |   |            | 104.828            | 16.659           | 39.932           | 1.00 43.76               | - 100 x 4 c |
| ATOM         | 6720         | 0         | MET        |   |            | 104.083            | 15.774           | 39.854           | 1.00 41.89,              | • 0         |
| ATOM<br>ATOM | 6721<br>6722 | N<br>CA   | PHE        |   |            | 105.353<br>105.034 | 17.268<br>16.864 | 38.831<br>37.455 | 1.00 39.98               |             |
| ATOM         | 6723         | CB        | PHE        |   |            | 105.405            | 17.922           | 36.478           | 1.00 31.78               |             |
| ATOM         | 6724         | CG        | PHE        |   |            | 105.271            | 17.553           | 35.141           | 1.00 28.29               | 5 1 1 C     |
| ATOM         | 6725         |           | PHE        |   |            | 104.002            | 17.300           | 34.584           | 1.00 29.06               |             |
| ATOM<br>ATOM | 6726<br>6727 | CEI       | PHE        |   | 407        | 103.820<br>104.841 | 17.000<br>16.871 | 33.363<br>32.540 | 1.00 25.14<br>1.00 27.81 | C           |
| ATOM         | 6728         |           | PHE        |   |            | 106.000            | 17.105           | 32.902           | 1.00 33.13               | č           |
| ATOM         | 6729         |           | PHE        |   |            | 106.249            | 17.491           | 34.363           | 1.00 33.62               | c           |
| ATOM<br>ATOM | 6730<br>6731 | С<br>0    | PHE        |   | 407<br>407 | 105.955<br>107.223 | 15.715<br>15.924 | 37.209<br>37.088 | 1.00 38.84<br>1.00 36.95 | C<br>0      |
| ATOM         | 6732         | N         | ASP        |   |            | 105.378            | 14.466           | 37.139           | 1.00 39.31               | И           |
| ATOM         | 6733         | CA        | ASP        |   | 408        | 106.226            | 13.271           | 36.750           | 1.00 36.27               | Č           |
| ATOM<br>ATOM | 6734<br>6735 | CB<br>CG  | ASP<br>ASP |   | 408<br>408 | 106.532<br>107.691 | 12.523<br>11.477 | 37.957<br>37.761 | 1.00 40.63<br>1.00 46.39 | c<br>c      |
| ATOM         | 6736         |           | ASP        |   | 408        | 108.233            | 10.886           | 38.744           | 1.00 55.22               | ő           |
| ATOM         | 6737         | OD2       | ASP        | В | 408        | 108.176            | 11.287           | 36.686           | 1.00 56.62               | 0           |
| MOTA<br>MOTA | 6738<br>6739 | C         | ASP        |   |            | 105.520            | 12.258<br>11.452 | 35.865<br>36.381 | 1.00 34.18<br>1.00 28.20 | C,          |
| MOTA         | 6740         | N<br>N    | ASP<br>PRO |   |            | 104.602<br>105.912 | 12.208           | 34.559           | 1.00 30.22               | O<br>N      |
| MOTA         | 6741         | CA        | PRO        | 8 | 409        | 105.209            | 11.346           | 33.647           | 1.00 31.17               | С           |
| ATOM         | 6742         | CB        | PRO        |   |            | 105.849<br>106.812 | 11.579<br>12.804 | 32.289           | 1.00 33.15<br>1.00 30.60 | c<br>c      |
| ATOM<br>ATOM | 6743<br>6744 | CG<br>CD  | PRO<br>PRO |   |            | 107.068            | 12.765           | 32.480<br>33.901 | 1.00 30.65               | c           |
| MOTA         | 6745         | C         | PRO        |   |            | 105.249            | 9.912            | 34.119           | 1.00 29.64               | c           |
| ATOM         | 6746         | 0         | PRO        |   |            | 104.383            | 9.094            | 33.841           | 1.00 27.94               | 0           |
| ATOM<br>ATOM | 6747<br>6748 | N<br>CA   | HIS<br>HIS |   |            | 106.275<br>106.346 | 9.602<br>8.156   | 34.902<br>35.447 | 1.00 34.67<br>1.00 35.77 | N<br>C      |
| ATOM         | 6749         | СВ        | HIS        |   |            | 107.693            | 7.917            | 36.140           | 1.00 37.86               | С           |
| ATOM         | 6750         | CG        | HIS        | В | 410        | 108.826            | 7.760            | 35.167           | 1.00 45.35               | C           |
| ATOM         | 6751         |           | HIS        |   |            | 109.038            | 6.573<br>6.812   | 34.461<br>33.491 | 1.00 47.51<br>1.00 51.71 | N<br>C      |
| ATOM<br>ATOM | 6752<br>6753 |           | HIS        |   |            | 109.921<br>110.366 | 8.083            | 33.573           | 1.00 50.99               | N           |
| MOTA         | 6754         |           | HIS        | В | 410        | 109.657            | 8.695            | 34.613           | 1.00 53.28               | С           |
| ATOM         | 6755         | C         | HIS        |   |            | 105.203            | 7.684            | 36.165           | 1.00 35.77               | C           |
| ATOM<br>ATOM | 6756<br>6757 |           | HIS<br>HIS |   |            | 105.087<br>104.275 | 6.575<br>8.578   | 36.355<br>36.599 | 1.00 39.86<br>1.00 38.70 | О<br>N      |
| MOTA         | 6758         |           | HIS        |   |            | 103.065            | 8.249            | 37.327           | 1.00 36.24               | С           |
| ATOM         | 6759         |           | HIS        |   |            | 102.324            | 9.463            | 37.832           | 1.00 38.17               | C           |
| ATOM<br>ATOM | 6760<br>6761 |           | HIS<br>HIS |   |            | 102.981<br>102.879 | 10.250<br>9.877  | 38.952<br>40.254 | 1.00 40.99<br>1.00 42.02 | C<br>N      |
| 003          | 3,31         | .,51      |            | • |            | 102.013            | 3.07.            |                  |                          | ••          |

|              |              |           |            |   |            | Fi                 | gure             | 2                |                          |        |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 6762         |           | HIS        |   |            | 103.480            | 10.811           | 41.044           | 1.00 56.70               | C      |
| ATOM         | 6763         |           | HIS        |   |            | 103.970            | 11.792           | 40.270<br>38.957 | 1.00 43.90<br>1.00 48.69 | N<br>C |
| MOTA<br>MOTA | 6764<br>6765 | C         | HIS        |   | 411        | 103.650<br>102.185 | 11.470<br>7.535  | 36.501           | 1.00 35.36               | Č.     |
| MOTA         | 6766         | 0         | HIS        |   |            | 101.075            | 7.117            | 36.920           | 1.00 39.83               | 0      |
| ATOM         | 6767         | N         | PHÉ        |   | 412        | 102.534            | 7.460            | 35.250           | 1.00 36.40               | N      |
| ATOM         | 6768         | CA        | PHE<br>PHE |   | 412        | 101.695            | 6.733<br>7.744   | 34.240<br>33.405 | 1.00 36.11<br>1.00 33.66 | C<br>C |
| ATOM<br>ATOM | 6769<br>6770 | CB<br>CG  | PHE        |   |            | 100.909<br>99.753  | 8.383            | 34.165           | 1.00 30.34               | C      |
| ATOM         | 6771         |           | PHE        |   | 412        | 99.950             | 9.510            | 34.863           | 1.00 30.86               | č      |
| ATOM         | 6772         |           | PHE        |   |            | 99.025             | 10.119           | 35.602           | 1.00 29.10               | Č      |
| ATOM         | 6773         | CZ        | PHE        |   | 412        | 97.779<br>97.552   | 9.690<br>8.530   | 35.582<br>34.882 | 1.00 28.96<br>1.00 32.21 | C      |
| MOTA<br>MOTA | 6774<br>6775 |           | PHE        |   |            | 98.526             | 7.869            | 34.149           | 1.00 25.56               | c      |
| MOTA         | 6776         | C         | PHE        |   |            | 102.546            | 5.759            | 33.370           | 1.00 36.07               | Ċ      |
| ATOM         | 6777         | 0         | PHE        |   | 412        | 102.157            | 5.403            | 32.260           | 1.00 34.20               | 0      |
| ATOM<br>ATOM | 6778<br>6779 | N<br>CA   | LEU        |   |            | 103.726<br>104.666 | 5.453<br>4.531   | 33.894<br>33.367 | 1.00 35.50<br>1.00 37.37 | N<br>C |
| MOTA         | 6780         | CB        | LEU        |   | 413        | 105.873            | 5.309            | 32.976           | 1.00 34.64               | č      |
| MOTA         | 6781         | CG        | LEU        | В |            | 105.673            | 6.059            | 31.713           | 1.00 28.87               | С      |
| MOTA         | 6782         |           | LEU        |   |            | 106.986            | 6.598            | 31.470           | 1.00 28.20               | C      |
| ATOM<br>ATOM | 6783<br>6784 | CDZ       | LEU        |   | 413        | 105.244<br>105.034 | 5.428<br>3.305   | 30.576<br>34.364 | 1.00 23.76<br>1.00 40.34 | C      |
| MOTA         | 6785         | ŏ         | LEU        |   |            | 105.470            | 3.495            | 35.591           | 1.00 41.19               | ō      |
| MOTA         | 6786         | N         | ASP        |   | 414        |                    | 2.083            | 33.835           | 1.00 41.01.              | N      |
| MOTA         | 6787         | CA        | ASP        |   | 414        | 105.426            | 0.918            | 34.640<br>34.282 | 1.00 41.92<br>1.00 39.64 | C      |
| ATOM<br>ATOM | 6788<br>6789 | CB<br>CG  | ASP<br>ASP |   | 414<br>414 | 104.679<br>105.009 | -0.202           | 32.905           | 1.00 42.82               | Č      |
| MOTA         | 6790         |           | ASP        |   |            | 104.293            | -1.484           | 32.219           | 1.00 43.97               | o      |
| ATOM         | 6791         |           | ASP        |   |            | 106.049            | -0.289           | 32.300           | 1.00 49.99               | 0.     |
| MOTA         | 6792         | С<br>0    | ASP<br>ASP |   |            | 106.849<br>107.411 | 0.697<br>1.597   | 34.470<br>33.899 | 1.00 45.18<br>1.00 43.93 | C<br>O |
| MOTA         | 6793<br>6794 | N         | GLU        |   |            | 107.411            | -0.372           | 35.041           | 1.00 51.47               | N      |
| ATOM         | 6795         | CA        | GLU        |   |            | 108.859            | -0.685           | 35.018           | 1.00 55.17               | С      |
| MOTA         | 6796         | CB        | GLU        |   |            | 108.867            | -2.124           | 35.440           | 1.00 59.92               | C      |
| ATOM<br>ATOM | 6797<br>6798 | CG<br>CD  | GLU<br>GLU |   | 415        | 108.199<br>107.360 | -3.101<br>-4.316 | 34.376<br>34.971 | 1.00 68.48<br>1.00 82.63 | C      |
| ATOM         | 6799         | OE1       | GLU        |   |            | 108.027            | -5.331           | 35.594           | 1.00 88.87               | Ö      |
| ATOM         | 6800         |           | GLU        |   | 415        | 106.043            | -4.265           | 34.818           | 1.00 84.54               | 0      |
| ATOM         | 6801         | C         | GLU        |   |            | 109.518            | -0.523           | 33.639           | 1.00 53.74               | C      |
| ATOM<br>ATOM | 6802<br>6803 | N<br>N    | GLU<br>GLY |   |            | 110.540<br>108.930 | 0.237<br>-1.087  | 33.486<br>32.561 | 1.00 52.09<br>1.00 54.20 | N<br>O |
| ATOM         | 6804         | CA        | GLY        |   |            | 109.419            | -0.776           | 31.174           | 1.00 56.22               | č      |
| MOTA         | 6805         | С         | GLY        |   | 416        | 108.761            | 0.626            | 30.804           | 1.00 57.54               | С      |
| ATOM         | 6806         | 0         | GLY        |   | 416        | . 108.281          | 1.359            | 31.732           | 1.00 62.21               | О<br>И |
| ATOM<br>ATOM | 6807<br>6808 | N<br>CA   | GLY<br>GLY |   | 417<br>417 | 108.715<br>107.903 | 1.089<br>2.255   | 29.610<br>29.215 | 1.00 53.94<br>1.00 52.04 | C      |
| ATOM         | 6809         | c         | GLY        |   | 417        | 106.584            | 1.862            | 29.596           | 1.00 51.85               | С      |
| ATOM         | 6810         | 0         | GLY        |   | 417        | 106.469            | 1.511            | 30.654           | 1.00 58.46               | 0      |
| ATOM         | 6811<br>6812 | N<br>Ca   | ASN<br>ASN |   | 418<br>418 | 105.651<br>104.389 | 1.636<br>1.150   | 28.852<br>29.251 | 1.00 48.17               | N<br>C |
| ATOM<br>ATOM | 6813         | CB        | ASN        | _ | 418        | 104.301            | -0.257           | 29.595           | 1.00 47.30               | č      |
| ATOM         | 6814         | CG        | ASN        |   |            | 105.275            | -1.126           | 28.899           | 1.00 56.75               | С      |
| ATOM         | 6815         | OD1       | ASN        |   | 418        | 106.375            | -1.386           | 29.491           | 1.00 74.73               | O<br>N |
| ATOM<br>ATOM | 6816<br>6817 | ND2       | ASN<br>ASN |   |            | 105.081<br>103.466 | -1.422<br>1.964  | 27.613<br>30.013 | 1.00 56.19<br>1.00 42.15 | c      |
| MOTA         | 6818         | ŏ         | ASN        |   |            | 103.581            | 2.277            | 31.086           | 1.00 35.71               | ō      |
| MOTA         | 6819         | N         | PHE        |   |            | 102.508            | 2.321            | 29.170           | 1.00 42.42               | N      |
| ATOM         | 6820         | CA        | PHE        |   |            | 101.466            | 3.221<br>3.613   | 29.671<br>28.700 | 1.00 39.36<br>1.00 35.65 | c<br>c |
| ATOM<br>ATOM | 6821<br>6822 | CB<br>CG  | PHE        |   |            | 100.428<br>99.470  | 4.516            | 29.318           | 1.00 41.44               | č      |
| MOTA         | 6823         |           | PHE        |   |            | 99.888             | 5.824            | 29.615           | 1.00 39.18               | С      |
| MOTA         | 6824         |           | PHE        |   |            | 99.098             | 6.595            | 30.230           | 1.00 37.38               | C      |
| ATOM<br>ATOM | 6825<br>6826 | CZ<br>CE2 | PHE        |   |            | 97.879<br>97.453   | 6.205<br>4.857   | 30.533<br>30.278 | 1.00 38.17<br>1.00 34.21 | c<br>c |
| ATOM         | 6827         |           | PHE        |   |            | 98.215             | 4.121            | 29.649           | 1.00 35.16               | č      |
| ATOM         | 6828         | C         | PHE        | В | 419        | 100.936            | 2.471            | 30.813           | 1.00 38.54               | C      |
| MOTA         | 6829         | 0         | PHE        |   |            | 100.442            | 1.369            | 30.664           | 1.00 45.48               | 0      |
| ATOM<br>ATOM | 6830<br>6831 | N<br>CA   | LYS        |   |            | 100.953<br>100.311 | 3.049<br>2.497   | 31.966<br>33.226 | 1.00 36.66<br>1.00 31.92 | N<br>C |
| MOTA         | 6832         | CB        | LYS        |   |            | 101.358            | 2.443            | 34.324           | 1.00 32.77               | č      |
| ATOM         | 6833         | CG        | LYS        | В | 420        | 100.848            | 1.871            | 35.592           | 1.00 32.90               | c      |
| MOTA         | 6834         | CD        | LYS        |   |            | 101.800            | 2.020            | 36.836           | 1.00 37.40<br>1.00 42.69 | c<br>c |
| ATOM<br>ATOM | 6835<br>6836 | CE<br>N2  | LYS<br>LYS |   |            | 102.955<br>103.527 | 3.005<br>3.167   | 36.431<br>38.058 | 1.00 47.34               | N      |
| ATOM         | 6837         | C         | LYS        |   |            | 99.080             | 3.252            | 33.711           | 1.00 30.31               | č      |
| •            |              |           |            |   |            |                    |                  |                  |                          |        |

|              |              |          |            |   |            |      | Fi             | gure             | 2                |      |                |          |
|--------------|--------------|----------|------------|---|------------|------|----------------|------------------|------------------|------|----------------|----------|
| ATOM         | 6838         | 0        | LYS        | В | 420        | 99   | .183           | 4.150            | 34.370           |      | 29.60          | 0        |
| MOTA         | 6839         | N        | LYS        |   | 421        |      | .889           | 2.840            | 33.327           |      | 30.41          | N        |
| MOTA         | 6840         | CA       | LYS        |   | 421        |      | . 627          | 3.320            | 33.602           |      | 28.44          | C<br>C   |
| MOTA         | 6841         | CB       | LYS        |   | 421        |      | .519<br>.830   | 2.532<br>1.399   | 32.851<br>33.307 |      | 33.55          | č        |
| ATOM<br>ATOM | 6842<br>6843 | CG<br>CD | LYS        |   | 421<br>421 |      | .913           | 0.705            | 32.402           |      | 34.06          | Ċ        |
| ATOM         | 6844         | CE       | LYS        |   | 421        |      | .641           | -0.745           | 32.969           |      | 36.44          | С        |
| ATOM         | 6845         | NZ       | LYS        |   | 421        |      | .963           | -1.371           | 31.856           |      | 39.97          | N        |
| MOTA         | 6846         | С        | LYS        |   | 421        |      | .281           | 3.529            | 35.002           |      | 32.17          | C        |
| MOTA         | 6847         | 0        | LYS        |   | 421        |      | .989           | 3.315            | 35.766           |      | 33.99          | O<br>N   |
| ATOM         | 6848         | N        | SER        |   | 422        |      | .148           | 4.179<br>4.379   | 35.387<br>36.763 |      | 34.37<br>29.57 | C        |
| ATOM<br>ATOM | 6849<br>6850 | CA<br>CB | SER        |   |            |      | .818           | 5.369            | 37.299           |      | 28.09          | č        |
| ATOM         | 6851         | ŌĞ       | SER        |   |            |      | .325           | 5.671            | 38.654           |      | 33.50          | 0        |
| ATOM         | 6852         | С        | SER        |   |            |      | .544           | 4.790            | 36.978           |      | 31.17          | С        |
| MOTA         | 6853         | 0        | SER        |   |            |      | .970           | 5.412            | 36.206           |      | 31.84          | 0        |
| ATOM         | 6854         | N        |            |   | 423        |      | .900           | 4.302            | 37.958           |      | 33.68<br>35.90 | . N<br>C |
| ATOM         | 6855<br>6856 | CA<br>CB | LYS<br>LYS |   | 423<br>423 |      | .528           | 4.512<br>3.429   | 38.008<br>38.839 |      | 36.31          | c        |
| MOTA<br>MOTA | 6857         | CG       | LYS        |   | 423        |      | .613           | 2.796            | 39.907           |      | 42.21          | č        |
| ATOM         | 6858         | CD       | LYS        |   | 423        |      | .589           | 2.085            | 40.852           | 1.00 | 51.50          | С        |
| ATOM         | 6859         | CE       | LYS        | В | 423        |      | .175           | 1.461            | 42.183           |      | 52.65          | C        |
| MOTA         | 6860         | NZ       | LYS        |   |            |      | .159           | 0.534            | 43.041           |      | 48.17          | N        |
| ATOM         | 6861         | C        | LYS        |   |            |      | .450           | 5.814<br>6.395   | 38.684<br>38.738 |      | 37.16<br>35.09 | C<br>0   |
| ATOM<br>ATOM | 6862<br>6863 | 0<br>N   | LYS<br>TYR |   |            |      | .624           | 6.214            | 39.202           |      | 38.84          | N        |
| ATOM         | 6864         | CA       | TYR        |   |            |      | .637           | 7.435            | 40.004           |      | 40.58          | С        |
| ATOM         | 6865         | СВ       | TYR        |   |            |      | .877           | 7.449            | 40.934           | 1.00 | 39.92          | С        |
| MOTA         | 6866         | CG       | TYR        |   |            |      | .616           | 6.723            | 42.177           |      | 44.08          | C        |
| ATOM         | 6867         |          | TYR        |   |            |      | .328           | 7.364            | 43.344           |      | 53.83          | C<br>C   |
| MOTA         | 6868         |          | TYR<br>TYR |   |            |      | .073           | 6.719<br>5.352   | 44.452<br>44.383 |      | 52.80<br>53.57 | c        |
| MOTA<br>MOTA | 6869<br>6870 | CZ<br>OH | TYR        | _ |            |      | .875           | 4.459            | 45.488           |      | 47.67          | ŏ        |
| ATOM         | 6871         |          | TYR        |   |            |      | .434           | 4.780            | 43.240           |      | 44.95          | С        |
| ATOM         | 6872         |          | TYR        |   |            | . 93 | .689           | 5.433            | 42.204           | 1.00 | 45.46          | С        |
| MOTA         | 6873         | Ç        | TYR        | В | 424        |      | .666           | 8.734            | 38.970           |      | 37.95          | C        |
| ATOM         | 6874         |          | TYR        |   |            |      | .877           | 9.900            | 39.387           |      | 36.76          | 0        |
| ATOM         | 6875         | N        | PHE        |   |            |      | .511<br>.683   | 8.464<br>9.539   | 37.709<br>36.670 |      | 33.63<br>30.18 | N<br>C   |
| ATOM<br>ATOM | 6876<br>6877 | CA<br>CB | PHE        |   |            |      | .383           | 8.961            | 35.536           |      | 22.18          | č        |
| ATOM         | 6878         | CG       | PHE        |   |            |      | .597           | 9.863            | 34.397           |      | 28.30          | C        |
| ATOM         | 6879         |          |            |   | 425        |      | .526           | 10.898           | 34.429           |      | 31.09          | С        |
| MOTA         | 6880         | CE1      | PHE        |   |            |      | .637           | 11.829           | 33.334           |      | 22.15          | C        |
| ATOM         | 6881         | CZ       | PHE        |   | 425        |      | .866           | 11.640           | 32.286           |      | 26.38          | c<br>c   |
| ATOM         | 6882<br>6883 |          | PHE        |   |            |      | .948<br>.823   | 10.644<br>9.784  | 32.265<br>33.328 |      | 23.45          | Č        |
| ATOM<br>ATOM | 6884         | C        | PHE        |   | 425        |      | 319            | 10.063           | 36.316           |      | 31.63          | č        |
| ATOM         | 6885         | ŏ        | PHE        |   | 425        |      | .769           | 9.494            | 35.478           |      | 32.47          | 0        |
| MOTA         | 6886         | N        | MET        | В | 426        | 90   | .776           | 11.045           | 37.048           |      | 30.84          | N        |
| MOTA         | 6887         | CA       | Met        |   | 426        |      | .536           | 11.561           | 36.775           |      | 32.55          | C        |
| MOTA         | 6888         | CB       | MET        |   | 426        |      | 3.607          | 11.345           | 37.970<br>38.447 |      | 32.66<br>38.37 | C<br>C   |
| ATOM<br>ATOM | 6889<br>6890 | CG<br>SD | MET<br>MET |   | 426<br>426 |      | 1.715<br>1.825 | 10.001           | 39.967           |      | 44.70          | Š        |
| ATOM         | 6891         | CE       | MET        |   | 426        |      | .364           | 9.818            | 39.453           |      | 39.89          | С        |
| MOTA         | 6892         | C        | MET        |   |            |      | .470           | 13.106           | 36.447           |      | 29.46          | С        |
| MOTA         | 6893         | 0        | MET        |   |            |      | 3.548          | 13.752           | 36.848           |      | 29.27          | 0        |
| MOTA         | 6894         | N        | PRO        |   |            |      | .296           | 13.623           | 35.638           |      | 24.22<br>22.16 | и<br>С   |
| ATOM         | 6895         | CA       |            |   | 427<br>427 |      | ).196<br>l.256 | 14.965<br>15.165 | 35.326<br>34.379 |      | 22.29          | č        |
| MOTA<br>MOTA | 6896<br>6897 | CB<br>CG |            |   | 427        |      | 1.796          | 13.916           | 34.148           |      | 27.76          | c        |
| ATOM         | 6898         | CD       |            |   | 427        |      | .039           | 12.876           | 34.637           |      | 25.83          | С        |
| MOTA         | 6899         | C        |            |   | 427        |      | 3.926          | 15.315           | 34.658           |      | 23.55          | C        |
| MOTA         | 6900         | 0        | PRO        | В | 427        |      | 3.530          | 16.309           | 34.792           |      | 25.77          | 0        |
| ATOM         | 6901         | N        |            |   | 428        |      | 3.271          | 14.414           | 33.986           |      | 25.30<br>22.19 | N<br>C   |
| ATOM         | 6902         | CA       |            |   | 428<br>428 |      | 7.080          | 14.632<br>13.672 | 33.314<br>32.098 |      | 23.09          | c        |
| ATOM<br>ATOM | 6903<br>6904 | CB<br>CG |            |   | 428        |      | 7.007<br>3.091 | 13.897           | 30.995           |      | 15.47          | č        |
| ATOM         | 6905         |          | PHE        |   |            |      | 208            | 13.349           | 31.057           | 1.00 | 12.74          | С        |
| ATOM         | 6906         |          | PHE        |   |            | 90   | 246            | 13.661           | 30.118           |      | 19.27          | C        |
| MOTA         | 6907         | CZ       |            |   | 428        |      | .027           | 14.577           | 29.175           |      | 17.53          | C        |
| MOTA         | 6908         |          | PHE        |   |            |      | 3.875          | 15.124           | 29.111<br>30.013 |      | 22.03          | C<br>C   |
| MOTA         | 6909         |          | PHE        |   |            |      | 7.896<br>5.973 | 14.825<br>14.205 | 34.092           |      | 26.39          | c        |
| MOTA<br>MOTA | 6910<br>6911 | 0        |            |   | 428<br>428 |      | 1.880          | 13.936           | 33.614           |      | 25.03          | ō        |
| MOTA         | 6912         | N        |            |   | 429        |      | 5.229          | 14.057           | 35.347           | 1.00 | 29.07          | Ŋ        |
| ATOM         | 6913         | CA       |            |   | 429        |      | 5.286          | 13.387           | 36.280           | 1.00 | 26.94          | С        |

|              |              |           |       |                | Figure                         | . 2      |                          |    |        |
|--------------|--------------|-----------|-------|----------------|--------------------------------|----------|--------------------------|----|--------|
| ATOM         | 6914         | СВ        | SER   | B 429          | Figure<br>83.969 14.13         |          | 1.00 29.84               |    | С      |
| ATOM         | 6915         | OG        |       | B 429          | 83.133 13.4                    |          |                          |    | 0      |
| MOTA<br>MOTA | 6916<br>6917 | C<br>O    |       | B 429<br>B 429 | 84.977 11.90<br>85.628 11.40   |          |                          |    | 0      |
| ATOM         | 6918         | Ň         |       | B 430          | 83.960 11.2                    |          |                          |    | N      |
| ATOM         | 6919         | CA        |       | B 430          | 83.496 9.88                    |          |                          |    | С      |
| MOTA<br>MOTA | 6920<br>6921 | CB<br>C   |       | B 430<br>B 430 | 83.935 9.16<br>82.069 9.69     |          |                          |    | C      |
| ATOM         | 6922         | ŏ         |       | B 430          | 81.384 10.48                   |          |                          |    | 0      |
| ATOM         | 6923         | N         | GLY I |                | 81.457 8.60                    |          |                          |    | N      |
| ATOM<br>ATOM | 6924<br>6925 | CA<br>C   | GLY I |                | 80.049 8.42<br>79.062 8.88     |          |                          |    | C      |
| ATOM         | 6926         | ŏ         | GLY F |                | 79.451 9.16                    |          |                          |    | Ö      |
| ATOM         | 6927         | N         | LYS E |                | 77.745 8.99                    |          |                          |    | N      |
| ATOM<br>ATOM | 6928<br>6929 | CA<br>CB  | LYS E |                | 76.824 9.44<br>75.469 9.33     |          |                          |    | C      |
| ATOM         | 6930         | CG        | LYS E |                | 74.909 7.83                    |          |                          |    | c      |
| ATOM         | 6931         | CD        | LYS E |                | 73.543 7.64                    |          |                          |    | С      |
| ATOM<br>ATOM | 6932<br>6933 | CE<br>N2  | LYS E |                | 72.757 6.36<br>73.691 5.19     |          |                          |    | C<br>N |
| ATOM         | 6934         | C         | LYS E |                | 76.931 10.75                   |          |                          |    | C      |
| MOTA         | 6935         | 0         | LYS E |                | 76.295 11.02                   |          | 1.00 33.81               |    | 0      |
| ATOM<br>ATOM | 6936<br>6937 | N<br>CA   | ARG E |                | 77.693 11.63<br>77.936 12.92   |          | 1.00 31.03<br>1.00 29.98 |    | N<br>C |
| ATOM         | 6938         | СВ        | ARG E |                | 77.680 13.93                   |          | 1.00 23.36               |    | c      |
| MOTA         | 6939         | CG        | ARG E |                | 76.155 14.19                   | 6 35.578 | 1.00 24.49               |    | С      |
| ATOM<br>ATOM | 6940<br>6941 | CD<br>NE  | ARG E |                | 75.702 15.28<br>74.337 15.66   |          | 1.00 33.27               |    | C      |
| ATOM         | 6942         | CZ        | ARG E |                | 73.679. 16.68                  |          | 1.00 32.36<br>1.00 34.94 |    | N<br>C |
| ATOM         | 6943         |           | ARG E |                | 74.142 17.55                   | 4 33.848 | 1.00 28.40               |    | N      |
| ATOM<br>ATOM | 6944         | NH2<br>C  | ARG B |                | 72.485, 16.87                  |          | 1.00 44.73               |    | N      |
| ATOM         | 6945<br>6946 | 0         | ARG B |                | 79.252. 13.07<br>79.725. 14.15 |          | 1.00 30.19               |    | C      |
| ATOM         | 6947         | N         | ILE B | 434            | 79.944%.12.06                  |          | 1.00 28.85               |    | N      |
| ATOM         | 6948         | CA        | ILE B |                | 81.353 . 12.28                 |          | 1.00 27.52               | ٠. | C      |
| ATOM<br>ATOM | 6949<br>6950 | CB<br>CG1 | ILE B |                | 81.974 10.98<br>83.351 11.14   |          | 1.00 30.24               |    | C      |
| ATOM         | 6951         | CD1       | ILE B | 434            | 84.135; 9.92                   |          | 1.00 34.47               |    | Č      |
| ATOM         | 6952         |           | ILE B |                | 81.274: 10.24                  |          | 1.00 24.38               |    | C      |
| ATOM<br>ATOM | 6953<br>6954 | С<br>О    | ILE B |                | 81.426 % 13.13<br>80.469 13.21 |          | 1.00 27.40<br>1.00 26.67 |    | 0      |
| MOTA         | 6955         | N         | CYS B |                | 82.474 13.90                   |          | 1.00 25.66               |    | N      |
| MOTA         | 6956         | CA        | CYS B |                | 82.664 14.81                   |          | 1.00 27.17               |    | C      |
| ATOM<br>ATOM | 6957<br>6958 | CB<br>SG  | CYS B |                | 84.130 15.29<br>84.245 16.51   |          | 1.00 31.33<br>1.00 41.60 |    | C<br>S |
| ATOM         | 6959         | c         | CYS B |                | 82.317 14.29                   |          | 1.00 28.22               |    | č      |
| MOTA         | 6960         | 0         | CYS B |                | 82.950 13.38                   |          | 1.00 33.09               |    | 0      |
| ATOM<br>ATOM | 6961<br>6962 | N<br>CA   | VAL B |                | 81.231 14.74<br>80.809 14.38   |          | 1.00 28.79<br>1.00 25.91 | •  | N<br>C |
| MOTA         | 6963         | СВ        | VAL B |                | 79.687 15.35                   |          | 1.00 28.73               |    | Č      |
| MOTA         | 6964         |           | VAL B |                | 79.371 15.18                   |          | 1.00 31.02               |    | C      |
| MOTA<br>MOTA | 6965<br>6966 | CG2       | VAL B |                | 78.427 15.08<br>81.794 14.66   |          | 1.00 32.21               |    | C      |
| ATOM         | 6967         | ō         | VAL B | 436            | 81.579 14.34                   |          | 1.00 33.96               |    | ŏ      |
| ATOM         | 6968         | N         | GLY B |                | 82.930 15.23                   |          | 1.00 26.67               |    | N      |
| MOTA<br>MOTA | 6969<br>6970 | CA<br>C   | GLY B |                | 83.917 15.49<br>85.258 14.85   |          | 1.00 26.44<br>1.00 28.22 |    | C      |
| ATOM         | 6971         | ō         | GLY B | 437            | 86.400 15.29                   |          | 1.00 28.34               |    | ō      |
| ATOM         | 6972         | N         | GLU B |                | 85.204 13.79                   |          | 1.00 25.63               |    | N      |
| MOTA<br>MOTA | 6973<br>6974 | CA<br>CB  | GLU B | 438 .<br>438   | . 86.479 13.07<br>86.029 11.87 |          | 1.00 27.24<br>1.00 29.26 |    | C<br>C |
| ATOM         | 6975         | CG        | GLU B |                | 86.949 11.32                   |          | 1.00 35.54               |    | č      |
| ATOM         | 6976         | CD        | GLU B |                | 86.493 10.05                   |          | 1.00 40.71               |    | C      |
| ATOM<br>ATOM | 6977<br>6978 |           | GLU B |                | 87.501 9.579<br>85.267 9.589   |          | 1.00 47.35<br>1.00 36.00 |    | 0      |
| ATOM         | 6979         | C         | GLU B |                | 87.312 12.71                   |          | 1.00 38.00               |    | c      |
| ATOM         | 6980         | 0         | GLU B | 438            | 88.472 12.94                   | 25.670   | 1.00 27.60               |    | 0      |
| ATOM<br>ATOM | 6981<br>6982 | N         | ALA B |                | 86.644 12.103<br>87 135 11 60  |          | 1.00 27.69               |    | И      |
| ATOM         | 6982<br>6983 | CA<br>CB  | ALA B |                | 87.135 11.604<br>86.100 10.78  |          | 1.00 24.66<br>1.00 23.83 |    | C      |
| MOTA         | 6984         | С         | ALA B | 439            | 87.642 12.683                  | 23.019   | 1.00 25.98               |    | С      |
| ATOM         | 6985         | 0         | ALA B |                | 88.833 12.770                  |          | 1.00 36.19               |    | 0      |
| ATOM<br>ATOM | 6986<br>6987 | N<br>CA   | LEU B |                | 86.886 13.609<br>87.389 14.850 |          | 1.00 28.51<br>1.00 23.66 |    | N<br>C |
| ATOM         | 6988         | CB        | LEU B |                | 86.329 15.968                  | 21.727   | 1.00 24.55               |    | С      |
| ATOM         | 6989         | CG        | LEU B | 440            | 86.579 17.082                  |          | 1.00 28.15               |    | С      |

```
Figure 2
                                                           1.00 23.82
             CD1 LEU B 440
                                  87.275 16.614
                                                  19.579
ATOM
       6990
                                                           1.00 24.40
ATOM
       6991
             CD2 LEU B 440
                                  85.371
                                          17.873
                                                   20.436
ATOM
       6992
                  LEU B 440
                                  88.373
                                          15.489
                                                   22.495
                                                           1.00 22.96
ATOM
       6993
             0
                  LEU B 440
                                  89.469
                                          15.837
                                                   21.915
                                                           1.00 27.20
                                                                                  0
MOTA
       6994
                  ALA B 441
                                  88.256
                                          15.684
                                                   23.752
                                                           1.00 20.63
             N
ATOM
       6995
                  ALA B 441
                                  89.388
                                          16.380
                                                   24.318
                                                           1.00 18.95
                                                                                  C
             CA
ATOM
       6996
                  ALA B 441
                                  89.127
                                          16.497
                                                   25.683
                                                           1.00 24.72
             CB
MOTA
       6997
             c
                  ALA B 441
                                  90.576
                                          15.715
                                                   24.159
                                                           1.00 24.09
                                                                                  C
                                  91.680
                                          16.330
                                                   23.880
                                                           1.00 24.53
ATOM
       6998
             0
                  ALA B 441
                  GLY B 442
ATOM
       6999
             N
                                  90.530
                                          14.356
                                                   24.389
                                                           1.00 25.15
                                                                                  N
ATOM
       7000
             CA
                  GLY B 442
                                  91.840
                                          13.724
                                                   24.323
                                                           1.00 24.07
ATOM
       7001
                  GLY B 442
                                  92.346
                                          13.659
                                                   23.072
                                                           1.00 23.36
             С
                  GLY B 442
                                  93.531
                                          13.658
                                                   22.813
                                                           1.00 33.09
ATOM
       7002
             0
                  MET B 443
                                  91.515
                                          13.569
                                                   22.146
                                                           1.00 25.01
       7003
ATOM
             N
                                  92.075
                                          13.614
                                                   20.747
                                                           1.00 23.34
                                                                                  C
                 MET B 443
ATOM
       7004
             CA
                                  90.895
                                          13.358
                                                   19.882
                                                           1.00 23.68
                                                                                  C
ATOM
       7005
             СВ
                  MET B 443
                                  91.226
                                                   18.406
ATOM
       7006
                 MET B 443
                                          13,437
                                                           1.00 35.58
                                                                                  C
             CG
                                  89.714
                                          12.721
                                                   17.583
                                                           1.00 40.79
                                                                                  s
       7007
             SD
                  MET B 443
ATOM
                                  88.404
                                          12,470
                                                   18.612
                                                           1.00 38.97
                                                                                  c
       7008
             CE
                 MET B 443
ATOM
                                  92.712
                                          14.942
                                                   20.459
                                                           1.00 24.56
                                                                                  c
       7009
                  MET B 443
ATOM
             С
                                                   19.824
                  MET B 443
                                  93.602
                                          15.009
                                                           1.00 30.04
                                                                                  0
ATOM
       7010
             0
                                          16.092
                                                   20.822
                                                           1.00 26.67
                                                                                  N
                  GLU B 444
                                  92.172
ATOM
       7011
             N
                                                   20.685
                                                                                  С
ATOM
       7012
             CA
                 GLU B 444
                                  92.865
                                          17.399
                                                           1.00 23.98
                                                   21.192
                                                           1.00 28.79
ATOM
       7013
             CB
                 GLU B 444
                                  91.938
                                          18.578
                                                                                  c
                                  90.643
                                          18.748
                                                   20.387
                                                           1.00 29.52
ATOM
       7014
             CG
                 GLU B 444
                                  89.841
                                                   20.815
ATOM
       7015
             CD
                 GLU B 444
                                          19.823
                                                           1.00 35.83
ATOM
       7016
             OE1 GLU B 444
                                  90.190
                                          20.949
                                                   20.606
                                                           1.00 44.44
                                                                                  0
ATOM
       7017
             OE2 GLU B 444
                                  88.799
                                          19.601
                                                   21.318
                                                           1.00:43.62
                                                                                  0
ATOM
       7018
                  GLU B 444
                                  94.034
                                          17.409
                                                   21.478
                                                           1.00 23.54
                                                                                  C
             С
       7019
                  GLU B 444
                                  95.071
                                          17.799
                                                   20.869: 1.00,27.67
                                                                                  0
ATOM
             0
ATOM
       7020
             N
                  LEU B 445
                                  94.067
                                          17.090
                                                   22.784
                                                           1.00 21.05
                                                                                  N
ATOM
       7021
             CA
                  LEU B 445
                                  95.455
                                          17.121
                                                   23.417 : 1:00,20.50
                                  95.562
                                                   24.833 - 1.00 21.64 1
ATOM
       7022
             СВ
                  LEU B 445
                                          16.668
                 LEU B 445
                                                   25.658
ATOM
       7023
             CG
                                  94.405
                                          17.242
                                                           1.00 18.59
                                  94.377
                                          16.643
                                                   27.110
                                                           1.00 19.46
                                                                                  C
ATOM
             CD1 LEU B 445
       7024
                                  94.709
                                          18.740
                                                   25.722
                                                           1.00-18.07
                                                                                  С
ATOM
       7025
             CD2 LEU B 445
                                  96.477
                                          16.337
                                                                                  c
ATOM
       7026
                  LEU B 445
                                                   22,759
                                                           1.00 -25.06
             С
                                                           1.00-28.56
ATOM
       7027
             0
                  LEU B 445
                                  97.802
                                          16.857
                                                   22.544
                                                                                  0
                                          15.081
                                                           1.00 26.29
                                                                                  N
                                                   22.367
ATOM
       7028
             N
                  PHE B 446
                                  96.166
                                                   21.778
                                  97.332
                                          14.258
                                                                                  C
MOTA
       7029
             CA
                 PHE B 446
                                                           1.00 22.94
                                                   21.766
                                                           1:00 25.42
ATOM
       7030
             CB
                  PHE B 446
                                  96.972
                                          12.775
                                                                                  ¢
ATOM
       7031
             CG
                  PHE B 446
                                  97.986
                                          11.898
                                                   21.132
                                                           1.00 25.31
                                                                                  C
ATOM
       7032
             CD1 PHE B 446
                                  97.898
                                          11.561
                                                   19.816
                                                           1.00 33.20
ATOM
       7033
             CE1 PHE B 446
                                  98.739
                                          10.846
                                                   19.189
                                                           1.00 24.98
                                                                                  С
MOTA
       7034
                 PHE B 446
                                  99.787
                                          10.350
                                                   19.875
                                                           1.00 29.55
             CZ
ATOM
       7035
             CE2 PHE B 446
                                  99.892
                                          10.581
                                                   21.121
                                                           1.00 29.31
                                                                                  C
                                                           1.00 24.85
       7036
             CD2 PHE B 446
                                  98.962
                                          11.410
                                                   21.801
                                                                                  C
ATOM
       7037
                  PHE B 446
                                  97.716
                                          14.815
                                                   20.471
                                                           1.00 21.61
                                                                                  C
ATOM
             С
ATOM
       7038
                  PHE B 446
                                  98.957
                                          14.995
                                                   20.291
                                                           1.00 19.17
                                          15.079
                                                           1.00 20.94
                                                                                  N
ATOM
       7039
             N
                  LEU B 447
                                  96.765
                                                   19.561
ATOM
       7040
             CA
                 LEU B 447
                                  97.132
                                          15.510
                                                   18.200
                                                           1.00 22.17
                  LEU B 447
                                  95.978
                                          15.466
                                                   17.272
                                                           1.00 20.89
ATOM
       7041
             СВ
                                  95.273
                                          14.072
                                                   17.201
                                                           1.00 25.93
ATOM
       7042
                 LEU B 447
             CG
                                                   16.420
                                                           1.00 26.04
                                  94.025
                                          14.111
ATOM
       7043
             CD1 LEU B 447
                                                   16.433
                                                           1.00 24.34
                                  96.059
ATOM
       7044
             CD2 LEU B 447
                                          13.148
                                  97.624
                                          16.937
                                                   18.151
                                                           1.00 24.11
ATOM
       7045
             c
                  LEU B 447
                                                   17,350
                                                           1.00 23.92
ATOM
       7046
             0
                  LEU B 447
                                  98.533
                                          17.313
                                                                                  N
                                          17,747
                                                   18.995
                                                           1.00 25.59
ATOM
       7047
             N
                  PHE B 448
                                  97.099
                                                   18.905
                                                           1.00 29.00
                                                                                  C
ATOM
       7048
             CA
                  PHE B 448
                                  97.679
                                          19.152
                                                   19.651
                                                           1.00 28.89
ATOM
       7049
             CB
                  PHE B 448
                                  96.878
                                          20.236
                                                                                  C
MOTA
       7050
             ÇG
                 PHE B 448
                                  95.551
                                          20.589
                                                   19.039
                                                           1.00 25.38
       7051
             CD1 PHE B 448
                                  95.345
                                          20.414
                                                   17.860
                                                           1.00 27.14
ATOM
ATOM
       7052
             CE1 PHE B 448
                                  94.087
                                          20.842
                                                   17.325
                                                           1.00 32.03
                                                                                  C
MOTA
       7053
             CZ
                 PHE B 448
                                  93.194
                                          21.304
                                                   18.014
                                                           1.00 26.80
                                  93.485
                                          21.474
                                                   19.329
                                                           1.00 26.96
                                                                                  С
ATOM
       7054
             CE2 PHE B 448
       7055
             CD2 PHE B 448
                                  94.626
                                          21.153
                                                   19.752
                                                           1.00 24.07
ATOM
                                                   19.551
                                                           1.00 26.82
                                                                                  ¢
                  PHE B 448
                                  99.092
                                          19.076
ATOM
       7056
             C
                                                   19.093
                                                           1.00 32.50
       7057
                  PHE B 448
                                  99.904
                                          19.734
ATOM
             O
                                  99.319
                                          18.413
                                                   20.620
                                                           1.00 25.07
       7058
                  LEU B 449
ATOM
             N
                 LEU B 449
                                 100.654
                                          18.495
                                                   21.164
                                                           1.00 27.99
ATOM
       7059
             CA
                                 100.632
                                          18.004
                                                   22.602
                                                           1.00 27.37
                 LEU B 449
ATOM
       7060
             CB
                                                           1.00 32.91
                                                   23.451
ATOM
       7061
             CG
                 LEU B 449
                                  99.841
                                          18.811
                                                           1.00 37.42
                                                   24.816
ATOM
       7062
             CD1 LEU B 449
                                  99.689
                                          18,249
                                                           1.00 36.35
                                                   23.777
MOTA
       7063
             CD2
                 LEU B 449
                                 100.885
                                          20.008
                                          17.716
                                                           1.00 28.76
                                                                                  c
                                                   20.313
ATOM
       7064
             С
                 LEU B 449
                                 101.622
                  LEU B 449
                                 102.708
                                          18.077
                                                  20.058
                                                          1.00 31.52
ATOM
       7065
```

प्राप्ति के दूर्वतिक है जिल्ला

The & Most Par V

Maria Maria de Como Mila maia de Maria den Alamando de Como

Son & MATE 15 March

11

· Start Brain

J78 - N. 19475

anger in Addition

100

.......

ATOM

7141 СВ LYS B 459

191/514

```
Figure 2
              ATOM
                     7066
                          N
                               THR B 450
                                              101.248 16.545 19.775 1.00 33.44
              ATOM
                     7067
                           CA THR B 450
                                              102.293 15.882 19.031
                                                                       1.00 30.45
              ATOM
                     7068
                               THR B 450
                                              102.014
                                                       14.423 18.814
                                                                       1.00 30.30
                           CB
              ATOM
                     7069
                                                       14.355
                                                               18.179
                                                                       1.00 32.92
                           OG1 THR B 450
                                              100.792
                     7070
                           CG2 THR B 450
                                              101.878
                                                               20.031
                                                                       1.00 30.22
              ATOM
                                                       13.634
                     7071
                                                       16.675
                                                               17.818
              ATOM
                           С
                               THR B 450
                                              102.522
                                                                       1.00 26.00
                                              103.496
                     7072
                                                      16.713
              ATOM
                               THR B 450
                                                               17.269
                                                                       1.00 29.47
              ATOM
                     7073
                           N
                               SER B 451
                                              101.626
                                                      17.371
                                                               17.337
                                                                       1.00 29.65
              ATOM
                     7074
                           CA
                               SER B 451
                                              101.979
                                                      18.182
                                                               16.066
                                                                       1.00 30.50
                                                                                            C
              ATOM
                     7075
                           СВ
                               SER B 451
                                              100.766
                                                       18.646
                                                               15.349
                                                                       1.00 31.78
                     7076
                               SER B 451
                                               99.928
                                                       17.565
                                                               15.049
                                                                       1.00 31.33
              ATOM
                           OG
                                                                                            0
                     7077
                                                      19.375
                                                               16.378
                                                                       1.00 32.11
              ATOM
                           С
                               SER B 451
                                              102,820
                                                       19.782
                     7078
                               SER B 451
                                              103.625
                                                               15.555
                                                                      .1.00 35.75
              ATOM
                           0
                                                                                            0
                     7079
                                                       20.033
                                                              17.487
                                                                       1.00 32.08
              ATOM
                           N
                               ILE B 452
                                              102.572
                                                                                            N
              ATOM
                     7080
                           CA
                               ILE B 452
                                              103.483
                                                      21.107
                                                               17.869
                                                                       1.00 32.63
                                                                                            C
                     7081
                               ILE B 452
                                              103.051 21.752
                                                               19.130
                                                                       1.00 30.39
              ATOM
                           CB
                                                              18.820
              ATOM
                     7082
                           CG1 ILE B 452
                                              101.681 22.487
                                                                       1.00 31.68
                                                                                            ¢
              ATOM
                     7083
                           CD1 ILE B 452
                                              101.070 23.045 20.028
                                                                       1.00 32.00
              MOTA
                     7084
                           CG2 ILE B 452
                                              103.976
                                                      22.554
                                                              19.525
                                                                       1.00 28.69
                                                                                            С
              ATOM
                     7085
                           С
                               ILE B 452
                                             104.853 20.592
                                                              17.979
                                                                       1.00 32.45
              ATOM
                     7086
                           0
                               ILE B 452
                                             105.743
                                                      21.077
                                                              17.411
                                                                       1.00 35.00
                                                                                            ٥
              MOTA
                     7087
                               LEU B 453
                                             105.051
                                                      19.558
                                                              18.669
                                                                       1.00 33.90
              MOTA
                     7088
                           CA
                               LEU B 453
                                             106.469
                                                      19.243
                                                              18.934
                                                                       1.00 33.72
                               LEU B 453
                                              106.453
                                                      18.384
                                                              20.204
                                                                       1.00 34.32
              MOTA
                     7089
                           СВ
              ATOM
                     7090
                           CG
                               LEU B 453
                                             106.026
                                                      18.927
                                                              21.496
                                                                       1.00 29.63
                                             106.354 18.027
                                                              22.562
              ATOM
                     7091
                           CD1 LEU B 453
                                                                      1.00 30.81
              ATOM
                     7092
                           CD2 LEU B 453
                                             106.870
                                                      20.008
                                                              21.730
                                                                      1.00 35.15
    ATOM
ATOM
                     7093
                           С
                               LEU B 453
                                             107.112
                                                      18.499
                                                              17.845
                                                                      1.00 35.36
                     7094
                           0
                               LEU B 453
                                             108.218
                                                      18.180
                                                              17.853
                                                                       1.00 34.96
                                                                                            0
                     7095
                           N
                               GLN B 454
                                             106.325 18.083
                                                              16.884
                                                                      1.00 41.41
                                             106.851
                                                      17.406
                                                              15.626
                                                                      1.00 40.37
              ATOM
                     7096
                           CA
                               GLN B 454
                                                                                            С
            ## ATOM
                               GLN B 454
                                              105.712
                                                      16.770
                                                              14.815
                                                                       1.00 39.37
                                                                                            С
                     7097
                           CB
            ATOM
                                                                                            С
                               GLN B 454
                                             106.056
                                                      16.446
                                                              13.393
                                                                       1.00 34.96
                     7098
                           CG
             ATOM
                           CD
                               GLN B 454
                                             104.889
                                                      15.687
                                                              12.652
                                                                      1.00 36.72
                                                                                            С
                     7099
                                             105.050 14.462
                                                              12,220
                                                                      1.00 33.59
              .ATOM
                     7100
                           OE1 GLN B 454
                                                                                            ٥
              ATOM
                     7101
                           NE2 GLN B 454
                                             103.735
                                                      16.415
                                                              12.448
                                                                      1.00 33.06
                                                                                            N
            ATOM
                     7102
                           С
                               GLN B 454
                                             107.403 18.441 14.724
                                                                      1.00 40.33
                                                                                            С
                                                                                                 * ATOM
                     7103
                           ٥
                               GLN B 454
                                             108.352
                                                      18.123
                                                              13.969
                                                                      1.00 40.52
                                                                                            ٥
ATOM A STATE OF ATOM
                               ASN B 455
                                             106.883
                                                      19.697
                                                              14.876
                                                                      1.00 41.38
                     7104
                           N
                                                                      1.00 42.96
            ATOM
                     7105
                           CA
                               ASN B 455
                                             107.323
                                                      20.827
                                                              13.993
                                                                                            C
                               ASN B 455
                                                             13.277
              ATOM
                     7106
                           CB
                                             106.107
                                                      21.438
                                                                      1.00 43.11
              ATOM
                     7107
                           CG
                               ASN B 455
                                             105.324
                                                      20.440
                                                              12.293
                                                                      1.00 41.25
                                                                                            С
              ATOM
                           OD1 ASN B 455
                                             105.702
                                                      20.162
                                                              11.149
                                                                      1.00 40.52
                     7108
                                                                                            0
              ATOM
                           ND2 ASN B 455
                                             104.225
                                                      19.969
                                                              12.757
                                                                      1.00 41.20
                     7109
                                                                                            N
                               ASN B 455
                                             108.200
                                                      22.001
                                                              14.651
                                                                      1.00 43.02
              ATOM
                                                                                            С
                     7110
                           С
                               ASN B'455
                                             108.920
                                                                      1.00 41.71
              ATOM
                                                      22.756
                                                              13.967
                                                                                            0
                     7111
                           0
                                             108.179
                                                                      1.00 42.79
              ATOM
                               PHE B 456
                     7112
                           N
                                                      22.113
                                                              15,965
                                                                                            N
                                                              16.640
              ATOM
                           CA
                               PHE B 456
                                             108.922
                                                      23.161
                                                                      1.00 39.98
                     7113
                                             107.988
              ATOM
                               PHE B 456
                                                      24.209
                                                              17,129
                                                                      1.00 41.75
                     7114
                           CB
                                             107.030
                                                              16.010
                                                                      1.00 40.69
              ATOM
                               PHE B 456
                                                      24.750
                     7115
                           CG
                                             107.478
                                                      25.562
                                                                      1.00 35.56
              ATOM
                           CD1 PHE B 456
                                                              15.061
                     7116
                                                                                            C
                           CE1 PHE B 456
                                             106.636
                                                      25.918
                                                              14.065
                                                                      1.00 38.20
              ATOM
                     7117
                                                      25.527
                                                                      1.00 39.04
              ATOM
                     7118
                           CZ PHE B 456
                                             105.307
                                                              14.049
                                                                                            C
                                                                      1.00 44.28
              ATOM
                     7119
                           CE2 PHE B 456
                                             104.891 24.774
                                                              14.991
              ATOM
                     7120
                           CD2 PHE B 456
                                             105.771
                                                      24.358
                                                              15.978
                                                                      1.00 42.19
                                                                                            C
              ATOM
                     7121
                               PHE B 456
                                             109.576 22.599
                                                              17.890
                                                                      1.00 42.09
                           С
              ATOM
                     7122
                           0
                               PHE B 456
                                             109.203 21.576
                                                              18.434
                                                                      1.00 36.96
                                                                                            0
              ATOM
                     7123
                               ASN B 457
                                             110.665 23.292
                                                              18.338
                                                                      1.00 44.14
              ATOM
                               ASN B 457
                                             111.312
                                                      22.978
                                                              19.594
                                                                      1.00 41.61
                                                                                            С
                     7124
                           CA
                                             112.638 22.970
                                                              19.509
                                                                      1.00 39.46
              ATOM
                     7125
                           СВ
                               ASN B 457
              ATOM
                     7126
                           CG
                               ASN B 457
                                             113.140 21.903
                                                              18.767
                                                                      1.00 45.53
              ATOM
                     7127
                           OD1 ASN B 457
                                             112.814 20.728
                                                             19.024
                                                                      1.00 56.78
                           ND2 ASN B 457
                                             114.074 22.214
                                                              17.829
                                                                      1.00 46.17
              ATOM
                     7128
                                                                      1.00 41.81
                                                              20.559
                               ASN B 457
                                             110.787
                                                      24.129
              ATOM
                     7129
                           C
                               ASN B 457
                                                      25.104
                                                                      1.00 43.45
                                                              20.089
              ATOM
                     7130
                           0
                                             110.314
                                                                      1.00 40.33
                                                             21.802
              ATOM
                     7131
                           N
                               LEU B 458
                                             110.758
                                                     23.979
                                                                      1.00 44.19
              ATOM
                     7132
                           CA
                               LEU B 458
                                             110.187 25.036 22.450
              ATOM
                     7133
                           СВ
                               LEU B 458
                                             109.183 24.479 23.493
                                                                      1.00 44.07
              ATOM
                               LEU B 458
                                             108.103 23.722 22.858
                                                                      1.00 42.17
                     7134
                           CG
              ATOM
                           CD1 LEU B 458
                                             107.324 23.218
                                                             23.996
                                                                      1.00 38.93
                     7135
                           CD2 LEU B 458
                                             107.202 24.576
                                                             22.020
                                                                      1.00 43.71
              ATOM
                     7136
                               LEU B 458
                                             111.334
                                                     25.860
                                                             23,220
                                                                      1.00 48.19
              ATOM
                     7137
                                                      25.310
                                                             23.980
                                                                      1.00 54.13
              ATOM
                     7138
                               LEU B 458
                                             112.143
              ATOM
                     7139
                           N
                               LYS B 459
                                             111.443
                                                     27.117
                                                              23.056
                                                                      1.00 49.18
                               LYS B 459
                                             112.457 27.741
                                                             23.779
                                                                      1.00 52.47
              ATOM
                     7140
                          CA
```

22.874

1.00 56.53

C

113.437 28.362

|              |                           |            |      |   |            | F                  | igure            | 2                |                          |        |
|--------------|---------------------------|------------|------|---|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 7142                      | CG         | LYS  | В | 459        | 114.290            |                  | 23.474           | 1.00 60.08               | С      |
| ATOM         | 7143                      | CD         | LYS  |   | 459        | 115.652            | 29.559           | 22.726           | 1.00 67.03               | С      |
| MOTA         | 7144                      | CE         | LYS  |   | 459        | 116.583            | 30.801           | 23.164           | 1.00 72.39               | c      |
| ATOM         | 7145                      | NZ         | LYS  |   | 459        | 116.603            | 32.150           | 22.229           | 1.00 73.65               | C<br>N |
| ATOM         | 7146                      | C          | LYS  | - | 459        | 111.911<br>111.260 | 28.858<br>29.755 | 24.535<br>24.141 | 1.00 53.35<br>1.00 55.10 | 0      |
| ATOM<br>ATOM | 7147<br>7148              | O<br>N     | LYS  |   | 459<br>460 | 112.261            | 28.805           | 25.754           | 1.00 56.12               | N      |
| MOTA         | 7149                      | CA         |      |   | 460        | 111.843            | 29.775           | 26.717           | 1.00 55.66               | c      |
| ATOM         | 7150                      | CB         | SER  |   | 460        | 112.016            | 29.201           | 28.119           | 1.00 56.75               | С      |
| MOTA         | 7151                      | OG         |      |   | 460        | 111.384            | 29.994           | 29.199           | 1.00 71.26               | 0      |
| ATOM         | 7152                      | С          |      |   | 460        | 112.666            | 31.029           | 26.646           | 1.00 51.87               | C      |
| MOTA         | 7153                      | 0          |      |   | 460        | 113.728            | 31.076<br>32.068 | 25.985<br>27.280 | 1.00 54.51<br>1.00 41.34 | О<br>И |
| ATOM<br>ATOM | 7154<br>7155              | N<br>CA    |      |   | 461<br>461 | 112.122<br>112.641 | 33.544           | 27.139           | 1.00 40.97               | Č      |
| ATOM         | 7156                      | CB         | LEU  |   | 461        | 111.362            | 34.501           | 27.185           | 1.00 33.50               | č      |
| ATOM         | 7157                      | CG         | LEU  |   | 461        | 110.755            | 34.731           | 25.845           | 1.00 42.34               | С      |
| MOTA         | 7158                      |            | LEU  |   |            | 111.046            | 33.555           | 24.793           | 1.00 44.32               | C      |
| ATOM         | 7159                      |            | LEU  |   | 461        | 109.109            | 34.782           | 26.212           | 1.00 45.70               | c      |
| MOTA         | 7160                      | C          | LEU  |   | 461<br>461 | 113.444<br>114.648 | 33.739<br>33.525 | 28.547<br>28.531 | 1.00 38.79<br>1.00 55.41 | с<br>0 |
| ATOM<br>ATOM | 7161<br>7162              | O<br>N     | VAL  |   | 462        | 112.712            | 34.059           | 29.606           | 1.00 36.37               | N      |
| ATOM         | 7163                      | CA         |      |   | 462        | 113.173            | 34.143           | 31.138           | 1.00 43.95               | Č      |
| ATOM         | 7164                      | CB         |      |   | 462        | 111.757            | 34.624           | 31.923           | 1.00 40.79               | С      |
| MOTA         | 7165                      |            | VAL  |   |            | 110.604            | 33.545           | 31.897           | 1.00 42.50               | Ç      |
| MOTA         | 7166                      |            | VAL  |   |            | 111.940            | 35.230           | 33.299           | 1.00 47.45               | c      |
| ATOM         | 7167                      | C          |      |   | 462        | 113.534            | 32.603           | 31.439           | 1.00 47.30<br>1.00 54.90 | C<br>0 |
| ATOM<br>ATOM | 7168<br>7169              | N<br>N     | ·ASP |   | 462<br>463 | 112.617<br>114.705 | 31.839<br>32.110 | 31.855<br>30.887 | 1.00 55.09               | N      |
| ATOM         | 7170                      | -          | ASP  |   |            | 115.416            | 30.789           | 31.256           | 1.00 54.17               | č      |
| ATOM         | 7171                      | СВ         |      |   | 463        | 116.537            | 31.359           | 32.093           | 1.00 60.06               | С      |
| ATOM         | 7172                      | CG         | ASP  | В | 463.       | 116.254            | 31.522           | 33.476           | 1.00 67.65               | С      |
| ATOM         | 7173                      |            | ASP  |   |            | 116.871            | 30.690           | 34.188           | 1.00 88.29               | 0      |
| MOTA         | 7174                      |            | ASP  |   |            | 115.599            | 32.450           | 33.956           | 1.00 81.80               | 0      |
| ATOM<br>ATOM | 7175 <sup>1</sup><br>7176 | 0          | ASP  |   | 463<br>463 | 114.713<br>114.327 | 29.638<br>29.920 | 32.046<br>33.176 | 1.00 51.69<br>1.00 55.23 | C<br>0 |
| MOTA         | 7177                      | N.         | PRO  |   | 464        | 114.594            | 28.241           | 31.758           | 1.00 45.18               | N      |
| ATOM         | 7178                      | CA         | PRO  |   | 464        | 113.638            | 27.271           | 32.512           | 1.00 40.29               | Ċ      |
| ATOM         | 7179                      | CB         | PRO  | В | 464        | 114.050            | 25.872           | 32.036           | 1:00 40.94               | С      |
| ATOM         |                           | CG         | PRO  |   | 464        | 115.587            | 26.015           | 31.654           | 1.00 42.70               | C      |
| ATOM         | 7181                      |            | PRO  |   | 464        | 115.453            | 27.439           | 30.794           | 1.00 43.91               | C      |
| ATOM<br>ATOM | 7182<br>7183              | 0          | PRO  |   | 464<br>464 | 113.432<br>112.360 | 27.331<br>27.430 | 33.857<br>34.625 | 1.00 40.06<br>1.00 54.04 | Ö      |
| ATOM         | 7184                      | N          |      |   | 465        | 114.375            | 26.780           | 34.592           | 1.00 45.46               | N      |
| ATOM         | 7185                      | CA         |      |   | 465        | 114.494            | 26.599           | 36.377           | 1.00 42.50               | С      |
| ATOM         | 7186                      | CB         | LYS  | В | 465        | 115.881            | 26.231           | 36.535           | 1.00 36.69               | С      |
| ATOM         | 7187                      | CG         |      |   | 465        | 115.932            | 25.805           | 38.347           | 1.00 39.52               | C      |
| ATOM         | 7188                      | CD         |      |   | 465        | 117.580            | 25.432           | 37.907           | 1.00 35.29               | C<br>C |
| ATOM         | 7189<br>7190              | · CE<br>NZ | LYS  |   | 465<br>465 | 118.252<br>119.852 | 24.895<br>24.451 | 39.773<br>39.417 | 1.00 43.37<br>1.00 55.57 | N      |
| MOTA<br>MOTA | 7191                      | C          | LYS  |   | 465        | 113.893            | 28.055           | 36.847           | 1.00 51.69               | č      |
| ATOM         | 7192                      | ŏ          | LYS  |   | 465        | 113.075            | 28.115           | 38.001           | 1.00 57.43               | ō      |
| MOTA         | 7193                      | N          | ASN  |   | 466        | 114.119            | 29.157           | 36.049           | 1.00 59.49               | N      |
| MOTA         | 7194                      | CA         |      |   | 466        | 113.342            | 30.217           | 36.702           | 1.00 65.46               | c      |
| ATOM         | 7195                      | CB         |      |   | 466        | 113.828            | 31.667           | 36.731           | 1.00 67.54               | C      |
| ATOM<br>ATOM | 7196<br>7197              | CG         | ASN  |   | 466<br>466 | 115.215<br>115.245 | 31.787<br>32.163 | 37.630<br>38.931 | 1.00 76.20<br>1.00 79.38 | С<br>0 |
| ATOM         | 7198                      |            | ASN  |   |            | 116.328            | 31.466           |                  | 1.00 78.21               | . N    |
| ATOM         | 7199                      | C          |      |   | 466        | 111.894            | 29.984           | 36.819           | 1.00 67.02               | Ċ      |
| MOTA         | 7200                      | 0          |      |   | 466        | 111.466            | 29.910           | 38.017           | 1.00 70.63               | 0      |
| MOTA         | 7201                      | N          |      |   | 467        | 111.164            | 29.890           | 35.661           | 1.00 65.39               | N      |
| MOTA         | 7202                      | CA         |      |   | 467        | 109.701            | 29.910           |                  | 1.00 62.09               | C      |
| MOTA         | 7203                      | CB         |      |   | 467        | 109.173            | 29.436           |                  | 1.00 63.25<br>1.00 65.55 | C      |
| ATOM<br>ATOM | 7204<br>7205              | CG         | LEU  |   | 467<br>467 | 110.237            | 28.954<br>27.611 | 33.360<br>32.715 | 1.00 63.33               | Č      |
| ATOM         | 7205                      |            | LEU  |   |            | 110.269            | 29.985           | 32.176           | 1.00 67.21               | č      |
| ATOM         | 7207                      | c          |      |   | 467        | 109.140            | 29.012           | 36.597           | 1.00 62.05               | C      |
| ATOM         | 7208                      | 0          | LEU  | В | 467        | 109.727            | 28.004           | 36.849           | 1.00 58.56               | 0      |
| ATOM         | 7209                      | N          |      |   | 468        | 107.980            | 29.380           |                  | 1.00 63.62               | N      |
| MOTA         | 7210                      | CA         |      |   | 468        | 107.220            | 28.666           |                  | 1.00 65.00               | c      |
| ATOM         | 7211                      | CB         |      |   | 468        | 106.827<br>105.727 | 29.679<br>29.159 | 39.097<br>40.050 | 1.00 67.15<br>1.00 74.66 | C      |
| ATOM<br>ATOM | 7212<br>7213              | CG         | ASP  |   | 468<br>468 | 103.727            | 29.139           | 39.900           | 1.00 74.00               | Ö      |
| ATOM         | 7214                      |            | ASP  |   |            | 105.998            | 28.299           |                  | 1.00 73.89               | ŏ      |
| ATOM         | 7215                      | C          |      |   | 468        | 105.909            | 28.125           | 37.597           | 1.00 61.63               | c      |
| ATOM         | 7216                      | 0          | ASP  | В | 468        | 105.316            | 28.792           | 36.928           | 1.00 60.62               | o      |
| ATOM         | 7217                      | N          | THR  | В | 469        | 105.529            | 26.924           | 37.975           | 1.00 58.43               | N      |

|              |              |           |            |   |            | Fi                 | gure             | 2                |                          |          |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|--------------------------|----------|
| MOTA         | 7218         | CA        | THR        |   |            | 104.479            | 26.284           | 37.417           | 1.00 58.62               | c        |
| MOTA         | 7219         | CB        | THR        |   |            | 104.858<br>104.908 | 24.988<br>23.987 | 36.854<br>37.888 | 1.00 56.81<br>1.00 53.21 | C<br>0   |
| ATOM<br>ATOM | 7220<br>7221 |           | THR        |   |            | 104.508            | 25.111           | 36.156           | 1.00 56.20               | č        |
| ATOM         | 7222         | C         | THR        |   |            | 103.404            | 26.047           | 38.419           | 1.00 62.89               | С        |
| ATOM         | 7223         | 0         | THR        |   |            | 102.507            | 25.150           | 38.279           | 1.00 63.22               | 0        |
| ATOM<br>ATOM | 7224<br>7225 | N<br>CA   | THR<br>THR |   |            | 103.400<br>102.443 | 26.971<br>27.008 | 39.338<br>40.403 | 1.00 63.69               | N<br>C   |
| ATOM         | 7226         | CB        | THR        |   |            | 103.105            | 28.078           | 41.478           | 1.00 67.46               | Č        |
| ATOM         | 7227         | OG1       | THR        | В | 470        | 104.026            | 27.322           | 42.296           | 1.00 77.24               | 0        |
| MOTA         | 7228         |           | THR        |   |            | 102.047            | 28.898           | 42.472<br>39.868 | 1.00 70.18<br>1.00 60.59 | c<br>c   |
| ATOM<br>ATOM | 7229<br>7230 | С<br>0    | THR        | - |            | 101.097<br>100.987 | 27.497<br>28.716 | 39.425           | 1.00 59.30               | ō        |
| ATOM         | 7231         | N         | PRO        |   |            | 100.167            | 26.572           | 39.868           | 1.00 56.77               | N        |
| ATOM         | 7232         | CA        | PRO        |   |            | 98.806             | 26.833           | 39.487           | 1.00 59.34               | C        |
| ATOM         | 7233         | CB        |            |   | 471        | 98.081<br>99.177   | 25.454<br>24.419 | 39.807<br>39.648 | 1.00 60.48<br>1.00 56.01 | C<br>C   |
| MOTA<br>MOTA | 7234<br>7235 | CG<br>CD  | PRO<br>PRO |   |            | 100.343            | 25.168           | 40.165           | 1.00 56.87               | č        |
| ATOM         | 7236         | c         | PRO        |   |            | 98.183             | 27.955           | 40.261           | 1.00 59.51               | С        |
| MOTA         | 7237         | 0         | PRO        |   |            | 98.266             | 27.949           | 41.421           | 1.00 60.80               | 0        |
| ATOM<br>ATOM | 7238<br>7239 | N<br>CA   | VAL<br>VAL |   |            | 97.635<br>96.973   | 28.936<br>29.977 | 39.624<br>40.342 | 1.00 60.05<br>1.00 62.36 | N<br>C   |
| ATOM         | 7240         | СВ        | VAL        |   |            | 97.007             | 31.263           | 39.539           | 1.00 62.01               | · c      |
| MOTA         | 7241         |           | VAL        |   |            | 96.002             | 32.275           | 40.108           | 1.00 65.35               | C        |
| ATOM         | 7242         |           | VAL<br>VAL |   |            | 98.418             | 31.856<br>29.542 | 39.411<br>40.472 | 1.00 62.30<br>1.00 66.46 | C        |
| MOTA<br>MOTA | 7243<br>7244 | С<br>0    | VAL        |   |            | 95.494<br>94.755   | 29.293           | 39.432           | 1.00 65.77               | ō        |
| ATOM         | 7245         | N         | VAL        |   |            | 95.032             | 29.375           | 41.693           | 1.00 70.49               | N        |
| ATOM         | 7246         | CA        | VAL        |   |            | 93.629             | 28.964           | 41.825           | 1.00 74.58               | C        |
| MOTA<br>MOTA | 7247<br>7248 | CB<br>CG1 | VAL<br>VAL |   |            | 93.511<br>92.022   | 27.903<br>27.512 | 42.972<br>43.187 | 1.00 75.13<br>1.00 77.51 | c<br>c   |
| ATOM         | 7249         |           | VAL        |   |            |                    |                  | 42.594           | 1.00 71.49               | , č      |
| ATOM         | 7250         | С         | VAL        |   | _          | 92.564             | 30.060           | 42.067           | 1.00 76.99               | С        |
| MOTA         | 7251         | 0         | VAL        |   |            | 92.791             |                  | 42.738           | 1.00 79.23               | <b>И</b> |
| ATOM<br>ATOM | 7252<br>7253 | N<br>Ca   | asn<br>asn |   |            | 91.364             | 29.869<br>30.840 | 41.540           | 1.00 80.22<br>1.00 82.26 | C        |
| ATOM         | 7254         | СВ        | ASN        |   |            |                    | 31.782           | 40.677           | 1.00 83.61               | č        |
| ATOM         | 7255         | CG        | ASN        |   |            | 91.075             | 32.882           | 40.766           | 1.00 90.17               | C        |
| ATOM         | 7256         |           | ASN        |   |            | 92.333             | 32.577           | 40.817           | 1.00 88.37<br>1.00 92.94 | О<br>И   |
| MOTA<br>MOTA | 7257<br>7258 | ND2       | ASN<br>ASN |   | 474<br>474 |                    | 34.107<br>30.102 | 42.060           | 1.00 80.56               | Č        |
| ATOM         | 7259         | ō         | ASN        |   | 474        | 88.218             | 29.755           | 41.099           | 1.00 78.86               | 0        |
| ATOM         | 7260         | N         | GLY        |   |            | 88.831             | 29.828           | 43.337           | 1.00 79.38               | И        |
| ATOM<br>ATOM | 7261<br>7262 | CA<br>C   | GLY<br>GLY |   |            | 87.692<br>87.581   | 29.029<br>27.618 | 43.840<br>43.277 | 1.00 79.59<br>1.00 78.62 | C<br>C   |
| ATOM         | 7263         | Ö         | GLY        |   |            | 88.139             | 26.643           | 43.801           | 1.00 80.35               | ŏ        |
| ATOM         | 7264         | N         | PHE        |   |            | 86.858             | 27.542           | 42.160           | 1.00 76.76               | N        |
| ATOM         | 7265         | CA        | PHE        |   | 476        | 86.490             | 26.299<br>26.410 | 41.461<br>41.224 | 1.00 72.07<br>1.00 71.27 | C<br>C   |
| MOTA<br>MOTA | 7266<br>7267 | CB<br>CG  | PHE        |   | 476        | 84.938<br>84.116   | 26.219           | 42.512           | 1.00 76.85               | č        |
| ATOM         | 7268         | CD1       | PHE        |   | 476        | 82.753             | 26.662           | 42.577           | 1.00 83.78               | С        |
| ATOM         | 7269         |           | PHE        |   | 476        | 81.958             | 26.471           | 43.759           | 1.00 82.52               | C<br>C   |
| MOTA<br>MOTA | 7270<br>7271 | CZ        | PHE        |   |            | 82.524<br>83.892   | 25.870<br>25.412 | 44.833           | 1.00 84.61               | c        |
| MOTA         | 7272         |           | PHE        |   |            | 84.669             | 25.583           | 43.649           | 1.00 78.05               | С        |
| ATOM         | 7273         | С         | PHE        | В | 476        | 87.213             | 26.191           | 40.098           | 1.00 67.50               | c        |
| ATOM         | 7274         | 0         | PHE        |   |            | 86.727             | 25.526           | 39.159           | 1.00 66.12<br>1.00 62.45 | о<br>И   |
| ATOM<br>ATOM | 7275<br>7276 | N<br>CA   | ALA<br>ALA |   |            | 88.289<br>88.989   | 26.895<br>26.737 | 39.902<br>38.625 | 1.00 58.61               | Č        |
| ATOM         | 7277         | СВ        | ALA        |   |            | 88.389             | 27.523           | 37.557           | 1.00 58.45               | С        |
| MOTA         | 7278         | С         | ALA        |   |            | 90.445             | 27.122           | 38.959           | 1.00 57.54               | С        |
| ATOM         | 7279         | 0         | ALA<br>SER |   |            | 90.687             | 27.556<br>26.945 | 40.251<br>37.993 | 1.00 60.40<br>1.00 51.07 | O<br>N   |
| ATOM<br>ATOM | 7280<br>7281 | N<br>ÇA   | SER        |   |            | 91.388<br>92.765   | 27.208           | 38.263           | 1.00 49.39               | Č        |
| ATOM         | 7282         | СВ        | SER        |   |            | 93.498             | 26.105           | 38.912           | 1.00 51.39               | С        |
| ATOM         | 7283         | OG        | SER        |   |            | 92.884             | 24.793           | 38.891           | 1.00 59.92               | o<br>c   |
| ATOM<br>ATOM | 7284<br>7285 | С<br>О    | SER        |   |            | 93.347<br>92.774   | 27.353<br>26.788 | 36.907<br>36.012 | 1.00 47.30<br>1.00 43.86 | 0        |
| ATOM         | 7286         | N         | VAL        |   |            | 94.462             | 28.159           | 36.764           | 1.00 41.87               | N        |
| ATOM         | 7287         | CA        | VAL        | В | 479        | 94.953             | 28.376           | 35.437           | 1.00 37.51               | c        |
| ATOM         | 7288         | CB        | VAL        |   |            | 94.400             | 29.665           | 34.928<br>34.837 | 1.00 35.61<br>1.00 31.70 | c<br>c   |
| MOTA<br>MOTA | 7289<br>7290 |           | VAL<br>VAL |   |            | 92.991<br>94.790   | 29.638<br>30.696 | 34.837           | 1.00 31.70               | c        |
| MOTA         | 7291         | C         | VAL        |   |            | 96.453             | 28.560           | 35.541           | 1.00 36.87               | С        |
| ATOM         | 7292         | 0         | VAL        |   |            | 96.937             | 28.695           | 36.625           | 1.00 39.18               | 0        |
| ATOM         | 7293         | N         | PRO        | В | 480        | 97.241             | 28.502           | 34.514           | 1.00 33.28               | N        |
|              |              |           |            |   |            |                    |                  |                  |                          |          |

|              |                      |          |       |       | Fi                 | gure             | 2                |                          |        |
|--------------|----------------------|----------|-------|-------|--------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 7294                 | CA       | PRO I | B 480 | 98.655             | 28.561           | 34.849           | 1.00 35.24               | С      |
| ATOM         | 7295                 | CB       |       | B 480 | 99.295             | 27.842           | 33.687           | 1.00 33.65               | С      |
| ATOM<br>ATOM | 7296<br>729 <b>7</b> | CD       | PRO E |       | 98.378<br>96.976   | 28.453<br>28.361 | 32.546<br>33.110 | 1.00 33.30               | c<br>c |
| ATOM         | 7298                 | c        | PRO E |       | 99.125             | 30.015           | 34.815           | 1.00 30.69<br>1.00 37.10 | c      |
| ATOM         | 7299                 | 0        | PRO E |       | 98.523             | 30.779           | 34.235           | 1.00 40.40               | ō      |
| ATOM         | 7300                 | N        | PRO E |       | 100.258            | 30.372           | 35.271           | 1.00 37.82               | N      |
| ATOM<br>ATOM | 7301<br>7302         | CA<br>CB | PRO E |       | 100.653<br>102.047 | 31.760<br>31.778 | 35.195           | 1.00 37.07               | C      |
| ATOM         | 7302                 | CG       | PRO E |       | 102.598            | 30.457           | 36.042<br>35.749 | 1.00 35.59<br>1.00 40.62 | C      |
| MOTA         | 7304                 | CD       | PRO E |       | 101.339            | 29.525           | 35.910           | 1.00 40.83               | Č      |
| ATOM         | 7305                 | C        | PRO E |       | 100.951            | 32.208           | 33.824           | 1.00 38.10               | C      |
| ATOM<br>ATOM | 7306<br>7307         | O<br>N   | PRO E |       | 100.833<br>101.376 | 31.366<br>33.495 | 33.038<br>33.522 | 1.00 43.83               | О<br>И |
| ATOM         | 7308                 | CA       | PHE E |       | 101.636            | 34.106           | 32.306           | 1.00 37.79               | C      |
| ATOM         | 7309                 | CB       | PHE E |       | 101.697            | 35.641           | 32.429           | 1.00 34.44               | С      |
| MOTA         | 7310                 | CG       | PHE E |       | 102.135            | 36.275           | 31.245           | 1.00 30.63               | C      |
| ATOM<br>ATOM | 7311<br>7312         |          | PHE E |       | 103.322<br>103.804 | 36.763<br>37.288 | 31.202<br>30.075 | 1.00 30.65<br>1.00 33.91 | C<br>C |
| ATOM         | 7313                 | CZ       | PHE E |       | 103.010            | 37.348           | 28.928           | 1.00 33.37               | č      |
| MOTA         | 7314                 |          | PHE E |       | 101.760            | 36.871           | 28.981           | 1.00 32.52               | С      |
| ATOM         | 7315                 |          | PHE E |       | 101.317            | 36.310           | 30.170           | 1.00 30.97               | C      |
| ATOM<br>ATOM | 7316<br>7317         | С<br>0   | PHE E |       | 102.971<br>103.750 | 33.579<br>33.363 | 31.919<br>32.803 | 1.00 34.43<br>1.00 42.59 | . C    |
| ATOM         | 7318                 | N        | TYR E |       | 103.313            | 33.382           | 30.687           | 1.00 30.67               | . O    |
| ATOM         | 7319                 | CA       | TYR E |       | 104.691            | 32.978           | 30.362           | 1.00 32.20               | С      |
| ATOM         | 7320                 | CB       | TYR E |       | 104.991            | 31.622           | 30.646           | 1.00 29.81               | c      |
| ATOM<br>ATOM | 7321<br>7322         | CG       | TYR B |       | 104.306<br>104.881 | 30.663<br>30.245 | 29.787<br>28.624 | 1.00 35.01<br>1.00 33.51 | C<br>C |
| ATOM         | 7323                 |          | TYR B |       | 104.253            | 29.323           | 27.844           | 1.00 33.31               | č      |
| ATOM         | 7324                 | CŻ       | TYR B |       | 103.045            | 28.878           | 28.219           | 1.00 31.41               | С      |
| ATOM         | 7325                 | OH       | TYR E |       | 102.364            | 27.959           | 27.423           |                          | . 0    |
| ATOM<br>ATOM | 7326<br>7327         |          | TYR B |       | 102.501<br>103.079 | 29.314           | 29.383<br>30.136 |                          | C<br>C |
| MOTA         | 7328                 | c        | TYR B |       | 104.689            | 33.203           |                  | 1.00 34.50               | č      |
| MOTA         | 7329                 | 0        | TYR B |       | 103.605            |                  |                  | 1.00 39.63               | 0      |
| MOTA         | 7330                 | N        | GLN B |       | 105.850            |                  | 28.160           | 2,00 52                  | N      |
| ATOM<br>ATOM | 7331<br>7332         | CA<br>CB | GLN B |       | 105.995<br>106.491 | 33.295<br>34.567 | 26.825<br>26.352 |                          | C<br>C |
| ATOM         | 7333                 | CG       | GLN B |       | 105.840            | 35.702           |                  | 1.00 45.68               | č      |
| MOTA         | 7334                 | CD       | GLN B |       | 106.659            | 37.161           | 26.651           | 1.00 47.85               | С      |
| ATOM         | 7335                 |          | GLN B |       | 107.654            | 37.430           | 27.425           | 1.00 48.69               | 0      |
| ATOM<br>ATOM | 7336<br>7337         | C        | GLN B |       | 106.163<br>106.963 | 38.010<br>32.354 | 25.731<br>26.272 | 1.00 37.55<br>1.00 35.69 | N<br>C |
| ATOM         | 7338                 | ŏ        | GLN B |       | 107.560            | 31.767           | 27.010           | 1.00 39.85               | ō      |
| MOTA         | 7339                 | N        | LEU B |       | 107.059            | 32.170           | 24.968           | 1.00 37.86               | N      |
| ATOM<br>ATOM | 7340<br>7341         | CA       | LEU B |       | 108.069<br>107.629 | 31.324           | 24.319           | 1.00 39.10               | C      |
| ATOM         | 7342                 | CB<br>CG | LEU B |       | 106.560            | 29.310           | 24.556<br>23.700 | 1.00 39.09<br>1.00 35.94 | C<br>C |
| ATOM         | 7343                 |          | LEU B |       | 106.711            | 27.678           | 23.792           | 1.00 36.95               | č      |
| MOTA         | 7344                 |          | LEU B |       | 105.204            | 29.710           | 24.294           | 1.00 37.22               | C      |
| MOTA<br>MOTA | 7345<br>7346         | С<br>О   | LEU B |       | 108.074<br>107.100 | 31.463           | 22.841 22.192    | 1.00 41.49<br>1.00 43.40 | C<br>0 |
| ATOM         | 7347                 | N        | CYS B |       | 109.052            | 30.755           | 22.304           | 1.00 42.42               | N      |
| ATOM         | 7348                 | CA       | CYS B |       | 109.291            | 30.690           | 20.820           | 1.00 42.95               | С      |
| ATOM         | 7349                 | СВ       | CYS B |       | 110.786            | 31.085           | 20.488           | 1.00 45.02               | c      |
| MOTA<br>MOTA | 7350<br>7351         | SG<br>C  | CYS B |       | 111.441<br>109.209 | 32.584<br>29.338 | 21.437 20.141    | 1.00 50.03<br>1.00 42.37 | s<br>C |
| ATOM         | 7352                 | ŏ        | CYS B |       | 109.724            | 28.341           | 20.592           | 1.00 38.64               | ŏ      |
| MOTA         | 7353                 | N        | PHE B |       | 108.553            | 29.327           | 19.010           | 1.00 41.45               | N      |
| ATOM         | 7354                 | CA       | PHE B |       | 108.282            | 28.122           | 18.420           | 1.00 36.26               | C      |
| MOTA<br>MOTA | 7355<br>7356         | CB<br>CG | PHE B |       | 106.821<br>105.770 | 28.137<br>28.010 | 17.990<br>19.160 | 1.00 35.30<br>1.00 31.46 | C      |
| ATOM         | 7357                 |          | PHE B |       | 105.160            | 28.999           | 19.644           | 1.00 33.10               | č      |
| ATOM         | 7358                 | CEl      | PHE B | 487   | 104.206            | 28.880           | 20.549           | 1.00 37.04               | С      |
| ATOM         | 7359                 | CZ       | PHE B |       | 103.864            | 27.617           | 21.041           | 1.00 34.28               | C      |
| ATOM<br>ATOM | 7360<br>7361         |          | PHE B |       | 104.475<br>105.366 | 26.600<br>26.778 | 20.571<br>19.655 | 1.00 31.85<br>1.00 34.83 | c<br>c |
| ATOM         | 7362                 | CDZ      | PHE B |       | 109.283            | 28.051           | 17.334           | 1.00 34.83               | c      |
| MOTA         | 7363                 | ō        | PHE B | 487   | 109.146            | 28.471           | 16.256           | 1.00 38.30               | 0      |
| MOTA         | 7364                 | N        | ILE B |       | 110.345            | 27.456           | 17.647           | 1.00 38.53               | N      |
| ATOM<br>ATOM | 7365<br>7366         | CA<br>CB | ILE B |       | 111.412<br>112.697 | 27.309<br>27.076 | 16.701<br>17.372 | 1.00 40.03<br>1.00 43.03 | C      |
| ATOM         | 7367                 |          | ILE B |       |                    | 28.462           | 17.800           | 1.00 43.03               | c      |
| ATOM         | 7368                 | CD1      | ILE B | 488   | 112.647            | 28.865           | 19.087           | 1.00 50.29               | С      |
| ATOM         | 7369                 | CG2      | ILE B | 488   | 113.637            | 26.549           | 16.488           | 1.00 45.79               | С      |

|              |              |           |            |   |            | Fi                 | .gure            | 2                |      |                |                          |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|--------------------------|
| ATOM         | 7370         | С         |            |   | 488        | 111.326            | 26.110           | 15.884           |      | 43.37          | С                        |
| ATOM         | 7371         | 0         |            |   | 488        | 111.432            | 24.981           | 16.337           |      | 46.17          | 0                        |
| ATOM<br>ATOM | 7372<br>7373 | N<br>CA   |            |   | 489<br>489 | 111.233<br>111.130 | 26.279<br>25.193 | 14.621<br>13.688 |      | 44.02          | N<br>C                   |
| ATOM         | 7374         | CB        |            |   | 489        | 111.214            | 25.925           | 12.399           |      | 41.71          | С                        |
| ATOM         | 7375         | CG        |            |   | 489        | 110.533            | 27.100           | 12.675           |      | 42.80          | C                        |
| ATOM<br>ATOM | 7376<br>7377 | CD<br>C   |            |   | 489<br>489 | 111.268<br>112.211 | 27.599           | 14.008           |      | 45.22          | C<br>C                   |
| ATOM         | 7378         | 0         |            |   | 489        | 113.313            | 24.138<br>24.341 | 13.731           |      | 46.44          | Ö                        |
| ATOM         | 7379         | N         |            |   | 490        | 111.920            | 22.931           | 13.398           |      | 46.77          | N                        |
| ATOM         | 7380         | CA        |            |   | 490        | 112.963            | 21.978           | 13.565           |      | 48.65          | c                        |
| ATOM<br>ATOM | 7381<br>7382 | CB<br>CG1 | VAL        |   | 490        | 112.374<br>111.207 | 20.653<br>20.818 | 13.938<br>15.065 |      | 50.54          | c<br>c                   |
| ATOM         | 7383         |           | VAL        |   |            | 111.806            | 19.907           | 12.699           |      | 47.68          | c                        |
| ATOM         | 7384         | С         |            |   | 490        | 113.845            | 21.872           | 12.241           |      | 52.92          | С                        |
| ATOM         | 7385         | 0         |            |   | 490        | 113.263            | 22.159           | 11.102           |      | 54.96          | 0                        |
| ATOM<br>TER  | 7386<br>7386 | OAT       | VAL        |   | 490        | 115.135            | 21.560           | 12.212           | 1.00 | 51.49          | 0                        |
| ATOM         | 7387         | 043       | HEM        |   |            | 7.021              | 65.487           | 22.850           | 1.00 | 38.37          | 0                        |
| MOTA         | 7388         |           | HEM        |   |            | 7.571              | 64.743           | 22.031           |      | 28.60          | C                        |
| ATOM         | 7389<br>7390 |           | HEM        |   |            | 7.331<br>8.540     | 63.623           | 21.871 21.309    |      | 34.90<br>27.31 | o<br>c                   |
| ATOM<br>ATOM | 7391         |           | HEM        |   |            | 8.331              | 65.363<br>66.834 | 21.054           |      | 21.20          | c                        |
| ATOM         | 7392         |           | HEM        |   |            | 9.449              | 67.477           | 20.222           |      | 14.91          | č                        |
| ATOM         | 7393         |           | HEM        |   |            | 10.762             | 68.058           | 20.703           |      | 26.75          | C                        |
| ATOM<br>ATOM | 7394<br>7395 | C22       | HEM        |   | 501<br>501 | 11.122<br>12.262   | 67.981<br>68.476 | 22.132           |      | 20.68          | C                        |
| ATOM         | 7396         | N2        |            |   | 501        | 13.288             | 69.085           | 21.775           |      | 24.82          | N                        |
| ATOM         | 7397         |           | HEM        |   |            | 9.461              | 67.861           | 18.921           |      | 19.46          | С                        |
| ATOM         | 7398         |           | HEM        |   |            | 8.234              | 67.371           | 17.966           |      | 21.04          | C                        |
| ATOM<br>ATOM | 7399<br>7400 | C18       | HEM        |   | 501<br>501 | 10.790<br>11.700   | 68.527<br>68.639 | 18.657<br>19.711 |      | 17.07<br>19.50 | C                        |
| ATOM         | 7401         |           | HEM        |   |            | 11.335             | 69.073           | 17.348           |      | 25.22          | : de ce                  |
| ATOM         | 7402         |           | HEM        |   |            | 12.551             | 69.723           | 16.976           |      | 18.24          | 1 14 tich                |
| MOTA         | 7403         |           | HEM        |   |            | 12.930             | 70.092           | 15.737           |      | 21.74          | C C                      |
| MOTA<br>MOTA | 7404<br>7405 |           | HEM        |   |            | 12.289<br>11.457   | 69.718<br>68.458 | 14.407<br>14.262 |      | 30.26<br>26.66 | 1. 1. 1. C               |
| ATOM         | 7406         |           | HEM        |   |            | 14.098             | 70.661           | 15.884           |      | 19.30          | c                        |
| ATOM         | 7407         | C35       | HEM        | A | 501        | 14.944             | 71.413           | 14.876           |      | 18.29          | - 3 / - 5 / / <b>c</b> - |
| ATOM         | 7408         |           | HEM        |   |            | 14.477             | 70.670           | 17.255           |      | 16.45          | 3 Å C                    |
| ATOM<br>ATOM | 7409<br>7410 | N4<br>C24 | HEM        |   | 501<br>501 | 13.523<br>15.727   | 70.087<br>71.253 | 18.023<br>17.787 | 1.00 | 20.55<br>9.93  | N<br>C                   |
| ATOM         | 7411         |           | HEM        |   |            | 16.012             | 71.141           | 19.216           |      | 20.25          | č                        |
| MOTA         | 7412         |           | HEM        |   |            | 17.231             | 71.662           | 19.782           | 1.00 | B.37           | c                        |
| ATOM         | 7413<br>7414 |           | HEM        |   |            | 18.115<br>19.298   | 72.263<br>72.807 | 18.966<br>19.460 |      | 14.53<br>18.68 | . C                      |
| ATOM<br>MOTA | 7415         |           | HEM        |   |            | 17.187             | 71.330           | 21.083           |      | 12.11          | č                        |
| ATOM         | 7416         |           | HEM        |   |            | 18.250             | 71.556           | 22.005           |      | 15.03          | С                        |
| ATOM         | 7417         |           | HEM        |   |            | 15.883             | 70.570           | 21.399           |      | 13.11          | C                        |
| ATOM<br>ATOM | 7418<br>7419 | ИЗ        | HEM        |   |            | 15.032<br>15.421   | 70.344<br>70.037 | 20.258<br>22.657 |      | 21.29          | И<br>С                   |
| ATOM         | 7420         | C9        | HEM        |   |            | 14.241             | 69.390           | 22.914           |      | 17.28          | č                        |
| ATOM         | 7421         | СВ        | HEM        | A | 501        | 13.785             | 68.909           | 24.174           |      | 16.99          | С                        |
| ATOM         | 7422         |           | HEM        |   |            | 14.551             | 69.021<br>68.314 | 25.435<br>24.066 |      | 19.96          | C<br>C                   |
| ATOM<br>ATOM | 7423<br>7424 | C7<br>C27 | HEM<br>HEM |   |            | 12.585<br>11.873   | 67.322           | 24.066           |      | 18.72<br>19.29 | c                        |
| ATOM         | 7425         |           | HEM        |   |            | 11.693             | 67.368           | 26.245           |      | 30.60          | С                        |
| ATOM         | 7426         |           | HEM        |   |            | 11.148             | 66.023           | 26.797           |      | 28.80          | C                        |
| MOTA<br>MOTA | 7427<br>7428 |           | HEM<br>HEM |   |            | 9.979<br>11.950    | 65.733<br>65.369 | 26.518<br>27.307 |      | 36.08<br>29.71 | 0                        |
| ATOM         | 7429         |           | HEM        |   |            | 13.437             | 69.343           | 20.071           | 1.00 | 5.04           | Fe                       |
| MOTA         | 7430         | 043       | HEM        | В | 501        | 76.717             | 17.712           | 32.633           |      | 34.81          | 0                        |
| ATOM         | 7431         |           | HEM        |   |            | 76.912             | 16.877           | 31.712           |      | 35.51          | C                        |
| ATOM<br>ATOM | 7432<br>7433 |           | HEM        |   |            | 76.210<br>78.179   | 15.909<br>17.191 | 31.320<br>30.925 | 1.00 | 34.73          | O<br>C                   |
| ATOM         | 7434         |           | HEM        |   |            | 78.476             | 18.584           | 30.751           |      | 24.25          | С                        |
| ATOM         | 7435         | C20       | HEM        | B | 501        | 79.845             | 18.719           | 30.126           |      | 12.66          | С                        |
| ATOM         | 7436         |           | HEM        |   |            | 81.153             | 18.665           | 30.690           | 1.00 | 8.81           | C<br>C                   |
| ATOM<br>ATOM | 7437<br>7438 | C22       | HEM        |   |            | 81.393<br>82.637   | 18.415<br>18.377 | 32.038<br>32.583 | 1.00 | 9.10           | c                        |
| ATOM         | 7439         | N2        | HEM        |   |            | 83.762             | 18.482           | 31.678           |      | 10.69          | N                        |
| ATOM         | 7440         |           | HEM        |   |            | 80.044             | 19.019           | 28.762           |      | 15.28          | c                        |
| ATOM         | 7441         |           | HEM        |   |            | 79.091             | 19.080           | 27.705<br>28.473 |      | 25.78<br>15.03 | C                        |
| MOTA<br>MOTA | 7442<br>7443 | N5        | HEM        |   |            | 81.506<br>82.370   | 18.988<br>18.737 | 29.688           |      | 11.49          | N                        |
| ATOM         | 7444         |           | HEM        |   |            | 82.024             | 19.138           | 27.172           | 1.00 | 7.84           | Ċ                        |
|              |              |           |            |   |            |                    |                  |                  |      |                |                          |

|      |      |     |     |   |     | Fi     | gure   | 2      |           |       |
|------|------|-----|-----|---|-----|--------|--------|--------|-----------|-------|
| ATOM | 7445 | C17 | HEM | В | 501 | 83.296 | 19.223 | 26.834 | 1.00 13.0 | D8 C  |
| MOTA | 7446 | C16 | HEM | В | 501 | 83.837 | 19.406 | 25.488 | 1.00 13.0 | 85 C  |
| MOTA | 7447 | C36 | HEM | В | 501 | 83.150 | 19.320 | 24.173 | 1.00 16.4 | 44 C  |
| MOTA | 7448 | C37 | HEM | В | 501 | 81.825 | 18.879 | 23.932 | 1.00 23.3 |       |
| ATOM | 7449 | C15 | HEM | В | 501 | 85.162 | 19.403 | 25.676 | 1.00 6.3  |       |
| ATOM | 7450 | C35 | HEM | В | 501 | 86.134 | 19.625 | 24.738 | 1.00 13.  |       |
| ATOM | 7451 | C14 | HEM | В | 501 | 85.451 | 19.348 | 27.040 | 1.00 12.3 |       |
| MOTA | 7452 | N4  | HEM | В | 501 | 84.325 | 19.152 | 27.904 | 1.00 12.  |       |
| ATOM | 7453 | C24 | HEM | В | 501 | 86.774 | 19.266 | 27.635 | 1.00 14.2 |       |
| MOTA | 7454 |     | HEM |   |     | 86.953 | 19.078 | 29.044 | 1.00 13.3 | -     |
| MOTA | 7455 | C12 | HEM | В | 501 | 88.306 | 19.045 | 29.587 | 1.00 13.0 |       |
| MOTA | 7456 |     |     |   | 501 | 89.574 | 19.292 | 28.860 | 1.00 17.4 |       |
| MOTA | 7457 |     | HEM |   |     | 90.957 | 19.021 | 29.103 | 1.00 22.  |       |
| ATOM | 7458 |     | HEM |   |     | 88.195 | 18.784 | 30.893 | 1.00 18.  |       |
| ATOM | 7459 |     | HEM | В | 501 | 89.329 | 18.557 | 31.942 | 1.00 16.0 |       |
| ATOM | 7460 | -   |     |   |     | 86.685 | 18.673 | 31.070 | 1.00 16.9 |       |
| ATOM | 7461 | N3  | HEM | _ | 501 | 85.845 | 18.924 | 29.965 | 1.00 10.  |       |
| MOTA | 7462 | C23 | HEM |   | 501 | 86.137 | 18.390 | 32.384 | 1.00 14.0 |       |
| ATOM | 7463 | C9  | HEM |   |     | 84.789 | 18.371 | 32.605 | 1.00 16.2 |       |
| ATOM | 7464 | C8  | HEM | _ |     | 84.348 | 18.122 | 33.949 | 1.00 14.4 |       |
| ATOM | 7465 | C26 | HEM | _ |     | 85.246 | 17.990 | 35.088 | 1.00 16.4 |       |
| ATOM | 7466 | C7  |     | _ | 501 | 82.998 | 18.133 | 33.895 | 1.00 15.2 |       |
| ATOM | 7467 | C27 | HEM | _ |     | 82.178 | 17.763 | 35.030 | 1.00 25.  |       |
| MOTA | 7468 | C28 |     |   |     | 81.205 | 16.605 | 34.939 | 1.00 29.8 |       |
| ATOM | 7469 |     | HEM |   |     | 80.575 | 16.374 | 36.317 | 1.00 31.0 |       |
| ATOM | 7470 |     | HEM |   |     | 79.591 | 17.125 | 36.432 | 1.00 36.7 |       |
| ATOM | 7471 |     | HEM |   |     | 81.197 | 15.623 | 37.157 | 1.00 30.2 |       |
| MOTA | 7472 | FE1 | HEM | В | 501 | 84.032 | 18.579 | 29.734 | 1.00 2.0  | )0 Fe |

# Figure 3

# Table 3

| ATOM  | 1  | CB   | PRO A | 30   | 8.130  | 62.366 | 46.987 | 1.00 45.67 | A   | С  |
|-------|----|------|-------|------|--------|--------|--------|------------|-----|----|
| ATOM  | 2  | CG   | PRO A |      | 7.027  | 61.477 | 46.462 | 1.00 45.95 | A   | C  |
|       | 3  |      |       |      | 8.204  | 63.458 | 49.211 | 1.00 49.33 | A   | č  |
| MOTA  |    | С    | PRO A |      |        |        |        |            |     |    |
| MOTA  | 4  | 0    | PRO A |      | 7.364  | 64.342 | 49.158 | 1.00 50,63 | A   | 0  |
| ATOM  | 5  | N    | PRO A | 30   | 6.616  | 61.661 | 48.775 | 1.00 46.46 | A   | N  |
| ATOM. | 6  | CD   | PRO A | 30   | 5.876  | 61.532 | 47.513 | 1.00 47.64 | A   | C  |
| ATOM  | 7  | CA   | PRO A | 30   | 7.995  | 62.150 | 48.485 | 1.00 47.86 | A   | С  |
| ATOM  | 8  | N    | PRO A |      | 9.352  | 63.608 | 49.875 | 1.00 50.79 | A   | N  |
| ATOM  | 9  | CD   | PRO A |      | 10.523 | 62.771 | 49.574 | 1.00 51.70 | A   | c  |
|       |    |      |       |      |        |        |        |            |     |    |
| ATOM  | 10 | CA   | PRO A |      | 9.754  | 64.782 | 50.653 | 1.00 50.90 | A   | C  |
| ATOM  | 11 | CB   | PRO A | 31   | 11.169 | 64.433 | 51.087 | 1.00 51.50 | A   | С  |
| ATOM  | 12 | CG   | PRO A | 31   | 11.684 | 63.709 | 49.884 | 1.00 52.83 | A   | С  |
| ATOM  | 13 | С    | PRO A | 31   | 9.706  | 66.040 | 49.825 | 1.00 50.47 | A   | С  |
| ATOM  | 14 | 0    | PRO A | 31   | 9.458  | 65.980 | 48.622 | 1.00 50.48 | A   | 0  |
| ATOM  | 15 | N    | GLY A |      | 9.934  | 67.173 | 50,485 | 1.00 50.63 | A   | N  |
|       | 16 | CA   | GLY A |      | 9.924  | 68.464 | 49.815 | 1.00 51.38 | A   | c  |
| ATOM  |    |      |       |      |        |        |        |            |     |    |
| ATOM  | 17 | C    | GLY A |      | 9.640  | 69.599 | 50.777 | 1.00 52.13 | A   | C  |
| ATOM  | 18 | 0    | GLY A |      | 9.174  | 69.347 | 51.891 | 1.00 52.66 | A   | 0  |
| ATOM  | 19 | N    | PRO A | 33   | 9.921  | 70.855 | 50.393 | 1.00 51.39 | A   | N  |
| ATOM  | 20 | CD   | PRO A | . 33 | 10.484 | 71.365 | 49.134 | 1.00 51.17 | A   | С  |
| ATOM  | 21 | CA   | PRO A | 33   | 9.645  | 71.955 | 51.313 | 1.00 51.37 | A   | C  |
| ATOM  | 22 | CB   | PRO A |      | 10.246 | 73.166 | 50.602 | 1.00 51.19 | A   | C  |
| ATOM  | 23 | CG   | PRO A |      | 10.087 | 72.821 | 49.174 | 1.00 50.77 | A   | č  |
|       |    |      |       |      |        |        |        |            |     |    |
| ATOM  | 24 | C .  | PRO A |      | 8.150  | 72.085 | 51.506 | 1.00 51.33 | A   | С  |
| ATOM  | 25 | 0    | PRO A | 33   | 7.374  | 71.844 | 50.575 | 1.00 50.57 | A   | 0  |
| ATOM  | 26 | N    | THR A | 34   | 7.753  | 72.442 | 52.725 | 1.00 52.77 | A   | N  |
| ATOM  | 27 | CA   | THR A | 34   | 6.349  | 72.605 | 53.040 | 1.00 52.72 | A   | С  |
| ATOM  | 28 | СВ   | THR A |      | 6.094  | 72.655 | 54.567 | 1.00 52.49 | A   | Ċ  |
| ATOM  | 29 |      | THR A |      | 7.263  | 73.136 | 55.244 | 1.00 54.30 | A   | ō  |
|       |    |      |       |      |        |        |        |            |     |    |
| ATOM  | 30 | CG2  | THR A |      | 5.742  | 71.268 |        | 1.00 50.85 | A   | С  |
| ATOM  | 31 | С    | THR A |      | 5.902  | 73.887 | 52.366 | 1.00 53.91 | A   | С  |
| ATOM  | 32 | 0    | THR A | 34   | 6.580  | 74.921 | 52.433 | 1.00 52.15 | A   | 0  |
| ATOM  | 33 | N    | PRO A | 35   | 4.769  | 73.813 | 51.654 | 1.00 54.69 | A   | N  |
| ATOM  | 34 | CD   | PRO A |      | 4.095  | 72.541 | 51.315 | 1.00 54.14 | A   | С  |
| ATOM  | 35 | CA   | PRO A |      | 4.164  | 74.928 | 50.923 | 1.00,55.56 | A   | Č  |
|       |    |      |       |      |        |        |        |            |     |    |
| MOTA  | 36 | CB   | PRO A |      | 3.371  | 74.220 | 49.839 | 1.00 55.92 | A   | C  |
| MOTA  | 37 | CG   | PRO A |      | 2.877  | 73.008 | 50.555 | 1.00:55.05 | A   | С  |
| ATOM  | 38 | С    | PRO A | 35   | 3.283  | 75.815 | 51.785 | 1.00 57.37 | A   | ¢  |
| ATOM  | 39 | 0    | PRO A | . 35 | 2.897  | 75.451 | 52.892 | 1.00 58.50 | A   | 0  |
| ATOM  | 40 | N    | LEU A | 36   | 2.961  | 76.986 | 51,265 | 1.00 58.65 | A   | ·N |
| ATOM  | 41 | CA   | LEU A |      | 2.123  | 77.902 | 51.993 | 1.00 60.21 | A   | С  |
| ATOM  | 42 | СВ   | LEU A |      | 2.621  |        | 51.812 | 1.00 59.23 | A   | č  |
|       |    |      |       |      |        | 79.329 |        |            |     |    |
| MOTA  | 43 | CG   | LEU A |      | 3.988  | 79.582 | 52.440 | 1.00 58.27 | A   | C  |
| ATOM  | 44 | CD1  | LEU A | 36   | 4.349  | 81.045 | 52.256 | 1.00 57.20 | . А | С  |
| ATOM  | 45 | CD2  | LEU A | 36   | 3.976  | 79.213 | 53.918 | 1.00 57.42 | A   | С  |
| ATOM  | 46 | С    | LEU A | 36   | 0.681  | 77.773 | 51,537 | 1.00 62.23 | A   | C  |
| ATOM  | 47 | 0    | LEU A | 36   | 0.390  | 77,175 | 50.497 | 1.00 62.80 | A   | 0  |
| ATOM  | 48 | N    | PRO A |      | -0.243 | 78.347 | 52.318 | 1.00 63.73 | A   | N  |
| MOTA  | 49 | CD   | PRO A |      | 0.032  | 79.189 | 53.504 | 1.00 64.36 | A   | c  |
|       |    |      |       |      |        |        |        |            |     |    |
| ATOM  | 50 | CA   | PRO A |      | -1.673 | 78.312 | 52.031 | 1.00 63.85 | A   | C  |
| ATOM  | 51 | CB   | PRO A |      | -2.189 | 79.517 | 52.805 | 1.00 64.88 | A   | C  |
| ATOM  | 52 | · CG | PRO A | . 37 | -1.348 | 79.473 | 54.053 | 1.00 64.19 | A   | С  |
| ATOM  | 53 | С    | PRO A | 37   | -2.106 | 78.310 | 50.557 | 1.00 64.21 | A   | С  |
| ATOM  | 54 | 0    | PRO A | 37   | -2.728 | 77.350 | 50.102 | 1.00 65.47 | A   | 0  |
| ATOM  | 55 | N    | VAL A |      | -1.786 | 79,353 | 49.800 | 1.00 62.27 | A   | N  |
| ATOM  | 56 | CA   |       |      |        | 79.376 | 48.413 | 1.00 61.21 | A   | C  |
|       |    |      | VAL A |      | -2.232 |        |        |            |     | c  |
| MOTA  | 57 | CB   | VAL A |      | -3.266 | 80,498 | 48.209 | 1.00 61.85 | A   |    |
| MOTA  | 58 |      | VAL A |      | -2.605 | 81,856 | 48.417 | 1.00 62.61 | A   | С  |
| ATOM  | 59 | CG2  | VAL A | . 38 | -3.892 | 80.395 | 46.826 | 1.00 61.49 | A   | C  |
| ATOM  | 60 | С    | VAL A | 38   | -1.122 | 79.545 | 47.385 | 1.00 60.31 | A   | С  |
| ATOM  | 61 | 0    | VAL A |      | -1.197 | 79.002 | 46.283 | 1.00 59.94 | A   | 0  |
| ATOM  | 62 | N    | ILE A |      | -0.089 | 80.293 | 47.744 | 1.00 58.18 | A   | N  |
| ATOM  | 63 |      |       |      |        |        | 46.817 | 1.00 56.45 | A   | Ċ  |
|       |    | CA   | ILE A |      | 0.996  | 80.518 |        |            |     |    |
| ATOM  | 64 | CB   | ILE A |      | 1.930  | 81.617 | 47.321 | 1.00 56.75 | A   | C  |
| ATOM  | 65 |      | ILE A |      | 1.120  | 82.854 | 47.658 | 1.00 55.59 | A   | С  |
| ATOM  | 66 | CG1  | ILE A | 39   | 2.690  | 81.145 | 48.548 | 1.00 56.74 | A   | С  |
| ATOM  | 67 |      | ILE A |      | 3,681  | 82.159 | 49.054 | 1.00 59.13 | A   | С  |
| ATOM  | 68 | C    | ILE A |      | 1.790  | 79.238 | 46.560 | 1.00 55.54 | A   | С  |
| ATOM  | 69 | Ö    | ILE A |      |        | 79.012 | 45.456 | 1.00 55.67 | A   | ō  |
|       |    |      |       |      | 2.284  |        |        |            |     |    |
| ATOM  | 70 | N    | GLY A |      | 1.892  | 78.380 | 47.568 | 1.00 54.07 | A   | N  |
| ATOM  | 71 | CA   | GLY A | 40   | 2.641  | 77.148 | 47.393 | 1.00 51.25 | A   | C  |
| ATOM  | 72 | С    | GLY A | 40   | 4.095  | 77.344 | 47.783 | 1.00 49.28 | A   | ·C |

### Figure 3

| ATOM   | 73  | 0   | GLY | Α  | 40 | 4.380  | 77.868 | 48.856 | 1.00 49.0 | 58 A | 0          |
|--------|-----|-----|-----|----|----|--------|--------|--------|-----------|------|------------|
|        | 74  | N   | ASN |    | 41 |        |        |        | 1.00 46.9 |      |            |
| ATOM   |     |     |     |    |    | 5.020  | 76.951 | 46.913 |           |      | N          |
| ATOM   | 75  | CA  | ASN | A  | 41 | 6.444  | 77.094 | 47.211 | 1.00 44.2 |      | С          |
| ATOM   | 76  | СВ  | ASN | A  | 41 | 7.192  | 75.863 | 46.780 | 1.00 42.6 | A 88 | С          |
| ATOM   | 77  | CG  | ASN | A  | 41 | 7.026  | 74.746 | 47.738 | 1.00 42.4 | 16 A | С          |
| ATOM   | 78  |     | ASN |    | 41 | 7.439  | 74.849 | 48.897 | 1.00 43.2 |      |            |
|        |     |     |     |    |    |        |        |        |           |      | 0          |
| ATOM   | 79  |     | ASN | A  | 41 | 6.414  | 73.658 | 47.279 | 1.00 41.8 |      | N          |
| ATOM   | 80  | С   | ASN | A  | 41 | 7.090  | 78.262 | 46.540 | 1.00 44.1 | 12 A | С          |
| ATOM   | 81  | 0   | ASN | A  | 41 | 8.271  | 78.515 | 46.736 | 1.00 43.2 | 24 A | 0          |
| ATOM   | 82  | N   | ILE |    | 42 |        |        |        | 1.00 45.1 |      |            |
|        |     |     |     |    |    | 6.311  | 78.947 | 45.717 |           |      | N          |
| ATOM   | 83  | CA  | ILE | A  | 42 | 6.784  | BO.099 | 44.977 | 1.00 45.9 | 91 A | С          |
| ATOM   | 84  | CB  | ILE | Α  | 42 | 5.616  | 80.985 | 44.573 | 1.00 45.1 | L8 A | С          |
| ATOM   | 85  | CG2 | ILE | А  | 42 | 4.944  | 81.549 | 45.816 | 1.00 43.6 | 53 A | С          |
| ATOM   | 86  |     | ILE |    | 42 | 6.111  | 82.111 | 43.683 | 1.00 45.5 |      |            |
|        |     |     |     |    |    |        |        |        |           |      | C          |
| ATOM   | 87  |     | ILE |    | 42 | 5.010  | 83.012 | 43.169 | 1.00 44.8 |      | С          |
| ATOM   | 88  | С   | ILE | A  | 42 | 7.769  | 80.926 | 45.783 | 1.00 47.3 | 39 A | С          |
| ATOM   | 89  | 0   | ILE | A  | 42 | 8.668  | 81.552 | 45.229 | 1.00 48.2 | 29 A | 0          |
| ATOM   | 90  | N   | LEU |    | 43 | 7.602  | 80.922 | 47.095 | 1.00 50.0 |      | N          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 91  | CA  | LEU |    | 43 | 8.476  | 81.693 | 47.953 | 1.00 52.3 |      | С          |
| . ATOM | 92  | CB  | LEU | A  | 43 | 7.899  | 81.716 | 49.360 | 1.00 51.1 | 14 A | С          |
| ATOM   | 93  | CG  | LEU | A  | 43 | 8.190  | 83.032 | 50.057 | 1.00 50.4 | 10 A | С          |
| ATOM   | 94  |     | LEU |    | 43 | 7.707  | 84.208 | 49.192 | 1.00 49.5 |      | Č          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 95  |     | LEU |    | 43 | 7.492  | 83.021 | 51.406 | 1.00 51.0 |      | С          |
| ATOM   | 96  | С   | LEU | Α  | 43 | 9.877  | 81.102 | 47.976 | 1.00 53.9 | 97 A | С          |
| ATOM   | 97  | 0   | LEU | Α  | 43 | 10.842 | 81.767 | 48.350 | 1.00 55.0 | )6 A | 0          |
| ATOM   | 98  | N   | GLN |    | 44 | 9.966  | 79.843 | 47.563 | 1.00 55.1 |      | N          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| MOTA   | 99  | CA  | GLN |    | 44 | 11.211 | 79.089 | 47.542 | 1.00 55.9 |      | С          |
| ATOM   | 100 | CB  | GLN | A  | 44 | 10.928 | 77.621 | 47.884 | 1.00 59.0 | )2 A | . C        |
| ATOM   | 101 | CG  | GLN | A  | 44 | 10.237 | 77.347 | 49.227 | 1.00 64.3 | .6 A | С          |
| ATOM   | 102 | CD  | GLN | A  | 44 | 11.209 | 77.323 | 50.399 | 1.00 67.7 |      | Ċ          |
| ATOM   | 103 |     |     |    | 44 | 10.974 |        |        | 1.00 70.4 |      |            |
|        |     |     | GLN |    |    |        | 76.635 | 51.399 |           |      | <b>o</b> : |
| MOTA   | 104 | NE2 | GLN |    | 44 | 12.301 | 78.082 | 50.288 | 1.00 69.5 | i2 A | N          |
| ATOM   | 105 | С   | GLN | A  | 44 | 11.898 | 79.146 | 46.172 | 1.00 55.5 | 1 A  | С          |
| ATOM   | 106 | 0   | GLN | A  | 44 | 12.945 | 79.772 | 46.012 | 1.00 55.8 | 15 A | 0          |
| ATOM   | 107 | N   | ILE |    | 45 | 11.301 |        |        |           |      |            |
|        |     |     |     |    |    |        | 78.486 | 45.186 | 1.00 53.3 |      | N          |
| ATOM   | 108 | ÇA  | ILE | А  | 45 | 11.869 | 78.439 | 43.854 | 1.00 51.6 | 53 A | C          |
| ATOM   | 109 | CB  | ILE | Α  | 45 | 11.046 | 77.530 | 42.966 | 1.00 50.3 | 16 A | C.         |
| ATOM   | 110 | CG2 | ILE | A  | 45 | 10.775 | 76.231 | 43.687 | 1.00 48.6 |      | C. '.      |
| ATOM   | 111 |     | ILE |    | 45 | 9.705  |        |        |           |      |            |
|        |     |     |     |    |    |        | 78.166 | 42.671 | 1.00 50.1 |      | C          |
| MOTA   | 112 | CD1 | ILE | A  | 45 | 8.838  | 77.310 | 41.792 | 1.00 51.0 | )5 A | С          |
| ATOM   | 113 | С   | ILE | A  | 45 | 11.972 | 79.811 | 43.200 | 1.00 52.1 | .3 A | С          |
| ATOM   | 114 | 0   | ILE |    | 45 | 12.787 | 80.025 | 42.303 | 1.00 53.6 |      | 0          |
| ATOM   | 115 | N   | GLY |    | 46 |        |        | 43.633 |           |      |            |
|        |     |     |     |    |    | 11.154 | 80.757 |        | 1.00 53.0 |      | N          |
| MOTA   | 116 | CA  | GLY |    | 46 | 11.230 | 82.076 | 43.037 | 1.00 53.9 | 95 A | , C        |
| MOTA   | 117 | С   | GLY | A  | 46 | 10.459 | 82.209 | 41.744 | 1.00 54.9 | 19 A | С          |
| ATOM   | 118 | 0   | GLY | Α  | 46 | 9.308  | 81.792 | 41.630 | 1.00 55.9 | 7 A  | 0          |
| ATOM   | 119 | N   | ILE |    | 47 | 11.106 | 82.776 | 40.738 | 1.00 56.7 |      | N          |
| ATOM   | 120 | CA  |     |    | 47 |        | 82.999 |        |           |      |            |
|        |     |     | ILE |    |    | 10.435 |        | 39.463 | 1.00 58.4 |      | C          |
| ATOM   | 121 | СВ  | ILE |    | 47 | 9.383  | 84.095 | 39.660 | 1.00 57.8 | 10 A | С          |
| ATOM   | 122 | CG2 | ILE | A  | 47 | 10.048 | 85.326 | 40.283 | 1.00 56.7 | '2 A | С          |
| ATOM   | 123 | CG1 | ILE | A  | 47 | 8.690  | 84.411 | 38.347 | 1.00 59.1 | .2 A | С          |
| ATOM   | 124 | CD1 | ILE | Δ. | 47 | 7.703  | 85.549 | 38.476 | 1.00 61.3 |      | Ċ          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 125 | C   | ILE |    | 47 | 11.470 | 83.422 | 38.413 | 1.00 60.1 |      | C          |
| ATOM   | 126 | ,0  | ILE | A  | 47 | 11.213 | 83.395 | 37.206 | 1.00 58.7 | '5 A | 0          |
| ATOM   | 127 | N   | LYS | Α  | 48 | 12.639 | 83.809 | 38.925 | 1.00 61.3 | 9 A  | N          |
| ATOM   | 128 | CA  | LYS | Α  | 48 | 13.795 | 84.233 | 38.149 | 1.00 63.3 | 2 A  | С          |
| ATOM   | 129 | СВ  | LYS |    | 48 | 14.692 | 85.143 | 39.019 | 1.00 65.1 |      | č          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 130 | CG  | LYS |    | 48 | 14.870 | 84.672 | 40.492 | 1.00 68.2 |      | С          |
| MOTA   | 131 | CD  | LYS | Α  | 48 | 14.999 | 85.830 | 41.541 | 1.00 68.1 | .5 A | С          |
| MOTA   | 132 | CE  | LYS | Α  | 48 | 14.974 | 85.300 | 43.001 | 1.00 67.6 | 5 A  | С          |
| ATOM   | 133 | NZ  | LYS |    | 48 | 14.899 | 86.346 | 44.066 | 1.00 64.5 |      | N          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 134 | С   | LYS |    | 48 | 14.536 | 82.976 | 37.642 | 1.00 64.0 |      | · C        |
| MOTA   | 135 | 0   | LYS | A  | 48 | 14.218 | 82.485 | 36.555 | 1.00 64.6 | 14 A | 0          |
| ATOM   | 136 | N   | ASP |    | 49 | 15.486 | 82,434 | 38.412 | 1.00 63.3 |      | N          |
| ATOM   | 137 | CA  | ASP |    | 49 | 16.231 | 81.220 | 38.004 | 1.00 62.5 |      | Ċ          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 138 | CB  | ASP |    | 49 | 17.741 | 81.364 | 38.307 | 1.00 63.6 |      | С          |
| MOTA   | 139 | CG  | ASP |    | 49 | 18.610 | 80.319 | 37.573 | 1.00 64.8 |      | С          |
| MOTA   | 140 | OD1 | ASP | A  | 49 | 19.863 | 80.400 | 37.679 | 1.00 63.9 | 0 A  | 0 -        |
| ATOM   | 141 |     | ASP |    | 49 | 18.052 | 79.421 | 36.887 | 1.00 66.4 |      | ŏ          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| ATOM   | 142 | С   | ASP |    | 49 | 15.685 | 79.996 | 38.734 | 1.00 60.6 |      | C          |
| MOTA   | 143 | 0   | ASP | Α  | 49 | 16.305 | 79.471 | 39.661 | 1.00 60.6 | 1 A  | 0          |
| ATOM   | 144 | N   | ILE | A  | 50 | 14.519 | 79.542 | 38.301 | 1.00 58.7 | 4 A  | N.         |
| ATOM   | 145 | CA  | ILE |    | 50 | 13.881 | 78.398 | 38.916 | 1.00 57.7 |      |            |
| ATOM   | 146 | СВ  | ILE |    | 50 | 12.506 | 78.117 | 38.230 | 1.00 57.2 |      | Č          |
|        |     |     |     |    |    |        |        |        |           |      |            |
| MOTA   | 147 | CG2 | ILE |    | 50 | 11.968 | 79.399 | 37.608 | 1.00 57.8 | 9 A  | С          |
|        |     |     |     |    |    |        |        |        |           |      |            |

### Figure 3

| ATOM         | 148        | CG1     | ILE        | A | 50       | 12,652           | 77.094           | 37.112           | 1.00 | 58.76          | Α      | С      |
|--------------|------------|---------|------------|---|----------|------------------|------------------|------------------|------|----------------|--------|--------|
| ATOM         | 149        | CD1     | ILE        | Α | 50       | 12.268           | 75.723           | 37.537           | 1.00 | 58.46          | A      | С      |
| ATOM         | 150        | С       | ILE        | A | 50       | 14.808           | 77.184           | 38.849           | 1.00 | 57.10          | A      | C      |
| ATOM         | 151        | 0       | ILE        | A | 50       | 14.752           | 76.295           | 39.704           |      | 56.67          | A      | 0      |
| ATOM         | 152        | N       | SER        |   | 51       | 15.682           | 77.143           | 37.853           |      | 56.54          | Α      | N      |
| MOTA         | 153        | CA      | SER        |   | 51       | 16.583           | 76.007           | 37.769           |      | 57.44          | A      | С      |
| ATOM         | 154        | CB      | SER        |   | 51       | 17.417           | 76.032           | 36.496           |      | 58.96          | A      | C      |
| ATOM         | 155        | OG      | SER        |   | 51       | 18.395           | 74.994           | 36.568           |      | 60.05          | A      | 0      |
| ATOM         | 156        | C       | SER        |   | 51       | 17.538           | 75.926           | 38.947           |      | 56.95          | A      | C      |
| ATOM         | 157        | 0       | SER<br>LYS |   | 51<br>52 | 17.524<br>18.373 | 74.949<br>76.949 | 39.682<br>39.107 |      | 56.91<br>56.48 | A<br>A | N      |
| MOTA<br>MOTA | 158<br>159 | n<br>Ca | LYS        |   | 52       | 19.355           | 76.987           | 40.180           |      | 56.04          | A      | Ĉ      |
| ATOM         | 160        | CB      | ЬYS        |   | 52       | 20.109           | 78.325           | 40.170           |      | 59.24          | A      | Č      |
| ATOM         | 161        | CG      | LYS        |   | 52       | 21.644           | 78.235           | 40.389           |      | 64.17          | A      | C      |
| MOTA         | 162        | CD      | LYS        |   | 52       | 22.414           | 77.613           | 39.179           | 1.00 | 67.46          | Α      | С      |
| MOTA         | 163        | CE      | LYS        | A | 52       | 22.502           | 78.550           | 37.952           | 1.00 | 67.87          | A      | С      |
| ATOM         | 164        | NZ      | LYS        | A | 52       | 23.127           | 77.847           | 36.783           |      | 69.37          | A      | N      |
| MOTA         | 165        | С       | LYS        | A | 52       | 18.701           | 76.779           | 41.535           |      | 54.36          | A      | С      |
| MOTA         | 166        | 0       | LYS        |   | 52       | 19.376           | 76.484           | 42.513           |      | 55.13          | A      | 0      |
| ATOM         | 167        | N       | SER        |   | 53       | 17.388           | 76.942           | 41.603           |      | 50.67          | A      | N      |
| MOTA         | 168        | CA      | SER        |   | 53       | 16.703           | 76.748           | 42.865           |      | 47.30          | A      | C      |
| ATOM         | 169        | CB      | SER        |   | 53       | 15.372           | 77.478           | 42.866           |      | 47.45          | A      | C      |
| ATOM         | 170        | OG      | SER        |   | 53       | 15.586           | 78.854           | 42.629<br>43.000 |      | 49.17<br>45.35 | A<br>A | o<br>C |
| MOTA         | 171        | C       | SER        |   | 53<br>53 | 16.473           | 75.268<br>74.716 | 44.094           |      | 45.51          | A      | Ö      |
| ATOM         | 172<br>173 | 0       | SER<br>LEU |   | 54       | 16.527<br>16.218 | 74.710           | 41.876           |      | 42.35          | A      | N      |
| MOTA<br>MOTA | 174        | N<br>CA | LEO        |   | 54       | 15.989           | 73.188           | 41.922           |      | 39.04          | A      | Ċ      |
| ATOM         | 175        | СВ      | LEU        |   | 54       | 15.539           | 72.676           | 40.563           |      | 36.42          | A      | č      |
| ATOM         | 176        | CG      | LEU        |   | 54       | 14.136           | 73.069           | 40.153           |      | 32.43          | A      | Č      |
| ATOM         | 177        |         | LEU        |   | 54       | 13.838           | 72.334           | 38.879           |      | 32.45          | A      | С      |
| ATOM         | 178        |         | LEU        |   | 54       | 13,114           | 72.693           | 41.215           | 1.00 | 30.68          | A      | С      |
| ATOM         | 179        | C:      | LEU        | A | 54       | 17.248           | 72.465           | 42.376           | 1.00 | 37.97          | A      | С      |
| MOTA         | 180        | 0       | LEU        | A | -54      | 17.165           | 71.513           | 43.141           | 1.00 | 37.31          | A      | 0      |
| MOTA         | 181        | N,      | THR        | A | 55       | 18.411           | 72.922           | 41.924           |      | 37.26          | A      | И      |
| MOTA         | 182        | CA      | THR        |   | 55       | 19.655           | 72.282           | 42.320           |      | 37.55          | A      | C      |
| MOTA         | 183        | CB      | THR        |   | 55       | 20.878           | 72.874           | 41.574           |      | 37.35          | A      | C      |
| MOTA         | 184        |         | THR        |   | 55       | 20.796           | 72.548           | 40.181           |      | 37.73          | A      | 0      |
| ATOM .       | 185        |         | THR        |   | 55       | 22.175           | 72.309           | 42.129           |      | 36.42          | A<br>A | C      |
| MOTA         | 186        | C       | THR        |   | 55       | 19.856           | 72.431<br>71.448 | 43.820<br>44.512 |      | 37.00<br>38.32 | A      | ō      |
| ATOM         | 187<br>188 | 0       | THR        |   | 55<br>56 | 20.093<br>19.755 | 73.649           | 44.335           |      | 35.82          | A      | N      |
| MOTA<br>MOTA | 189        | N<br>CA | ASN        |   | 56       | 19.934           | 73.842           | 45.765           |      | 33.55          | A      | Ċ      |
| ATOM         | 190        | CB      | ASN        |   | 56       | 19.787           | 75.305           | 46.131           |      | 34.80          | A      | č      |
| ATOM         | 191        | CG      | ASN        |   | 56       | 20.895           | 76,134           | 45.568           |      | 36.65          | A      | C      |
| ATOM         | 192        |         | ASN        |   | 56       | 22.054           | 75.726           | 45.595           |      | 38.21          | A      | 0      |
| ATOM         | 193        | ND2     | ASN        | A | 56       | 20.559           | 77.305           | 45.054           | 1.00 | 38.43          | A      | N      |
| ATOM         | 194        | С       | ASN        |   | 56       | 18.934           | 73.016           | 46.530           | 1.00 | 32.86          | A      | С      |
| ATOM         | 195        | 0       | ASN        | A | 56       | 19.294           | 72.279           | 47.430           |      | 32.44          | A      | 0      |
| ATOM         | 196        | N       | LEU        | A | 57       | 17.671           | 73.138           | 46.168           |      | 32.06          | A      | N      |
| ATOM         | 197        | CA      | ľEÚ        |   | 57       | 16.652           | 72.367           | 46.827           |      | 32.17          | A      | C      |
| MOTA         | 198        | CB      | PEA        |   | 57       | 15.333           | 72.505           | 46.104           |      | 32.46          | A      | C      |
| ATOM         | 199        | CG      | LEU        |   | 57       | 14.614           | 73.784           | 46.464           |      | 33.28          | A      | C      |
| ATOM         | 200        |         | LEU        |   | 57       | 13.631           | 74,094<br>73.644 | 45.377<br>47.819 |      | 33.96<br>32.34 | A<br>A | c      |
| MOTA<br>MOTA | 201<br>202 | CDZ     | PEA        |   | 57<br>57 | 13.941<br>17.012 | 70.909           | 46.874           |      | 32.89          | A      | Ċ      |
| ATOM         | 203        | Ö       | LEU        |   | 57       | 16.626           | 70.210           | 47.791           |      | 33.55          | A      | ō      |
| ATOM         | 204        | N       | SER        |   | 58       | 17.734           | 70.426           | 45.878           |      | 33.67          | A      | N      |
| ATOM         | 205        | CA      | SER        |   | 58       | 18.084           | 69.024           | 45.891           |      | 33.98          | A      | С      |
| ATOM         | 206        | СВ      | SER        |   | 58       | 18.511           | 68.567           | 44.508           |      | 34.59          | A      | С      |
| ATOM         | 207        | OG      | SER        |   | 58       | 19.818           | 69.015           | 44.223           | 1.00 | 36.25          | A      | О      |
| ATOM         | 208        | С       | SER        |   | 58       | 19.198           | 68.725           | 46.881           | 1.00 | 34.63          | A      | С      |
| ATOM         | 209        | 0       | SER        | A | 58       | 19.208           | 67.649           | 47.466           | 1.00 | 34.99          | A      | 0      |
| MOTA         | 210        | N       | LYS        | A | 59       | 20.140           | 69.650           | 47.065           |      | 35.25          | A      | N      |
| ATOM         | 211        | CA      | LYS        |   | 59       | 21.229           | 69.411           | 48.002           |      | 35,63          | A      | . C    |
| ATOM         | 212        | CB      | LYS        | Α | 59       | 22.223           | 70.574           | 48.012           |      | 36,68          | A      | C      |
| ATOM         | 213        | CG      | LYS        |   | 59       | 23.043           | 70.723           | 46.728           |      | 40.81          | A      | C      |
| ATOM         | 214        | CD      | LYS        |   | 59       | 23.850           | 72.033           | 46.690           |      | 44.20          | A      | C      |
| ATOM         | 215        | CE      | LYS        |   | 59       | 25.358           | 71.808           | 46.794           |      | 45,65          | A<br>A | C      |
| ATOM         | 216        | NZ      | LYS        |   | 59<br>50 | 26.118           | 73.063<br>69.215 | 46.535<br>49.398 |      | 46.73<br>35.70 | A      | N<br>C |
| ATOM         | 217        | C       | LYS        |   | 59       | 20.678<br>21.342 | 68.647           | 50.266           |      | 35.70          | A      | Ö      |
| ATOM<br>ATOM | 218<br>219 | 0       | LYS        |   | 59 ´     | 19.455           | 69.661           | 49.624           |      | 35.70          | A      | Ŋ      |
| ATOM         | 220        | N<br>CA | VAL        |   | 60       | 18.890           | 69.506           | 50.940           |      | 35.49          | A      | Ċ      |
| MOTA         | 221        | CB      | VAL        |   | 60       | 18.373           | 70.844           | 51.477           |      | 35.32          | A      | Č      |
| ATOM         | 222        |         | VAL        |   | 60       | 17.382           | 71,430           | 50.515           |      | 37.03          | A      | C      |
|              | J-4,       |         |            |   |          |                  |                  |                  |      |                |        |        |

# Figure 3

| ATOM   | 223 | CG2  | VAL . | A | 60 | 17,732              | 70.643 | 52.838 | 1.00 3 | 7.09  |   | A | С   |
|--------|-----|------|-------|---|----|---------------------|--------|--------|--------|-------|---|---|-----|
| ATOM   | 224 | С    | VAL . | A | 60 | 17.760              | 68.500 | 51.029 | 1.00 3 | 5.57  |   | A | С   |
|        |     | ŏ    | VAL   |   | 60 | 17.463              | 68.005 | 52.105 | 1.00 3 |       |   | A | 0   |
| ATOM   | 225 |      |       |   |    |                     |        |        | 1.00 3 |       |   | A | N   |
| ATOM   | 226 | N    | TYR   |   | 61 | 17.129              | 68.174 | 49.916 |        |       |   |   |     |
| ATOM   | 227 | CA . | TYR   | A | 61 | 16.034              | 67.235 | 49.998 | 1.00 3 |       |   | A | С   |
| ATOM   | 228 | CB . | TYR   | A | 61 | 14.776              | 67.865 | 49.406 | 1.00 3 |       |   | A | С   |
| ATOM   | 229 | CG   | TYR   | Α | 61 | 14.043              | 68.781 | 50.369 | 1.00 4 | 2.39  |   | A | С   |
| ATOM   | 230 |      | TYR   |   | 61 | 13.128              | 68.265 | 51.290 | 1.00 4 | 6.43  |   | A | С   |
|        |     |      |       |   | 61 | 12.452              | 69.100 | 52,187 | 1.00 4 |       |   | A | С   |
| ATOM   | 231 |      | TYR   |   |    |                     |        |        | 1.00 4 |       |   | A | č   |
| ATOM . | 232 |      | TYR   |   | 61 | 14.267              | 70.158 | 50.370 |        |       |   |   |     |
| ATOM   | 233 | CE2  | TYR   | A | 61 | 13.595              | 71.004 | 51.267 | 1.00 4 |       |   | A | C   |
| MOTA   | 234 | CZ   | TYR   | A | 61 | 12.692              | 70.467 | 52.169 | 1.00 4 | 5.84  |   | A | С   |
| MOTA   | 235 | OH   | TYR   | A | 61 | 12.031              | 71.275 | 53.072 | 1.00 4 | 18.49 |   | A | 0   |
| ATOM   | 236 | С    | TYR   |   | 61 | 16.328              | 65.901 | 49.339 | 1,00 3 | 6.91  |   | A | C . |
|        | 237 | ō    | TYR   |   | 61 | 15.702              | 64.900 | 49.664 | 1.00 3 |       |   | A | 0   |
| ATOM   |     |      |       |   |    |                     | 65.885 | 48.420 | 1.00 3 |       |   | A | N   |
| ATOM   | 238 | N    | GLY   |   | 62 | 17.283              |        |        |        |       |   |   | Ċ   |
| ATOM   | 239 | CA   | GLY   |   | 62 | 17.621              | 64.646 | 47.757 | 1.00 3 |       |   | A |     |
| ATOM   | 240 | С    | GLY   | A | 62 | 17.488              | 64.767 | 46.263 | 1.00 3 |       |   | A | C   |
| ATOM   | 241 | 0    | GLY   | Α | 62 | 17.266              | 65.854 | 45.747 | 1.00 3 | 36.17 |   | A | 0   |
| ATOM   | 242 | N    | PRO   |   | 63 | 17.639              | 63.665 | 45.535 | 1.00 3 | 33.77 |   | Α | N   |
| ATOM   | 243 | CD   | PRO   |   | 63 | 18.214              | 62.398 | 45.997 | 1.00 3 | 33.67 |   | Α | C   |
|        |     |      |       |   | 63 | 17.532              | 63.658 | 44.088 | 1.00 3 |       |   | A | С   |
| ATOM   | 244 | CA   | PRO   |   |    |                     |        |        | 1.00 3 |       |   | A | č   |
| ATOM   | 245 | CB   | PRO   |   | 63 | 18.362              | 62.457 | 43.704 |        |       |   |   |     |
| ATOM   | 246 | CG   | PRO   | A | 63 | 18.001              | 61.491 | 44.801 | 1.00   |       |   | A | , C |
| MOTA   | 247 | С    | PRO   | A | 63 | 16.097              | 63.489 | 43.654 | 1.00 3 | 33.31 |   | A | C   |
| ATOM   | 248 | 0    | PRO   | A | 63 | 15.803              | 63.491 | 42.469 | 1.00 3 | 35.57 |   | A | 0   |
| ATOM   | 249 | N    | VAL   |   | 64 | 15,193              | 63.297 | 44.594 | 1.00 3 | 32.09 |   | Α | N   |
|        |     |      |       |   |    | 13.811              | 63.137 | 44.190 | 1.00   |       |   | A | С   |
| MOTA   | 250 | CA   | VAL   |   | 64 |                     |        |        | 1.00   |       |   | A | Č   |
| ATOM   | 251 | CB   | VAL   |   | 64 | 13.402              | 61.671 | 44.052 |        |       |   |   |     |
| MOTA   | 252 | CG1  | VAL   | A | 64 | 11.963              |        | 43.605 | 1.00   |       |   | A | C   |
| MOTA   | 253 | CG2  | VAL   | A | 64 | 14.290              | 60.967 | 43.045 | 1.00 2 | 29.93 |   | A | С   |
| ATOM   | 254 | C    | VAL   | А | 64 | 12.894              | 63.790 | 45.173 | 1.00   | 31.69 |   | A | С   |
| MOTA   | 255 | ŏ    | VAL   |   | 64 | 12.423              | 63,166 | 46.117 | 1.00   | 31.01 |   | A | 0   |
|        |     |      |       |   |    | 12.637              | 65.064 | 44,931 | 1.00   |       |   | A | N   |
| ATOM   | 256 | N    | PHE   |   | 65 |                     |        |        | 1.00   |       |   | A | Ċ   |
| ATOM   | 257 | CA   | PHE   |   | 65 | 11.785              | 65.824 | 45.810 |        |       |   |   | Č   |
| MOTA   | 258 | CB   | PHE   | Α | 65 | 12.549              |        | 46.383 | 1.00   |       |   | A |     |
| ATOM   | 259 | CG   | PHE   | A | 65 | 13.186 <sup>.</sup> | 67.888 | 45.350 | 1.00   | 31.47 |   | A | · C |
| ATOM   | 260 | CD1  | PHE   | A | 65 | 14.322              | 67.490 | 44.661 | 1.00   | 30.56 |   | A | С   |
| ATOM   | 261 |      | PHE   |   | 65 | 12.715              | 69.168 | 45.146 | 1.00   | 30.74 | • | Α | С   |
|        |     |      | PHE   |   | 65 | 14.977              | 68:369 | 43.807 | 1.00   | 31.15 |   | A | С   |
| ATOM   | 262 |      |       |   |    |                     | 70.044 | 44.293 | 1.00   |       |   | A | С   |
| ATOM   | 263 |      | PHE   |   | 65 | 13.370              |        |        |        |       |   | A | č   |
| MOTA   | 264 | CZ   | PHE   | A | 65 | 14.496              | 69,641 | 43.632 | 1.00   |       |   |   |     |
| ATOM   | 265 | С    | PHE   | Α | 65 | 10.528              | 66.338 | 45.149 | 1.00   |       |   | A | C   |
| ATOM   | 266 | 0    | PHE   | Α | 65 | 10.464              | 66.434 | 43.926 | 1.00   | 36.25 |   | A | 0   |
| MOTA   | 267 | N    | THR   |   | 66 | 9.543               | 66.687 | 45.982 | 1.00   | 36.14 |   | Α | N   |
| ATOM . | 268 | CA   | THR   |   | 66 | 8.240               | 67.214 | 45.546 | 1.00   | 36.60 |   | Α | С   |
|        |     |      |       |   |    | 7.089               | 66.666 | 46.418 | 1.00   |       |   | A | С   |
| ATOM   | 269 | CB   | THR   |   | 66 |                     |        | 46.511 | 1.00   |       |   | A | ō   |
| MOTA   | 270 |      | THR   |   | 66 | 7.182               | 65.238 |        |        |       |   |   | č   |
| ATOM   | 271 | CG2  | THR   | A | 66 | 5.750               | 67.048 | 45.815 | 1.00   |       |   | A |     |
| ATOM   | 272 | С    | THR   | Α | 66 | 8.190               | 68.738 | 45.647 | 1.00   |       |   | A | С   |
| MOTA   | 273 | 0    | THR   | Α | 66 | 8.631               | 69.314 | 46.635 | 1.00   | 36.66 |   | A | 0   |
| ATOM   | 274 | N    | LEU   |   | 67 | 7.633               | 69.393 | 44.637 | 1.00   | 36.49 |   | A | И   |
|        | 275 | CA   | LEU   |   | 67 | 7.538               | 70.841 | 44.678 | 1.00   | 37.45 |   | A | С   |
| ATOM   |     |      | PEA   |   | 67 | 8.495               | 71.448 | 43.666 | 1.00   |       |   | A | C   |
| ATOM   | 276 | CB   |       |   |    |                     |        |        |        |       |   | A | Č   |
| ATOM   | 277 | CG   | LEU   |   | 67 | 9.374               | 72.528 | 44.289 | 1.00   |       |   |   |     |
| ATOM   | 278 | CD1  | LEU   | A | 67 | 10.004              | 72.006 | 45.549 | 1.00   |       |   | A | C   |
| ATOM   | 279 | CD2  | LEU   | A | 67 | 10.433              | 72.968 | 43.302 | 1.00   |       |   | A | С   |
| MOTA   | 280 | Ċ    | LEU   |   | 67 | 6.116               | 71.315 | 44.427 | 1.00   | 39.38 |   | A | С   |
| ATOM   | 281 | ō    | LEU   |   | 67 | 5.336               | 70.615 | 43.796 | 1.00   | 40.15 |   | A | 0   |
|        |     |      |       |   |    | 5.757               | 72.490 | 44.927 | 1.00   |       |   | A | N   |
| MOTA   | 282 | N    | TYR   |   | 68 |                     | 72.961 | 44.701 | 1.00   |       |   | A | C   |
| ATOM   | 283 | CA   | TYR   |   | 68 | 4.397               |        |        |        |       |   | A | č   |
| MOTA   | 284 | CB   | TYR   |   | 68 | 3.636               | 73.137 | 46.026 | 1.00   |       |   |   |     |
| MOTA   | 285 | CG   | TYR   | A | 68 | 3.001               | 71.868 | 46.582 | 1.00   |       |   | A | C   |
| ATOM   | 286 |      | TYR   | A | 68 | 3.642               | 71.120 | 47.568 | 1.00   |       |   | A | C   |
| ATOM   | 287 |      | TYR   |   | 68 | 3.080               | 69.942 | 48.075 | 1.00   | 48.35 |   | A | С   |
|        |     |      | TYR   |   | 68 | 1.770               | 71.406 | 46.110 | 1.00   | 48.51 |   | Α | С   |
| MOTA   | 288 |      |       |   |    | 1.200               | 70.224 | 46.610 |        | 49.03 |   | A | С   |
| ATOM   | 289 |      | TYR   |   | 68 |                     |        | 47.597 |        | 48.33 |   | A | Č   |
| MOTA   | 290 | CZ   | TYR   |   | 68 | 1.869               | 69.498 |        |        |       |   |   | ŏ   |
| ATOM   | 291 | OH   | TYR   | A | 68 | 1.326               | 68.327 | 48.095 |        | 50.71 |   | A |     |
| MOTA   | 292 | С    | TYR   | A | 68 | 4.270               | 74.240 | 43.883 |        | 47.41 |   | A | C   |
| ATOM   | 293 | ō    | TYR   |   | 68 | 4.597               | 75.334 | 44.335 |        | 47.91 |   | A | 0   |
| ATOM   | 294 | N    | PHE   |   | 69 | 3.795               | 74.082 | 42.656 | 1.00   | 48.63 |   | Α | N   |
|        |     |      |       |   | 69 | 3.564               | 75.216 |        |        | 50.91 |   | A | С   |
| MOTA   | 295 | CA   | PHE   |   |    |                     | 74.875 |        |        | 49.97 |   | A | С   |
| MOTA   | 296 | ÇВ   | PHE   |   |    | 3.876               |        |        |        | 48.40 |   | A | č   |
| ATOM   | 297 | CG   | PHE   | Α | 69 | 5.329               | 74.743 | 40.001 | 1.00   | 10.40 |   | a | ·   |

|      |     |     |     | _ |      |        |        | 20 20  |      | 40.00  |   | _   | _  |
|------|-----|-----|-----|---|------|--------|--------|--------|------|--------|---|-----|----|
| ATOM | 298 | CDI | PHE | A | 69   | 5.984  | 75.653 | 39.269 | 1.00 | 49.90  |   | A   | C  |
| ATOM | 299 | CD2 | PHE | A | 69   | 6.058  | 73.734 | 40.689 | 1,00 | 48.86  |   | A   | С  |
| ATOM | 300 |     | PHE |   | 69   | 7,351  | 75.567 | 39.076 | 1.00 | 50.32  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 301 |     | PHE |   | 69   | 7.415  | 73.635 | 40.508 |      | 48.76  |   | A   | ·C |
| ATOM | 302 | CZ  | PHE | Α | 69   | 8.068  | 74.548 | 39.697 | 1.00 | 49.66  |   | A   | С  |
| ATOM | 303 | С   | PHE | A | 69   | 2.091  | 75.495 | 41.964 | 1.00 | 53.73  |   | A   | С  |
| ATOM | 304 | 0   | PHE | Δ | 69   | 1.227  | 74.807 | 41.404 | 1 00 | 53.62  |   | A   | 0  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 305 | N   | GLY | А | 70   | 1.816  | 76.510 | 42.777 | 1.00 | 54.27  |   | A   | N  |
| ATOM | 306 | CA  | GLY | A | 70   | 0.449  | 76.876 | 43.088 | 1.00 | 54.26  |   | A   | С  |
| ATOM | 307 | С   | GLY |   | 70   | -0.084 | 75.789 | 43.990 | 1.00 | 54.00  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 308 | 0   | GLY |   | 70   | 0.355  | 75.651 | 45.133 |      | 53.92  |   | A · | 0  |
| ATOM | 309 | N   | LEU | Α | 71   | -1.035 | 75.017 | 43.484 | 1.00 | 53.56  |   | A   | N  |
| MOTA | 310 | CA  | LEU | Α | 71   | -1.610 | 73.919 | 44.256 | 1.00 | 54.65  |   | A   | C  |
| ATOM | 311 | СВ  | LEU |   | 71   | -3,138 | 74.036 | 44.330 |      | 56.55  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| MOTA | 312 | CG  | LEU | A | 71   | -3.802 | 75.261 | 44.976 |      | 57.86  |   | A   | С  |
| ATOM | 313 | CD1 | LEU | A | 71   | -5.293 | 75.213 | 44.681 | 1.00 | 59.29  |   | A   | С  |
| ATOM | 314 | CD2 | LEU | A | 71   | -3.556 | 75.277 | 46.479 | 1.00 | 57.96  |   | A   | C  |
| ATOM | 315 | c   | LEU |   | 71   | -1.243 | 72.649 | 43.518 |      | 54.17  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 316 | 0   | LEU | A | 71   | -1.688 | 71.555 | 43.871 |      | 54.26  |   | A   | 0  |
| ATOM | 317 | N   | LYS | A | 72   | -0.423 | 72.809 | 42.482 | 1.00 | 54.12  |   | A   | N  |
| MOTA | 318 | CA  | LYS | A | 72   | 0.008  | 71.674 | 41.678 | 1.00 | 53.55  |   | A   | С  |
|      | 319 |     | LYS |   | 72   | 0.193  | 72.098 | 40.212 |      | 55.94  |   | A   | С  |
| ATOM |     | CB  |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 320 | CG  | LYS | A | 72   | 0.116  | 70.940 | 39.224 |      | 58.48  |   | A   | С  |
| MOTA | 321 | CD  | LYS | A | 72   | 0.082  | 71.412 | 37.767 | 1.00 | 60.29  |   | A   | C  |
| ATOM | 322 | CE  | LYS | Α | 72   | -0.019 | 70.220 | 36.812 | 1.00 | 61.43  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      | 61.31  |   | A   | N  |
| ATOM | 323 | NZ  | LYS |   | 72   | -1.169 | 69.313 | 37.158 |      |        |   |     |    |
| MOTA | 324 | С   | LYS | A | 72   | 1.302  | 71.092 | 42.234 | 1.00 | 52.23  |   | A   | С  |
| ATOM | 325 | 0   | LYS | A | 72   | 2.292  | 71.799 | 42.400 | 1.00 | 52.92  |   | A   | 0  |
| ATOM | 326 | N   | PRO |   | 73   | 1,291  | 69.796 | 42.571 | 1 00 | 51.04  |   | A   | N  |
|      |     |     |     |   |      |        |        |        |      |        |   | A   |    |
| MOTA | 327 | CD  | PRO |   | 73   | 0.103  | 68.930 | 42.704 |      |        |   |     | С  |
| MOTA | 328 | CA  | PRO | A | 73   | 2.477  | 69.133 | 43.111 | 1.00 | 49.79  |   | A   | С  |
| ATOM | 329 | CB  | PRO | A | 73   | 1.881  | 67.989 | 43.920 | 1.00 | 49.81  |   | A   | Ç  |
| MOTA | 330 | CG  | PRO |   | 73   | 0.713  | 67.590 | 43.079 |      |        |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| MOTA | 331 | С   | PRO |   | 73   | 3.345  | 68.648 | 41.958 |      |        |   | A   | С  |
| ATOM | 332 | 0   | PRO | Α | 73   | 2.835  | 68.129 | 40.966 | 1.00 | 48.26  |   | A   | 0  |
| MOTA | 333 | N   | ILE | Α | 74   | 4.654  | 68.828 | 42.089 | 1.00 | 45:88  |   | A.  | N  |
| ATOM | 334 | CA  | ILE |   | 74   | 5.596  | 68.415 | 41.055 |      |        |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 335 | CB  | ILE | A | 74   | 6.308  | 69.632 | 40.422 |      |        |   | A   | C  |
| ATOM | 336 | CG2 | ILE | Α | 74   | 7.275  | 69.167 | 39.353 | 1.00 | 745.82 |   | A   | С  |
| MOTA | 337 | CG1 | ILE | Δ | 74   | 5.285  | 70,596 | 39.827 | 1.00 | 44.97  |   | A   | С  |
|      |     |     |     |   |      |        | 70.050 | 38.661 |      | 46.05  |   | A   | C  |
| ATOM | 338 |     | ILE |   | 74   | 4.523  |        |        |      |        |   |     |    |
| MOTA | 339 | С   | ILE | Α | 74   | 6.667  | 67.514 | 41.651 | 1.00 | 41.82  |   | A   | С  |
| ATOM | 340 | 0   | ILE | A | 74   | 7.009  | 67,641 | 42.822 | 1.00 | 42.17  |   | A   | 0  |
| ATOM | 341 | N   | VAL |   | 75   | 7.188  | 66.602 | 40.840 |      | 39.71  |   | A   | N  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| MOTA | 342 | CA  | VAL |   | 75   | 8.247  | 65.705 | 41.279 |      | 38.49  |   | A   | С  |
| ATOM | 343 | CB  | VAL | A | 75   | 7.862  | 64.235 | 41.070 | 1.00 | 37.65  |   | A   | С  |
| ATOM | 344 | CG1 | VAL | Α | 75   | 8.825  | 63,326 | 41.805 | 1.00 | 38.54  |   | A   | С  |
| ATOM | 345 |     | VAL |   | 75   | 6.454  | 64.011 | 41.544 |      | 38.02  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     | č  |
| ATOM | 346 | С   | VAL |   | 75   | 9.458  | 66.045 | 40.415 |      | 37.21  |   | . Y |    |
| ATOM | 347 | 0   | VAL | Α | 75   | 9.420  | 65.906 | 39.190 | 1.00 | 38.14  |   | A   | 0  |
| ATOM | 348 | N   | VAL | Α | 76   | 10.514 | 66.524 | 41.065 | 1.00 | 35.14  |   | A   | N  |
| ATOM | 349 | CA  | VAL |   | 76   | 11.743 | 66.930 | 40.388 | 1.00 | 34.54  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   | A   | č  |
| ATOM | 350 | CB  | VAL |   | 76   | 12.329 | 68.197 | 41.058 |      | 34.09  |   |     |    |
| ATOM | 351 | CG1 | VAL | A | 76   | 13.515 | 68.732 | 40.278 |      | 33.51  |   | A   | С  |
| ATOM | 352 | CG2 | VAL | Α | 76   | 11.256 | 69.237 | 41.201 | 1.00 | 34.58  |   | A   | С  |
| ATOM | 353 | C   | VAL |   | 76   | 12.794 | 65.820 | 40.465 |      | 33.28  |   | A   | C  |
|      |     |     |     |   |      |        |        | 41.546 |      | 35.03  |   | A   | 0  |
| ATOM | 354 | 0   | VAL |   | 76   | 13.116 | 65.346 |        |      |        |   |     |    |
| ATOM | 355 | N   | LEU | Α | 77   | 13.313 | 65.388 | 39.325 | 1,00 | 30.43  |   | A   | N  |
| ATOM | 356 | CA  | LEU | Α | 77   | 14.342 | 64.367 | 39.329 | 1.00 | 28.19  |   | A   | C  |
| ATOM | 357 | CB  | LEU |   | 77   | 14.104 | 63.369 | 38.215 | 1.00 | 27.08  |   | A   | С  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 358 | CG  | LEU | A | 77   | 12.670 | 62.874 | 38.185 |      | 27.37  |   | A   | С  |
| ATOM | 359 | CD1 | LEU | Α | 77   | 12.511 | 61.899 | 37.045 | 1.00 | 28.13  |   | A   | С  |
| ATOM | 360 |     | LEU |   | 77   | 12.295 | 62.223 | 39.500 | 1.00 | 28.04  |   | A   | C  |
|      |     |     |     |   |      |        |        | 39.108 |      | 28.28  |   | A   | č  |
| ATOM | 361 | С   | LEU |   | 77   | 15.643 | 65.113 |        |      |        |   |     |    |
| ATOM | 362 | 0   | LEU | A | 77   | 15.800 | 65.803 | 38.104 |      | 28.32  |   | A   | 0  |
| ATOM | 363 | N   | HIS | Α | 78   | 16.586 | 64.977 | 40.030 | 1.00 | 30.59  |   | A   | N  |
| ATOM | 364 | CA  | HIS |   | 78   | 17.806 | 65.729 | 39.876 |      | 32.31  |   | A   | C  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |
| ATOM | 365 | CB  | HIS |   | .78  | 18.190 | 66.380 | 41.186 |      | 33.23  |   | A   | С  |
| ATOM | 366 | CG  | HIS | Α | 78   | 19.078 | 67.565 | 41.007 | 1.00 | 34.53  |   | A   | С  |
| ATOM | 367 |     | HIS |   | 78   | 18.841 | 68.760 | 40.413 | 1.00 | 37.11  | - | A   | C  |
| ATOM |     |     |     |   | 78   | 20.409 | 67.577 | 41.370 |      | 36.57  |   | A   | N  |
|      | 368 |     | HIS |   |      |        |        |        |      |        |   |     |    |
| MOTA | 369 | CE1 | HIS | A | 78   | 20.955 | 68.725 | 41.001 |      | 37.86  |   | A   | С  |
| ATOM | 370 | NE2 | HIS | A | 78   | 20.025 | 69.460 | 40.417 | 1.00 | 38.97  |   | A   | N  |
| ATOM | 371 | C   | HIS |   | 78 . | 19.038 | 65.077 | 39.305 |      | 34.95  |   | A   | С  |
|      |     |     |     |   |      |        | 65,300 | 38.152 |      | 36.29  |   | A   | ō  |
| atom | 372 | 0   | HIS | A | 78   | 19.385 | 05,300 | 30.132 | 1.00 | 30.23  |   |     | J  |
|      |     |     |     |   |      |        |        |        |      |        |   |     |    |

| ATOM         | 373        | N       | GLY        | A | 79       | 19.731           | 64.290           | 40.114           | 1.00 | 36.88          |   | A      | N      |
|--------------|------------|---------|------------|---|----------|------------------|------------------|------------------|------|----------------|---|--------|--------|
| ATOM         | 374        | CA      | GLY        |   | 79       | 20.958           | 63.666           | 39.637           | 1.00 | 38.70          |   | A      | С      |
| ATOM         | 375        | С       | GLY        | A | 79       | 20.783           | 62.757           | 38.438           | 1.00 | 39.18          |   | A      | С      |
| MOTA         | 376        | 0       | GLY        | A | 79       | 19.736           | 62.129           | 38.286           |      | 40.93          |   | A      | 0      |
| ATOM         | 377        | N       | TYR        | A | 80       | 21.801           | 62.682           | 37.586           |      | 39.24          |   | A      | N      |
| ATOM         | 378        | CA      | TYR        | A | 80       | 21.742           | 61.811           | 36.407           |      | 40.08          |   | A      | С      |
| ATOM         | 379        | CB      | TYR        | A | 80       | 23.144           | 61.594           | 35.809           |      | 41.68          |   | A      | С      |
| ATOM         | 380        | CG      | TYR        | A | 80       | 23,234           | 60.414           | 34.836           |      | 42.83          |   | A      | C      |
| ATOM         | 381        |         | TYR        |   | 80       | 22.805           | 60.531           | 33.512           |      | 43.76          |   | A      | C      |
| ATOM         | 382        |         | TYR        |   | 80       | 22.854           | 59.440           | 32.619           |      | 45.59          |   | A      | C      |
| ATOM         | 383        |         | TYR        |   | 80       | 23.719           | 59.178           | 35.250           |      | 43.68          |   | A      | C      |
| ATOM         | 384        | CE2     | TYR        |   | 80       | 23.771           | 58.079           | 34.369           |      | 46.67<br>46.33 |   | A<br>A | C      |
| ATOM         | 385        | CZ      | TYR        |   | 80       | 23.335           | 58.216<br>57.128 | 33.055<br>32.197 |      | 47.99          |   | A      | 0      |
| MOTA         | 386        | OH      | TYR        |   | 80<br>80 | 23.362<br>21.166 | 60.440           | 36.750           |      | 39.86          |   | A      | Č      |
| ATOM<br>ATOM | 387<br>388 | C<br>0  | TYR<br>TYR |   | 80       | 20.232           | 59.976           | 36.105           |      | 38.64          |   | A      | ŏ      |
| ATOM         | 389        | N       | GLU        |   | 81       | 21.759           | 59.796           | 37.757           |      | 42.87          |   | A      | N      |
| MOTA         | 390        | CA      | GLU        |   | 81       | 21.334           | 58.471           | 38.184           |      | 44.73          |   | A      | c      |
| ATOM         | 391        | СВ      | GLU        |   | 81       | 21.938           | 58.126           | 39.552           |      | 48.22          |   | A      | С      |
| ATOM         | 392        | CG      | GLU        |   | 81       | 23.420           | 57.732           | 39.479           | 1.00 | 56.18          |   | A      | С      |
| MOTA         | 393        | CD      | GLU        |   | 81       | 23.690           | 56.549           | 38.533           | 1.00 | 60.53          |   | A      | С      |
| ATOM         | 394        | OE1     | GLU        | Α | 81       | 24.865           | 56.401           | 38.085           | 1.00 | 61.57          |   | A      | 0      |
| MOTA         | 395        | OE2     | GLU        | A | 81       | 22.735           | 55.772           | 38.241           | 1.00 | 62.72          |   | A      | 0      |
| MOTA         | 396        | С       | GLU        | A | 81       | 19.820           | 58.349           | 38,228           |      | 44.43          |   | A      | C .    |
| ATOM         | 397        | 0       | GLU        | A | 81       | 19.238           | 57.437           | 37.635           | 1.00 | 44.37          |   | A      | 0      |
| MOTA         | 398        | N       | ALA        | A | 82       | 19.182           | 59.274           | 38.935           |      | 44.32          |   | A      | N      |
| MOTA         | 399        | CA      | ALA        | Ά | 182      | 17.726           | 59.293           | 39.050           |      | 41.86          |   | A      | C      |
| MOTA         | 400        | CB      | ALA.       |   | .82      | 17.313           | 60.361           | 40.028           |      | 41.85          |   | A      | С      |
| ATOM         | 401        | С       | ALA        |   |          | 17.101           | 59.569           | 37.693           |      | 42.27          |   | A      | C      |
| MOTA         | 402        | 0       | ALA        |   | 82       | 16.173           | 58.880           | 37.278           |      | 43.09          |   | A      | 0      |
| MOTA         | 403        | N       | VAL        |   |          | 17.620           | 60.580           | 36.999           |      | 41.38          |   | A      | И      |
| ATOM         | 404        |         |            |   |          | 17.100           | 60.963           | 35.688           |      | 40.30          |   | A<br>A | c<br>c |
| MOTA         | 405        | CB      |            |   | 83       | 17.984           | 62.012<br>62.560 | 35.026           |      | 39.40<br>38.81 |   | A      | c      |
| ATOM         | 406        |         | VAL        |   | 83<br>83 | 17.291<br>18.325 | 63.097           | 33.805<br>36.006 |      | 39.37          |   | A      | c      |
| ATOM         | 407<br>408 | CGZ     | VAL        |   |          | 17,064           | 59.772           | 34.764           |      | 41.16          |   | A      | Č      |
| ATOM<br>ATOM | 409        | 0       | VAL.       |   |          | 16.072           | 59.511           | 34.077           |      | 40.06          |   | A      | ٠٥     |
| ATOM         | 410        | N       |            |   |          | 18.176           | 59.051           | 34.751           |      | 43.70          |   | A      | N      |
| ATOM         | 411        | CA      | LYS.       |   | 84       | 18.304           | 57.873           | 33.913           |      | 47.17          |   | A      | c      |
| ATOM         | 412        | CB      | LYS        |   | 84       |                  | 57,265           | 34.065           |      | 49.31          |   | A      | С      |
| ATOM         | 413        | CG      | LYS        |   | 84       | 19.855           | 55.976           | 33.290           |      | 52.16          |   | Α      | С      |
| ATOM         | 414        | CD      | LYS        |   | 84       | 21.106           | 55,220           | 33.675           | 1.00 | 54.63          |   | A      | C      |
| ATOM         | 415        | CE      | LYS        | A | 84       | 20.808           | 53.716           | 33.835           | 1.00 | 56.64          |   | A      | C      |
| ATOM         | 416        | NZ      | LYS        | A | 84       | 20.513           | 52.985           | 32.552           | 1.00 | 55.13          |   | A      | N      |
| MOTA         | 417        | С       | LYS        | A | 84       | 17.283           | 56.826           | 34.299           | 1.00 | 47.55          |   | A      | С      |
| ATOM         | 418        | 0       | LYS        | A | 84       | 16.481           | 56.379           | 33.475           |      | 47.60          |   | A      | 0      |
| ATOM         | 419        | N       | GLU        | A | 85       | 17.330           | 56.447           | 35.570           |      | 48.31          |   | A      | N      |
| MOTA         | 420        | CA      | GLU        |   | 85       | 16.442           | 55.427           | 36.100           |      | 49.59          |   | A      | C      |
| ATOM         | 421        | CB      | GLU        |   | 85       | 16.541           | 55.367           | 37.628           |      | 51.52          |   | A      | C      |
| ATOM         | 422        | CG      | GLU        |   | 85       | 16.180           | 54.008           | 38.211           |      | 54.37          |   | A      | C      |
| ATOM         | 423        | CD      | GLU        |   | 85       | 16.363           | 53.936           | 39.720           |      | 57.04          |   | A      | C      |
| ATOM         | 424        | OE1     |            |   | 85       | 17.367           | 54.494           | 40.232           |      | 56.86<br>58.86 |   | A<br>A | 0      |
| ATOM         | 425        | OE2     |            |   | 85       | 15.507           | 53.308           | 40.400<br>35.688 |      | 49.94          |   | A      | c      |
| ATOM         | 426        | C       | GLU        |   | 85       | 14.993           | 55.637<br>54.672 | 35.441           |      | 51.24          |   | A      | ŏ      |
| ATOM         | 427        | 0       | GLU<br>ALA |   | 85<br>86 | 14.268<br>14.566 | 56.891           | 35.596           |      | 48.63          |   | A      | N      |
| ATOM<br>ATOM | 428<br>429 | N<br>CA | ALA        |   | 86       | 13.185           | 57.163           | 35.221           |      | 46.77          |   | A      | C      |
| ATOM         | 430        | CB      | ALA        |   | 86       | 12.723           | 58.470           | 35.831           |      | 47.24          |   | A      | C      |
| ATOM         | 431        | C-      | ALA        |   | 86       | 13.020           | 57.205           | 33.714           |      | 45.47          |   | A      | С      |
| ATOM         | 432        | ō       | ALA        |   | 86       | 12.336           | 56.366           | 33.132           |      | 46.08          |   | A      | 0      |
| ATOM         | 433        | N       | LEU        |   | 87       | 13.657           | 58,183           | 33.090           |      | 45.71          |   | A      | N      |
| ATOM         | 434        | CA      | LEU        |   | 87       | 13.543           | 58.349           | 31.660           | 1.00 | 46.41          |   | A      | C      |
| ATOM         | 435        | CB      | LEU        |   | 87       | 14.430           | 59,496           | 31.190           | 1.00 | 46.54          |   | A      | C      |
| ATOM         | 436        |         | LEU        |   | 87       | 13.709           | 60.825           | 30.931           | 1.00 | 46.20          | • | A      | С      |
| ATOM         | 437        |         | LEU        |   | 87       | 13.153           | 61.388           | 32.216           | 1.00 | 45.94          |   | A      | С      |
| ATOM         | 438        |         | LEU        |   | 87       | 14.682           | 61.798           | 30.304           |      | 46.40          |   | A      | С      |
| ATOM         | 439        | Ç       | LEU        |   | 87       | 13.827           | 57.104           | 30.832           |      | 47.16          |   | A      | C      |
| ATOM         | 440        | 0       | LEU        |   | 87       | 13.180           | 56.890           | 29.806           |      | 47.96          |   | A      | 0      |
| MOTA         | 441        | N       | ILE        |   | 88       | 14.772           | 56.269           | 31.255           |      | 48.10          |   | A      | N      |
| ATOM         | 442        | CA      | ILE        | A | 88       | 15.066           | 55.063           | 30.478           |      | 48.73          |   | A      | C      |
| MOTA         | 443        | СВ      | ILE        |   | 88       | 16.573           | 54.910           | 30.198           |      | 47.93          |   | A      | C      |
| ATOM         | 444        |         | ILE        |   | 88       | 16.826           | 53.609           | 29.457           |      | 48.12          |   | A      | C      |
| ATOM         | 445        |         | ILE        |   | 88       | 17.069           | 56.065           | 29.329           |      | 47.53          |   | A      | C      |
| MOTA         | 446        |         | ILE        |   | 88       | 18.555           | 55.993           | 29.039           |      | 47.36          |   | A      | C      |
| ATOM         | 447        | С       | ILE        | A | 88       | 14.549           | 53.759           | 31.086           | 1.00 | 50.13          |   | A      | С      |

| ATOM | 448 | 0   | ILE | A  | 88   | 13.680   | 53.110   | 30.505 | 1.00 50.03 | 3  | A   | 0  |
|------|-----|-----|-----|----|------|----------|----------|--------|------------|----|-----|----|
| ATOM | 449 | N   | ASP | A  | 89   | 15.085   | 53.367   | 32.238 | 1.00 51.78 | 3  | A · | ·N |
| ATOM | 450 | CA  | ASP | Α  | 89   | 14.659   | 52.129   | 32.883 | 1.00 54.23 | 3  | A   | Ċ  |
| ATOM | 451 | СВ  | ASP |    | 89   | 15.337   | 51.977   | 34.261 | 1.00 55.93 |    |     |    |
|      |     |     |     |    |      |          |          |        |            |    | A   | C  |
| ATOM | 452 | CG  | ASP |    | 89   | 16.886   | 51.951   | 34.182 | 1.00 58.78 |    | A   | C  |
| ATOM | 453 | OD1 | ASP | A  | 89   | 17.534   | 51.666   | 35.230 | 1.00 60.26 | 5  | Α   | 0  |
| ATOM | 454 | OD2 | ASP | Α  | 89   | 17.458   | 52.218   | 33.094 | 1.00 58.09 | )  | A   | 0  |
| ATOM | 455 | C   | ASP |    | 89   | 13.121   | 52.024   | 33.011 | 1.00 55.37 |    | A   | č  |
| ATOM | 456 | ŏ   | ASP |    | 89   | 12,562   | 50.927   |        | 1.00 56.38 |    |     |    |
|      |     |     |     |    |      |          |          | 32.926 |            |    | A   | 0  |
| ATOM | 457 | N   | LEU |    | 90   | 12.446   | 53.152   | 33.226 | 1.00 56.13 |    | A   | N  |
| ATOM | 458 | CA  | LEU | A  | 90   | 10.984   | 53.187   | 33.329 | 1.00 56.25 | j  | A   | С  |
| ATOM | 459 | CB  | LEU | Α  | 90   | 10.555   | 53.764   | 34.665 | 1.00 57.00 | )  | A   | С  |
| ATOM | 460 | CG  | LEU | A  | 90   | 10.801   | 52.893   | 35.888 | 1.00 57.73 |    | A   | c  |
| ATOM | 461 |     | LEU |    | 90   | 10.116   | 51.568   | 35.649 | 1.00 59.22 |    | A   | č  |
|      |     |     |     |    |      |          |          |        |            |    |     |    |
| ATOM | 462 |     | LEU |    | 90   | 12.284   | 52.703   | 36.128 | 1.00 57.89 |    | A   | C  |
| ATOM | 463 | С   | LEU | A  | 90   | 10.452   | 54.084   | 32.229 | 1.00 57.31 |    | A   | C  |
| ATOM | 464 | 0   | LEU | Α  | 90   | 9.484    | 54.826   | 32.418 | 1.00 57.43 | }  | A   | 0  |
| ATOM | 465 | N   | GLY | Α  | 91   | 11.105   | 54.013   | 31.078 | 1.00 58.26 | ;  | Α . | N  |
| ATOM | 466 | CA  | GLY |    | 91   | 10.724   | 54.835   | 29.949 | 1.00 58.98 |    | A   | Ċ  |
| ATOM | 467 | Ċ.  | GLY |    | 91   |          |          |        |            |    |     |    |
|      |     |     |     |    |      | 9.240    | 54.995   | 29.718 | 1.00 58.93 |    | A   | С  |
| ATOM | 468 | 0   | GLY |    | 91   | 8.731    | 56.114   | 29.726 | 1.00 59.48 | ١. | Ar  | 0  |
| MOTA | 469 | N   | GLU | A  | 92   | 8.538    | 53.888   | 29.510 | 1.00 58.65 | i  | A   | N  |
| ATOM | 470 | CA  | GLU | Α  | 92   | 7.112    | 53.976   | 29.250 | 1.00 59.42 | :  | A   | C  |
| ATOM | 471 | СВ  | GLU | A  | 92   | 6.493    | 52.587   | 29.068 | 1.00 61.87 |    | A   | C  |
| ATOM | 472 | CG  | GLU |    | 92   | 6.111    | 52.252   | 27.615 | 1.00 64.82 |    | A   | č  |
| ATOM |     |     |     |    |      |          |          |        |            |    |     |    |
|      | 473 | CD  | GLU |    | 92   | 5.081    | 53.222   | 27.025 | 1.00 67.38 |    | A   | С  |
| MOTA | 474 |     | GĽU |    | 92   | 4.106    | 53.587   | 27.732 | 1.00 66.53 | i  | A   | 0  |
| ATOM | 475 | OE2 | GLU | A  | 92   | 5.237    | · 53.612 | 25.839 | 1.00 69.60 | 1  | A   | 0  |
| MOTA | 476 | C   | GLU | A  | 92   | 6.394    | 54.720   | 30.357 | 1.00 58.41 |    | A   | С  |
| ATOM | 477 | 0   | GLU |    | 92   | 5.577    |          | 30.093 | 1.00 58.05 |    | A   | ō  |
| ATOM | 478 | N   | GLU |    |      | 6.713    |          |        | 1.00 56.02 |    |     |    |
|      |     |     |     |    |      |          |          | 31.598 |            |    | A   | N  |
| ATOM | 479 | CA  | GLU |    |      | , ∞6.075 |          | 32.743 | 1.00 55.93 |    | A   | C  |
| MOTA | 480 | СВ  | GLU | Α  | 93   | 6.606    | 54.383   | 34.040 | 1.00 57.74 |    | A   | C  |
| MOTA | 481 | CG  | GŁU | A  | 93   | 6.194    | 52.908   | 34.295 | 1.00 59.51 |    | A   | C  |
| ATOM | 482 | CD  | GĹŪ | А  | 93   | 6.855    |          | 33.351 | 1.00 62.22 |    | A   | Č  |
| ATOM | 483 |     | GLU |    | 93   | 8.112    |          |        |            |    |     |    |
|      |     |     |     |    |      |          |          | 33.226 | 1.00 63.66 |    | A   | 0  |
|      | 484 | OE2 |     |    | 93   | 6.116    |          | 32.750 | 1.00 63.26 |    | A   | 0  |
| ATOM | 485 | С   | GLU | Α  | 93   | 6.261    | -56.544  | 32.787 | 1.00 54.09 |    | A   | С  |
| ATOM | 486 | 0   | GLU | Α  | 93 🧠 | 5.519    | *57.248  | 33.475 | 1.00 54.35 |    | A   | 0  |
| ATOM | 487 | N   | PHE | А  | 94   | 7.235    | 57.063   | 32.049 | 1.00 52.25 |    | A   | N  |
| ATOM | 488 | CA  | PHE |    | 94   | 7.495    | 58.504   | 32.055 | 1.00 50.57 |    | A   | ċ  |
| ATOM |     |     |     |    |      |          |          |        |            |    |     |    |
|      | 489 | CB  | PHE |    | 94   | 8.896    | 58.756   | 32.610 | 1.00 49.12 |    | . A | С  |
| ATOM | 490 | CG  | PHE |    | 94   | 9.007    | 58.571   | 34.108 | 1.00 46.48 |    | A   | С  |
| MOTA | 491 | CD1 | PHE | Α  | 94   | 8.739    | 59.626   | 34.975 | 1.00 45.81 |    | A   | С  |
| ATOM | 492 | CD2 | PHE | A  | 94   | 9.396    | 57.350   | 34.651 | 1.00 47.05 |    | A   | С  |
| ATOM | 493 | CE1 | PHE | A  | 94   | 8.861    | 59.475   | 36,355 | 1.00 45.91 |    | A   | C  |
| ATOM | 494 |     | PHE |    | 94   | 9.519    | 57.188   | 36.033 | 1.00 44.45 |    | A   | č  |
|      |     |     |     |    |      |          |          |        |            |    |     |    |
| ATOM | 495 | CZ  | PHE |    | 94   | 9.252    | 58.252   | 36.883 | 1.00 44.81 |    | A   | С  |
| MOTA | 496 | С   | PHE | A  | 94   | 7.360    | 59.136   | 30.660 | 1.00 50.93 |    | A   | С  |
| MOTA | 497 | 0   | PHE | A  | 94   | 7.993    | 60.163   | 30.355 | 1.00 51.93 |    | A   | 0  |
| ATOM | 498 | N   | SER | A  | 95   | 6.530    | 58.525   | 29.816 | 1.00 48.90 |    | A   | N  |
| ATOM | 499 | CA  | SER |    | 95   | 6.327    | 59.028   | 28.466 | 1.00 46.53 |    | A   | C  |
| ATOM | 500 | СВ  | SER |    | 95 . | 5.903    | 57.880   | 27.514 | 1.00 48.35 |    | A   | č  |
|      |     |     |     |    |      |          |          |        |            |    |     |    |
| ATOM | 501 | OG  | SER |    | 95   | 4.571    | 57.415   | 27.721 | 1.00 49.63 |    | A   | 0  |
| ATOM | 502 | C   | SER |    | 95   | 5.314    | 60.179   | 28.425 | 1.00 44.26 |    | A   | C  |
| ATOM | 503 | 0   | SER | A  | 95   | 5,326    | 60.994   | 27.499 | 1.00 43.40 |    | A   | 0  |
| MOTA | 504 | N   | GLY |    | 96   | 4.461    | 60.255   | 29.443 | 1.00 43.04 |    | A   | N  |
| ATOM | 505 | CA  | GLY |    | 96   | 3.461    | 61.304   | 29.499 | 1.00 41.72 |    | A   | C  |
| ATOM | 506 | C   | GLY |    | 96   | 3.980    | 62.734   | 29.472 | 1.00 40.99 |    |     | c  |
|      |     |     |     |    |      |          |          |        |            |    | A   |    |
| ATOM | 507 | 0   | GLY |    | 96   | 4.986    | 63.059   | 30.109 | 1.00 41.17 |    | A   | 0  |
| ATOM | 508 | N   | ARG | A  | 97   | 3.285    | 63.591   | 28.724 | 1.00 40.18 |    | A   | N  |
| ATOM | 509 | CA  | ARG | Α  | 97   | 3.662    | 64.995   | 28.609 | 1.00 38.80 |    | A   | С  |
| ATOM | 510 | СВ  | ARG |    | 97   | 3.307    | 65.548   | 27.233 | 1.00 37.71 |    | A   | C  |
| ATOM | 511 | CG  | ARG |    | 97   | 3.517    | 67.039   | 27.132 | 1.00 34.48 |    | A   | č  |
| ATOM |     |     |     |    |      |          | 67.390   |        | 1.00 33.26 |    |     |    |
|      | 512 | CD  | ARG |    | 97   | 4.960    |          | 27.350 |            |    | A   | C  |
| ATOM | 513 | NE  | ARG |    | 97   | 5.794    | 66.922   | 26.235 | 1.00 31.66 |    | A   | N  |
| ATOM | 514 | CZ  | ARG | A  | 97   | 7.106    | 66.714   | 26.321 | 1.00 28.55 |    | A   | С  |
| ATOM | 515 | NH1 | ARG | Α  | 97   | 7.782    | 66.299   | 25.277 | 1.00 26.42 |    | A   | N  |
| ATOM | 516 |     | ARG |    | 97   | 7,746    | 66.908   | 27.459 | 1.00 29.19 |    | A   | N  |
| ATOM | 517 | С   | ARG |    | 97   | 2.973    | 65.846   | 29.657 | 1.00 40.80 |    | A   | Ċ  |
|      |     |     |     |    |      |          |          |        | 1.00 41.00 |    |     |    |
| MOTA | 518 | 0   | ARG |    | 97   | 1.755    | 65.993   | 29.650 |            |    | A   | 0  |
| MOTA | 519 | N   | GLY |    | 98   | 3.762    | 66.427   | 30.549 | 1.00 43.10 |    | A   | N  |
| ATOM | 520 | CA  | GLY | Α  | 98   | 3.197    | 67.266   | 31.590 | 1.00 45.40 |    | A   | С  |
| MOTA |     | С   | GLY |    | 98   | 2.673    | 68.601   | 31.090 | 1.00 47.67 |    | A   | С  |
| ATOM | 522 | ō   | GLY |    | 98   | 3.416    | 69.401   | 30.509 | 1.00 47.93 |    | A   | ŏ  |
|      | J22 | ~   | 041 | ** | J.   | 3.410    |          | 22.303 |            |    |     | •  |

AND CONTROLS

AN

|        |       |     |     |   |       |        | •      |        |            |     |        |
|--------|-------|-----|-----|---|-------|--------|--------|--------|------------|-----|--------|
| ATOM   | 523   | N   | ILE | A | 99    | 1.391  | 68.860 | 31.322 | 1.00 50.12 | A   | N      |
| ATOM   | 524   | CA  | ILE |   | 99    | 0.838  | 70.125 | 30.880 | 1.00 51.67 | A   | С      |
| ATOM   | 525   | СВ  | ILE |   | 99    | -0.519 | 69.951 | 30.215 | 1.00 52.83 | A   | С      |
| ATOM   | 526   |     | ILE | Α | 99    | -1,100 | 71.338 | 29.874 | 1.00 53.38 | A   | C      |
| ATOM   | 527   | CG1 | ILE | A | 99    | -0.353 | 69.022 | 28.999 | 1.00 54.47 | A   | С      |
| ATOM   | 528   |     | ILE |   | 99    | -1.600 | 68.785 | 28.173 | 1.00 55.15 | A   | C      |
| ATOM   | 529   | C   | ILE |   | 99    | 0.680  | 71.107 | 32.005 | 1.00 52.11 | A   | С      |
| ATOM   | 530   | ŏ   | ILE |   | 99    | 0.152  | 70.774 | 33.066 | 1.00 52.60 | A   | 0      |
| ATOM   | 531   | N   | PHE |   |       | 1.180  | 72.315 | 31.775 | 1.00 53.99 | A   | N      |
| ATOM   | 532   | CA  | PHE |   |       | 1.069  | 73.385 | 32.760 | 1.00 54.57 | A   | Ĉ      |
| ATOM   | 533   | CB  | PHE |   |       | 2.360  | 74.218 | 32.828 | 1.00 54.74 | A   | č      |
| ATOM   | 534   | CG  |     |   | 100.  | 3.299  | 73.827 | 33.955 | 1.00 53.60 | A   | č      |
| ATOM   | 535   |     | PHE |   |       | 4.576  | 74.374 | 34.025 | 1.00 54.03 | A   | č      |
|        | 536   | -   | PHE |   |       | 2.913  | 72.913 | 34.934 | 1.00 54.36 | A   | č      |
| ATOM   | 537   |     | PHE |   |       | 5.457  | 74.017 | 35.048 | 1.00 54.83 | A   | Č      |
| MOTA   | 538   | CE2 | PHE |   |       | 3.788  | 72.549 | 35.964 | 1.00 53.34 | A   | č      |
| ATOM   | _     |     | PHE |   |       | 5.060  | 73.100 | 36.019 | 1.00 53.82 | A   | č      |
| ATOM   | 539   | CZ  |     |   |       | -0.100 | 74.257 | 32.307 | 1.00 56,49 | A   | č      |
| MOTA   | 540   | C   | PHE |   |       | -0.400 | 74.347 |        | 1.00 57.42 | A   | Ö      |
| ATOM   | 541   | 0   | PHE |   |       | -0.783 | 74.897 | 33.262 | 1.00 57.01 | Ä   | N      |
| ATOM   | 542   | N   | PRO |   |       |        | 74.863 | 34.701 | 1.00 57.27 | A   | C      |
| MOTA   | 543   | CD  | PRO |   |       | -0.464 |        | 33.009 | 1.00 55.78 | A   | č      |
| ATOM   | 544   | CA  | PRO |   |       | -1.928 | 75.768 |        | 1.00 56.34 | A   | č      |
| MOTA   | 545   | CB  | PRO |   |       | -2.025 | 76.558 | 34.300 | 1.00 56.97 | A   | Ċ      |
| ATOM   | 546   | CG  | PRO |   |       | -1.668 | 75.520 | 35.312 |            |     | c      |
| ATOM   | 547   | C   | PRO |   |       | -1.819 | 76.674 | 31.782 | 1.00 55.34 | A   |        |
| ATOM   | 548   | 0   |     |   | 101   | -2.558 | 76.498 | 30.814 | 1.00 56.59 | A   | 0      |
| MOTA   | 549   | N   |     |   | 102   | -0.900 | 77.637 | 31.827 | 1.00 53.85 | A   | N      |
| ATOM . |       | ÇA  | LEU |   |       | -0.734 | 78.589 | 30.730 | 1.00 51.55 | A   | C      |
| MOTA   |       | CB  |     |   | 102   | 0.587  | 79.349 | 30.862 | 1.00 49.92 | A   | C      |
| ATOM   | ≠552  | CG  |     |   | 102   | 0.831  | 80.460 | 29.822 | 1.00 48.55 | A   | C      |
| ATOM   | A4553 | CD1 | LEU | A | 102   | 1.378  | 79.869 | 28.552 | 1.00 49.07 | A   | C      |
| ATOM   | 554   | CD2 | LEU | A | 102   | 0.449  | 81.231 | 29.560 | 1.00 47.71 | A   | C      |
|        | 555   | С   |     |   | 102   | -0.806 | 77.933 | 29.367 | 1.00 52.45 | A   | C      |
|        | 556   | 0   | LEU | A | 102   | -1.404 | 78.476 | 28.435 | 1.00 51.65 | A   | 0      |
| ATOM"  | 557   | N   | ALA | Α | 103   | -0.190 | 76.764 | 29.252 | 1.00 53.76 | A   | · N    |
| MOTA   | 558   | CA  | ALA | A | 103   | -0.197 | 76.045 | 27.995 | 1.00 56.20 | A   | С      |
| ATOM . | 559   | CB  | ALA | Α | 103   | 0.815  | 74.919 | 28.029 | 1.00 56.29 | A   | С      |
| ATOM ) | 560   | C   | ALA | Α | 103   | 1.589  | 75.494 | 27.758 | 1.00 57.97 | A   | С      |
| ATOM:  | 561   | 0   | ALA | A | 103   | -2.199 | 75.736 | 26.711 | 1.00 58.83 | Α   | 0      |
| 'ATOM' | 562   | N   | GLU | A | 104   | -2.111 | 74.771 | 28.741 | 1.00 60.01 | · A | N      |
| ATOM   | 563   | CA  | GLU | Α | 104   | -3.436 | 74.186 | 28.591 | 1.00 62.56 | A   | С      |
| ATOM   | 564   | CB  | GLU | A | 104   | -3.977 | 73,721 | 29.936 | 1.00 63.71 | A   | С      |
| ATOM   | 565   | CG  | GLU | A | 104   | -5.197 | 72.843 | 29.764 | 1.00 67.55 | A   | С      |
| ATOM   | 566   | CD  |     |   | 104   | -5.349 | 71.834 | 30.883 | 1.00 69.92 | A   | C      |
| ATOM   | 567   |     | GLU |   |       | -5.602 | 72.265 | 32.036 | 1.00 70.38 | A   | 0      |
| ATOM   | 568   | OE2 |     |   | 104   | -5.193 | 70.608 | 30.614 | 1.00 71.95 | A   | 0      |
| ATOM   | 569   | С   |     |   | 104   | -4.444 | 75.130 | 27.940 | 1.00 63.49 | A   | C      |
| ATOM   | 570   | ō   |     |   | 104   | -5.198 | 74.728 | 27.041 | 1.00 63.55 | A   | 0      |
| ATOM   | 571   | N   |     |   | 105   | -4.430 | 76.387 | 28.385 | 1.00 64.98 | , A | N      |
| ATOM   | 572   | CA  |     |   | 105   | -5.338 | 77,422 | 27.879 | 1.00 65.81 | A   | С      |
| ATOM   | 573   | СВ  |     |   | 105   | -5.512 | 78.529 | 28.937 | 1.00 68.02 | A   | С      |
| ATOM   | 574   | CG  |     |   | 105   | -6.359 | 78,138 | 30.170 | 1.00 71.57 | A   | C      |
| ATOM   | 575   | CD  |     |   | 105   | -7.754 | 77.654 | 29.753 | 1.00 75.10 | A   | С      |
| ATOM   | 576   | NE  |     |   | 105   | -8.499 |        | 29.007 | 1.00 77.67 | A   | N      |
| ATOM   | 577   | CZ  |     |   | 105   | -9.053 |        | 29.554 | 1.00 78.39 | A   | С      |
| ATOM   | 578   |     | ARG |   |       | -9.705 |        | 28.789 | 1.00 78.33 | A   | 'n     |
| ATOM   | 579   |     | ARG |   |       | -8.965 |        | 30.866 | 1.00 78.51 | A   | N      |
| ATOM   | 580   | C   |     |   | 105   | -4.914 |        | 26.542 | 1.00 64.92 | A   | С      |
| ATOM   | 581   | ŏ   |     |   | , 105 | -5.742 |        | 25.842 | 1.00 64.40 | A   | 0      |
| ATOM   | 582   | N   |     |   | 106   | -3.636 |        | 26.188 | 1.00 64.01 | A   | N      |
|        | 583   | CA  |     |   | 106   | -3.147 |        | 24.940 | 1.00 63.64 | A   | С      |
| ATOM   | 584   | CB  |     |   | 106   | -1.797 |        | 25.173 | 1.00 61.31 | A   | Ċ      |
| MOTA   |       |     |     |   |       |        |        | 23.793 | 1.00 64.55 | A   | Č      |
| ATOM   | 585   | C   |     |   | 106   | -3.042 |        | 22.674 | 1.00 64.92 | A   | ō      |
| ATOM   | 586   | 0   |     |   | 106   | -2.676 |        | 24.055 | 1.00 65.27 | A   | Ŋ      |
| ATOM   | 587   | N   |     |   | 107   | -3.383 |        | 23.019 | 1.00 66.86 | A   | C      |
| ATOM   | 588   | CA  |     |   | 107   | -3.304 |        | 23.449 | 1.00 66.71 | ·A  | c      |
| ATOM   | 589   | CB  |     |   | 107   | -2.306 |        |        | 1.00 67.41 |     |        |
| ATOM   | 590   | CG  |     |   | 107   | -0.847 |        | 23.305 |            | A   | С<br>0 |
| ATOM   | 591   |     | ASN |   |       | -0.370 |        | 24.033 | 1.00 68.42 | A   |        |
| ATOM   | 592   |     | ASN |   |       | -0.135 |        | 22.364 | 1.00 66.90 | A   | N      |
| MOTA   | 593   | С   |     |   | 107   | -4.640 |        | 22.597 | 1.00 67.32 | A   | C      |
| ATOM   | 594   | 0   |     |   | 107   | -5.129 |        | 23.230 | 1.00 68.34 | A   | 0      |
| ATOM   | 595   | N   |     |   | 108   | -5.232 |        | 21.525 | 1.00 66.70 | A   | N      |
| ATOM   | 596   | CA  |     |   | 108   | -6.486 |        | 21.009 | 1.00 66.66 | A   | Ċ      |
| ATOM   | 597   | CB  | ARG | A | 108   | -7.288 | 75.585 | 20.225 | 1.00 67.92 | A   | С      |

| MOTA   | 598  | CG  | ARG   | Α  | 108 | ~8.648           | 75.974 | 20.842 | 1.00 | 68.68 | A | С  |
|--------|------|-----|-------|----|-----|------------------|--------|--------|------|-------|---|----|
| MOTA   | 599  | CD  | ARG   |    |     | -8.505           | 76.415 | 22.303 |      | 70.34 |   |    |
|        |      |     |       |    |     |                  |        |        |      |       | A | С  |
| ATOM   | 600  | NE  | ARG   | A  | 108 | -9.484           | 77.419 | 22.706 | 1.00 | 71.08 | A | N  |
| ATOM   | 601  | CZ  | ARG   | Α  | 108 | -9.690           | 78.567 | 22,064 | 1.00 | 72.12 | A | С  |
| ATOM   | 602  | NH1 | ARG   | A  | 108 | -8.988           | 78.855 | 20.973 |      | 71.66 | A | N  |
| ATOM   | 603  |     | ARG   |    |     | -10.580          |        |        |      |       |   |    |
|        |      |     |       |    |     |                  | 79.445 | 22.525 |      | 73.33 | A | N  |
| ATOM   | 604  | С   | ARG   | A  | 108 | -6.065           | 73.398 | 20.069 | 1.00 | 65.67 | A | С  |
| ATOM   | 605  | 0   | ARG   | Α  | 108 | -5.709           | 73.632 | 18.913 | 1.00 | 66.62 | Α | 0  |
| ATOM   | 606  | N   | GLY   | Δ  | 109 | -6.078           | 72.178 | 20.574 |      | 64.18 | A |    |
|        |      |     |       |    |     |                  |        |        |      |       |   | N  |
| · ATOM | 607  | CA  | GLY   |    |     | -5.679           | 71.075 | 19.731 | 1.00 | 62.65 | A | С  |
| MOTA   | 608  | С   | GLY   | A  | 109 | -4.340           | 70.481 | 20.106 | 1.00 | 61.70 | A | C  |
| ATOM   | 609  | 0   | GLY   | Α  | 109 | -3.367           | 71.179 | 20.404 | 1.00 | 60.91 | A | 0  |
| ATOM   | 610  | N   | PHE   |    |     | -4.304           | 69.158 | 20.074 |      |       |   |    |
| •      |      |     |       |    |     |                  |        |        |      | 61.91 | A | N  |
| ATOM   | 611  | CA  | PHE   | A  | 110 | -3.114           | 68.412 | 20.420 | 1.00 | 61.62 | A | С  |
| ATOM   | 612  | CB  | PHE   | Α  | 110 | -3.491           | 67.348 | 21.441 | 1.00 | 63.59 | A | С  |
| ATOM   | 613  | CG  | PHE,  | A  | 110 | -4.222           | 67.911 | 22.618 |      | 67.69 | A | č  |
| ATOM   | 614  |     | PHE   |    |     | -3.559           | 68.737 |        |      |       |   |    |
|        |      |     |       |    |     |                  |        | 23.524 |      | 69.31 | A | C  |
| ATOM   | 615  |     | PHE   |    |     | -5.587           | 67.665 | 22.799 | 1.00 | 69.09 | A | С  |
| atom   | 616  | CE1 | PHE   | Α  | 110 | -4.237           | 69.318 | 24.601 | 1.00 | 71.55 | A | С  |
| ATOM   | 617  | CE2 | PHE   | Α  | 110 | -6,290           | 68.236 | 23.871 | 1.00 | 71.42 | A | С  |
| ATOM   | 618  | CZ  | PHE   |    |     |                  |        |        |      |       |   |    |
|        |      |     |       |    |     | -5.615           | 69.067 | 24.779 |      | 72.54 | A | С  |
| ATOM   | 619  | С   | PHE   |    |     | -2.466           | 67.804 | 19.187 | 1.00 | 60.20 | A | C  |
| ATOM   | 620  | 0   | PHE   | Α  | 110 | -3.066           | 66.996 | 18.468 | 1.00 | 59.49 | A | 0  |
| ATOM   | 621  | N   | GLY   | Δ  | 111 | -1.234           | 68.239 | 18.940 |      | 59.00 | A | N  |
| ATOM   | 622  | CA  |       |    |     |                  |        |        |      |       |   |    |
|        |      |     | GLY   |    |     | -0.469           | 67.748 | 17.812 |      | 55.64 | A | С  |
| ATOM   | 623  | С   | GLY   | Α  | 111 | 0.523            | 66.707 | 18.285 | 1.00 | 53.15 | A | С  |
| ATOM   | 624  | 0   | GLY   | Α  | 111 | 0.148            | 65.580 | 18.591 | 1.00 | 53.63 | A | 0  |
| ATOM   | 625  | N   | ILE   |    |     | 1.788            |        | 18.386 |      | 50.01 | A | N  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |
| ATOM   | 626  | CA  | ILE   |    |     | 2.792            | 66.120 | 18.809 |      | 46.17 | A | С  |
| ATOM   | 627  | CB  | ILE   | Α  | 112 | 3.828            | 65.914 | 17.688 | 1.00 | 45.10 | A | С  |
| ATOM   | 628  | CG2 | ILE   | Α  | 112 | 4.252            | 67,246 | 17.155 | 1.00 | 47.06 | A | С  |
| ATOM   | 629  |     | ILE   |    |     | 5.053            |        | 18.193 |      | 43.92 | A | Č  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |
| ATOM   | 630  |     |       |    |     | , X200 (a. 6.072 | 64.899 | 17.083 | 1.00 | 42.03 | A | С  |
| ATOM   | 631  | С   | ILE   | A  | 112 | 3.490            | 66.513 | 20.099 | 1.00 | 45.16 | Α | C  |
| ATOM   | 632  | 0   | ILE   | Α  | 112 | 3.840            | 65.647 | 20.893 | 1.00 | 46.54 | A | 0  |
|        | 633  | N   | VAL   |    |     | -135/3.671       |        |        |      |       |   |    |
|        |      |     |       |    |     |                  |        | 20.324 |      | 43.45 | A | N  |
| ATOM   | 634  | CA  | VAL   |    |     | %∆ <b>4.356</b>  | 68.280 | 21.530 | 1.00 | 40.88 | A | С  |
| ATOM   | 635  | CB  | VAL   | A, | 113 | 4.750            | 69.762 | 21.428 | 1.00 | 40.29 | A | С  |
| ATOM   | 636  | CG1 | VAL   | A  | 113 | * 5: 5.381 .     | 70.222 | 22.727 | 1.00 | 39.88 | A | С  |
| ATOM   | 637  |     | VAL   |    |     | 5.712            | 69.966 |        |      | 40.39 |   |    |
|        |      |     |       |    |     |                  |        | 20.287 |      |       | A | C  |
| ATOM   | 638  | С   | VAL   | A  | 113 | 3.541            | 68.116 | 22.794 | 1.00 | 40.87 | A | С  |
| ATOM   | 639  | 0   | VAL   | Α  | 113 | 4.077            | 67.765 | 23.845 | 1.00 | 40.88 | A | 0  |
| MOTA   | 640  | N   | PHE   |    |     | 2.247            | 68.379 | 22.700 |      | 41.12 | A | N  |
| ATOM   | 641  |     |       |    |     |                  |        |        |      |       |   |    |
|        |      | CA  | PHE   |    |     | 1.406            | 68.280 | 23.873 |      | 41.15 | A | С  |
| ATOM   | 642  | CB  | PHE . | A  | 114 | 0.711            | 69.608 | 24.110 | 1.00 | 40.43 | A | С  |
| MOTA   | 643  | CG  | PHE   | Α  | 114 | 1.649            | 70.708 | 24.456 | 1.00 | 38.73 | A | С  |
| ATOM   | 644  | CD1 | PHE   | A  | 114 | 1.879            | 71.759 | 23.575 | 1.00 | 39.54 | A | C  |
| ATOM   | 645. |     | PHE   |    |     | 2.314            | 70.692 | 25.670 |      |       | A | č  |
|        |      |     |       |    |     |                  |        |        |      | 39.98 |   |    |
| ATOM   | 646  |     | PHE · |    |     | 2.763            | 72.786 | 23.907 |      | 40.50 | A | C  |
| MOTA   | 647  | CE2 | PHE   | A  | 114 | 3.196            | 71.707 | 26.016 | 1.00 | 41.24 | A | С  |
| ATOM   | 648  | CZ  | PHE   | Α  | 114 | 3.423            | 72.758 | 25.135 | 1.00 | 41.36 | A | С  |
| ATOM   | 649  | C   | PHE   |    |     | 0.391            | 67.181 | 23.764 |      | 42.16 | A | Č  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |
| ATOM   | 650  | 0   | PHE . |    |     | -0.712           | 67.282 | 24.301 |      | 43.27 | A | 0  |
| ATOM   | 651  | N   | SER . | A  | 115 | 0.759            | 66.112 | 23.077 | 1.00 | 43.94 | A | N  |
| ATOM   | 652  | CA  | SER . | Α  | 115 | -0.170           | 65.005 | 22.903 | 1.00 | 44.60 | A | С  |
| MOTA   | 653  | СВ  | SER . |    |     | 0.009            | 64.402 | 21.514 |      | 45.90 | A | C  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |
| ATOM   | 654  | OG  | SER . |    |     | -1.253           | 64.237 | 20.876 |      | 47.95 | A | 0  |
| ATOM   | 655  | С   | SER . | A  | 115 | 0.033            | 63.944 | 23.959 |      | 44.92 | A | C  |
| ATOM   | 656  | 0   | SER . | A  | 115 | 0.716            | 64.158 | 24.951 | 1.00 | 45.47 | A | 0  |
| ATOM   | 657  | N   | ASN . | A  | 116 | -0.589           | 62.799 | 23.761 | 1.00 | 46.66 | A | N  |
| ATOM   |      |     |       |    |     | -0.432           | 61.723 | 24.713 |      | 48.98 |   |    |
|        | 658  | CA  | ASN . |    |     |                  |        |        |      |       | A | С  |
| MOTA   | 659  | CB  | ASN   |    |     | -0.912           | 62,157 | 26.106 |      | 48.61 | A | С  |
| MOTA   | 660  | CG  | ASN . | A  | 116 | 0.063            | 61.762 | 27.203 | 1.00 | 49.67 | A | С  |
| ATOM   | 661  |     | ASN   |    |     | 0.608            | 60.649 | 27.191 |      | 50.36 | A | 0  |
| ATOM   | 662  |     | ASN   |    |     | 0.280            | 62.659 | 28.163 |      | 49.37 | A | N  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |
| ATOM   | 663  | С   | ASN . |    |     | -1.174           | 60.469 | 24.263 |      | 50.94 | A | С  |
| ATOM   | 664  | 0   | ASN 3 | Α  | 116 | -2.086           | 60.529 | 23.426 | 1.00 | 51.74 | A | 0  |
| ATOM   | 665  | N   | GLY . |    |     | -0.752           | 59.331 | 24.816 | 1.00 | 52.04 | A | N  |
| ATOM   | 666  | CA  | GLY : |    |     | -1.355           | 58.050 | 24.490 |      | 52.95 | A |    |
|        |      |     | -     |    |     |                  |        |        |      |       |   | C  |
| ATOM   | 667  | С   | GLY Z |    |     | -1.449           | 57.782 | 22.999 |      | 53.98 | A | С  |
| ATOM   | 668  | 0   | GLY 2 | A  | 117 | -0.733           | 58.384 | 22.200 | 1.00 | 53.90 | A | 0  |
| ATOM   | 669  | N   | LYS   |    |     | -2.336           | 56.869 | 22.624 |      | 55.26 | A | N  |
| ATOM   |      |     |       |    |     | -2.524           | 56.525 | 21.224 |      | 56.95 |   |    |
|        | 670  | CA  | LYS   |    |     |                  |        |        |      |       | A | C. |
| ATOM   | 671  | CB  | LYS 2 |    |     | -3.923           | 55.924 | 20.989 |      | 59.52 | A | С  |
| ATOM   | 672  | CG  | LYS 2 | A  | 118 | -5.030           | 56.370 | 21.988 | 1.00 | 63.68 | A | С  |
|        |      |     |       |    |     |                  |        |        |      |       |   |    |

| ATOM   | 673 | CD  | LYS   | Α | 118 | -5.280 | 57.896 | 22.032  | 1.00 | 62.93 |   | A   | С  |
|--------|-----|-----|-------|---|-----|--------|--------|---------|------|-------|---|-----|----|
| ATOM   | 674 | CE  | LYS   | Α | 118 | -6.592 | 58.222 | 22.740  |      | 61.69 |   | A   | č  |
| ATOM   | 675 | NZ  |       |   | 118 | -6.749 | 57.487 | 24.034  |      | 60.34 |   | A   | N  |
| ATOM   | 676 | c   |       |   | 118 | -2.302 | 57.689 | 20.262  |      | 55.61 |   | A   | Č  |
| ATOM   | 677 | ō   |       |   | 118 | -1.678 | 57.503 | 19.221  |      | 56.68 |   | A   | Ö  |
| ATOM   | 678 | N   |       |   | 119 | -2.787 | 58.887 | 20.580  |      | 54.04 |   | A   | N  |
| ATOM   | 679 | CA  |       |   | 119 | -2.580 | 59.987 | 19.639  |      |       |   |     |    |
| MOTA   | 680 | СВ  |       |   | 119 | -3.290 | 61.268 | 20.091  |      | 53.62 |   | A   | C  |
| ATOM   | 681 | CG  |       |   | 119 | -3.499 | 62.288 |         |      | 52.23 |   | A   | C  |
| ATOM   | 682 | CD  |       |   | 119 | -4.229 |        | 18.965  |      | 51.72 |   | A   | C  |
| ATOM   | 683 | CE  |       |   | 119 |        | 63.522 | 19.488  |      | 53.72 | • | A   | Ç  |
| ATOM   | 684 | NZ  |       |   | 119 | -4.920 | 64.329 | 18.388  | 1.00 |       |   | A   | С  |
| ATOM   |     |     |       |   |     | -6.176 | 63.685 | 17.890  |      | 56.25 |   | A   | N  |
|        | 685 | C   | LYS   |   |     | -1.093 | 60.256 | 19.483  |      | 53.84 |   | A   | С  |
| ATOM   | 686 | 0   | LYS   |   | -   | -0.554 | 60.190 | 18.379  |      | 53.58 |   | A   | 0  |
| MOTA   | 687 | N   |       |   | 120 | -0.429 | 60.547 | 20.596  |      | 53.05 |   | A   | N  |
| ATOM   | 688 | CA  |       |   | 120 | 1.001  | 60.827 | 20.574  |      | 52.26 |   | A   | С  |
| ATOM   | 689 | CB  | TRP   |   |     | 1.496  | 61.115 | 21.992  |      | 50.59 |   | A   | С  |
| ATOM   | 690 | CG  | TRP   |   |     | 2.980  | 61.155 | 22.122  |      | 47.26 |   | A   | С  |
| ATOM   | 691 |     | TRP   |   |     | 3.807  | 60.134 | 22.676  |      | 45.64 |   | A   | С  |
| ATOM   | 692 |     | TRP   |   |     | 5.142  | 60.576 | 22.581  |      | 45.36 |   | A   | С  |
| ATOM   | 693 |     | TRP   |   |     | 3.549  | 58.888 | 23.259  |      | 45.88 |   | A   | C, |
| ATOM   | 694 |     | TRP   |   |     | 3.819  | 62.148 | 21.714  | 1.00 | 47.13 |   | A   | С  |
| ATOM   | 695 |     | TRP   |   |     | 5.123  | 61.811 | 21.984  | 1.00 | 45.94 |   | A   | N  |
| ATOM   | 696 |     | TRP   |   |     | 6.217  | 59.816 | 23.027  | 1.00 | 45.91 |   | A   | C  |
| MOTA   | 697 |     | TRP   |   |     | 4.612  | 58.131 | 23.704  | 1.00 | 46.70 |   | A   | С  |
| ATOM   | 698 | CH2 | TRP   |   |     | 5.936  | 58.599 | 23.591  | 1.00 | 47.20 |   | A   | С  |
| ATOM   | 699 | С   | TRP   | A | 120 | 1.791  | 59.668 | 19.964  | 1.00 | 53.49 |   | A   | С  |
| ATOM   | 700 | 0   | TRP   | Α | 120 | 2.570  | 59.868 | 19.033  | 1.00 | 53.53 |   | A   | 0  |
| ATOM   | 701 | N   | LYS   | A | 121 | 1.584  | 58.462 | .20.485 | 1.00 | 54.71 |   | A   | N  |
| ATOM   | 702 | CA  | LYS   | A | 121 | 2.288  | 57.292 | 19.984  | 1.00 | 55.38 |   | A   | С  |
| ATOM   | 703 | CB  | LYS   | A | 121 | 1.696  |        | 20.575  |      |       |   | A   | c  |
| ATOM   | 704 | CG  | LYS   | Α | 121 | 1.891  | 55.891 | 22.095  | 1.00 | 61.34 | , | A   | Č  |
| ATOM   | 705 | CD  | LYS   | Α | 121 | 1.502  |        | 22.660  |      |       |   | A   | č  |
| ATOM   | 706 | CE  | LYS   |   |     | 2.656  | 53.502 | 22.624  |      |       |   | A   | č  |
| ATOM   | 707 | NZ  | LYS   |   |     | 3.194  | 53.222 | 21.257  |      | 67.13 |   | A   | N  |
| MOTA   | 708 | C   | LYS   |   |     | 2,278  | 57.233 | 18.466  |      |       |   | A   | c  |
| MOTA   | 709 | ō   | LYS   |   |     | 3.337  | 57.136 | 17.831  |      |       |   | A   | ŏ  |
| ATOM   | 710 | N   | GLU   |   |     | 1.099  | 57.318 | 17.863  |      |       |   | A   | N  |
| ATOM   | 711 | CA  | GLU   |   |     | 1.015  |        | 16.404  |      |       |   | A   |    |
| ATOM   | 712 | СВ  | GLU   |   |     | -0.430 |        |         |      |       |   |     | C  |
| ATOM   | 713 | CG  | GLU   |   |     | -1.000 |        | 15.970  |      | 57.42 |   | A   | C  |
| ATOM   | 714 | CD  | GLU   |   |     |        | 55.665 | 16.488  |      | 60.84 |   | A   | C  |
| ATOM . | 715 |     | GLU   |   |     | -2.368 | 55.336 | 15.901  |      | 63.26 |   | A   | C  |
| ATOM   | 716 |     |       |   |     | -3.037 | 54.418 | 16.432  |      | 64.52 |   | A   | 0  |
| ATOM   |     |     | GLU   |   |     | -2.773 | 55.985 | 14.905  |      | 64.00 |   | A   | 0  |
|        | 717 | C   | GLU   |   |     | 1.555  | 58.476 | 15.664  |      | 52.63 | • | A   | С  |
| ATOM   | 718 | 0   | GLU.  |   |     | 2.257  | 58.315 | 14.672  |      | 53.39 |   | A   | 0  |
| MOTA   | 719 | N   | ILE   |   |     | 1.245  | 59.686 | 16.131  |      | 49.73 |   | A   | N  |
| MOTA   | 720 | CA  | ILE   |   |     | 1.729  | 60.875 | 15.436  |      | 47.08 |   | A   | С  |
| ATOM   | 721 | CB  | ILE   |   |     | 1.092  | 62.171 | 15.946  |      | 45.94 |   | A   | С  |
| ATOM   | 722 |     | ILE   |   |     | 1.542  | 63.336 | 15.082  |      | 43.42 |   | Α   | C, |
| ATOM   | 723 |     | ILE   |   |     | -0.425 | 62.084 | 15.874  |      | 47.34 |   | A   | С  |
| ATOM   | 724 |     | ILE   |   |     | -1.106 | 63.187 | 16.653  | 1.00 | 49.76 |   | A   | С  |
| ATOM   | 725 | С   | ILE   |   |     | 3.227  | 61.048 | 15.549  | 1.00 | 46.72 |   | A   | С  |
| ATOM   | 726 | 0   | ILE . |   |     | 3.842  | 61.669 | 14.687  | 1.00 | 46.16 |   | A   | 0  |
| ATOM   | 727 | N   | ARG   |   |     | 3.819  | 60.526 | 16.615  | 1.00 | 46.40 |   | A   | N  |
| ATOM   | 728 | CA  | ARG . | A | 124 | 5.265  | 60.651 | 16.773  | 1.00 | 47.29 |   | A · | С  |
| ATOM   | 729 | CB  | ARG . | Α | 124 | 5.688  | 60.386 | 18,214  | 1.00 | 46.85 |   | A   | C  |
| ATOM   | 730 | CG  | ARG . | A | 124 | 7.199  | 60.244 | 18.373  | 1.00 | 46.37 |   | A   | С  |
| ATOM   | 731 | CD  | ARG . | Α | 124 | 7.566  | 59.631 | 19.725  | 1.00 | 46.85 |   | A   | С  |
| ATOM   | 732 | NE  | ARG . | A | 124 | 8.996  | 59.308 | 19.835  | 1.00 | 45.97 |   | A   | N  |
| ATOM   | 733 | CZ  | ARG   | A | 124 | 9.963  | 60.197 | 20.051  |      | 45.94 |   | A   | Ĉ. |
| ATOM   | 734 |     | ARG . |   |     | 9.677  | 61.487 | 20.189  |      | 43.39 |   | A   | N  |
| ATOM   | 735 |     | ARG . |   |     | 11.221 | 59.790 | 20.132  |      | 45.B4 |   | A   | N  |
| ATOM   | 736 | С   | ARG   |   |     | 5.942  | 59.633 | 15.877  |      | 49.51 |   | A   | Ċ  |
| ATOM   | 737 | ŏ   | ARG : |   |     | 6.842  | 59.969 | 15.106  |      | 49.15 |   | A   | Ö  |
| ATOM   | 738 | N   | ARG   |   |     | 5.491  | 58.382 | 15.991  |      | 51.76 |   | A   |    |
| ATOM   | 739 | CA  | ARG   |   |     | 6.046  | 57.288 | 15.204  |      | 53.00 |   |     | N  |
| ATOM   |     | CB  |       |   |     |        | 56.018 | 15.204  |      |       |   | A   | C  |
| ATOM   | 740 |     | ARG A |   |     | 5.192  |        |         |      | 56.37 |   | A   | C  |
| MOTA   | 741 | CG  |       |   |     | 5,823  | 54.806 | 14.656  |      | 61.99 |   | A   | C  |
|        | 742 | CD  | ARG A |   |     | 5.194  | 53.473 | 15.091  |      | 68.57 |   | A   | C  |
| ATOM   | 743 | NE  | ARG A |   |     | 5.950  | 52.327 | 14.563  |      | 76.25 |   | A   | N  |
| ATOM   | 744 | CZ  | ARG I |   |     | 5.697  | 51.048 | 14.850  |      | 79.27 |   | A   | C  |
| ATOM   | 745 |     | ARG I |   |     | 4.695  | 50.740 | 15.667  |      | 80.94 |   | A   | N  |
| ATOM   | 746 |     | ARG Z |   |     | 6.446  | 50.080 | 14.322  |      | 80.01 |   | A   | N  |
| ATOM   | 747 | С   | ARG A | 4 | 125 | 6.143  | 57.688 | 13.744  | 1.00 | 51.96 |   | A   | C  |

| ATOM         | 748        | 0        | ARG | A | 125        | 7.197    | 57.543 | 13.118  | 1.00 52.91               | A O      |
|--------------|------------|----------|-----|---|------------|----------|--------|---------|--------------------------|----------|
| ATOM         | 749        | N        | PHE | A | 126        | 5.041    | 58.193 | 13.200  | 1.00 50.69               |          |
| ATOM         | 750        | CA       | PHE | A | 126        | 5.015    | 58.614 | 11.805  | 1.00 48.94               |          |
| ATOM         | 751        | CB       | PHE | A | 126        | 3.587    | 59.012 | 11.387  | 1.00 47.35               |          |
| ATOM         | 752        | CG       | PHE | A | 126        | 3.525    | 59.819 | 10.114  | 1.00 45.70               |          |
| ATOM         | 753        | CD1      | PHE | A | 126        | 3.540    | 61.211 | 10.156  | 1.00 47.01               |          |
| ATOM         | 754        | CD2      | PHE | A | 126        | · 3.46B  | 59.189 | 8.872   | 1.00 47.03               |          |
| ATOM         | 755        | CEl      | PHE | A | 126        | 3.496    | 61.970 | 8.983   | 1.00 47.02               |          |
| ATOM         | 756        | CE2      | PHE | А | 126        | 3.425    | 59.937 | . 7.687 | 1.00 47.24               | A C      |
| ATOM         | 757        | CZ       |     |   | 126        | 3.438    | 61.333 | 7.742   | 1.00 46.60               |          |
| ATOM         | 758        | C        |     |   | 126        | 5.986    | 59.766 | 11.556  | 1.00 48.53               | A C      |
| ATOM         | 759        | 0        |     |   | 126        | 6.789    | 59.711 | 10.634  | 1.00 49.24               | A O      |
| ATOM         | 760        | N        |     |   | 127        | 5.939    | 60.793 | 12.391  | 1.00 47.50               |          |
| ATOM         | 761        | CA       |     |   | 127        | 6.813    | 61.938 | 12.195  | 1.00 47.21               | A C      |
| ATOM         | 762        | CB       | SER | A | 127        | 6.512    | 63.002 | 13.234  | 1.00 46.53               | A C      |
| ATOM         | 763        | OG       |     |   | 127        | 5.138    | 63.312 | 13.189  | 1.00 45.60               | A O      |
| ATOM         | 764        | C        |     |   | 127        | 8.286    | 61.585 | 12.237  | 1.00 47.64               | A C      |
| ATOM         | 765        | 0        |     |   | 127        | 9.089    | 62.124 | 11.465  | 1.00 47.68               | A O      |
| ATOM         | 766        | N        |     |   | 128        | 8.651    | 60.696 | 13.149  | 1.00 48.76               | A N      |
| ATOM         | 767        | CA       |     |   | 128        | 10.041   | 60.294 | 13.254  | 1.00 50.75               | A C      |
| ATOM         | 768        | СВ       |     |   | 128        | 10.241   | 59.351 | 14.433  | 1.00 50.04               | A C      |
| ATOM         | 769        | CG       |     |   | 128        | 10.783   | 60.012 | 15.693  | 1.00 49.89               | A C      |
| ATOM         | 770        |          |     |   | 128        | 10.933   | 58.949 | 16.768  | 1.00 48.85               | A C      |
| ATOM         | 771        |          |     |   | 128        | 12.132   | 60.681 | 15.385  | 1.00 48.87               |          |
| ATOM         | 772        | c        |     |   | 128        | 10.459   | 59.598 | 11.977  | 1.00 52.65               | A C      |
| ATOM         | 773        | ŏ        |     |   | 128        | 11.624   | 59.651 | 11.573  | 1.00 53.44               | A O      |
| ATOM         | 774        | N        |     |   | 129        | 9.493    | 58.948 | 11.343  | 1.00 54.33               | . A N    |
| ATOM         | 775        | CA       |     |   | 129        | 9.733    | 58.220 | 10.107  | 1.00 56.49               |          |
| ATOM         | 776        | CB       |     |   | 129        | B.466    | 57.467 | 9.690   |                          |          |
| ATOM         | 777        | CG       |     |   | 129        | 8.715    | 56.294 | 8.765   | 1.00 60.29<br>1.00 66.24 | A C      |
| MOTA         | 778        | SD       |     |   | 129        | 8.963    | 54.773 | 9.729   | 1.00 73.85               |          |
| ATOM         | 779        | CE       |     |   | 129        | 7.280    | 54.066 | 9.685   | 1.00 73.83               |          |
| ATOM         | 780        | C        |     |   | 129        | 10.102   | 59.198 | 9.006   | 1.00 72.71               |          |
| ATOM         | 781        | Ö        |     |   | 129        | 11.213   | 59.178 |         | 1.00 55.37               |          |
| ATOM         | 782        | N        |     |   | 130        | 9.139    |        | 8.469   |                          |          |
| ATOM         | 783        | CA       |     |   | 130        |          | 60.053 | 8.685   | 1.00 53.15               |          |
| ATOM         | 784        | CB       |     |   |            | 9.278    | 61.047 | 7.639   | 1.00 52.60               | ilia A C |
| ATOM         | 785        |          |     |   | 130<br>130 | 7.989    | 61.854 | 7.516   | 1.00 53.06               | A C      |
| ATOM         | 786        |          |     |   |            | 7.857    | 62.707 | 8.656   | 1.00 55.21               |          |
| ATOM         | 787        |          |     |   | 130<br>130 | 6.797    | 60.920 | 7.470   | 1.00 54.34               | A C      |
| ATOM         | 788        | C        |     |   |            | 10.433   | 62.003 | 7.861   | 1.00 51.51               | A C      |
|              |            | 0        |     |   | 130        | 10.807   | 62.753 | 6.958   | 1.00 51.87               | A 0      |
| ATOM         | 789<br>790 | N        |     |   | 131        | 11.006   | 61.987 | 9.055   | 1.00 51.13               | A N      |
| ATOM         | 791        | CA       |     |   | 131        | 12.116   | 62.888 | 9.329   | 1.00 50.41               | A C      |
| ATOM<br>ATOM | 792        | CB<br>CG |     |   | 131        | 12.001   | 63.458 | 10.741  | 1.00 48.79               | A C      |
|              |            |          |     |   | 131        | 10.824   | 64.412 | 10.883  | 1.00 47.95               | A C      |
| MOTA         | 793        | CD1      |     |   |            | 10.679   | 64.812 | 12.324  | 1.00 47.29               | A C      |
| ATOM         | 794        |          |     |   | 131        | 11.012   | 65.630 | 9.984   | 1.00 46.13               | A C      |
| ATOM         | 795        | C        |     |   | 131        | 13.478   | 62.228 | 9.133   | 1.00 51.03               | A C      |
| ATOM         | 796        | 0        |     |   | 131        | 14.500   | 62.831 | 9.442   | 1.00 51.04               | A O      |
| ATOM         | 797        | N        |     |   | 132        | 13.477   | 60.997 | 8.627   | 1.00 52.18               | A N      |
| MOTA         | 798        | CA       |     |   | 132        | 14.715   | 60.298 | 8.360   | 1.00 53.68               | À C      |
| ATOM         | 799        | CB       |     |   | 132        | 14.462   | 58.827 | 8.047   | 1.00 56.41               | A C      |
| ATOM         | 800        | CG       |     |   | 132        | 14.336   | 57.947 | 9.279   | 1.00 61.85               | A C      |
| ATOM<br>ATOM | 801        | CD       |     |   | 132        | 14.605   | 56.495 | 8.899   | 1.00 65.64               | A C      |
| ATOM         | 802        | NE       |     |   | 132        | 13.571   | 55.970 | 8.011   | 1.00 68.94               | A N      |
|              | 803<br>804 |          |     |   | 132        | 12.537   | 55.243 | 8.417   | 1.00 70.21               | A C      |
| ATOM<br>ATOM |            | NH1      |     |   |            | 12.399   | 54.945 | 9.707   | 1.00 69.76               | A N      |
|              | 805        |          |     |   | 132        | 11.649   | 54.818 | 7.527   | 1.00 70.24               | A N      |
| MOTA         | 806        | C        |     |   | 132        | 15.375   | 60.970 | 7.161   | 1.00 53.03               | A C      |
| ATOM         | 807        | 0        |     |   | 132        | 14.683   | 61.451 | 6.263   | 1.00 53.16               | A O      |
| ATOM .       | 808        | N        |     |   | 133        | 16.706   | 61.005 | 7.143   | 1.00 52.86               | A N      |
| MOTA         | 809        | CA       |     |   | 133        | 17.437   | 61.652 | 6.061   | 1.00 52.46               | A C      |
| ATOM         | 810        | CB       |     |   | 133        | 18.885   | 61.181 | 6.057   | 1.00 52.47               | A C      |
| ATOM         | 811        | CG       |     |   | 133        | 19.786   | 62.103 | 5.253   | 1.00 54.12               | A C      |
| MOTA         | 812        | OD1      |     |   |            | 20.997   | 61.862 | 5.120   | 1.00 56.86               | A 0      |
| ATOM         | 813        | ND2      |     |   |            | 19.201   | 63.178 | 4.713   | 1.00 52.79               | A N      |
| ATOM         | 814        | С        |     |   | 133        | 16.818   | 61.459 | 4.674   | 1.00 53.41               | A C      |
| ATOM         | 815        | 0        |     |   | 133        | 16.734   | 62.406 | 3.886   | 1.00 52.19               | A O      |
| ATOM         | 816        | N        |     |   | 134        | 16.391   | 60.233 | 4.382   | 1.00 53.82               | A N      |
| ATOM         | 817        | CA       | PHE |   |            | , 15.770 | 59.888 | 3.095   | 1.00 54.83               | A C      |
| ATOM         | 818        | CB       | PHE |   |            | 16.616   | 58.851 | 2.357   | 1.00 54.80               | A C      |
| ATOM         | 819        | CG       | PHE |   |            | 17.854   | 59.405 | 1.723   | 1.00 55.30               | A C      |
| ATOM         | 820        | CD1      |     |   |            | 17.800   | 59.999 | 0.463   | 1.00 55.31               | A C      |
| ATOM         | 821        | CD2      |     |   |            | 19.083   | 59.309 | 2.371   | 1.00 55.01               | A C      |
| ATOM         | 822        | CEl      | PHE | A | 134        | 18.958   | 60.490 | -0.150  | 1.00 56.68               | A C      |
|              |            |          |     |   |            |          |        |         |                          |          |

| ATOM   | 823   | CE  | PHE        | A  | 134 | 20.252   | 59.795 | 1.774  | 1.00 55.57 | A   | c c |
|--------|-------|-----|------------|----|-----|----------|--------|--------|------------|-----|-----|
| ATOM   | 824   | CZ  |            |    | 134 | 20.191   | 60.387 | 0.507  | 1.00 56.66 |     |     |
| ATOM   | 825   | C   |            |    | 134 | 14.394   | 59.285 | 3.330  | 1.00 55.94 | Ā   |     |
| ATOM   | 826   | ō   |            |    | 134 | 14.047   | 58.269 | 2.726  | 1.00 56.81 | Ä   |     |
| ATOM   | 827   | N   |            |    | 135 | 13.603   | 59.907 | 4.198  | 1.00 57.19 | Ā   |     |
| ATOM   | 828   | CA  |            |    | 135 | 12.282   | 59.367 | 4.496  | 1.00 58.28 | A   |     |
| ATOM   | 829   | C   |            |    | 135 | 11.141   | 59.834 | 3.605  | 1.00 59.41 |     |     |
| ATOM   | 830   | ō   |            |    | 135 | 10.062   | 59.245 | 3.626  | 1.00 59.06 | A   |     |
| ATOM   | 831   | N   |            |    | 136 | 11.376   | 60.885 |        |            | A   |     |
| ATOM   | 832   | CA  |            |    | 136 | 10.343   | 61,423 | 2.822  | 1.00 61.71 | , A |     |
| ATOM   | 833   | СВ  |            |    | 136 | 9.583    | 62.558 | 1.939  | 1.00 61.95 | A   |     |
| ATOM   | 834   | CG  |            |    | 136 | 10.477   |        | 2.641  | 1.00 62.26 | A   |     |
| MOTA   | 835   | SD  |            |    | 136 | 9.631    | •      | 3.449  | 1.00 64.35 | A   |     |
| ATOM   | 836   | CE  |            |    | 136 |          | 64.862 | 4.365  | 1.00 67.28 | A   |     |
| ATOM   | 837   | C   |            |    | 136 | 10.780   | 66.279 | 4.072  | 1.00 65.62 | A   |     |
| MOTA   | 838   |     |            |    |     | 10.847   | 61.902 | 0.570  | 1.00 62.11 | A   |     |
|        | 839   | 0   |            |    | 136 | 11.250   | 63.060 | 0.396  | 1.00 62.69 | A   |     |
| MOTA   |       | N   |            |    | 137 | 10.814   | 61.000 | -0.407 | 1.00 62.05 | A   |     |
| MOTA   | 840   | CA  |            |    | 137 | 11.254   | 61.347 | -1.748 | 1.00 60.87 | A   |     |
| · ATOM | 841   | C   |            |    | 137 | 12.739   | 61.218 | -1.942 | 1.00 59.89 | A   |     |
| ATOM   | 842   | 0   |            |    | 137 | 13.468   | 60.746 | -1.065 | 1.00 59.86 | A   |     |
| ATOM   | 843   | N   |            |    | 138 | 13.178   | 61.666 | -3.112 | 1.00 59.01 | A   |     |
| MOTA   | 844   | CA  |            |    | 138 | 14.582   | 61.611 | -3.510 | 1.00 59.44 | A   |     |
| ATOM   | 845   | CB  |            |    | 138 | 14.668   | 61.736 | -5.047 | 1.00 60.84 | A   |     |
| ATOM   | 846   | CG  |            |    | 138 | 13.691   | 60.780 | -5.788 | 1.00 63.25 | A   |     |
| ATOM   | 847   | CD  |            |    | 138 | 13.973   | 60.589 | -7.300 | 1.00 65.75 | A   | С   |
| ATOM   | 848   | CE  |            |    | 138 | 13.685   | 61.828 | -8.174 | 1.00 66.54 | A   | С   |
| ATOM   | 849   | NZ  |            |    | 138 | 13.917   | 61.535 | -9.628 | 1.00 64.75 | A   | N   |
| ATOM   | 850   | С   |            |    | 138 | 15.410   | 62.698 | -2.804 | 1.00 57.82 | A   | С   |
| ATOM   | 851   | 0   | LYS        |    |     | 16.578   | 62.493 | -2.462 | 1.00 57.67 | A   | 0   |
| ATOM   |       | N   |            |    | 139 | 14.782   | 63.847 | -2.572 | 1.00 55.02 | A   | N   |
| ATOM   | 853   |     | ARG        |    |     | 15.429   | 64.960 | -1.890 | 1.00 51.66 | A   | С   |
| ATOM   | 854   | CB  |            |    | 139 | 14.560   | 66.203 | -2.054 | 1.00 51.46 | A   | С   |
| ATOM   | 855   | CG  |            |    | 139 | 15.258   | 67.510 | -1.836 | 1.00 50.47 | A   | С   |
| ATOM   | 856   | CD  | ARG        |    |     | 14.307   | 68.630 | -2.237 | 1.00 51.85 | A   | С   |
| ATOM   | 857   | NE  | ARG        | A  | 139 | 14.689   | 69.938 | -1.699 | 1.00 51.62 | A   | N   |
| ATOM   | 858   | CZ  | ARG        | A  | 139 | 15.830   | 70.564 | -1.968 | 1.00 51.12 | A   | C   |
| MOTA   | 859   |     | ARG        |    |     | 16.069   | 71.753 | -1.423 | 1.00 50.99 | A   | N   |
| ATOM   | . 860 | NH2 | ARG        | A  | 139 | 16.724   | 70.003 | -2.782 | 1.00 51.46 | A   | N   |
| MOTA   | 861   | C   | ARG        | A  | 139 | 15.574   | 64.548 | -0.421 | 1.00 50.71 | A   | С   |
| MOTA   | -862- | 0   | ARG        | A  | 139 | . 14.616 | 64.094 | 0.206  | 1.00 51.82 | A   | 0   |
| MOTA   | 863   | N   | SER        | A  | 140 | 16.780   | 64.700 | 0.116  | 1.00 48.23 | A   | N   |
| MOTA   | 864   | CA  | SER        | Α  | 140 | 17.092   | 64.302 | 1.495  | 1.00 46.32 | A   | С   |
| MOTA   | 865   | CB  | SER        | A  | 140 | 18.454   | 63.620 | 1.518  | 1.00 46.91 | A   | Ċ   |
| ATOM   | 866   | OG  | SER        | A  | 140 | 19.467   | 64.552 | 1.145  | 1.00 45.77 | A   | ō   |
| ATOM   | 867   | С   | SER        | Α  | 140 | 17.146   | 65.437 | 2.499  | 1.00 44.11 | A   |     |
| ATOM   | 868   | 0   | SER        | A  | 140 | 17.453   | 66.573 | 2.147  | 1.00 44.81 | À   | O   |
| ATOM   | 869   | N   | ILE        | A  | 141 | 16.899   | 65.127 | 3.763  | 1.00 39.43 | A   | . N |
| MOTA   | 870   | CA  | ILE        | A· | 141 | 16.972   | 66.173 | 4.761  | 1.00 36.14 | A   | C   |
| ATOM   | 871   | CB  | ILE        | Α  | 141 | 16.846   | 65.615 | 6.171  | 1.00 35.46 | A   | С   |
| MOTA   | 872   | CG2 | ILE        | A. | 141 | 16.778   | 66.748 | 7.166  | 1.00 35.87 | A   | С   |
| MOTA   | 873   | CG1 | ILE        | A  | 141 | 15.589   | 64.750 | 6.265  | 1.00 35.40 | A   |     |
| MOTA   | 874   | CD1 | ILE        | Α  | 141 | 14.303   | 65.509 | 6.083  | 1.00 32.73 | A   | С   |
| MOTA   | 875   | C   | ILE        | Α  | 141 | 18.324   | 66.869 | 4.619  | 1.00 35.05 | A   | Ċ   |
| ATOM   | 876   | 0   | ILE        | Α  | 141 | 18.391   | 68.091 | 4.516  | 1.00 34.41 | A   | ō   |
| ATOM   | 877   | N   | GLU        | A  | 142 | 19.401   | 66.097 | 4.572  | 1.00 35.19 | A   | N   |
| ATOM   | 878   | CA  | GLU        | Α  | 142 | 20.717   | 66.701 | 4.442  | 1.00 35.24 | A   | C   |
| ATOM   | 879   | CB  | GLU        |    |     | 21.786   | 65.623 | 4.366  | 1.00 36.50 | A   | č   |
| ATOM   | 880   | CG  | GLU        |    |     | 23.193   | 66.150 | 4.235  | 1.00 37.95 | A   | č   |
| ATOM   | 881   | CD  | GLU        |    |     | 24.179   | 65.080 | 4.554  | 1.00 39.93 | A   | č   |
| ATOM   | 882   |     | GLU        |    |     | 23.713   | 63.974 | 4.928  | 1.00 42.29 | A   | ŏ   |
| ATOM   | 883   |     | GLU        |    |     | 25.405   | 65.328 | 4.449  | 1.00 40.91 | A   | ŏ   |
| MOTA   | 884   | c   | GLU        |    |     | 20.844   | 67.629 | 3.240  | 1.00 34.76 | A   | Č   |
| MOTA   | 885   | ŏ   | GLU        |    |     | 21.523   | 68.650 | 3.303  | 1.00 34.76 | A   | o   |
| ATOM   | 886   | N   | ASP        |    |     | 20.206   | 67.274 | 2.134  | 1.00 32.03 |     |     |
| ATOM   | . 887 | CA  |            |    |     |          |        |        |            | A   | N   |
| ATOM   | 888   | CB  | ASP<br>ASP |    |     | 20.282   | 68.124 | 0.949  | 1.00 41.74 | A   | C   |
| ATOM   | 889   | CG  |            |    |     | 19.589   | 67.468 | -0.249 | 1.00 49.17 | A   | C   |
| ATOM   |       |     | ASP        |    |     | 20.569   | 67.079 | -1.345 | 1.00 56.20 | A   | C   |
| ATOM   | 890   |     | ASP        |    |     | 21.519   | 67.886 | -1.632 | 1.00 57.48 | A   | 0   |
|        | 891   |     | ASP        |    |     | 20.378   | 65.977 | -1.941 | 1.00 60.62 | A   | 0   |
| ATOM   | 892   | C   | ASP        |    |     | 19.624   | 69.473 | 1.212  | 1.00 40.91 | A   | Ç   |
| ATOM   | 893   | 0   | ASP        |    |     | 20.105   | 70.505 | 0.742  | 1.00 41.54 | A   | 0   |
| ATOM   | 894   | N   | ARG '      |    |     | 18.504   | 69.449 | 1.935  | 1.00 38.77 | A   | N   |
| ATOM   | 895   | CA  | ARG        |    |     | 17.757   | 70.662 | 2.248  | 1.00 34.57 | A   | C   |
| ATOM   | 896   | CB  | ARG        |    |     | 16.439   | 70.284 | 2.944  | 1.00 35.52 | A   | С   |
| ATOM   | 897   | CG  | ARG        | A  | 144 | 15.513   | 69.358 | 2.105  | 1.00 37.69 | A   | С   |
|        |       |     |            |    |     |          |        |        |            |     |     |

| ATOM | 898 | CD  | ARG A | 144   |       | 14.346  | 68.754 | 2.920  | 1.00 | 39.22 | 1   |    | С   |
|------|-----|-----|-------|-------|-------|---------|--------|--------|------|-------|-----|----|-----|
|      | 899 |     | ARG A |       |       | 13.484  | 67.788 | 2.206  | 1,00 | 40.29 | 7   | L. | N   |
| ATOM |     |     | ARG A |       |       | 12.589  | 68.103 | 1.270  | 1.00 |       | 7   | 1  | С   |
| MOTA | 900 |     |       |       |       |         |        | 0.900  | 1.00 |       | 7   |    | N   |
| MOTA | 901 |     | ARG A |       |       | 12.419  | 69.365 |        |      | 43.65 | ,   |    | N   |
| ATOM | 902 | NH2 | ARG A |       |       | 11.834  | 67.157 | 0.730  |      |       |     |    |     |
| MOTA | 903 | С   | ARG A | 144   |       | 18.601  | 71.559 | 3.136  |      | 31.88 | ,   |    | C   |
| ATOM | 904 | 0   | ARG A | 144   |       | 18.775  | 72.751 | 2.871  | -    | 32.56 | 1   |    | 0   |
| ATOM | 905 | N   | VAL A | 145   |       | 19.135  | 70.969 | 4.195  | 1.00 | 28.18 | 7   | ١. | N   |
|      | 906 | CA  | VAL A |       |       | 19.948  | 71.736 | 5.105  | 1.00 | 25.12 | 2   | A. | · C |
| MOTA |     |     | VAL A |       |       | 20.301  | 70.942 | 6.327  | 1.00 | 21.93 | 1   | ١. | С   |
| MOTA | 907 | CB  |       |       |       |         |        | 7.336  |      | 20.72 | . 1 |    | Č   |
| ATOM | 908 |     | VAL A |       |       | 20.945  | 71.843 |        |      |       |     | À  | č   |
| MOTA | 909 | CG2 | VAL A | 1 145 |       | 19.062  | 70.300 | 6.886  |      | 18.15 |     |    |     |
| ATOM | 910 | C   | VAL A | 145   |       | 21.228  | 72.215 | 4.448  |      | 26.85 |     | A  | C   |
| ATOM | 911 | Ö   | VAL A | 145   |       | 21.723  | 73.292 | 4.771  |      | 25.77 |     | A  | 0   |
| MOTA | 912 | N   | GLN A | 146   |       | 21.777  | 71.440 | 3.523  | 1.00 | 28.19 |     | A. | N   |
| ATOM | 913 | CA  | GLN A |       |       | 22.998  | 71.894 | 2.880  | 1.00 | 30.34 | 2   | A. | С   |
|      | 914 | СВ  | GLN F |       |       | 23.584  | 70.824 | 1.975  | 1.00 | 33.44 | 1   | A  | С   |
| ATOM |     |     |       |       |       | 24.412  | 69.826 | 2.727  |      | 39.62 | 1   | A  | С   |
| MOTA | 915 | CG  | GLN A |       |       |         |        | 1.813  |      | 41.56 |     | A  | Ċ   |
| MOTA | 916 | CD  | GLN A |       |       | 25.155  | 68.889 |        |      |       |     |    | ŏ   |
| ATOM | 917 | OE1 | GLN A | A 146 |       | 26.042  | 69.313 | 1.073  |      | 44.50 |     | A. |     |
| MOTA | 918 | NE2 | GLN I | 4 146 |       | 24.791  | 67.603 | 1.847  |      | 42.49 |     | A. | N   |
| ATOM | 919 | С   | GLN A | A 146 |       | 22.732  | 73.136 | 2.080  | 1.00 | 31.05 | i   | A  | С   |
| ATOM | 920 | 0   |       | A 146 |       | 23.568  | 74.049 | 2.032  | 1.00 | 31.79 |     | A  | 0   |
|      | 921 | N   |       | A 147 |       | 21.563  | 73.164 | 1.441  | 1.00 | 32.42 |     | A  | N   |
| MOTA |     |     |       |       |       | 21.140  | 74.311 | 0.621  |      | 32.86 |     | A  | С   |
| MOTA | 922 | CA  |       | A 147 |       |         |        | -0.092 |      | 34.03 |     |    | · c |
| MOTA | 923 | СВ  |       | A 147 |       | 19.804  | 74.032 |        |      |       |     | A. | č   |
| MOTA | 924 | CG  | Gra 1 | A 147 |       | 19.186  | 75.274 | -0.757 |      | 37.05 |     |    |     |
| ATOM | 925 | CD  | GLU 2 | A 147 | 1     | 17.964  | 74.969 | -1.648 |      | 39.67 |     | A  | C   |
| ATOM | 926 | OE1 | GLU Z | A 147 |       | 17.090  | 74.149 | -1.244 | 1.00 | 38.81 |     | A  | 0   |
| ATOM | 927 |     | GLU I |       | - 16  | 17.866  | 75.570 | -2.757 | 1.00 | 41.95 |     | A  | 0   |
| ATOM | 928 | C   |       | A 147 |       | 20.948  | 75.507 | 1.520  | 1.00 | 32.21 |     | A  | С   |
|      |     |     |       |       |       |         | 76.562 | 1.334  |      | 31.90 |     | A  | 0   |
| ATOM | 929 | 0   |       | A 147 | • • • |         |        | 2.506  |      | 30.56 |     | A  | N   |
| MOTA | 930 | N   |       | A 148 |       | 20.081  | 75.326 |        |      | 30.26 |     | A. | Ċ   |
| MOTA | 931 | CA  | GLU 7 | A 148 |       | 19.825  | 76.409 | 3,404  |      |       |     |    |     |
| ATOM | 932 | CB  | GLU : | A 148 | ٠.    | 18.950  | 75.959 | 4.560  |      | 30.82 |     | A  | C   |
| ATOM | 933 | CG  | GLU : | A 148 |       | 18.282  | 77.128 | 5.262  |      | 32.47 |     | A  | С   |
| ATOM | 934 | CD  | GLU : | A 148 |       | 17.47.7 | 77.992 | 4.304  | 1.00 | 33.27 |     | A  | С   |
| ATOM | 935 |     |       | A 148 |       | 16.558  | 77.462 | 3.628  | 1.00 | 33.04 |     | Α  | 0   |
|      |     |     |       | A 148 |       | 17.761  | 79.208 | 4.232  |      | 33.87 |     | Α  | 0   |
| ATOM | 936 | -   |       |       |       | 21.156  |        | 3.900  |      | 30.08 |     | A  | С   |
| ATOM | 937 | C   |       | A 148 |       |         |        | 4.154  |      | 27.82 |     | A  | ō   |
| ATOM | 938 | 0   |       | A 148 |       | 21.297  | 78.129 |        |      |       |     |    |     |
| MOTA | 939 | N   | ALA   | A 149 |       | 22.149  | 76.074 | 3.998  |      | 30.68 |     | A  | N   |
| ATOM | 940 | CA  | ALA   | A 149 |       | 23.453  | 76.494 | 4.472  |      | 32.90 |     | A  | C   |
| ATOM | 941 | CB  | ALA   | A 149 |       | 24.371  | 75.307 | 4.569  | 1.00 | 33.44 |     | A  | C   |
| ATOM | 942 | C   |       | A 149 |       | 24.143  | 77.596 | 3.673  | 1.00 | 35.08 |     | A  | С   |
| ATOM | 943 | ō   |       | A 149 |       | 24.587  | 78.586 | 4.259  | 1.00 | 34.03 |     | A  | 0   |
|      |     |     |       | A 150 |       | 24.269  | 77.444 | 2.353  | 1.00 | 40.00 |     | Α  | N   |
| ATOM | 944 | N   |       |       |       | 24.971  | 78.485 | 1.591  |      | 43.69 |     | A  | С   |
| ATOM | 945 | CA  |       | A 150 |       |         |        |        |      | 45.27 |     | A  | Č   |
| ATOM | 946 | CB  |       | A 150 |       | 25.358  | 78.012 | 0.176  |      |       |     | Α  | č   |
| ATOM | 947 | CG  | ARG   | A 150 |       | 24.230  | 77.584 | -0.727 |      | 49.86 |     |    |     |
| ATOM | 948 | CD  | ARG   | A 150 |       | 24.693  | 77.477 | -2.210 |      | 53.95 |     | A  | . с |
| ATOM | 949 | NE  | ARG   | A 150 |       | 23.574  | 77.170 | -3.115 | 1.00 | 57.18 |     | A  | N   |
| ATOM | 950 | CZ  |       | A 150 |       | 23.012  | 75.967 | -3.254 |      | 58.65 |     | A  | С   |
| ATOM | 951 |     |       | A 150 |       | 21.984  | 75.807 | -4.091 | 1.00 | 59.71 |     | A  | N   |
|      | 952 |     |       | A 150 |       | 23.489  | 74.922 | -2.577 |      | 58.05 |     | A  | N   |
| MOTA |     |     |       | A 150 |       | 24.190  | 79.778 | 1.529  |      | 44.37 |     | A  | С   |
| MOTA | 953 | C   |       |       |       |         | 80.866 | 1.590  |      | 46.37 |     | A  | ō   |
| ATOM | 954 | 0   |       | A 150 |       | 24.769  |        | 1.423  |      | 44.25 |     | A  | N   |
| MOTA | 955 | N   |       | A 151 |       | 22.873  | 79.662 |        |      |       |     |    | Ċ   |
| MOTA | 956 | CA  | CYS   | A 151 |       | 22.017  | 80.842 | 1.391  |      | 43.91 |     | Α  |     |
| ATOM | 957 | CB  | CYS   | A 151 |       | 20.549  | 80.423 | 1.450  |      | 44.80 |     | A  | C   |
| ATOM | 958 | SG  | CYS   | A 151 |       | 19.981  | 79.577 | -0.024 | 1.00 | 47.34 |     | A  | s   |
| MOTA | 959 | c   |       | A 151 |       | 22.357  | 81.669 | 2.611  | 1.00 | 43.93 |     | Α  | C   |
|      |     |     |       | A 151 |       | 22.584  | 82.875 | 2.520  |      | 44.99 |     | A  | oʻ  |
| MOTA | 960 | 0   |       |       |       |         | 80.988 | 3.751  |      | 43.13 |     | Α  | N   |
| ATOM | 961 | N   |       | A 152 |       | 22.385  |        |        |      | 42.19 |     | A  | Ċ   |
| MOTA | 962 | CA  |       | A 152 |       | 22.695  | 81.605 | 5.032  |      |       |     |    | Č   |
| ATOM | 963 | CB  | LEU   | A 152 |       | 22.900  | 80.512 | 6.086  |      | 39.89 |     | A  |     |
| ATOM | 964 | ÇG  | LEU   | A 152 |       | 22.804  | 80.859 | 7.571  |      | 37.78 |     | A  | С   |
| MOTA | 965 |     |       | A 152 |       | 22.647  | 79.584 | 8.360  | 1.00 | 36.27 |     | A  | С   |
| ATOM | 966 |     |       | A 152 |       | 24.020  | 81.624 | 8.030  | 1.00 | 36.00 |     | A  | С   |
|      |     |     |       | A 152 |       | 23.967  | 82.409 | 4.855  |      | 42.75 |     | A  | С   |
| MOTA | 967 | C   |       |       |       |         | 83.550 | 5.294  |      | 43.20 |     | A  | 0   |
| MOTA | 968 | 0   |       | A 152 |       | 24.066  |        | 4.195  |      | 44.57 |     | A  | N   |
| MOTA | 969 | N   |       | A 153 |       | 24.934  | 81.795 |        |      | 47.99 |     | A  | Č   |
| ATOM | 970 | CA  |       | A 153 |       | 26.193  | 82.452 | 3.945  |      |       |     |    |     |
| MOTA | 971 | CB  |       | A 153 |       | 27.174  | 81.541 | 3.233  |      | 47.52 |     | A  | C   |
| MOTA | 972 | CG1 |       | A 153 |       | 28.483  | 82.274 | 2.985  | 1.00 | 48.31 |     | A  | С   |
|      |     |     |       |       |       |         |        |        |      |       |     |    |     |

| ATOM         | 973          | CG2     | VAL P | 153            | 27,391 | 80.300 | 4.049  | 1.00 | 48.55 | A     | С  |
|--------------|--------------|---------|-------|----------------|--------|--------|--------|------|-------|-------|----|
| ATOM         | 974          | C       | VAL A |                | 25,942 | 83.623 | 3.030  | 1.00 | 50.15 | <br>A | С  |
| ATOM         | 975          | ō       | VAL A |                | 26.373 | 84.743 | 3.307  | 1.00 | 49.93 | <br>A | 0  |
| ATOM         | 976          | N       | GLU F |                | 25.259 | 83.364 | 1.925  | 1.00 | 53.22 | <br>A | N  |
| ATOM         | 977          | CA      | GLU A |                | 24.982 | 84.430 | 0.988  | 1.00 | 56.64 | <br>A | С  |
| ATOM         | 978          | СВ      | GLU 3 |                | 23.926 | 83.984 | -0.029 |      | 60.24 | <br>A | С  |
| ATOM         | 979          | CG      | GLU F |                | 24.452 | 83.932 | -1.492 |      | 66.93 | A     | С  |
| ATOM         | 980          | CD      | GLU A |                | 25.530 | 82.854 | -1.745 | 1.00 |       | A     | C  |
| ATOM         | 981          |         | GLU 7 |                | 26.644 | 82.932 | -1.147 | 1.00 | 71.20 | A     | Ó  |
| ATOM         | 982          |         | GLU 7 |                | 25.257 | 81.934 | -2.563 |      | 71.86 | Α     | 0  |
| ATOM         | 983          | C       | GLU A |                | 24.526 | 85.657 | 1.780  |      | 56.94 | A     | c  |
| ATOM         | 984          | ŏ       | GLU A |                | 25.256 | 86.643 | 1.860  |      | 57.48 | A     | Ó  |
| ATOM         | 985          | N       | GLU A |                | 23.357 | 85.584 | 2.409  | 1.00 | 56.10 | A     | N  |
| ATOM         | 986          | CA      | GLU ! |                | 22.852 | 86.708 | 3.187  |      | 54.85 | A     | C  |
| ATOM         | 987          | CB      | GLU A |                | 21.575 | 86.297 | 3.904  |      | 55.91 | A     | Č  |
| ATOM         | 988          | CG      | GLU I |                | 20.425 | 86.200 | 2.930  | 1.00 | 60.44 | A     | С  |
| ATOM         | 989          | CD      | GLU A |                | 19.870 | 87.567 | 2.559  | 1.00 | 62.12 | A     | c  |
| ATOM         | 990          |         | GLU A |                | 19.295 | 87.706 | 1.451  |      | 63.81 | A     | 0  |
| ATOM         | 991          |         | GLU I |                | 19.995 | 88.502 | 3.388  |      | 63.89 | A     | 0  |
| ATOM         | 992          | C       | GLU A |                | 23.872 | 87.281 | 4.156  |      | 53.51 | A     | C  |
| ATOM         | 993          | ŏ       | GLU A |                | 23.898 | 88.488 | 4.392  |      | 53,63 | A     | 0  |
|              | 994          | N       | LEU 1 |                | 24.717 | 86.427 | 4.713  |      | 52.83 | A     | N  |
| ATOM<br>ATOM | 995          | CA      | LEU A |                | 25,749 | 86.901 | 5.627  |      | 52.60 | A     | С  |
| ATOM         | 996          | CB      | LEU A |                | 26.435 | 85.724 | 6.319  |      | 51.67 | A     | C  |
|              | 997          | CG      |       | A 156          | 25.671 | 85.109 | 7.482  |      | 51.22 | Α     | С  |
| ATOM         | 998          |         | LEU A |                | 26.336 | 83.810 | 7.931  |      | 51.36 | A     | C  |
| MOTA         | 999          |         | LEU   |                | 25,633 | 86.118 | 8.619  |      | 51.10 | A     | C  |
| MOTA         | 1000         | C       |       | A 156          | 26.793 | 87.705 | 4.856  |      | 53.27 | A     | c  |
| ATOM         | 1001         | Ö       |       | A 156          | 27,532 | 88.494 | 5.436  |      | 52.53 | A     | 0  |
| MOTA         | 1001         | n       |       | A 157          | 26.868 | 87.509 | 3.549  |      | 54.21 | A     | N  |
| MOTA         | 1002         | CA      |       | A 157          | 27.854 |        | 2.780  |      |       | A     | С  |
| ATOM<br>ATOM |              | CB      |       | A 157          | 28.224 | 87.480 | 1.506  |      | 55.99 | A     | C  |
|              | 1004         | CG      |       | A 157          | 29.725 |        | 1.214  |      | 56.99 | A     | Č  |
| MOTA         | 1005         |         |       | A 157          | 30.005 | 86.794 | -0.142 |      | 57.45 | A     | c  |
| ATOM         | 1006         | CD      |       | A 157          | 29.808 | 85.341 | -0.202 |      |       | A     | N  |
| ATOM         | 1007         | NE      |       |                | 30.708 | 84.436 | 0.179  |      | 56.27 | A     | Ċ  |
| MOTA         | 1008         | CZ      |       | A 157          | 31.882 | 84.828 | 0.664  |      | 54.34 | A     | N  |
| ATOM         | 1009         |         | ARG . |                | 30.447 |        | 0.037  |      |       | A     | N  |
| ATOM         | 1010         |         | ARG   |                | 27.305 | 89.638 | 2.437  |      | 56.50 | A     | Ċ  |
| MOTA         | 1011         | C       |       | A 157          | 28.057 | 90.602 | 2.266  |      | 55.64 | A     | ō, |
| ATOM         | 1012         | 0       |       | A 157          | 25.981 | 89.729 | 2.362  |      | 58.01 | A     | N  |
| ATOM         | 1013         | N       |       | A 158          | 25.296 | 90.976 | 2.042  |      | 59.27 | A     | Ċ  |
| MOTA .       |              | . CA    |       | A 158<br>A 158 | 23.790 | 90.708 | 1.856  |      | 59.33 | A     | Č  |
| ATOM         | 1015         | CB      |       | A 158          | 23.457 | 89.852 | 0.619  |      | 59.93 | A     | ċ  |
| ATOM         | 1016         | CG      |       | A 158          | 21.986 | 89.986 | 0.181  |      | 61.30 | A     | C  |
| MOTA         | 1017         | CE      |       | A 158          | 21.673 | 89.158 | -1.081 |      | 62.49 | A     | C  |
| MOTA         | 1018<br>1019 | NZ      |       | A 158          | 22.638 | 89.410 | -2.197 |      | 64.38 | A     | N  |
| ATOM         | 1020         | C       |       | A 158          | 25.521 | 92.058 | 3.109  |      | 60.44 | Α     | С  |
| ATOM         | 1021         | Ö       |       | A 158          | 25.333 | 93.247 | 2.853  |      | 61.51 | A     | 0  |
| ATOM         | 1021         | Ŋ       |       | A 159          | 25.934 | 91.651 | 4.300  |      | 61.88 | Α     | N  |
| MOTA<br>MOTA | 1023         | CA      |       | A 159          | 26.183 | 92.608 | 5.367  |      | 62.58 | Α     | С  |
| ATOM         | 1023         | CB      |       | A 159          | 26.301 | 91.897 | 6.719  |      | 62.67 | A     | С  |
| ATOM         | 1025         |         |       | A 159          | 27.638 | 91.395 | 6.891  |      | 62.71 | A     | 0  |
| ATOM         | 1026         |         |       | A 159          | 25.316 | 90.731 | 6.774  |      | 62.06 | A     | C  |
| ATOM         | 1027         | C       |       | A 159          | 27.488 | 93,360 | 5.095  | 1.00 | 63.42 | A     | С  |
| ATOM         | 1028         | ŏ       |       | A 159          | 27.975 | 94.111 | 5.941  | 1.00 | 62.94 | A     | 0  |
| ATOM         | 1029         | N       |       | A 160          | 28.059 | 93.136 | 3.916  |      | 64.98 | A     | N  |
| ATOM         | 1030         | CA      |       | A 160          | 29.294 | 93.806 | 3.504  | 1.00 | 66.56 | Α     | С  |
| ATOM         | 1031         | CB      |       | A 160          | 28.961 | 95.223 | 2.981  |      | 68.34 | A     | С  |
| ATOM ·       |              | CG      |       | A 160          | 29.561 | 95.619 | 1.607  |      | 69.89 | A     | С  |
| ATOM         | 1032         | CD      |       | A 160          | 29.404 | 97.135 | 1.301  |      | 70.40 | A     | С  |
| ATOM         | 1033         | CE      |       | A 160          | 30.083 | 97.558 | -0.020 |      | 69.82 | A     | C  |
| ATOM         |              |         |       | A 160          | 30.136 | 99.042 | -0.248 |      | 68.03 | A     | N  |
| ATOM         | 1035         | NZ<br>C |       | A 160          | 30.348 | 93.908 | 4.625  |      | 66.60 | A     | C  |
|              | 1036         |         |       | A 160          | 31.046 | 94.918 | 4.728  |      | 66.15 | A     | ō  |
| ATOM<br>ATOM | 1037         | 0       |       | A 161          | 30.457 | 92.878 | 5.463  |      | 66.58 | A     | N  |
|              | 1038         | N       |       | A 161          | 31.450 | 92,849 | 6.554  |      | 66.20 | A     | C  |
| ATOM         | 1039         | CA      |       | A 161          | 32.858 | 92.747 | 5.972  |      | 66.46 | A     | č  |
| ATOM<br>ATOM | 1040         | CB      |       | A 161          | 31.401 | 94.020 | 7.541  |      | 65.64 | A     | Č  |
|              | 1041         | C       |       | A 161          | 32.443 | 94.542 | 7.959  |      | 65.75 | Α     | ō  |
| ATOM         | 1042         | 0       |       | A 162          | 30.194 | 94.425 | 7.916  |      | 64.68 | Α     | N  |
| ATOM         | 1043         | N       |       | A 162          | 30.010 | 95.530 | 8.843  |      | 62.90 | A     | Ċ  |
| ATOM         | 1044         | CA      |       | A 162          | 29.229 | 96.644 | 8.151  |      | 63.15 | A     | č  |
| ATOM         | 1045         | CB      |       | A 162          | 28.035 | 96.123 | 7.596  |      | 61.81 | A     | ŏ  |
| MOTA         | 1046         | OG      |       |                | 29.237 | 95.027 | 10.054 |      | 62.04 | A     | Č  |
| ATOM         | 1047         | С       | ರವನ   | A 162          | 69,631 | 33.027 |        |      |       | -     | -  |

Figure 3

|      |              |     |      |    |                  |        |        |        |        |       | _   | _  |
|------|--------------|-----|------|----|------------------|--------|--------|--------|--------|-------|-----|----|
| MOTA | 1048         | 0   | SER  |    |                  | 28.528 | 94.033 | 9.968  | 1.00 € |       | A   | 0  |
| ATOM | 1049         | N   | PRO  | Α  | 163              | 29.368 | 95.708 | 11.205 | 1.00 6 | 61.06 | A   | N  |
| ATOM | 1050         | CD  | PRO  | A  | 163              | 30.254 | 96.865 | 11.437 | 1.00 6 | 61.26 | A   | С  |
| ATOM | 1051         | CA  | PRO  | A  | 163              | 28.679 | 95.329 | 12.446 | 1.00 5 | 59.39 | A   | С  |
| ATOM | 1052         | СВ  | PRO  |    |                  | 28.949 | 96.522 | 13.360 | 1.00 6 |       | A   | Ċ  |
|      |              |     |      |    |                  |        |        |        | 1.00   |       | A   | č  |
| MOTA | 1053         | CG  | PRO  |    |                  | 30.328 | 96.923 | 12.953 |        |       |     |    |
| MOTA | 1054         | С   | PRO  |    |                  | 27.187 | 95.035 | 12.291 | 1.00   |       | A   | C  |
| ATOM | 1055         | 0   | PRO  | Α  | 163              | 26.444 | 95.791 | 11.652 | 1.00 5 |       | A   | 0  |
| ATOM | 1056         | N   | CYS  | Α  | 164              | 26.761 | 93.933 | 12.898 | 1.00 5 | 56.04 | A   | N  |
| ATOM | 1057         | CA  | CYS  | Α  | 164              | 25.368 | 93.529 | 12.820 | 1.00 5 | 54.47 | A   | С  |
| ATOM | 1058         | СВ  | CYS  |    |                  | 25.112 | 92.770 | 11.524 | 1.00 5 | 55.36 | A   | C  |
| ATOM | 1059         | SG  | CYS  |    |                  | 25.256 | 90.964 | 11.775 | 1.00 5 |       | A   | S  |
|      |              |     | CYS  |    |                  | 24.898 | 92.612 | 13.952 | 1.00   |       | A   | č  |
| ATOM | 1060         | C   |      |    |                  |        |        |        | 1.00   |       |     | ŏ  |
| ATOM | 1061         | 0   | CYS  |    |                  | 25.694 | 92.016 | 14.687 |        |       | A   |    |
| ATOM | 1062         | N   | ASP  |    |                  | 23.575 | 92.481 | 14.024 | 1.00 5 |       | A   | N  |
| MOTA | 1063         | CA  | ASP  | A  | 165              | 22.915 | 91.619 | 14.981 | 1.00   |       | A   | С  |
| ATOM | 1064         | CB  | ASP  | A  | 165              | 21.722 | 92.305 | 15.628 | 1.00 4 | 49.03 | A   | C  |
| ATOM | 1065         | CG  | ASP  | A  | 165              | 20.900 | 91.342 | 16.457 | 1.00 5 | 51.64 | A   | С  |
| MOTA | 1066         |     | ASP  | А  | 165              | 19.833 | 91.731 | 16.991 | 1.00 5 | 53.52 | A   | 0  |
| ATOM | 1067         |     | ASP  |    |                  | 21.330 | 90.176 | 16.577 | 1.00 5 | 52.67 | A   | 0  |
| ATOM | 1068         | c   | ASP  |    |                  | 22.401 | 90.369 | 14.277 | 1.00 4 |       | A   | Ċ  |
|      |              |     |      |    |                  |        |        | 13.665 | 1.00   |       | A   | ō  |
| MOTA | 1069         | 0   | ASP  |    |                  | 21.325 | 90.379 |        |        |       |     |    |
| ATOM | 1070         | N   | PRO  |    |                  | 23.141 | 89.266 | 14.395 | 1.00   |       | A   | N  |
| ATOM | 1071         | CD  | PRO  | A  | 166              | 24.229 | 89.093 | 15.363 | 1.00   |       | A   | С  |
| ATOM | 1072         | CA  | PRO  | A  | 166              | 22.808 | 87.982 | 13.794 | 1.00 3 | 36.21 | A   | С  |
| ATOM | 1073         | CB  | PRO  | Α  | 166              | 23.919 | 87.088 | 14.295 | 1.00 3 | 36.14 | A   | C  |
| MOTA | 1074         | CG  | PRO  | Α  | 166              | 24.126 | 87.622 | 15.673 | 1.00 3 | 36.30 | A   | С  |
| ATOM | 1075         | C   |      |    | 166              | 21.451 | 87.457 | 14.220 | 1.00 3 | 34.56 | A · | С  |
| ATOM | 1076         | ŏ   | PRO  |    | •                | 20.875 | 86.617 |        | 1.00   |       | A   | Ō  |
|      |              |     |      |    |                  | 20.940 | 87.928 | 15.351 | 1.00   |       | A   | N  |
| ATOM | 1077         | N   | THR  |    |                  |        |        |        |        |       | A   | C  |
| ATOM | 1078         | CA  | THR  |    |                  | 19.650 | 87.435 | 15.829 | 1.00   |       |     |    |
| ATOM | 1079         | CB  | THR  |    |                  | 18.913 | 88.429 | 16.765 | 1.00   |       | Α   | C  |
| ATOM | 1080         | OG1 | THR  | A  | 167              | 19.673 | 88.655 | 17.962 | 1.00   |       | ••  | 0  |
| ATOM | 1081         | CG2 | THR  | Α  | 167              | 17.547 | 87.847 | 17.153 | 1.00   | 36.63 | A · | C, |
| ATOM | 1082         | С   | THR  | Α  | 167              | 18.668 | 87.096 | 14.708 | 1.00 3 | 36.17 | . А | C. |
| ATOM | 1083         | 0   |      |    | 167 <sup>-</sup> | 18.104 | 85.999 | 14.690 | 1.00   | 37.62 | A   | 0  |
| ATOM | 1084         | N   |      |    | 168              | 18.449 | 88.037 | 13.783 | 1.00   | 36.83 | A ' | N. |
| MOTA | 1085         | CA  | PHE  |    |                  | 17.493 | 87.830 | 12,683 | 1.00   |       |     | C. |
| MOTA | 1086         | СВ  |      |    | 168              | 17.245 | 89.146 | 11.913 | 1.00   |       | A   | C  |
|      |              |     |      |    | 168              | 16.118 | 89.055 | 10.888 | 1.00   |       | A   | Č  |
| MOTA | 1087         | CG  |      |    |                  |        |        |        |        |       | A   | č  |
| MOTA | 1088         |     | PHE  |    |                  | 16.343 | 89.384 | 9.544  | 1.00   |       |     |    |
| ATOM | 1089         |     | PHE  |    |                  | 14.851 | 88.584 | 11.257 | 1.00   |       | A   | С  |
| MOTA | 1090         | CE1 | _PHE | Α  | 168              | 15.337 | 89.239 | 8.586  | 1.00   | 36.79 | A   | С  |
| ATOM | 1091         | CE2 | PHE  | A  | 168              | 13.836 | 88.435 | 10.307 | 1.00   | 37.47 | A   | C  |
| ATOM | 1092         | CZ  | PHE  | A  | 168              | 14.081 | 88.762 | 8.971  | 1.00   | 37.36 | A   | С  |
| MOTA | 1093         | С   |      |    | 168              | 17.890 | 86.728 | 11.705 | 1,00   | 33.59 | A   | С  |
| ATOM | 1094         | ō   |      |    | 168              | 17.243 | 85.685 | 11.632 | 1.00   |       | A   | 0  |
|      |              |     |      |    | 169              | 18.930 | 86.985 | 10.930 | 1.00   |       | - A | N  |
| ATOM | 1095         | N   |      |    |                  |        | 86.014 |        | 1.00   |       | A   | Ċ  |
| ATOM | 1096         | CA  |      |    | 169              | 19.425 |        | 9.972  |        |       |     |    |
| ATOM | 1097         | СВ  |      |    | 169              | 20.822 | 86.378 | 9.607  | 1.00   |       | A   | C  |
| ATOM | 1098         |     | ILE  |    |                  | 21.484 | 85.266 |        | 1.00   |       | A   | C  |
| ATOM | 1099         | CG1 | ILE  | A  | 169              | 20.748 | 87.769 | 8.982  | 1.00   | -     | A   | С  |
| ATOM | 1100         | CD1 | ILE  | A  | 169              | 22.015 | 88.287 | 8.456  | 1.00   |       | A   | C  |
| MOTA | 1101         | С   | ILE  | Α  | 169              | 19.402 | 84.615 | 10.546 | 1.00   | 30.35 | A   | С  |
| MOTA | 1102         | 0   | ILE  | Α  | 169              | 18.726 | 83.730 | 10.024 | 1.00   | 30.19 | A   | 0  |
| ATOM | 1103         | N·  |      |    | 170              | 20.138 | 84.420 | 11.631 | 1.00   | 30.79 | A   | N  |
| ATOM | 1104         | CA  |      |    | 170              | 20.193 | 83.129 | 12.287 | 1.00   |       | A   | С  |
|      |              | СВ  |      |    | 170              | 20.917 | 83.241 | 13,611 | 1.00   |       | A   | С  |
| MOTA | 1105<br>1106 |     |      |    |                  | 22.411 | 82.988 | 13.536 | 1.00   |       | Ä   | č  |
| ATOM |              | CG  |      |    | 170              |        |        |        | 1.00   |       |     | č  |
| ATOM | 1107         |     | LEU  |    |                  | 22.924 | 83.119 | 12.129 |        |       | A   |    |
| ATOM | 1108         |     | ΓEÜ  |    |                  | 23.088 | 83.964 | 14.447 | 1,00   |       | A   | C  |
| ATOM | 1109         | С   |      |    | 170              | 18.846 | 82.535 | 12.551 | 1.00   |       | A   | С  |
| ATOM | 1110         | 0   | LEU  | A  | 170              | 18.725 | 81.325 | 12.615 | 1.00   |       | A   | 0  |
| ATOM | 1111         | N   | GLY  | A  | 171              | 17.830 | 83.368 | 12.730 | 1.00   | 34.10 | A   | N  |
| ATOM | 1112         | CA  |      |    | 171              | 16.503 | 82.825 | 13.006 | 1.00   | 35.23 | A   | С  |
| ATOM | 1113         | c   |      |    | 171              | 15.766 | 82.330 | 11.775 | 1.00   |       | A   | C  |
|      | 1114         | ŏ   |      |    | 171              | 14.940 | 81.414 | 11.849 | 1.00   |       | A   | ō  |
| MOTA |              |     |      |    |                  | 16.067 | 82.957 | 10.647 | 1.00   |       | A   | N  |
| ATOM | 1115         | N   |      |    | 172              |        | 82.613 |        | 1.00   |       |     | C  |
| ATOM | 1116         | CA  |      |    | 172              | 15.453 |        | 9.382  |        |       | A   |    |
| MOTA | 1117         | CB  |      |    | 172              | 15.835 | 83.647 | 8.324  | 1.00   |       | A   | C  |
| ATOM | 1118         | SG  |      |    | 172              | 15.470 | 85.362 | 8.786  | 1.00   |       | A   | S  |
| ATOM | 1119         | С   | CYS  | A  | 172              | 15.921 | 81.237 | 8.933  | 1.00   |       | A   | C  |
| ATOM | 1120         | 0   | CYS  | ·A | 172              | 15.113 | 80.376 | 8.555  | 1.00   |       | A   | 0  |
| ATOM | 1121         | N   |      |    | 173              | 17.240 | 81.044 | 8.985  | 1.00   | 35.42 | A   | N  |
| ATOM | 1122         | CA  |      |    | 173              | 17.883 | 79.789 | 8.583  | 1.00   | 32.24 | A   | С  |
| 013  |              |     |      | •• | - · <del>-</del> |        | •      | _      |        |       |     |    |

269

a300

310MIN 1150

47 JM A 1164

18772" of 11.23"

AND TOURS

7-100 (1-1-108) 7-100 (1-1-108) 7-100 (1-1-108)

7734 W 2146-

#### 212/514

```
9.075 1.00 32.25
                                  19.317
                                          79,762
ATOM
       1123
             CB
                 ALA A 173
                                  17.142
                                          78.555
                                                    9.072
                                                           1.00 30.48
       1124
                  ALA A 173
ATOM
              С
                                                            1.00 29.47
                                                    8.284
       1125
                  ALA A 173
                                  16.533
                                          77.838
MOTA
                                                           1.00 30.52
                                                                             A
                  PRO A 174
                                  17.174
                                          78.301
                                                   10,385
ATOM
       1126
              N
                                                           1.00 30.51
                                                                             Α
                  PRO A 174
                                  17.698
                                          79.183
                                                   11.431
ATOM
       1127
              CD
                                                           1.00 31.09
                  PRO A 174
                                  16.506
                                           77.148
                                                   10.984
                                                                             Α
                                                                                  C
ATOM
       112B
              CA
                                                            1.00 30.69
                  PRO A 174
                                  16.604
                                           77.419
                                                   12.482
                                                                             A
                                                                                  C
       1129
              CB
ATOM
                                                            1.00 32.01
              CG
                  PRO A 174
                                  17.862
                                           78.235
                                                   12.596
                                                                             Α
       1130
ATOM
                                           77.052
                                                   10.527
                                                            1.00 33.18
                                                                             A
                                                                                  C
                  PRO A 174
                                  15.070
       1131
              С
ATOM
                                           75.994
                                                   10.102
                                                            1.00 33.76
                                                                             A
                                                                                  0
              ٥
                  PRO A 174
                                  14.609
       1132
ATOM
                                          78.172
                                                   10.598
                                                            1.00 34.72
                                                                             A
                                                                                  N
                  CYS A 175
                                  14.366
ATOM
       1133
              N
                                                   10.200
                                                            1.00 37.17
                                                                             A
                                                                                  C
                  CYS A 175
                                  12,964
                                           78.212
ATOM
       1134
              CA
                                  12.434
                                                            1.00 39.39
                                                                             A
                                                                                   C
                  CYS A 175
                                           79.650
                                                   10.260
              CB
ATOM
       1135
                                                            1.00 44.04
                                                                             A
                                                                                  S
                  CYS A 175
                                  10.609
                                           79.746
                                                   10.156
ATOM
       1136
              SG
                                                            1.00 36.16
                  CYS A 175
                                  12.792
                                           77.664
                                                    8.790
                                                                             A
                                                                                   C
ATOM
       1137
              С
                                  11.929
                                                            1.00 36.21
                                                    8.536
                                                                             A
                                                                                   0
                  CYS A 175
                                           76.815
ATOM
        1138
              0
                                                                                  N
                                  13.630
                                           78.145
                                                    7.880
                                                            1.00 34.30
                                                                             A
                  ASN A 176
MOTA
       1139
              N
                                           77.710
                                                    6.501
                                                            1.00 32.50
                                                                             A
                                                                                   C
                                  13.558
                  ASN A 176
MOTA
        1140
              CA
                                                                                   C
                                           78,360
                                                    5.689
                                                            1.00 33.07
                                  14.657
ATOM
        1141
              CB
                  ASN A 176
                                  14.117
                                           79.371
                                                     4.743
                                                            1.00 32.89
                                                                                   C
ATOM
        1142
              CG
                  ASN A 176
                                                     4.105
                                                            1.00 31.47
MOTA
        1143
              OD1 ASN A 176
                                  13,099
                                           79,132
                                  14.777
                                                     4.649
                                                            1.00 33.96
                                           80.522
MOTA
        1144
              ND2 ASN A 176
                                                     6.346
                                                            1.00 31.18
                                                                             A
                                                                                   C
                                  13,647
                                           76.219
ATOM
        1145
              С
                  ASN A 176
                                                     5.575
                                                            1.00 31.23
                                                                             A
                                                                                   o
                                  12.910
                                           75.618
        1146
              0
                  ASN A 176
MOTA
                                                            1.00 30.33
                                                                                   N
                                                     7.069
                                                                             A
        1147
                   VAL A 177
                                  14.573
                                           75.623
MOTA
              N
                                                     7.004
                                                            1.00 29.40
                                                                             Α
                                                                                   С
        1148
                  VAL A 177
                                  14.725
                                           74.189
ATOM
                                                            1.00 29.37
                                                                                   С
ATOM
        1149
              CB
                  VAL A 177
                                  15.756
                                           73.731
                                                     7.984
                                                                             Α
                                                            1.00 28.97
                                                                                   С
        1150
              CG1
                  VAL A 177
                                  15.798
                                           72.227
                                                     8.010
                                                                             Α
ATOM
                                                                                   C
                                  17.101
                                           74.338
                                                     7.613
                                                            1.00 27.84
                                                                             A
ATOM
        1151
              CG2
                  VAL A 177
                                           73.492
                                                     7.342
                                                            1.00 30.00
                                                                             A
        1152
                   VAL A 177
                                  13.414
              C
MOTA
                                                                                   0
                                           72.635
                                                     6.596
                                                            1.00 30.06
                                                                             Α
                   VAL A 177
                                  12.964
        1153
MOTA
              ۰0
                   ILE A 178
                                  12.812
                                           73.843
                                                     8.478
                                                            1.00 30.53
                                                                             A
                                                                                   N
ATOM .
        1154
              N
                                                                                   C
                                                            1.00 31.22
                                                                             A
                                  11.552
                                           73.227
                                                     8.884
              CA
                   ILE A 178
ATOM 3
        1155
                                                            1.00 30.11
                                           73.771
                                                    10.222
                                                                             A
                                                                                   С
              CB
                  ILE A 178
                                  11.064
MOTA
        1156
                                                            1.00 30.22
                                                                             A
                                                                                   C
                                   9.717
                                           73.206
                                                    10.523
              CG2 ILE A 178
ATOM
        1157
                                  11.997
                                           73.347
                                                    11.353
                                                            1.00 31.04
                                                                             A
                                                                                   С
MOTA
        1158
              CG1 ILE A 178
                                           73.997
                                                    11.347
                                                            1.00 32.20
                                                                             A
                                                                                   С
                                  13.356
MOTA
        1159
              CD1 ILE A 178
                                           73.573
                                                            1.00 32.98
                                                     7.840
MOTA
        1160
              ¢
                   ILE A 178
                                  10.516
                                                                             A
                                                                                   0
                                                            1.00 32.24
                                           72.814
                                                     7.556
MOTA
        1161
              ٥
                   ILE A 178
                                   9.576
                                                            1.00 34.97
                                                                             A
                                                                                   N
                                  10.724
                                                     7.274
MOTA
        1162
              N
                   CYS A 179
                                           74.754
                                                            1.00 37.21
                                                                             A
                                                                                   С
                   CYS A 179
                                    9.885
                                           75.338
                                                     6.234
ATOM
        1163
              CA
                                                                                   ¢
                                           76.738
                                                     5.930
                                                            1.00 37.73
                                                                             A
              ÇВ
                   CYS A 179
                                   10.412
MOTA
        1164
                                                     5.540
                                                            1.00 39.52
                                                                             A
                                                                                   s
                   CYS A 179
                                    9.155
                                           77.934
ATOM
        1165
              SG
                                                            1.00 37.67
                                                                                   С
                                                     4.961
                                                                             Α
                   CYS A 179
                                    9.914
                                           74.501
MOTA
        1166
              С
                                                                                   0
                                                     4.318
                                                                              A
                   CYS A 179
                                    8.889
                                           74.278
                                                            1.00 38.11
        1167
              0
ATOM
                                                            1.00 37.52
                                                                                   N
                                                                              A
                                   11.117
                                           74.053
                                                     4.614
ATOM
        1168
              N
                   SER A 180
                                                                                   С
                                   11.375
                                           73.246
                                                     3.428
                                                            1.00 36.28
                                                                              A
ATOM
        1169
              CA
                   SER A 180
                                                                                   C
              CB
                   SER A 180
                                   12.859
                                           73.372
                                                     3.075
                                                            1.00 37.29
                                                                              Α
        1170
ATOM
                   SER A 180
                                   13.196
                                           72.626
                                                     1.920
                                                            1.00 40.59
                                                                              A
                                                                                   0
        1171
ATOM
              OG
                                           71.780
                                                     3.664
                                                            1.00 35.66
                                                                              A
                                                                                   С
                   SER A 180
                                   11.012
        1172
              C
ATOM
                                           71.028
                                                     2.730
                                                            1.00 34.88
                                                                              A
                                                                                   0
                   SER A 180
                                   10.798
ATOM
        1173
              0
                                                            1.00 36.48
                                                                              A
                                                                                   N
                   ILE A 181
                                   10.941
                                           71.376
                                                     4.922
ATOM
        1174
              N
                                                                              A
                                                                                   C
                                   10.619
                                           69.997
                                                     5.243
                                                            1.00 36.62
ATOM
        1175
              CA
                   ILE A 181
                                                                              A
                                                                                   С
                                                     6,660
                                                            1.00 35.69
                                   11.090
                                           69,650
ATOM
        1176
              CB
                   ILE A 181
                                                                                   С
                                           68.214
                                                     7.008
                                                            1.00 34.76
ATOM
        1177
              CG2 ILE A: 181
                                   10.726
                                                     6.761
                                                            1.00 34.54
                                                                              A
                                                                                   С
                                   12.589
                                           69.887
        1178
               CG1 ILE A 181
ATOM
                                                     8.132
                                                            1.00 34.74
                                                                              A
                                                                                   С
                                           69.640
ATOM
        1179
              CD1 ILE A 181
                                   13.149
                                                                                   С
                                                             1.00 38.64
                                                                              A
                                                     5.162
                   ILE A 181
                                    9,123
                                           69.737
ATOM
        1180
                                                            1.00 38.84
                                                                                   0
                                                                              Α
                                                     4.922
ATOM
        1181
                   ILE A 181
                                    8.678
                                           68.616
                                                            1.00 39.51
                                                                                   N
                                                     5.369
                                                                              A
        1182
                   ILE A 182
                                    8.340
                                           70,781
ATOM
                                                                                   С
                                                            1.00 40.16
                                    6.90B
                                           70.616
                                                     5.341
                                                                              Α
        1183
               ÇA
                   ILE A 182
ATOM
                                                             1.00 39.63
                                                                                   С
                                    6.227
                                           71.499
                                                     6.351
                                                                              Α
               CB
                   ILE A 182
        1184
ATOM
                                                            1.00 39.33
                                                                              A
                                                                                   С
                                    4.736
                                           71.287
                                                     6.262
               CG2 ILE A 182
        1185
ATOM
                                                             1.00 39.38
                                                                                   C
               CG1 ILE A 182
                                    6.719
                                           71.182
                                                     7.740
ATOM
        1186
                                                                                   С
                                    6.201
                                                     8.242
                                                             1.00 40.57
                                                                              A
                                           69,875
        1187
               CD1 ILE A 182
MOTA
                                                                                   С
                                           70,994
                                                     4.004
                                                             1.00 41.93
                   TLE A 182
                                    6.331
ATOM
        1188
               C
                                                     3.515
                                                             1.00 41.11
                                                                                   0
                                    5.407
                                            70.349
ATOM
        1189
               ٥
                   ILE A 182
                                    6.888
                                           72.052
                                                     3.434
                                                             1.00 43.33
 MOTA
        1190
              N
                   PHE A 183
                                    6.424
                                           72.574
                                                     2.178
                                                             1.00 44.94
                                                                                   c
        1191
               CA
                   PHE A 183
ATOM
                                           74.090
                                                     2.235
                                                             1.00 44.91
                                    6.434
        1192
                   PHE A 183
 MOTA
               CB
                                                     3.300
                                                             1.00 42.33
                                                                                   С
                                    5.572
                                            74.658
        1193
               CG
                   PHE A 183
 ATOM
                                                     3.685
                                                             1.00 43.97
                                                                                   С
        1194
               CD1 PHE A 183
                                    5.731
                                           75.987
 ATOM
                                                     3.928
                                                             1.00 43.82
                                                                                   C
                                    4.607
                                           73.874
        1195
               CD2 PHE A 183
 ATOM
                                                     4.689
                                                             1.00 45.69
                                                                                   C
                                    4.942
                                            76,532
         1196
               CE1 PHE A 183
 ATOM
                                                             1.00 45.10
                                    3.805
                                           74.404
                                                     4.937
               CE2 PHE A 183
        1197
 ATOM
```

| ATOM   | 1198 | CZ  | PHE | A | 183   | 3.973  | 75.743              | 5.324  | 1.00 45.41 | A   | С   |
|--------|------|-----|-----|---|-------|--------|---------------------|--------|------------|-----|-----|
| ATOM   | 1199 | c   |     |   | 183   | 7.217  | 72,123              | 0.988  | 1.00 48.04 | A   | č   |
| ATOM   | 1200 | Ö   |     |   | 183   | 6.835  | 72.371              | -0.148 | 1.00 49.27 | Ä   | ŏ   |
| ATOM   | 1201 | N   | HIS |   |       | 8.342  | 71.478              | 1.233  | 1.00 52.31 | A   | N   |
|        |      | CA  |     |   | 184   | 9.168  | 71.002              | 0.123  | 1.00 54.82 | A   | C   |
| ATOM   | 1202 |     |     |   |       |        |                     |        |            |     | Č   |
| ATOM   | 1203 | CB  | HIS |   |       | 8.296  | 70.326              | -0.940 | 1.00 58.34 | A   |     |
| ATOM   | 1204 | CG  | HIS |   |       | 8.819  | 70.490              | -2.327 | 1.00 63.18 | A   | C   |
| ATOM   | 1205 |     | HIS |   |       | 9.669  | 69.727              | -3.054 | 1.00 65.51 | A   | C   |
| ATOM   | 1206 |     | HIS |   |       | 8.572  | 71.616              | -3.084 | 1.00 65.39 | A   | N   |
| ATOM   | 1207 |     | HIS |   |       | 9.251  | 71.541              | -4.212 | 1.00 67.01 | A   | С   |
| ATOM   | 1208 |     | HIS |   |       | 9.928  | 70.405              | -4.220 | 1.00 67.46 | A   | N   |
| MOTA   | 1209 | С   | HIS | A | 184   | 10.005 | 72.090              | -0.551 | 1.00 53.55 | A   | С   |
| ATOM   | 1210 | 0   | HIS | A | 184   | 11.017 | 71.788              | -1.189 | 1.00 53.99 | A   | 0   |
| ATOM   | 1211 | N   | LYS | A | 185   | 9.603  | 73.345              | -0.396 | 1.00 52.69 | A   | - N |
| ATOM   | 1212 | CA  | LYS | A | 185 . | 10.346 | 74.427              | -1.021 | 1.00 53.76 | A   | С   |
| ATOM   | 1213 | СВ  | LYS | Α | 185   | 9.580  | 74.912              | -2.268 | 1.00 58.14 | A   | С   |
| ATOM   | 1214 | CG  |     |   | 185   | 9.608  | 76.439              | -2.532 | 1.00 63.95 | A   | Ċ   |
| ATOM   | 1215 | CD  |     |   | 185   | 8.767  | 76.849              | -3.767 | 1.00 66.B4 | A   | Č   |
| ATOM   | 1216 | CE  |     |   | 185   | 8.180  | 78.273              | -3.621 | 1.00 68.43 | A   | Č   |
| ATOM   | 1217 | NZ  |     |   | 185   | 6.903  | 78.339              | -2.822 | 1.00 69.58 | A   | N   |
| ATOM   | 1218 | C   |     |   | 185   | 10.587 | 75.580              | -0.066 | 1.00 51.06 | A   | Č   |
|        |      |     |     |   |       |        |                     |        |            |     |     |
| ATOM   | 1219 | 0   |     |   | 185   | 9.651  | 76.068              | 0.555  | 1.00 52.02 | A   | 0   |
| ATOM   | 1220 | N   |     |   | 186   | 11.832 | 76.032              | 0.049  | 1.00 47.42 | A   | N   |
| ATOM   | 1221 | CA  |     |   | 186   | 12.118 | 77.144              | 0.949  | 1.00 44.35 | A   | C   |
| MOTA   | 1222 | CB  |     |   | 186   | 13.624 | 77.282              | 1.181  | 1.00 44.00 | A   | С   |
| ATOM · | 1223 | CG  | ARG | A | 186   | 14.421 | 77.663              | -0.047 | 1.00 41.53 | A   | С   |
| ATOM   | 1224 | CD  | ARG | Α | 186   | 15.896 | . 77.796            | 0.278  | 1.00 38.85 | A   | С   |
| MOTA   | 1225 | NE  | ARG | A | 186   | 16.269 | 79.021              | 1.004  | 1.00 37.49 | A   | N   |
| ATOM   | 1226 | CZ  | ARG | Α | 186   | 16.598 | 80.171              | 0.419  | 1.00 38.65 | A   | С   |
| MOTA   | 1227 | NH1 | ARG | A | 186   | 16.591 | 80.278              | -0.902 | 1.00 39.77 | A   | N   |
| ATOM   | 1228 | NH2 | ARG | Α | 186   | 16.992 | 81.197              | 1.149  | 1.00 37.47 | A   | N   |
| ATOM   | 1229 | С   | ARG | Α | 186   | 11.563 | 78.462              | 0.415  | 1.00 44.45 | A   | C   |
| ATOM   | 1230 | ō   |     |   | 186   | 10.858 | 78.472              | -0.590 | 1.00 45.33 | A   | ō   |
| ATOM   | 1231 | N   |     |   | 187   | 11.868 |                     | 1.108  | 1.00 44.86 | A   | N   |
| ATOM   | 1232 | CA  |     |   | 187   | 11.432 | 80.910              | 0.729  | 1.00 44.59 | A   | Č   |
|        |      |     |     |   | •     |        |                     |        |            |     | Č   |
| ATOM   | 1233 | CB  |     |   | 187   | 10.510 | 81.534              | 1.774  | 1.00 46.44 | A   |     |
| ATOM   | 1234 | CG  |     |   | 187   | 9.163  | 80.921              | 1.846  | 1.00 49.27 | A   | C   |
| ATOM   | 1235 |     |     |   | 187   | 8.989  | 79.671              | 2.424  | 1.00 51.22 | A   | C   |
| ATOM   | 1236 |     | PHE |   |       | 8.059  | <sub>.</sub> 81.590 | 1.342  | 1.00 51.55 | A   | С   |
| ATOM   | 1237 |     | PHE |   |       | 7.731  | 79.083              | 2,505  | 1.00 53.27 | A   | С   |
| MOTA   | 1238 | CE2 | PHE | Α | 187   | 6.793  | 81.019              | 1.414  | 1.00 53.72 | A   | С   |
| ATOM   | 1239 | CZ  | PHE | A | 187   | 6.631  | 79.758              | 1.998  | 1.00 54.28 | A   | С   |
| ATOM   | 1240 | С   | PHE | Α | 187   | 12.651 | 81.788              | 0.687  | 1.00 44.43 | A   | С   |
| ATOM   | 1241 | 0   | PHE | Α | 187   | 13.667 | 81.456              | 1.278  | 1.00 44.24 | A   | 0   |
| ATOM   | 1242 | N   | ASP | A | 188   | 12.559 | 82.921              | 0.004  | 1.00 47.97 | A   | N   |
| ATOM   | 1243 | CA  | ASP |   |       | 13.692 | 83.827              | -0.022 | 1.00 50.95 | A   | С   |
| ATOM   | 1244 | СВ  | ASP |   |       | 13.585 | 84.793              | -1.205 | 1.00 52.83 | A   | С   |
| ATOM   | 1245 | CG  | ASP |   |       | 14.926 | 85.423              | -1.566 | 1.00 55.83 | A   | C   |
| ATOM   | 1246 |     | ASP |   |       | 15.329 | 86.404              | -0.902 | 1.00 56.59 | A   | ŏ   |
| ATOM   | 1247 |     | ASP |   |       | 15.588 | 84.929              | -2.511 | 1.00 57.72 | A   | ō   |
| ATOM   | 1248 | C   | ASP |   |       | 13.583 | 84.564              | 1.320  | 1.00 52.36 | A   | č   |
| ATOM   | 1249 | ŏ   | ASP |   |       | 12.486 | 84.710              | 1.862  | 1.00 51.48 | A   | ō   |
| ATOM   | 1250 | N   |     |   |       | 14.708 | 85.008              | 1.872  | 1.00 54.34 | A   | N   |
|        | 1251 |     | TYR |   | 189   |        |                     | 3.156  | _          | A   | Č   |
| ATOM   |      | CA  |     |   |       | 14.680 | 85.701              |        | 1:00 56.57 | A   | c   |
| ATOM   | 1252 | CB  |     |   | 189   | 16.101 | 85.997              | 3.645  | 1.00 56.39 |     |     |
| ATOM   | 1253 | CG  |     |   | 189   | 16.886 | 84.768              | 4.066  | 1.00 55.67 | A   | C   |
| ATOM   | 1254 |     | TYR |   |       | 18.172 | 84.886              | 4.605  | 1.00 55.15 | A   | C   |
| ATOM   | 1255 |     | TYR |   |       | 18.922 | 83.758              | 4.940  | 1.00 53.84 | A   | C   |
| ATOM   | 1256 | CD2 | TYR | A | 189   | 16.365 | 83,480              | 3.885  | 1.00 54.91 | Ą   | С   |
| MOTA   | 1257 | CE2 | TYR | Α | 189   | 17.106 | 82.349              | 4.220  | 1.00 54.27 | A   | C   |
| ATOM   | 1258 | CZ  | TYR | Α | 189   | 18.383 | 82.496              | 4.739  | 1.00 53.51 | . A | С   |
| ATOM   | 1259 | OH  |     |   | 189   | 19.133 | 81.382              | 5.018  | 1.00 53.61 | A   | 0   |
| ATOM   | 1260 | С   |     |   | 189   | 13.891 | 86.998              | 3.113  | 1.00 58.94 | A   | С   |
| ATOM   | 1261 | ō   |     |   | 189   | 13.796 | 87.712              | 4.117  | 1.00 59.72 | A   | 0   |
| ATOM   | 1262 | N   |     |   | 190   | 13.322 | 87.303              | 1.953  | 1.00 59.35 | A   | N   |
| ATOM   | 1263 | CA  |     |   | 190   | 12.554 | 88.531              | 1.795  | 1.00 60.04 | A   | Ċ   |
| MOTA   | 1264 | CB  |     |   | 190   | 13.213 | 89.402              | 0.723  | 1.00 63.23 | A   | č   |
|        |      |     |     |   |       | 14.565 | 90.004              | 1.147  | 1.00 67.30 | A   | c   |
| MOTA   | 1265 | CG  |     |   | 190   |        |                     |        | 1.00 70.75 | A   | Č   |
| MOTA   | 1266 | CD  |     |   | 190   | 15.602 | 89.978              | 0.005  | 1.00 70.73 | A   | Ċ   |
| ATOM   | 1267 | CE  |     |   | 190   | 15.127 | 90.705              | -1.280 |            |     |     |
| ATOM   | 1268 | NZ  |     |   | 190   | 15.079 | 92.208              | -1.194 | 1.00 72.62 | A   | N   |
| ATOM   | 1269 | C   |     |   | 190   | 11.085 | 88.286              | 1.467  | 1.00 58.50 | A   | C   |
| ATOM   | 1270 | 0   |     |   | 190   | 10.248 | 89.157              | 1.691  | 1.00 56.42 | A   | 0   |
| ATOM   | 1271 | N   | ASP |   |       | 10.782 | 87.097              | 0.952  | 1.00 57.75 | A   | N   |
| ATOM   | 1272 | CA  | ASP | Α | 191   | 9.417  | 86.721              | 0.595  | 1.00 57.72 | A   | С   |

| MOTA | 1273 | CB  | ASP A | 191   | 9.368  | 85.214 | 0.318  | 1.00 60.76 | A   | С    |
|------|------|-----|-------|-------|--------|--------|--------|------------|-----|------|
| ATOM | 1274 |     | ASP A | 191   | 8.025  | 84.754 | -0.221 | 1.00 64.66 | A   | С    |
|      |      |     |       |       |        |        |        | 1.00 67.22 | A   | ŏ    |
| ATOM | 1275 |     | ASP P |       | 7.967  | 83.644 | -0.806 |            |     |      |
| MOTA | 1276 | OD2 | ASP F | ¥ 191 | 7.030  | 85.490 | -0.059 | 1.00 65.52 | A   | 0    |
| ATOM | 1277 | С   | ASP F | 191   | 8.441  | 87.100 | 1,709  | 1.00 57.11 | A   | С    |
|      |      |     |       |       | 8.701  | 86.832 | 2.875  | 1.00 59.28 | A   | 0    |
| MOTA | 1278 | 0   | ASP A |       |        |        |        |            |     |      |
| MOTA | 1279 | N   | GLN F | 192   | 7.308  | 87.707 | 1.371  | 1.00 55.36 | A   | N    |
| ATOM | 1280 | CA  | GLN A | 192   | 6.366  | 88.122 | 2.415  | 1.00 52.96 | A   | C    |
|      |      |     |       |       |        |        | 1.831  | 1.00 52.66 | A   | С    |
| ATOM | 1281 | CB  | GLN A |       | 5.286  | 89.029 |        |            |     |      |
| MOTA | 1282 | CG  | GLN F | 192   | 4.739  | 89.997 | 2.865  | 1.00 52.78 | A   | С    |
| ATOM | 1283 | CD  | GLN A | 192   | 5.842  | 90.853 | 3.486  | 1,00 53.25 | A   | С    |
|      |      |     |       |       | 6.620  | 91.508 | 2.770  | 1.00 52.70 | A   | 0    |
| MOTA | 1284 |     | GLN A |       |        |        |        |            |     |      |
| MOTA | 1285 | NE2 | GLN 1 | A 192 | 5.918  | 90.849 | 4.819  | 1.00 51.70 | A   | N    |
| MOTA | 1286 | С   | GLN A | 192   | 5.712  | 87.004 | 3.216  | 1,00 50.98 | A   | C    |
|      |      |     | GLN A |       | 5.681  | 87.076 | 4,443  | 1.00 50.13 | A   | 0    |
| ATOM | 1287 | 0   |       |       |        |        |        |            | A   | N    |
| ATOM | 1288 | N   | GLN A | 193   | 5.182  | 85.993 | 2.525  | 1.00 50.13 |     |      |
| ATOM | 1289 | CA  | GLN A | A 193 | 4.523  | 84.851 | 3,167  | 1.00 50.06 | A   | С    |
|      | 1290 | CB  |       | A 193 | 4.395  | 83.684 | 2.172  | 1.00 52.74 | A   | С    |
| MOTA |      |     |       |       |        |        |        | 1.00 58.77 | A   | C    |
| ATOM | 1291 | CG  | GLN A | A 193 | 3.790  | 84.011 | 0.809  |            |     |      |
| MOTA | 1292 | CD  | GLN 2 | A 193 | 3.945  | 82.867 | -0.218 | 1.00 62.64 | A   | , c  |
|      | 1293 |     |       | A 193 | 3.508  | 81.729 | 0.024  | 1.00 63.30 | A   | 0    |
| ATOM |      |     |       |       |        |        | -1.378 | 1.00 63.69 | A   |      |
| atom | 1294 | NE2 | GLN A |       | 4.567  | 83.176 |        |            |     |      |
| ATOM | 1295 | С   | GLN A | A 193 | 5.368  | 84.389 | 4.356  | 1.00 48.34 | A   | С    |
| ATOM | 1296 | 0   | GIN 2 | A 193 | 4.844  | 84.028 | 5.417  | 1.00 46.82 | A   | 0    |
|      |      |     |       |       |        |        |        | 1,00 45.85 | A   | N    |
| ATOM | 1297 | N   |       | A 194 | 6,683  | 84.412 | 4.127  |            |     |      |
| MOTA | 1298 | CA  | PHE A | A 194 | 7.727  | 84.015 | 5.073  | 1.00 42.78 | , A | С    |
|      | 1299 | СВ  |       | A 194 | 9.074  | 83,938 | 4.336  | 1.00 40.95 | A   | С    |
| MOTA |      |     |       |       |        |        |        |            | A   |      |
| ATOM | 1300 | CG  | PHE   | A 194 | 10.210 | 83.378 | 5.163  | 1.00.38.66 |     |      |
| ATOM | 1301 | CD1 | PHE 2 | A 194 | 11.385 | 84.111 | 5.357  | 1.00 36.95 | A   | С    |
|      | 1302 |     |       | A 194 | 10.106 | 82.128 | 5.756  | 1.00 38.02 | A   | С    |
| MOTA |      |     |       |       |        |        | 6:133  | 1.00 33.93 | A   |      |
| MOTA | 1303 |     |       | A 194 | 12.442 | 83.604 |        |            |     |      |
| ATOM | 1304 | CE2 | PHE . | A 194 | 11.152 | 81.614 | 6.530  | 1.00 36 65 | A   | . C  |
| ATOM | 1305 | CZ  | DUP ' | A 194 | 12.323 | 82.360 | 6:719  | 1.00 34.37 | · A | C    |
|      |      |     |       |       |        |        | 6.246  | 1.00 43.21 | A   | C    |
| MOTA | 1306 | С   |       | A 194 | 7.834  | 84.980 |        |            |     |      |
| MOTA | 1307 | 0   | PHE . | A 194 | 7.441  | 84.643 | 7.362  | 1.00 44.44 | A   | . 0  |
|      | 1308 | N   |       | A 195 | 8.360  | 86.178 | 5.990  | 1.00 42.53 | A   | . N  |
| MOTA |      |     |       |       |        |        | 7:031  | 1.00 41.23 | A   |      |
| ATOM | 1309 | CA  | LEU . | A 195 | 8.519  | 87.193 |        |            |     |      |
| ATOM | 1310 | CB  | LEU . | A 195 | 8.798  | 88.557 | 6.411  | 1.00 41.04 | A   |      |
|      | 1311 | CG  |       | A 195 | 10.269 | 88.873 | 6.137  | 1.00 42.01 | A   | . с  |
| MOTA |      |     |       |       |        |        |        | 1,00 41.36 | A   |      |
| ATOM | 1312 | CD1 | LEU . | A 195 | 10.364 | 89,503 | 4.759  |            |     |      |
| ATOM | 1313 | CD2 | LEU   | A 195 | 10.841 | 89.818 | 7.211  | 1.00 43.00 | A   |      |
|      | 1314 | C   |       | A 195 | 7.305  | 87.285 | 7.945  | 1,00 40.50 | . A | C    |
| MOTA |      |     |       |       |        |        |        | 1.00 39.73 | A   |      |
| ATOM | 1315 | 0   | PEA   | A 195 | 7.431  | 87.687 | 9.094  |            |     |      |
| ATOM | 1316 | N   | ASN   | A 196 | 6.136  | 86.925 | 7.433  | 1.00 42.43 | A   | N N  |
|      | 1317 | CA  |       | A 196 | 4.939  | 86.947 | 8.248  | 1.00 44.01 | A   | C    |
| ATOM |      |     |       |       |        |        |        | 1.00 46.95 | A   |      |
| ATOM | 1318 | CB  | ASN   | A 196 | 3.700  | 86.665 | 7.418  |            |     |      |
| ATOM | 1319 | CG  | ASN   | A 196 | 3.243  | 87.856 | 6.624  | 1.00 50.64 | A   | . C  |
|      | 1320 |     |       | A 196 | 2.256  | 87.762 | 5.885  | 1.00 52.97 | P   | . 0  |
| MOTA |      |     |       |       |        |        |        | 1.00 51.32 | 74  |      |
| ATOM | 1321 | ND2 | ASN   | A 196 | 3.940  | 88.996 | 6.774  |            |     |      |
| ATOM | 1322 | С   | ASN   | A 196 | 5.040  | 85.846 | 9.273  | 1,00 43.65 | A   | C    |
| MOTA | 1323 | ō   |       | A 196 | 4.870  | 86.068 | 10.467 | 1.00 45.28 | P   | . 0  |
|      |      |     |       |       |        | 84.641 | 8,785  | 1.00 43.16 | . 1 |      |
| ATOM | 1324 | N   |       | A 197 | 5.308  |        |        |            |     |      |
| ATOM | 1325 | CA  | LEU   | A 197 | 5.408  | 83.468 | 9.637  | 1.00 43.05 | 2   |      |
| MOTA | 1326 | CB  | LESS  | A 197 | 5.598  | 82.224 | 8.782  | 1.00 41.90 | P   | C    |
|      |      |     |       |       | 5.807  | 80.937 | 9.564  | 1.00 42.72 | P   | , c  |
| ATOM | 1327 | CG  |       | A 197 |        |        |        |            |     |      |
| ATOM | 1328 | CD1 | LEU   | A 197 | 4.734  | 80.771 | 10.631 | 1.00 42.81 | F   |      |
| MOTA | 1329 | CD2 | LEU   | A 197 | 5.792  | 79.769 | 8.601  | 1.00 42.76 | 7   | v c  |
|      |      |     |       | A 197 | 6.548  | 83.597 | 10.615 | 1.00 43.59 | 7   | L C  |
| ATOM | 1330 | С   |       |       |        |        |        | 1.00 42.79 | 7   |      |
| ATOM | 1331 | 0   | LEU   | A 197 | 6.439  | 83.212 | 11.774 |            |     |      |
| MOTA | 1332 | N   | MET   | A 198 | 7.648  | 84.135 | 10.121 | 1.00 45.32 | Į   | A N  |
|      |      |     |       | A 198 | 8.822  | 84.354 | 10.926 | 1.00 47.57 | 2   | A C  |
| MOTA | 1333 | ÇA  |       |       |        |        |        |            |     |      |
| ATOM | 1334 | CB  | MET   | A 198 | 9.882  | 84.994 | 10.042 | 1.00 50.58 | 7   |      |
| MOTA | 1335 | CG  | MET   | A 198 | 11.244 | 85.119 | 10.650 | 1.00 54.60 | 1   | A C  |
|      |      |     |       |       | 12.132 | 83.623 | 10.376 | 1.00 57.03 | 2   | A S  |
| ATOM | 1336 | SD  |       | A 198 |        |        |        |            |     |      |
| ATOM | 1337 | CE  | MET   | A 198 | 11.903 | 82.798 | 11.954 | 1.00 57.52 | 7   |      |
| MOTA | 1338 | C   |       | A 198 | 8.416  | 85.307 | 12.064 | 1.00 48.86 | 1   | A C  |
|      |      |     |       |       |        | 85.045 | 13.235 | 1.00 50.04 | 2   |      |
| ATOM | 1339 | 0   |       | A 198 | 8.690  |        |        |            |     |      |
| ATOM | 1340 | N   | GLU   | A 199 | 7.742  | 86.398 | 11.701 | 1.00 49.54 | 1   |      |
| MOTA | 1341 | CA  |       | A 199 | 7.282  | 87.423 | 12.643 | 1.00 51.03 | 2   | A C  |
|      |      |     |       |       |        | 88.540 | 11.874 | 1.00 54.44 |     | A C  |
| ATOM | 1342 | CB  |       | A 199 | 6.536  |        |        |            |     |      |
| ATOM | 1343 | CG  | GLU   | A 199 | 5.838  | 89.653 | 12.718 | 1.00 59.17 |     | A C  |
| ATOM | 1344 | CD  |       | A 199 | 5.211  | 90.790 | 11.851 | 1.00 62.74 | 2   | A C  |
|      |      |     |       |       |        |        | 11.205 | 1.00 63.87 | 1   | A 0  |
| ATOM | 1345 |     |       | A 199 | 5.975  | 91.555 |        |            |     |      |
| ATOM | 1346 | OE2 | GLU   | A 199 | 3.960  | 90.922 | 11.825 | 1.00 63.56 |     | A. 0 |
| ATOM | 1347 | C   |       | A 199 | 6.395  | 86.850 | 13.755 | 1.00 49.96 | 1   | A C  |
| 017  | 1341 | U   | 310   |       | 5,550  |        |        | •          |     |      |

PCT/GB02/04872

#### 215/514

|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 4                                                                  |                                                                                  |                       |                  |                   |
|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|------------------|-------------------|
| MOTA                                                         | 1348                                                         | 0                                    | CTI                                    | A 19                                                        | 6 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07.000                                                             | 44 044                                                             | 1 00 50 00                                                                       | _                     | _                |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 14.941                                                             | 1.00 50.98                                                                       | A                     | 0                |                   |
| MOTA                                                         | 1349                                                         | N                                    | LYS                                    | A 20                                                        | 5.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.116                                                             | 13.373                                                             | 1.00 48.61                                                                       | A                     | N                |                   |
| ATOM                                                         | 1350                                                         | CA                                   | LYS                                    | A 20                                                        | 4.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.507                                                             | 14.337                                                             | 1.00 46.63                                                                       | A                     | С                |                   |
| ATOM                                                         | 1351                                                         | СВ                                   |                                        | A 20                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.752                                                             | 13.595                                                             | 1.00 47.45                                                                       | A                     | С                |                   |
| MOTA                                                         | 1352                                                         | CG                                   | LYS                                    | A 20                                                        | 1.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.245                                                             | 13.847                                                             | 1.00 50.05                                                                       | A                     | С                |                   |
| MOTA                                                         | 1353                                                         | CD                                   | LYS                                    | A 20                                                        | 1.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.776                                                             | 13.696                                                             | 1.00 51.73                                                                       | A                     | C .              |                   |
| ATOM                                                         | 1354                                                         | CE                                   |                                        | A 20                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.308                                                             | 12.322                                                             | 1.00 52.48                                                                       | A                     | С                |                   |
| ATOM                                                         | 1355                                                         | ΝZ                                   | LYS                                    | A 20                                                        | 2.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.801                                                             | 12.162                                                             | 1.00 53.40                                                                       | A                     | N                |                   |
| MOTA                                                         | 1356                                                         | С                                    | LYS                                    | A 20                                                        | 5.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.556                                                             | 15.262                                                             | 1.00 45.00                                                                       | A                     | С                | •                 |
| ATOM                                                         | 1357                                                         | ō                                    |                                        | A 20                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.553                                                             | 16.474                                                             | 1.00 44.17                                                                       | A                     | 0                |                   |
| ATOM                                                         | 1358                                                         | N                                    | PEA                                    | A 20                                                        | 6.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.756                                                             | 14.700                                                             | 1.00 44.69                                                                       | A                     | N                |                   |
| ATOM                                                         | 1359                                                         | CA                                   | LEU                                    | A 20                                                        | 6.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82,851                                                             | 15.537                                                             | 1.00 43.65                                                                       | A .                   | С                |                   |
| ATOM                                                         | 1360                                                         | CB'                                  |                                        | A 20                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.959                                                             | 14.699                                                             | 1.00 42.74                                                                       | A                     | С                |                   |
| ATOM                                                         | 1361                                                         | CG                                   |                                        | A .20                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.760                                                             | 14.068                                                             | 1.00 43.52                                                                       | A                     | С                |                   |
| ATOM                                                         | 1362                                                         | CD1                                  | LEU                                    | A 20                                                        | 8.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.825                                                             | 13.433                                                             | 1.00 44.16                                                                       | A                     | С                |                   |
| ATOM                                                         | 1363                                                         | CD2                                  | LEU                                    | A 20                                                        | 6.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.013                                                             | 15.122                                                             | 1.00 44.74                                                                       | A                     | C                |                   |
| ATOM                                                         | 1364                                                         | c                                    |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        | A 20                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.629                                                             | 16.561                                                             | 1.00 43.64                                                                       | A                     | С                |                   |
| ATOM                                                         | 1365                                                         | 0                                    | LEU                                    | A 20                                                        | 7.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.289                                                             | 17.740                                                             | 1.00 43.21                                                                       | A.                    | 0                |                   |
| ATOM                                                         | 1366                                                         | N                                    | ASN                                    | A 202                                                       | 8.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.675                                                             | 16.137                                                             | 1.00 44.42                                                                       | A                     | N                |                   |
| ATOM                                                         | 1367                                                         | CA                                   |                                        | A 202                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.460                                                             |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 17.088                                                             | 1.00 46.17                                                                       | A                     | C                |                   |
| ATOM                                                         | 1368                                                         | CB                                   | ASN                                    | A 202                                                       | 9.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.584                                                             | 16.394                                                             | 1.00 47.52                                                                       | A                     | С                |                   |
| ATOM                                                         | 1369                                                         | CG                                   | ASN                                    | A 202                                                       | 11.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86.085                                                             | 15.583                                                             | 1.00 49.96                                                                       | A                     | С                |                   |
| ATOM                                                         | 1370                                                         | OD1                                  | ASN                                    | A 202                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.876                                                             | 15.000                                                             | 1.00 49.56                                                                       | A                     | ō                | ,                 |
| ATOM                                                         | 1371                                                         |                                      |                                        | A 202                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.764                                                             | 15.538                                                             | 1.00 51.74                                                                       | A                     | N                |                   |
| ATOM                                                         | 1372                                                         | С                                    | ASN                                    | A 202                                                       | 8.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.093                                                             | 18.181                                                             | 1.00 47.23                                                                       | · А                   | С                |                   |
| ATOM                                                         | 1373                                                         | 0                                    | ASN                                    | A 202                                                       | 8.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.314                                                             | 19.280                                                             | 1.00 46.64                                                                       | A                     | 0                |                   |
| ATOM                                                         | 1374                                                         | N                                    |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        | A 200                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.413                                                             | 17.881                                                             | 1.00 48.98                                                                       |                       | N                |                   |
| MOTA                                                         | 1375                                                         | CA                                   | GLU                                    | A 203                                                       | 6.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.048                                                             | 18.882                                                             | 1.00 51.22                                                                       | A                     | C .              | 2 1               |
| ATOM                                                         | 1376                                                         | CB                                   | GLU                                    | A 203                                                       | 4.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.636                                                             | 18,241                                                             | 1.00 55.06                                                                       | A                     | C                | 2 · *             |
| ATOM                                                         | 1377                                                         | CG                                   |                                        | A 200                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.782                                                             | 19.047                                                             |                                                                                  | <b>A</b> 20           | 0.               | A SPECIAL SECTION |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    | 1.00 61.12                                                                       |                       |                  | and the second    |
| ATOM                                                         | 1378                                                         | CD                                   | GLU                                    | A 203                                                       | 3.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.357                                                             | 18.383                                                             | 1.00 65.28                                                                       | A分布等                  | .C               | ্গ্ৰহাৰ ব         |
| ATOM                                                         | 1379                                                         | OE1                                  | GLU                                    | A 203                                                       | 3.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.655                                                             | 17.155                                                             | 1.00 67.23                                                                       | A :                   | 0'               | San San San       |
| ATOM                                                         | 1380                                                         | OE2                                  | CLII                                   | A 203                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.531                                                             | 19.095                                                             | 1.00 67.47                                                                       | A 2                   |                  | et (\$6).         |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
| MOTA                                                         | 1381                                                         | C                                    |                                        | A 203                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.046                                                             | 19.978                                                             | 1.00 49.64                                                                       | A                     | C                | 4. W              |
| ATOM                                                         | 1382                                                         | 0                                    | GLU                                    | A 203                                                       | 6.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.338                                                             | 21.145                                                             | 1.00 50.21                                                                       | A ·                   |                  | ्रे के इंग्रिक    |
| ATOM                                                         | 1383                                                         | N                                    | ASN                                    | A 204                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.863                                                             | 19.618                                                             | 1.00 48.61                                                                       | Δ                     | N.               | W. 33             |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
| ATOM                                                         | 1384                                                         | CA                                   |                                        | A 204                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.883                                                             | 20.639                                                             | 1.00 47.37                                                                       | A                     |                  |                   |
| ATOM                                                         | 1385                                                         | CB                                   | ASN                                    | A 204                                                       | 4.685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.558                                                             | 20.023                                                             | 1.00 48.09                                                                       | A '                   |                  | in Applica        |
| ATOM                                                         | 1386                                                         | CG                                   | ASN                                    | A 204                                                       | 3.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.646                                                             | 19.253                                                             | 1.00 48.95                                                                       | A                     | C .              | 18 (B15)          |
| ATOM                                                         | 1387                                                         |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              |                                                              |                                      |                                        | A 204                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.665                                                             | 18.703                                                             | 1.00 51.65                                                                       |                       | U                |                   |
| ATOM                                                         | 1388                                                         | ND2                                  | ASN                                    | A 204                                                       | 2.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83,839                                                             | 19.209                                                             | 1.00 48.91                                                                       | A                     | N                |                   |
| ATOM                                                         | 1389                                                         | С                                    | ASN                                    | A 204                                                       | . 6.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.639                                                             | 21.582                                                             | 1.00 47.81                                                                       | A                     | С                |                   |
| ATOM                                                         | 1390                                                         | ō                                    |                                        | A 204                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.320                                                             | 22.753                                                             | 1.00 47.92                                                                       |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       | 0                |                   |
| MOTA                                                         | 1391                                                         | N                                    | T'nR                                   | A 205                                                       | 7.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.750                                                             | 21.063                                                             | 1.00 47.04                                                                       | A                     | N                |                   |
| MOTA                                                         | 1392                                                         | CA                                   | ILE                                    | A 205                                                       | 8.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.538                                                             | 21.902                                                             | 1.00 47.61                                                                       | A                     | С                |                   |
| MOTA                                                         | 1393                                                         | CB                                   |                                        | A 205                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.460                                                             | 21.080                                                             | 1.00 47.66                                                                       |                       | C                |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
| MOTA                                                         | 1394                                                         |                                      |                                        | A 205                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.099                                                             | 21.982                                                             | 1.00 44.73                                                                       |                       | С                |                   |
| ATOM                                                         | 1395                                                         | CG1                                  | ILE                                    | A 205                                                       | 9.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.408                                                             | 19.980                                                             | 1.00 48.21                                                                       | A                     | C .              |                   |
| ATOM                                                         | 1396                                                         | CD1                                  | ILE                                    | A 205                                                       | 10.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.395                                                             | 19.032                                                             | 1.00 51.29                                                                       |                       | С                |                   |
| MOTA                                                         | 1397                                                         | C                                    |                                        | A 205                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.695                                                             |                                                                    |                                                                                  |                       | Č                |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 22.887                                                             | 1.00 49.16                                                                       |                       |                  |                   |
| MOTA                                                         | 1398                                                         | 0                                    | TPR                                    | A 205                                                       | 8.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.469                                                             | 24.093                                                             | 1.00 50.87                                                                       | A                     | 0                |                   |
| ATOM                                                         | 1399                                                         | N                                    | LYS                                    | A 206                                                       | 8.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85,935                                                             | 22.373                                                             | 1.00 49.48                                                                       | A                     | N                | ,                 |
| ATOM                                                         | 1400                                                         | CA                                   | T.YS                                   | A 206                                                       | 8.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.131                                                             | 23.201                                                             | 1.00 49.08                                                                       |                       | С                |                   |
| ATOM                                                         |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
|                                                              | 1401                                                         | CB                                   |                                        | A 206                                                       | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 88.384                                                             | 22.346                                                             |                                                                                  |                       | С                | •                 |
| ATOM                                                         | 1402                                                         | CG                                   | LYS                                    | A 206                                                       | 9.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.680                                                             | 21.389                                                             | 1.00 59.24                                                                       | A                     | С                |                   |
| MOTA                                                         | 1403                                                         | CD                                   | LYS                                    | A 206                                                       | 9.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.948                                                             | 20.592                                                             | 1.00 63.85                                                                       | A                     | С                | •                 |
| ATOM                                                         | 1404                                                         | CE                                   |                                        | A 206                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.244                                                             | 19.634                                                             | 1.00 66.06                                                                       |                       |                  |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       | С                |                   |
| ATOM                                                         | 1405                                                         | NZ                                   | LYS                                    | A 206                                                       | 10.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91.484                                                             | 18.846                                                             | 1.00 64.33                                                                       | A                     | N                |                   |
| ATOM                                                         | 1406                                                         | С                                    | LYS                                    | A 206                                                       | 7.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.097                                                             | 24.325                                                             | 1.00 47.00                                                                       | A                     | С                |                   |
| ATOM                                                         | 1407                                                         | ō                                    |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.533                                                             | 25.437                                                             | 1.00 46.76                                                                       |                       |                  |                   |
|                                                              |                                                              |                                      |                                        | A 206                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       | 0                |                   |
| MOTA                                                         | 1408                                                         | N                                    | ILE                                    | A 207                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.577                                                             | 24.022                                                             | 1.00 46.06                                                                       | A                     | N                |                   |
| MOTA                                                         | 1409                                                         | CA                                   | ILE                                    | A 207                                                       | 5.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.471                                                             | 24.996                                                             | 1.00 44.33                                                                       |                       | C                |                   |
| ATOM                                                         | 1410                                                         | СВ                                   |                                        | A 207                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.092                                                             | 24.343                                                             | 1.00 43.84                                                                       |                       | č                |                   |
|                                                              |                                                              |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                    |                                                                                  |                       |                  |                   |
| ATOM                                                         | 1411                                                         |                                      |                                        | A 207                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.940                                                             | 25.414                                                             | 1.00 43.89                                                                       |                       | C                |                   |
|                                                              |                                                              | CG1                                  | ILE                                    | A 207                                                       | 3.628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.149                                                             | 23.351                                                             | 1.00 44.63                                                                       | A                     | C                |                   |
| ATOM                                                         | 1412                                                         |                                      |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.776                                                             | 22.675                                                             | 1.00 44.06                                                                       |                       | Č                |                   |
|                                                              |                                                              | CD1                                  | 1 1 - HC                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 25.987                                                             |                                                                                  |                       |                  |                   |
| ATOM                                                         | 1413                                                         | CD1                                  |                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | /5. YH /                                                           | 1.00 44.39                                                                       | A                     |                  |                   |
| ATOM<br>ATOM                                                 | 1413<br>1414                                                 | С                                    | ILE                                    | A 207                                                       | 5.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.360                                                             |                                                                    |                                                                                  |                       | С                |                   |
| ATOM                                                         | 1413                                                         |                                      | ILE                                    |                                                             | 5.763<br>5.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.534                                                             | 27.187                                                             | 1.00 44.75                                                                       |                       | 0                |                   |
| ATOM<br>ATOM<br>ATOM                                         | 1413<br>1414<br>1415                                         | C<br>O                               | ILE                                    | A 207<br>A 207                                              | 5.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.534                                                             | 27.187                                                             | 1.00 44.75                                                                       | A                     | 0                | •                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM                                 | 1413<br>1414<br>1415<br>1416                                 | С<br>О<br>И                          | ILE<br>LEU                             | A 207<br>A 207<br>A 208                                     | 5.607<br>6.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.534<br>84.217                                                   | 27.187<br>25.468                                                   | 1.00 44.75<br>1.00 44.39                                                         | A<br>A                | N<br>O           | •                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                         | 1413<br>1414<br>1415<br>1416<br>1417                         | C<br>O<br>N<br>CA                    | LEU<br>LEU<br>LEU                      | A 207<br>A 207<br>A 208<br>A 208                            | 5.607<br>6.191<br>6.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.534<br>84.217<br>83.073                                         | 27.187<br>25.468<br>26.295                                         | 1.00 44.75<br>1.00 44.39<br>1.00 45.49                                           | A<br>A<br>A           | 0<br>ท<br>C      | •                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM                                 | 1413<br>1414<br>1415<br>1416                                 | С<br>О<br>И                          | LEU<br>LEU<br>LEU                      | A 207<br>A 207<br>A 208                                     | 5.607<br>6.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.534<br>84.217                                                   | 27.187<br>25.468                                                   | 1.00 44.75<br>1.00 44.39                                                         | A<br>A<br>A           | N<br>O           | ٠                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 1413<br>1414<br>1415<br>1416<br>1417<br>1418                 | C<br>O<br>N<br>CA<br>CB              | LEU<br>LEU<br>LEU                      | A 207<br>A 207<br>A 208<br>A 208<br>A 208                   | 5.607<br>6.191<br>6.507<br>6.565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.534<br>84.217<br>83.073<br>81.811                               | 27.187<br>25.468<br>26.295<br>25.432                               | 1.00 44.75<br>1.00 44.39<br>1.00 45.49<br>1.00 43.71                             | A<br>A<br>A           | 0<br>ห<br>C<br>C |                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM         | 1413<br>1414<br>1415<br>1416<br>1417<br>1418<br>1419         | C<br>O<br>N<br>CA<br>CB              | LEU<br>LEU<br>LEU<br>LEU               | A 207<br>A 207<br>A 208<br>A 208<br>A 208<br>A 208          | 5.607<br>6.191<br>6.507<br>6.565<br>5.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.534<br>84.217<br>83.073<br>81.811<br>81.214                     | 27.187<br>25.468<br>26.295<br>25.432<br>25.085                     | 1.00 44.75<br>1.00 44.39<br>1.00 45.49<br>1.00 43.71<br>1.00 43.54               | A<br>A<br>A<br>A      | 0<br>C<br>C      |                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1413<br>1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420 | C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1 | LEU<br>LEU<br>LEU<br>LEU<br>ILE        | A 207<br>A 208<br>A 208<br>A 208<br>A 208<br>A 208<br>A 208 | 5.607<br>6.191<br>6.507<br>6.565<br>5.201<br>5.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.534<br>84.217<br>83.073<br>81.811<br>81.214<br>80.087           | 27.187<br>25.468<br>26.295<br>25.432<br>25.085<br>24.070           | 1.00 44.75<br>1.00 44.39<br>1.00 45.49<br>1.00 43.71<br>1.00 43.54<br>1.00 42.54 | A<br>A<br>A<br>A<br>A | о<br>С<br>С      |                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM         | 1413<br>1414<br>1415<br>1416<br>1417<br>1418<br>1419         | C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1 | LEU<br>LEU<br>LEU<br>LEU<br>ILE        | A 207<br>A 207<br>A 208<br>A 208<br>A 208<br>A 208          | 5.607<br>6.191<br>6.507<br>6.565<br>5.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.534<br>84.217<br>83.073<br>81.811<br>81.214<br>80.087<br>80.707 | 27.187<br>25.468<br>26.295<br>25.432<br>25.085<br>24.070<br>26.358 | 1.00 44.75<br>1.00 44.39<br>1.00 45.49<br>1.00 43.71<br>1.00 43.54               | A<br>A<br>A<br>A<br>A | 0<br>C<br>C      |                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1413<br>1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420 | C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1 | TEA<br>TEA<br>TEA<br>TEA<br>TEA<br>TEA | A 207<br>A 208<br>A 208<br>A 208<br>A 208<br>A 208<br>A 208 | 5.607<br>6.191<br>6.507<br>6.565<br>5.201<br>5.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.534<br>84.217<br>83.073<br>81.811<br>81.214<br>80.087           | 27.187<br>25.468<br>26.295<br>25.432<br>25.085<br>24.070           | 1.00 44.75<br>1.00 44.39<br>1.00 45.49<br>1.00 43.71<br>1.00 43.54<br>1.00 42.54 | A<br>A<br>A<br>A<br>A | о<br>С<br>С      |                   |

APP 405 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 105 - 10

216/514

| ATOM | 1423 | 0     | LEU   | A 208 | 8.070  | 82.419           | 27.986 | 1.00 48.66               | A     | 0      |
|------|------|-------|-------|-------|--------|------------------|--------|--------------------------|-------|--------|
| ATOM | 1424 | N     |       | A 209 |        | 84.234           | 26.761 | 1.00 50.43               | A     | N      |
| ATOM | 1425 | CA    | SER   | A 209 |        | 84.476           | 27.416 | 1.00 52.68               | <br>A | c      |
| ATOM | 1426 | СВ    |       | A 209 |        | 84.865           | 26.380 | 1.00 53.24               | A     | č      |
| ATOM | 1427 | OG    |       | A 209 |        | 86.228           | 26.008 | 1.00 53.27               | A     | ŏ      |
| ATOM | 1428 | C     |       | A 209 |        | 85.587           | 28.451 | 1.00 55.00               | A     | Č      |
| ATOM | 1429 | ŏ     |       | A 209 |        | 86.151           | 28.841 | 1.00 55.96               | A     |        |
| ATOM | 1430 | N     |       | A 210 |        | 85.936           | 28.864 | 1.00 56.45               | A.    | N<br>O |
| MOTA | 1431 |       |       | A 210 |        | 86.966           | 29.863 | 1.00 58.60               |       |        |
| ATOM | 1432 | CB    |       | A 210 |        | 87.748           | 29.671 |                          | A     | C      |
| ATOM | 1433 | OG    |       | A 210 |        |                  |        | 1.00 59.67               | A     | C      |
| ATOM | 1434 | c     |       | A 210 |        | 88.402<br>86.319 | 30.891 | 1.00 62.00<br>1.00 58.78 | A     | 0      |
| ATOM | 1435 | ŏ     |       | A 210 |        |                  | 31.224 |                          | A     | C      |
| ATOM | 1436 | N     |       | A 211 |        | 85.284           | 31,418 | 1.00 59.24               | A     | 0      |
| ATOM | 1437 | CD    |       | A 211 |        | 86.919           | 32,180 | 1.00 59.06               | A     | N      |
| ATOM | 1438 | CA    |       | A 211 |        | 88.004           | 31.970 | 1.00 59.01               | A     | C      |
| ATOM | 1439 | CB    |       | A 211 |        | 86.417           | 33.543 | 1.00 59.94               | A     | C      |
| ATOM | 1440 | CG    |       |       |        | 87.472           | 34.242 | 1.00 59.15               | A     | C      |
| ATOM |      |       |       | A 211 |        | 87.859           | 33.177 | 1.00 59.90               | A     | C      |
| ATOM | 1441 | C     |       | A 211 |        | 86.251           | 34.176 | 1.00 61.62               | A     | C      |
|      | 1442 |       |       | A 211 |        | 85.203           | 34.745 | 1.00 61.24               | A     | 0      |
| ATOM | 1443 | N     |       | A 212 |        | 87.263           | 34.081 | 1.00 64.33               | A     | N      |
| ATOM | 1444 | CA    |       | A 212 |        | 87.117           | 34.727 | 1.00 67.99               | A     | С      |
| ATOM | 1445 | CB    |       | A 212 |        | 88.486           |        | 1.00 73.15               | A     | C      |
| ATOM | 1446 | CG    |       | A 212 |        | 88.968           | 33.719 | 1.00 79.31               | A     | C      |
| ATOM | 1447 |       |       | A 212 |        | 89.241           | 33.791 | 1.00 83.37               | A     | C      |
| MOTA | 1448 |       |       | A 212 |        | 89.764           | 32.532 | 1.00 84.50               | A     | С      |
| ATOM | 1449 |       |       | A 212 |        | B9.093           | 34.798 | 1.00 85.56               | A     | C      |
| ATOM | 1450 |       |       | A 212 |        | 89.325           | 32.459 | 1.00 81.72               | · A   | С      |
| ATOM |      |       |       | A 212 |        | 89.805           | 31.744 | 1.00 82.90               | A     | N      |
| ATOM |      |       |       | A 212 | 1.014  | 90.150           | 32.251 | 1.00 85.66               | A     | С      |
| ATOM |      |       |       | A 212 |        | 89.477           | 34.517 | 1.00 85.85               | A     | C      |
| ATOM |      | •     |       | A 212 | 0.081  | 89.997           | 33.250 | 1.00 85.90               | A     | С      |
| ATOM | 1455 | С     |       | A 212 | 4.854  | 86.030           | 34.125 | 1.00 67.23               | A     | С      |
| MOTA | 1456 | o     |       | A 212 | 3.635  | 86.071           | 34.249 | 1.00 67.95               | A     | 0      |
| ATOM | 1457 | N     |       | A 213 | 5.462  | 85.033           | 33.491 | 1.00 66.79               | A     | N      |
| ATOM | 1458 | CA    |       | A 213 | 4.691  | 83.931           | 32.919 | 1.00 66.79               | A     | C      |
| ATOM | 1459 | CB    | ILE   | A 213 | 5.413  | 83.288           | 31.707 | 1.00 66.20               | A     | С      |
| ATOM | 1460 | , CG2 | ILE . | A 213 | 4.873  | 81.884           | 31.444 | 1.00 64.33               | A     | С      |
| ATOM | 1461 | CG1   | ILE.  | A 213 | 5.167  | 84.130           | 30.461 | 1.00 66.93               | A     | С      |
| ATOM | 1462 | . CD1 | ILE . | A 213 | 3.742  | 84.024           | 29.937 | 1.00 68.02               | A     | С      |
| ATOM | 1463 | С     | ILE . | A 213 | 4.459  | 82.858           | 33.979 | 1.00 67.64               | A     | С      |
| ATOM | 1464 | 0     | ILE . | A 213 | 3.393  | 82.234           | 34.036 | 1.00 68.30               | A,    | 0      |
| ATOM | 1465 | N     | GLN . | A 214 | 5.476  | 82.642           | 34.808 | 1.00 67.36               | A     | N      |
| ATOM | 1466 | CA    | GLN . | A 214 | 5.395  | 81.664           | 35.878 | 1.00 66.76               | A.    | С      |
| ATOM | 1467 | CB    | GLN . | A 214 | 6.732  | 81.568           | 36.609 | 1.00 67.01               | A     | C      |
| ATOM | 1468 | CG    | GLN : | A 214 | 7.463  | 80.284           | 36.315 | 1.00 67.71               | A     | C      |
| ATOM | 1469 | CD    | GLN . | A 214 | 7.553  | 80.005           | 34.830 | 1.00 67.89               | A     | C      |
| ATOM | 1470 | OE1   | GLN : | A 214 | 8.213  | 80.734           | 34.088 | 1.00 67.63               | A     | ō      |
| ATOM | 1471 | NE2   | GLN . | A 214 | 6.873  | 78.951           | 34.385 | 1.00 66.79               | A     | N      |
| ATOM | 1472 | C     | GLN : | A 214 | 4.307  | 82.087           | 36.845 | 1.00 65.96               | A     | C      |
| ATOM | 1473 | 0     | GLN : | A 214 | 3.607  | 81.250           | 37,421 | 1.00 66.03               | A     | ō      |
| ATOM | 1474 | N     | VAL   | A 215 | 4.165  | 83.393           | 37.026 | 1.00 63.98               | . A   | N      |
| ATOM | 1475 | CA    |       | A 215 | 3.138  | 83.884           | 37.919 | 1.00 62.35               | A     | C      |
| MOTA | 1476 | CB    | VAL : | A 215 | 3.113  | 85.431           | 37.957 | 1.00 62.30               | A     | Ċ      |
| ATOM | 1477 | CG1   | VAL   | A 215 | 1.903  | 85.918           | 38.731 | 1.00 62.40               | A     | Ċ      |
| MOTA | 1478 | CG2   | VAL 2 | A 215 | 4.383  | 85.945           | 38.632 | 1.00 61.31               | A     | Ċ      |
| ATOM | 1479 | С     |       | A 215 | 1.805  | 83.329           | 37.422 | 1.00 61.03               | A     | Ċ      |
| ATOM | 1480 | 0     |       | A 215 | 0.830  | 83.296           | 38,163 | 1.00 62.47               | A     | ŏ      |
| ATOM | 1481 | N     |       | A 216 | 1.772  | 82.873           | 36.172 | 1.00 58.50               | A     | N      |
| ATOM | 1482 | CA    |       | A 216 | 0.551  | 82,299           | 35.627 | 1.00 56.96               | A     | Ċ      |
| ATOM | 1483 | СВ    |       | A 216 | 0.563  | 82.305           | 34.104 | 1.00 56.16               | A     | č      |
| ATOM | 1484 | CG    |       | A 216 | 0.008  | 83.556           | 33.485 | 1.00 56.82               | A     | č      |
| ATOM | 1485 |       |       | A 216 | -0.867 | 83.481           | 32.420 | 1.00 56.98               | A     | Č      |
| ATOM | 1486 |       |       | A 216 | -1.381 | 84.618           | 31.833 | 1.00 58.80               | Ä     | C      |
| ATOM | 1487 |       |       | A 216 | 0.365  | 84.811           | 33.956 | 1.00 57.49               | A     | c      |
| ATOM | 1488 |       | TYR A |       | -0.145 | 85.968           | 33.374 | 1.00 57.49               |       |        |
| ATOM | 1489 | CZ    |       |       |        |                  |        |                          | A     | C      |
| ATOM |      | OH    |       | A 216 | -1.555 | 85.860<br>86.985 | 32.312 | 1.00 59.49               | A     | C      |
|      | 1490 |       |       | A 216 |        | 86.985           | 31.718 | 1.00 62.87               | A     | 0      |
| ATOM | 1491 | C     |       | A 216 | 0.356  | 80.868           | 36.096 | 1.00 56.42               | A     | C      |
| MOTA | 1492 | 0     |       | A 216 | -0.667 | 80.525           | 36.695 | 1.00 57.12               | A     | 0      |
| ATOM | 1493 | N     |       | 217   | 1.337  | 80.022           | 35.819 | 1.00 56.23               | A     | N      |
| MOTA | 1494 | CA    | ASN A |       | 1.245  | 78.616           | 36.191 | 1.00 54.99               | A     | С      |
| MOTA | 1495 | CB    | ASN A |       | 2.464  | 77.881           |        | 1.00 53.94               | A     | C      |
| ATOM | 1496 | CG    | ASN A |       | 2.638  | 78.078           | 34.181 | 1.00 53.70               | A     | С      |
| ATOM | 1497 | OD1   | ASN A | 1 217 | 1.773  | 77.705           | 33.381 | 1.00 53.29               | A     | 0      |
|      |      |       |       |       |        |                  |        |                          |       |        |

| ATOM   | 1498       | ND2 | ASN   | A 217 | 3.755   | 78.684  | 33.801 | 1.00 52.97 | A   | N   |  |
|--------|------------|-----|-------|-------|---------|---------|--------|------------|-----|-----|--|
| ATOM   | 1499       | C   |       | A 217 | 1.119   | 78.430  | 37.687 | 1.00 55.19 | A   | Ċ   |  |
| ATOM   | 1500       | ō   |       | A 217 | 0.551   | 77.439  | 38.160 | 1.00 54.29 |     |     |  |
|        |            |     |       |       |         |         |        |            | A   | 0   |  |
| ATOM   | 1501       | N   |       | A 218 | 1.644   | 79.397  | 38.426 | 1.00 55.93 | · A | N   |  |
| ATOM   | 1502       | CA  |       | A 218 | 1.573   | 79.354  | 39.873 | 1.00 58.12 | A   | С   |  |
| ATOM   | 1503       | CB  |       | A 218 | 2,613   | 80.311  | 40.476 | 1.00 59.33 | A   | С   |  |
| MOTA   | 1504       | CG  | ASN   | A 218 | 3.949   | 79.631  | 40.751 | 1.00 61.16 | A   | С   |  |
| ATOM   | 1505       | OD1 | ASN   | A 218 | 4.033   | .78.713 | 41.575 | 1.00 61.90 | A   | 0   |  |
| ATOM   | 1506       | ND2 | ASN   | A 218 | 5.000   | 80.075  | 40.05B | 1.00 61.97 | A   | N   |  |
| ATOM   | 1507       | С   |       | A 218 | 0.159   | 79.710  | 40.357 | 1.00 58.09 | A   | Ċ   |  |
| ATOM   | 1508       | ō   |       | A 218 | -0.289  | 79.247  | 41.407 | 1.00 58.23 |     |     |  |
|        | 1509       | N   |       | A 219 | -0.552  |         |        | 1.00 56.89 | A   | 0   |  |
| MOTA   |            |     |       |       |         | 80.508  | 39.568 |            | A   | N   |  |
| ATOM   | 1510       | CA  |       | A 219 | -1.899  | 80.904  | 39.926 | 1.00 55.35 | A   | C   |  |
| ATOM   | 1511       | CB  |       | A 219 | -1.887  | 82.327  | 40.486 | 1.00 56.31 | A   | С   |  |
| ATOM   | 1512       | CG  | PHE   | A 219 | -0.831  | 82.563  | 41,550 | 1.00 57.27 | A   | С   |  |
| ATOM   | 1513       | CD1 | PHE   | A 219 | 0.292   | 83.341  | 41.275 | 1.00 58.48 | A   | С   |  |
| ATOM   | 1514       | CD2 | PHE   | A 219 | -0.976  | 82.046  | 42.832 | 1.00 59.38 | A   | С   |  |
| ATOM   | 1515       | CE1 | PHE   | A 219 | 1.254   | 83.605  | 42.261 | 1.00 58.94 | A   | Č   |  |
| ATOM   | 1516       |     |       | A 219 | -0.019  | 82.304  | 43.826 | 1.00 59.97 | A   | č   |  |
| ATOM   | 1517       | CZ  |       | A 219 | 1.095   | 83.088  | 43.535 | 1.00 58.62 |     | Č   |  |
|        |            |     |       |       |         |         |        |            | Α.  |     |  |
| ATOM   | 1518       | C   |       | A 219 | -2.780  | 80.820  | 38.681 | 1.00 54.25 | A   | C   |  |
| ATOM   | 1519       | 0   |       | A 219 | -3.017  | 81.820  | 38.012 | 1.00 54.22 | A   | 0   |  |
| ATOM   | 1520       | N   |       | A 220 | -3.264  | 79.615  | 38.343 | 1.00 53.66 | A   | N   |  |
| MOTA   | 1521       | CD  | PRO   | A 220 | -3.277  | 78.398  | 39.168 | 1.00 54.57 | A   | C   |  |
| ATOM   | 1522       | CA  | PRO   | A 220 | -4.114  | 79.438  | 37,165 | 1,00 53.54 | A   | С   |  |
| ATOM   | 1523       | CB  | PRO   | A 220 | -4.549  | 77.978  | 37.264 | 1.00 54.03 | A   | С   |  |
| ATOM   | 1524       | CG  | PRO   | A 220 | -4.586  | 77.745  | 38.742 | 1.00 54.23 | A   | C   |  |
| ATOM   | 1525       | C   |       | A 220 | -5.288  | 80.383  | 37.209 | 1.00 54.16 | A   | Č   |  |
| ATOM   | 1526       | ō   |       | A 220 | -5.600  | 81.062  |        | 1.00 54.80 | Ä   | ŏ   |  |
| ATOM   | 1527       | N   |       | A 221 | -5.939  | 80.415  |        | •          |     |     |  |
|        |            |     |       |       |         |         | 38.363 | 1.00 54.60 | A   | N   |  |
| MOTA   | 1528       | CA  |       | A 221 |         | 81.343  | 38.524 | 1.00 54.25 | A   | С   |  |
| MOTA   | 1529       | CB  |       | A 221 | 7.563   | 81.254  | 39.973 | 1.00 56.40 | A   | С   |  |
| ATOM   | 1530       | Ç   |       | A 221 | -6.809  | 82.765  | 38.110 | 1.00 53.72 | A   | c · |  |
| MOTA   | 1531       | 0   | ALA   | A 221 | -7.860  | 83.466  | 37.913 | 1.00 55,96 | A   | 0   |  |
| ATOM   | 1532       | N   |       | A 222 | -5.651  | 83.256  | 37.800 | 1.00 52.44 | A   | N   |  |
| ATOM   | 1533       | CA  | LEU   | A 222 | -4.973  | 84.405  | 37.338 | 1.00 50.64 | A   | С   |  |
| MOTA   | 1534       | CB  |       | A 222 | -3.539  | 84.524  | 37.794 | 1.00 51.01 | A.  | č   |  |
| ATOM   | 1535       | CG  |       | A 222 |         | 84.579  | 39.301 | 1.00 51.92 | A.  | č   |  |
| ATOM   | 1536       |     |       | A 222 | -1.764  |         |        |            |     |     |  |
|        |            |     |       |       |         | 84.571  | 39.555 | 1.00 51.84 | A   | C   |  |
| ATOM   | 1537       |     |       | A 222 |         | 85.820  | 39.910 | 1.00 51.73 | A   | C   |  |
| ATOM   | 1538       | С   |       | A 222 | -5.128  | 84.754  | 35.846 | 1.00 49.69 | A   | С   |  |
| ATOM   | 1539       | 0   |       | A 222 | -5.662  | 85.883  | 35.570 | 1.00 49.09 | A   | 0   |  |
| ATOM   | 1540       | N   | LEU   | A 223 | -4.642  | 83.963  | 34.955 | 1.00 49.23 | A   | N   |  |
| ATOM   | 1541       | CA  | LEU   | A 223 | -4.723  | 83.937  | 33.472 | 1.00 46.32 | A   | C   |  |
| ATOM   | 1542       | CB  | LEU   | A 223 | -4.330  | 82.553  | 33.023 | 1.00 47.25 | A   | С   |  |
| ATOM   | 1543       | CG  | LEU   | A 223 | -2.824  | 82.238  | 33.256 | 1.00 46.68 | A   | С   |  |
| ATOM   | 1544       | CD1 | LEU   | A 223 | -2.624  | 81.157  | 34.271 | 1.00 47.03 | A   | Ċ   |  |
| ATOM   | 1545       |     |       | A 223 | -2.087  | 82.056  | 31.966 | 1.00 49.48 | A   | č   |  |
| ATOM   | 1546       | c   |       | A 223 | -6.261  | 84.226  | 33.149 |            |     |     |  |
|        |            |     |       |       |         |         |        | 1.00 48.85 | A   | C.  |  |
| ATOM   | 1547       | 0   |       | A 223 | -6.302  | 85.206  | 32.314 | 1.00 51.04 | A   | 0   |  |
| ATOM   | 1548       | CB  |       | A 224 | -9.802  | 83.459  | 34.102 | 1.00 67.19 | A   | С   |  |
| ATOM   | 1549       | CG  |       | A 224 | -10.084 | 82.071  | 33.728 | 1.00 69.59 | A   | С   |  |
| ATOM   | 1550       | OD1 | ASP   | A 224 | -10.117 | 81.614  | 32.581 | 1.00 70.28 | A   | 0   |  |
| ATOM   | 1551       | OD2 | ASP   | A 224 | -10.470 | 81.319  | 34.698 | 1.00 68.94 | A   | 0   |  |
| ATOM   | 1552       | С   | ASP   | A 224 | -9.159  | 85.826  | 33.784 | 1.00 66.50 | A   | С   |  |
| ATOM   | 1553       | 0   |       | A 224 | -9.883  | 86.431  | 33.016 | 1.00 67.48 | A   | ō   |  |
| ATOM   | 1554       | N   |       | A 224 | -7.310  | 84.028  | 33.847 | 1.00 66.48 | A   | N   |  |
| ATOM   | 1555       | CA  |       | A 224 | -8.796  | 84.348  | 33.554 | 1.00 66.53 | A   | Č   |  |
| ATOM   | 1556       | N   |       | A 225 | -8.385  |         |        |            |     |     |  |
|        |            |     |       |       |         | 86.372  | 34.708 | 1.00 67.26 | A   | N   |  |
| ATOM   | 1557       | CA  |       | A 225 | -8.455  | 87.792  | 35.022 | 1.00 67.21 | A   | C   |  |
| ATOM   | 1558       | CB  |       | A 225 | -8.075  | 88.041  | 36.489 | 1.00 68.53 | A   | С   |  |
| MOTA   | 1559       | CG  |       | A 225 | -9.108  | 87.580  | 37.504 | 1.00 70.23 | A   | · C |  |
| ATOM   | 1560       | CD1 | TYR   | A 225 | -9.564  | 86.258  | 37.516 | 1.00,72.39 | A   | C   |  |
| ATOM   | 1561       | CE1 | TYR   | A 225 | -10.483 | 85.812  | 38.472 | 1.00 73.64 | A   | С   |  |
| MOTA   | 1562       |     |       | A 225 | -9.600  | 88.455  | 38.478 | 1.00 72.41 | A   | Ċ   |  |
| ATOM   | 1563       |     |       | A 225 | -10.521 | 88.018  | 39,442 | 1.00 73.72 | A   | Č   |  |
| ATOM   | 1564       | CZ  |       | A 225 | -10.521 | 86.690  | 39.431 | 1.00 74.27 |     | C   |  |
|        |            |     |       |       |         |         |        |            | A   |     |  |
| ATOM   | 1565       | OH  |       | A 225 | -11.843 | 86.232  | 40.387 | 1.00 75.71 | A   | 0   |  |
| ATOM . | 1566       | C   |       | A 225 | -7.598  | 88.643  | 34.110 | 1.00 66.26 | A   | C   |  |
| ATOM   | 1567       | 0   |       | A 225 | -7.813  | 89.844  | 33.995 | 1.00 66.14 | A   | 0   |  |
| ATOM   | 1568       | N   |       | A 226 | -6.618  | 88.034  | 33.464 | 1.00 66.27 | A   | N   |  |
| ATOM   | 1569       | CA  | PHE . | A 226 | -5.782  | 88.797  | 32.561 | 1.00 67.01 | A   | С   |  |
| ATOM   | 1570       | CB  |       | A 226 | -4.476  | 89.179  | 33.245 | 1.00 66.57 | A   | С   |  |
| ATOM   | 1571       | CG  |       | A 226 | -4.651  | 90.195  | 34.336 | 1.00 66.96 | A   | C   |  |
| ATOM   | 1572       |     |       | A 226 | -5.162  | 89.827  | 35.581 | 1.00 66.26 | A   | č   |  |
|        | · <b>-</b> |     |       |       |         |         |        |            |     | -   |  |

| ATOM         | 1573         | CD2      | PHE . | A 226          | -4.324             | 91.529           | 34.112           | 1.00 60.00               | _      | u      |
|--------------|--------------|----------|-------|----------------|--------------------|------------------|------------------|--------------------------|--------|--------|
| ATOM         | 1574         |          |       | A 226          | -5,340             | 90.773           | 36.584           | 1.00 66.46               | A      | С      |
| ATOM         | 1575         |          |       | A 226          | -4.499             | 92.483           | 35.109           | 1.00 68.19               | A      | C      |
| ATOM<br>ATOM | 1576<br>1577 | CZ<br>C  |       | A 226<br>A 226 | -5.008<br>-5.528   | 92.105           | 36.350           | 1.00 67.46               | A      | C      |
| ATOM         | 1578         | ŏ        |       | A 226          | ~4.394             | 87.651           | 31.294           | 1.00 67.22<br>1.00 67.92 | A<br>A | C      |
| ATOM         | 1579         | N        |       | A 227          | -6.597             | 87.747           | 30.523           | 1.00 67.02               | Ä      | N      |
| MOTA         | 1580         | CD       |       | A 227          | -7.987             | 88.172           | 30.756           | 1.00 67.54               | A      | Ċ      |
| MOTA         | 1581         | CA       | PRO 2 | A 227          | -6.494             | 86.994           | 29.271           | 1.00 66.59               | A      | С      |
| ATOM         | 1582         | CB       |       | A 227          | -7.916             | 87.030           | 28.725           | 1.00 66.73               | A      | С      |
| MOTA         | 1583         | CG       |       | A 227          | -8.753             | 87.154           | 29.957           | 1.00 67.83               | A      | С      |
| MOTA         | 1584         | C        |       | A 227          | -5.503             | 87.612           | 28.298           | 1.00 66.06               | A      | C      |
| ATOM<br>ATOM | 1585<br>1586 | O<br>N   |       | A 227<br>A 228 | -5.099<br>-5.129   | 86.955<br>88.871 | 27.339<br>28.535 | 1.00 66.24               | A<br>A | 0      |
| ATOM         | 1587         | CA       |       | A 228          | -4.177             | 89.540           | 27.659           | 1.00 65.44<br>1.00 63.96 | A      | N<br>C |
| ATOM         | 1588         | C        |       | A 228          | -3.183             | 88.559           | 27.058           | 1.00 63.05               | A      | ·č     |
| MOTA         | 1589         | 0        | GLY A | A 228          | -3.129             | 88.350           | 25.841           | 1.00 64.22               | A      | 0      |
| ATOM         | 1590         | N        |       | A 229          | -2.394             | 87.936           | 27.924           | 1.00 61.34               | Α.     |        |
| ATOM         | 1591         | CA       |       | A 229          | ~1.417             | 86.959           | 27.474           | 1.00 58.02               | A      | С      |
| ATOM<br>ATOM | 1592<br>1593 | CB       |       | A 229<br>A 229 | -0.247<br>0.461    | 86.873           | 28.448           | 1.00 58.24               | A      | C      |
| ATOM         | 1594         |          |       | A 229          | 0.696              | 88.121<br>85.751 | 28.442<br>28.052 | 1.00 58.34<br>1.00 57.93 | A<br>A | o<br>c |
| ATOM         | 1595         | C        |       | A 229          | -2.132             | 85.623           | 27.410           | 1.00 55.72               | A      | Č      |
| ATOM         | 1596         | ō        |       | A 229          | -2.758             | 85.203           |                  | 1.00 56.34               | A      | ŏ      |
| ATOM         | 1597         | N        | HIS A | A 230          | -2.044             | 84.982           | 26.257           | 1.00 52.99               | A      | N      |
| ATOM         | 159B         | CA       |       | A 230          | -2.676             | 83.697           | 25.985           | 1.00 52.28               | A      | С      |
| ATOM         | 1599         | CB       |       | A 230          | -3.170             | 82.985           | 27.266           | 1.00 51.90               | . A    | С      |
| ATOM         | 1600         | CG       | HIS A | A 230          | -4.650<br>-5.345   | 83.082           | 27.519           | 1.00 53.74               | A      | C      |
| ATOM<br>ATOM | 1601<br>1602 |          | HIS   |                | -5.570             | 83.831           | 28.411<br>26.864 | 1.00 55.30<br>1.00 54.44 | A<br>A | C<br>N |
| ATOM         | 1603         |          | HIS A |                | -6.782             |                  | 27.342           | 1.00 55.10               | A      | Č      |
| ATOM         | 1604         |          | HIS A |                | -6.670             | 83.478           | 28.278           | 1.00 55.50               | A      | N      |
| ATOM         | 1605         | C        | HIS A | A 230          |                    |                  | 25.011           | 1.00 52.07               | A      | C      |
| ATOM         | 1606         | 0        |       | A 230          | -4.380             |                  | 24.496           | 1.00 52.43               | A      | 0      |
| ATOM         | 1607         | N        |       | A 231          | -4.134             | 85.180           | 24.758           | 1.00 51.47               | A      | N      |
| ATOM         | 1608         | CA       |       | A 231          |                    | 85.427           | 23.763           | 1.00 51.15               | A      | С      |
| MOTA<br>MOTA | 1609<br>1610 | CB<br>CG |       | A 231          | -6.000             |                  | 24.077           | 1.00 51.93               | A      | C      |
| ATOM         | 1611         |          | ASN A | A 231          | -7.865             | 86.315<br>85.173 | 24.605           | 1.00 53.46<br>1.00 52.52 | A<br>A | C      |
| ATOM         | 1612         |          | ASN A |                | -8.085             | 87.302           |                  | 1.00 53.17               | A      | N      |
| ATOM         | 1613         | С        |       | A 231          | -4.338             | 85.620           | 22.508           | 1.00 51.10               | A      | Ċ      |
| ATOM         | 1614         | 0        | ASN A | A 231          | -4.701             | 85.134           | 21.441           | 1.00 51.76               | A ·    |        |
| ATOM         | 1615         | N        |       | A 232          | -3.201             | 86.301           | 22.649           | 1.00 50.86               | A      | N      |
| MOTA         | 1616         | CA       |       | A 232          | -2.312             | 86.515           | 21.508           | 1.00 51.66               | A      | C      |
| MOTA<br>MOTA | 1617<br>1618 | CB<br>CG |       | A 232<br>A 232 | -1.174             | 87.488           | 21.848           | 1.00 52.42               | A      | C      |
| ATOM         | 1619         | CD       |       | A 232          | -1.623<br>-1.306   | 88.867<br>89.156 | 22.280<br>23.748 | 1.00 55.41<br>1.00 58.46 | A<br>A | C      |
| ATOM         | 1620         | CE       |       | A 232          | 0.184              | 89.382           | 23.991           | 1.00 60.49               | A      | č      |
| MOTA         | 1621         | NZ       | LYS A | A 232          | 0.737              | 90.568           | 23.266           | 1.00 62.12               | A      | N      |
| ATOM         | 1622         | С        |       | A 232          | -1.711             | 85.175           | 21.103           | 1.00 51.04               | A      | С      |
| MOTA         | 1623         | 0        |       | A 232          | -1.530             | 84.891           | 19.911           | 1.00 51.42               | A      | 0      |
| ATOM<br>ATOM | 1624<br>1625 | n<br>Ca  |       | A 233<br>A 233 | -1.395             | 84.351<br>83.045 | 22.095           | 1.00 48.73<br>1.00 47.64 | . A    | N<br>C |
| ATOM         | 1626         |          | LEU A |                | -0.827<br>-0.457   | 82.301           | 21.796<br>23.087 | 1.00 47.64               | A<br>A | c      |
| ATOM         | 1627         |          | LEU A |                | 0.629              |                  |                  | 1.00 44.94               | A      | č      |
| ATOM         | 1628         | CD1      | LEU A | A 233          | 0.717              | 82.106           | 25.255           | 1.00 43.08               | A      | С      |
| MOTA         | 1629         | CD2      | LEU A |                | 1.965              | 82.957           | 23.272           | 1.00 44.26               | A      | С      |
| MOTA         | 1630         | С        |       | A 233          | -1.853             | 82.245           | 20.995           | 1.00 47.40               | A      | С      |
| ATOM         | 1631         | 0        |       | A 233          | -1.476             | 81.476           | 20.121           | 1.00 48.49               | A      | 0      |
| ATOM         | 1632         | N        | LEU A |                | -3.145             | 82.431           | 21.274           | 1.00 46.87               | A      | N      |
| ATOM<br>ATOM | 1633<br>1634 | CA<br>CB | LEU A |                | -4.166<br>-5.492   | 81.702<br>81.639 | 20.526           | 1.00 45.45<br>1.00 45.09 | A<br>A | C      |
| ATOM         | 1635         | CG       | LEU A |                | -5.570             | 80.680           | 22.510           | 1.00 45.83               | A      | č      |
| ATOM         | 1636         |          | LEU A |                | -6.986             | 80.665           | 23.095           | 1.00 45.14               | A      | č      |
| MOTA         | 1637         |          | LEU A |                | -5.173             | 79.275           | 22.078           | 1.00 45.48               | A      | C      |
| MOTA         | 1638         | С        | LEU A |                | -4.383             | 82.335           | 19.149           | 1.00 44.52               | A      | C      |
| MOTA         | 1639         | 0        | LEU A |                | -4.593             | 81.623           | 18.165           | 1.00 43.36               | A      | 0      |
| MOTA         | 1640         | N        | LYS A |                | -4.315             | 83.664           | 19.079           | 1.00 44.85               | A      | N      |
| ATOM<br>ATOM | 1641<br>1642 | CA<br>CB | LYS A |                | -4.494<br>-4.563   | 84.380<br>85.897 | 17.818<br>18.052 | 1.00 46.16<br>1.00 48.83 | A<br>A | C      |
| ATOM         | 1643         | CG       | LYS A |                | -4.363<br>-4.884   | 86.700           | 16.790           | 1.00 48.83               | A<br>A | c      |
| ATOM         | 1644         | CD       | LYS F |                | -5.025             | 88.204           | 17.042           | 1.00 57.82               | Ä      | č      |
| ATOM         | 1645         | CE       | LYS F |                | -5.594             | 88.956           | 15.824           | 1.00 60.01               | A      | Ċ      |
| MOTA         | 1646         | NZ       | LYS A | 235            | -5.721             | 90.440           | 16.035           | 1.00 60.36               | A      | N      |
| MOTA         | 1647         | С        | LYS A | 235            | <del>-</del> 3.343 | 84.080           | 16.869           | 1.00 44.83               | A      | C      |
|              |              |          |       |                |                    |                  |                  |                          |        |        |

|              |              |           |            |   | • • | •                |                  |                  |      |                    |     |        |        |
|--------------|--------------|-----------|------------|---|-----|------------------|------------------|------------------|------|--------------------|-----|--------|--------|
| ATOM         | 1648         | 0         | LYS        | A | 235 | -3.556           | 83.800           | 15.691           | 1.0  | 45.39              | )   | A      | 0      |
| ATOM         | 1649         | N         | ASN        | A | 236 | -2.123           | 84.143           | 17.389           |      | 43.64              |     | A      | N      |
| ATOM         | 1650         | CA        |            |   | 236 | -0.947           | 83.875           | 16.576           | 1.00 | 42.12              |     | A      | С      |
| ATOM         | 1651         | CB        |            |   | 236 | 0.316            | 84.241           | 17.347           |      | 41.81              |     | A      | С      |
| ATOM<br>ATOM | 1652<br>1653 | CG<br>OD1 |            |   | 236 | 0.566            | 85.734           | 17.346           |      | 42.15              |     | A      | C      |
| ATOM         | 1654         |           | ASN<br>ASN |   |     | 1.277<br>-0.022  | 86.268           | 18.198           |      | 42.04              |     | A      | 0      |
| ATOM         | 1655         | C         |            |   | 236 | -0.908           | 86.421<br>82.428 | 16.368<br>16.103 |      | ) 43.31<br>) 41.45 |     | A<br>A | И      |
| ATOM         | 1656         | ō         |            |   | 236 | -0.593           | 82.165           | 14.944           |      | 41.43              |     | · Â    | C<br>O |
| ATOM         | 1657         | N         |            |   | 237 | -1.239           | 81.496           | 16.994           |      | 41.23              |     | A      | N      |
| ATOM         | 1658         | CA        | VAĹ        | A | 237 | -1.269           | 80.085           | 16.645           |      | 40.51              |     | A      | Ċ      |
| ATOM         | 1659         | СВ        |            |   | 237 | ~1.581           | 79.205           | 17.882           | 1.00 | 39.10              |     | A      | C      |
| ATOM         | 1660         |           | VAL        |   |     | -1.994           | 77.802           | 17.457           |      | 38.70              |     | A      | С      |
| ATOM<br>ATOM | 1661<br>1662 |           | VAL        |   | 237 | -0.356           | 79.133           | 18.779           |      | 38.69              |     | A      | С      |
| ATOM         | 1663         | C<br>O    | VAL        |   |     | -2.337<br>-2.217 | 79.866<br>78.972 | 15.577<br>14.751 |      | ) 42.19<br>) 43.52 |     | A<br>A | C      |
| ATOM         | 1664         | N         | ALA        |   |     | -3.378           | 80.683           | 15.571           |      | 43.32              |     | A      | O<br>N |
| ATOM         | 1665         | CA        | ALA        |   |     | -4.405           | 80.506           | 14.561           |      | 44.23              |     | A      | Č      |
| MOTA         | 1666         | CB        | ALA        |   |     | -5.640           | 81.328           | 14.910           |      | 46.27              |     | A      | Č      |
| ATOM         | 1667         | С         | ALA        | A | 238 | -3.861           | 80.915           | 13.193           | 1.00 | 43.6B              |     | A      | Ċ      |
| ATOM         | 1668         | 0         | ALA        |   |     | -3.927           | 80.140           | 12.242           |      | 45.02              |     | A      | 0      |
| ATOM         | 1669         | N         | PHE        |   |     | -3.321           | 82.128           | 13.098           |      | 43.43              |     | A      | N      |
| ATOM<br>ATOM | 1670<br>1671 | CA        | PHE        |   |     | -2.769           | 82.638           | 11.841           |      | 43.06              |     | A      | C      |
| ATOM         | 1672         | CB<br>CG  | PHE        |   |     | -2.066<br>-1.324 | 83.977<br>84.500 | 12.085           |      | 42.88              |     | A      | C      |
| ATOM         | 1673         |           | PHE        |   |     | -1.872           | 84.423           | 10.895<br>9.622  |      | 44.13<br>44.72     |     | A<br>A | C      |
| ATOM         | 1674         |           | PHE        |   |     | -0.080           | 85.087           | 11.048           |      | 45.21              |     | A      | Č      |
| ATOM         | 1675         |           | PHE        |   |     | -1.187           | 84.927           | 8.516            |      | 45.82              |     | A      | č      |
| ATOM         | 1676         | CE2       | PHE        | A | 239 | 0.614            | 85.596           | 9.949            |      | 46.69              |     | A ·    | Č      |
| ATOM         | 1677         | CZ        | PHE        |   |     | 0.060            | 85.515           | 8.682            | 1.00 | 46.56              |     | À      | С      |
| ATOM         | 1678         | С         | PHE        |   |     | -1.800           | 81.652           | 11.194           |      | .42:45             |     | A      | · l· C |
| ATOM         | 1679         | 0         | PHE        |   |     | -1.675           | 81.606           | 9.969            |      | 42.92              | 100 | A      | `. O   |
| ATOM<br>ATOM | 1680<br>1681 | N<br>CA   | MET<br>MET |   |     | -1.112           | 80.877           | 12.026           |      | 43.32              | 200 | A      | N      |
| ATOM         | 1682         | CB        | MET        |   |     | -0.176<br>0.833  | 79.879<br>79.504 | 11.540<br>12.640 |      | 43.28<br>42.40     | ;   | A      | C      |
| ATOM         | 1683         | CG        | MET        |   |     | 2.172            | 80.261           | 12.582           |      | 39.96              |     | A<br>A | C      |
| ATOM         | 1684         | SD        | MET        |   |     | 2.988            | 80.384           | 14.192           |      | 39.00              | . : | A      | s      |
| MOTA         | 1685         | CE        | MET        | A | 240 | 2.827            | 78.767           | 14.752           |      | 38.42              |     | A      | ·, č   |
| ATOM         | 1686         | С         | MET        | A | 240 | -0.977           | 78.651           | 11.083           |      | 43.79              |     | Α      | С      |
| ATOM         | 1687         | 0         | MET        |   |     | -0.740           | 78.140           | 9.999            | 1.00 | 44.82              |     | Α      | . 0    |
| ATOM         | 1688         | N         | LYS        |   |     | -1.939           | 78.198           | 11.885           |      | 44.45              |     | A      | N      |
| ATOM<br>ATOM | 1689<br>1690 | CA<br>CB  | LYS<br>LYS |   |     | -2.751           | 77.042           | 11.515           |      | 45.26              |     | A      | C      |
| ATOM         | 1691         | CG        | LYS        |   |     | -3,771<br>3,304  | 76.716<br>75.741 | 12.617<br>13.717 |      | 45.84<br>46.20     |     | A      | C      |
| ATOM         | 1692         | CD        | LYS        |   |     | -4.147           | 75.906           | 15.004           |      | 47.57              |     | A<br>A | C      |
| ATOM         | 1693         | CE        | LYS        |   |     | -4.753           | 74.598           | 15.525           |      | 47.82              |     | A      | č      |
| MOTA         | 1694         | NZ        | LYS        | A | 241 | -5.905           | 74.084           | 14.711           |      | 49.91              |     | . A    | N      |
| MOTA         | 1695         | С         | LYS        |   |     | -3.492           | 77.281           | 10.194           | 1.00 | 46.64              |     | A      | С      |
| ATOM         | 1696         | 0         | LYS        |   |     | -3.720           | 76.345           | 9.427            |      | 47.48              |     | A      | 0      |
| MOTA         | 1697         | N         | SER        |   |     | -3.870           | 78.527           | 9.924            |      | 46.71              |     | A      | N      |
| ATOM<br>ATOM | 1698<br>1699 | CA<br>CB  | SER<br>SER |   |     | -4.577           | 78.841           | 8.690            |      | 48.01              |     | A      | C      |
| ATOM         | 1700         | OG        | SER .      |   |     | -5.258<br>-5.919 | 80.203<br>80.518 | 8.794<br>7.569   |      | 48.56<br>50.12     |     | A<br>A | - O    |
| ATOM         | 1701         | Ċ         | SER        |   |     | -3.616           | 78.852           | 7.513            |      | 48,26              |     | A      | č      |
| ATOM         | 1702         | 0         | SER .      |   |     | -3.874           | 78.238           | 6.480            |      | 49.03              |     | A      | ŏ      |
| ATOM         | 1703         | N         | TYR        |   |     | -2.507           | 79.567           | 7.681            | 1.00 | 48.69              |     | A      | N      |
| ATOM         | 1704         | CA        | TYR .      |   |     | -1.479           | 79.671           | 6.650            |      | 48.20              |     | A      | С      |
| ATOM         | 1705         | CB        | TYR .      |   |     | -0.244           | 80.367           | 7.200            |      | 50.25              |     | A      | С      |
| MOTA<br>MOTA | 1706         | CG        | TYR .      |   |     | 0.892            | 80.461           | 6.214            |      | 53.37              |     | A      | C      |
| ATOM         | 1707<br>1708 |           | TYR .      |   |     | 0.742<br>1.798   | 81.154           | 5.021            |      | 54.77              |     | A      | C      |
| ATOM         | 1709         |           | TYR        |   |     | 2.131            | 81.280<br>79.886 | 4.123<br>6.489   |      | 56.19<br>54.92     |     | A<br>A | C<br>C |
| ATOM         | 1710         |           | TYR        |   |     | 3.201            | 80.005           | 5.592            |      | 55.23              |     | A      | c      |
| ATOM         | 1711         | CZ        | TYR        |   |     | 3.028            | 80.707           | 4.414            |      | 55.47              |     | A      | Č      |
| ATOM         | 1712         | OH        | TYR        |   |     | 4.078            | 80.867           | 3.535            |      | 54.95              |     | A      | ŏ      |
| ATOM         | 1713         | С         | TYR A      | A | 243 | -1.079           | 78.295           | 6.174            |      | 47.59              |     | A      | Č      |
| ATOM         | 1714         | 0         | TYR'       |   |     | -0.816           | 78.098           | 4.998            | 1.00 | 47.82              |     | A      | 0      |
| ATOM         | 1715         | N         | ILE A      |   |     | -1.007           | 77.356           | 7.110            |      | 47.54              |     | A      | N      |
| ATOM         | 1716         | CA        | ILE 2      |   |     | -0.642           | 75.985           | 6.791            |      | 47.15              |     | A      | C      |
| ATOM<br>ATOM | 1717<br>1718 | CB<br>CG2 | ILE A      |   |     | -0.379<br>-0.360 | 75.180           | 8.054            |      | 46.32              |     | A      | C.     |
| ATOM         | 1719         |           | IPE 1      |   |     | 0.922            | 73.694<br>75.658 | 7.729<br>8.698   |      | 45.96              |     | A      | C      |
| ATOM         | 1720         |           | ILE A      |   |     | 1.137            | 75.125           | 10.100           |      | 45.56<br>45.17     |     | A<br>A | C      |
| ATOM         | 1721         | C         | ILE A      |   |     | -1.789           | 75.344           | 6.045            |      | 47.80              |     | A      | C      |
| MOTA         | 1722         | Ō         | ILE A      |   |     | -1.629           | 74.876           | 4.922            |      | 48.89              |     | A      | Ö      |
|              |              |           |            |   |     |                  |                  |                  |      |                    |     |        | ~      |

#### Figure 3.

| -      |      |     |     |   | •   |        |        |               |        |       |     |     |
|--------|------|-----|-----|---|-----|--------|--------|---------------|--------|-------|-----|-----|
| ATOM   | 1723 | N   | PEA | Α | 245 | -2.950 | 75.327 | 6.687         | 1.00   | 49.31 | A   | N   |
| ATOM   | 1724 | CA  | LEU | Α | 245 | -4.148 | 74.763 | 6.091         | 1.00   | 49.50 | Α   | С   |
| ATOM   | 1725 | CB  | LEU | A | 245 | -5.383 | 75.262 | 6.850         |        | 50.57 | A   | C   |
| ATOM   | 1726 | CG  | LEU | A | 245 | -6.739 | 74.646 | 6.504         |        | 53.06 | A   | Č   |
| ATOM   | 1727 |     | LEU |   |     | -7.333 | 75.294 | 5.255         |        | 54.34 | A   | c   |
| ATOM   | 1728 |     | LEU |   |     | -6.561 | 73.141 | 6.311         |        | 52.66 | A   | c   |
| ATOM   | 1729 | c   |     |   | 245 | -4.214 | 75.188 | 4.633         |        | 49.73 |     |     |
| ATOM   | 1730 | ŏ   |     |   | 245 |        |        |               |        |       | A   | C   |
|        |      |     |     |   |     | -4.551 | 74.386 | 3.767         |        | 49.38 | A   | 0   |
| ATOM   | 1731 | N   |     |   | 246 | -3.895 | 76.453 | 4.370         |        | 50.41 | A   | N   |
| ATOM   | 1732 | CA  |     |   | 246 | -3.896 | 76.976 | 3.005         |        | 50.41 | A   | С   |
| ATOM   | 1733 | CB  |     |   | 246 | -3.314 | 78.404 | 2.995         |        | 52.58 | A   | С   |
| ATOM   | 1734 | CG  | GLU | A | 246 | -3.141 | 79.069 | 1.615         | 1.00   | 56.02 | A   | C   |
| ATOM   | 1735 | CD  | GLU | A | 246 | -2.460 | 80.450 | 1.681         | 1.00   | 59.52 | A   | С   |
| MOTA   | 1736 | OE1 | GLU | A | 246 | -2.857 | 81.276 | 2.544         | 1.00   | 58.62 | A   | 0   |
| ATOM   | 1737 | OE2 | GLU | Α | 246 | -1.536 | 80.714 | 0.859         | 1.00   | 62.01 | A   | ٥   |
| ATOM   | 1738 | С   | GLU | Α | 246 | -3.029 | 76.032 | 2.165         | 1.00   | 50.34 | A   | C   |
| ATOM   | 1739 | 0   |     |   | 246 | -3.468 | 75.512 | 1.147         |        | 51.45 | A   | ō   |
| ATOM   | 1740 | N   |     |   | 247 | -1.809 | 75.787 | 2.632         |        | 49.68 | A   | N   |
| ATOM   | 1741 | CA  |     |   | 247 | -0.866 | 74.925 | 1.943         | 1.00   |       | A   | C   |
| ATOM   | 1742 | СВ  |     |   | 247 | 0.459  | 74.902 | 2.710         | 1.00   |       | A   |     |
| ATOM   | 1743 | CG  |     |   | 247 |        |        |               |        |       |     | C   |
|        |      |     |     |   |     | 1.579  | 75.718 | 2.081         | 1.00   |       | A   | C   |
| ATOM   | 1744 | CD  |     |   | 247 | 1.299  | 77.218 | 2.046         | 1.00   |       | A   | C   |
| ATOM   | 1745 | CE  |     |   | 247 | 2.470  | 78.016 | 1.427         | 1.00   |       | A · | C   |
| ATOM   | 1746 | NZ  |     |   | 247 | 2.700  | 77.769 | -0.041        | 1.00   |       | A   | N   |
| ATOM   | 1747 | C   |     |   | 247 | -1.360 | 73.499 | 1.704         | 1.00   | 48.74 | A   | Ç   |
| ATOM   | 1748 | 0   | LYS | A | 247 | -1.145 | 72.942 | 0.636         | 1.00   | 49.45 | A   | 0   |
| ATOM   | 1749 | N   | VAL | Α | 248 | -2.028 | 72.904 | 2.684         | 1.00   | 49.27 | A   | N   |
| MOTA   | 1750 | CA  | VAL | A | 248 | -2.512 | 71.540 | 2.524         | 1.00   | 51.08 | A   | С   |
| ATOM   | 1751 | СВ  | VAL | Α | 248 | -2.997 | 70.951 | 3.845         | 1.00   |       | A   | C   |
| ATOM   | 1752 | CG1 | VAL |   |     | -1.970 | 71,227 | 4.925         | 1.00   |       | A   | c   |
| MOTA   | 1753 |     | VAL |   |     | -4.357 | 71.533 | 4.203         | 1.00   |       | A   | č   |
| ATOM   | 1754 | c   |     |   | 248 | -3.662 | 71.469 | 1.539         | 1.00   |       | A   | Č   |
|        |      |     |     |   |     |        |        |               |        |       |     |     |
| ATOM   | 1755 | 0   |     |   | 248 | -4.255 | 70.407 | 1.342         | 1.00   |       | A   | 0   |
| ATOM   | 1756 | N   |     |   | 249 | -4.007 | 72.604 | 0.944         | 1.00   |       | A   | N   |
| ATOM   | 1757 | CA  |     |   | 249 | -5.074 | 72.618 | -0.039        | 1.00   |       | A   | С   |
| MOTA   | 1758 | СB  | TAS | A | 249 | -5.967 | 73.852 | 0.140         | 1.00   | 57.72 | A   | С   |
| ATOM   | 1759 | CG  | LYS | Α | 249 | -6.926 | 73.742 | 1.320         | 1.00   | 59.78 | A   | C   |
| ATOM   | 1760 | CD  | LYS | A | 249 | -8.075 | 74.740 | 1.197         | 1.00   | 61.55 | A   | С   |
| . ATOM | 1761 | CE  | LYS | Α | 249 | -9.117 | 74.563 | 2,310         | 1.00   | 61.89 | A   | C   |
| ATOM   | 1762 | NZ  | LYS | Α | 249 | -9.667 | 73.168 | 2.389         | 1.00   |       | A   | N   |
| ATOM   | 1763 | С   |     |   | 249 | -4.395 | 72.612 | -1.399        | 1.00   |       | A   | C   |
| ATOM   | 1764 | 0   |     |   | 249 | -4.827 | 71.917 | -2.311        | 1.00   |       | A   | ō   |
| ATOM   | 1765 | N   |     |   | 250 | -3.310 | 73.372 | -1.513        | 1.00   |       | A   | N   |
| ATOM   | 1766 | CA  |     |   | 250 | -2.543 | 73.432 | -2.749        | 1.00   |       | A   | C   |
| ATOM   | 1767 |     |     |   | 250 |        |        |               |        |       |     |     |
|        |      | CB  |     |   |     | -1.426 | 74.445 | -2.633        | 1.00   |       | A   | C   |
| ATOM   | 1768 | CG  |     |   | 250 | ~1.893 | 75.829 | -2.347        | 1.00   |       | A   | C   |
| ATOM   | 1769 | .CD |     |   | 250 | -0.739 | 76.767 | -2.141        | 1.00   |       | A   | С   |
| MOTA   | 1770 |     | GLU |   |     | -1.002 | 77.973 | -1.923        | 1.00   |       | A   | 0   |
| MOTA   | 1771 |     | GLU |   |     | 0.428  | 76.298 | -2.193        | 1.00   | 67.44 | A   | 0   |
| MOTA   | 1772 | C   | GLU | Α | 250 | -1.907 | 72.078 | -2.984        | 1.00   | 61.24 | Α.  | С   |
| ATOM   | 1773 | 0   | GLU | Α | 250 | -1.595 | 71.701 | -4.113        | 1.00   | 61.63 | A   | 0   |
| ATOM   | 1774 | N   | HIS | A | 251 | -1.702 | 71.366 | -1.887        | 1.00   | 61.79 | A   | N   |
| ATOM   | 1775 | CA  | HIS | Α | 251 | -1.100 | 70.051 | -1.913        | 1.00   | 62.88 | A   | С   |
| ATOM   | 1776 | CB  | HIS | Α | 251 | -0.414 | 69.765 | -0.579        | 1.00   | 61.61 | A   | С   |
| ATOM   | 1777 | CG  | HIS | Α | 251 | 0.985  | 70.284 | -0.497        | 1.00   |       | A   | C . |
| ATOM   | 1778 |     | HIS |   |     | 2.151  | 69.647 | -0.249        | 1.00   |       | A   | Č   |
| ATOM   | 1779 |     | HIS |   |     | 1.306  | 71.615 | -0.672        | 1.00   |       | A   | N   |
| ATOM   | 1780 |     | HIS |   |     | 2.610  | 71.772 | -0.535        |        |       | A.  |     |
| ATOM   | 1781 |     | HIS |   |     |        |        |               | 1.00   |       |     | C   |
|        |      |     |     |   |     | 3.146  | 70.592 | -0.278        | 1.00   |       | A   | N   |
| ATOM   | 1782 | С   | HIS |   |     | -2.119 | 68.964 | -2.207        | 1.00   |       | A.  | С   |
| ATOM   | 1783 | 0   | HIS |   |     | -1.827 | 68.041 | -2.953        | 1.00   |       | A   | 0   |
| MOTA   | 1784 | N   |     |   | 252 | -3.309 | 69.057 | -1.620        | 1.00   |       | A   | N   |
| ATOM   | 1785 | CA  | GLN |   |     | -4.331 | 68.049 | <b>-1.867</b> | 1.00   |       | A   | С   |
| atom   | 1786 | CB  | GLN |   |     | -5.628 | 68.390 | -1.133        | 1.00   | 64.01 | A.  | С   |
| MOTA   | 1787 | CG  | GLN | A | 252 | -5,695 | 67.869 | 0.290         | 1.00   | 64.90 | A   | С   |
| ATOM   | 1788 | CD  | GLN | Α | 252 | -6.961 | 68.325 | 0.996         | 1.00   | 65.23 | A   | С   |
| ATOM   | 1789 |     | GLN |   |     | -7.785 | 67.502 | 1.407         | 1.00   |       | A   | ō   |
| ATOM   | 1790 |     | GLN |   |     | -7.121 | 69.649 | 1.141         | 1.00   |       | A   | N   |
| ATOM   | 1791 | C   | GLN |   |     | -4.597 | 67.941 | -3.362        | 1.00   |       | A.  | C   |
| ATOM   | 1792 |     | GLN |   |     |        |        |               |        |       |     |     |
|        |      | 0   |     |   |     | -4.860 | 66.852 | -3.874        | 1.00   |       | A   | 0   |
| ATOM   | 1793 | N   | GLU |   |     | -4.509 | 69.063 | -4.070        | 1.00   |       | A   | N   |
| MOTA   | 1794 | CA  | GLU |   |     | -4.748 | 69.067 | -5.507        | 1.00   |       | A.  | C   |
| ATOM   | 1795 | CB  | GLU |   |     | -5.002 | 70.507 | -5.989        | 1.00   |       | A.  | C   |
| MOTA   | 1796 | CG  | GLU |   |     | -5.803 | 70.601 | -7.292        | 1.00   |       | Ą   | С   |
| ATOM   | 1797 | CD  | GLU | A | 253 | -4.980 | 70.260 | -8.522        | 1.00 8 | 30.76 | 4   | С   |
|        |      |     |     |   |     |        |        |               |        |       |     |     |

Sign in

Actual Parkeys Selection Actual Parkeys Carrier Carrier Carrier

| ATOM | 1798  | OE1  | GLU | A | 253  | -5.581 | 69.951 | -9.583 | 1.00 | 82.61 | P   | . 0   |
|------|-------|------|-----|---|------|--------|--------|--------|------|-------|-----|-------|
| MOTA | 1799  | OE2  | GLU | A | 253  | -3.731 | 70.313 | -8.432 | 1.00 | 81.73 | A   |       |
| ATOM | 1800  | С    |     |   | 253  | -3.583 | 68.428 | -6.283 |      | 71.89 | A   |       |
| MOTA | 1801  | Ō    | GLU | A | 253  | -3.763 | 67.398 | -6.936 |      | 72.66 | A   |       |
| ATOM | 1802  | N    | SER | Α | 254  | -2.395 | 69.030 | -6.188 | 1.00 | 72.93 | A   |       |
| ATOM | 1803  | CA   |     |   | 254  | -1.177 | 68.567 | -6.885 |      | 73.01 | A   |       |
| ATOM | 1804  | СВ   |     |   | 254  | -0.188 | 69.746 | -7.012 |      | 73.07 | A   |       |
| ATOM | 1805  | OG   |     |   | 254  | 0.896  | 69.479 | -7.888 |      | 72.63 | A   | -     |
| MOTA | 1806  | C    |     |   | 254  | -0.484 | 67.397 | -6.167 |      | 72.77 | A   |       |
| ATOM | 1807  | ō    |     |   | 254  | 0.695  | 67.117 | -6.399 |      | 71.98 | A   |       |
| ATOM | 1808  | N    |     |   | 255  | -1.218 | 66.721 | -5.296 |      | 73.82 | A   |       |
| MOTA | 1809  | CA   |     |   | 255  | -0.671 | 65.599 | -4.556 |      | 74.60 | A   |       |
| ATOM | 1810  | СВ   |     |   | 255  | -1.563 | 65.272 | -3.347 | 1.00 |       | A   |       |
| MOTA | 1811  | CG   |     |   | 255  | -1.497 | 63.831 | -2:826 | 1.00 |       | A   |       |
| ATOM | 1812  | SD   |     |   | 255  | -2.792 | 62.753 | -3.562 | 1.00 |       | Ā   |       |
| MOTA | 1813  | CE   |     |   | 255  | -4.238 | 63.080 | -2.426 | 1.00 |       | A   |       |
| ATOM | 1814  | С    |     |   | 255  | -0.553 | 64.398 | -5.473 | 1.00 |       | A   |       |
| ATOM | 1815  | 0    | MET | Α | 255  | -1.513 | 64.023 | -6.164 | 1.00 |       | A   |       |
| ATOM | 1816  | N    |     |   | 256  | 0.644  | 63.816 | -5.483 | 1.00 |       | A   |       |
| ATOM | 1817  | CA   |     |   | 256  | 0.956  | 62.642 | -6.291 | 1.00 |       | A   |       |
| MOTA | 1818  | СВ   |     |   | 256  | 2.053  | 62.987 | -7.317 | 1.00 |       | A   |       |
| ATOM | 1819  | CG   |     |   | 256  | 2.452  | 61.797 | -8.186 | 1.00 |       | A   |       |
| ATOM | 1820  |      | ASP |   |      | 1.645  | 60.843 | -8.327 | 1.00 |       | A   |       |
| ATOM | 1821  |      | ASP |   |      | 3.573  | 61.826 | -8.745 | 1.00 |       | A   |       |
| ATOM | 1822  | С    | ASP | A | 256  | 1.407  | 61.505 | -5.377 | 1.00 | 68.11 | A   |       |
| ATOM | 1823  | Ō    |     |   | 256  | 2.459  | 61.580 | -4.736 | 1.00 |       | . A |       |
| ATOM | 1824  | N    |     |   | 257  | 0.569  | 60.474 | -5.301 | 1.00 |       | A   |       |
| ATOM | 1825  | CA   |     |   | 257  | 0.858  | 59.293 | -4.500 | 1.00 |       | A   |       |
| ATOM | 1826  | СВ   |     |   | 257  | -0.343 | 58.330 | -4.487 | 1.00 |       | A   |       |
| ATOM | 1827  |      |     |   | 257  |        | 58.915 | -3.982 | 1.00 |       | A   |       |
| ATOM | 1828  | SD   | ,   |   | `    | -2.119 | 58.564 | -2.216 | 1.00 |       | A   |       |
| ATOM | 1829  | CE   |     |   | 257  |        | 59.580 | -2.055 | 1.00 |       | A   |       |
| ATOM | 1830  | С    |     |   | 257  |        | 58.649 | -5.239 | 1.00 |       | A   |       |
| ATOM | 1831  | 0    |     |   | 257  | 2.217  | 58.912 | -6.429 | 1.00 |       | A   |       |
| ATOM | 1832  | N ·  | ASN | A | 258  | •      | 57.823 | -4.556 | 1.00 |       | A   |       |
| ATOM | 1833  | CA · |     |   | 258  |        | 57.170 | -5.203 | 1.00 |       | A   | . c   |
| ATOM | 1834  |      | ASN |   |      | 3.542  | 56.610 | -6.577 | 1.00 |       | A   |       |
| ATOM | 1835  |      |     |   |      | 2.239  | 55.802 | -6.529 | 1.00 |       | A   |       |
| ATOM | 1836  |      | ASN |   |      | 2.187  | 54.719 | -5.930 | 1.00 |       | A   |       |
| ATOM | 1837  |      |     |   | 258  |        | 56.327 | -7.169 | 1.00 |       | A   |       |
| ATOM | 1838  | c    |     |   | 258  | 5,102  | 58.167 | -5.411 | 1.00 |       | A   |       |
| ATOM | 1839  | 0    |     |   | 258  | 6.186  | 57.785 | -5.856 | 1.00 |       | А   | . 0   |
| ATOM | 1840  | N    |     |   | 259  | 4.854  | 59.436 | -5.094 | 1.00 |       | A   |       |
| ATOM | 1841. | CA   |     |   | 259  | 5.859  | 60.474 | -5.274 | 1.00 |       | A   |       |
| ATOM | 1842  | СВ   |     |   | 259  | 5.712  | 61.082 | -6.660 | 1.00 |       | A   |       |
| ATOM | 1843  | CG   |     |   | 259  | 6.204  | 60.165 | -7.737 | 1.00 |       | A   |       |
| ATOM | 1844  | OD1  | ASN | Α | 259  | 7.410  | 59.925 | -7.856 | 1.00 |       | A   | . 0   |
| ATOM | 1845  | ND2  | ASN | Α | 259  | 5.279  | 59.632 | -8.533 | 1.00 |       | A   | N     |
| ATOM | 1846  | С    | ASN | Α | 259  | 5.827  | 61.594 | -4.249 | 1.00 | 59.45 | A   | С     |
| ATOM | 1847  | 0    | ASN | Α | 259  | 5.931  | 62.773 | -4.604 | 1.00 | 59.36 | A   | . 0   |
| ATOM | 1848  | N    | PRO | A | 260  | 5.703  | 61.247 | -2.963 | 1.00 | 57.71 | A   | . N   |
| ATOM | 1849  | CD   | PRO | Α | 260  | 5.800  | 59.918 | -2.334 | 1.00 | 57.55 | A   | . с   |
| ATOM | 1850  | CA   | PRO | Α | 260  | 5.670  | 62.300 | -1.952 | 1.00 | 56.35 | A   | C     |
| MOTA | 1851  | CB   | PRO | A | 260  | 5.505  | 61.515 | -0.660 | 1.00 | 56.68 | A   | . С   |
| ATOM | 1852  | CG   | PRO | Α | 260  | 6.268  | 60.261 | -0.940 | 1.00 | 57.06 | A   | C     |
| MOTA | 1853  | С    | PRO | Α | 260  | 6.957  | 63.115 | -1.978 | 1.00 | 54.67 | A   | . с   |
| ATOM | 1854  | 0    | PRO | A | 260  | 8.008  | 62.599 | -2.352 | 1.00 | 53.80 | A   | . 0   |
| ATOM | 1855  | N    | GLN | A | 261  | 6.868  | 64.383 | -1.583 | 1.00 | 53,48 | A   | . • N |
| ATOM | 1856  | CA   | GLN | A | 261  | 8.033  | 65.246 | -1.573 | 1.00 | 53.59 | A   | . С   |
| ATOM | 1857  | CB   | GLN | Α | 261  | 7.981  | 66.226 | -2.736 | 1.00 | 55.33 | A   |       |
| ATOM | 1858  | CG   | GLN | Α | 261  | 7.916  | 65.601 | -4.109 | 1.00 | 59.00 | A   | . с   |
| ATOM | 1859  | CD   | GLN | A | 261  | 8.675  | 66.440 | -5.122 | 1.00 | 61.42 | A   | . С   |
| ATOM | 1860  | OE1  | GLN | Α | 261  | 9.902  | 66.571 | -5.028 | 1.00 | 62.22 | A   | . 0   |
| ATOM | 1861  | NE2  | GLN | Α | 261  | 7.954  | 67.027 | -6.088 | 1.00 | 62.78 | A   | . N   |
| MOTA | 1862  | С    |     |   | 261  | 8.227  | 66.034 | -0.283 | 1.00 | 52.56 | A   | . С   |
| MOTA | 1863  | 0    |     |   | 261  | 9.262  | 66.675 | -0.110 | 1.00 | 53.23 | A   | . 0   |
| MOTA | 1864  | N    |     |   | 262  | 7.233  | 66.026 | 0.604  | 1.00 | 50.51 | A   |       |
| MOTA | 1865  | CA   | ASP |   |      | 7.349  | 66.734 | 1.888  | 1.00 | 48.20 | A   | C     |
| ATOM | 1866  | CB   |     |   | 262. | 7.113  | 68.242 | 1.722  | 1.00 | 48.05 | A   |       |
| ATOM | 1867  | CG   | ASP | A | 262  | 5.731  | 68.583 | 1.166  | 1.00 | 47.66 | ,A  |       |
| MOTA | 1868  |      | ASP |   |      | 5.648  | 69.644 | 0.493  | 1.00 |       | A   |       |
| ATOM | 1869  |      | ASP |   |      | 4.752  | 67.828 | 1.409  | 1.00 |       | A   |       |
| MOTA | 1870  | С    | ASP | A | 262  | 6.450  | 66.199 | 2.991  | 1.00 |       | A   |       |
| MOTA | 1871  | 0    | ASP | A | 262  | 5.629  | 65.313 | 2.767  | 1.00 |       | A   |       |
| MOTA | 1872  | N    | PHE | A | 263  | 6.609  | 66.749 | 4.187  | 1.00 | 45.53 | A   | N     |

| ATOM | 1873 | CA  | PHE  | Α | 263 | 5.833  | 66,292   | 5.318  | 1.00 | 44.41 |   | A  | C  |
|------|------|-----|------|---|-----|--------|----------|--------|------|-------|---|----|----|
| ATOM | 1874 | CB  | PHE  | A | 263 | 6.007  | 67.217   | 6.508  | 1.00 | 44.42 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    | Ċ  |
| MOTA | 1875 | CG  |      |   | 263 | 5.564  | 66.612   | 7.799  |      | 44.28 |   | A  |    |
| ATOM | 1876 | CD1 | PHE  | Ą | 263 | 6.405  | 65.756   | 8.490  | 1.00 | 45.54 |   | A. | С  |
| ATOM | 1877 | CD2 | PHE  | A | 263 | 4.302  | 66.874   | 8.317  | 1.00 | 44.61 |   | A  | C  |
|      |      |     |      |   |     |        |          |        |      | 46.26 |   |    |    |
| ATOM | 1878 |     | PHE  |   |     | 5.994  | 65.168   | 9.682  |      |       |   | A  | С  |
| ATOM | 1879 | CE2 | PHE  | Α | 263 | 3.885  | 66.286   | 9.512  | 1.00 | 44.30 |   | A  | С  |
| ATOM | 1880 | CZ  | PHE  | A | 263 | 4.733  | 65.432   | 10.194 | 1.00 | 43.94 |   | A  | С  |
|      |      |     |      |   | 263 |        |          |        |      | 44.75 |   |    |    |
| ATOM | 1881 | С   |      |   |     | 4.361  | 66.206   | 5.003  |      |       |   | A  | С  |
| ATOM | 1882 | 0   | PHE  | Α | 263 | 3.715  | 65.202   | 5.285  | 1.00 | 44.07 |   | A  | 0  |
| MOTA | 1883 | N   | ILE  | A | 264 | 3.818  | 67.267   | 4.421  | 1.00 | 44.93 |   | A  | N  |
|      |      |     |      |   | 264 |        |          |        |      | 45.85 |   |    |    |
| MOTA | 1884 | CA  |      |   |     | 2.393  | 67.285   | 4.099  |      |       |   | A  | С  |
| ATOM | 1885 | CB  | ILE  | A | 264 | 2.007  | 68.584   | 3.393  |      | 44.47 |   | A  | C  |
| ATOM | 1886 | CG2 | ILE  | A | 264 | 0.544  | 60.550   | 3.016  | 1.00 | 45.20 |   | A  | C. |
| ATOM | 1887 |     | ILE  |   |     | 2.267  | 69.762   | 4.333  |      | 43.05 |   | A  | Ċ  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1888 | CDI | ILE  |   |     | 2.494  | 71.056   | 3.617  |      | 40.57 |   | A  | С  |
| ATOM | 1889 | С   | ILE  | A | 264 | 1.969  | 66.096   | 3.247  | 1.00 | 47.22 |   | A  | С  |
| ATOM | 1890 | 0   | ILE  | A | 264 | 1.109  | 65.316   | 3.661  | 1.00 | 47.36 |   | A  | 0  |
|      |      |     |      |   |     |        |          |        |      | 48.11 | • |    |    |
| MOTA | 1891 | N   |      |   | 265 | 2.561  | 65.960   | 2.061  |      |       |   | A  | N  |
| MOTA | 1892 | CA  | ASP  | A | 265 | 2.223  | 64.845   | 1.175  | 1.00 | 48.71 |   | A  | С  |
| MOTA | 1893 | СВ  | ASP  | A | 265 | 3.274  | 64.664   | 0.062  | 1.00 | 51.99 |   | A  | С  |
| ATOM | 1894 | CG  |      |   | 265 | 3.223  | 65.755   | -1.004 |      | 55.54 |   | A  | Ċ  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1895 | ODI | ASP  | А | 265 | 2.117  | 66.067   | -1.506 | 1.00 | 58.02 |   | A  | 0  |
| ATOM | 1896 | QD2 | ASP  | Α | 265 | 4.303  | 66.289   | -1.358 | 1.00 | 57.00 |   | A  | 0  |
| ATOM | 1897 | С   | ASP  | Δ | 265 | 2.142  | 63.555   | 1.990  | 1.00 | 47.73 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1898 | 0   |      |   | 265 | 1.103  | 62.905   | 2.020  |      | 48.27 |   | A  | 0  |
| ATOM | 1899 | N   | CYS  | A | 266 | 3.230  | 63.195   | 2.668  | 1.00 | 47.92 |   | A  | N  |
| ATOM | 1900 | CA  | CYS  | Α | 266 | 3.250  | 61.962   | 3.451  | 1.00 | 47.92 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1901 | CB  |      |   | 266 | 4.569  | 61.815   |        |      | 46.83 |   | A  | С  |
| ATOM | 1902 | \$G | CYS  | A | 266 | 6.034  | , 62.159 | 3.221  | 1.00 | 45.03 |   | A. | S  |
| MOTA | 1903 | С   | CYS  | A | 266 | 2.107  | 61.908   | 4.452  | 1.00 | 48.66 |   | A. | С  |
|      | 1904 |     |      |   |     | 1.631  |          | •      |      | 49.40 |   | A  | ō  |
| ATOM |      | 0   |      |   | 266 |        | 60.831   | 4.808  |      |       |   |    |    |
| ATOM | 1905 | N   | PHE  | A | 267 | 1.680  | 63.072   | 4.923  | 1.00 | 49.73 |   | A  | N  |
| ATOM | 1906 | CA  | PHE  | Α | 267 | 0.586  | 63.113   | 5.871  | 1.00 | 51.00 |   | A  | С  |
| ATOM | 1907 | СВ  |      |   | 267 | 0.569  | 64.434   | 6.655  |      | 50.24 |   | A  | Ċ  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1908 | CG  | PHE  | A | 267 | -0.195 | 64.358   | 7.951  | 1.00 | 49.19 |   | A. | С  |
| ATOM | 1909 | CD1 | PHE  | Α | 267 | 0.447  | 64.020   | 9.135  | 1.00 | 48.78 |   | A  | Ç  |
| ATOM | 1910 | CD2 | PHE  | A | 267 | -1.568 | 64.542   | 7.969  | 1.00 | 48.36 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| ATOM | 1911 |     | PHE  |   |     | -0.270 |          | 10.303 |      | 47.51 |   | Α. | C  |
| ATOM | 1912 | CE2 | PHE  | Α | 267 | -2.286 | 64.393   | 9.138  | 1.00 | 48.39 |   | A. | С  |
| ATOM | 1913 | CZ  | PHE  | A | 267 | -1.638 | 64.054   | 10.298 | 1.00 | 47.78 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    | Č  |
| MOTA | 1914 | С   |      |   | 267 | -0.704 | 62.977   | 5.075  |      | 52.53 |   | A  |    |
| ATOM | 1915 | 0   | PHE  | A | 267 | -1.704 | 62.451   | 5.572  | 1.00 | 53.33 |   | A  | 0  |
| MOTA | 1916 | N   | LEU  | A | 268 | -0.692 | 63.452   | 3.835  | 1.00 | 53.12 |   | A  | N  |
| ATOM | 1917 |     |      |   |     | -1.891 |          | 3.018  |      | 53.68 |   | A. | Ċ  |
|      |      | CA  |      |   | 268 |        | 63.349   |        |      | _     |   |    |    |
| MOTA | 1918 | CB  | LEU  | Α | 268 | -1.767 | 64.233   | 1.772  | 1.00 | 53.59 |   | A  | С  |
| ATOM | 1919 | CG  | LEU  | Α | 268 | -2.486 | 65.585   | 1.901  | 1.00 | 54.06 |   | A  | С  |
| ATOM | 1920 |     | LEU  |   |     | -2.130 | 66.252   | 3.208  |      | 55.12 |   | A. | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| ATOM | 1921 | CD2 | LEU  | A | 268 | -2.119 | 66.482   | 0.726  |      | 55.09 |   | A  | С  |
| ATOM | 1922 | C - | LEU  | Α | 268 | -2.209 | 61.898   | 2.631  | 1.00 | 55.44 |   | A  | C  |
| MOTA | 1923 | 0   | ten  | A | 268 | -3.378 | 61.500   | 2.663  | 1.00 | 55.20 |   | A  | 0  |
|      |      |     |      |   |     |        |          |        |      | 56.98 |   | A  | N  |
| MOTA | 1924 | N   |      |   | 269 | -1.172 | 61.117   | 2,299  |      |       |   |    |    |
| ATOM | 1925 | CA  | MET  | Ą | 269 | -1.339 | 59.714   | 1.907  | 1.00 | 59.34 |   | A  | С  |
| ATOM | 1926 | CB  | MET  | Α | 269 | -0.202 | 59.242   | 0.971  | 1.00 | 60.05 | • | A  | С  |
| MOTA | 1927 | CG  |      |   | 269 | 1.226  | 59.284   | 1.533  |      | 62.72 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1928 | SD  | MET. | A | 269 | 2.486  | 58.496   | 0.414  |      | 66.06 |   | A  | s  |
| ATOM | 1929 | ÇE  | MET  | Α | 269 | 2.305  | 59.462   | -1.107 | 1.00 | 64.43 |   | A  | С  |
| MOTA | 1930 | С   | MET  | Δ | 269 | -1.450 | 58.778   | 3.101  | 1.00 | 59.39 |   | A  | С  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1931 | 0   |      |   | 269 | -1.872 | 57.619   | 2.984  |      | 58.85 |   | A  | 0  |
| ATOM | 1932 | N   | LYS  | Α | 270 | -1.066 | 59.278   | 4.259  | 1.00 | 60.86 |   | A  | N  |
| MOTA | 1933 | CA  | LYS  | Α | 270 | -1.171 | 58.462   | 5.444  | 1.00 | 63.21 |   | A  | C  |
|      |      |     |      |   |     |        | 59.048   | 6.570  |      | 62.61 |   | A  | Ċ  |
| MOTA | 1934 | CB  |      |   | 270 | -0.327 |          |        |      |       |   |    |    |
| ATOM | 1935 | CG  | LYS  | A | 270 | -0.486 | 58.318   | 7.883  |      | 62.78 |   | A  | С  |
| ATOM | 1936 | CD  | LYS  | Α | 270 | 0.024  | 56.886   | 7.827  | 1.00 | 62.60 |   | A  | С  |
| ATOM | 1937 | CE  |      |   | 270 | -0.266 | 56,187   | 9.156  |      | 62.44 |   | Α. | Ċ  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |
| MOTA | 1938 | NZ  |      |   | 270 | 0.446  | 54.886   | 9.340  |      | 61.09 |   | A  | N  |
| ATOM | 1939 | С   | LYS  | Α | 270 | -2.657 | 58.425   | 5.831  |      | 66.08 |   | A  | С  |
| ATOM | 1940 | 0   |      |   | 270 | -3.127 | 57.445   | 6.413  | 1.00 | 66.10 |   | A  | 0  |
|      |      |     |      |   |     |        |          |        |      | 68.08 |   |    |    |
| MOTA | 1941 | N   |      |   | 271 | -3.395 | 59.485   | 5.489  |      |       |   | A  | И  |
| MOTA | 1942 | CA  | MET  | A | 271 | -4.830 | 59.558   | 5.785  |      | 69.76 |   | A  | С  |
| ATOM | 1943 | СВ  |      |   | 271 | -5.391 | 60.951   | 5.484  | 1.00 | 70.16 |   | A  | C  |
|      |      |     |      |   |     |        |          |        |      | 71.08 |   |    | Ċ  |
| MOTA | 1944 | CG  |      |   | 271 | -4.883 | 62.051   | 6.395  |      |       |   | A  |    |
| MOTA | 1945 | SD  | MET  | Α | 271 | -5.821 | 63.610   | 6.235  |      | 71.85 |   | A  | S  |
| ATOM | 1946 | CE  |      |   | 271 | -5.014 | 64.328   | 4.807  | 1.00 | 70.30 |   | A  | С  |
|      |      |     |      |   |     |        |          | 4.924  |      | 71.34 |   |    | c  |
| ATOM | 1947 | С   | MET  | A | 271 | -5.576 | 58.555   | 4,364  | 1.00 | 12.54 |   | A  | -  |
|      |      |     |      |   |     |        |          |        |      |       |   |    |    |

| MOTA   | 1948 | 0   | MET | A  | 271 | -6.477  | 57.854 | 5.392  | 1.00 70.75 | A O   |
|--------|------|-----|-----|----|-----|---------|--------|--------|------------|-------|
| ATOM   | 1949 | N   | GLU | Α  | 272 | -5.193  | 58.510 | 3.651  | 1.00 73.69 | A N   |
| ATOM   | 1950 | CA  | GLU |    |     | -5.805  | 57.609 | 2.688  | 1.00 76.77 | A C   |
|        |      |     |     |    |     |         |        |        |            |       |
| ATOM   | 1951 | CB  | GLU |    |     | -5.337  | 57.948 | 1.256  | 1.00 77.75 | A C   |
| MOTA   | 1952 | CG  | GĽÜ | Α  | 272 | -6.175  | 57.319 | 0.116  | 1.00 BO.19 | A C   |
| MOTA   | 1953 | CD  | GLU | A  | 272 | -7.297  | 58.227 | -0.417 | 1.00 82.08 | A C   |
|        |      |     | GLU |    |     | -8.033  | 58.843 | 0.397  | 1.00 83.11 | A O   |
| MOTA   | 1954 |     |     |    |     |         |        |        |            |       |
| MOTA   | 1955 | OE2 | GLU |    |     | -7.452  | 58.316 | -1,663 | 1.00 82.13 | A O   |
| MOTA   | 1956 | С   | GLU | Α  | 272 | -5.470  | 56.154 | 3.053  | 1.00 78.02 | A C   |
| ATOM   | 1957 | 0   | GLU | Α  | 272 | -6.196  | 55.241 | 2.668  | 1.00 78.91 | A O   |
|        |      |     | LYS |    |     | -4.381  | 55.924 | 3.788  | 1.00 79.21 |       |
| ATOM   | 1958 | N   |     |    |     |         |        |        |            |       |
| MOTA   | 1959 | CA  | LYS |    |     | -4.061  | 54.552 | 4.191  | 1.00 81.62 | A C   |
| ATOM   | 1960 | CB  | LYS | Α  | 273 | -2.602  | 54.421 | 4.675  | 1.00 81.40 | A C   |
| ATOM   | 1961 | ÇG  | LYS | A  | 273 | -1.674  | 53.635 | 3.740  | 1.00 80.97 | A C   |
| ATOM   | 1962 | CD  | LYS |    |     | -0.270  | 53.454 | 4.342  | 1.00 79.76 | A C   |
|        |      |     |     |    |     |         |        |        |            |       |
| MOTA   | 1963 | CE  | LYS |    |     | -0.088  | 52.128 | 5.095  | 1.00 79.32 | A C   |
| ATOM   | 1964 | NZ  | LYS | Α  | 273 | -0.956  | 51.961 | 6.289  | 1.00 78.75 | A N   |
| MOTA   | 1965 | С   | LYS | Α  | 273 | -5.019  | 54.136 | 5.309  | 1.00 83.78 | A C   |
| ATOM   | 1966 | ō   | LYS |    |     | -5.399  | 52.964 | 5.414  | 1.00 84.35 | A O   |
|        |      |     |     |    |     |         |        |        |            |       |
| MOTA   | 1967 | N   | GLU |    |     | -5.403  | 55.096 | 6.149  | 1.00 85.85 | A N   |
| ATOM   | 1968 | CA  | GLU | A  | 274 | -6.335  | 54.832 | 7.250  | 1.00 87.81 | A C   |
| ATOM   | 1969 | CB  | GLU | Α  | 274 | -5.795  | 55.367 | 8.586  | 1.00 88.21 | A C   |
| ATOM   | 1970 | CG  | GLU |    |     | -4.497  | 54.748 | 9.117  | 1.00 88.84 | A C   |
|        |      |     |     |    |     |         |        |        |            |       |
| ATOM   | 1971 | CD  | GLU |    |     | -4.446  | 54.705 | 10.654 | 1.00 89.98 | A C   |
| ATOM   | 1972 | OE1 | GLU | A  | 274 | -4.579  | 55.772 | 11.306 | 1.00 89.79 | A O   |
| ATOM   | 1973 | OE2 | GLU | A  | 274 | -4.260  | 53.595 | 11.216 | 1.00 90.42 | A O   |
| ATOM   | 1974 | С   | GLU |    |     | -7,690  | 55.493 | 6.993  | 1.00 88.99 | · A C |
|        |      |     |     |    |     |         |        |        |            |       |
| ATOM   | 1975 | O   | GLU |    |     | -8.129  | 56.334 | 7.778  | 1.00 88.80 | A O   |
| MOTA   | 1976 | N   | LYS | Α  | 275 | -8.357  | 55.146 | 5.895  | 1.00 90.84 | A N   |
| ATOM   | 1977 | CA  | LYS | Α  | 275 | -9.667  | 55.759 | 5.636  | 1.00 92.51 | A C   |
| ATOM   | 1978 | СВ  | LYS | Δ  | 275 | -9.799  | 56.253 | 4.187  | 1.00 92.71 | A C   |
|        |      |     |     |    |     |         |        |        | 4.         | , .   |
| ATOM   | 1979 | CG  | LYS |    |     | -9.978  | 55.130 | 3.164  | 1.00 93.07 | A C   |
| ATOM   | 1980 | CD  | LYS | Α  | 275 | -10.842 | 55.534 | 1.959  | 1.00 92.63 | A C   |
| ATOM   | 1981 | CE  | LYS | Α  | 275 | -10.220 | 56.677 | 1.155  | 1.00 92.20 | A C   |
| ATOM.  | 1982 | NZ  | LYS | A  | 275 | -11.033 | 57.077 | -0.040 | 1.00 89.91 | . A N |
| ATOM   |      |     | LYS |    |     | -10.817 | 54.796 | 5.923  | 1,00 93.60 | A C   |
|        | 1983 | С   |     |    |     |         |        |        |            | 2 2   |
| MOTA   | 1984 | 0   | LYS | A  | 275 | -11.966 | 55.218 | 5.981  | 1.00 93.67 | A O   |
| ATOM   | 1985 | N   | HIS | Α  | 276 | -10.518 | 53.507 | 6.076  | 1.00.94.71 | A N   |
| ATOM ' | 1986 | CA  | HIS | A. | 276 | -11.584 | 52.549 | 6.345  | 1.00 96.32 | A C   |
| ATOM   | 1987 | СВ  | HIS |    |     | -11.252 | 51,168 | 5.747  | 1.00 97.55 | A C   |
|        |      |     |     |    |     |         |        |        |            |       |
| ATOM   | 1988 | ÇG  | HIS |    |     | -11.522 | 51.052 | 4.271  | 1.00 99.48 | A C   |
| MOTA   | 1989 | CD2 | HIS | A  | 276 | -10.777 | 50.532 | 3.263  | 1.00100.35 | A C   |
| ATOM   | 1990 | ND1 | HIS | Α  | 276 | -12.717 | 51.438 | 3.696  | 1.00100.59 | `A N  |
| ATOM   | 1991 | CE1 | HIS | А  | 276 | -12.698 | 51.156 | 2.405  | 1.00100.68 | A C   |
|        |      |     | HIS |    |     |         | 50.604 | 2.115  | 1.00100.47 | A N   |
| MOTA   | 1992 |     |     |    |     | -11.532 |        |        |            |       |
| ATOM   | 1993 | C   | HIS |    |     | -11.915 | 52.421 | 7.848  | 1.00 96.16 | A C   |
| ATOM   | 1994 | 0   | HIS | A  | 276 | -13.092 | 52.382 | B.230  | 1.00 97.04 | A O   |
| ATOM   | 1995 | N   | ASN | Α  | 277 | -10.880 | 52.353 | B.688  | 1.00 95.48 | A N   |
| ATOM   | 1996 | CA  | ASN |    |     | -11.035 | 52.265 | 10.144 | 1.00 95.07 | A C   |
|        |      |     | ASN |    |     |         | 51.489 | 10.755 | 1.00 94.90 | A C   |
| MOTA   | 1997 | CB  |     |    |     | -9.850  |        |        |            |       |
| ATOM   | 1998 | CG  | asn | A  | 277 | -9.284  | 50.423 | 9.802  | 1.00 95.36 | A C   |
| ATOM   | 1999 | OD1 | ASN | Α  | 277 | -8.629  | 50.745 | 8.802  | 1.00 94.64 | A O   |
| MOTA   | 2000 | ND2 | ASN | Α  | 277 | -9.539  | 49.152 | 10.112 | 1.00 94.72 | A N   |
| MOTA   | 2001 | C   | ASN |    |     | -11.016 | 53.739 | 10.581 | 1.00 94.36 | A C   |
|        |      |     |     |    |     |         |        |        | 1.00 94.37 | a 0   |
| ATOM   | 2002 | 0   | ASN |    |     | -9.951  | 54.296 | 10.848 |            |       |
| MOTA   | 2003 | N   | GLN |    |     | -12,203 | 54.352 | 10.661 | 1.00 92.88 | A N   |
| MOTA   | 2004 | CA  | GLN | Α  | 278 | -12.346 | 55.786 | 10.955 | 1.00 90.78 | A C   |
| ATOM   | 2005 | CB  | GLN |    |     | -13.736 | 56.275 | 10.491 | 1.00 92.71 | A C   |
|        | 2006 |     |     |    |     |         | 57.735 | 9.971  | 1.00 94.75 | A C   |
| MOTA   |      | CG  |     |    | 278 | -13.772 |        |        |            |       |
| MOTA   | 2007 | CD  | GLN | A  | 278 | -13.180 | 57.906 | 8.563  | 1.00 96.29 | A C   |
| MOTA   | 2008 | OE1 | GLN | Α  | 278 | -13.861 | 57.683 | 7.552  | 1.00 96.62 | A O   |
| MOTA   | 2009 |     | GLN |    |     | -11.905 | 58.298 | 8.500  | 1.00 97.65 | A N   |
| ATOM   | 2010 | C   |     |    | 278 | -12.036 | 56.399 | 12.324 | 1.00 88.62 | A C   |
|        |      |     |     |    |     |         |        |        |            |       |
| ATOM   | 2011 | 0   |     |    | 278 | -12.153 | 57.624 | 12.480 | 1.00 88.03 | A 0   |
| ATOM   | 2012 | N   | PRO | Α  | 279 | -11.685 | 55.589 | 13.342 | 1.00 86.91 | A N   |
| ATOM   | 2013 | CD  | PRO | Α  | 279 | -11.669 | 54.132 | 13.585 | 1.00 86.58 | A C   |
| ATOM   | 2014 | CA  |     |    | 279 | -11.399 | 56.341 | 14.571 | 1.00 85.27 | A C   |
|        |      |     |     |    |     |         |        |        | 1.00 85.50 | A C   |
| MOTA   | 2015 | CB  |     |    | 279 | -10.855 | 55.267 | 15.509 |            |       |
| ATOM   | 2016 | CG  | PRO | A  | 279 | -11.654 | 54.052 | 15,105 | 1.00 86.84 | A C   |
| ATOM   | 2017 | С   | PRO | Α  | 279 | -10.336 | 57.395 | 14.180 | 1.00 83.26 | A C   |
| ATOM   | 2018 | ō   |     |    | 279 | -10.417 | 58.560 | 14,585 | 1.00 83.50 | A O   |
|        |      |     |     |    | 280 | -9.375  | 56.957 | 13.358 | 1.00 80.24 | A N   |
| ATOM   | 2019 | N   |     |    |     |         |        |        | 1.00 77.42 |       |
| MOTA   | 2020 | CA  |     |    | 280 | -8.278  | 57.770 | 12.804 |            | A C   |
| ATOM   | 2021 | CB  | SER | А  | 280 | -8.658  | 58.298 | 11.419 | 1.00 77.72 | A C   |
| ATOM   | 2022 | OG  | SER | Α  | 280 | -7.604  | 59.108 | 10.901 | 1.00 78.85 | A O   |
|        |      |     |     |    |     |         |        |        |            |       |

|   | ATOM         | .2023          | С        | SER        | A  | 280        | -7.703           | 58.947           | 13,588           | 1.00 75.24               |    | A        | С      |
|---|--------------|----------------|----------|------------|----|------------|------------------|------------------|------------------|--------------------------|----|----------|--------|
|   | ATOM         | 2024           | 0        |            |    | 280        | -8.382           | 59.951           | 13.845           | 1.00 75.01               |    | A        | 0      |
|   | ATOM         | 2025           | N        |            |    | 281        | -6.422           | 58.847           | 13.921           | 1.00 72.24               |    | A        | N      |
|   | ATOM<br>ATOM | 2026           | CA       |            |    | 281        | -5.756           | 59.913           | 14.670           | 1.00 67.62               |    | A        | С      |
|   | ATOM         | 2027<br>2028   | CB       |            |    | 281<br>281 | -4.674<br>-4.715 | 59.301<br>59.755 | 15.565           | 1.00 68.81               |    | A        | C      |
|   | ATOM         | 2029           | CD       |            |    | 281        | -5.927           | 59.244           | 17.030<br>17.803 | 1.00 72.38               |    | A<br>A   | C      |
|   | ATOM         | 2030           |          | GLU        |    |            | -7.029           | 59.819           | 17.647           | 1.00 73.57               |    | A        | Ö      |
|   | MOTA         | 2031           |          | GLU        |    |            | -5.780           | 58:260           | 18.573           | 1.00 73.31               |    | A        | ŏ      |
|   | ATOM         | 2032           | C        | GLU        | A  | 281        | -5.149           | 60.925           | 13.676           | 1.00 64.19               |    | A        | C      |
|   | ATOM         | 2033           | 0        |            |    | 281        | -4.541           | 61.922           | 14.077           | 1.00 63.18               |    | A        | 0      |
|   | ATOM         | 2034           | N        |            |    | 282        | -5.345           | 60.667           | 12.382           | 1.00 59.60               |    | A        | N      |
|   | MOTA<br>MOTA | 2035<br>2036   | CA<br>CB |            |    | 282<br>282 | -4.820           | 61.545           | 11.350           | 1.00 55.52               |    | A        | C      |
|   | MOTA         | 2037           | CG       |            |    | 282        | -4.024<br>-2.767 | 60.753<br>60.163 | 10.322<br>10.865 | 1.00 54.02               |    | A<br>A·  | C      |
|   | ATOM         | 2038           |          | PHE        |    |            | -2.803           | 58.993           | 11.619           | 1.00 51.83               |    | n<br>A   | c      |
|   | ATOM         | 2039           | CD2      | PHE        | A  | 282        | -1.545           | 60.789           | 10.650           | 1.00 50.44               |    | A        | č      |
|   | MOTA         | 2040           |          | PHE        |    |            | -1.638           | 58.455           | 12.160           | 1.00 51.62               |    | A        | С      |
|   | ATOM         | 2041           |          | PHE        |    |            | -0.372           | 60.262           | 11.182           | 1.00 49.74               |    | A        | С      |
|   |              | 2042           | CZ       |            |    | 282        | -0.417           | 59.091           | 11.939           | 1.00 50.75               |    | A        | С      |
|   | MOTA<br>MOTA | 2043<br>2044   | C<br>0   |            |    | 282<br>282 | -5.896<br>-6.552 | 62.336<br>61.829 | 10.635           | 1.00 54.37               |    | A        | C      |
|   | ATOM         | 2045           | N        |            |    | 283        | -6.076           | 63.583           | 9.723<br>11.055  | 1.00 54.22<br>1.00 52.76 |    | A<br>A   | O<br>N |
|   | ATOM         | 2046           | CA       |            |    | 283        | -7.069           | 64.454           | 10.446           | 1.00 51.45               |    | A.       | C      |
|   | ATOM         | 2047           | СВ       | THR        |    |            | -8.113           | 64.947           | 11.471           | 1.00 52.95               |    | A.       | č      |
|   | ATOM         | 2048           | OG1      | THR        | A  | 283        | -7.482           | 65.844           | 12.395           | 1.00 54.36               |    | A        | Ö      |
|   | ATOM         | 2049           | CG2      | THR        | A  | 283        | -8.710           | 63.773           | 12.241           | 1.00 54.03               |    | A        | С      |
|   | ATOM         | 2050           | С        |            |    | 283        | -6.350           | 65.664           | 9.901            | 1.00 50.36               |    | A        | С      |
|   | ATOM         | 2051           | 0        | THR        |    |            | -5.211           | 65.938           | 10.266           | 1.00 49.28               |    | A        | 0      |
|   | ATOM<br>ATOM | 2052<br>2053   | n<br>Ca  | ILE        |    |            | -7.021           | 66.390           | 9.021            | 1.00 50.52               |    | A        | N      |
|   | ATOM         | 2054           | CB       | ILE        |    |            | -6.436<br>-7.435 | 67.585<br>68.314 | 8.447<br>7.536   | 1.00 50.69<br>1.00 51.43 |    | A<br>A   | C      |
|   | ATOM         | 2055           |          | ILE        |    |            | -6.712           | 69.388           | 6.735            | 1.00 50.58               |    | n<br>A   | c      |
|   | ATOM         | 2056           |          | ILE        |    |            | -8.130           | 67.306           | 6.610            | 1.00 53.74               |    | A        | č      |
|   | ATOM         | 2057           | CD1      | ILE        | A  | 284        | -7.204           | 66.635           | 5.602            | 1.00 55.57               |    | A        | С      |
|   | ATOM         | 2058           | С        | ILE        |    |            | -6.054           | 68.513           | 9.599            | 1.00 51.91               |    | A        | С      |
|   | ATOM         | 2059           | 0        | ILE        |    |            | -5.064           | 69.230           | 9.523            | 1.00 51.67               |    | A.       | 0      |
| • | ATOM         | 2060           | N        | GLU        |    |            | -6.841           | 68.500           | 10.670           | 1.00 52.50               |    | A        | N      |
|   | ATOM<br>ATOM | 2061<br>2062   | CA<br>CB | GLU<br>GLU |    |            | -6.531<br>-7.598 | 69.358<br>69.236 | 11.801<br>12.889 | 1.00 52.98               |    | A.       | C.     |
|   | ATOM         | 2063           | CG       | GLU        |    |            | -7.661           | 70.448           | 13.819           | 1.00 55.22<br>1.00 59.27 |    | A<br>A   | C      |
|   | ATOM         | 2064           | CD       | GLU        |    |            | -8.513           | 70.212           | 15.058           | 1.00 62.82               |    | A        | c      |
|   | ATOM         | 2065           |          | GLU        |    |            | -9.599           | 69.603           | 14.917           | 1.00 63.35               |    | A        | ō      |
|   | MOTA         | 2066           | OE2      | GLU        |    |            | -8.107           | 70.655           | 16.166           | 1.00 63.79               |    | A        | 0      |
|   | ATOM         | 2067           | C        | GLU        |    |            | -5.166           | 68.973           | 12.371           | 1.00 51.50               |    | A.       | C      |
|   | ATOM         | 2068           | 0        | GLU        |    |            | -4.257           | 69.803           | 12.419           |                          |    | A        | 0      |
|   | ATOM<br>ATOM | 2069<br>2070   | N<br>CA  | SER        |    |            | -5.023           | 67.713           | 12.784           | 1.00 50.65               |    | A.       | N      |
|   | ATOM         | 2071           | CB       | SER        |    |            | -3.765<br>-3.841 | 67.223<br>65.718 | 13.354<br>13.636 | 1.00 48.41<br>1.00 48.10 |    | A.<br>A. | C      |
|   | ATOM         | 2072           | OG       | SER        |    |            | -4.691           | 65.060           | 12.718           | 1.00 49.68               |    | A.       | ō      |
|   | ATOM         | 2073           | C        | SER        |    |            | -2.561           | 67.528           | 12.476           | 1.00 47.27               |    | A        | č      |
|   | ATOM         | 2074           | o        | SER        | A  | 286        | -1.495           | 67.858           | 12.983           | 1.00 46.11               |    | A.       | 0      |
|   | ATOM         | 2075           | N        | LEU        |    |            | -2.716           | 67.416           | 11.166           | 1.00 47.21               | :  | A        | N      |
|   | MOTA         | 2076           | CA       | LEU        |    |            | -1.602           | 67.742           | 10.306           | 1.00 47.53               |    | A.       | С      |
|   | ATOM<br>ATOM | 2077<br>2078   | CB<br>CG | LEU        |    |            | -2.024           | 67.736           | 8.841            | 1.00 47.04<br>1.00 46.90 |    | A.       | C      |
|   | ATOM         | 2079           |          | LEU        |    |            | -0.973<br>0.284  | 67.399           | 7.849<br>7.985   | 1.00 46.41               |    | A<br>A   | C      |
|   | ATOM         | 2080           |          | LEU        |    |            | -1.510           | 68.184           | 6.416            | 1.00 46.99               |    | n<br>A   | c      |
|   | ATOM         | 2081           | c        | LEU        |    |            | -1.159           | 69.141           | 10.732           | 1.00 48.73               |    | Ā        | Č      |
|   | ATOM         | 2082           | 0        | LEU        | Α  | 287        | -0.010           | 69.343           | 11.114           | 1.00 50.57               |    | A        | 0      |
|   | MOTA         | 2083           | N        | GLU        |    |            | -2.087           | 70.093           | 10.713           | 1.00 49.70               |    | Ą        | N      |
|   | ATOM         | 2084           | CA       | GLU        |    | -          | -1.805           | 71.478           | 11.099           | 1.00 51.07               |    | Ą        | С      |
|   | ATOM         | 2085           | CB       | GLU        |    |            | -3.103           | 72.275           | 11.210           | 1.00 53.72               |    | A        | С      |
|   | ATOM         | 2086           | CG<br>CD | GLU        |    |            | -3.903           | 72.383           | 9,933            | 1.00 57.64<br>1.00 61.33 |    | A        | C      |
|   | ATOM<br>ATOM | 2087<br>2088   |          | GLU<br>GLU |    |            | ~5.319<br>~5.964 | 72.901<br>73.360 | 10.167<br>9.191  | 1.00 61.33               |    | A<br>A   | 0      |
|   | ATOM         | 2089           |          | GLU        |    |            | -5.805           | 72.842           | 11.323           | 1.00 63.66               |    | `        | 0      |
|   | ATOM         | 2090           | C        | GLU        |    |            | -1.074           | 71.593           | 12.429           | 1.00 50.03               |    | ì        | c      |
|   | ATOM         | 2091           | ō        | GLU        |    |            | -0.027           | 72.240           | 12.525           | 1.00 49.82               |    | À        | ō      |
|   | ATOM         | 2092           | N        | ASN        | A  | 289        | -1.653           | 70.980           | 13.458           | 1.00 48.58               |    | A        | N      |
|   | ATOM         | 2093           | CA       | ASN        |    |            | -1.077           | 70.996           | 14.794           | 1.00 46.94               |    | A        | С      |
|   | ATOM         | 2094           | CB       | ASN        |    |            | -1.929           | 70.153           | 15.748           | 1.00 51.57               |    | 4        | C      |
|   | MOTA         | 2095           | CG       | ASN        |    |            | -3.327           | 70.736           | 15.968           | 1.00 55.39<br>1.00 58.92 | Į, |          | C      |
|   | MOTA<br>MOTA | 2096 .<br>2097 |          | ASN        |    |            | -4.143<br>-3.606 | 70.162<br>71.874 | 16.699<br>15.343 | 1.00 56.92               | 1  |          | N<br>N |
|   | 017          |                |          |            | •• | -03        | -3.000           | /1.0/4           | 20,010           |                          | •  | •        | **     |

| MOTA   | 2098 | С   | ASN  | Α | 289 | 0.341  | 70.453 | 14.750  | 1.00 | 44.40 |   | A  | С   |
|--------|------|-----|------|---|-----|--------|--------|---------|------|-------|---|----|-----|
| ATOM   | 2099 | 0   | ASN  | Α | 289 | 1.273  | 71.085 | 15.235  | 1.00 | 43.86 |   | A  | ō   |
| ATOM   | 2100 | N   |      |   | 290 | 0.519  | 69.285 | 14.158  |      | 41.43 |   | A  | N   |
|        | 2101 | CA  |      |   | 290 | 1.855  |        |         |      |       |   |    |     |
| ATOM   |      |     |      |   |     |        | 68.741 | 14.111  |      | 38.18 |   | A  | Ç   |
| MOTA   | 2102 | CB  |      |   | 290 | 1.862  | 67.317 | 13.518  |      | 38.13 |   | A  | С   |
| ATOM   | 2103 | QG1 | THR  | A | 290 | 0.690  | 66.616 | 13.951  | 1.00 | 38.91 |   | A  | 0   |
| MOTA   | 2104 | CG2 | THR  | Α | 290 | 3.081  | 66.545 | 14.010  | 1.00 | 37.35 |   | A  | С   |
| ATOM   | 2105 | С   | THR  | A | 290 | 2.781  | 69.664 | 13.323  | 1.00 | 35.59 |   | A  | C   |
| ATOM   | 2106 | ō   |      |   | 290 | ⊕3.984 | 69.668 | 13.537  |      | 35.99 |   | A  | ŏ   |
|        |      |     |      |   |     |        |        |         |      |       |   |    |     |
| ATOM   | 2107 | N   |      |   | 291 | 2.231  | 70.469 | 12.428  |      | 34.13 |   | A  | N   |
| MOTA   | 2108 | ÇA  |      |   | 291 | 3.071  | 71.372 | 11.657  | 1.00 | 33.37 |   | A  | C   |
| MOTA   | 2109 | CB  | ALA  | Α | 291 | 2.327  | 71.886 | 10.466  | 1.00 | 33.01 |   | A  | C   |
| MOTA   | 2110 | С   | ALA  | Α | 291 | 3.520  | 72.544 | 12.505  | 1.00 | 33.47 |   | A  | C   |
| ATOM   | 2111 | 0   | ALA  | A | 291 | 4.705  | 72.855 | 12.575  | 1.00 | 34.57 |   | A  | ō   |
| ATOM   | 2112 | N   |      |   | 292 | 2.571  | 73.218 | 13.136  |      | 33.14 |   | A  | N   |
|        |      |     |      |   |     |        |        |         |      |       |   |    |     |
| ATOM   | 2113 | CA  |      |   | 292 | 2.944  | 74.350 | 13.954  |      | 32.40 |   | A  | C   |
| MOTA   | 2114 | СВ  |      |   | 292 | 1.755  | 74.916 | 14.693  |      | 32.46 |   | A  | С   |
| ATOM   | 2115 | CG1 | VAL  | A | 292 | 0.818  | 75.564 | 13.714  | 1.00 | 31.75 |   | Α  | С   |
| ATOM   | 2116 | CG2 | VAL  | Α | 292 | 1.070  | 73.807 | 15.465  | 1.00 | 33.57 |   | A  | С   |
| ATOM   | 2117 | C   | VAL  | Α | 292 | 3.977  | 73.927 | 14.962  | 1.00 | 32.96 |   | A  | С   |
| ATOM   | 2118 | 0   |      |   | 292 | 4.935  | 74.653 | 15.200  |      | 33.13 |   | A  | ō   |
|        | 2119 | N   |      |   | 293 | 3.783  | 72.756 |         |      |       |   |    |     |
| ATOM   |      |     |      |   |     |        |        | 15.565  |      | 33.02 |   | A  | N   |
| ATOM   | 2120 | CA  |      |   | 293 | 4.755  | 72.288 | 16.550  |      | 34.56 |   | A  | С   |
| ATOM   | 2121 | CB  | ASP  | Α | 293 | 4.361  | 70.921 | 17.140  | 1.00 | 37.72 |   | Α  | С   |
| ATOM   | 2122 | CG  | ASP  | Α | 293 | 3,133  | 71.008 | 18.056  | 1.00 | 41.87 |   | Α  | С   |
| ATOM   | 2123 | OD1 | ASP  | Α | 293 | 2.759  | 69.981 | 18.678  | 1.00 | 43.62 |   | A  | 0   |
| ATOM   | 2124 |     | ASP  |   |     | 2.525  | 72,109 | 18.162  |      | 45.09 |   | A  | ō   |
| ATOM   | 2125 | C   |      |   | 293 | 6.126  | 72.236 | 15.858  |      | 33.46 |   | A. | Č   |
|        |      |     |      |   |     |        |        |         |      |       |   |    |     |
| ATOM   | 2126 | 0   |      |   | 293 | 7.050  | 72.925 | 16.284  |      | 33.81 |   | A  | 0   |
| MOTA   | 2127 | N.  |      |   | 294 | 6.257  | 71.471 | 14.778  | 1.00 | 29.68 |   | A  | N   |
| MOTA   | 2128 | CA  | LEU. | A | 294 | 7.530  | 71.418 | 14.105· | 1.00 | 26.68 |   | A  | С   |
| MOTA   | 2129 | СВ  | LEU  | Α | 294 | 7.412  | 70.646 | 12.808  | 1.00 | 24.49 |   | A  | С   |
| ATOM   | 2130 |     |      |   | 294 | 6.907  | 69.266 | 13.212  | 1.00 | 22.62 |   | A  | С   |
| ATOM   | 2131 |     | LEU  |   |     | 6,896  | 68.410 | 11.997  |      | 23.12 |   | A  | Č   |
|        |      |     |      |   |     |        |        |         |      |       |   |    |     |
| MOTA   | 2132 |     | LEO  |   |     | 7.776  | 68.635 | 14.299  |      | 21.20 |   | A  | С   |
| ATOM   | 2133 | C   | LEU  | A | 294 | 8.069  | 72.814 | 13.866  | 1.00 | 26.91 |   | A  | C   |
| ATOM   | 2134 | 0 . | LEU  | Α | 294 | 9.265  | 73.052 | 13.995  | 1.00 | 27.24 |   | A  | 0   |
| MOTA   | 2135 | . N | PHE  | Α | 295 | 7.205  | 73.759 | 13.542  | 1.00 | 28.45 |   | Α. | N   |
| ATOM   | 2136 | •   |      |   | 295 | 7.691  | 75.110 | 13.325  |      | 30.62 |   | A  | . с |
| MOTA   | 2137 | CB  | PHE  |   |     | 6.587  | 75.986 | 12.759  |      | 30.93 |   | A  | c   |
|        |      |     |      |   |     |        |        |         |      |       |   |    |     |
| ATOM   | 2138 | CG  |      |   | 295 | 6.682  | 76.160 | 11.282  |      | 31.09 |   | A  | C   |
| MOTA   | 2139 | CDI | PHE  | A | 295 | 7.648  | 77.001 | 10.732  | 1.00 | 32.65 |   | A  | C   |
| ATOM   | 2140 | CD2 | PHE  | A | 295 | 5.835  | 75.459 | 10.434  | 1.00 | 31.25 |   | A  | . C |
| ATOM   | 2141 | CE1 | PHE  | Α | 295 | 7.776  | 77.130 | 9.362   | 1.00 | 33.38 |   | A  | С   |
| ATOM   | 2142 | CE2 | PHE  | А | 295 | 5.955  | 75.583 | 9.067   | 1.00 | 31.32 |   | A  | С   |
| ATOM   | 2143 | CZ  |      |   | 295 | 6.926  | 76.424 | 8,526   |      | 32.67 |   | A  | Č   |
|        |      |     |      |   |     |        | 75.746 | 14.592  |      | 32.23 |   | A  | · č |
| ATOM   | 2144 | C   |      |   | 295 | 8.247  |        |         |      |       |   |    |     |
| ATOM   | 2145 | 0   |      |   | 295 | 9.407  | 76.158 | 14.626  |      | 33.44 |   | A  | 0   |
| ATOM   | 2146 | N   |      |   | 296 | 7.429  | 75.814 | 15.636  |      | 33.49 |   | A  | N   |
| ATOM   | 2147 | CA  | GLY  | Α | 296 | 7.864  | 76.427 | 16.877  | 1.00 | 33.72 |   | A  | С   |
| ATOM   | 2148 | С   | GLY  | Α | 296 | 8.976  | 75.694 | 17.583  | 1.00 | 34.41 |   | A  | С   |
| ATOM   | 2149 | 0   |      |   | 296 | 9.961  | 76.305 | 18.009  |      | 35.18 |   | A  | 0   |
| ATOM   | 2150 | N   |      |   | 297 | 8,806  | 74,384 | 17.716  |      | 34.11 | • | A  | N   |
|        | 2151 | CA  |      |   | 297 | 9.785  | 73.536 | 18.381  |      | 33.96 |   | A  | Ċ   |
| MOTA   |      |     |      |   |     |        |        |         |      |       |   |    |     |
| ATOM   | 2152 | CB  |      |   | 297 | 9.234  | 72.143 | 18.525  |      | 33.13 |   | A  | C   |
| MOTA   | 2153 | Ç   |      |   | 297 | 11.096 | 73.485 | 17.613  |      | 34.65 |   | A  | С   |
| MOTA   | 2154 | 0   | ALA  | Α | 297 | 12.163 | 73.350 | 18.208  | 1.00 | 37.33 |   | Α  | 0   |
| ATOM   | 2155 | N   | GLY  | Α | 298 | 11.013 | 73.602 | 16.295  | 1.00 | 33.44 |   | A  | N   |
| ATOM   | 2156 | CA  |      |   | 298 | 12.217 | 73.547 | 15.504  | 1.00 | 32.09 |   | A  | C   |
| ATOM   | 2157 | C   |      |   | 298 | 12.892 | 74.867 | 15.226  |      | 32.86 |   | A  | Č   |
|        |      |     |      |   |     |        |        | 14.628  |      | 35.89 |   |    |     |
| ATOM   | 2158 | 0   |      |   | 298 | 13.961 | 74.889 |         |      |       | • | A  | 0   |
| MOTA   | 2159 | N   |      |   | 299 | 12.312 | 75.970 | 15.672  |      | 32.96 |   | A  | N   |
| MOTA   | 2160 | CA  |      |   | 299 | 12.923 | 77.250 | 15.379  |      | 32.92 |   | A  | C.  |
| ATOM   | 2161 | CB  | THR  | A | 299 | 11.893 | 78.238 | 14.896  | 1.00 | 33.29 |   | A  | С   |
| ATOM   | 2162 | OG1 | THR  | Α | 299 | 11.141 | 77.650 | 13.834  | 1.00 | 35.54 |   | A  | 0   |
| ATOM   | 2163 |     | THR  |   |     | 12.582 | 79.507 | 14.397  |      | 35.18 |   | A  | Č   |
| ATOM   | 2164 | C   | THR  |   |     | 13.688 | 77.926 | 16.487  |      | 33.30 |   | A  | Č   |
|        |      |     |      |   |     |        |        | 16.389  |      | 32.60 |   | A  |     |
| ATOM   | 2165 | 0   | THR  |   |     | 14.898 | 78.149 |         |      |       |   |    | 0   |
| ATOM   | 2166 | N   | GLU  |   |     | 12.963 | 78.284 | 17.530  |      | 35.97 |   | A  | N   |
| ATOM   | 2167 | CA  | GLU  |   |     | 13.549 | 78.977 | 18.649  |      | 37.91 |   | A  | С   |
| ATOM   | 2168 | CB  | GLU  |   |     | 12.567 | 78.979 | 19.829  |      | 43.82 |   | A  | С   |
| ATOM : | 2169 | CG  | GLU  | A | 300 | 13.100 | 79.603 | 21.128  | 1.00 | 51.85 |   | A  | С   |
| ATOM   | 2170 | CD  | GLU  |   |     | 13.939 | 80.876 | 20.915  | 1.00 | 56.78 |   | Α  | С.  |
| ATOM   | 2171 |     | GLU  |   |     | 14.193 | 81.565 | 21.935  |      | 60.33 |   | A  | 0   |
|        |      |     |      |   |     |        |        | 19.760  |      | 58.68 |   | A  | ő   |
| ATOM   | 2172 | U=2 | GLU  | м | 200 | 14.354 | 81.190 | 15.100  | 4.00 | 55.00 |   | ~  | 9   |

| MOTA | 2173 | С   | GLU        | A  | 300 | 14.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.388   | 19.077 | 1 00 | 37.17 | A |    |
|------|------|-----|------------|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------|-------|---|----|
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   | С  |
| ATOM | 2174 | 0   |            |    | 300 | 15.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.925   | 18.764 | 1.00 | 36.37 | A | 0  |
| ATOM | 2175 | N   | THR        | Α  | 301 | 14.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.261   | 19.773 | 1.00 | 35.41 | A | N  |
| ATOM | 2176 | CA  | TUD        | ħ  | 301 | 15.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.547   |        |      |       |   |    |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 20.338 | 1.00 | 33.32 | A | С  |
| ATOM | 2177 | CB  | THR        | Α  | 301 | 15.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.156   | 20.779 | 1.00 | 36.72 | Α | С  |
| ATOM | 2178 | OG1 | THR        | Δ  | 301 | 14.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.011   | 20.632 |      | 40.83 |   | ō  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       | Α |    |
| MOTA | 2179 | CG2 | THR        | A  | 301 | 15.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.980   | 22.227 | 1.00 | 40.90 | Α | С  |
| MOTA | 2180 | С   | THR        | A  | 301 | 17.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.439   | 19.452 | 1.00 | 30.51 | Α | C  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2181 | 0   | THR        | А  | 301 | 18.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.768   | 19.858 | 1.00 | 29.16 | A | 0  |
| ATOM | 2182 | N   | THR        | Α  | 302 | 16.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.992   | 18.232 | 1.00 | 27.68 | Α | N  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2183 | CA  | THR        | A  | 302 | 18.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.859   | 17.302 | 1.00 | 25.88 | A | С  |
| ATOM | 2184 | CB  | THR        | Α  | 302 | 17.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.377   | 16.034 | 1.00 | 25,65 | A | С  |
| ATOM | 2185 |     | THR        |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
|      |      |     |            |    |     | 16.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.362   | 16.328 | 1.00 | 27.39 | A | 0  |
| ATOM | 2186 | CG2 | THR        | Α  | 302 | 18.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.848   | 15.177 | 1.00 | 25.20 | A | С  |
| MOTA | 2187 | С   | THD        | 'n | 302 | 18.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.188   | 17.056 |      | 26.85 |   |    |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       | A | С  |
| MOTA | 2188 | 0   | THR        | А  | 302 | 19.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.373   | 17.187 | 1.00 | 28.02 | A | 0  |
| ATOM | 2189 | N   | SER        | A  | 303 | 17.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.119   | 16.686 | 1 00 | 27.80 | A | N  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2190 |     | SER        | A  | 303 | 18.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.476   | 16.402 | 1.00 | 27.43 | A | С  |
| ATOM | 2191 | CB  | SER        | Α  | 303 | 16.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.362   | 16.424 | 1.00 | 28.46 | A | С  |
| ATOM | 2192 |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
|      |      | OG  |            |    | 303 | 17.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.615   | 15.860 | 1.00 | 32.26 | A | 0  |
| ATOM | 2193 | С   | SER        | Α  | 303 | 19.204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.924   | 17.482 | 1.00 | 27.03 | A | С  |
| MOTA | 2194 | 0   |            |    | 303 | 20.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.160   |        |      |       |   |    |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 17.236 | 1.00 | 26.00 | A | 0  |
| ATOM | 2195 | N   | THR        | Α  | 304 | 18.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.012   | 18.694 | 1.00 | 25.02 | A | N  |
| MOTA | 2196 | CA  | THR        | Δ  | 304 | 19.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.453   | 19.821 |      | 23.00 | A | C  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2197 | CB  | THR        | A  | 304 | 18.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.188   | 21.095 | 1.00 | 23.42 | A | С  |
| ATOM | 2198 | OG1 | THR        | Δ  | 304 | 17.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.639   | 20.907 | 1 00 | 22.16 | A | 0  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2199 | CG2 | THR        | А  | 304 | 19.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.943   | 22.250 | 1.00 | 25.45 | A | С  |
| ATOM | 2200 | С   | THR        | Δ  | 304 | 20.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .79.830  | 19.894 | 1 00 | 22,75 | A | C  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2201 | 0   | THR.       | А  | 304 | 21.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.542   | 19.935 | 1.00 | 21.68 | Α | 0  |
| ATOM | 2202 | N   | THR        | A  | 305 | 20.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.503   | 19.906 | 1 00 | 21.36 | A | N. |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2203 | CA  | THR        | А  | 305 | 22.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.747   | 19.966 | 1.00 | 18.95 | A | С  |
| ATOM | 2204 | СВ  | THR        | A  | 305 | 21.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.291   | 19.664 | 1.00 | 20.47 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2205 | OGI | THR        | A  | 305 | 20.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.047   | 19.947 | 1.00 | 20.70 | A | 0  |
| ATOM | 2206 | CG2 | THR        | Α  | 305 | 22.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.388   | 20,545 | 1.00 | 21.88 | A | С  |
| ATOM | 2207 |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
|      |      | С   | THR        |    |     | 23.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 18.946 | T.00 | 17.68 | A | С  |
| ATOM | 2208 | 0   | THR        | A  | 305 | 24.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.717 - | 19.292 | 1.00 | 14.31 | A | 0  |
| ATOM | 2209 | N   | LEU        |    |     | ; 22.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |      |       |   |    |
|      |      |     |            |    |     | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 78.427   | 17.694 | 1.00 | 15,48 | A | N  |
| ATOM | 2210 | CA  | LEU        | Α  | 306 | -23.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.044   | 16.694 | 1.00 | 16.12 | Α | С  |
| ATOM | 2211 | СВ  | LEU        | Δ  | 306 | 22.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .70 215  | 15.401 |      | 16.12 |   | C  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       | A |    |
| ATOM | 2212 | CG  | LEU        | Α  | 306 | 22,689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.901   | 14.710 | 1.00 | 18.74 | A | С  |
| ATOM | 2213 | CD1 | LEU        | a  | 306 | 21.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.020   | 13.643 |      | 18.93 | A | Ċ  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2214 | CD2 | LEU        | Α  | 306 | 24.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.490   | 14.123 | 1.00 | 21.46 | A | C  |
| ATOM | 2215 | С   | LEU        | 70 | 306 | 23.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.419   | 17.163 |      | 18.08 |   | Č  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       | A |    |
| ATOM | 2216 | 0   | LEU        | A  | 306 | 25.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.738   | 17.155 | 1.00 | 19.27 | Α | 0  |
| ATOM | 2217 | N   | ARG        | Δ  | 307 | 23.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.250   | 17.581 | 1 00 | 19.37 | A | N  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2218 | CA  | ARG        | А  | 307 | 23.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.605   | 18.026 | 1.00 | 19.79 | A | С  |
| ATOM | 2219 | CB  | ARG        | A  | 307 | 22.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83,366   | 18.529 | 1.00 | 21.32 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2220 | CG  | ARG        | А  | 307 | 22.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.900   | 18.567 | 1.00 | 23.50 | Α | С  |
| ATOM | 2221 | CD  | ARG        | A  | 307 | 21.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.559   | 19.465 | 1.00 | 25.91 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| MOTA | 2222 | NE  | ARG        |    |     | 19.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.866   | 19.370 | 1.00 | 31,08 | A | N  |
| ATOM | 2223 | CZ  | ARG        | Α  | 307 | 18.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.866   | 20.313 | 1.00 | 33.91 | A | С  |
| ATOM | 2224 | MUI | ARG        | ħ  | 307 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      | 37.34 |   |    |
|      |      |     |            |    |     | 19.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.533   | 21.454 |      |       | A | N  |
| ATOM | 2225 | NH2 | ARG        | А  | 307 | 17.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.172   | 20.124 | 1.00 | 33.98 | A | N  |
| ATOM | 2226 | С   | ARG        | A  | 307 | 24.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.543   | 19.139 | 1.00 | 19.68 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2227 | 0   | ARG        |    |     | 25.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.251   | 19.118 |      | 18.80 | A | 0  |
| ATOM | 2228 | N   | TYR        | А  | 308 | 24,149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.678   | 20.110 | 1.00 | 18.80 | A | N  |
| ATOM | 2229 | CA  | TYR        |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
|      |      |     |            |    |     | 25.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.487   | 21.268 |      | 16.88 | A | С  |
| ATOM | 2230 | CB  | TYR        | Α  | 308 | 24.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.591   | 22.259 | 1.00 | 14.24 | A | С  |
| ATOM | 2231 | CG  | TYR        |    |     | 24.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.032   | 23.672 |      | 11.61 | A |    |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   | С  |
| ATOM | 2232 | CDI | TYR        | A  | 308 | 23.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.806   | 24.613 | 1.00 | 11.98 | A | С  |
| ATOM | 2233 | CEL | TYR        | D. | 308 | 23.652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.214   | 25.924 | 1 00 | 11.22 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2234 | CD2 | TYR        | А  | 308 | 25.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.674   | 24.074 | 1.00 | 11.42 | A | С  |
| MOTA | 2235 | CE2 | TYR        | Α  | 308 | 25.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.078   | 25.375 | 1 00 | 11.20 | A | С  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2236 | CZ  | TYR        | A  | 308 | 24.816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.850   | 26.297 | 1.00 | 10.16 | A | C  |
| ATOM | 2237 | OH  | TYR        | Α  | 308 | 25.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.262   | 27.585 | 1.00 | 8.36  | A | 0  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2238 | С   | TYR        | A  | 308 | 26.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.871   | 20.871 |      | 16.86 | A | С  |
| ATOM | 2239 | 0   | TYR        | A  | 308 | 27.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.064   | 21.539 | 1.00 | 16.33 | Α | 0  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
| ATOM | 2240 | N   | ALA        |    |     | 26.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.102   | 19.791 | 1.00 | 16.71 | A | N  |
| ATOM | 2241 | CA  | ALA        | A  | 309 | 27.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.488   | 19.335 | 1.00 | 19.39 | Α | С  |
| ATOM |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      |       |   |    |
|      | 2242 | СВ  | ALA        |    |     | 27.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.585   | 18.147 |      | 19.62 | A | Ç  |
| ATOM | 2243 | С   | ALA        | Α  | 309 | 28.526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.613   | 18.954 | 1.00 | 20.58 | Α | С  |
| ATOM | 2244 | ō   |            |    |     | 29.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.764   |        |      |       |   |    |
|      |      |     | ALA        |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 19.564 |      | 21.45 | A | 0  |
| MOTA | 2245 | Ν,  | LEU        | Α  | 310 | 28.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.405   | 17.954 | 1.00 | 23.65 | A | N  |
| ATOM | 2246 | CA  | LEU        |    |     | 28.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.505   | 17.496 |      |       | A | C  |
|      |      |     |            |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |      | 25.38 |   |    |
| MOTA | 2247 | CB  | <b>LEU</b> | A  | 310 | 28.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.376   | 16.488 | 1.00 | 25.92 | A | С  |

| ATOM | 2248 | CG  | LEU | A | 310 | 27.620 | 82.641  | 15.304  | 1.00 | 26.72  | A   | С   |
|------|------|-----|-----|---|-----|--------|---------|---------|------|--------|-----|-----|
| ATOM | 2249 | CD1 | LEU | Α | 310 | 26.914 | 83.616  | 14.373  | 1.00 | 28.19  | A   | C   |
| ATOM | 2250 | CD2 | LEU | Α | 310 | 28.698 | 81.904  | 14.561  | 1.00 | 26.72  | A   | Č   |
| ATOM | 2251 | C   |     |   | 310 | 29.502 | 83.385  | 18.639  |      | 26.28  | A   | č   |
|      |      |     |     |   |     |        |         |         |      | 27.54  |     |     |
| ATOM | 2252 | 0   |     |   | 310 | 30.649 | 83.834  | 18.625  |      |        | A   | 0   |
| ATOM | 2253 | N   |     |   | 311 | 28.656 | 83.654  | 19.620  |      | 26.28  | A   | . N |
| ATOM | 2254 | CA  |     |   | 311 | 29.090 | 84.479  | 20.736  |      | 25.97  | A   | C   |
| MOTA | 2255 | CB  |     |   | 311 | 28.002 | 84.526  | 21.806  |      | 25.04  | A   | С   |
| ATOM | 2256 | CG  | LEU | Α | 311 | 28.277 | 85.396  | 23.025  | 1.00 | 23.78  | A   | С   |
| ATOM | 2257 | CD1 | LEU | Α | 311 | 28.612 | 86.817  | 22.610  | 1.00 | 24.45  | A   | С   |
| ATOM | 2258 | CD2 | LEU | Α | 311 | 27.053 | 85.375  | 23.913  | 1.00 | 23.B1  | A   | С   |
| ATOM | 2259 | С   |     |   | 311 | 30,378 | 83.881  | 21.307  |      | 26,20  | A   | Č   |
| ATOM | 2260 | ŏ   |     |   | 311 | 31.430 | 84.529  | 21.349  |      | 25.70  | A   | ŏ   |
| ATOM | 2261 | N   |     |   | 312 | 30.289 | 82.621  |         |      | 26.44  |     |     |
|      |      |     |     |   |     |        |         | 21.719  |      |        | A   | N   |
| MOTA | 2262 | CA  |     |   | 312 | 31.433 | 81.907  | 22.280  |      | 25.54  | A   | C   |
| ATOM | 2263 | CB  |     |   | 312 | 31.022 | 80.477  | 22.613  |      | 21.77  | Α.  | C   |
| ATOM | 2264 | CG  |     |   | 312 | 29.954 | 80.551  | 23.695  |      | 18.47  | A   | С   |
| ATOM | 2265 | CD1 | LEU | A | 312 | 29.224 | 79.240  | 23.826  | 1.00 | 19.53  | A   | С   |
| ATOM | 2266 | CD2 | LEU | Α | 312 | 30.611 | 80,956  | 24.984  | 1.00 | 16.54  | A   | С   |
| ATOM | 2267 | C   | LEU | A | 312 | 32.646 | 81.914  | 21.354  | 1.00 | 26.74  | A   | С   |
| ATOM | 2268 | 0   |     |   | 312 | 33.756 | 82.215  | 21.796  |      | 28.10  | A   | 0   |
| ATOM | 2269 | N   |     |   | 313 | 32.440 | 81.596  | 20.077  |      | 26.88  | A   | N   |
| ATOM | 2270 | CA  | LEU |   |     | 33.548 | 81.586  | 19.130  |      | 28.17  | A   | Ċ   |
|      |      |     |     |   |     |        |         |         |      |        |     |     |
| ATOM | 2271 | CB  |     |   | 313 | 33.076 | 81.099  | 17.758  |      | 24.47  | A   | C   |
| ATOM | 2272 | CG  |     |   | 313 | 32.663 | 79.634  | 17.736  |      | 22.63  | A   | С   |
| ATOM | 2273 |     | LEU |   |     | 32.233 | .79.219 | 16.350  |      | 20.78  | A   | C   |
| ATOM | 2274 | CD2 | LEU | Α | 313 | 33.825 | 78.794  | 18.210  | 1.00 | 22.07  | A   | С   |
| ATOM | 2275 | С   | LEU | Α | 313 | 34.189 | 82.970  | 19.023  | 1.00 | 30.65  | A   | C   |
| MOTA | 2276 | 0   | LEU | A | 313 | 35.234 | 83.137  | 18.395  | 1.00 | 31:95  | A   | 0   |
| ATOM | 2277 | N   |     |   | 314 | 33.559 | 83.962  | 19.647  |      |        | A   | N   |
| ATOM | 2278 | CA  | LEU |   |     | 34.086 | 85.322  |         |      | 35.40  | , A | č   |
| ATOM |      |     |     |   |     |        |         |         |      |        |     |     |
|      | 2279 | CB  | LEU |   |     | 32.960 | 86.345  |         |      | 35.01  | A   | C   |
| ATOM | 2280 | CG  | LEU |   |     | 32.421 | 86.887  | 18.412  |      |        | . A | С   |
| MOTA | 2281 |     | LEU |   |     | 31.111 |         | 18.653  |      |        | . A | С   |
| ATOM | 2282 | CD2 | LEU | Α | 314 | 33.433 | 87.829  | 17.8077 | 1.00 | 37:13  | A   | . С |
| ATOM | 2283 | С   | LEU | A | 314 | 34.960 | 85.487  | 20.853  | 1.00 | 37.92  | A   | С   |
| MOTA | 2284 | 0   | LEU | Α | 314 | 36.100 | 85.931  | 20.768  | 1.00 | 39.82  | A   | 0   |
| MOTA | 2285 | N   |     |   | 315 | 34.388 | 85.130  |         |      | 39.41  | A   | N   |
| ATOM | 2286 | CA  | LYS |   |     | 35.074 | 85.218  |         |      | 41.54  | A   | Ċ   |
| ATOM | 2287 | CB  | LYS |   |     |        |         |         |      |        |     |     |
|      |      |     |     |   |     | 34.177 | 84.660  | 24.366  |      | 41':46 | A   | C   |
| ATOM | 2288 | CG  |     |   | 315 | 34.785 | 84.629  | 25.750  |      | 42.70  | A   | С   |
| ATOM | 2289 | CD  | LYS |   |     | 34.513 | 85.906  | 26.516  |      | 45.46  | A   | С   |
| ATOM | 2290 | CE  | LYS | A | 315 | 34.677 | 85.683  | 28.022  | 1.00 | 49.13  | A   | С   |
| ATOM | 2291 | NZ  | LYS | A | 315 | 34.335 | 86.903  | 28.837  | 1.00 | 52.38  | A   | N   |
| ATOM | 2292 | С   | LYS | Α | 315 | 36.374 | 84.417  | 23.189  | 1.00 | 44.25  | A   | С   |
| ATOM | 2293 | 0   | LYS | A | 315 | 37.438 | 84.900  | 23.573  | 1.00 | 45.87  | A   | 0   |
| ATOM | 2294 | N   |     |   | 316 | 36.285 | 83.196  | 22.677  |      | 45.86  | A   | N   |
| ATOM | 2295 | CA  |     |   | 316 | 37.441 |         | 22.575  |      | 45.81  | A   | Ċ   |
|      |      |     |     |   |     |        |         |         |      |        |     |     |
| ATOM | 2296 | CB  |     |   | 316 | 37.063 | 80.939  | 23.088  |      | 45.57  | A   | C   |
| ATOM | 2297 | CG  |     |   | 316 | 36.250 | 80.976  | 24.335  |      | 45.55  | A   | С   |
| MOTA | 2298 |     | HIS |   | 316 | 34.910 | 80.989  | 24.522  | 1.00 | 47.00  | A   | С   |
| ATOM | 2299 | ND1 | HIS | Α | 316 | 36.815 | 81.053  | 25.589  | 1.00 | 47.29  | A   | N   |
| ATOM | 2300 | CE1 | HIS | Α | 316 | 35.858 | 81.110  | 26.496  | 1.00 | 48.39  | A   | С   |
| ATOM | 2301 | NE2 | HIS | Α | 316 | 34.691 | 81.074  | 25.875  | 1.00 | 47.67  | Α   | N   |
| ATOM | 2302 | С   | HIS | A | 316 | 37.977 | 82.192  | 21.159  | 1.00 | 46.68  | A   | С   |
| ATOM | 2303 | ō   | HIS |   |     | 37.659 | 81.243  |         |      | 45.89  | A   | ō   |
| ATOM | 2304 | N   |     |   | 317 | 38.783 | 83.168  | 20.738  |      | 47.98  | A   | N   |
|      |      |     |     |   |     |        |         |         |      |        |     |     |
| ATOM | 2305 | CD  | PRO |   |     | 39.087 | 84.460  | 21.381  |      | 48.10  | A   | C.  |
| ATOM | 2306 | CA  |     |   | 317 | 39.344 | 83.099  | 19.387  |      | 47.06  | A   | C   |
| ATOM | 2307 | CB  | PRO | Α | 317 | 40.026 | 84.463  | 19.225  |      | 47.48  | A   | С   |
| ATOM | 2308 | CG  | PRO | Α | 317 | 40.328 | 84.881  | 20.640  | 1.00 | 48.78  | A   | С   |
| ATOM | 2309 | С   | PRO | A | 317 | 40.309 | 81.915  | 19.258  | 1.00 | 47.51  | A   | С   |
| ATOM | 2310 | 0   | PRO | А | 317 | 40.572 | 81.454  | 18.156  | 1.00 | 47.55  | A   | 0   |
| ATOM | 2311 | N   |     |   | 318 | 40.820 | 81.426  | 20.387  |      | 48.27  | A   | N   |
| ATOM | 2312 | CA  | GLU |   |     | 41.729 | 80,290  | 20.360  |      | 48,57  | A   | Ċ   |
|      |      |     |     |   |     |        |         |         |      |        |     |     |
| ATOM | 2313 | CB  | GLU |   |     | 42.221 | 79.939  | 21.769  |      | 52.43  | A   | C   |
| ATOM | 2314 | CG  | GLU |   |     | 43.743 | 80.078  | 21.990  |      | 55.62  | A   | C   |
| MOTA | 2315 | CD  | GLU |   |     | 44.161 | 81.504  | 22.354  |      | 58.79  | A   | С   |
| MOTA | 2316 | OE1 | GLU | A | 318 | 43.977 | 82.419  | 21.500  | 1.00 | 59.93  | A   | 0   |
| MOTA | 2317 | 0E2 | GLU | A | 318 | 44.670 | 81.703  | 23.492  | 1.00 | 58.56  | A   | 0   |
| ATOM | 2318 | С   | GLU |   |     | 40.998 | 79.083  | 19.774  |      | 48.02  | A   | C   |
| ATOM | 2319 | ŏ   | GLU |   |     | 41.549 | 78.329  | 18.967  |      | 49.76  | A   | 0   |
| ATOM | 2320 | N   | VAL |   |     | 39.743 | 78.910  | 20.178  |      | 46.13  | A   | N   |
|      |      |     |     |   |     |        |         | 19.700  |      | 43.43  | A   | C   |
| ATOM | 2321 | CA  | VAL |   |     | 38.922 | 77.795  |         |      |        |     |     |
| MOTA | 2322 | CB  | VAL | A | 213 | 37.613 | 77.698  | 20.459  | 1.00 | 42.09  | A   | С   |

|   | MOTA   | 2323 | CG1 | VAL | Α | 319 | 36.861 | 76.464 | 19.997  | 1.00 | 42.42 | A   | С    |
|---|--------|------|-----|-----|---|-----|--------|--------|---------|------|-------|-----|------|
|   | ATOM   | 2324 |     | VAL |   |     | 37.881 | 77.668 | 21.932  | 1.00 | 42.28 | A   |      |
|   | ATOM   | 2325 | C   | VAL |   |     | 38.546 | 77.939 | 18.234  | 1.00 | 43.25 | A   |      |
|   | ATOM   | 2326 | ō   | VAL |   |     | 38.519 | 76.961 | 17.480  | 1.00 | 43.49 | A   |      |
|   | ATOM   | 2327 | N   | THR |   |     | 38.217 | 79.170 | 17.863  |      | 41.43 | A   |      |
|   | ATOM   | 2328 | CA  | THR |   |     | 37.832 | 79.505 | 16,511  |      | 40.43 | A   |      |
|   | ATOM   | 2329 | CB  | THR |   |     | 37.630 | 81.044 | 16.400  |      | 40.48 | A   |      |
|   | ATOM   | 2330 |     | THR |   |     | 36.538 | 81.440 | 17.234  |      | 41.79 | A   |      |
|   | ATOM   | 2331 |     | THR |   |     | 37.325 | 81.464 | 14.980  |      | 42,62 | A   |      |
|   |        |      | C   | THR |   |     | 38.914 | 79.024 | 15.540  |      | 40.64 | A   |      |
|   | ATOM   | 2332 |     |     |   |     |        | 78.270 | 14.596  |      | 39.90 | A   |      |
|   | ATOM   | 2333 | 0   | THR |   |     | 38,642 |        |         |      | 41.45 |     |      |
|   | ATOM   | 2334 | N   | ALA |   |     | 40.149 | 79.445 | 15.806  |      |       | A   |      |
|   | ATOM   | 2335 | CA  | ALA |   |     | 41.317 | 79.084 | 14.991  |      | 39.93 | A   |      |
|   | ATOM   | 2336 | CB  | ALA |   |     | 42.589 | 79.625 | 15.644  |      | 41.34 | A   |      |
|   | ATOM   | 2337 | С   | ALA |   |     | 41.455 | 77.581 | 14.761  |      | 38.53 | A   |      |
|   | ATOM   | 2338 | 0   | ALA |   |     | 41.658 | 77.156 | 13.630  |      | 38.50 | A   |      |
|   | MOTA   | 2339 | N   | LY5 |   |     | 41.370 | 76.796 | 15.835  |      | 37.07 | A   |      |
|   | MOTA   | 2340 | CA  | LYS |   |     | 41.467 | 75.361 | 15.715  |      | 35.90 | A   |      |
|   | ATOM   | 2341 | CB  | LYS |   |     | 41.417 | 74.686 | 17.085  |      | 37.24 | A   |      |
|   | ATOM   | 2342 | CG  | LYS | A | 322 | 42.641 | 74.923 | 17.989  |      | 40.85 | A   |      |
|   | ATOM   | 2343 | CD  | LYS | Α | 322 | 42.625 | 74.013 | 19.232  | 1.00 | 43.26 | A   | С    |
|   | ATOM   | 2344 | CE  | LYS | Α | 322 | 43.682 | 74.405 | 20.264  | 1.00 | 44.61 | A   | С    |
|   | MOTA   | 2345 | NZ  | LYS | Α | 322 | 43.624 | 73.552 | 21.490  | 1.00 | 46.77 | A   | N    |
|   | ATOM   | 2346 | С   | LYS | Α | 322 | 40.317 | 74.885 | 14.845  | 1.00 | 34.59 | A   | С    |
|   | ATOM   | 2347 | Ō   | LYS |   |     | 40.546 | 74.239 | 13.831  | 1.00 | 35.31 | A   | . 0  |
|   | ATOM   | 2348 | N   | VAL |   |     | 39.080 | 75.212 | 15.205  |      | 33.80 | A   |      |
|   | ATOM   | 2349 | CA  | VAL |   |     | 37.958 | 74.781 | 14.378  |      | 32.64 | A   |      |
|   | ATOM   | 2350 | СВ  | VAL |   |     | 36.612 | 75.392 | 14.809  |      | 31.01 | A   |      |
|   | ATOM   | 2351 |     | VAL |   |     | 35.524 | 74.929 | 13.851  |      | 28.67 |     | · č. |
|   | MOTA   | 2352 |     | VAL |   |     | 36.264 | 74.967 | 16.230  |      | 31.27 | A   |      |
|   |        | 2352 | C   | VAL |   |     | 38.187 | 75.162 | 12.917  |      | 33.77 |     | Č    |
|   | ATOM . |      |     |     |   |     | 37.854 | 74.386 | 12.035  |      | 33.70 | A   |      |
|   | MOTA   |      | 0   | VAL |   |     |        |        |         |      |       | A   |      |
|   | ATOM   | 2355 | N   | GLN |   |     | 38.735 | 76.342 | 12.642  |      | 36.25 |     |      |
|   | ATOM   | 2356 | CA  | GLN |   |     | 38.962 | 76.705 | 11.251  |      | 38.23 | A   |      |
|   | ATOM   | 2357 | СВ  | GLN |   |     | 39.286 | 78.187 | 11.122  |      | 39.04 | A   |      |
| , | MOTA   | 2358 | CG  | GLN |   |     | 38.034 | 79.038 | 11.116  |      | 40.83 | A   |      |
|   | ATOM   | 2359 | CD  | GLN |   |     | 38.288 | 80.480 | 10.749  |      | 41.94 | A   |      |
|   | ATOM · | 2360 |     | GLN |   |     | 37.444 | 81.119 | 10.125  |      | 41.29 | A   |      |
|   | ATOM   | 2361 | NE2 | GLN | A | 324 | 39.446 | 81.010 | 11.151  |      | 42.60 | A   | ,    |
|   | MOTA   | 2362 | С   | GLN | A | 324 | 40.040 | 75.865 | 10.600  |      | 40.23 | , A |      |
|   | MOTA   | 2363 | 0   | GLN | A | 324 | 39.914 | 75.495 | 9.434   |      | 40.01 | A   |      |
|   | ATOM   | 2364 | N   | GLU | A | 325 | 41.102 | 75.565 | 11.348  | 1.00 | 43.24 | A   |      |
|   | ATOM   | 2365 | CA  | GLU | A | 325 | 42.194 | 74.727 | 10.832  | 1.00 | 46.06 | A   | С    |
|   | ATOM   | 2366 | ÇВ  | GLU | A | 325 | 43.260 | 74.454 | 11.915  | 1.00 | 49.42 | A   | С    |
|   | ATOM   | 2367 | CG  | GLU | A | 325 | 44.089 | 75.662 | 12.399  | 1.00 | 55.36 | A   | С    |
|   | ATOM   | 2368 | CD  | GLU | Α | 325 | 44.912 | 75.379 | 13.695  | 1.00 | 58.90 | A   | С    |
|   | ATOM   | 2369 | OE1 | GLU | Α | 325 | 45.603 | 76.316 | 14.181  | 1.00 | 60.38 | A   | 0    |
|   | ATOM   | 2370 | OE2 | GLU | Α | 325 | 44.867 | 74.235 | 14.227  | 1.00 | 59.04 | A   | 0    |
|   | ATOM   | 2371 | С   | GLU | Α | 325 | 41.581 | 73.390 | 10.398  | 1.00 | 45.72 | A   | С    |
|   | ATOM   | 2372 | 0   | GLU | A | 325 | 41.855 | 72.905 | 9.293   | 1.00 | 46.02 | A   | 0    |
|   | ATOM   | 2373 | N   | GLU | A | 326 | 40.745 | 72.820 | 11.273  | 1.00 | 44.89 | A   | N    |
|   | MOTA   | 2374 | CA  | GLU | A | 326 | 40.075 | 71.546 | 11.025  | 1:00 | 43.50 | A   | С    |
|   | ATOM   | 2375 | СВ  | GLU | A | 326 | 39.115 | 71.210 | 12.184  | 1.00 | 43.40 | A   | С    |
|   | ATOM   | 2376 | CG  |     |   | 326 | 38.534 | 69.789 | 12.189  | 1.00 | 45.19 | A   | С    |
|   | ATOM   | 2377 | CD  |     |   | 326 | 38.950 | 68.970 | 13.414  | 1.00 | 48.03 | A   | С    |
|   | ATOM   | 2378 |     | GLU |   |     | 40.161 | 68.687 | 13.573  |      | 50.38 | A   |      |
|   | ATOM   | 2379 |     | GLU |   |     | 38.073 |        | .14.233 |      | 48.48 | A   |      |
|   | ATOM   | 2380 | C   |     |   | 326 | 39.316 | 71.622 | 9.708   |      | 42.87 | A   |      |
|   | ATOM   | 2381 | Ö   |     |   | 326 | 39.354 | 70.685 | 8.906   |      | 43.29 | A   |      |
|   | ATOM   | 2382 | N   |     |   | 327 | 38.638 | 72.735 | 9.457   |      | 42,42 | A   |      |
|   |        |      |     |     |   | 327 | 37.908 | 72.841 | 8.195   |      | 41.33 | A   |      |
|   | ATOM   | 2383 | CA  |     |   |     |        | 74.084 | 8.147   |      | 40.36 | A   |      |
|   | MOTA   | 2384 | CB  |     |   | 327 | 36.992 |        | 6.840   |      | 39.21 | A   |      |
|   | ATOM   | 2385 |     | ILE |   |     | 36.228 | 74.095 |         |      |       |     |      |
|   | ATOM   | 2386 |     | ILE |   |     | 36.008 | 74.052 | 9.333   |      | 39.36 | A   |      |
|   | MOTA   | 2387 |     | IPE |   |     | 35.133 | 75.283 | 9.465   |      | 36.49 | A   |      |
|   | ATOM   | 2388 | C   |     |   | 327 | 38.904 | 72.902 | 7.041   |      | 41.97 | A   |      |
|   | ATOM   | 2389 | 0   |     |   | 327 | 38.820 | 72.101 | 6.118   |      | 41.93 | A   |      |
|   | ATOM   | 2390 | N   |     |   | 328 | 39.851 | 73.837 | 7.105   |      | 42.25 | A   |      |
|   | ATOM   | 2391 | CA  |     |   | 328 | 40.877 | 73.982 | 6.067   |      | 45.01 | A   |      |
|   | ATOM   | 2392 | CB  | GLU | A | 328 | 42.009 | 74.892 | 6.557   |      | 48.44 | A   |      |
|   | ATOM   | 2393 | CG  | GLU | A | 328 | 41.917 | 76.338 | 6.106   |      | 55.87 | A   |      |
|   | MOTA   | 2394 | CD  | GLU | A | 328 | 42.120 | 76.486 | 4.610   | _    | 61.01 | A   |      |
|   | ATOM   | 2395 | OE1 | GLU | A | 328 | 42.176 | 77.655 | 4.125   |      | 64.29 | A   |      |
|   | MOTA   | 2396 |     | GLU |   |     | 42,224 | 75.438 | 3.913   |      | 61.47 | A   |      |
|   | MOTA   | 2397 | С   |     |   | 328 | 41.475 | 72.631 | 5.682   | 1.00 | 43.86 | A   | . с  |
|   |        |      |     |     |   |     |        |        |         |      |       | •   |      |

ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR 1. 1250 ANDR

229/514

| ATOM     | 2398   | ٥   | GLU | A | 328 | 41.546 | 72.277           | 4.507          | 1.00 44 | 1.24 |   | A  | 0 |
|----------|--------|-----|-----|---|-----|--------|------------------|----------------|---------|------|---|----|---|
| ATOM     | 2399   | N   |     |   | 329 | 41.904 | 71.877           | 6.686          | 1.00 43 |      |   | A  | N |
| ATOM     | 2400   | CA  |     |   | 329 | 42.517 | 70.572           | 6.467          | 1.00 42 |      |   | A  | Ċ |
| ATOM     | 2401   | СВ  |     |   | 329 | 43.143 | 70.078           | 7.781          | 1.00 43 |      |   | A  | č |
| ATOM     | 2402   | CG  |     |   | 329 | 43.875 | 68.737           | 7.698          | 1.00 43 |      |   | A  | č |
| ATOM     | 2403   | CD  |     |   | 329 | 44.659 | 68.461           | B. 979         | 1.00 44 |      |   | A  | č |
| ATOM     | 2404   | NE  |     |   | 329 | 43.794 | 68.152           | 10.118         | 1.00 45 |      |   | A  | N |
| ATOM     | 2405   | CZ  |     |   | 329 | 42.975 | 67.102           | 10.176         | 1.00 46 |      |   | A  | Č |
| ATOM     | 2406   |     | ARG |   |     | 42.227 | 66.891           | 11.261         | 1.00 45 |      |   | A  | N |
| ATOM     | 2407   |     | ARG |   |     | 42.909 | 66.262           | 9.145          | 1.00 46 |      |   | A  | N |
| ATOM     | 2408   | С   |     |   | 329 | 41.578 | 69.505           | 5.908          | 1.00 42 |      |   | A  | c |
| ATOM     | 2409   | ŏ   |     |   | 329 | 41.979 | 68.724           | 5.045          | 1.00 43 |      |   | A. | ŏ |
| ATOM     | 2410   | N   |     |   | 330 | 40.334 | 69.478           | 6.385          | 1.00 42 |      |   | A  | N |
| ATOM     | 2411   | CA  |     |   | 330 | 39.362 | 68.464           | 5.950          | 1.00 41 |      |   | A  | Č |
| ATOM     | 2412   | СВ  |     |   | 330 | 38.425 | 68.035           | 7.085          | 1.00 40 |      |   | A  | c |
| ATOM     | 2413   |     | VAL |   |     | 37.532 | 66.902           | 6.605          | 1.00 38 |      |   | A  | č |
| ATOM     | 2414   |     | VAL |   |     | 39.220 | 67.621           | 8.286          | 1.00 39 |      |   | A  | Č |
| ATOM     | 2415   | С   |     |   | 330 | 38.445 | 68.805           | 4.788          | 1.00 43 |      |   | A  | Č |
| ATOM     | 2416   | Ō   |     |   | 330 | 38.131 | 67.946           | 3.958          | 1.00 44 |      |   | A  | ō |
| ATOM     | 2417   | N   |     |   | 331 | 37.980 | 70.042           | 4.750          | 1.00 43 |      |   | A  | N |
| MOTA     | 2418   | CA  |     |   | 331 | 37.074 | 70.485           | 3.701          | 1.00 44 |      |   | A  | Ċ |
| MOTA     | 2419   | CB  |     |   | 331 | 35.687 | 70.859           | 4.327          | 1.00 40 |      |   | A  | Ċ |
| MOTA     | 2420   | CG2 | ILE | A | 331 | 34.681 | 71.170           | 3.243          | 1.00 43 |      |   | A. | С |
| ATOM     | 2421   | CG1 | ILE | A | 331 | 35.149 | 69.687           | 5.139          | 1.00 36 | .78  |   | A  | С |
| ATOM     | 2422   | CD1 | ILE | A | 331 | 33.998 | 70.024           | 6.034          | 1.00 31 |      | - | A. | C |
| ATOM     | 2423   | С   | ILE | Α | 331 | 37.745 | 71.708           | 3.089          | 1.00 46 | 3.37 |   | A  | C |
| ATOM     | 2424   | 0   | ILE | Α | 331 | 37.988 | 72.688           | 3.778          | 1.00 48 | .30  | 1 | A. | 0 |
| ATOM     | 2425   | N   | GLY | A | 332 | 38.071 | 71.657           | 1.810          | 1.00 48 | .54  | 2 | Ą  | N |
| ATOM     | 2426   | CA  | GLY | A | 332 | 38.724 | 72.812           | 1.221          | 1.00 53 | .22  | 1 | A  | С |
| ATOM .   | 2427:  | C   | GLY | A | 332 | 37.861 | 74.065           | 1.226          | 1.00 5€ | .20  | 1 | A  | С |
| MOTA     | 2428   | 0   | GLY | Α | 332 | 36.691 | 74.009           | 1.600          | 1.00 56 | 80.6 | 1 | A  | 0 |
| ATOM     | 2429   | N   | ARG | A | 333 | 38.432 | 75.202           | 0.828          | 1.00 59 | .38  | 7 | A  | N |
| · ATOM · | ,2430  | CA  | ARG | A | 333 | 37.657 | 76.437           | 0.769          | 1.00 61 | . 62 | 7 | A  | Ç |
| ATOM     | 2431   | CB  | ARG | A | 333 | 38.566 | 77.677           | 0.771          | 1.00 64 | .51  | 7 | Ą  | C |
| ATOM     | 2432   | CG  | ARG | Α | 333 | 38.555 | 78.450           | 2.095          | 1.00 69 | . 62 | 7 | A  | Ç |
| ATOM     | 2433   | CD  | ARG | A | 333 | 39.250 | 79.817           | 1.994          | 1.00 75 | .15  | 1 | 4  | С |
| ATOM     | 2434   | NE  | ARG | A | 333 | 40.723 | 79.786           | 2.044          | 1.00 80 | .35  | 1 | A  | N |
| ATOM     | 2435   | CZ  | ARG | A | 333 | 41.524 | 79.634           | 0.988          | 1.00 82 | .75  | 1 | A. | С |
| ATOM .   | 2436   | NH1 | ARG | Α | 333 | 41.006 | 79.485           | -0.226         | 1.00 83 | .49  | 1 | 4  | N |
| · ATOM   | · 2437 | NH2 | ARG | A | 333 | 42.845 | 79.683           | 1.144          | 1.00 84 | .43  | 7 | A. | N |
| MOTA     | 2438   | С   | ARG | A | 333 | 36.815 | 76.405           | -0.504         | 1.00 61 | .80  | 1 | 4  | Ç |
| ATOM     | 2439   | 0   | ARG | A | 333 | 36.276 | 77.424           | -0.934         | 1.00 62 | .72  | 1 | 4  | 0 |
| ATOM     | 2440   | N   | ASN | A | 334 | 36.710 | 75.219           | -1.099         | 1.00 61 | .66  | 1 | 4  | N |
| ATOM     | 2441   | CA  | ASN | Α | 334 | 35.925 | 75.028           | -2.304         | 1.00 61 | .88  | 1 | A. | С |
| ATOM     | 2442   | CB  | asn | A | 334 | 36.706 | 74.176           | -3.318         | 1.00 62 | . 61 | 1 | A  | С |
| ATOM     | 2443   | CG  | ASN | Α | 334 | 37.789 | 74.984           | -4.049         | 1.00 63 | .77  | 1 | ¥. | С |
| ATOM     | 2444   | OD1 | ASN | Α | 334 | 38.566 | 75.718           | -3.425         | 1.00 62 |      | 2 | A. | 0 |
| ATOM     | 2445   |     | asn |   |     | 37.838 | 74.851           | -5.374         | 1.00 64 | . 68 | 1 | 4  | N |
| ATOM     | 2446   | С   |     |   | 334 | 34.567 | 74.405           | -1.977         | 1.00 60 | .68  | 1 | 4  | С |
| ATOM     | 2447   | 0   |     |   | 334 | 33.614 | 75.137           | -1.690         | 1.00 62 |      | 1 |    | 0 |
| MOTA     | 2448   | N   |     |   | 335 | 34.468 | 73.074           | -1.979         | 1.00 58 |      | 2 | 4  | N |
| ATOM     | 2449   | CA  |     |   | 335 | 33.179 | 72.398           | -1.706         | 1.00 54 |      | 7 |    | С |
| ATOM     | 2450   | CB  |     |   | 335 | 33.358 | 70.880           | -1.711         | 1.00 53 |      | 1 |    | С |
| ATOM     | 2451   | CG  |     |   | 335 | 33.782 | 70.287           | -0.369         | 1.00 53 |      | 1 |    | С |
| ATOM     | 2452   | CD  |     |   | 335 | 33.276 | 68.848           | -0.246         | 1.00 53 |      | 7 |    | С |
| ATOM     | 2453   | NE  |     |   | 335 | 33.604 | 68.187           | 1.023          | 1.00 54 |      |   | ١. | N |
| ATOM     | 2454   | CZ  |     |   | 335 | 34.801 | 67.701           | 1.345          | 1.00 56 |      | 7 |    | C |
| ATOM     | 2455   |     | ARG |   |     | 35.824 | 67.791           | 0.506          | 1.00 57 |      | 1 |    | N |
| ATOM     | . 2456 |     | ARG |   |     | 34.967 | 67.092           | 2.504          | 1.00 56 |      | , |    | N |
| ATOM     | 2457   | C   |     |   | 335 | 32.474 | 72.795           | -0.403         | 1.00 53 |      | 7 |    | C |
| ATOM     | 2458   | 0   |     |   | 335 | 33.049 | 73.451           | 0.464          | 1.00 53 |      | , |    | 0 |
| ATOM     | 2459   | N   |     |   | 336 | 31.215 | 72.380           | -0.272         | 1.00 50 |      | 7 |    | N |
| MOTA     | 2460   | CA  |     |   | 336 | 30.426 | 72.684           | 0.924          | 1.00 46 |      | 1 |    | С |
| ATOM     | 2461   | CB  |     |   | 336 | 28.964 | 73.016           | 0.550          | 1.00 47 |      |   |    | C |
| ATOM     | 2462   | OG  |     |   | 336 | 28.648 | 72.640           | -0.785         | 1.00 46 |      | 7 |    | 0 |
| MOTA     | 2463   | C   |     |   | 336 | 30.444 | 71.541           | 1.938          | 1.00 43 |      | 1 |    | C |
| ATOM     | 2464   | 0   |     |   | 336 | 30.358 | 70.361           | 1.576          | 1.00 43 |      | 1 |    | 0 |
| ATOM     | 2465   | N   | PRO |   |     | 30.539 | 71.882           | 3.231          | 1.00 40 |      | 7 |    | N |
| ATOM     | 2466   | CD  | PRO |   |     | 30.544 | 73.224           | 3.834          | 1.00 38 |      | 1 |    | C |
| ATOM     | 2467   | CA  | PRO |   |     | 30.566 | 70.848           | 4.264          | 1.00 37 |      | , |    | C |
| ATOM     | 2468   | CB  | PRO |   |     | 30.519 | 71.652           | 5.555          | 1.00 36 |      | 7 |    | C |
| ATOM     | 2469   | CG  | PRO |   |     | 31.168 | 72.947           | 5.178<br>4.137 | 1.00 37 |      | 7 |    | C |
| ATOM     | 2470   | C   | PRO |   |     | 29.390 | 69.896           | 3.602          | 1.00 37 |      | 7 |    | C |
| ATOM     | 2471   | 0   | PRO |   |     | 28.338 | 70.249<br>68.681 | 4.629          | 1.00 38 |      | 7 |    | 0 |
| ATOM     | 2472   | N   | CYS | A | 228 | 29.584 | 00.001           | 3.023          | 1.00 36 | . 30 |   | •  | N |
|          |        |     |     |   |     |        |                  |                |         |      |   |    |   |

PCT/GB02/04872

#### 230/514

| ATOM | 2473 | CA  | CYS | Α | 338 | 28.545 | 67.668 | 4.601  | 1.00 | 37.92 | A   | С   |
|------|------|-----|-----|---|-----|--------|--------|--------|------|-------|-----|-----|
| ATOM | 2474 | CB  | CYS | Α | 338 | 28,666 | 66.778 | 3.371  | 1.00 | 40.62 | A   | С   |
|      | 2475 | SG  | CYS |   |     |        |        |        |      |       |     |     |
| ATOM |      |     |     |   |     | 29.659 | 65.296 | 3.669  |      | 46.61 | A   | S   |
| ATOM | 2476 | С   | CYS | A | 338 | 28.744 | 66.820 | 5.840  | 1.00 | 37.37 | Α   | С   |
| ATOM | 2477 | 0   | CYS | Α | 338 | 29.844 | 66.754 | 6.400  | 1.00 | 35.85 | A   | 0   |
| ATOM | 2478 | N   | MET | Δ | 339 | 27.670 | 66.163 | 6.250  |      | 37.63 | A   | N   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| MOTA | 2479 | ÇA  | MET |   |     | 27.686 | 65.329 | 7.434  |      | 38.05 | A   | С   |
| MOTA | 2480 | CB  | MET | Α | 339 | 26.366 | 64.576 | 7.553  | 1.00 | 36.86 | Α   | С   |
| MOTA | 2481 | CG  | MET | A | 339 | 25.283 | 65.424 | 8.153  | 1.00 | 35.00 | A   | С   |
|      |      |     | MET |   |     |        |        | 9.205  |      | 35.24 |     | s   |
| ATOM | 2482 | SD  |     |   |     | 25.993 | 66.712 |        |      |       | A   |     |
| MOTA | 2483 | CE  | MET | A | 339 | 26.191 | 65.778 | 10.804 | 1.00 | 32.88 | A   | C   |
| ATOM | 2484 | С   | MET | Α | 339 | 28.839 | 64.345 | 7.537  | 1.00 | 40.12 | A   | C   |
| ATOM | 2485 | 0   | MET | Δ | 339 | 29.406 | 64.137 | 8.616  | 1.00 | 40.08 | A   | 0   |
|      |      |     | GLN |   |     |        |        |        |      |       |     |     |
| ATOM | 2486 | N   |     |   |     | 29.172 | 63.721 | 6.417  |      | 42.67 | A   | N   |
| ATOM | 2487 | CA  | GLN | Α | 340 | 30.246 | 62.760 | 6.418  | 1.00 | 44.01 | Α   | С   |
| ATOM | 2488 | CB  | GLN | A | 340 | 30.453 | 62.205 | 5.011  | 1.00 | 47.22 | A   | С   |
| ATOM | 2489 | CG  | GLN |   |     | 29,679 | 60.927 | 4.697  |      | 52.42 | A   | С   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| ATOM | 2490 | CD  | GLN |   |     | 29.979 | 60.429 | 3.279  |      | 56.61 | A   | С   |
| ATOM | 2491 | OE1 | GLN | A | 340 | 31.151 | 60.354 | 2.876  | 1.00 | 57.82 | A   | ٥   |
| MOTA | 2492 | NE2 | GLN | A | 340 | 28.925 | 60.088 | 2.517  | 1.00 | 59.25 | Α   | N   |
| ATOM | 2493 | С   | GLN |   |     | 31.545 | 63.364 | 6.948  |      | 42.79 | A   | Ċ   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| ATOM | 2494 | 0   | GLN | A | 340 | 32.318 | 62.668 | 7.587  | 1.00 | 42.67 | A   | 0   |
| ATOM | 2495 | N   | ASP | A | 341 | 31.774 | 64.654 | 6.726  | 1.00 | 41.47 | A   | N   |
| ATOM | 2496 | CA  | ASP | Α | 341 | 33.011 | 65.266 | 7.187  | 1.00 | 42.00 | A   | С   |
| MOTA | 2497 | СВ  | ASP |   |     | 33.266 | 66.566 | 6.446  |      | 44.99 | A   | Č   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| MOTA | 2498 | CG  | ASP | Α | 341 | 33.413 | 66.349 | 4.971  | 1.00 | 50.47 | A   | С   |
| ATOM | 2499 | OD1 | ASP | Α | 341 | 34.153 | 65.399 | 4.587  | 1.00 | 53.34 | A   | 0   |
| ATOM | 2500 | OD2 | ASP | Α | 341 | 32,798 | 67.112 | 4.180  | 1.00 | 53.99 | A   | 0   |
|      | 2501 |     |     |   |     |        |        |        |      |       |     |     |
| ATOM |      | С   | ASP |   |     | 33.115 | 65.523 | 8.673  |      | 41.24 | A   | С   |
| ATOM | 2502 | 0   | ASP | Α | 341 | 34.129 | 66.026 | 9.150  | 1.00 | 39.19 | Α.  | 0   |
| ATOM | 2503 | N   | ARG | Α | 342 | 32.071 | 65.174 | 9.403  | 1.00 | 41.64 | A   | N   |
| ATOM | 2504 | CA  |     |   | 342 | 32.070 | 65.399 | 10.825 |      | 42.50 | A   | С   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| MOTA | 2505 | CB  | ARG |   |     | 30.646 | 65.332 | 11.376 |      | 40.83 | A   | С   |
| ATOM | 2506 | CG  | ARG | A | 342 | 30.582 | 65.517 | 12.880 | 1.00 | 38.16 | A   | С   |
| ATOM | 2507 | CD  | ARG | A | 342 | 29.201 | 65.855 | 13.371 | 1.00 | 37.30 | A   | С   |
| ATOM | 2508 | NE  | ARG |   |     | 28.256 | 64.755 | 13.334 |      | 37.41 | A   | N   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| ATOM | 2509 | CZ  | ARG | A |     | 27.109 | 64.772 | 14.005 | 1.00 | 40.06 | A   | С   |
| ATOM | 2510 | NH1 | ARG | Α | 342 | 26.790 | 65.820 | 14.758 | 1.00 | 41.00 | A   | N   |
| ATOM | 2511 | NH2 | ARG | A | 342 | 26.263 | 63.758 | 13.909 | 1.00 | 40.86 | A   | N   |
| ATOM | 2512 |     | ARG |   |     | 32.960 |        |        |      | 44.23 |     | Ċ   |
|      |      | С   |     |   |     |        | 64.417 | 11.573 |      |       | A   |     |
| MOTA | 2513 | 0   | ARG | A | 342 | 33.824 | 64.829 | 12.363 | 1.00 | 46.23 | A   | 0   |
| ATOM | 2514 | N   | SER | A | 343 | 32.768 | 63.120 | 11.337 | 1.00 | 44.73 | A   | N   |
| MOTA | 2515 | CA  | SER |   |     | 33.578 | 62.118 | 12.038 |      | 44.01 | A   | C   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| MOTA | 2516 | CB  | SER |   |     | 33.205 | 60.6B3 | 11,606 |      | 46.22 | A   | C   |
| ATOM | 2517 | OG  | SER | Α | 343 | 33.481 | 60.421 | 10.240 | 1.00 | 49.74 | A   | 0   |
| ATOM | 2518 | С   | SER | Α | 343 | 35.072 | 62.366 | 11.854 | 1.00 | 42.25 | A   | С   |
| ATOM | 2519 | 0   | SER |   |     | 35.879 | 61.895 | 12.652 |      | 43.04 | A   | 0   |
|      |      |     | HIS |   |     |        |        |        |      |       |     |     |
| MOTA | 2520 | N   |     |   |     | 35.439 | 63.130 | 10.829 |      | 40.88 | A   | N   |
| MOTA | 2521 | CA  | HIS | Α | 344 | 36.850 | 63.435 | 10.591 | 1.00 | 40.84 | A   | С   |
| ATOM | 2522 | CB  | HIS | Α | 344 | 37.153 | 63.461 | 9.088  | 1.00 | 45.39 | A   | С   |
| ATOM | 2523 | ĊG  | HIS |   |     | 36.928 | 62.149 | 8.398  |      | 50.18 | Α   | С   |
|      |      |     |     |   |     |        |        | 7.574  |      |       |     | č   |
| MOTA | 2524 |     | HIS |   |     | 35.934 | 61.733 |        |      | 52.89 | A   |     |
| ATOM | 2525 |     | HIS |   |     | 37.778 | 61.075 | 8.545  |      | 53.75 | A   | N   |
| ATOM | 2526 | CE1 | HIS | Α | 344 | 37.316 | 60.053 | 7.844  | 1.00 | 55,29 | A   | С   |
| ATOM | 2527 | NE2 | HIS | A | 344 | 36.197 | 60.425 | 7.245  | 1.00 | 54.35 | A   | N   |
|      | 2528 | С   | HIS |   |     |        | 64.782 | 11.196 |      | 38.92 | A   | ¢   |
| ATOM |      |     |     |   |     | 37.245 |        |        |      |       |     |     |
| ATOM | 2529 | 0   | HIS |   |     | 38.328 | 65.297 | 10.928 |      | 38.05 | A   | 0   |
| ATOM | 2530 | N   | MET | Α | 345 | 36.364 | 65.360 | 11.999 | 1.00 | 36.77 | A   | N   |
| ATOM | 2531 | CA  | MET | Α | 345 | 36.642 | 66.643 | 12.625 | 1.00 | 35.23 | A . | C·  |
|      |      | СВ  |     |   |     |        | 67.736 | 11.956 |      | 33.70 | A   | c   |
| ATOM | 2532 |     | MET |   |     | 35.B33 |        |        |      |       |     |     |
| ATOM | 2533 | CG  | MET | Α | 345 | 36.166 | 67.867 | 10.505 |      | 32.71 | Α   | С   |
| ATOM | 2534 | SD  | MET | Α | 345 | 34.955 | 68.796 | 9.597  | 1.00 | 30.40 | A   | S   |
| ATOM | 2535 | CE  | MET |   |     | 35.706 | 70.414 | 9.637  |      | 27.79 | A   | С   |
|      |      |     |     |   |     |        |        | 14.085 |      |       | A   | č   |
| ATOM | 2536 | С   | MET |   |     | 36.270 | 66.549 |        |      | 36.78 |     |     |
| ATOM | 2537 | 0   | MET |   |     | 35.250 | 67.071 | 14.522 |      | 37.96 | A   | . 0 |
| ATOM | 2538 | N   | PRÓ | Α | 346 | 37,120 | 65.904 | 14.876 | 1.00 | 36.38 | Α   | N   |
| ATOM | 2539 | CD  |     |   | 346 | 38.419 | 65.307 | 14.542 |      | 36.44 | A   | C   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| ATOM | 2540 | CA  |     |   | 346 | 36.832 | 65.752 | 16.296 |      | 33.50 | A   | C   |
| ATOM | 2541 | CB  | PRO | Α | 346 | 37.988 | 64.895 | 16.793 | 1.00 | 35.76 | A   | C   |
| ATOM | 2542 | CG  |     |   | 346 | 38,474 | 64.187 | 15.539 | 1.00 | 37.27 | Α   | С   |
| ATOM | 2543 | c   |     |   | 346 | 36,713 | 67.050 | 17.065 |      | 32.61 | A   | Ċ   |
|      |      |     |     |   |     |        |        |        |      |       |     |     |
| ATOM | 2544 | 0   |     |   | 346 | 35.761 | 67.237 | 17.829 |      | 33.29 | A   | 0   |
| MOTA | 2545 | N   | TYR | Α | 347 | 37.674 | 67.944 | 16.878 | 1.00 | 30.27 | A   | N   |
| MOTA | 2546 | CA  | TYR |   |     | 37.637 | 69.206 | 17.596 | 1.00 | 28.67 | A   | С   |
| MOTA | 2547 |     |     |   |     | 38.730 | 70.135 | 17.080 |      | 28.48 | A   | č   |
| WIOG | 2311 | ĊВ  | TYR | А | 341 | 30./30 |        |        | 1.00 | 20.40 | •   | •   |

| MOTA | 2548 | CG  | TYR | A | 347  | 38.974 | 71.272   | 18.018 | 1.00 | 27.88 |   | A   | С   |
|------|------|-----|-----|---|------|--------|----------|--------|------|-------|---|-----|-----|
| ATOM | 2549 | CD1 | TYR | Α | 347  | 39.349 | 71.032   | 19.329 | 1.00 | 27.34 |   | Α   | С   |
| ATOM | 2550 | CE1 | TYR | Δ | 347  | 39.499 | 72.061   | 20.227 |      | 27.49 |   | A   | Č   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| MOTA | 2551 |     | TYR |   |      | 38.761 | 72.580   | 17.623 | 1.00 | 29.48 | • | A   | С   |
| MOTA | 2552 | ÇE2 | TYR | Α | 347  | 38.906 | 73.622   | 18.515 | 1.00 | 29.54 |   | A   | С   |
| MOTA | 2553 | CZ  | TYR | Α | 347  | 39.273 | 73.356   | 19,818 | 1.00 | 28.72 |   | A   | С   |
| ATOM | 2554 | OH  | TYR |   |      | 39.375 | 74.395   | 20.714 |      | 30.73 |   | A   | ō   |
|      |      |     |     |   |      |        |          |        |      | _     |   |     |     |
| MOTA | 2555 | С   | TYR | A | 347  | 36.277 | 69.838   | 17.384 | 1.00 | 27.88 |   | A   | С   |
| ATOM | 2556 | 0   | TYR | Α | 347  | 35.492 | 69.993   | 18.316 | 1.00 | 27.39 |   | Α   | 0   |
| ATOM | 2557 | N   | THR | A | 348  | 36.000 | 70.183   | 16,138 | 1.00 | 26.92 |   | Α   | N   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2558 | CA  | THR |   |      | 34.735 | 70.790   | 15.803 |      | 26.62 |   | Α   | С   |
| ATOM | 2559 | CB  | THR | A | 348  | 34.585 | 70.825   | 14.323 | 1.00 | 27.60 |   | A   | С   |
| ATOM | 2560 | OG1 | THR | Α | 348  | 35.640 | 71.635   | 13.780 | 1.00 | 29.10 |   | A   | . 0 |
| ATOM | 2561 |     | THR |   |      | 33.251 | 71.412   | 13.959 |      | 27.60 |   | A   | Č   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2562 | С   | THR |   |      | 33.518 | 70.125   | 16.429 | 1.00 | 26.05 |   | A   | С   |
| ATOM | 2563 | 0   | THR | A | 348  | 32.735 | 70.778   | 17.128 | 1.00 | 26.31 |   | A   | 0   |
| ATOM | 2564 | N   | ASP | A | 349  | 33.345 | 68.836   | 16,184 | 1.00 | 25.61 |   | A   | N   |
| MOTA | 2565 | CA  | ASP |   | ,    | 32,216 | 68.157   | 16,771 |      | 25.56 |   | A   | C   |
|      |      |     |     |   |      |        |          | •      |      |       |   |     |     |
| ATOM | 2566 | CB  | ASP |   |      | 32.286 | 66,660   | 16.501 | 1.00 | 25.01 |   | A   | С   |
| ATOM | 2567 | CG  | ASP | Α | 349  | 31.071 | 65.938   | 17.007 | 1.00 | 28.16 |   | A   | С   |
| ATOM | 2568 | OD1 | ASP | Α | 349  | 30.811 | 66.057   | 18.216 | 1.00 | 32.44 |   | A   | 0   |
| ATOM | 2569 |     | ASP |   |      | 30,372 | 65.254   |        |      | 28.05 |   |     | ō   |
|      |      |     |     |   |      |        |          | 16.225 |      |       |   | A   |     |
| ATOM | 2570 | С   | ASP | A | 349  | 32.209 | 68.437   | 18.270 | 1.00 | 26.34 |   | A   | С   |
| ATOM | 2571 | 0   | ASP | Α | 349  | 31.145 | 68.533   | 18.887 | 1.00 | 27.40 |   | A   | 0   |
| ATOM | 2572 | N   | ALA | Α | 350  | 33.384 | 68.586   | 18.871 | 1.00 | 26.49 |   | A   | N   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2573 | CA  | ALA |   |      | 33.431 | 68.876   | 20.310 |      | 25.78 |   | A   | C   |
| MOTA | 2574 | CB  | ALA | A | 350  | 34.849 | 68.744   | 20.824 | 1.00 | 28.12 |   | A   | С   |
| ATOM | 2575 | С   | ALA | A | 350  | 32.908 | 70.284   | 20.589 | 1.00 | 25.64 |   | A   | С   |
|      | 2576 | 0   | ALA |   |      | 32.096 | 70.479   |        |      | 24.89 |   | A   | ō   |
|      |      |     |     |   |      |        |          |        |      |       | • |     |     |
| MOTA | 2577 | N   | VAL |   |      | 33.376 | 71.256   | 19.812 | 1.00 | 22.52 |   | A   | - N |
| MOTA | 2578 | CA  | VAL | Α | 351  | 32.922 | 72.609   | 20.007 | 1.00 | 19:54 |   | A   | С   |
| MOTA | 2579 | CB  | VAL | А | 351  | 33.495 | 73.525   | 18.952 | 1.00 | 20.03 |   | A   | С   |
| MOTA | 2580 |     |     |   |      |        |          |        |      | 20.69 |   |     |     |
|      |      |     | VAL |   |      | 32.840 | 74'.894' |        |      |       |   | A   | С   |
| ATOM | 2581 | CG2 | VAL | A | 351  | 35.001 | 73:630   | 19.155 | 1.00 | 20,22 |   | A   | С   |
| MOTA | 2582 | С   | VAL | A | 351  | 31.402 | 72.649   | 19.983 | 1.00 | 20.13 |   | A ` | С   |
| ATOM | 2583 | 0   | VAL | Δ | 351  | 30.761 |          | 20.940 |      | 19.84 |   | A   | . 0 |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| MOTA | 2584 | N   | VAL |   |      | 30.814 | 72.150   |        |      | 18.45 |   | A   | N   |
| MOTA | 2585 | CA  | VAL | Α | 352  | 29.357 | 72.125 / | 18.810 | 1.00 | 16.77 |   | A   | · С |
| ATOM | 2586 | CB  | VAL | Α | 352  | 28.881 | 71.273   | 17.641 | 1.00 | 16.46 |   | A   | С   |
| ATOM | 2587 |     | VAL |   |      | 27.363 | 71.210   |        |      | 16.11 |   | A   | Č   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2588 |     | VAL |   |      | 29.400 | 71.838   | 16.356 | 1.00 | 15.69 |   | A   | С   |
| ATOM | 2589 | C   | VAL | A | 352  | 28.715 | 71.540   | 20.081 | 1.00 | 18.89 |   | Α   | С   |
| ATOM | 2590 | 0   | VAL | A | 352  | 27.777 | 72.116   | 20.636 | 1.00 | 19.47 |   | A   | 0   |
| ATOM | 2591 | N . |     |   |      |        |          |        |      |       |   |     |     |
|      |      |     | HIS |   |      | 29.214 | 70.391   | 20.529 |      | 18.61 |   | A   | N   |
| MOTA | 2592 | CA  | HIS | A | 353  | 28.669 | 69.764   | 21.719 | 1.00 | 17.43 |   | A   | С   |
| MOTA | 2593 | CB  | HIS | Α | ·353 | 29.321 | 68.412   | 21.967 | 1.00 | 18.54 |   | A   | Ç   |
| MOTA | 2594 | CG  | HIS | A | 353  | 28.822 | 67.314   | 21.085 | 1 00 | 19.57 |   | A   | С   |
| ATOM | 2595 |     | HIS |   |      |        |          |        |      |       |   |     |     |
|      |      |     |     |   |      | 28.844 | 67.165   | 19.742 |      | 20.71 |   | A   | С   |
| MOTA | 2596 | NDI | HIS | A | 353  | 28.274 | 66.152   | 21.588 | 1.00 | 20.06 |   | A   | N   |
| ATOM | 2597 | CE1 | HIS | Α | 353  | 27.984 | 65.334   | 20.595 | 1.00 | 20.84 | • | A   | С   |
| MOTA | 2598 | NE2 | HIS | Δ | 353  | 28.322 | 65.926   | 19.461 | 1.00 | 21.67 |   | A   | N   |
| MOTA | 2599 | C   |     |   |      |        |          |        |      |       |   |     | Ċ   |
|      |      |     | HIS |   |      | 28.872 | 70.639   | 22.947 |      | 19.21 |   | A   |     |
| MOTA | 2600 | 0   | HIS | A | 353  | 27.932 | 70.888   | 23.695 | 1.00 | 17.74 |   | A   | 0   |
| MOTA | 2601 | N   | GLU | A | 354  | 30.104 | 71.085   | 23.159 | 1.00 | 20.08 |   | A   | N   |
| ATOM | 2602 | CA  | GLU | A | 354  | 30.428 | 71.938   | 24.287 | 1.00 | 21.64 |   | A   | С   |
| ATOM |      |     |     | _ |      |        |          |        |      |       |   |     |     |
|      | 2603 | CB  | GLU |   |      | 31.898 | 72.379   | 24.220 |      | 21.65 |   | A   | C   |
| ATOM | 2604 | CG  | GLU |   |      | 32.391 | 73.250   | 25.388 |      | 21.96 |   | A   | С   |
| ATOM | 2605 | CD  | GLU | Α | 354  | 32.096 | 72.664   | 26.766 | 1.00 | 25.18 |   | A   | С   |
| ATOM | 2606 | OE1 | GLU |   |      | 31.278 | 71.709   | 26.836 | 1.00 | 25.01 |   | A   | 0   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2607 |     | GLU |   |      | 32.660 | 73.162   | 27.798 |      | 24.77 |   | A   | 0   |
| ATOM | 2608 | С   | GLU | Α | 354  | 29.498 | 73.141   | 24.273 | 1.00 | 23.39 |   | Α   | С   |
| MOTA | 2609 | 0   | GLU | Α | 354  | 29.013 | 73.551   | 25.316 | 1.00 | 25.50 |   | A   | 0   |
| MOTA | 2610 | N   | VAL |   |      | 29.228 | 73.705   | 23.101 |      | 22.72 |   | A   | N   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2611 | CA  | VAL |   |      | 28.317 | 74.839   | 23.052 |      | 21.11 |   | A   | С   |
| MOTA | 2612 | CB  | VAL | Α | 355  | 28.151 | 75.372   | 21.636 | 1.00 | 21.76 |   | A   | С   |
| ATOM | 2613 |     | VAL |   |      | 26.896 | 76.226   | 21.530 |      | 22.19 |   | A   | C   |
|      |      |     |     |   |      | 29.370 |          |        |      |       |   |     |     |
| ATOM | 2614 |     | VAL |   |      |        | 76.176   | 21.278 |      | 22.72 |   | A ' | С   |
| ATOM | 2615 | С   | VAL | A | 355  | 26.961 | 74.414   | 23.603 | 1.00 | 21.67 |   | A   | С   |
| ATOM | 2616 | 0   | VAL | Α | 355  | 26.418 | 75.080   | 24.465 | 1.00 | 22.83 |   | A   | 0   |
| ATOM | 2617 | N   | GLN |   |      | 26.423 | 73.296   | 23.138 |      | 20.18 |   | A   | N   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2618 | CA  | GLN |   |      | 25.150 | 72.859   | 23.652 |      | 18.80 |   | A   | C   |
| MOTA | 2619 | CB  | GLN | A | 356  | 24.687 | 71.611   | 22.930 | 1.00 | 18.52 |   | A   | С   |
| ATOM | 2620 | CG  | GLN |   |      | 24.187 | 71.928   | 21.573 | 1.00 | 20.04 |   | A   | C   |
| ATOM | 2621 | CD  |     |   |      | 23.677 | 70.733   | 20.808 |      | 22.08 |   | A   | č   |
|      |      |     | GLN |   |      |        |          |        |      |       |   |     |     |
| ATOM | 2622 | OE1 | GLN | A | 355  | 24.439 | 70.032   | 20.136 | 1.00 | 22.27 |   | A·  | 0   |
|      |      |     |     |   |      |        |          |        |      |       |   |     |     |

# Figure 3

| ATOM | 2623 | NE2 | GLN | A | 356 | 22.376 | 70.484 | 20.910 | 1 00 21 22  | ı    |    |     |
|------|------|-----|-----|---|-----|--------|--------|--------|-------------|------|----|-----|
| ATOM | 2624 | C   |     |   | 356 | 25.175 | 72.611 |        | 1.00 21.73  |      | A  | N   |
|      | 2625 | ŏ   |     |   | 356 |        |        | 25.148 | 1.00 18.78  |      | A  | C   |
| ATOM |      |     |     |   |     | 24.316 | 73.100 | 25.861 | 1.00 20.56  |      | A  | 0   |
| ATOM | 2626 | N   |     |   | 357 | 26.166 | 71.885 | 25.647 | 1.00 20.09  |      | Α  | N   |
| MOTA | 2627 | CA  |     |   | 357 | 26.214 | 71.591 | 27.081 | 1.00 19.73  |      | A  | С   |
| MOTA | 2628 | СВ  | ARG | A | 357 | 27.345 | 70.622 | 27.387 | 1.00 19.64  |      | A  | . С |
| ATOM | 2629 | CG  | ARG | Α | 357 | 27.394 | 70.177 | 28.833 | 1.00 19.66  | i    | A  | Ć   |
| ATOM | 2630 | CD  | ARG | A | 357 | 28.800 | 69.761 | 29.191 | 1.00 18.65  |      | A  | č   |
| MOTA | 2631 | NE  |     |   | 357 | 29.650 | 70.926 | 29.097 | 1.00 19.20  |      |    |     |
| ATOM | 2632 | CZ  |     |   |     |        |        |        |             |      | A  | N   |
|      |      |     |     |   | 357 | 29.760 | 71.829 | 30.061 | 1.00 21.64  |      | A  | С   |
| ATOM | 2633 |     | ARG |   |     | 30.551 | 72.891 | 29.895 | 1.00 22.89  |      | Α  | N   |
| MOTA | 2634 | NH2 | ARG |   |     | 29.107 | 71.645 | 31.206 | 1.00 19.95  |      | A  | N   |
| ATOM | 2635 | С   | ARG | A | 357 | 26.381 | 72.799 | 27.992 | 1.00 21.42  |      | Α  | С   |
| ATOM | 2636 | 0   | ARG | A | 357 | 25.724 | 72.903 | 29.020 | 1.00 21.18  |      | A  | 0   |
| ATOM | 2637 | N   | TYR | Α | 358 | 27.286 | 73.692 | 27.636 | 1.00 22.29  |      | A  | N   |
| ATOM | 2638 | CA  |     |   | 358 | 27.523 | 74.856 | 28.455 | 1.00 24.34  |      | A  | č   |
| ATOM | 2639 | CB  |     |   | 358 | 28.617 | 75.699 | 27.860 |             |      |    |     |
| ATOM | 2640 | CG  |     |   | 358 |        |        |        | 1.00 25.29  |      | A  | C   |
|      |      |     |     |   |     | 28.753 | 77.064 | 28.485 | 1.00 27.17  |      | A  | С   |
| ATOM | 2641 |     | TYR |   |     | 28.256 | 78.202 | 27.847 | 1.00 28.53  |      | A  | С   |
| ATOM | 2642 | CE1 | TYR | A | 358 | 28.533 | 79.468 | 28.337 | 1.00 28.98  |      | A  | С   |
| ATOM | 2643 | CD2 | TYR | Α | 358 | 29.505 | 77.231 | 29.645 | 1.00 28.26  |      | A  | С   |
| ATOM | 2644 | CE2 | TYR | Α | 358 | 29.790 | 78.492 | 30.147 | 1.00 28.43  |      | A  | С   |
| ATOM | 2645 | CZ  | TYR | Α | 358 | 29.314 | 79.609 | 29.481 | 1.00 29.15  |      | A  | Č   |
| ATOM | 2646 | OH  | TYR |   |     | 29.702 | 80.868 | 29.889 | 1.00 29.63  |      | A  | ŏ   |
| ATOM | 2647 | c c | TYR |   |     | 26,348 |        |        |             |      |    |     |
|      | 2648 |     |     |   |     |        | 75.761 | 28.651 | 1.00 25.55  |      | A  | , C |
| ATOM |      | 0   | TYR |   |     | 26.027 | 76.147 | 29.778 | 1.00 25.62  |      | A  | 0   |
| MOTA | 2649 | N   | ILE |   |     | 25.720 | 76.142 | 27.549 | 1.00 24.64  |      | Α  | N   |
| MOTA | 2650 | CA  |     |   | 359 | 24.610 | 77.071 | 27.642 | 1.00 25.41  | -    | A  | С   |
| ATOM | 2651 | CB  | ILE | Α | 359 | 24.320 | 77.729 | 26.300 | 1.,00 22.79 |      | A  | С   |
| ATOM | 2652 | CG2 | ILE | A | 359 | 25.627 | 78.042 | 25,610 | 1.00 23.04  |      | A  | . с |
| ATOM | 2653 |     | ILE |   |     | 23.481 | 76.836 | 25.424 | 1.00 20.61  |      |    | Č   |
| ATOM | 2654 |     | ILE |   |     | 23.318 | 77.391 | 24.035 | 1.00 18.60  |      |    |     |
| ATOM | 2655 | C   | ILE |   |     |        |        |        |             |      | A  | C   |
|      |      |     |     |   |     | 23.346 | 76.481 | 28.205 |             |      | A  | С   |
| ATOM | 2656 | 0   | ILE |   |     | 22.563 | 77.177 | 28.848 | 1.00 29.12  |      | A  | . 0 |
| ATOM | 2657 | N   | ASP | A | 360 | 23,123 | 75.204 | 27.973 | 1.00 27.84  | . *. | Α  | N.  |
| ATOM | 2658 | CA  | ASP | A | 360 | 21.942 | 74.605 | 28.550 | 1.00 29.50  | · 42 | Α. | ·C  |
| ATOM | 2659 | CB  | ASP | A | 360 | 22.105 | 74.478 | 30.052 | 1.00 31.21  |      | Α  | С   |
| ATOM | 2660 | CG  | ASP | A | 360 | 20.927 | 73.829 | 30.673 |             |      | A  | Č   |
| ATOM | 2661 |     | ASP |   |     | 20.822 | 73.840 | 31.934 |             |      | A  |     |
| ATOM | 2662 |     | ASP |   |     |        |        |        |             |      |    | 0   |
|      |      |     |     |   |     | 20.102 | 73.299 | 29.866 |             |      | Ά  | 0   |
| ATOM | 2663 | C   | ASP |   |     | 20.670 | 75.380 | 28.301 | 1.00 27.99  |      | A  | С   |
| ATOM | 2664 | 0   | ASP |   |     | 20.145 | 76.040 | 29.198 | 1.00 28.65  |      | Α  | 0   |
| ATOM | 2665 | N   | LEU | A | 361 | 20.137 | 75.255 | 27.104 | 1.00 29.67  |      | A  | N   |
| MOTA | 2666 | CA  | LEU | A | 361 | 18.918 | 75.970 | 26.770 | 1.00 29.28  |      | A  | С   |
| ATOM | 2667 | CB  | LEU | Α | 361 | 18.693 | 75.864 | 25,278 | 1.00 27.03  |      | A  | C   |
| MOTA | 2668 | CG  | LEU | A | 361 | 19.127 | 77.130 | 24.547 | 1.00 27.15  |      | A  | Č   |
| ATOM | 2669 |     | LEU |   |     | 20.434 | 77.689 | 25.067 | 1.00 25.92  |      | A  | č   |
| ATOM | 2670 |     | LEU |   |     | 19.220 | 76.776 | 23.093 | 1.00 28.75  |      |    | č   |
| ATOM | 2671 | C   | LEU |   |     |        |        |        |             |      | A  |     |
|      |      |     |     |   |     | 17.638 | 75.597 | 27.516 | 1.00 29.93  |      | A  | C   |
| ATOM | 2672 | 0   | LEU |   |     | 16.814 | 76.461 | 27.797 | 1.00 30.77  |      | A  | 0   |
| MOTA | 2673 | N   | LEU |   |     | 17.466 | 74.323 | 27.840 | 1.00 29.09  |      | A  | N   |
| MOTA | 2674 | CA  | TEA | Α | 362 | 16.262 | 73.925 | 28.536 | 1.00 27.39  |      | A  | С   |
| ATOM | 2675 | CB  | LEU | Α | 362 | 15.469 | 72.960 | 27.665 | 1.00 23.92  |      | A  | С   |
| ATOM | 2676 | CG  | LEU | Α | 362 | 15.223 | 73.615 | 26.302 | 1.00 23.09  |      | A  | C   |
| ATOM | 2677 | CD1 | LEU | А | 362 | 14.448 | 72.698 |        |             |      | A  | č   |
| ATOM | 2678 |     | LEU |   |     | 14.472 | 74,907 | 26.496 | 1.00 23.43  |      | A  | č   |
| ATOM | 2679 | C   | LEU |   |     |        |        |        |             |      |    |     |
| ATOM | 2680 |     | LEU |   |     | 16.618 | 73.302 | 29.874 | 1.00 30.19  |      | A  | C   |
|      |      | 0   |     |   |     | 16.535 | 72.090 | 30.047 | 1.00 31.38  |      | A  | 0   |
| ATOM | 2681 | N   | PRO |   |     | 16.997 | 74.138 | 30.853 | 1.00 30.58  |      | A  | N   |
| MOTA | 2682 | CD  | PRO | A | 363 | 16.856 | 75.601 | 30.840 | 1.00 30.75  |      | Α  | С   |
| MOTA | 2683 | CA  | PRO | A | 363 | 17.385 | 73.685 | 32.190 | 1.00 30.29  |      | A  | С   |
| ATOM | 2684 | CB  | PRO | Α | 363 | 17.198 | 74.928 | 33.031 | 1.00 31.22  |      | A  | С   |
| ATOM | 2685 | CG  | PRO | Α | 363 | 17.611 | 75.995 | 32.105 | 1.00 30.67  |      | A  | C   |
| ATOM | 2686 | c   | PRO |   |     | 16.580 | 72.507 | 32.685 | 1.00 31.69  |      | A  | č   |
| ATOM | 2687 | ŏ   | PRO |   |     | 17.084 |        |        | 1.00 31.03  |      |    |     |
|      |      |     |     |   |     |        | 71.633 | 33.394 |             | •    | A  | 0   |
| ATOM | 2688 | N   | THR |   |     | 15.307 | 72.509 | 32.341 | 1.00 32.43  |      | A  | N   |
| ATOM | 2689 | CA  | THR |   |     | 14.413 | 71.421 | 32.692 | 1.00 32.78  |      | A  | С   |
| ATOM | 2690 | CB  | THR | Α | 364 | 13.287 | 71.890 | 33.590 | 1.00 33.76  |      | Α· | .C  |
| ATOM | 2691 | OG1 | THR | A | 364 | 12.238 | 72.440 | 32.795 | 1.00 35.03  |      | A  | 0   |
| ATOM | 2692 |     | THR |   |     | 13.788 | 72.946 | 34.550 | 1.00 32.31  |      | Α  | С   |
| MOTA | 2693 | C   | THR |   |     | 13.916 | 71.271 | 31.293 | 1.00 33.82  |      | A  | Č   |
| ATOM | 2694 |     | THR |   |     | 13.687 | 72.279 | 30.620 | 1.00 37.27  |      | A  | ŏ   |
| ATOM | 2695 |     |     |   |     |        |        |        |             |      |    |     |
|      |      |     | SER |   |     | 13,773 | 70.054 | 30.810 | 1.00 34.56  |      | A  | N   |
| ATOM | 2696 |     | SER |   |     | 13.354 | 69.934 | 29.424 | 1.00 33.37  |      | A  | C   |
| MOTA | 2697 | CB  | SER | Α | 365 | 13.390 | 68.47B | 28.968 | 1.00 34.02  |      | A  | С   |
|      |      |     |     |   |     |        | •      |        |             |      |    |     |

SUBSTITUTE SHEET (RULE 26)

| ATOM | 2698 | OG  | SER | A | 365 | 12.557 | 67.670 | 29.774 | 1.00 | 37.89 | A      | 0     |
|------|------|-----|-----|---|-----|--------|--------|--------|------|-------|--------|-------|
| ATOM | 2699 | С   |     |   | 365 | 11.960 | 70.472 | 29.270 |      | 32,14 | A      | Č     |
| ATOM | 2700 | 0   |     |   | 365 | 11.732 | 71.671 | 29.100 |      | 32.78 | Ä      | Ö     |
| ATOM | 2701 | N   |     |   | 366 | 11.025 | 69.550 | 29.303 |      | 31.62 | A      | N     |
| ATOM | 2702 | CA  | LEU |   |     | 9.664  | 69.907 | 29.177 |      | 30.94 | A      | Č     |
| ATOM | 2703 | СВ  |     |   | 366 | 9.166  | 69.597 | 27,788 |      | 29.91 | A      | č     |
| ATOM | 2704 | CG  | LEU |   |     | 8.753  | 70.865 | 27,025 |      | 29.47 | A      | c     |
| ATOM | 2705 |     | LEU |   |     | 9.957  | 71.741 | 26,766 |      | 28.90 | A      | Č     |
| ATOM | 2706 |     | LEU |   |     | 8.096  | 70.474 | 25.709 |      | 28.22 | A      | c     |
| ATOM | 2707 | c   |     |   | 366 | 8.963  | 69.079 | 30.205 |      | 32.79 | A      | Č     |
| ATOM | 2708 | ō   | LEU |   |     | 9.387  | 67.987 | 30.552 |      | 33.64 | A      | Ö     |
| ATOM | 2709 | N   |     |   | 367 | 7.874  | 69.603 | 30.733 |      | 33.65 | A      | N     |
| ATOM | 2710 | CD  |     |   | 367 | 7.280  | 70.930 | 30.733 |      | 34.99 | A      |       |
| ATOM | 2711 | CA  |     |   | 367 | 7.141  | 68.858 |        |      |       |        | C     |
| ATOM | 2712 | CB  |     |   | 367 | 5.914  | 69.724 | 31.745 |      | 34.24 | A      | C     |
| ATOM | 2713 | CG  |     |   | 367 | 6.481  | 71.135 | 31.956 |      | 35.24 | A      | C     |
| ATOM | 2714 | C   |     |   | 367 | 6.822  |        | 31.763 |      | 36.37 | A      | C     |
| ATOM | 2715 | ō   |     |   | 367 |        | 67.442 | 31.282 |      | 34.46 | A      | C     |
| ATOM | 2716 | N   |     |   |     | 6.531  | 67.206 | 30.109 |      | 35.00 | A      | 0     |
| ATOM |      |     |     |   | 368 | 6.939  | 66.490 | 32.197 |      | 35.22 | A      | N     |
|      | 2717 | CA  | HIS |   |     | 6.618  | 65.095 | 31.908 |      | 37.51 | A      | C     |
| MOTA | 2718 | CB  | HIS |   |     | 7.797  | 64.174 | 32.187 |      | 38.53 | A      | С     |
| ATOM | 2719 | CG  | HIS |   |     | 8.782  | 64.085 | 31.066 |      | 38.03 | Α.     | C     |
| ATOM | 2720 |     | HIS |   |     | 9.902  | 64.798 | 30.814 |      | 38.80 | A      | С     |
| ATOM | 2721 |     | HIS |   |     | 8.668  | 63.168 | 30.048 |      | 38.12 | A      | N     |
| ATOM | 2722 |     | HIS |   |     | 9.683  | 63.318 | 29.212 |      | 39.53 | A      | С     |
| ATOM | 2723 |     | HIS |   |     | 10.443 | 64.300 | 29.654 |      | 38.69 | A      | N     |
| ATOM | 2724 | C   | HIS |   |     | 5.516  | 64.733 | 32.871 |      | 39.31 | A      | С     |
| MOTA | 2725 | 0   | HIS |   |     | 5.136  | 65.541 | 33.719 |      | 38.83 | A      | 0     |
| ATOM | 2726 | N   | ALA |   |     | 5.026  | 63.504 | 32.765 |      | 42.56 | A      | N ·   |
| ATOM | 2727 | CA  | ALA |   |     | 3.956  | 63.038 | 33.642 |      | 45.35 | A      | C     |
| ATOM | 2728 | CB  | ALA |   |     | 2.646  | 63.679 | 33.228 | 1.00 | 46.72 | A      | C;    |
| ATOM | 2729 | С   | ALA |   |     | 3.809  | 61.523 | 33.614 | 1.00 | 45.82 | Α      | С,    |
| MOTA | 2730 | 0   | ALA |   |     | 3.492  | 60.943 | 32.578 | 1.00 | 46.68 | A      | 0     |
| MOTA | 2731 | N   | VAL | A | 370 | 4.010  | 60.879 | 34.754 | 1.00 | 47.03 | A      | · N - |
| ATOM | 2732 | CA  | VAL | A | 370 | 3.886  | 59.437 | 34.775 | 1.00 | 48.75 | A      | C     |
| ATOM | 2733 | CB  | VAL | A | 370 | 3.969  | 58.900 | 36.182 | 1.00 | 49.11 | A      | C -   |
| MOTA | 2734 | CG1 | VAL | A | 370 | 5,367  | 59.138 | 36.712 | 1.00 | 49.22 | A      | С     |
| MOTA | 2735 | CG2 | VAL | A | 370 | 2.949  | 59.595 | 37.050 | 1.00 | 51.71 | A      | ·C    |
| ATOM | 2736 | С   | VAL | Α | 370 | 2.613  | 58.953 | 34.094 | 1.00 | 50.84 | A      | С     |
| ATOM | 2737 | 0   | VAL | A | 370 | 1.584  | 59.632 | 34.057 | 1.00 | 50.00 | A      | 0     |
| ATOM | 2738 | N   | THR | A | 371 | 2.723  | 57.753 | 33.546 | 1.00 | 54.27 | A      | N     |
| ATOM | 2739 | CA  | THR | A | 371 | 1.668  | 57.115 | 32.789 |      | 58.36 | A      | С     |
| ATOM | 2740 | CB  | THR | A | 371 | 2.332  | 56.203 | 31.736 |      | 57.29 | A      | Ċ     |
| ATOM | 2741 | OG1 | THR |   |     | 1.773  | 56.459 | 30.445 |      | 58.30 | A      | ō     |
| ATOM | 2742 |     | THR |   |     | 2.155  | 54.744 | 32.094 |      | 58.90 | A      | č     |
| ATOM | 2743 | C   | THR |   |     | 0.678  | 56.335 | 33.660 |      | 61.81 | A      | Č     |
| ATOM | 2744 | ō   | THR |   |     | -0.464 | 56.106 | 33.256 |      | 61.94 | A      | ŏ     |
| ATOM | 2745 | · N | CYS |   |     | 1.126  | 55.929 | 34.850 |      | 66.36 | A      | N     |
| ATOM | 2746 | CA  | CYS |   |     | 0.296  | 55.169 | 35.797 |      | 70.81 | A      | Ċ     |
| ATOM | 2747 | СВ  | CYS |   |     | 0.105  | 53.724 | 35.300 |      | 72.43 | A      | Č     |
| ATOM | 2748 | SG  | CYS |   |     | 1.621  | 52.717 | 35.153 |      | 76.70 | A      | s     |
| ATOM | 2749 | c   | CYS |   |     | 0.931  | 55.160 | 37.192 |      | 72.31 | A      | č     |
| ATOM | 2750 | ō   | CYS |   |     | 2.107  | 55.492 | 37.336 |      | 73.76 | A      | ŏ     |
| ATOM | 2751 | N   | ASP |   |     | 0.180  | 54.790 | 38.226 |      | 73.40 | A      | N     |
| ATOM | 2752 | CA  | ASP |   |     | 0.760  | 54.773 | 39.579 |      | 74.50 | A      | c     |
| ATOM | 2753 | CB  | ASP |   |     | -0.248 | 54.209 | 40.593 |      | 74.83 | A      | Č.    |
| ATOM | 2754 | CG  | ASP |   |     | -1.519 | 55.047 | 40.691 |      | 76.03 | A.     | č     |
| MOTA | 2755 |     | ASP |   |     | -2.288 | 55.078 | 39.704 |      | 76.38 | A      | ŏ     |
| ATOM | 2756 |     | ASP |   |     | -1.750 | 55.672 | 41.752 |      | 75.86 | A      | ŏ     |
| ATOM | 2757 | C   | ASP |   |     | 2.039  | 53.924 | 39.576 |      | 74.47 | A<br>A | Č     |
| ATOM | 2758 | Ö   |     |   |     | 2.039  |        |        |      | 74.89 |        |       |
| ATOM | 2759 |     | ASP |   |     | 3.096  | 52.845 | 38.989 |      |       | A      | 0     |
|      |      | N   | ILE |   |     |        | 54.413 | 40.213 |      | 73.54 | A      | N     |
| ATOM | 2760 | CA  | ILE |   |     | 4.344  | 53.660 | 40.245 |      | 73.51 | A      | C     |
| ATOM | 2761 | CB  | ILE |   |     | 5.243  | 54.002 | 39.028 |      | 72.68 | A      | C     |
| ATOM | 2762 |     | ILE |   |     | 5.668  | 55.466 | 39.080 |      | 69.86 | A      | C     |
| ATOM | 2763 |     | ILE |   |     | 6.472  | 53.076 | 39.008 |      | 72.83 | A      | Ċ     |
| ATOM | 2764 |     | ILE |   |     | 6.133  | 51.578 | 38.943 |      | 72.87 | A      | Ċ     |
| ATOM | 2765 | С   | ILE |   |     | 5.168  | 53.864 | 41.510 |      | 73.93 | A      | С     |
| ATOM | 2766 | 0   | ILE |   |     | 5.151  | 54.936 | 42.112 |      | 74.28 | A      | 0     |
| ATOM | 2767 | N   | LYS |   |     | 5.878  | 52.816 | 41.917 |      | 73.55 | A      | N     |
| ATOM | 2768 | CA  | LYS |   |     | 6.727  | 52.873 | 43.099 |      | 73.14 | A      | С     |
| ATOM | 2769 | CB  | LYS |   |     | 6.723  | 51.518 | 43.828 |      | 74.76 | A      | С     |
| ATOM | 2770 | CG  | LYS |   |     | 7.382  | 51.539 | 45.212 |      | 75.55 | A      | С     |
| ATOM | 2771 | ÇD  | LYS |   |     | 6.504  | 50.867 | 46.287 |      | 76.43 | A      | С     |
| ATOM | 2772 | CE  | LYS | A | 375 | 7.127  | 49.578 | 46.843 | 1.00 | 77.31 | A      | С     |
|      |      |     |     |   |     |        |        |        |      |       |        |       |

| ATOM   | 2773 | NZ   | LYS A | Α : | 375   | 7.303  | 48.520   | 45.798 | 1.00 | 77.65   |   | A   | N   |
|--------|------|------|-------|-----|-------|--------|----------|--------|------|---------|---|-----|-----|
| ATOM . | 2774 |      | LYS I |     |       | 8.118  | 53.216   | 42.592 | 1.00 | 71.80   |   | A   | С   |
|        |      | -    | LYS   |     |       | 8.832  | 52.373   | 42.045 | 1.00 | 72.13   |   | A   | 0   |
| ATOM   | 2775 | -    |       |     |       | 8.491  | 54.473   | 42.754 | 1.00 | 69.44   |   | A   | N   |
| MOTA   | 2776 |      | PHE I |     |       |        |          | 42.286 |      | 66.83   |   | A   | C   |
| ATOM   | 2777 |      | PHE 2 |     |       | 9.779  | 54.925   |        |      | 64.93   |   | A   | č   |
| ATOM   | 2778 | ÇВ   | PHE I |     |       | 9.597  | 56.201   | 41.482 |      |         |   |     | Č   |
| MOTA   | 2779 | CG   | PHE : | A   | 376   | 10.864 | 56.764   | 40.958 |      | 63.16   |   | A   |     |
| MOTA   | 2780 | CD1  | PHE : | Α   | 376   | 11.613 | 56.071   | 40.018 |      | 63.22   |   | A   | C   |
| ATOM   | 2781 | CD2  | PHE   | Α   | 376   | 11.309 | 58.000   | 41.396 | 1.00 | 62.33   |   | A   | С   |
| MOTA   | 2782 |      | PHE   |     |       | 12.791 | 56.611   | 39.517 | 1.00 | 63.21   |   | Α.  | С   |
|        |      |      | PHE   |     |       | 12.483 | 58.550   | 40.903 | 1.00 | 62.26   |   | A   | С   |
| ATOM   | 2783 |      |       |     |       | 13.227 | 57.855   | 39.962 |      | 62.61   |   | A   | С   |
| MOTA   | 2784 | CZ   | PHE . |     |       |        | 55.177   | 43.477 |      | 66.75   |   | A   | С   |
| ATOM   | 2785 | С    | PHE   |     |       | 10.674 |          |        |      | 66.50   |   | A   | ŏ   |
| MOTA   | 2786 | 0    | PHE   |     |       | 10.351 | 55.996   | 44.335 |      |         |   |     | N   |
| ATOM   | 2787 | N    | ARG   | A   | 377   | 11,791 | 54.464   | 43.544 |      | 66.56   |   | A   |     |
| MOTA   | 2788 | CA   | ARG   | A   | 377   | 12.715 | 54.636   | 44.651 |      | 66.66   |   | A   | C   |
| ATOM   | 2789 | CB   | ARG   | A   | 377   | 13.396 | 56.007   | 44.541 |      | 65.79   |   | A   | С   |
| ATOM   | 2790 | CG   | ARG   |     |       | 14.213 | 56.218   | 43.250 | 1.00 | 65.17   |   | A   | С   |
| ATOM   | 2791 | CD   | ARG   |     |       | 15.688 | 55.843   | 43.408 | 1.00 | 63.83   |   | A   | С   |
|        |      |      | ARG   |     | 377   | 16.549 | 57.010   | 43.638 | 1.00 | 60.17   |   | A   | N   |
| ATOM   | 2792 | NE   |       |     |       | 17.606 | 57.321   | 42.886 |      | 58.46   |   | Α   | С   |
| ATOM   | 2793 | CZ   | ARG   |     | 377   |        | 56.559   | 41.854 |      | 56.72   |   | A   | N   |
| MOTA   | 2794 |      | ARG   |     | 377   | 17.940 |          |        |      | 56.82   |   | A   | N   |
| MOTA   | 2795 | NH2. | ARG   |     | 377   | 18.334 | 58.391   | 43.165 |      |         |   |     | Ċ   |
| MOTA   | 2796 | С    | ARG   | А   | 377   | 11.950 | 54.515   | 45.975 |      | 67.61   | • | A   |     |
| MOTA   | 2797 | 0    | ARG   | A   | 377   | 12.301 | 55.161   | 46.964 |      | 66.26   |   | A   | 0   |
| ATOM   | 2798 | N    | ASN   |     |       | 10.904 | 53.683   | 45.969 |      | 68.43   |   | A   | N   |
| ATOM   | 2799 | CA   | ASN   |     |       | 10.062 | 53.437   | 47.148 | 1.00 | 70.36   |   | A   | С   |
| ATOM   | 2800 | CB   | ASN   |     |       | 10.917 | 52.795   | 48.263 | 1.00 | 73.13   |   | A   | С   |
|        |      |      | ASN   |     |       | 10.090 | 52.039   | 49.332 | 1.00 | 76.47   |   | A   | С   |
| ATOM   | 2801 | CG   |       |     |       | 10.659 | 51.537   | 50.316 |      | 77.99   |   | A   | 0   |
| MOTA   | 2802 |      | ASN   |     |       |        |          |        |      | 77.44   |   | A   | N   |
| ATOM   | 2803 |      | ASN   |     |       | 8.769  | 51.946   | 49.141 |      |         |   | A   | Ċ   |
| ATOM,  | 2804 | C .  | ASN   |     |       | 9.431  | 54.758   | 47.635 |      | 69.43   |   |     |     |
| MOTA   | 2805 | 0    | ASN   | Α   | 378 · | 9.447  | 55.054   | 48.833 |      | 69.13   |   | A   | 0 . |
| ATOM   | 2806 | N    | TYR   | A   | 379   | 8.875  | 55.551   | 46.712 |      | 68.24   |   | A   | N   |
| ATOM   | 2807 | CA   | TYR   | A   | 379   | 8.251  | 56.828   | 47.086 | 1.00 | 67.10   |   | A · |     |
| ATOM   | 2808 | СВ   | TYR   |     |       | 8.996  | 58.015   | 46.443 | 1.00 | 65.63   |   | A   | С   |
|        |      |      | TYR   |     |       | 10.148 | 58.536   | 47.284 | 1.00 | 65.34   |   | A   | С   |
| MOTA   | 2809 | CG   |       |     |       | 11.480 | 58.259   | 46.942 |      | 65.53   |   | A   | С   |
| MOTA   | 2810 |      | TYR   |     |       |        | 58.702   | 47.744 |      | 65.75   |   | A   | С   |
| ATOM   | 2811 |      | TYR   |     |       | 12.544 |          | 48.446 |      | 64.24   |   | A   | С   |
| ATOM   | 2812 |      | TYR   |     |       | 9.907  | 59.269   |        |      | 64.92   |   | A   | č   |
| ATOM   | 2813 | CE2  | TYR   | Α   | 379   | 10.955 | 59.713   | 49.249 |      |         |   |     | č   |
| ATOM   | 2814 | CZ   | TYR   | A   | 379   | 12.269 | 59.428   |        |      | 65.93   |   | A   |     |
| ATOM   | 2815 | OH   | TYR   | A   | 379   | 13.304 | 59.864   | 49.706 |      | 66.04   |   | A   | 0   |
| ATOM   | 2816 | С    | TYR   | Α   | 379   | 6.757  | 56.922   | 46.778 | 1.00 | 66.78   |   | A   | С   |
| MOTA   | 2817 | ō    | TYR   |     | _     | 6.020  | 57.646   | 47.458 | 1.00 | 67.86   |   | Α   | 0   |
| MOTA   | 2818 | N    |       |     | 380   | 6.314  | 56.170   | 45.774 | 1.00 | 66.11   |   | Α   | N   |
|        |      | CA   |       |     | 380   | 4.910  | 56.157   | 45.358 | 1.00 | 66.42   |   | A ' | , с |
| MOTA   | 2819 |      |       |     | 380   | 3.985  | 55.815   | 46.550 |      | 67.38   |   | A   | С   |
| MOTA   | 2820 | CB   | _     |     |       |        |          | 46.398 |      | 69.09   |   | A   | С   |
| MOTA   | 2821 |      | LEU   |     |       | 2.448  | 55.892   |        |      |         |   | A   | Č   |
| MOTA   | 2822 |      | LEU   |     |       | 1.991  | 54.981   | 45.265 |      | 67.54   |   | A   | č   |
| ATOM   | 2823 | CD2  | LEU   | Α   | 380   | 1.752  | 55.503   | 47.719 |      | 69.45   |   |     |     |
| MOTA   | 2824 | С    | LEU   | Α   | 380   | 4.496  | 57.487   | 44.716 |      | 64.57   |   | A   | C   |
| MOTA   | 2825 | 0    | LEU   | A   | 380   | 4.268  | 58.486   | 45.403 | 1.00 |         |   | A   | 0   |
| ATOM   | 2826 | N    |       |     | 381   | 4.420  | 57.484   | 43.385 |      | 63.06   |   | A   | N   |
|        | 2827 | CA   |       |     | 381   | 4.028  |          | 42.598 | 1.00 | 60.46   |   | A   | С   |
| ATOM   |      | СВ   |       |     | 381   | 5.150  |          | 41.592 | 1.00 | 58.36   |   | A   | С   |
| ATOM   | 2828 |      |       |     |       | 4.755  |          | 40.856 |      | 57.52   |   | Α   | C   |
| MOTA   | 2829 |      | ILE   |     |       |        |          | 42.338 |      | 57.06   |   | A   | С   |
| MOTA   | 2830 |      | ILE   |     |       | 6.446  |          |        |      | 56.71   |   | A   | С   |
| MOTA   | 2831 | CD3  | ILE   |     |       | 7.651  |          | 41.439 | 1.0  | 0 50.71 |   | A   | č   |
| ATOM   | 2832 | С    | ILE   | A   | 381   | 2.758  |          |        | 1.0  | 59.27   |   |     |     |
| ATOM   | 2833 | 0    | ILE   | ŢΑ  | 381   | 2.802  | 57.521   |        |      | 59.80   |   | A   | 0   |
| ATOM   | 2834 | N    |       |     | 382   | 1.610  | 58.858   | 42.221 |      | 0 57.81 |   | A   | Ŋ   |
| ATOM   | 2835 | CD   |       |     | 382   | 1.500  |          |        |      | 0 57.70 |   | A   | C   |
|        | 2836 |      |       |     | 382   | 0.315  |          | 41.583 | 1.0  | 0 57.56 |   | A   | С   |
| ATOM   |      | CA   |       |     |       | -0.635 |          |        |      | 0 57.02 |   | A   | С   |
| ATOM   | 2837 | CB   |       |     | 382   |        |          |        |      | 0 58.19 |   | A   | С   |
| ATOM   | 2838 | CG   |       |     | 382   | 0.229  |          |        |      | 0 55.87 |   | A   | . c |
| MOTA   | 2839 | С    |       |     | 382   | 0.301  |          |        |      |         |   | A   | 0   |
| MOTA   | 2840 | 0    | PRO   | ) P | 382   | 1.176  |          |        |      | 0 54.08 |   |     |     |
| ATOM   | 2841 | N    | LYS   | F   | 383   | -0.695 | 58.515   |        |      | 0 56.59 |   | A   | N   |
| ATOM   | 2842 |      |       |     | 383   | -0.837 | 58.798   | 37.964 |      | 0 57.99 |   | A   | C   |
| MOTA   | 2843 |      |       |     | 383   | -1.875 |          |        |      | 0 59.23 |   | A   | С   |
| MOTA   | 2844 |      |       |     | 383   | -2.116 |          |        | 1.0  | 0 62.82 |   | A   | С   |
|        |      |      |       |     | 383   | -3.091 |          |        |      | 0 65.11 |   | A   | С   |
| MOTA   | 2845 |      |       |     |       | -4.526 |          |        |      | 0 66.33 |   | A   | С   |
| MOTA   | 2846 |      |       |     | 383   |        |          |        | 1 0  | 0 67.10 |   | A   | N   |
| ATOM   | 2847 | NZ   | LYS   | j F | 383   | -5.513 | 3 56.591 | 33,004 | 1.0  |         |   |     |     |

Figure 3

|        |       |     |     |   |       |         |        |        | •                        |                |     |
|--------|-------|-----|-----|---|-------|---------|--------|--------|--------------------------|----------------|-----|
| ATOM   | 2848  | С   | LYS | A | 383   | -1.248  | 60.243 | 37.678 | 1.00 57.17               | A              | С   |
| ATOM   | 2849  | ō   | LYS |   |       | -2.173  | 60.762 | 38.293 | 1.00 59.08               | A              | 0   |
| ATOM   | 2850  | N   | GLY |   |       | -0.565  | 60.887 | 36.740 | 1.00 54.71               | A              | N   |
| ATOM   | 2851  | CA  | GLY |   |       | -0.909  | 62.254 | 36.411 | 1.00 51.57               | A              | С   |
| ATOM   | 2852  | c   | GLY |   |       | 0.039   | 63.311 | 36.940 | 1.00 49.77               | A              | С   |
|        | 2853  | ŏ   | GLY |   |       | 0.293   | 64.314 | 36.260 | 1.00 50.34               | A              | ō   |
| ATOM   |       |     | THR |   |       | 0.577   | 63.096 | 38.138 | 1.00 47.45               | A              | N   |
| MOTA   | 2854  | N   |     |   |       |         | 64.062 | 38.729 | 1.00 44.96               | A              | Ċ   |
| MOTA   | 2855  | CA  | THR |   |       | 1.499   |        |        | 1.00 45.73               | A              | č   |
| MOTA   | 2856  | CB  | THR |   |       | 2.135   | 63.535 | 40.043 |                          | A              | ŏ   |
| ATOM   | 2857  |     | THR |   |       | 2.771   | 62.272 | 39.808 | 1.00 46.81               |                |     |
| MOTA   | 2858  | CG2 | THR |   |       | 1.070   | 63.379 | 41.125 | 1.00 46.69               | A              | C   |
| ATOM   | 2859  | С   | THR |   |       | 2.607   | 64.428 | 37.753 | 1.00 42.58               | A              | C   |
| ATOM   | 2860  | 0   | THR |   |       | 3.270   | 63.565 | 37.176 | 1.00 42.89               | A              | 0   |
| MOTA   | 2861  | N   | THR | A | 386   | 2.779   | 65.725 | 37.556 | 1.00 38.75               | A              | N   |
| ATOM   | 2862  | CA  | THR | A | 386   | 3.795   | 66.234 | 36.651 | 1.00 35.50               | A              | C   |
| MOTA   | 2863  | CB  | THR | A | 386   | 3.653   | 67.739 | 36.516 | 1.00 35.22               | A              | ¢   |
| ATOM   | 2864  | OG1 | THR | A | 386   | 2.334   | 68.044 | 36.045 | 1.00 36.11               | A              | 0   |
| ATOM   | 2865  | CG2 | THR | A | 386   | 4.675   | 68.280 | 35.554 | 1.00 35.18               | A              | С   |
| ATOM   | 2866  | С   | THR | A | 386   | 5.192   | 65.902 | 37.151 | 1.00 33.78               | A              | С   |
| ATOM   | 2867  | 0   | THR | A | 386   | 5.425   | 65.826 | 38.358 | 1.00 33.72               | A              | 0   |
| ATOM   | 2868  | N   | ILE | A | 387   | 6.115   | 65.690 | 36.217 | 1.00 32.68               | A              | N   |
| ATOM   | 2869  | CA  | ILE |   |       | 7.500   | 65.363 | 36.557 | 1.00 31.09               | A              | С   |
| ATOM   | 2870  | CB  | ILE |   |       | 7.917   | 64.002 | 35.981 | 1.00 31.44               | A              | С   |
| ATOM   | 2871  |     | ILE |   |       | 9.325   | 63.667 | 36.422 | 1.00 31.38               | A              | С   |
| ATOM   | 2872  |     | ILE |   |       | 6.951   | 62.920 | 36.445 | 1.00 32.87               | A              | С   |
| ATOM   | 2873  |     | ILE |   |       | 6.909   | 62,767 | 37.938 | 1.00 33.98               | A              | С   |
| ATOM   | 2874  | C   | ILE |   |       | 8.420   | 66.405 | 35.951 | 1.00 29.90               | A              | С   |
|        |       |     | ILE |   |       | 8.273   |        | 34.795 | 1.00 29.81               | A              | 0   |
| ATOM   | 2875  | 0   |     |   | 388   | 9.378   | 66.880 | 36.715 | 1.00 28.61               | A              | N   |
| MOTA   | 2876  | N   |     |   | 388   | 10.270  | 67.869 | 36.167 | 1.00 28.48               | A              | Ċ   |
| ATOM   | 2877  | CA  |     |   |       |         |        | 37.029 | 1.00 29.26               | A              | č   |
| ATOM   | 2878  | CB  |     |   | 388   | 10.231  |        |        | 1.00 25.20               | A              | č   |
| ATOM   | 2879  | CG  |     |   | 388   | 9.593   | 70.386 | 36.424 |                          | A              | C   |
| ATOM   | 2880  |     |     |   | 388   | 9.409   | 71.447 | 37.496 | 1.00 32.12               |                | . C |
| ATOM   | 2881  |     |     |   | 388   | 10.465  | 70.914 | 35.322 | 1.00 31.58               | A              |     |
| ATOM   | 2882  | С   | LEU |   |       | 11.683  | 67.306 | 36.076 | 1.00 28.56               | A              | C   |
| ATOM   | 2883  | 0   |     |   | 388   | .12.279 | 66,917 | 37.080 | 1.00 29.38               | A              | 0   |
| ATOM   | 2884  | N   |     |   | 389   | 12.212  | 67.256 | 34.860 | 1.00 26.86               | A              | N   |
| MOTA   | ·2885 | CA  | ILE | A | 389   | 13.542  | 66.727 | 34.644 | 1.00 24.74               | A              | C   |
| MOTA   | 2886  | CB  | ILE | A | 389   | 13.668  | 66.019 | 33.303 | 1.00 24.76               | A              | С   |
| ATOM   | 2887  | CG2 | IPE | A | 389   | 15.124  | 65.612 | 33.081 | 1.00 26.45               | A              | C   |
| ATOM   | 2888  | CG1 | ILE | A | 389   | 12.732  | 64.823 | 33.263 | 1.00 24.13               | A              | С   |
| MOTA   | 2889  | CD1 | ILE | A | 389   | 12.909  | 63.882 | 34.425 | 1.00 21.64               | A              | C   |
| MOTA   | 2890  | С   | ILE | A | 389   | 14.611  | 67.776 | 34.668 | 1.00 24.24               | A              | С   |
| ATOM   | 2891  | 0   | ILE | A | 389   | 14.622  | 68.700 | 33.853 | 1.00 25.19               | A              | 0   |
| ATOM   | 2892  | N   | SER | A | 390   | 15.549  | 67.616 | 35.577 | 1.00 23.48               | A              | N   |
| MOTA   | 2893  | CA  | SER | A | 390   | 16.605  | 68.593 | 35.661 | 1.00 23.33               | A              | С   |
| ATOM   | 2894  | CB  | SER | A | 390   | 17.109  | 68.712 | 37.087 | 1.00 23.70               | A              | C   |
| MOTA   | 2895  | OG  | SER | A | 390   | 18.164  | 69.648 | 37.121 | 1.00 25.64               | · A            | . 0 |
| MOTA   | 2896  | С   | SER | A | 390   | 17.786  | 68.316 | 34.759 | 1.00 23.55               | A              | С   |
| MOTA   | 2897  | 0   | SER | A | 390   | 18.843  | 67.908 | 35.227 | 1.00 23.30               | A              | 0   |
| MOTA   | 2898  | N   | LEU | A | 391   | 17.618  | 68.560 | 33.470 | 1.00 22.57               | A              | N   |
| MOTA   | 2899  | CA  | LEU | A | 391   | 18.710  | 68.363 | 32.539 | 1.00 21.67               | A              | С   |
| MOTA   | 2900  | СВ  |     |   | 391   | 18.348  | 68.897 | 31.173 | 1.00 18.58               | · A            | С   |
| ATOM   | 2901  |     |     |   | 391   | 17.093  | 68.221 | 30.668 | 1.00 16.61               | A              | С   |
| ATOM   | 2902  |     | LEU |   |       | 16.871  | 68.651 | 29.242 | 1.00 13.19               | A              | С   |
| ATOM   | 2903  |     | LEU |   |       | 17.223  | 66.713 | 30.785 | 1.00 15.02               | A              | С   |
| ATOM   | 2904  | c   |     |   | 391   | 19.956  | 69.080 | 33.000 | 1.00 23.22               | A              | С   |
| ATOM   | 2905  | ŏ   |     |   | 391   | 21.056  | 68.562 | 32.849 | 1.00 23.37               | A              | 0   |
|        | 2906  | N   |     |   | 392   | 19.795  | 70.277 | 33.544 | 1.00 24.12               | A              | N   |
| MOTA   |       |     |     |   |       | 20.964  | 70.998 | 33.984 | 1.00 26.59               | A              | C   |
| ATOM   | 2907  | CA  |     |   | . 392 | 20.642  | 72.162 | 34.914 | 1.00 28.07               | A              | Č   |
| MOTA   | 2908  | CB  |     |   | 392   |         | 73.116 | 34.232 | 1.00 32.35               | A              | ŏ   |
| ATOM   | 2909  |     | THR |   |       | 19.827  | 72.831 | 35.359 | 1.00 32.33               | A              | Č   |
| MOTA   | 2910  |     | THR |   |       | 21.945  |        |        |                          | A              | č   |
| ATOM   | 2911  | C   |     |   | 392   | 21.914  | 70.087 | 34.746 | 1.00 26.92<br>1.00 26.38 | A              | ō   |
| ATOM   | 2912  | 0   |     |   | 392   | 23.096  | 69.992 | 34.411 |                          |                |     |
| ATOM   | 2913  | N   |     |   | . 393 | 21.390  | 69.419 | 35.765 | 1.00 26.87               | A              | N   |
| ATOM   | 2914  | CA  |     |   | 393   | 22.192  | 68.537 | 36.593 | 1.00 27.79               | A              | C   |
| MOTA   | 2915  | CB  |     |   | 393   | 21.302  | 67.753 | 37.540 | 1.00 27.48               | A              | C   |
| MOTA   | 2916  | OG  |     |   | 393   | 20.368  | 67.024 | 36.780 | 1.00 29.39               | A              | 0   |
| ATOM   | 2917  | С   | SER | A | 393   | 22.996  | 67.557 | 35.767 | 1.00 27.86               | A              | С   |
| ATOM . | 2918  | 0   |     |   | 393   | 24.153  | 67.259 | 36.074 | 1.00 30.63               | A              | 0   |
| MOTA   | 2919  | N   | VAL | A | 394   | 22.388  | 67.036 | 34.716 | 1.00 25.74               | A              | N   |
| MOTA   | 2920  | CA  | VAL | A | 394   | 23.106  | 66.084 | 33.897 | 1.00 24.23               | A              | C   |
| ATOM   | 2921  | CB  | VAL | A | 394   | 22.165  | 65.334 | 32.967 | 1.00 22.73               | A <sub>.</sub> | С   |
| ATOM   | 2922  | CG1 | VAL | A | 394   | 22.890  | 64.176 | 32.335 | 1.00 24.14               | A              | С   |
|        |       |     |     |   |       |         |        |        |                          |                |     |

Figure 3

| ATOM   | 2923 | CG2 | VAL | А | 394 <sup>.</sup> | 20.969 | 64.878   | 33.728 | 1.00 | 21.34 | 7   | . c |
|--------|------|-----|-----|---|------------------|--------|----------|--------|------|-------|-----|-----|
| ATOM   | 2924 | C   | VAL |   |                  | 24.161 | 66.814   | 33.069 |      | 25.05 | 1   |     |
| ATOM   | 2925 | ō   | VAL |   |                  | 25.321 | 66.421   |        |      | 25.29 | 7   |     |
| ATOM   | 2926 | N   | LEU |   |                  | 23.760 | 67.889   | 32.407 |      | 24.36 | 7   |     |
| ATOM   | 2927 | ÇA  | LEU |   |                  | 24.685 | 68.625   | 31.585 |      | 24.09 | ,   |     |
| ATOM   | 2928 | CB  | LEU |   |                  | 23.956 | 69.624   | 30.726 |      | 25.76 | 7   |     |
| ATOM   | 2929 | CG  | LEU |   |                  | 23.632 | 69.155   | 29.328 |      | 28.65 | 7   |     |
| ATOM   | 2930 |     | LEU |   |                  | 22.381 | 68.294   | 29.314 |      | 30.05 | ,   |     |
| ATOM   | 2931 |     | LEU |   |                  | 23.461 | 70.397   | 28.491 |      | 29.58 | ,   |     |
| ATOM   | 2932 | C   | LEU |   |                  | 25.755 | 69.378   | 32.327 |      | 23.29 | ;   |     |
| ATOM   | 2933 | 0   | LEU |   |                  | 26,687 | 69.897   | 31.718 |      | 22.34 | ,   |     |
| MOTA   | 2934 | N   | HIS |   |                  | 25.633 | 69.473   | 33.636 |      | 24.47 | ,   |     |
| ATOM   | 2935 | CA  | HIS |   |                  | 26.636 | 70.206   | 34.364 |      | 27.20 | į   |     |
| ATOM   | 2936 | CB  | HIS |   |                  | 26.062 | 71.522   | 34.885 |      | 27.12 | ,   |     |
| ATOM   | 2937 | CG  | HIS |   |                  | 25.928 | 72.576   | 33.830 |      | 28.04 | į   |     |
| ATOM   | 2938 |     | HIS |   |                  | 25.268 | 72.577   | 32.648 |      | 28.29 | ,   |     |
| ATOM   | 2939 |     | HIS |   |                  | 26.534 | 73.809   | 33.929 |      | 29.30 | į   |     |
| ATOM   | 2940 |     | HIS |   |                  | 26.253 | 74.526   | 32.856 |      | 28.87 | Į   |     |
| ATOM   | 2941 |     | HIS |   |                  | 25.487 | 73.802   | 32.061 |      | 28.53 | į   |     |
|        | 2942 |     | HIS |   |                  | 27.178 | 69.382   | 35.487 |      | 29.38 | Į   |     |
| ATOM   |      | C   | HIS |   |                  | 27.745 | 69.912   | 36.436 |      | 30.46 | į   |     |
| MOTA   | 2943 | 0   |     |   |                  |        |          |        |      | 32.68 | í   |     |
| MOTA   | 2944 | N · | ASP |   |                  | 27.019 | 68.071   | 35.374 |      | 35.48 | í   |     |
| MOTA   | 2945 | CA  | ASP |   |                  | 27.498 | 67.192   | 36.424 |      |       |     |     |
| ATOM   | 2946 | СВ  | ASP |   |                  | 27.468 | 65.743   | 35.972 |      | 36.01 | ļ   |     |
| MOTA   | 2947 | CG  | ASP |   |                  | 27.760 | 64.804   | 37.103 |      | 38.58 | ,   |     |
| ATOM   | 2948 |     | ASP |   |                  | 28.896 | 64.849   | 37.614 |      | 38.21 | 7   |     |
| ATOM   | 2949 |     | ASP |   |                  | 26.843 | 64.052   | 37.514 |      | 40.77 | Į   |     |
| ATOM   | 2950 | С   | ASP |   |                  | 28.901 |          | 36.898 |      |       | I   |     |
| ATOM   | 2951 | 0   | ASP |   |                  |        | 67.587   |        |      | 38.00 | . 1 |     |
| ATOM   | 2952 | N   | ASN |   |                  |        | . 67.817 |        |      | 41.41 | 7   |     |
| ATOM   | 2953 | CA  | ASN |   |                  | 30.296 | 68.235   | 38.765 |      | 44.81 | I   |     |
| ATOM   | 2954 | CB  | asn |   |                  |        | 68.476   |        |      | 46.68 | 1   |     |
| MOTA   | 2955 | CG  | ASN |   |                  |        | 69.766   |        |      |       | 7   |     |
| MOTA   | 2956 |     | ASN |   |                  |        | ₹70.466  |        |      | 51.64 | 7   |     |
| MOTA   | 2957 | ND2 | asn |   |                  |        | .70.091  |        |      | 48.72 | 7   |     |
| MOTA   | 2958 | С   | asn |   |                  |        | 67.366   |        |      | 45.80 | . 7 |     |
| ATOM   | 2959 | 0   | asn | A | 398              |        | 67.882   |        |      | 45.72 | 7   |     |
| ATOM   | 2960 | N   | LYS | А | 399              | 31.307 | [66.065] | 38.313 | 1.00 | 46.72 | 1   |     |
| ATOM   | 2961 | CA  | LYS | A | 399              | 32.379 | 65.085   | 38.074 | 1.00 | 47.83 | 1   |     |
| ATOM   | 2962 | CB  | LYS | Α | 399              | 32.012 | 63.760   | 38.749 | 1.00 | 50.33 | 1   |     |
| ATOM   | 2963 | CG  | LYS | Α | 399              | 33.022 | 62.662   | 38.527 | 1.00 | 53.77 | 1   |     |
| ATOM   | 2964 | CD  | LYS | Α | 399              | 32.500 | 61.323   | 39.019 | 1.00 | 56.37 | . 1 |     |
| ATOM   | 2965 | CE  | LYS | A | . 399            | 33.633 | 60.289   | 39.075 | 1.00 | 57.83 | 1   | , c |
| ATOM   | 2966 | NZ  | LYS | A | 399              | 34.506 | 60.464   | 40.299 | 1.00 | 59.13 | 1   | A N |
| ATOM   | 2967 | C   | LYS | A | 399              | 32.660 | 64.818   | 36.586 | 1.00 | 47.31 | 1   | A C |
| ATOM   | 2968 | 0   | LYS | A | 399              | 33.783 | 65.012   | 36.104 | 1.00 | 48.23 | . 1 | ٥ ، |
| · ATOM | 2969 | N   | GLU | A | 400              | 31.639 | 64.350   | 35.873 | 1.00 | 44.20 | 1   | A N |
| ATOM   | 2970 | CA  | GLU | A | 400              | 31.760 | 64.061   | 34.449 | 1.00 | 40.88 | 1   | A C |
| ATOM   | 2971 | CB  | GLU | A | 400              | 30.403 | 63.673   | 33.864 | 1.00 | 40.70 | 1   | A C |
| ATOM   | 2972 | CG  | GLU | A | 400              | 30.431 | 63.321   | 32.382 | 1.00 | 40.76 | 1   | A C |
| ATOM   | 2973 | CD  | GLU | A | 400              | 31.099 | 61.987   | 32.115 | 1.00 | 41.84 | 1   | A C |
| MOTA   | 2974 | OE1 | GLU | A | 400              | 31.329 | 61.645   | 30.941 | 1.00 | 40.41 | 1   | 0   |
| MOTA   | 2975 | OE2 | GLU | Α | 400              | 31.394 | 61.268   | 33.089 | 1.00 | 44.81 | 2   | 0   |
| ATOM   | 2976 | Ć   | GLU | A | 400              | 32.315 | 65.249   | 33.670 | 1.00 | 38.72 | 1   | A C |
| ATOM   | 2977 | 0   | GLU | Α | 400              | 32.873 | 65.071   | 32.598 | 1.00 | 39.61 | 1   | i o |
| ATOM   | 2978 | N   | PHE | A | 401              | 32.144 | 66.460   | 34.184 |      | 37.19 | 1   | A N |
| ATOM   | 2979 | CA  | PHE | A | 401              | 32.671 | 67.631   | 33.500 | 1.00 | 35.69 | 1   | A C |
| MOTA   | 2980 | CB  | PHE | Α | 401              | 31.586 | 6,8.413  | 32.776 | 1.00 | 31.78 | 1   | A C |
| MOTA   | 2981 | CG  |     |   | 401              | 30.792 | 67.623   | 31.783 | 1.00 | 27.99 | 1   | A C |
| MOTA   | 2982 | CD1 | PHE |   |                  | 29.473 | 67.301   | 32.052 | 1.00 | 26.00 | 1   | A C |
| ATOM   | 2983 | CD2 | PHE | Α | 401              | 31.323 | 67.257   | 30.561 | 1.00 | 26.66 | 2   | A C |
| ATOM   | 2984 |     | PHE |   |                  | 28.684 | 66.638   | 31.125 | 1.00 | 23.12 | 1   | A C |
| ATOM   | 2985 |     | PHE |   |                  | 30.527 | 66.586   | 29.624 | 1,00 | 26.25 | 1   | A C |
| ATOM   | 2986 | CZ  |     |   | 401              | 29.207 | 66.280   | 29.923 |      | 24.51 | 1   | A C |
| MOTA   | 2987 | C   |     |   | 401              | 33.305 | 68.577   | 34.503 |      | 39.16 |     | A C |
| ATOM   | 2988 | 0   |     |   | 401              | 32.623 | 69.408   | 35.082 |      | 39.82 |     | . O |
| ATOM   | 2989 | N   |     |   | 402              | 34.626 | 68.485   | 34.696 |      | 42.88 |     | A N |
|        |      | CD  |     |   | 402              | 35.516 | 67.734   | 33.797 |      | 44.32 |     | A C |
| ATOM   | 2990 |     |     |   | 402              | 35.420 | 69.299   | 35.619 |      | 44.10 |     | A C |
| ATOM   | 2991 | CA  |     |   |                  | 36.697 | 69.514   | 34.847 |      | 45.40 |     | i č |
| ATOM   | 2992 | CB  |     |   | 402              | 36.915 | 68.134   | 34.290 |      | 46.53 |     | A C |
| ATOM   | 2993 | CG  |     |   | 402              | 34.820 | 70.612   | 36.138 |      | 46.68 |     | A C |
| ATOM   | 2994 | C   |     |   | 402              | 34.820 | 70.612   | 37.270 |      | 49.69 |     | A 0 |
| ATOM   | 2995 | 0   |     |   | 402              | 34.898 | 71.680   | 35.345 |      | 46.36 |     | A N |
| ATOM   | 2996 | N   |     |   | 403              | 34.358 | 72.993   | 35.729 |      | 46.57 |     | A C |
| MOTA   | 2997 | CA  | ASN | A | 403              | J4.330 | 16.333   | 33.123 | 1.00 |       | •   |     |

| ATOM | 2998 | CB  | ASN | Α | 403 | 35.440 | 74.073  | 35.586 | 1.00 48.98  | A     | C   |
|------|------|-----|-----|---|-----|--------|---------|--------|-------------|-------|-----|
| MOTA | 2999 | CG  | ASN | Α | 403 | 36.584 | 73.871  | 36.545 | 1.00 50.51  | A     | С   |
| MOTA | 3000 |     | ASN |   |     | 36.423 | 74.032  | 37.755 | 1.00 52.97  | A     | ŏ   |
| ATOM | 3001 |     | ASN |   |     | 37.750 | 73.509  | 36.016 | 1.00 49.45  | A     | N   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| MOTA | 3002 | С   |     |   | 403 | 33.193 | 73.317  | 34.819 | 1.00 45.44  | A     | С   |
| ATOM | 3003 | 0   |     |   | 403 | 33.309 | 74.156  | 33.927 | 1.00 45.43  | A     | 0   |
| ATOM | 3004 | N   | PRO | A | 404 | 32.044 | 72.675  | 35.053 | 1.00 44.08  | A     | N   |
| ATOM | 3005 | CD  | PRO | Α | 404 | 31.773 | .71.888 | 36.261 | 1.00 42.76  | A     | С   |
| ATOM | 3006 | CA  | PRO | Α | 404 | 30.811 | 72.834  | 34.284 | 1.00 44.39  | A     | . C |
| ATOM | 3007 | CB  | PRO | A | 404 | 29.770 | 72.157  | 35.165 | 1.00 43.37  | A     | C   |
| ATOM | 3008 | CG  |     |   | 404 | 30.552 | 71.119  | 35.857 | 1.00 42.10  | A     | č   |
|      |      |     |     |   | 404 |        |         |        |             |       |     |
| ATOM | 3009 | C   |     |   |     | 30.400 | 74.252  | 33.921 | 1.00 45.41  | A     | C   |
| MOTA | 3010 | 0   |     |   | 404 | 29.738 | 74.458  | 32.915 | 1.00 45.66  | A     | 0   |
| MOTA | 3011 | N   |     |   | 405 | 30.794 | 75.223  | 34.733 | 1.00 47.74  | A     | N   |
| ATOM | 3012 | CA  | GLU | Α | 405 | 30.421 | 76.607  | 34.487 | 1.00 50.69  | A     | С   |
| ATOM | 3013 | СВ  | GLU | A | 405 | 30.417 | 77.376  | 35.806 | 1.00 54.92  | A     | С   |
| ATOM | 3014 | CG  | GLU | Α | 405 | 29.490 | 76.755  | 36.865 | 1.00 62.07  | A     | C   |
| ATOM | 3015 | CD  |     |   | 405 | 28.007 | 76.933  | 36.530 | 1.00 65.78  | A     | č   |
| ATOM | 3016 |     | GLU |   |     | 27.452 | 78.022  | 36.848 |             |       | ŏ   |
|      |      |     |     |   |     |        |         |        | 1.00 67.05  | · A   |     |
| ATOM | 3017 |     | GLU |   |     | 27.408 | 75.996  | 35,938 | 1.00 67.67  | A     | 0   |
| MOTA | 3018 | С   |     |   | 405 | 31.310 | 77.320  | 33.485 | 1.00 49.86  | A     | С   |
| MOTA | 3019 | 0   | GLU | A | 405 | 31.053 | 78.469  | 33.116 | 1.00 50.00  | A     | 0   |
| MOTA | 3020 | N   | MET | A | 406 | 32.359 | 76.645  | 33.045 | 1.00 49.20  | A     | N   |
| ATOM | 3021 | CA  | MET | Α | 406 | 33.277 | 77.246  | 32.095 | 1.00 49.59  | A     | С   |
| MOTA | 3022 | CB  |     |   | 406 | 34.692 | 77.197  | 32.688 | 1.00 54.31  | A     | C   |
| ATOM | 3023 | CG  |     |   | 406 | 34.847 | 78.010  | 33,991 | 1.00 60.20  | A     | č   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| ATOM | 3024 | SD  |     |   | 406 | 35.788 | 79.582  | 33.799 | 1.00 65.61  | A     | s   |
| ATOM | 3025 | CE  |     |   | 406 | 37.439 | 79.125  | 34.515 | 1.00 64.30  | Α,    | С   |
| MOTA | 3026 | С   | MET | Α | 406 | 33.201 | 76.569  | 30.722 | 1.00.47.03  | A     | С   |
| ATOM | 3027 | 0   | MET | A | 406 | 32.882 | 75.385  | 30.609 | 1.00 47.49  | A     | 0   |
| ATOM | 3028 | N   | PHE | Α | 407 | 33.468 | 77.326  | 29.669 | 1.00, 43.90 | А     | N   |
| ATOM | 3029 | CA  |     |   | 407 | 33.398 | 76.761  | 28.329 | 1.00 40.32  | A     | C   |
| ATOM | 3030 | СВ  |     |   | 407 | 33.106 | 77.863  | 27.316 | 1.00 36.66  | A     | č   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| ATOM | 3031 | CG  |     |   | 407 | 33.000 | 77.373  | 25.908 | 1.00 32.03  | A     | C   |
| MOTA | 3032 |     | PHE |   |     | 31.927 | 76.588  | 25.513 | 1.00 32.06  | A     | C   |
| ATOM | 3033 | CD2 | PHE | A | 407 | 33.964 | 77.700  | 24.971 | 1.00 30.34  | A     | С   |
| ATOM | 3034 | CE1 | PHE | A | 407 | 31.808 | 76.130  | 24.198 | 1.00 29.62  | A     | С   |
| ATOM | 3035 | CE2 | PHE | A | 407 | 33.861 | 77.247  | 23.649 | 1.00 29.33  | A     | C   |
| ATOM | 3036 | CZ  |     |   | 407 | 32,777 | 76.461  | 23.267 | 1.00 28.28  | A     | Č   |
| ATOM | 3037 | c   |     |   | 407 | 34.701 | 76.084  | 27.950 | 1.00 40.18  | A     | c   |
| ATOM | 3038 |     |     |   |     |        | 76.744  |        |             |       |     |
|      |      | 0   |     |   | 407 | 35.727 |         | 27.817 | 1.00 40.78  | A     | 0   |
| ATOM | 3039 | N   |     |   | 408 | 34.686 | 74.773  | 27.765 | 1.00 39.42  | A     | N   |
| MOTA | 3040 | CA  | ASP | A | 408 | 35.926 | 74.114  | 27.385 | 1.00 38.59  | A     | С   |
| ATOM | 3041 | CB  | ASP | A | 408 | 36.685 | 73.672  | 28.640 | 1.00 39.88  | A     | С   |
| ATOM | 3042 | CG  | ASP | A | 408 | 38.066 | 73.096  | 28.341 | 1.00 42.25  | A     | С   |
| ATOM | 3043 | OD1 | ASP | A | 408 | 38.784 | 72.782  | 29.328 | 1.00 42.50  | A     | 0   |
| ATOM | 3044 |     | ASP |   |     | 38.437 | 72.957  | 27.148 | 1.00 42.88  | A     | ō   |
| ATOM | 3045 | C   |     |   | 408 | 35.660 | 72.932  | 26.485 | 1.00 37.04  | <br>A | č   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| ATOM | 3046 | 0   |     |   | 408 | 35.070 | 71.950  | 26.907 | 1.00 36.40  | A     | 0   |
| ATOM | 3047 | N   |     |   | 409 | 36.075 | 73.029  | 25.218 | 1.00 35.17  | A     | N   |
| MOTA | 3048 | CD  | PRO | A | 409 | 36.682 | 74.226  | 24.620 | 1.00 36.46  | A     | С   |
| ATOM | 3049 | CA  | PRO | A | 409 | 35.906 | 71.986  | 24.212 | 1.00 36.39  | A     | С   |
| ATOM | 3050 | CB  | PRO | Α | 409 | 36.684 | 72.525  | 23.021 | 1.00 35.98  | A     | С   |
| ATOM | 3051 | CG  |     |   | 409 | 36.504 | 73.980  | 23.138 | 1.00 36.05  | A     | c   |
| ATOM | 3052 | c   |     |   | 409 | 36.488 | 70.681  | 24.707 | 1.00 35.87  | A.    | č   |
| ATOM | 3053 | õ   |     |   | 409 | 36.008 | 69.592  | 24.361 | 1.00 36.12  | A     | ŏ   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| ATOM | 3054 | N   | HIS |   |     | 37.524 | 70.785  | 25.531 | 1.00 37.10  | , A   | N   |
| ATOM | 3055 | CA  |     |   | 410 | 38.174 | 69.587  | 26.042 | 1.00 37.05  | A     | С   |
| ATOM | 3056 | CB  | HIS |   |     | 39.460 | 69.958  | 26.809 | 1.00 38.51  | A     | С   |
| MOTA | 3057 | CG  | HIS | A | 410 | 40.476 | 70.679  | 25.974 | 1.00 41.16  | A     | С   |
| MOTA | 3058 | CD2 | HIS | Α | 410 | 41.109 | 71.862  | 26.159 | 1.00 41.99  | A     | C   |
| ATOM | 3059 |     | HIS |   |     | 40.908 | 70.203  | 24.749 | 1.00 41.77  | A     | N   |
| ATOM | 3060 |     | HIS |   |     | 41.753 | 71.069  | 24.218 | 1.00 42.56  | A     | Ċ   |
| ATOM | 3061 |     | HIS |   |     | 41.893 | 72.087  | 25.053 | 1.00 43.05  | A.    | N   |
|      |      |     |     |   |     |        |         |        |             |       |     |
| ATOM | 3062 | C   |     |   | 410 | 37.251 | 68.699  | 26.882 | 1.00 36.89  | A     | C   |
| MOTA | 3063 | 0   |     |   | 410 | 37.642 | 67.586  | 27.229 | 1.00 39.63  | A     | 0   |
| ATOM | 3064 | N   | HIS |   |     | 36.039 | 69.171  | 27.202 | 1.00 37.10  | A     | · N |
| ATOM | 3065 | CA  | HIS | A | 411 | 35.065 | 68.350  | 27.962 | 1,00 35.36  | A     | С   |
| MOTA | 3066 | СВ  | HIS |   |     | 33.819 | 69.148  | 28.371 | 1.00 36.31  | A     | С   |
| MOTA | 3067 | CG  | HIS |   |     | 34.011 | 70.000  | 29.585 | 1.00 37.20  | A     | C   |
| MOTA | 3068 |     | HIS |   |     | 33.917 | 71.342  | 29.759 | 1.00 37.39  | A     | č   |
|      |      |     |     |   |     |        | 69.479  | 30.805 | 1.00 37.32  | A     | N   |
| MOTA | 3069 |     | HIS |   |     | 34.377 |         |        |             |       |     |
| MOTA | 3070 |     | HIS |   |     | 34.506 | 70.462  | 31.684 | 1,00 37.63  | A     | C   |
| ATOM | 3071 |     | HIS |   |     | 34.234 | 71.599  | 31.073 | 1.00 37.46  | A     | N   |
| ATOM | 3072 | С   | HIS | A | 411 | 34.595 | 67.217  | 27.061 | 1.00 34.23  | , A   | С   |
|      |      |     |     |   |     |        |         |        |             |       |     |

| ATOM         | 3073         | 0        | HIS        | A | 411        | 33.928           | 66.282           | 27.505           | 1.00 | 34.68          | A      | 0      |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|--------|
| ATOM         | 3074         | N        | PHE        |   |            | 34.902           | 67.326           | 25.777           | 1.00 | 33.92          | A      | N      |
| MOTA         | 3075         | CA       | PHE        |   |            | 34.504           | 66.282           | 24.855           |      | 34.87          | A      | С      |
| MOTA         | 3076         | CB       | PHE        |   |            | 33.367           | 66.768           | 23.955           |      | 32.27          | A      | С      |
| ATOM         | 3077         | CG       | PHE        |   |            | 32.057           | 66.879           | 24.666           |      | 30.45          | A      | C      |
| MOTA         | 3078         |          | PHE        |   |            | 31.717<br>31.181 | 68.035           | 25.346<br>24.697 |      | 30.54<br>31.22 | A<br>A | C      |
| ATOM<br>ATOM | 3079<br>3080 |          | PHE        |   |            | 30.522           | 65.800<br>68.119 | 26.055           |      | 31.98          | A      | Č      |
| ATOM         | 3081         |          | PHE        |   |            | 29.978           | 65.868           | 25.404           |      | 31.68          | A      | č      |
| ATOM         | 3082         | CZ       | PHE        |   |            | 29.651           | 67.030           | 26.083           |      | 32.07          | A      | С      |
| MOTA         | 3083         | С        | PHE        | A | 412        | 35.696           | 65.798           | 24.041           | 1.00 | 37.26          | A      | С      |
| ATOM         | 3084         | 0        | PHE        |   |            | 35.577           | 65.461           | 22.865           |      | 36.60          | A      | 0      |
| ATOM         | 3085         | N        | LEU        |   |            | 36.849           | 65.770           | 24.698           |      | 38.78          | A      | N      |
| ATOM         | 3086         | CA       | LEU        |   |            | 38.089<br>38.921 | 65.321<br>66.519 | 24.090<br>23.643 |      | 39.74<br>36.34 | A<br>A | C      |
| ATOM<br>ATOM | 3087<br>3088 | CB<br>CG | LEU        |   |            | 38.299           | 67.372           | 22.557           |      | 32.05          | A      | Ċ      |
| ATOM         | 3089         |          | LEU        |   |            | 39.346           | 68.331           | 22.019           |      | 30.98          | ·A     | č      |
| ATOM         | 3090         |          | LEU        |   |            | 37.776           | 66.484           | 21.443           |      | 29.95          | A      | C      |
| MOTA         | 3091         | C        | LEU        | A | 413        | 38.939           | 64.451           | 25.028           | 1.00 | 42.69          | A      | С      |
| MOTA         | 3092         | 0        | PEA        |   |            | 38.925           | 64.606           | 26.258           |      | 42.52          | A      | 0      |
| MOTA         | 3093         | N        | ASP        |   |            | 39.700           | 63.550           | 24.421           |      | 44.11          | A      | N      |
| MOTA         | 3094         | CA       | ASP        |   |            | 40.573           | 62.670           | 25.165           |      | 46.15<br>43.53 | A<br>A | C      |
| ATOM<br>ATOM | 3095<br>3096 | CB       | ASP<br>ASP |   |            | 40.532<br>41.061 | 61.250<br>61.183 | 24.581<br>23.166 |      | 45.66          | A      | Č      |
| ATOM         | 3097         |          | ASP        |   |            | 40.895           | 60.130           | 22.509           |      | 46.84          | A      | ō      |
| MOTA         | 3098         |          | ASP        |   |            | 41.655           | 62.180           | 22,700           |      | 44.15          | A      | ō      |
| ATOM         | 3099         | С        | ASP        |   |            | 41.992           | 63.237           | 25.107           | 1.00 | 48.20          | A      | С      |
| ATOM         | 3100         | 0        | ASP        | A | 414        | 42.264           | 64.170           | 24.338           | 1.00 | 47.88          | A      | ο.     |
| MOTA         | 3101         | N        | GŢŪ        |   |            | 42.886           | 62.675           | 25.925           |      | 49.99          | , A    | N.     |
| ATOM         | 3102         | CA       | GLU        |   |            | 44.282           | 63.116           | 26.005           |      | 51.46          | A      | C      |
| ATOM         | 3103         | CB       | GLU        |   |            | 45.129           | 62.063           | 26.744           |      | 54.49<br>58.82 | A<br>A | C      |
| MOTA         | 3104<br>3105 | CG<br>CD | GLU<br>GLU |   |            | 45.216<br>44.356 | 60.676<br>59.585 | 26.074<br>26.740 |      | 62.79          | A      | C.     |
| ATOM         | 3106         | OE1      | GLU        |   |            | 44.287           | 58.464           | 26.162           |      | 65.08          | A      | o.     |
| ATOM         | 3107         | OE2      | GLU        |   |            | 43.760           | 59.834           | 27.827           |      | 64.19          | A      | 0      |
| ATOM         | 3108         | С        | GLU        |   |            | 44.858           | 63.393           | 24.618           | 1.00 | 50.65          | A      | C.     |
| MOTA         | 3109         | 0        | GLU        |   |            | 45.506           | 64.424           | 24.395           |      | 51.07          | A      | 0 :    |
| MOTA         | 3110         | N        |            |   | 416        | 44.620           | 62.468           | 23,689           |      | 49.03          | A      | N      |
| ATOM         | 3111         | CA       |            |   | 416        | 45.097           | 62.644           | 22.326           |      | 48.23          | A      | C      |
| ATOM         | 3112         | C        | GLY        |   | 416        | 44.417<br>44.639 | 63.896<br>65.004 | 21.803<br>22.305 |      | 46.79<br>48.65 | A<br>A | ŏ      |
| MOTA<br>MOTA | 3113<br>3114 | O<br>N   | GLY        |   |            | 43.575           | 63.734           | 20.797           |      | 45.19          | A      | N      |
| ATOM         | 3125         | CA       | GLY        |   |            | 42.868           | 64.884           | 20.279           |      | 42.93          | A      | C      |
| ATOM         | 3116         | C        | GLY        |   |            | 41.510           | 64.418           | 19.812           | 1.00 | 41.14          | A      | С      |
| MOTA         | 3117         | 0        | GLY        | A | 417        | 40.718           | 65.214           | 19,312           | 1.00 | 41.52          | A      | 0      |
| ATOM         | 3118         | N        | ASN        |   |            | 41.240           | 63.122           | 19.993           |      | 40.29          | A      | N      |
| ATOM         | 3119         | CA       | ASN        |   |            | 39.980           | 62.490           | 19.563           |      | 39.24<br>43.00 | A      | C<br>C |
| MOTA         | 3120<br>3121 | CB<br>CG | ASN<br>ASN |   |            | 40.067<br>41.334 | 60.957<br>60.375 | 19.666<br>19.046 |      | 46.10          | A<br>A | C      |
| ATOM         | 3122         |          | ASN        |   |            | 42.260           | 59.976           | 19.765           |      | 47.85          | A      | ŏ      |
| ATOM         | 3123         |          | ASN        |   |            | 41.379           | 60.317           | 17.709           |      | 45.04          | A      | N      |
| ATOM         | 3124         | C        | ASN        |   |            | 38.695           | 62.908           | 20.291           | 1.00 | 37.15          | A      | С      |
| ATOM         | 3125         | 0        |            |   | 418        | 38.712           | 63.532           | 21.351           |      | 37.03          | A      | 0      |
| MOTA         | 3126         | N        |            |   | 419        | 37.567           | 62.511           | 19.717           |      | 35.45          | A      | N      |
| ATOM         | 3127         | CA       |            |   | 419        | 36.282           | 62.852<br>62.993 | 20.301<br>19.189 |      | 33.04<br>32.60 | A<br>A | C<br>C |
| ATOM<br>ATOM | 3128<br>3129 | CB<br>CG |            |   | 419<br>419 | 35.221<br>33.841 | 63.326           | 19.697           |      | 31.06          | A      | Č      |
| ATOM         | 3130         |          | PHE        |   |            | 33.540           | 64.595           | 20.195           |      | 31.12          | A      | č      |
| ATOM         | 3131         |          | PHE        |   |            | 32.874           | 62.336           | 19.769           |      | 31.80          | A      | С      |
| ATOM         | 3132         |          | PHE        |   |            | 32.296           | 64.859           | 20.769           | 1.00 | 30.53          | A      | C      |
| ATOM         | 3133         | CE2      | PHE        | Ą | 419        | 31.636           | 62.589           | 20.338           |      | 31.80          | A      | С      |
| MOTA         | 3134         | CZ       |            |   | 419        | 31.344           | 63.851           | 20.844           |      | 30.82          | . A    | C      |
| ATOM         | 3135         | C        |            |   | 419        | 35.828           | 61.857           | 21.369           |      | 32.27          | A<br>A | C<br>O |
| ATOM         | 3136         | 0        |            |   | 419        | 35.825           | 60.632           | 21.163<br>22.522 |      | 31.23          | A      | N      |
| ATOM<br>ATOM | 3137<br>3138 | N<br>CA  |            |   | 420<br>420 | 35.461<br>35.001 | 62.412<br>61.630 | 23.659           |      | 32.22          | A      | C      |
| ATOM         | 3138         | CB       |            |   | 420        | 35.791           | 61.982           | 24.921           |      | 35.83          | A      | č      |
| ATOM         | 3140         | CG       |            |   | 420        | 35.403           | 61.058           | 26.083           |      | 42.17          | A      | Č      |
| ATOM         | 3141         | CD       |            |   | 420        | 36.528           | 60.868           | 27.083           | 1.00 | 47.40          | A      | С      |
| MOTA         | 3142         | CE       | LYS        | A | 420        | 36.569           | 62.019           | 28.069           |      | 51.22          | A      | С      |
| ATOM         | 3143         | nz       |            |   | 420        | 37.854           | 62.019           | 28.834           |      | 54.66          | A      | N      |
| ATOM         | 3144         | C        |            |   | 420        | 33.534           | 61.818           | 23.994           |      | 31.10          | A<br>A | C<br>O |
| ATOM         | 3145         | 0        |            |   | 420        | 33.186<br>32.673 | 62.764<br>60.919 | 24.693<br>23.542 |      | 33.12<br>30.34 | A      | И      |
| MOTA<br>MOTA | 3146<br>3147 | N<br>CA  |            |   | 421<br>421 | 32.673           | 61.036           | 23.862           |      | 30.25          | A      | c      |
| .11 013      | 24.41        | CA       | נום        | n | 46.1       | 02.201           |                  |                  |      |                |        | -      |

| MOTA | 3148 | СВ      | ьys  | A | 421 | 30.458 | 59.890 | 23.221 | 1.00 | 31.99 |   | А | С   |
|------|------|---------|------|---|-----|--------|--------|--------|------|-------|---|---|-----|
| ATOM | 3149 | CG      | LYS  |   |     | 30.728 | 58.491 | 23.781 | 1.00 |       |   | A | C   |
| ATOM | 3150 | CD      | LYS  |   |     | 30.158 | 57.427 | 22.827 | 1.00 |       |   | A | Ċ   |
| ATOM | 3151 | CE      | LYS  |   |     | 30.443 | 55.983 | 23.276 | 1.00 |       |   | A | Č   |
| ATOM | 3152 | NZ      | LYS  |   |     | 30.692 | 55.105 | 22.071 | 1.00 |       |   | A | N   |
| ATOM | 3153 | C       | LYS  |   |     | 31.019 | 61.021 | 25.367 | 1.00 |       |   | A | Ċ   |
|      | 3154 | Ö       | LYS  |   |     | 31.969 | 60.890 | 26.134 | 1.00 |       |   | A | ŏ   |
| MOTA | 3155 |         | SER  |   |     | 29.751 | 61.176 | 25.768 |      | 30.83 |   | A | N   |
| ATOM |      | N       | SER  |   |     | 29.308 | 61.135 | 27.180 | 1,00 |       |   | A | C   |
| ATOM | 3156 | CA      |      |   |     | 29.508 | 62.476 | 27.100 | 1.00 |       |   | A | č   |
| ATOM | 3157 | CB      | SER  |   |     |        |        |        | 1.00 |       | • | A | ŏ   |
| ATOM | 3158 | OG      | SER  |   |     | 28.677 | 62.543 | 29.017 | 1.00 |       |   | A | č   |
| ATOM | 3159 | C       | SER  |   |     | 27.827 | 60.795 | 27.235 |      |       |   |   | Ö   |
| ATOM | 3160 | ٥       | SER  |   |     | 27.060 | 61.219 | 26.371 | 1.00 |       |   | A |     |
| ATOM | 3161 | N       | LYS  |   |     | 27.417 | 60.028 | 28.237 | 1.00 |       |   | A | N   |
| ATOM | 3162 | CA      | LYS  |   |     | 25.997 | 59.695 | 28.359 | 1.00 |       |   | A | C   |
| MOTA | 3163 | СВ      | LYS  |   |     | 25.783 | 58.323 | 29.035 | 1.00 |       |   | A | C   |
| ATOM | 3164 | CG      | LYS  |   |     | 26.591 | 58.065 | 30.310 | 1.00 |       |   | A | C   |
| MOTA | 3165 | CD      | LYS  |   |     | 26.209 | 56.734 | 30.999 | 1.00 |       |   | A | C   |
| ATOM | 3166 | CE      | LYS  |   |     | 27.046 | 56.469 | 32.277 | 1.00 |       |   | A | C   |
| ATOM | 3167 | NZ      | LYS  |   |     | 26.619 | 55.280 | 33.091 | 1.00 |       |   | A | N   |
| ATOM | 3168 | С       | LYS  | A | 423 | 25.309 | 60.793 | 29.158 | 1.00 |       |   | A | С   |
| ATOM | 3169 | 0       | Lys  | A | 423 | 24.098 | 60.794 | 29.317 | 1.00 |       |   | A | 0   |
| ATOM | 3170 | N       | TYR  | A | 424 | 26.110 | 61.730 | 29.649 | 1.00 | 34.68 |   | A | N   |
| MOTA | 3171 | CA      | TYR. | A | 424 | 25.619 | 62.859 | 30.414 | 1.00 | 33.24 |   | Α | С   |
| ATOM | 3172 | CB      | TYR. | A | 424 | 26.693 | 63.334 | 31.387 | 1.00 | 34.40 |   | A | С   |
| ATOM | 3173 | CG      | TYR  |   |     | 26.871 | 62.439 | 32.584 | 1.00 | 36.45 |   | A | С   |
| ATOM | 3174 |         | TYR  |   |     | 26.531 | 62.882 | 33.854 | 1.00 |       |   | A | С   |
| ATOM |      |         | TYR  |   |     | 26.665 | 62.064 | 34.963 | 1.00 |       |   | A | C   |
| ATOM | 3176 |         | TYR  |   |     | 27.355 | 61.141 | 32.448 | 1.00 |       |   | A | Č   |
|      |      |         | TYR  |   |     | 27.492 | 60.311 | 33.556 | 1.00 |       |   | A | Č   |
| MOTA | 3177 |         |      |   |     |        | 60.785 | 34.812 | 1.00 |       |   | A | č   |
| ATOM | 3178 | CZ      | TYR  |   |     | 27.143 |        |        | 1.00 |       |   | A | ŏ   |
| ATOM | 3179 | OH      | TYR  |   |     | 27.275 | 59.986 | 35.922 |      |       |   |   | Č   |
| MOTA |      | С       | TYR  |   |     | 25.263 | 64.012 | 29.475 | 1.00 |       |   | A |     |
| ATOM | 3181 |         | TYR  |   |     | 25.100 |        | 29,915 | 1.00 |       |   | A | 0   |
| ATOM | 3182 | N       |      |   | 425 | 25.153 | 63.732 | 28.185 | 1.00 |       |   | A | N   |
| MOTA | 3183 | CA      | PHE  | Α | 425 | 24.833 | 64.760 | 27.208 | 1.00 |       |   | A | С   |
| MOTA | 3184 | CB      | PHE  | A | 425 | 25.792 | 64.658 | 26.027 | 1.00 |       |   | A | C   |
| MOTA | 3185 | CG ·    | PHE  | Α | 425 | 25.604 | 65.715 | 24.966 | 1.00 | 20.04 |   | A | С   |
| MOTA | 3186 | CD1     | PHE  | A | 425 | 26.058 | 67.015 | 25.158 | 1.00 | 18.30 |   | A | С   |
| ATOM | 3187 | CD2     | PHE  | Α | 425 | 25.072 | 65.373 | 23.727 | 1.00 | 17.75 |   | A | С   |
| ATOM | 3188 |         | PHE  |   |     | 26.001 | 67.958 | 24.120 | 1.00 | 17.32 |   | A | C   |
| MOTA | 3189 |         | PHE  |   |     | 25.010 | 66.305 | 22.681 | 1.00 | 16.80 |   | Α | С   |
| ATOM | 3190 | CZ      |      |   | 425 | 25.477 | 67.592 | 22.881 | 1.00 |       |   | A | C   |
| ATOM | 3191 | c       |      |   | 425 | 23.420 | 64,559 | 26.718 | 1.00 |       |   | A | С   |
| ATOM | 3192 | ŏ       |      |   | 425 | 23.185 | 63.810 | 25.770 |      | 29.86 |   | A | ō   |
|      |      |         |      |   | 426 | 22.460 | 65.214 | 27.349 |      | 28.36 |   | A | N   |
| ATOM | 3193 | N<br>Ċr |      |   |     |        | 65.047 | 26.881 |      | 28.03 |   | A | c   |
| ATOM | 3194 | CA      |      |   | 426 | 21.095 |        | 27.930 |      | 27.12 |   | A | č   |
| MOTA | 3195 | CB      |      |   | 426 | 20.297 | 64.302 |        |      | 27.50 |   | A | č   |
| ATOM | 3196 | CG      |      |   | 426 | 21.085 | 63.274 | 28.665 |      | 30.53 |   | A | s   |
| ATOM | 3197 | SD      |      |   | 426 | 20.238 | 62.829 | 30.189 |      |       |   |   | ċ   |
| MOTA | 3198 | CE      |      |   | 426 | 19.606 | 61.202 | 29.744 |      | 24.30 |   | A |     |
| ATOM | 3199 | С       |      |   | 426 | 20.401 | 66,372 | 26.580 |      | 27.24 |   | A | C   |
| ATOM | 3200 | 0       | MET  |   | 426 | 19.205 | 66.468 | 26.765 |      | 27.90 |   | A | 0   |
| MOTA | 3201 | N       |      |   | 427 | 21.128 | 67.387 | 26.072 |      | 25.05 |   | A | N   |
| ATOM | 3202 | CD      |      |   | 427 | 22,263 | 67.225 | 25.153 |      | 25.21 |   | A | C   |
| MOTA | 3203 | CA      | PRO  | Α | 427 | 20.457 | 68.652 | 25.796 |      | 22.69 |   | A | C   |
| ATOM | 3204 | СB      | PRO  | Α | 427 | 21.469 | 69.398 | 24.960 |      | 23.47 |   | A | C   |
| ATOM | 3205 | CG      | PRO  | Α | 427 | 22.015 | 68.329 | 24.135 | 1.00 | 23.87 |   | A | С   |
| ATOM | 3206 | Ç       | PRO  | Α | 427 | 19.155 | 68.409 | 25.059 | 1.00 | 22.02 |   | A | С   |
| ATOM | 3207 | 0       |      |   | 427 | 18.271 | 69.241 | 25,124 | 1.00 | 22.04 |   | A | 0   |
| ATOM | 3208 | N       |      |   | 428 | 19.034 | 67,283 | 24.356 | 1.00 | 20.97 |   | Α | N   |
| MOTA | 3209 | ÇA      |      |   | 428 | 17.779 | 66.971 | 23.682 | 1.00 | 20.27 |   | A | С   |
| ATOM | 3210 | CB      |      |   | 428 | 18.007 | 66.280 | 22.334 |      | 21.07 |   | Α | С   |
| ATOM |      | CG      |      |   | 428 | 18.956 | 66.994 | 21.420 |      | 21.66 |   | A | С   |
|      | 3211 |         |      |   |     | 20.288 | 66,628 | 21.364 |      | 23.83 |   | A | · c |
| ATOM | 3212 |         | PHE  |   |     |        | 68,029 | 20.604 |      | 23.47 |   | A | č   |
| ATOM | 3213 |         | PHE  |   |     | 18.517 | 67.284 |        |      | 26.04 |   | A | c   |
| ATOM | 3214 |         | PHE  |   |     | 21.177 |        | 20.505 |      |       |   |   | c   |
| ATOM | 3215 |         | PHE  |   |     | 19.403 | 68.692 | 19.738 |      | 22.62 |   | A |     |
| ATOM | 3216 | CZ      |      |   | 428 | 20.736 | 68,318 | 19.691 |      | 23.34 |   | A | C   |
| ATOM | 3217 | С       |      |   | 428 | 16.977 | 66.017 | 24.576 |      | 20.68 |   | A | C   |
| ATOM | 3218 | 0       | PHE  | A | 428 | 16.082 | 65.321 | 24.121 |      | 20.26 |   | A | 0   |
| MOTA | 3219 | N       | SER  | A | 429 | 17.303 | 65.990 | 25.858 |      | 20.83 |   | A | Ŋ   |
| ATOM | 3220 | CA      |      |   | 429 | 16.659 | 65,100 | 26.810 |      | 22.14 |   | A | C   |
| ATOM | 3221 | СВ      |      |   | 429 | 15.169 | 65.365 | 26.897 |      | 21.54 |   | A | С   |
| MOTA | 3222 | OG      |      |   | 429 | 14.584 | 64.445 | 27.786 | 1.00 | 21.64 |   | A | 0   |
|      |      |         |      |   |     |        |        |        |      |       |   |   |     |

| ATOM         | 3223         | С        | SER        | A | 429        | 16.890           | 63.649           | 26.437           | 1.00 24.07               | A      | С      |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|--------|
| MOTA         | 3224         | 0        |            |   | 429        | 17.783           | 63.331           | 25.653           |                          | A      | ō      |
| MOTA         | 3225         | N        |            |   | 430        | 16.077           | 62.763           | 26.993           | 1.00 26.27               | A      | N      |
| ATOM<br>ATOM | 3226<br>3227 | CA<br>CB |            |   | 430        | 16.231           | 61.345           | 26.727           | 1.00 29.60               | A      | C      |
| ATOM         | 3228         | C        |            |   | 430        | 17.342<br>14.945 | 60.802<br>60.579 | 27.589<br>26.989 | 1.00 28.86<br>1.00 32.25 | A<br>A | C      |
| ATOM         | 3229         | ō        |            |   | 430        | 13.980           | 61.128           | 27.512           | 1.00 32.23               | A      | Ö      |
| ATOM         | 3230         | N        |            |   | 431        | 14.924           | 59.307           | 26.618           | 1.00 34.16               | A      | N      |
| ATOM         | 3231         | CA       | GLY        | A | 431        | 13.728           | 58.524           | 26.864           | 1.00 37.75               | A      | C      |
| ATOM         | 3232         | C        |            |   | 431        | 12.766           | 58.418           | 25.698           | 1.00 39.79               | A      | C      |
| ATOM         | 3233         | 0        |            |   | 431<br>432 | 13.070           | 58.848           | 24.582           | 1.00 39.21               | A      | 0      |
| ATOM<br>ATOM | 3234<br>3235 | n<br>Ca  |            |   | 432        | 11.591<br>10.598 | 57.846<br>57.680 | 25.956<br>24.901 | 1.00 41.76<br>1.00 43.17 | A      | N      |
| ATOM         | 3236         | СВ       |            |   | 432        | 9.466            | 56.763           | 25.382           | 1.00 43.17               | A<br>A | C      |
| ATOM         | 3237         | CG       |            |   | 432        | 9.797            | 55.290           | 25.178           | 1.00 48.61               | A      | č      |
| ATOM         | 3238         | ÇD       |            |   | 432        | 8.635            | 54.376           | 25.532           | 1.00 51.62               | . Ъ    | С      |
| ATOM         | 3239         | CE       |            |   | 432        |                  |                  | 24.909           | 1.00 53.39               | A      | С      |
| ATOM<br>ATOM | 3240<br>3241 | NZ<br>C  |            |   | 432<br>432 | 8.801            | 53.012           | 23.400           | 1.00 54.40               | A      | N      |
| ATOM         | 3242         | Ö        |            |   | 432        | 10.051<br>9.421  | 59.005<br>59.049 | 24.366<br>23.307 | 1.00 42.71<br>1.00 42.71 | A<br>A | C      |
| ATOM         | 3243         | N        |            |   | 433        | 10.329           | 60.089           | 25.088           | 1.00 42.78               | A      | N      |
| ATOM         | 3244         | CA       | ARG        | A | 433        | 9.868            | 61.421           | 24.693           | 1.00 41.46               | A      | Ċ      |
| ATOM         | 3245         | CB       |            |   | 433        | 9.123            | 62.077           | 25.871           | 1.00 43.17               | A      | С      |
| ATOM         | 3246         | CG       |            |   | 433        | 7.616            | 61.800           | 25.907           | 1.00 45.43               | A      | C      |
| ATOM<br>ATOM | 3247<br>3248 | CD<br>NE |            |   | 433<br>433 | 6.810<br>5.380   | 62.766<br>62.469 | 25.030<br>25.078 | 1.00 46.80               | A      | C      |
| ATOM         | 3249         | CZ       |            |   | 433        |                  | 63.334           | 24.787           | 1.00 48.92<br>1.00 51.22 | A<br>A | N<br>C |
| ATOM         | 3250         |          | ARG        |   |            | 4.693            | 64.579           | 24.422           | 1.00 50.24               | A      | N      |
| ATOM         | 3251         |          |            |   | 433        | 3.137            | 62.943           | 24.849           | 1.00 52.87               | A.     | N      |
| ATOM         | 3252         |          |            |   | 433        | 11.005           | 62.326           | 24.200           | 1.00 39.70               | A      | С      |
| ATOM         | 3253         | 0        |            |   | 433        |                  | 63.539           | 24.097           | 1.00 40.07               | A      | 0      |
| ATOM<br>ATOM | 3254<br>3255 | N<br>CA  |            |   | 434        | 13.320           | 61.723<br>62.458 | 23.891<br>23.406 | 1.00 36.43<br>1.00 33.74 | A<br>A | N      |
| ATOM         | 3256         | СВ       |            |   | 434        | 14.422           | 61.516           | 22.986           | 1.00 34.82               | A      | C      |
| MOTA         | 3257         |          | ILE        |   |            | 14.006           | 60.784           | 21.725           | 1.00 35.49               | A      | č      |
| MOTA         | 3258         |          |            |   | 434        | 15.682           | 62.292           | 22.657           | 1.00 34.75               | A      | C      |
| ATOM         | 3259         |          | ILE        |   |            | 16.828           | 61.381           | 22.328           | 1.00 35.41               | A      | C      |
| ATOM<br>ATOM | 3260         | C        |            |   | 434        | 12.997           | 63.278           |                  | 1.00 31.17               | A      | C      |
| ATOM         | 3261<br>3262 | O<br>N   |            |   | 434<br>435 | 12.187<br>13.674 | 62.866<br>64.408 | 21.351<br>22.011 | 1.00 31.21<br>1.00 27.74 | A<br>A | O<br>N |
| ATOM         | 3263         | CA       | CYS        |   |            | 13.422           | 65.265           | 20.866           | 1.00 26.20               | A.     | C      |
| ATOM         | 3264         | СВ       | CYS        |   |            | 14.459           | 66.361           | 20,713           | 1.00 25.71               | A      | Ċ      |
| ATOM         | 3265         | SG       | CYS        |   |            | 14.341           | 67.079           | 19.062           | 1.00 29.11               | A ·    | S      |
| ATOM<br>ATOM | 3266         | C        | CYS        |   |            | 13.349           | 64.578           | 19.523           | 1.00 25.59               | A      | C      |
| ATOM         | 3267<br>3268 | O<br>N   | CYS        |   |            | 14.283<br>12.236 | 63.911<br>64.815 | 19.088<br>18.847 | 1.00 26.16<br>1.00 25.30 | A<br>A | N<br>O |
| ATOM         | 3269         | CA       | VAL        |   |            | 12.012           | 64.273           | 17.529           | 1.00 24.68               | A      | C      |
| ATOM         | 3270         | CB       | VAL        | A | 436        | 10.627           | 64.638           | 17.046           | 1.00 22.85               | A      | č      |
| ATOM         | 3271         |          | VAL        |   |            | 10.553           | 64.585           | 15.551           | 1.00 22.21               | A      | Ç      |
| ATOM<br>ATOM | 3272<br>3273 |          | VAL        |   |            | 9.645            | 63.676           | 17.646           | 1.00 23.03               | A      | Ċ      |
| ATOM         | 3274         | С<br>0   | VAL        |   |            | 13.057<br>13.543 | 64.766<br>64.014 | 16.539<br>15.699 | 1.00 26.78<br>1.00 28.82 | A<br>A | C      |
| ATOM         | 3275         | N        | GLY        |   |            | 13.428           | 66.030           | 16.645           | 1.00 27.44               | Ā      | N      |
| MOTA         | 3276         | CA       | GLY        |   |            | 14.423           | 66.558           | 15.734           | 1.00 29.21               | A      | Ċ      |
| ATOM         | 3277         | С        | GLY        |   |            |                  | 66.452           | 16.187           | 1.00 30.37               | A      | C      |
| ATOM<br>ATOM | 3278         | 0        | GLY        |   |            | 16.689           | 67.309           | 15.827           | 1.00 31.48               | A      | 0      |
| ATOM         | 3279<br>3280 | n<br>Ca  | GLU<br>GLU |   |            | 16.201<br>17.587 | 65.423<br>65.279 | 16.964<br>17.424 | 1.00 30.25<br>1.00 29.95 | A      | N      |
| ATOM         | 3281         | CB       | GLU        |   |            | 17.769           | 63.985           | 18.224           | 1.00 32.05               | A<br>A | C      |
| MOTA         | 3282         | CG       | GLU        |   |            | 19.145           | 63.876           | 18.906           | 1.00 38.82               | A      | č      |
| ATOM         | 3283         | CD       | GLU        |   |            | 19.315           | 62.585           | 19.688           | 1.00 42.64               | A      | С      |
| MOTA         | 3284         |          | GLU        |   |            | 20.345           | 62.454           | 20.413           | 1.00 43.98               | A      | 0      |
| ATOM<br>ATOM | 3285<br>3286 | C<br>C   | GLU<br>GLU |   |            | 18.423<br>18.582 | 61.689<br>65.285 | 19.583<br>16.261 | 1.00 43.52<br>1.00 27.57 | A<br>A | 0      |
| ATOM         | 3287         | Ö        | GLU        |   |            | 19.570           | 66.011           | 16.279           | 1.00 27.37               | A      | C<br>0 |
| ATOM         | 3288         | N        | ALA        |   |            | 18.302           | 64.469           | 15.252           | 1.00 27.48               | A      | N      |
| ATOM         | 3289         | CA       | ALA        |   |            | 19.169           | 64.364           | 14.095           | 1.00 26.05               | A      | C      |
| ATOM         | 3290         | CB       | ALA        |   |            | 18.653           | 63.291           | 13.165           | 1.00 27.14               | A      | C      |
| ATOM<br>ATOM | 3291<br>3292 | С<br>О   | ALA<br>ALA |   |            | 19.282<br>20.366 | 65.676<br>66.245 | 13.346<br>13.220 | 1.00 26.34<br>1.00 27.58 | A      | C      |
| ATOM         | 3293         | N        | LEU        |   |            | 18.149           | 66.146           | 12.834           | 1.00 27.58               | A<br>A | И<br>О |
| ATOM         | 3294         | CA       | LEU        |   |            | 18.102           | 67.390           | 12.068           | 1.00 25.44               | Ä      | C      |
| MOTA         | 3295         | CB       | LEU        | A | 440        | 16.662           | 67.841           | 11.867           | 1.00 24.53               | · A    | Č      |
| MOTA         | 3296         | CG       | LEU        |   |            | 16.448           | 69.207           | 11.230           | 1.00 23.71               | A      | C      |
| ATOM         | 3297         | CDI      | LEU        | A | 440        | 17.281           | 69.384           | 9.977            | 1.00 25,27               | A      | С      |

| ATOM         | 3298         | CD2      | LEU        | Α  | 440 | 14.983 | 69,325   | 10.912  | 1 00   | 23.81 |   | A      | С |
|--------------|--------------|----------|------------|----|-----|--------|----------|---------|--------|-------|---|--------|---|
| ATOM         | 3299         | С        |            |    | 440 | 18.865 | 68.481   | 12.774  |        | 24.89 |   | A      | Č |
| ATOM         | 3300         | ō        |            |    | 440 | 19.707 | 69.140   | 12.175  |        | 24.44 |   | A      | Ö |
| ATOM         | 3301         | N        | ALA        |    |     | 18.549 | 68.684   | 14.044  |        | 25.79 |   | A      | N |
| ATOM         | 3302         | CA       | ALA        |    |     | 19.233 | 69.705   | 14.803  |        | 27.32 |   | A.     |   |
| ATOM         | 3303         | CB       |            |    | 441 | 18.851 | 69.625   | 16.267  |        | 27.87 |   |        | C |
| ATOM         | 3304         | Č        | ALA        |    |     | 20.722 | 69.486   | 14.637  |        | 28.61 |   | A      | C |
| ATOM         | 3305         | ŏ        | ALA        |    |     | 21.465 | 70.417   | 14.324  |        | 30.02 |   | A      | C |
| ATOM         | 3306         | N        |            |    | 442 | 21.169 | 68.254   |         |        |       |   | A      | 0 |
| ATOM         | 3307         | CA       | GLY        |    |     | 22.591 |          | 14.853  |        | 30.27 |   | A      | N |
| ATOM         | 3308         | C        | GLY        |    |     |        | 67.949   | 14.700  |        | 30.82 |   | A      | С |
| ATOM         | 3309         | Ö        | GLY        |    |     | 23.117 | 68.591   | 13.426  |        | 30.60 |   | A      | C |
| ATOM         | 3310         | N        | MET        |    |     | 24.070 | 69.367   | 13.442  |        | 31.18 |   | A      | 0 |
| ATOM         | 3311         | CA       | MET        |    |     | 22.459 | 68.264   | 12.318  |        | 29.65 |   | A      | N |
| ATOM         |              |          |            |    |     | 22.824 | 68.793   | 11.022  |        | 28.94 |   | A      | С |
| ATOM         | 3312<br>3313 | CB<br>CG | MET        |    |     | 21.823 | 68.352   | 9.969   |        | 29.71 |   | A      | С |
| ATOM         | 3314         | SD       | MET        |    |     | 21.897 | 66.891   | 9.692   |        | 33.35 |   | A      | C |
| ATOM         | 3315         | CE       | MET<br>MET |    |     | 20.994 | 66.355   | 8.215   |        | 36.07 |   | A      | S |
| ATOM         |              |          |            |    |     | 20.001 | 64.948   | 8.883   |        | 38.37 |   | Α.     | С |
| ATOM         | 3316         | C        | MET<br>MET |    |     | 22.935 | 70.305   | 10.968  |        | 28.77 |   | A      | C |
| ATOM         | 3317<br>3318 | 0        | GLU        |    |     | 23.998 | 70.861   | 10.685  |        | 29.45 |   | A      | 0 |
| ATOM         |              | N        |            |    |     | 21.824 | 70.974   | 11.239  |        | 29.70 |   | A      | N |
| ATOM         | 3319         | CA       | GLU        |    |     | 21.786 | 72.420   | 11.175  |        | 29.12 |   | A      | С |
|              | 3320         | CB       | GLU        |    |     | 20.439 | 72.931   | 11.704  |        | 30.49 |   | A      | С |
| ATOM         | 3321         | CG       | GLU        |    |     | 19.270 | 72.289   | 10.957  |        | 34.74 |   | A      | С |
| ATOM         | 3322         | CD       | GLU        |    |     | 17.936 | 72.982   | 11.169  |        | 36.00 |   | A      | С |
| ATOM         | 3323         |          | GLU        |    |     | 17.834 | 74.177   | 10.845  |        | 37.08 |   | A      | 0 |
| ATOM         | 3324         |          | GLÜ        |    |     | 16.983 |          | 11.645  |        | 35.77 |   | A      | 0 |
| ATOM         | 3325         | C        | GLU        |    |     | 22.955 | 72.987   |         | 1.00   | 28.42 |   | A      | С |
| ATOM         | 3326         | 0        | GLU        |    |     | 23.711 | 73.807   |         |        | 28.86 |   | A.     | 0 |
| ATOM         | 3327         | N        | LEU        |    |     | 23.136 |          | 13.177  |        | 27.36 |   | A      | N |
| ATOM         | 3328         | CA       | LEU        |    |     | 24.225 | 73.013   | 13.999  | 1.00   | 27.39 |   | A      | С |
| MOTA         | 3329         | CB       | LEU        |    |     | 24.244 |          | 15.326  | 1.00   | 26.95 | • | A      | C |
| MOTA         | 3330         | CG       | LEU        |    |     | 23.031 |          | 16.082  |        | 28.28 |   | Α      | С |
| MOTA         | 3331         |          | LEU        |    |     | 22.928 | 72.116   | 17.440  | . 1.00 | 29.67 |   | A      | С |
| MOTA         | 3332         | CD2      | TEA        | A  | 445 | 23.156 |          | 16.220  |        |       |   | A      | С |
| ATOM         | 3333         | С        | LEU        |    |     | 25.573 | 72.907   | 13.323  | 1.00   | 27.31 |   | A      | С |
| MOTA         | 3334         | 0        | LEU        | A  | 445 | 26.303 | 73.900   | 13.175  | 1.00   | 28.19 |   | A      | 0 |
| ATOM         | 3335         | N        | PHE        | A  | 446 | 25.890 | 71.689   | 12.907. | 1:00   | 26.05 |   | A      | N |
| MOTA         | 3336         | CA       | PHE        | Α  | 446 | 27.157 | 71.387 4 | 12.265  | .1.00  | 24.69 |   | A      | C |
| MOTA         | 3337         | CB       | PHE        | A  | 446 | 27.287 | 69.874   | 12.075  |        | 24.91 |   | A      | Ċ |
| MOTA         | 3338         | CG       | PHE        | A  | 446 | 28.567 | 69.471   | 11.417  |        | 25.44 |   | A      | Č |
| MOTA         | 3339         | CD1      | PHE .      | A  | 446 | 28.619 | 69.233   | 10.054  |        | 26.92 |   | A      | Č |
| MOTA         | 3340         | CD2      | PHE .      | A  | 446 | 29.740 | 69.380   | 12.158  |        | 25.02 |   | A      | č |
| ATOM         | 3341         |          | PHE .      |    |     | 29.824 | 68.907   | 9.438   |        | 24.83 |   | A      | ç |
| ATOM         | 3342         |          | PHE        |    |     | 30.945 | 69.057   | 11.553  |        | 24.06 |   | A.     | č |
| MOTA         | 3343         | CZ       | PHE .      |    |     | 30.990 | 68.820   | 10.193  |        | 23.70 |   | A      | č |
| MOTA         | 3344         | С        | PHE .      |    |     | 27.405 | 72.096   | 10.930  |        | 23.34 |   | A      | Č |
| MOTA         | 3345         | 0        | PHE        |    |     | 28.418 | 72.768   | 10.752  |        | 22.92 |   | A      | ŏ |
| ATOM         | 3346         | N        | LEU :      |    |     | 26.469 | 71.935   | 10.002  |        | 21.72 |   | A      | N |
| ATOM         | 3347         |          | LEU .      |    |     | 26.589 | 72.526   | 8.690   |        | 20.26 |   | A      | c |
| ATOM         | 3348         |          | LEU        |    |     | 25.481 | 72.025   | 7.789   |        | 17.83 |   | A      | c |
| ATOM         | 3349         |          | LEU        |    |     | 25.495 | 70.503   | 7.712   |        | 17.96 |   | A<br>A | č |
| ATOM         | 3350         |          | LEU        |    |     | 24.416 | 69.995   | 6.766   |        | 17.82 |   | A      | č |
| ATOM         | 3351         |          | LEU .      |    |     | 26.848 | 70.060   | 7.238   |        | 17.08 |   | A      | č |
| ATOM         | 3352         |          | LEU        |    |     | 26.586 | 74.026   | 8.715   |        | 22.05 |   | A      | č |
| MOTA         | 3353         |          | LEU        | _  |     | 27.430 | 74.648   | 8.085   |        | 23.67 |   | A      | Ö |
| ATOM         | 3354         |          | PHE 2      |    |     | 25.650 | 74.631   | 9.428   |        | 21.86 |   | A      | N |
| ATOM         | 3355         |          | PHE 2      |    |     | 25.661 | 76.077   | 9.439   |        | 21.86 |   | A      |   |
| ATOM         | 3356         |          | PHE A      |    |     | 24.498 | 76.671   | 10.205  |        | 19.53 |   |        | C |
| ATOM         | 3357         |          | PHE A      |    |     | 23.189 | 76.334   |         |        |       |   | A      | C |
| ATOM         | 3358         |          | PHE A      |    |     |        |          | 9.651   |        | 15.69 |   | A      | C |
| ATOM         | 3359         |          |            |    |     | 23.057 | 75.971   | 8.336   |        | 15.42 |   | A      | C |
|              |              |          | PHE A      |    |     | 22.072 | 76.371   | 10.452  |        | 17.66 |   | A      | C |
| ATOM<br>ATOM | 3360         |          | PHE A      |    |     | 21.825 | 75.645   | 7.824   |        | 16.95 |   | A      | C |
| ATOM         | 3361         |          | PHE A      |    |     | 20.829 | 76.045   | 9.942   |        | 17.45 |   | A      | C |
| ATOM         | 3362         |          | PHE A      |    |     | 20.709 | 75.683   | ,8.632  |        | 16.51 |   | A      | С |
| ATOM         | 3363         |          | PHE A      |    |     | 26.913 | 76.586   | 10.086  |        | 22.75 |   | A      | C |
| ATOM         | 3364         |          | PHE A      |    |     | 27.481 | 77.567   | 9.632   |        | 23.73 |   | A      | 0 |
| ATOM         | 3365         |          | LEU A      |    |     | 27.345 | 75.944   | 11.160  |        | 22.90 |   | A      | N |
| ATOM         | 3366         |          | LEU A      |    |     | 28.523 | 76.463   | 11.818  |        | 24.75 |   | A      | C |
| ATOM         | 3367         |          | LEU 1      |    |     | 28.745 | 75.810   | 13.175  |        | 25.71 |   | A      | С |
| MOTA         | 3368         |          | LEU A      |    |     | 27.856 | 76.231   | 14.335  |        | 27.57 |   | A.     | С |
| ATOM         | 3369         | CD1      |            |    |     | 28.475 | 75.627   | 15.574  |        | 28.10 |   | A      | С |
| MOTA         | 3370         | CD2      |            |    |     | 27.777 | 77.755   | 14.481  |        | 26.89 |   | A.     | С |
| MOTA         | 3371         |          | LEU A      |    |     | 29.793 | 76.346   | 10.991  |        | 25.53 |   | A      | С |
| MOTA         | 3372         | 0 1      | LEU ?      | ١, | 449 | 30.533 | 77.314   | 10.821  | 1.00   | 25.62 | i | A      | 0 |
|              |              |          |            |    |     |        |          |         |        |       |   |        |   |

| ATOM  | 3373 | N   | THR | A | 450 | 30.058   | 75.165 | 10.467   | 1.00 | 24.80 |   | Α | N   |
|-------|------|-----|-----|---|-----|----------|--------|----------|------|-------|---|---|-----|
|       |      |     | THR |   |     | 31.255   | 75.007 | 9.691    |      | 23.65 |   | A | С   |
| ATOM  | 3374 | CA  |     |   |     |          |        |          |      |       |   |   |     |
| ATOM  | 3375 | CB  | THR | A | 450 | 31.367   | 73.586 | 9.243    |      | 22.78 |   | A | С   |
| ATOM  | 3376 | OG1 | THR | A | 450 | 30.263   | 73.267 | 8.400    | 1.00 | 23.06 |   | A | 0   |
| ATOM  | 3377 |     | THR |   |     | 31.337   | 72.682 | 10.476 - | 1.00 | 21.60 |   | A | С   |
|       |      |     |     |   |     | 31.153   | 75.992 | 8.541    |      | 25.01 |   | A | C   |
| MOTA  | 3378 | C   | THR |   |     |          |        |          |      |       |   |   |     |
| ATOM  | 3379 | 0   | THR | A | 450 | 32.039   | 76.823 | 8.339    | 1.00 | 27.20 |   | A | 0   |
| ATOM  | 3380 | N   | SER | Α | 451 | 30.040   | 75.946 | 7.827    | 1.00 | 26.00 |   | Α | N   |
| ATOM  | 3381 | CA  | SER |   |     | 29.829   | 76.848 | 6.703    | 1.00 | 27.09 |   | A | С   |
|       |      |     |     |   |     |          |        | 6.251    |      | 29.61 |   | A | Č   |
| ATOM  | 3382 | CB  | SER |   |     | 28.384   | 76.790 |          |      |       |   |   |     |
| ATOM  | 3383 | OG  | SER | Α | 451 | 28.324   | 76.273 | 4.936    | 1.00 | 33.86 |   | A | 0   |
| MOTA  | 3384 | С   | SER | Α | 451 | 30.173   | 78.296 | 7.013    | 1.00 | 27.79 |   | A | С   |
| ATOM  | 3385 | 0   | SER | Δ | 451 | 30.876   | 78.942 | 6.252    | 1.00 | 30.04 |   | A | 0   |
|       |      |     | ILE |   |     | 29.663   | 78.806 | 8.123    |      | 26.02 |   | A | N   |
| ATOM  | 3386 | N   |     |   |     |          |        |          |      |       |   |   |     |
| MOTA  | 3387 | CA  | ILE |   |     | 29.913   | 80.175 | 8.508    |      | 23.58 |   | A | С   |
| ATOM  | 3388 | CB  | ILE | A | 452 | 29.208   | 80.462 | 9.825    | 1.00 | 22.95 |   | A | С   |
| ATOM  | 3389 | CG2 | ILE | А | 452 | 29.771   | 81.728 | 10.469   | 1.00 | 22.34 |   | Α | С   |
| MOTA  | 3390 |     | ILE |   |     | 27.701   | 80.486 | 9.587    | 1.00 | 22.89 |   | A | C   |
|       |      |     |     |   |     |          | _      |          |      |       |   | A | č   |
| ATOM  | 3391 |     | ILE |   |     | 26.888   | 80.574 | 10.841   |      | 22.31 |   |   |     |
| ATOM  | 3392 | С   | ILE | A | 452 | 31.390   | 80.456 | 8.660    | 1.00 | 24.41 |   | A | С   |
| MOTA  | 3393 | 0   | ILE | A | 452 | 31.888   | 81.493 | 8.232    | 1.00 | 24.75 |   | A | . 0 |
| ATOM  | 3394 | N   | LEU |   |     | 32.083   | 79.515 | 9.284    | 1.00 | 26.62 |   | A | N   |
|       |      |     |     |   |     |          |        | 9.551    |      | 27.24 |   | A | C   |
| MOTA  | 3395 | CA  | LEU |   |     | 33.514   | 79.628 |          |      |       |   |   |     |
| MOTA  | 3396 | CB  | LEU | A | 453 | 33.884   | 78.688 | 10.696   |      | 26.43 |   | A | С   |
| ATOM  | 3397 | CG  | LEU | Α | 453 | 33.378   | 79.122 | 12.070   | 1.00 | 27.77 |   | Α | С   |
| ATOM  | 3398 |     | LEU |   |     | 33.693   | 78.075 | 13.114   | 1.00 | 27.38 |   | A | C   |
|       |      |     |     |   |     |          |        | 12.440   |      | 27.31 |   | A | Ċ   |
| MOTA  | 3399 |     | LEU |   |     | 34.024   | 80.441 |          |      |       |   |   |     |
| ATOM  | 3400 | С   | LEU | Α | 453 | 34.379   | 79.328 | 8.340    |      | 28.11 |   | A | С   |
| MOTA  | 3401 | 0   | LEU | Α | 453 | 35.495   | 79.830 | 8.223    | 1.00 | 27.06 |   | A | 0   |
| MOTA  | 3402 | И   | GLN | А | 454 | 33.865   | 78.488 | 7.454    | 1.00 | 30.06 |   | A | N   |
|       |      | CA  | GLN |   |     | 34.604   | 78.145 |          | 1.00 |       |   | A | С   |
| ATOM  | 3403 |     |     |   |     |          |        | 5 433    | 1.00 | 33.00 |   | A | č   |
| MOTA  | 3404 | CB  | GLN | A | 454 | 33.880   | 77.042 | 5.477    |      |       |   |   |     |
| ATOM  | 3405 | CG  | GLN | A | 454 | 34.186   | 77.030 | 3.980    | 1.00 | 33.28 |   | A | С   |
| ATOM  | 3406 | CD  | GLN | Α | 454 | 33.391   | 75.981 | 3.205    | 1.00 | 35.10 |   | A | С   |
|       | 3407 |     | GLN |   |     | 33.779   | 74.817 | 3.150    |      |       |   | Α | 0   |
| ATOM  |      |     |     |   |     |          |        |          |      |       |   |   | N   |
| MOTA  | 3408 |     | GLN |   |     | 32.269   | 76.394 | 2.603    |      |       | t | A |     |
| ATOM  | 3409 | С   | GLN | A | 454 | 34.732   | 79.390 | 5.394    |      | 37.76 |   | A | С   |
| MOTA  | 3410 | 0   | GLN | Α | 454 | 35.717   | 79.575 | 4.676    | 1.00 | 40.25 |   | Α | 0   |
| ATOM  | 3411 | N   | ASN |   |     | 33.741   | 80.269 | 5.499    |      | 41.15 |   | A | N   |
|       |      | CA  | ASN |   |     | 33.684   | 81.493 | 4,691    |      | 41.20 |   | A | С   |
| MOTA  | 3412 |     |     |   |     |          |        |          |      |       |   | A | č   |
| ATOM  | 3413 | CB  | ASN |   |     | 32.285   | 81.627 | 4.110    |      | 40.40 |   |   |     |
| ATOM  | 3414 | CG  | asn | Α | 455 | 32.073   | 80.721 | 2.931    |      | 39.54 |   | A | С   |
| ATOM  | 3415 | OD1 | ASN | A | 455 | 32.475   | 81.050 | 1.811    | 1.00 | 42.97 |   | A | 0   |
| MOTA  | 3416 | ND2 | ASN | A | 455 | . 31.445 | 79.568 | 3.162    | 1.00 | 38.06 |   | A | N   |
| ATOM  | 3417 | С   | ASN |   |     | 34.049   | 82.797 | 5.362    | 1.00 | 42.11 | • | Α | С   |
|       |      |     |     |   |     | 34.508   | 83.734 | 4.699    |      | 43.32 | • | A | 0   |
| ATOM  | 3418 | 0   | ASN |   |     |          |        |          |      |       |   |   | N   |
| ATOM  | 3419 | И   |     |   | 456 | 33.839   | 82.862 | 6.669    |      | 43.44 |   | A |     |
| ATOM  | 3420 | CA  | PHE | Α | 456 | 34.104   | 84.084 | 7.407    |      | 44.37 |   | A | С   |
| ATOM  | 3421 | ÇВ  | PHE | Α | 456 | 32.803   | 84.693 | 7.904    | 1.00 | 43.34 |   | Α | С   |
| ATOM' | 3422 | CG  | DHE | A | 456 | 31.767   | 84.834 | 6.851    | 1.00 | 43.01 |   | Α | Ċ   |
|       |      |     | PHE |   |     | 31.741   | 85.955 | 6,038    |      | 43.21 |   | A | С   |
| ATOM  | 3423 |     |     |   | _   |          |        |          |      |       |   |   | č   |
| ATOM  | 3424 | CD2 | PHE | A | 456 | 30.813   | 83.838 | 6,669    |      | 41.91 |   | A |     |
| MOTA  | 3425 | CE1 | PHE | Α | 456 | 30.784   | 86.087 | 5.059    | 1.00 | 41.89 |   | A | С   |
| ATOM  | 3426 | CE2 | PHE | A | 456 | 29.843   | 83.955 | 5.688    | 1.00 | 43.45 |   | A | С   |
| MOTA  | 3427 | CZ  |     |   | 456 | 29.826   | 85,086 | 4.879    | 1.00 | 43.35 | - | Α | С   |
|       |      |     |     |   |     |          |        |          |      |       |   | _ | C   |
| MOTA  | 3428 | С   |     |   | 456 | 34.955   | 83.882 | 8.621    |      | 45.67 |   | A |     |
| ATOM  | 3429 | 0   | PHE | A | 456 | 34.991   | 82.805 | 9.206    |      | 46.42 |   | A | 0   |
| ATOM  | 3430 | N   | ASN | Α | 457 | 35.612   | 84.960 | 9.010    | 1.00 | 46.96 |   | A | N   |
| MOTA  | 3431 | CA  |     |   | 457 | 36.435   | 84.980 | 10.198   | 1.00 | 48.94 |   | Α | . С |
|       |      |     |     |   |     |          | 85.537 | 9.857    |      | 49.81 |   | A | c   |
| ATOM  | 3432 | CB  |     |   | 457 | 37.815   |        |          |      |       |   |   |     |
| MOTA  | 3433 | CG  | ASN | A | 457 | 38.918   | 84.521 | 10.059   |      | 50.62 |   | A | С   |
| MOTA  | 3434 | OD1 | ASN | A | 457 | 39.139   | 84.044 | 11.177   |      | 51.87 |   | A | 0   |
| ATOM  | 3435 |     | ASN |   |     | 39.621   | 84.183 | 8.978    | 1.00 | 49.48 |   | A | N   |
|       |      |     |     |   |     | 35.686   | 85,928 | 11.135   |      | 50.42 |   | A | С   |
| ATOM  | 3436 | С   |     |   | 457 |          |        |          |      |       |   |   |     |
| MOTA  | 3437 | 0   |     |   | 457 | 35.594   | 87.113 | 10.864   |      | 51.82 |   | A | 0   |
| MOTA  | 3438 | N   | LEU | A | 458 | 35.130   | 85.414 | 12.222   |      | 51.12 |   | A | N   |
| ATOM  | 3439 | CA  |     |   | 458 | 34.388   | 86.276 | 13.129   | 1.00 | 52.15 |   | A | С   |
| MOTA  |      |     |     |   | 458 | 33.722   | 85.438 | 14.196   |      | 49.78 |   | A | С   |
|       | 3440 | CB  |     |   |     |          |        |          |      | 47.91 |   | A | č   |
| ATOM  | 3441 | CG  |     |   | 458 | 33.087   | 84.237 | 13.533   |      |       |   |   |     |
| MOTA  | 3442 | CD1 | LEU | A | 458 | 32.549   | 83.342 | 14.608   |      | 48.30 |   | A | С   |
| ATOM  | 3443 |     | LEU |   |     | 31.992   | 84.668 | 12.569   | 1.00 | 47.96 |   | A | С   |
| ATOM  | 3444 | C   |     |   | 458 | 35.251   | 87.331 | 13.794   | 1.00 | 54.45 |   | A | С   |
|       |      |     |     |   |     |          | 87.074 | 14.145   |      | 54.89 |   | A | o   |
| ATOM  | 3445 | 0   |     |   | 458 | 36.403   |        | 13.974   |      | 57.91 |   | A | N   |
| MOTA  | 3446 | N   |     |   | 459 | 34.677   | 88.518 |          |      |       |   |   |     |
| ATOM  | 3447 | CA  | LYS | A | 459 | 35.379   | 89.624 | 14.617   | 1.00 | 61.56 |   | A | С   |

| MOTA | 3448    | CB  | LYS : | A  | 459 | 36.224 | 90.394 | 13.595 | 1.00  | 62.67 |                      | A          | С       |
|------|---------|-----|-------|----|-----|--------|--------|--------|-------|-------|----------------------|------------|---------|
|      | 3449    | CG  | LYS   |    |     | 37.120 | 91.472 | 14.219 | 1.00  | 65.44 |                      | A          | С       |
| ATOM |         |     | LYS   |    |     | 37.876 | 92.284 | 13.161 |       | 66.44 |                      | A          | C       |
| ATOM | 3450    | CD  |       |    |     |        |        |        |       |       |                      | A          |         |
| ATOM | 3451    | CE  | LYS : |    |     | 38.782 | 93.362 | 13.782 |       | 67.09 |                      |            | C       |
| ATOM | 3452    | NZ  | LYS : | A  | 459 | 38.060 | 94.298 | 14.710 |       | 66.24 |                      | A          | N       |
| ATOM | 3453    | С   | LYS : | A  | 459 | 34.420 | 90.589 | 15.318 | 1.00  | 62.98 |                      | A          | С       |
| ATOM | 3454    | Ō   | LYS   |    |     | 33.507 | 91.146 | 14.705 | 1.00  | 62.23 |                      | A          | 0       |
|      |         |     |       |    |     | 34.644 | 90.786 | 16.613 |       | 66.31 |                      | Α          | N       |
| ATOM | 3455    | N   | SER   |    |     |        |        |        |       |       |                      |            | Ċ       |
| MOTA | 3456    | CA  | SER   |    |     | 33.820 | 91.683 | 17.411 |       | 69.11 |                      | A          |         |
| ATOM | 3457    | ÇB  | SER . | A  | 460 | 33.801 | 91.231 | 18,880 |       | 69.18 |                      | A          | С       |
| ATOM | 3458    | OG  | SER . | A  | 460 | 32.971 | 92.065 | 19.673 | 1.00  | 69.48 |                      | A          | 0       |
| ATOM | 3459    | C   | SER . |    |     | 34,402 | 93.084 | 17.322 | 1.00  | 71.49 |                      | Α          | С       |
|      |         |     | SER   |    |     | 35.350 | 93.329 | 16.572 |       | 72.05 |                      | A          | 0       |
| ATOM | 3460    | 0   |       |    |     |        |        |        |       | 74.03 |                      | A          | N       |
| ATOM | 3461    | N   | LEU . |    |     | 33.830 | 94.001 | 18.092 |       |       |                      |            |         |
| MOTA | 3462    | CA  | LEU   | A  | 461 | 34.304 | 95.377 | 18.113 |       | 76.04 |                      | A          | C       |
| ATOM | 3463    | CB  | LEU . | Α  | 461 | 33.380 | 96.276 | 17.293 | 1.00  | 76.87 |                      | A          | С       |
| MOTA | 3464    | CG  | LEU   | A  | 461 | 31.918 | 96,252 | 17.745 | 1.00  | 78.16 |                      | A          | С       |
| MOTA | 3465    |     | LEU   |    |     | 31.448 | 97.664 | 18.089 | 1.00  | 78.81 |                      | A          | С       |
|      |         |     |       |    |     |        | 95.643 | 16.642 |       | 79.26 |                      | A          | C       |
| MOTA | 3466    |     | LEU   |    |     | 31.068 |        |        |       |       |                      |            |         |
| ATOM | 3467    | С   | LEU   | A  | 461 | 34.370 | 95.889 | 19.548 |       | 76.89 |                      | A          | C       |
| MOTA | 3468    | 0   | LEU   | A  | 461 | 34.376 | 97.097 | 19.778 |       | 77.43 |                      | A          | 0       |
| ATOM | 3469    | N   | VAL   | A  | 462 | 34.407 | 94.974 | 20.512 | 1.00  | 77.27 |                      | A          | N       |
| ATOM | 3470    | CA  | VAL   |    |     | 34.484 | 95.383 | 21.908 | 1.00  | 76.69 |                      | A          | C       |
|      | 3471    | CB  | VAL   |    |     | 33.057 | 95.334 | 22.603 |       | 76.77 |                      | A          | С       |
| ATOM |         |     |       |    |     |        |        |        |       | 76.09 |                      | A          | č       |
| ATOM | 3472    | -   | VAL   |    |     | 32.556 | 93.913 | 22.723 |       |       | •                    |            |         |
| ATOM | 3473    | CG2 | VAL   | A  | 462 | 33.099 | 96.022 | 23.971 |       | 76.48 |                      | A          | C       |
| MOTA | 3474    | С   | VAL   | Α. | 462 | 35.514 | 94.559 | 22.684 | _     | 76.46 | 6.0                  | A          | C       |
| ATOM | 3475    | 0   | VAL   | A  | 462 | 35.546 | 94.598 | 23.913 | 1.00  | 76.54 | 3.5                  | A          | ,O      |
| ATOM | 3476    | N   | ASP   |    |     | 36.368 | 93.833 | 21.962 | 1.00  | 75.64 | 100                  | Α          | N       |
|      |         |     | ASP   |    |     | 37.412 | 93.029 | 22.601 |       | 75.43 |                      |            | C       |
| MOTA | :3477   | CA  |       |    |     |        |        |        |       |       |                      |            |         |
| ATOM | 3478    | CB  | ASP   |    |     | 38.338 | 93.947 | 23.419 | 1.00  | 74.51 | an Salaha<br>Lambara | A 11       |         |
| ATOM | 3479    | CG  | ASP   | A  | 463 | 39.337 | 93.177 | 24.271 | 1.00  | 75.86 | 3.4                  | Α          | i (U ), |
| MOTA | 3480    | OD1 | ASP   | Α  | 463 | 40.136 | 92.386 | 23.709 | 1.00  | 76.62 |                      | <b>Z</b> . | :O      |
| ATOM | 3481    |     | ASP   |    |     | 39.332 | 93.369 | 25.508 | 1.00  | 75.97 |                      | A :        | ŏ       |
|      |         |     | ASP   |    |     | 36.820 | 91.932 | 23.502 |       | 75.02 | 1.33.                | A .        | : C :   |
| ATOM | 3482    | С   |       |    |     |        |        |        |       | 75.06 |                      |            |         |
| MOTA | 3483    | 0   | ASP   |    |     | 36.232 | 92.223 | 24.550 |       |       |                      |            |         |
| ATOM | 3484    | N   | PRO   | Α  | 464 | 37.003 | 90.653 | 23.118 |       | 73.77 |                      |            | 7 N     |
| ATOM | 3485    | CD  | PRO   | Α  | 464 | 38.089 | 90.233 | 22,211 |       | 73.62 |                      |            |         |
| MOTA | 3486    | CA  | PRO   | A  | 464 | 36.496 | 89.488 | 23.860 | 1.00  | 72.81 | 8081. 1              | A          | . 4 C   |
|      | 3487    | CB  | PRO   |    |     | 37.303 | 88.327 | 23.273 | 1.00  | 72.24 |                      | Α,         | . · c . |
| ATOM |         |     |       |    |     |        | 88.985 | 22.903 |       | 72.60 |                      | A          | С       |
| ATOM | 3488    | CG  | PRO   |    |     | 38.605 |        |        |       |       |                      | A          | Č       |
| ATOM | 3489    | C   | PRO   |    |     | 36.671 | 89.585 | 25.376 |       | 72.06 |                      |            |         |
| ATOM | 3490    | 0   | PRO   | Α  | 464 | 35.744 | 89.296 | 26.152 |       | 73.87 |                      | A          | 0       |
| ATOM | 3491    | N   | LYS   | Α  | 465 | 37.880 | 89.983 | 25.772 | 1.00  | 71.15 |                      | A          | N       |
| ATOM | 3492    | CA  | LYS   |    |     | 38.285 | 90.139 | 27.178 | 1.00  | 69.30 |                      | A          | С       |
|      | 3493    | CB  | LYS   |    |     | 39.509 | 91.086 | 27.254 | 1.00  | 69.35 |                      | Α          | С       |
| ATOM |         |     |       |    |     | 40.773 | 90.505 | 27.934 |       | 68.46 |                      | A          | C       |
| ATOM | 3494    | CG  | LYS   |    |     |        |        |        |       | 67.14 |                      | A          | c       |
| ATOM | 3495    | CD  | LYS   |    |     | 40.618 | 90.349 | 29.473 |       |       |                      |            |         |
| ATOM | 3496    | СE  | LYS   | Α  | 465 | 41.869 | 89.729 | 30.155 |       | 65.46 |                      | A          | C       |
| ATOM | 3497    | NZ  | LYS   | A  | 465 | 41.780 | 89.662 | 31.654 |       | 62.43 |                      | A          | N       |
| ATOM | 3498    | C   | LYS   | A  | 465 | 37.162 | 90.645 | 28.104 | 1.00  | 68.12 |                      | A          | C       |
| ATOM | 3499    | ŏ   | LYS   |    |     | 37.173 | 90.369 | 29.312 | 1.00  | 68.51 |                      | A          | 0       |
|      |         |     |       |    |     |        | 91.374 | 27.530 |       | 67.02 |                      | A          | N       |
| ATOM | 3500    | N   |       |    | 466 | 36.198 |        |        |       | 66.90 |                      | A          | Ĉ       |
| ATOM | 3501    | CA  |       |    | 466 | 35.060 | 91.936 | 28.281 |       |       |                      |            | Ċ       |
| ATOM | 3502    | СB  | asn   | A  | 466 | 34.859 | 93.421 | 27.907 |       | 66.33 |                      | A          |         |
| MOTA | 3503    | CG  | ASN.  | Α  | 466 | 36.144 | 94.251 | 28.048 |       | 68.89 |                      | A          | С       |
| ATOM | 3504    |     | ASN   |    |     | 36.680 | 94.419 | 29,154 | 1.00  | 67.33 |                      | A          | 0       |
|      | 3505    |     | ASN   |    |     | 36.643 | 94.766 | 26.923 | 1.00  | 67.92 |                      | A          | N       |
| MOTA |         |     |       |    |     | 33.732 | 91.165 | 28.078 |       | 66.63 |                      | A          | С       |
| MOTA | 3506    | C   |       |    | 466 |        |        |        |       | 68.29 |                      | A          | ō       |
| ATOM | 3507    | 0   |       |    | 466 | 33.279 | 90.475 | 28.996 |       |       |                      |            |         |
| MOTA | 3508    | N   | LEU   | Α  | 467 | 33.136 | 91.275 | 26.882 |       | 65.79 |                      | A          | N       |
| ATOM | 3509    | CA  | LEU   | A  | 467 | 31.859 | 90.623 | 26.545 | 1.00  | 62.78 |                      | A          | С       |
| ATOM | 3510    | CB  |       |    | 467 | 31.789 | 90.326 | 25.040 | 1.00  | 62.38 |                      | A          | · C     |
|      |         | CG  |       |    | 467 | 33.068 | 89.779 | 24.405 | 1.00  | 62.15 |                      | A          | С       |
| ATOM | 3511    |     |       |    |     | _      | 88.276 | 24.350 |       | 62.11 |                      | A          | Č       |
| MOTA | 3512    |     | LEU   |    |     | 32.993 |        |        |       |       |                      |            |         |
| MOTA | 3513    | CD2 | LEU   |    |     | 33.239 | 90.339 | 22.997 |       | 62.37 |                      | A          | C       |
| ATOM | 3514    | С   | LEU   | Α  | 467 | 31.540 | 89.366 | 27.351 |       | 62.40 |                      | A          | C       |
| ATOM | 3515    | ō   |       |    | 467 | 32.231 | 88.346 | 27.274 |       | 62.19 |                      | A          | 0       |
|      |         | N   |       |    | 468 | 30.476 | 89.492 | 28.137 | .1.00 | 62.67 |                      | A          | N       |
| ATOM | 3516    |     |       |    |     | 29.941 | 88.465 | 29.034 |       | 62.68 |                      | A          | C       |
| ATOM | 3517    | CA  |       |    | 468 |        |        | 29.982 |       | 63.53 |                      | A          | Ċ       |
| MOTA | 3518    | СВ  |       |    | 468 | 28.949 | 89.164 |        |       |       |                      |            |         |
| ATOM | . 3519. |     |       |    | 468 | 28.339 | 88.237 | 31.014 |       | 65.71 |                      | A          | Ç       |
| ATOM | 3520    |     | ASP   | A  | 468 | 27.626 | 87.279 | 30,630 |       | 68.02 |                      | A          | 0       |
| MOTA | 3521    |     | ASP   |    |     | 28.570 | 88.479 | 32.222 | 1.00  | 64.88 |                      | A          | 0       |
|      |         |     |       |    | 468 | 29.249 | 87.364 | 28.233 |       | 61.35 |                      | A          | С       |
| MOTA | 3522    | С   | HSP   | A  | 400 | 67.643 | 5,,50  |        |       |       |                      |            | -       |
|      |         |     |       |    |     |        |        |        |       |       |                      |            |         |

Figure 3

| MOTA   | 3523 | 0   | ASP         | A | 468 | 28.472 | 87.65B | 27.328 | 1.00 61  | .29  | A | 0 |
|--------|------|-----|-------------|---|-----|--------|--------|--------|----------|------|---|---|
| ATOM   | 3524 | N   | THR         | A | 469 | 29.531 | 86.104 | 28.569 | 1.00 60  | .82  | A | N |
|        |      |     |             |   |     |        |        | 27.877 | 1.00 60  |      | A | C |
| ATOM   | 3525 | CA  | THR         |   |     | 28.935 | 84.954 |        |          |      |   |   |
| MOTA   | 3526 | CB  | THR         | A | 469 | 29.985 | 83.935 | 27.437 | 1.00 59  | . 49 | A | С |
| ATOM   | 3527 | OG1 | THR         | A | 469 | 30.392 | 83.173 | 28.582 | 1.00 60  | .77  | A | 0 |
| ATOM   | 3528 |     | THR         |   |     | 31.191 | 84.618 | 26.833 | 1.00 58  | . 97 | A | С |
|        |      |     |             |   |     |        |        |        |          |      |   |   |
| atom   | 3529 | С   | THR         |   |     | 28.001 | 84.185 | 28.803 | 1.00 60  |      | A | C |
| ATOM   | 3530 | 0   | THR         | Α | 469 | 27.375 | 83.207 | 28.384 | 1.00 59  | . 69 | A | 0 |
| ATOM   | 3531 | N   | THR         | Δ | 470 | 27.963 | 84.605 | 30.068 | 1.00 61  | . 42 | A | N |
|        |      |     |             |   |     |        |        |        | 1.00 62  |      | A | C |
| MOTA   | 3532 | CA  | THR         |   |     | 27.127 | 83.990 | 31.104 |          |      |   |   |
| ATOM   | 3533 | CB  | THR         | Α | 470 | 27.314 | 84.708 | 32.467 | 1.00 63  | .25  | A | С |
| ATOM   | 3534 | OG1 | THR         | Α | 470 | 28.709 | 84.786 | 32.796 | 1.00 64  | .03  | A | 0 |
| MOTA   | 3535 |     | THR         |   |     | 26.584 | 83.956 | 33.576 | 1.00 64  | . 09 | A | C |
|        |      |     |             |   |     |        |        |        |          |      |   |   |
| ATOM   | 3536 | С   | THR         | _ | -   | 25.657 | 84.102 | 30.706 | 1.00 61  |      | A | С |
| ATOM   | 3537 | 0   | THR         | Α | 470 | 25.123 | 85.207 | 30.616 | 1.00 61  | .70  | A | 0 |
| ATOM   | 3538 | N   | PRO         | A | 471 | 24.979 | 82.957 | 30.489 | 1.00 61  | .74  | A | N |
| ATOM   | 3539 | CD  | PRO         |   |     | 25.445 | 81.621 | 30.902 | 1.00 62  |      | A | C |
|        |      |     |             |   |     |        |        |        |          |      |   |   |
| ATOM   | 3540 | CA  | PRO         |   |     | 23.565 | 82.903 | 30.090 | 1.00 62  |      | A | C |
| ATOM   | 3541 | CB  | PRO         | A | 471 | 23.189 | 81.434 | 30.297 | 1.00 62  | . 45 | A | C |
| ATOM   | 3542 | CG  | PRO         | Δ | 471 | 24.486 | 80.711 | 30.161 | 1.00 63  | . 34 | A | С |
|        |      |     |             |   |     | 22.696 | 83.814 | 30.930 | 1.00 62  |      | A | C |
| ATOM   | 3543 | С   | PRO         |   |     |        |        |        |          |      |   |   |
| ATOM   | 3544 | 0   | PRO         | A | 471 | 23.036 | 84.124 | 32.068 | 1.00 63  |      | A | 0 |
| ATOM   | 3545 | N   | VAL         | Α | 472 | 21.577 | 84.245 | 30.364 | 1.00 62  | .33  | A | N |
| MOTA   | 3546 | CA  | VAL         | Δ | 472 | 20.638 | 85.095 | 31.078 | 1.00 63  | . 26 | A | C |
|        |      |     |             |   |     |        |        | 30.327 | 1.00 63  |      | A | Ç |
| ATOM   | 3547 | CB  | VAL         |   |     | 20.440 | 86.433 |        |          |      |   |   |
| ATOM   | 3548 | CG1 | VAL         | A | 472 | 19.271 | 87.211 | 30.910 | 1.00 63  | .58  | A | С |
| MOTA   | 3549 | CG2 | VAL         | A | 472 | 21.717 | 87,262 | 30.438 | 1.00 62  | .60  | A | C |
| ATOM   | 3550 | c   | VAL         |   |     | 19.359 | 84.268 | 31.144 | 1.00 63  |      | A | С |
|        |      |     |             |   |     |        |        |        |          |      |   | ŏ |
| ATOM   | 3551 | 0   | VAL         |   |     | 18.647 | 84.123 | 30.158 | 1.00 62  |      | A |   |
| ATOM . | 3552 | N   | VAL         | Α | 473 | 19.098 | 83.698 | 32.313 | 1.00 67  | .22  | A | N |
| ATOM . | 3553 | CA  | VAL         | A | 473 | 17.933 | 82.848 | 32.502 | 1.00 71  | .16  | A | C |
| ATOM   | 3554 | СВ  | VAL         |   |     | 18.206 | 81.755 | 33.577 | 1.00 71  | 75   | A | С |
|        |      |     |             |   |     |        |        |        |          | -    |   |   |
| ATOM   | 3555 | CG1 | AAP         | A | 4/3 | 16.999 | 80.838 | 33.707 | 1.00 72  |      | A | C |
| ATOM   | 3556 | CG2 | VAL         | Α | 473 | 19.456 | 80.945 | 33.221 | 1.00 72  | .53  | A | С |
| ATOM   | 3557 | С   | VAL         | Α | 473 | 16.671 | 83.592 | 32.925 | 1.00 73  | .28  | A | С |
|        |      |     |             |   | 473 | 16.722 | 84.518 | 33.750 | 1.00 74  |      | A | 0 |
| MOTA   |      | 0   |             |   |     |        |        |        |          |      |   |   |
| ATOM   | 3559 | N   | ASN         | A | 474 | 15.538 | 83.174 | 32.353 | 1.00 74  |      | A | N |
| ATOM   | 3560 | CA  | ASN         | A | 474 | 14.215 | 83.738 | 32.672 | 1.00 75  | .80  | A | С |
| ATOM   | 3561 | CB  |             |   | 474 | 13.843 | 84.870 | 31.689 | 1.00 76  | .75  | A | C |
| 1.6    |      |     |             |   |     |        |        |        | 1.00 77  |      | A | Ċ |
| MOTA   | 3562 | CG  | ASN         |   |     | 14.747 | 86.111 | 31.842 |          |      |   |   |
| ATOM   | 3563 | OD1 | ASN         | A | 474 | 15.565 | 86.410 | 30.964 | 1.00 78  | .76  | A | 0 |
| ATOM   | 3564 | ND2 | ASN         | A | 474 | 14.598 | 86,830 | 32.961 | 1.00 76  | .38  | A | N |
| ATOM   | 3565 | C   | ASN         |   |     | 13.150 | 82.628 | 32.677 | 1.00 75  | 53   | A | С |
|        |      |     |             |   |     |        |        |        |          |      |   |   |
| MOTA   | 3566 | 0   | asn         | A | 474 | 12.493 | 82.355 | 31.669 | 1.00 74  |      | A | 0 |
| MOTA   | 3567 | N   | <b>GL</b> Y | Α | 475 | 13.005 | 81.997 | 33.841 | 1.00 76  | 5.14 | A | N |
| ATOM   | 3568 | CA  | GLY         | A | 475 | 12.042 | 80.922 | 34.027 | 1.00 77  | .22  | A | С |
| ATOM   | 3569 | C   |             |   | 475 | 12.581 | 79.544 | 33.658 | 1.00 77  | .26  | A | С |
|        |      |     |             |   |     |        |        |        | 1.00 77  |      | A | ō |
| MOTA   | 3570 | 0   |             |   | 475 | 13.567 | 79.065 | 34.244 |          |      |   |   |
| ATOM   | 3571 | N   | PHE         | A | 476 | 11.914 | 78.903 | 32.692 | 1.00 76  | .31  | A | N |
| ATOM   | 3572 | CA  | PHE         | Α | 476 | 12.299 | 77.574 | 32.182 | 1.00 74  | .61  | A | С |
| ATOM   | 3573 | CB  |             |   | 476 | 11.056 | 76.705 | 31.873 | 1.00 75  | . 83 | A | С |
|        |      |     |             |   |     |        |        |        | 1.00 75  |      | A | C |
| ATOM   | 3574 | CG  | PHE         |   | 476 | 10.172 | 76.388 | 33.071 |          |      |   | č |
| ATOM   | 3575 | CD1 | PHE         | A | 476 | 8.838  | 75.994 | 32.861 | 1.00 75  |      | A |   |
| ATOM   | 3576 | CD2 | PHE         | A | 476 | 10.647 | 76.475 | 34.382 | 1.00 74  | .46  | A | С |
| ATOM   | 3577 | CE1 | PHE         | Δ | 476 | 7.991  | 75.700 | 33.929 | 1.00 75  | .55  | A | С |
|        |      |     |             |   |     |        | 76.181 |        |          |      | A | С |
| ATOM   | 3578 |     | PHE         |   |     | 9.805  |        | 35.466 | 1.00 73  |      |   |   |
| ATOM   | 3579 | CZ  |             |   | 476 | 8.475  | 75.794 | 35.242 | 1.00 74  |      | A | C |
| ATOM   | 3580 | C   | PHE         | Α | 476 | 13.141 | 77.679 | 30.878 | 1.00 72  | .85  | A | С |
| ATOM   | 3581 | 0   |             |   | 476 | 13.279 | 76.687 | 30.147 | 1.00 73  | 3.17 | Α | 0 |
|        |      |     | . ALA       |   |     | 13.673 | 78.871 | 30.584 | 1.00 68  |      | A | N |
| ATOM   | 3582 |     |             |   |     |        |        |        |          |      |   |   |
| ATOM   | 3583 | CA  | ALA         | A | 477 | 14.513 | 79.092 | 29.395 | 1.00 64  | 1.79 | A | C |
| ATOM   | 3584 | CB  | ALA         | Α | 477 | 13.658 | 79.506 | 28.169 | 1.00 64  | 1.07 | A | C |
| ATOM   | 3585 | c   |             |   | 477 | 15.580 | 80.156 | 29.669 | 1.00 62  |      | A | C |
|        |      |     |             |   |     |        |        |        | 1.00 61  |      | Α | ō |
| ATOM   | 3586 | 0   |             |   | 477 | 15.452 | 80.949 | 30.609 |          |      |   |   |
| ATOM   | 3587 | N   | SER         | A | 478 | 16.631 | 80.147 | 28.846 | 1,.00 58 |      | A | N |
| MOTA   | 3588 | CA  | SER         | A | 478 | 17.747 | 81.089 | 28.938 | 1.00 54  | 1.58 | A | С |
|        |      |     |             |   | 478 | 18.910 | 80.479 | 29.723 | 1.00 55  |      | A | C |
| ATOM   | 3589 | CB  |             |   |     |        |        |        |          |      |   | ō |
| ATOM   | 3590 | OG  |             |   | 478 | 19.258 | 79.207 | 29.207 | 1.00 57  |      | A |   |
| ATOM   | 3591 | С   | SER         | Α | 478 | 18.201 | 81.418 | 27.521 | 1.00 50  |      | A | C |
| ATOM   | 3592 | ō   |             |   | 478 | 18.046 | 80.609 | 26.610 | 1.00 50  | 1.09 | A | 0 |
|        |      |     |             |   |     |        | 82.616 | 27.340 | 1.00 45  |      | A | N |
| ATOM   | 3593 | N   |             |   | 479 | 18.738 |        |        |          |      |   |   |
| ATOM   | 3594 | CA  | VAL         | Α | 479 | 19.201 | 83.053 | 26.040 | 1.00 43  |      | Α | C |
| ATOM   | 3595 | CB  |             |   | 479 | 18.175 | 83.940 | 25,355 | 1.00 43  | 1.28 | A | C |
|        |      |     | VAL         |   |     | 16.902 | 83,155 | 25.102 | 1.00 44  |      | A | С |
| ATOM   | 3596 |     |             |   |     |        |        |        |          |      | A | č |
| ATOM   | 3597 |     | VAL         | A | 479 | 17.896 | 85.142 | 26.234 | 1.00 43  |      | ^ | · |
|        |      |     |             |   |     |        |        |        | •        |      |   |   |

|   | ATOM   | 3598 | С   | VAL   | A 47   | 9 20.423 | 83.881 | 26.279 | 1.00 40.58 | 70 | С  |
|---|--------|------|-----|-------|--------|----------|--------|--------|------------|----|----|
|   |        |      |     |       |        |          |        |        |            | A  |    |
|   | ATOM   | 3599 | Ō   |       | A 47   |          | 84.329 | 27.390 | 1.00 41.38 | A  | 0  |
|   | ATOM   | 3600 | N   | PRO   | A 48   | 21.229   | 84.103 | 25.240 | 1.00 37.31 | A  | N  |
|   |        | 3601 | CD  |       | A 48   |          |        |        |            |    |    |
|   | MOTA   |      |     |       |        |          | 83.616 | 23.858 | 1.00 36.99 | A  | С  |
|   | ATOM   | 3602 | CA- | PRO   | A 48   | 22.437   | 84.903 | 25.387 | 1.00 37.96 | A  | С  |
|   | ATOM   | 3603 | CB  | PRO   | A 48   | 23,233   | 84.540 | 24.153 | 1.00 35.71 |    |    |
|   |        |      |     |       |        |          |        |        |            | A  | С  |
|   | ATOM   | 3604 | CG  | PRO   | A 480  | 22.146   | 84.485 | 23.132 | 1.00 35.83 | A  | С  |
|   | ATOM   | 3605 | С   | PRO   | A 48   | 22.104   | 86.389 | 25.395 | 1.00 37.75 | A  | C  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3606 | 0   | PRO   | A 480  | 20.989   | 86.811 | 25.013 | 1.00 37.41 | A  | 0  |
|   | ATOM   | 3607 | N   | PRO   | A 48   | L 23.075 | 87.204 | 25.825 | 1.00 35.85 | А  | N  |
|   |        |      |     |       |        | _        |        |        |            |    |    |
|   | MOTA   | 3608 | CD  |       | A 48   |          | 86.832 | 26.425 | 1.00 36.77 | A  | С  |
|   | ATOM   | 3609 | CA  | PRO   | A 483  | L 22.901 | 88.646 | 25.877 | 1.00 37.26 | A  | С  |
|   | ATOM   | 3610 | 'CB |       | A 48   |          |        |        |            |    |    |
|   |        |      |     |       |        |          | 89.096 | 26.688 | 1.00 36.28 | A  | С  |
|   | ATOM   | 3611 | CG  | PRO   | A 48:  | 25,144   | 88.102 | 26.298 | 1.00 35.98 | A  | С  |
|   | ATOM   | 3612 | С   | PRO   | A 483  | 22,968   | 89.178 | 24.463 | 1.00 37.58 | A  | Č  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3613 | 0   | PKO   | A 481  | 23.037   | 88.425 | 23.491 | 1.00 38.93 | A  | 0  |
|   | ATOM   | 3614 | N   | PHE   | A 482  | 22.967   | 90.488 | 24.348 | 1.00 37.45 | A  | N  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3615 | CA  |       | A 482  |          | 91.071 | 23.050 | 1.00 38.65 | A  | С  |
|   | ATOM   | 3616 | CB  | PHE   | A 482  | 22.203   | 92.333 | 23.005 | 1.00 41.63 | A  | С  |
|   | ATOM   | 3617 | CG  |       | A 482  |          | 93.305 |        |            |    |    |
| • |        |      |     |       |        |          |        | 21.972 | 1.00 44.00 | A  | С  |
|   | ATOM   | 3618 | CD1 | PHE.  | A 482  | 23.704   | 94.159 | 22.229 | 1.00 45.84 | A  | С  |
|   | ATOM   | 3619 | CD2 | PHE   | A 482  | 21.992   | 93.376 | 20.744 | 1.00 44.53 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3620 | CEI | PHE   | A 487  | 24.128   | 95.076 | 21.282 | 1.00 47.38 | A  | С  |
|   | ATOM   | 3621 | CE2 | PHE   | A 482  | 22.407   | 94.294 | 19.780 | 1.00 46.45 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3622 | CZ  |       | A 482  |          | 95.148 | 20.052 | 1.00 47.08 | A  | С  |
|   | ATOM   | 3623 | С   | PHE   | A 482  | 24.501   | 91.352 | 22.749 | 1.00 38.80 | A  | C  |
|   | ATOM   | 3624 |     |       | A 482  |          |        |        |            |    |    |
|   |        |      |     |       |        |          | 91.671 | 23.644 | 1.00 38.59 | A  | 0  |
|   | ATOM   | 3625 | N   | TYR.  | A 483  | 24.843   | 91.212 | 21.475 | 1.00 39.07 | A  | N  |
|   | MOTA   | 3626 | CA  | TVD.  | A 483  |          | 91.447 | 21.027 | 1.00 39.61 | A  | Ċ  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3627 | CB  | TYR.  | A 483  | 3 27.085 | 90.268 | 21.418 | 1.00 38.85 | A  | С  |
|   | ATOM   | 3628 | CG  | TYR   | A 49   | 26.835   | 89.036 | 20.588 | 1.00 38.09 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3629 | CDI | TYR   | A 483  | 27.609   | 88.773 | 19.458 | 1.00 39.05 | A  | С  |
|   | ATOM   | 3630 | CE1 | TYR   | A: 483 | 27.353   | 87.679 | 18.654 | 1.00 39.62 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3631 |     | TYR   |        |          | 88.166 | 20.896 | 1.00 36.85 | A  | С  |
|   | ATOM   | 3632 | CE2 | TYR   | A 483  | 25.530   | 87.067 | 20.099 | 1.00 37.42 | A  | С  |
|   | ATOM   | 3633 |     |       | A 483  |          |        |        |            |    |    |
|   |        |      |     |       |        |          | 86.832 | 18.984 | 1.00 39.46 | A  | С  |
|   | ATOM   | 3634 | OH  | TYR   | A 483  | 3 26.031 | 85.755 | 18.177 | 1.00 43.22 | A  | 0  |
|   | ATOM   | 3635 | C.  | TYR   | A. 497 |          | 91.626 | 19.520 | 1.00 40.22 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3636 | 0 : | TYR   | A 48.  | 25.291   | 91.240 | 18.816 | 1.00 39.29 | A  | 0  |
|   | ATOM   | 3637 | N ' | GLN   | A 484  | 27.303   | 92.216 | 19.038 | 1.00 42.76 | A  | N  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3638 | CA  | GHN   | A 484  |          | 92.449 | 17.620 | 1.00 46.91 | A  | C. |
|   | ATOM   | 3639 | CB  | GLN   | A 484  | 27.391   | 93.946 | 17.314 | 1.00 50.30 | A  | С  |
|   | ATOM   | 3640 | CG  |       | A 484  |          |        |        |            |    |    |
|   |        |      |     |       |        |          | 94.643 | 17.735 | 1.00 55.40 | A  | С  |
|   | ATOM   | 3641 | CD  | GLN   | A 484  | 26.104   | 96.122 | 17.347 | 1.00 56.71 | A  | С  |
|   | ATOM   | 3642 | OFI | GLN   | B 484  | 26.990   | 96.887 | 17.774 | 1.00 58.03 | A  | 0  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM ' | 3643 | NE2 | GLN   | A 484  | 25.116   | 96.533 | 16.537 | 1.00 56.99 | A  | N  |
|   | ATOM   | 3644 | С   | GLN   | A 484  | 28.770   | 91.889 | 17.131 | 1.00 48.19 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3645 | 0   |       | A 484  |          | 91.671 | 17.925 | 1.00 49.64 | A  | 0  |
|   | ATOM   | 3646 | N   | LEU   | A 485  | 28.865   | 91.677 | 15.820 | 1.00 47.76 | A  | N  |
|   | ATOM   | 3647 | CA  |       | A 485  |          | 91.142 | 15.215 | 1.00 49.21 | A  | C  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3648 | CB  | LEU   | A 485  | 30.131   | 89.637 | 15.438 | 1.00 50.10 | A  | Ç  |
|   | ATOM   | 3649 | CG  | FEII  | A 485  | 29.183   | 88.774 | 14.590 | 1.00 51.73 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3650 |     | LEU   |        |          | 87.319 | 14.945 | 1.00 53.70 | A  | С  |
|   | ATOM   | 3651 | CD2 | LEU   | A 485  | 27.720   | 89.145 | 14.831 | 1.00 52.88 | A  | С  |
|   | ATOM   | 3652 | c   |       | A 485  |          |        |        |            | A  | č  |
|   |        |      |     |       |        |          | 91.421 | 13.717 | 1.00 49.95 |    |    |
|   | ATOM   | 3653 | 0   | LEU   | A 485  | 29.103   | 91.662 | 13.077 | 1.00 49.66 | A  | 0  |
|   | ATOM   | 3654 | N   |       | A 486  |          | 91.392 | 13.154 | 1.00 50.76 | A  | N  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3655 | CA  | CYS   | A 486  | 31.469   | 91.609 | 11.719 | 1.00 52.34 | A  | С  |
|   | ATOM   | 3656 | CB  | CYS   | A 486  | 32.577   | 92.634 | 11.418 | 1.00 55.46 | A  | С  |
|   | ATOM   |      |     |       |        |          |        |        |            |    |    |
|   |        | 3657 | SG  |       | A 486  |          | 94.292 | 12.168 | 1.00 63.36 | A  | S  |
|   | ATOM   | 3658 | С   | CYS   | A 486  | 31.818   | 90.278 | 11.045 | 1.00 51.17 | A  | С  |
|   | ATOM   | 3659 | ō   |       | A 486  |          | 89.573 | 11.487 | 1.00 52.54 | A  | ō  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3660 | N   | PHE   | A 487  | 31.087   | 89.925 | 9.992  | 1.00 48.15 | A  | N  |
|   | ATOM   | 3661 | CA  |       | A 487  |          | 88.698 | 9.270  | 1.00 44.82 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | MOTA   | 3662 | CB  | PHE   | A 487  | 30.098   | 88.098 | 8.670  | 1.00 40.77 | A  | C  |
|   | ATOM   | 3663 | CG  | PHE   | A 487  | 29.241   | 87.380 | 9.664  | 1.00 36.20 | A  | С  |
|   | ATOM   |      |     |       |        |          |        |        |            |    |    |
|   | -      | 3664 |     | PHE   |        |          | 88.086 | 10.529 | 1.00 35.43 | A  | C  |
|   | ATOM   | 3665 | CD2 | PHE . | A 487  | 29.270   | 85.994 | 9.753  | 1.00 35.36 | A  | C  |
|   | ATOM   |      |     |       |        |          | 87.426 |        | 1.00 32.98 | A  |    |
|   |        | 3666 |     | PHE   |        |          |        | 11.467 |            |    | С  |
|   | ATOM   | 3667 | CE2 | PHE . | A 487  | 28.499   | 85.328 | 10.692 | 1.00 33.51 | A  | С  |
|   | ATOM   | 3668 | CZ  | PHE   |        |          | 86.048 | 11.546 | 1.00 32.62 | A  | C  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3669 | С   | PHE . | A 487  | 32.364   | 88.988 | 8.151  | 1.00 44.87 | A  | С  |
|   | ATOM   | 3670 | 0   | PHE : |        |          | 89.084 | 6.993  | 1.00 45.28 | A  | 0  |
|   |        |      |     |       |        |          |        |        |            |    |    |
|   | ATOM   | 3671 | N   |       | A 488  |          | 89.147 | 8.502  | 1.00 45.26 | A  | N  |
|   | MOTA   | 3672 | CA  | ILE   | A 488  | 34.687   | 89.411 | 7.513  | 1.00 46.28 | A  | С  |
|   |        |      |     |       |        |          |        |        |            |    | -  |
|   |        |      |     |       |        |          |        |        |            |    |    |

| MOTA   | 3673 | CB  | ILE A 488 | 36.086        | 89.664 | 8.160  | 1.00 44.71 | A   | C    |
|--------|------|-----|-----------|---------------|--------|--------|------------|-----|------|
|        | 3674 |     | ILE A 488 | 37.179        | 89.587 | 7.099  | 1.00 43.31 | A   | С    |
| ATOM   |      |     |           | 36.130        | 91.029 | 8.833  | 1.00 43.75 | A   | C    |
| ATOM   | 3675 |     | ILE A 488 |               |        | 9.972  | 1.00 45.25 | A   | č    |
| MOTA   | 3676 |     | ILE A 488 | 35.162        | 91.160 |        |            |     | č    |
| ATOM   | 3677 | С   | ILE A 488 | 34.830        | 88.186 | 6.623  | 1.00 49.07 | A   |      |
| ATOM   | 3678 | 0   | ILE A 488 | 34.682        | 87.058 | 7.093  | 1.00 50.33 | A   | 0    |
| ATOM   | 3679 | N   | PRO A 489 | 35.110        | 88.392 | 5.327  | 1.00 51.37 | A   | N    |
|        | 3680 |     | PRO A 489 | 34.984        | 89.687 | 4.640  | 1.00 52.69 | A   | С    |
| ATOM   |      |     |           | 35.286        | 87.313 | 4.353  | 1.00 52.99 | A   | С    |
| ATOM   | 3681 | CA  | PRO A 489 |               |        |        | 1.00 53.87 | A   | č    |
| ATOM   | 3682 | CB  | PRO A 489 | 35.423        | 88.056 | 3.033  |            |     |      |
| ATOM   | 3683 | CG  | PRO A 489 | 34.602        | 89.268 | 3.243  | 1.00 53.92 | A   | C    |
| ATOM   | 3684 | С   | PRO A 489 | 36.539        | 86.513 | 4.676  | 1.00 53.73 | A   | ·C   |
| ATOM   | 3685 | 0   | PRO A 489 | 36.769        | 86.143 | 5.826  | 1.00 55.87 | A   | 0    |
| ATOM   | 3686 | N   | VAL A 490 | 37.370        | 86.283 | 3.668  | 1.00 54.08 | A   | N    |
|        |      |     | VAL A 490 | 38.571        | 85.497 | 3.869  | 1.00 53.53 | A   | С    |
| ATOM   | 3687 | CA  |           |               | 84.048 | 3.403  | 1.00 53.56 | A   | Č    |
| MOTA   | 3688 | CB  | VAL A 490 | 38.290        |        |        |            | A   | č    |
| ATOM   | 3689 |     | VAL A 490 | 37.394        | 83.346 | 4.411  | 1.00 51.64 |     |      |
| MOTA   | 3690 | CG2 | VAL A 490 | 37.581        | 84.073 | 2.022  | 1.00 53.09 | A   | C    |
| ATOM   | 3691 | С   | VAL A 490 | 39.836        | 86.065 | 3.188  | 1.00 54.58 | A   |      |
| ATOM   | 3692 | 0   | VAL A 490 | 39.860        | 86.204 | 1.929  | 1.00 54.44 | A   | 0    |
| ATOM   | 3693 |     | VAL A 490 | 40.804        | 86.354 | 3.946  | 1.00 53.98 | A   | 0    |
|        |      | OAI |           |               | ••••   |        |            |     |      |
| TER    | 3693 |     | VAL A 490 | 12 465        | CO 430 | 20 026 | 1.00 16.67 | A   | Fe   |
| ATOM   | 3694 | _   | HEM A 501 | 13.465        | 69.439 | 20.036 |            |     |      |
| ATOM   | 3695 | И2  | HEM A 501 | 13.031        | 69.403 | 22.162 | 1.00 15.91 | A   |      |
| ATOM . | 3696 | из  | HEM A 501 | 15.181        | 70.632 | 20.385 | 1.00 12.57 | A   |      |
| ATOM   | 3697 | N4  | HEM A 501 | 13.439        | 69.969 | 17.981 | 1.00 11.85 | A   | N    |
| ATOM   | 3698 | ท5  | HEM A 501 | 11.345        | 68,778 | 19.679 | 1.00 15.30 | A   | N    |
|        |      |     | HEM A 501 | 12.246        | 68.416 | 22.684 | 1.00 17.80 | A   | C    |
| ATOM   | 3699 | C6  |           |               |        | 24.038 | 1.00 18.40 | A   |      |
| ATOM   | 3700 | C7  | HEM A 501 | 12.736        | 68.110 |        | 1.00 16.82 | A   |      |
| MOTA   | 3701 | C8  | HEM A 501 | 13.882        | 68.814 | 24.239 |            |     |      |
| ATOM   | 3702 | C9  | HEM A 501 | 14.192        | 69.601 | 23.037 | 1.00 15.63 | A   |      |
| ATOM   | 3703 | C10 | HEM A 501 | 15.840        | 70.822 | 21.524 | 1.00 13.53 | A   |      |
| MOTA   | 3704 |     | HEM A 501 | 17.064        | 71.532 | 21.240 | 1.00 13.53 | A   | . с  |
|        |      |     | HEM A 501 |               | 71.709 | 19.915 | 1.00 13.52 | A   | . с  |
| ATOM   | 3705 |     |           | 15.931        |        | 19.306 | 1.00 13.83 | A   |      |
| ATOM   | 3706 |     | HEM A 501 |               |        |        |            |     |      |
| MOTA   | 3707 | C14 | HEM A 501 | 14.396        |        | 17,354 | 1.00 13.88 | A   |      |
| ATOM   | 3708 | C15 | HEM A 501 | 14.051        | 70.791 | 15.949 | 1.00 14.61 | A   |      |
| ATOM   | 3709 | C16 | HEM A 501 | 12.845        | 70.259 | 15.753 | 1.00 16.46 | A   |      |
| MOTA   | 3710 |     | HEM A 501 | 12.356        | 69,730 | 17.037 | 1.00 14.40 | A   | , c  |
|        |      |     | HEM A 501 | 10.617        | 68.692 | 18.564 | 1.00 14.87 | A   | . c  |
| ATOM   | 3711 |     |           |               | 68.073 | 18.885 | 1.00 15.38 | 2   |      |
| ATOM   | 3712 |     | HEM A 501 | 9.322         |        |        |            | P   |      |
| MOTA   | 3713 | C20 | HEM A 501 | 9.384         | 67.624 | 20.150 | 1.00 16.21 |     |      |
| ATOM   | 3714 | C21 | HEM A 501 | 10.652        | 68.080 | 20.747 | 1.00 16.79 | P   |      |
| ATOM   | 3715 | C22 | HEM A 501 | 11.063        | 67.833 | 22.014 | 1.00 16.79 | P   |      |
| MOTA   | 3716 | C23 | HEM A 501 | 15.337        | 70.319 | 22,820 | 1.00 14.27 | 7   | C    |
| ATOM   | 3717 |     | HEM A 501 | 15.632        | 71.237 | 18.009 | 1.00 14.50 | P   | C    |
|        |      |     | HEM A 501 | 11.116        | 69.193 | 17.256 | 1.00 17.30 | 7   | C    |
| MOTA   | 3718 |     |           |               | 69.031 | 25.495 | 1.00 15.35 | I   |      |
| MOTA   | 3719 |     | HEM A 501 | 14.647        |        |        | 1.00 17.00 | I   |      |
| MOTA   | 3720 |     | HEM A 501 | 12.141        | 66.930 | 24.851 |            | ,   |      |
| ATOM   | 3721 | C28 | HEM A 501 | 11.206        | 67.181 | 26.049 | 1.00 21.69 |     |      |
| ATOM   | 3722 | C29 | HEM A 501 | 11.233        | 65.927 | 26.977 | 1.00 21.98 | . 7 |      |
| ATOM   | 3723 | 030 | HEM A 501 | 10.509        | 64.911 | 26.470 | 1.00 24.24 | . 1 |      |
| ATOM   | 3724 |     | HEM A 501 | 11.870        | 65.846 | 27.958 | 1.00 21.51 | 1   |      |
| ATOM   | 3725 |     | HEM A 501 | 18.174        | 71.672 | 22.290 | 1.00 13.95 | 1   | Y C  |
| ATOM   | 3726 |     | HEM A 501 | 18.058        | 72.576 | 19.093 | 1.00 17.36 | 1   | A C  |
|        | -    |     |           |               |        | 19.072 | 1.00 19.30 | 1   | A C  |
| ATOM   | 3727 |     | HEM A 501 | 19.500        | 72.120 |        | 1.00 11.84 |     | Č    |
| MOTA   | 3728 |     | HEM A 501 | 14.870        | 71.653 | 15.010 |            |     |      |
| ATOM   | 3729 | C36 | HEM A 501 | 12.145        | 69.851 | 14.468 | 1.00 16.89 |     | 4 C  |
| ATOM   | 3730 | C37 | HEM A 501 | 12.033        | 68.333 | 14.215 | 1.00 21.33 |     | 4 C  |
| ATOM   | 3731 |     | HEM A 501 | 8.267         | 67.787 | 17.851 | 1.00 13.95 | 1   | A C  |
|        | 3732 |     | HEM A 501 | 8.304         | 66.922 | 20.986 | 1.00 15.82 | 1   | A C  |
| MOTA   | -    |     |           | 8.808         | 65.604 | 21.615 | 1.00 21.57 |     | A· C |
| ATOM   | 3733 |     | HEM A 501 |               |        | 22.104 | 1.00 25.67 |     | A C  |
| MOTA   | 3734 |     | HEM A 501 | 7.669         | 64.700 |        |            |     | a 0  |
| ATOM   | 3735 |     | HEM A 501 | 7.355         | 63.684 | 21.569 | 1.00 28.06 |     |      |
| ATOM   | 3736 | 043 | HEM A 501 | 7.071         | 65.193 | 23.198 | 1.00 28.44 |     | A 0  |
| ATOM   | 3737 | CB  | PRO B 30  | 76.547        | 14.662 | 56.738 | 1.00 45.67 |     | в С  |
| ATOM   | 3738 | CG  | PRO B 30  | 75,166        | 14.317 | 56.232 | 1.00 45.95 | 1   | в С  |
| ATOM   |      | C   | PRO B 30  | 77.102        | 15.644 | 58,945 | 1.00 49.33 |     | в. С |
|        | 3739 |     |           | 76.714        | 16.799 | 58.885 | 1.00 50.63 |     | в о  |
| ATOM   | 3740 | 0   | PRO B 30  |               | 14.682 | 58.545 | 1.00 46.46 |     | B N  |
| ATOM   | 3741 | N   | PRO B 30  | 74.898        |        |        | 1.00 47.64 |     |      |
| ATOM   | 3742 | CD  | PRO B 30  | 74.158        | 14.865 | 57.289 |            |     |      |
| ATOM   | 3743 | CA  | PRO B 30  | 76.351        | 14.539 | 58.239 | 1.00 47.86 |     | ВС   |
| ATOM   | 3744 | N   | PRO B 31  | 78.213        | 15.301 | 59.600 | 1.00 50.79 |     | в и  |
| ATOM   | 3745 | CD  | PRO B 31  | 78.917        | 14.045 | 59.304 | 1.00 51.70 |     | в С  |
|        |      |     | PRO B 31  |               | 16.203 | 60.358 | 1.00 50.90 |     | в с  |
| MOTA   | 3746 | CA  | EUO D 77  | , , , , , , , | _0,200 |        |            |     | _    |

| MOTA         | 3747         | СВ       | PRO        | В | 31       | 80.223           | 15.293           | 60.789           | 1.00 51.50               | В      | C      |
|--------------|--------------|----------|------------|---|----------|------------------|------------------|------------------|--------------------------|--------|--------|
| MOTA         | 3748         | CG       | PRO        |   | 31       | 80.370           | 14.407           | 59.593           | 1.00 52.83               | B<br>B | C      |
| ATOM         | 3749         | C        | PRO<br>PRO |   | 31<br>31 | 79.561<br>79.297 | 17.355<br>17.393 | 59.513<br>58.312 | 1.00 50.47               | В      | Ö      |
| ATOM<br>ATOM | 3750<br>3751 | O<br>N   | GLY        |   | 32       | 80.254           | 18.292           | 60.155           | 1,00 50.63               | В .    | N      |
| ATOM         | 3752         | CA       | GLY        |   | 32       | 80.783           | 19.459           | 59.467           | 1.00 51.38               | В      | С      |
| MOTA         | 3753         | С        | GLY        | В | 32       | 81.017           | 20.618           | 60.414           | 1.00 52.13               | В      | C      |
| MOTA         | 3754         | 0        | GLY        |   | 32       | 80.501           | 20.598           | 61.534           | 1.00 52.66               | B<br>B | . 0    |
| ATOM         | 3755         | И        | PRO<br>PRO |   | 33<br>33 | 81.797<br>82.509 | 21.633<br>21.844 | 60.010<br>58.741 | 1.00 51.39               | В      | N<br>C |
| MOTA<br>MOTA | 3756<br>3757 | CD<br>CA | PRO        |   | 33       | 82.023           | 22.756           | 60.916           | 1.00 51.37               | В      | č      |
| ATOM         | 3758         | СВ       | PRO        |   | 33       | 83.071           | 23,592           | 60.184           | 1.00 51.19               | В      | C      |
| MOTA         | 3759         | CG       | PRO        |   | 33       | 82.764           | 23.332           | 58.762           | 1.00 50.77               | В      | C      |
| MOTA '       | 3760         | С        | PRO        |   | 33       | 80.725           | 23.508           | 61.117           | 1.00 51.33               | B<br>B | C<br>O |
| ATOM         | 3761         | 0        | PRO        |   | 33<br>34 | 79.909<br>80.531 | 23.608<br>24.012 | 60.194<br>62.333 | 1.00 50.57<br>1.00 52.77 | В      | N      |
| ATOM<br>ATOM | 3762<br>3763 | n<br>Ca  | THR<br>THR |   | 34       | 79.331           | 24.757           | 62.654           | 1,00 52.72               | В      | . c    |
| ATOM         | 3764         | CB       | THR        |   | 34       | 79.139           | 24.925           | 64.182           | 1.00 52.49               | В      | С      |
| MOTA         | 3765         | QG1      | THR        | В | 34       | 80.409           | 24.874           | 64.845           | 1.00 54.30               | В      | 0      |
| ATOM         | 3766         |          | THR        |   | 34       | 78.240           | 23.823           | 64.726           | 1.00 50.85               | B<br>B | C      |
| ATOM         | 3767         | C -      | THR        |   | 34<br>34 | 79.460<br>80.512 | 26.100<br>26.751 | 61.965<br>62.013 | 1.00 53.91               | В      | Ö      |
| ATOM<br>ATOM | 3768<br>3769 | N        | PRO        |   | 35       | 78.393           | 26.505           | 61.261           | 1.00 54.69               | В      | N      |
| ATOM         | 3770         | CD       | PRO        |   | 35       | 77.241           | 25.633           | 60.944           | 1.00 54.14               | В      | С      |
| ATOM         | 3771         | CA       | PRO        | В | 35       | 78.308           | 27.763           | 60.518           | 1.00 55.56               | В      | C      |
| MOTA         | 3772         | CB       | PRO        |   | 35       | 77.277           | 27.446           | 59.449           | 1.00 55.92               | В      | C      |
| MOTA         | 3773         | CG       | PRO<br>PRO |   | 35<br>35 | 76.326<br>77.894 | 26.564<br>28.948 | 60.185<br>61.372 | 1.00 55.05               | В      | c      |
| ATOM<br>ATOM | 3774<br>3775 | 0        | PRO        |   | 35       | 77.403           | 28.793           | 62.487           | 1.00 58.50               | В      | ō      |
| ATOM         | 3776         | N        | LEU        |   | 36       | 78.091           | 30.140           | 60.837           | 1.00 58.65               | . В    | N      |
| ATOM         | 3777         | CA.      | LEU        | В | 36       | 77.727           | 31.332           | 61.557           | 1.00 60.21               |        | C      |
| MOTA         | 3778         | CB       | LEU        |   | 36       | 78.779           | 32.413           | 61.353           | 1.00 59.23               | б. В   | C      |
| MOTA         | 3779         | CG       | LEU        |   | 36       | 80.132           | 32.071<br>33.242 | 61.969<br>61.762 | 1.00 58.27               | , B    | c      |
| ATOM<br>ATOM | 3780<br>3781 |          | LEU        |   | 36<br>36 | 81.076<br>79.983 | 31.757           | 63.452           | 1.00 57.42               | В      | · č    |
| ATOM         | 3782         | C        | LEU        |   | 36       | 76.360           | 31.820           | 61.112           | 1.00 62.23               | В      | C      |
| ATOM         | 3783         | 0        | LEU        | В | 36       | 75.832           | 31.390           | 60.083           | 1.00 62.80               |        | 0      |
| ATOM         | 3784         | N        | PRO        |   | 37       | 75.775           | 32.739           | 61.891           | 1.00 63.73               | В      | Ŋ      |
| MOTA         | 3785         | CD       | PRO        |   | 37<br>37 | 76.394<br>74.461 | 33.398<br>33.309 | 63.063<br>61.613 | 1.00 64.36<br>1.00 63.85 | B ¢    | C<br>C |
| ATOM<br>ATOM | 3786<br>3787 | CA<br>CB | PRO        |   | 37       | 74.511           | 34.627           | 62.373           | 1.00 64.88               | B      | č      |
| MOTA         | 3788         | CG       | PRO        |   | 37       | 75.269           | 34.244           | 63.616           | 1.00 64.19               | В      | С      |
| ATOM         | 3789         | С        | PRO        | В | 37       | 74.050           | 33.475           | 60.142           | 1.00 64.21               | В      | С      |
| ATOM         | 3790         | 0        | PRO        |   | 37       | 73.076           | 32.863           | 59.705           | 1.00 65.47               | В      | 0      |
| MOTA         | 3791         | N        | VAL        |   | 38       | 74.772<br>74.362 | 34.277<br>34.472 | 59.368<br>57.984 | 1.00 62.27<br>1.00 61.21 | B<br>B | N<br>C |
| ATOM<br>ATOM | 3792<br>3793 | CA<br>CB | VAL<br>VAL |   | 38<br>38 | 73.896           | 35.923           | 57.770           | 1.00 61.85               | В      | Č      |
| MOTA         | 3794         |          | VAL        |   | 38       | 75.072           | 36.877           | 57.954           | 1.00 62.61               | · В    | С      |
| ATOM         | 3795         | CG2      | VAL        | В | 38       | 73.269           | 36.080           | 56.393           | 1.00 61.49               | В      | C      |
| ATOM         | 3796         | С        | VAL        |   | 38       | 75.427           | 34.145           | 56.947           | 1.00 60.31               | В      | c<br>o |
| MOTA         | 3797         | 0        | VAL        |   | 38<br>39 | 75.117<br>76.683 | 33.673<br>34.390 | 55.853<br>57.288 | 1.00 59.94               | B<br>B | N      |
| ATOM<br>ATOM | 3798<br>3799 | N<br>CA  | ILE        |   | 39       | 77.751           | 34.126           | 56.352           | 1.00 56.45               | В      | Ċ.     |
| MOTA         | 3800         | CB       | ILE        |   | 39       | 79.068           | 34.732           | 56.834           | 1.00 56.75               | В      | С      |
| ATOM         | 3801         | -        | ILE        |   | 39       | 78.860           | 36.199           | 57,158           | 1.00 55.59               | В      | C      |
| ATOM         | 3802         |          | ILE        |   | 39       | 79.571           | 33.996<br>34.501 | 58.063           | 1.00 56.74<br>1.00 59.13 | B<br>B | C      |
| MOTA<br>MOTA | 3803<br>3804 | CDI      | ILE        |   | 39<br>39 | 80.904<br>77.927 | 32.627           | 58.548<br>56.108 | 1.00 55.54               | В      | č      |
| ATOM         | 3805         | ō        | ILE        |   | 39       | 78.266           | 32.202           | 55.004           | 1.00 55.67               | В      | 0      |
| MOTA         | 3806         | N        | GLY        |   | 40       | 77.668           | 31.817           | 57.128           | 1.00 54.07               | В      | N      |
| ATOM         | 3807         | CA       | GLY        | В | 40       | 77.824           | 30.382           | 56,966           | 1.00 51.25               | В      | C      |
| ATOM         | 3808         | С        | GLY        |   | 40       | 79.229           | 29,949           | 57.344           | 1.00 49.28<br>1.00 49.68 | . В    | C      |
| ATOM         | 3809         | 0        | GLY        |   | 40       | 79.722<br>79.891 | 30.315<br>29.193 | 58.407<br>56.474 | 1.00 46.90               | В      | N      |
| ATOM<br>ATOM | 3810<br>3811 | N<br>CA  | ASN<br>ASN |   | 41<br>41 | 81.246           | 28.724           | 56.761           | 1.00 44.27               | В      | Ċ      |
| ATOM         | 3812         | CB       | ASN        |   | 41       | 81.398           | 27.288           | 56.343           | 1.00 42.88               | В      | С      |
| ATOM         | 3813         | CG       | ASN        |   | 41       | 80.787           | 26.356           | 57.318           | 1.00 42.46               | В      | C      |
| ATOM         | 3814         |          | ASN        |   | 41       | 81.219           | 26.286           | 58.473           | 1.00 43.21               | В      | 0      |
| ATOM         | 3815         |          | ASN        |   | 41       | 79.767           | 25.624<br>29.502 | 56.878<br>56.069 | 1.00 41.81               | B<br>B | N<br>C |
| ATOM<br>ATOM | 3816         | C<br>O   | asn<br>asn |   | 41<br>41 | 82.317<br>83.496 | 29.302           | 56.254           | 1.00 44.12               | В      | Ö      |
| ATOM         | 3817<br>3818 | И        | ILE        |   | 42       | 81.891           | 30.444           | 55.241           | 1.00 45.12               | В      | N      |
| ATOM         | 3819         | CA       | ILE        |   | 42       | 82.798           | 31.280           | 54.482           | 1.00 45.91               | В      | C      |
| MOTA         | 3820         | CB       | ILE        |   | 42       | 82.109           | 32.573           | 54.073           | 1.00 45.18               | В      | C      |
| MOTA         | 3821         | CG2      | ILE        | В | 42       | 81.753           | 33.381           | 55.312           | 1.00 43.63               | В      | С      |

#### 248/514

```
53.164 1.00 45.53
       3822 CG1 ILE B 42
                                83.023
                                       33.375
MOTA
                                                         1.00 44.86
                                                                              С
             CD1 ILE B
                                82.400
                                         34.651
                                                 52.643
MOTA
       3823
                        42
                                                         1.00 47.39
       3824
                                 84.049
                                         31.622
                                                 55.270
             С
ATOM
                                85.122
                                         31.803
                                                 54.702
                                                         1.00 48.29
                                                                              0
             0
                 ILE B
                        42
MOTA
       3825
                                        31,702
                                                 56.583
                                                         1.00 50.03
       3826
                 LEU B 43
                                83.912
ATOM
             N
                                                 57.424
                                                         1,00 52.36
                                                                              С
             CA LEU B 43
                                85.039
                                         32.040
       3827
ATOM
                LEU B 43
                                84.543
                                         32.320
                                                 58.834
                                                         1.00 51.14
             СВ
MOTA
       3828
                                85.371
                                         33.396
                                                 59.511
                                                         1.00 50.40
                                                                               ¢
             CG
                 LEU B 43
       3829
MOTA
                                                         1.00 49.55
                                85.420
                                         34.657
                                                 58.632
             CD1 LEU B 43
MOTA
       3830
                                                         1.00 51.07
                                                                               C
             CD2 LEU B 43
                                84.749
                                         33.696
                                                 60.864
MOTA
       3831
                                         30.913
                                86.060
                                                 57.447
MOTA
       3832
             С
                 LEU B
                        43
                                 87.220
                                                 57.806
                                                                               0
                                         31.111
                                                         1.00 55.06
       3833
             0
                 LEU B 43
MOTA
                                         29.730
                                                 57.052
                                                         1.00 55.10
                                85.603
MOTA
       3834
             N
                 GLN B 44
                                86.413
                                         28.520
27.313
             CA GLN B 44
                                                 57.034
                                                         1.00 55.99
       3835
ATOM
                                                 57.399
                                                         1.00 59.02
                                85.540
       3836
             CB
                 GLN B 44
ATOM
                                                 58.750
                                                         1.00 64.16
                                 84.814
                                         27.371
MOTA
       3837
             CG GLN B 44
                                                 59.916
                                                         1.00 67.79
                                                                              С
                                         26.950
             CD
                 GLN B 44
                                85.698
ATOM
       3838
                                                         1.00 70.42
                                                                               0
                                                                          В
                                         26.437
                                                 60.927
ATOM
       3839
             OE1 GLN B 44
                                 85.206
                                                 59.787
                                                         1.00 69.52
                                                                          В
                                                                               N
       3840
             NE2 GLN B 44
                                 87.007
                                         27.175
ATOM
                                                                               ¢
                                                 55.659
                 GLN B 44
                                 87.044
                                         28.267
                                                         1.00 55.51
                                                                          В
ATOM
       3841
             С
                                                         1.00 55.85
                 GLN B 44
                                 88.255
                                         28,390
                                                 55.484
                                                                          В
                                                                               0
       3842
             0
MOTA
                                                         1.00 53.32
                                                 54.686
                                                                          В
                                                                              N
                                 86.212
                                         27.911
       3843
             N
                 ILE B 45
ATOM
                                                                              С
       3844
             CA ILE B 45
                                 86.691
                                         27.615
                                                 53.352
                                                         1.00 51.63
                                                                          В
ATOM
                                                                              C
                                 85.551
                                         27,130
                                                 52.482
                                                         1.00 50.36
                                                                          B
             CB
                ILE B 45
       3845
MOTA
                                                                              С
                                         26,075
                                                 53.223
                                                         1.00 48.63
                                                                          В
       3846
             CG2 ILE B 45
                                 84.765
ATOM
                                                                              С
             CG1 ILE B 45
                                         28,270
                                                 52.186
                                                         1.00 50.13
                                                                          В
       3847
                                 84.601
ATOM
                                                                              C.
                                 83.444
                                         27.852
                                                 51.325
                                                         1.00 51.05
                                                                          В
       3848
             CD1 ILE B 45
MOTA
                                 87.357
                                         28.808
                                                 52.677
                                                         1.00 52.13
                                                                               С
                 ILE B 45
MOTA
       3849
             С
                                                 51.772
                                                         1.00 53.60
                                                                          В
                                                                               0
                 ILE B 45
                                         28.648
                                 88.176
MOTA
       3850
             0
                                         30.015
                                                 53.102
                                                         1.00 53.05
                                 87.020
                 GLY B 46
MOTA
       3851
             N
                                                 52.486
                                                         1.00 53.95
                                                                          В
                                 87.640
                                         31,172
ATOM
       3852
             CA GLY B 46
                                                 51.196
                                                         1.00 54.99
                                         31.605
       3853
             С
                 GLY B 46
                                 86.982
MOTA
                                                 51.096
                                                         1.00 55.97
                                 85.762
                                         31.713
             0
                 GLY B 46
ATOM
       3854
                                                         1.00 56.79
                                                 50,178
                                                                          В
            N
                 ILE B 47
                                 87.796
                                         31.835
ATOM
       3855
                                                         1.00 58.47
                                                 48.905
             CA ILE B 47
                                 87.268
                                         32,308
ATOM
       3856
                                                                            0.00
                                                         1.00 57.80
                                                 49.092
                 ILE B 47
                                 86.780
                                         33.748
       3857
             CB
MOTA
                                                                          В
                                                 49.694
                                                         1.00 56.72
             CG2 ILE B 47
                                 B7.910
                                         34.589
       3858
ATOM
                                 86.270
                                         34.313
                                                 47.779
                                                         1.00 59.12
                                                                          В
       3859
             CG1 ILE B 47
ATOM
             CD1 ILE B 47
                                 85.858
                                         35.763
                                                 47.898
                                                         1.00 61.31
                                                                          В
       3860
MOTA
                 ILE B 47
                                 88.372
                                         32.243
                                                 47.842
                                                         1.00 60.13
                                                                          В
       3861
             С
ATOM
                                         32.314
                                                 46.637
                                                         1.00 58.75
                                                                          B
             0
                 ILE B 47
                                 88.114
       3862
ATOM
                                         32.105
                                                 48.341
                                                         1.00 61.39
                                                                          В
                                                                               N
             N
                 LYS B 48
                                 89.601
       3863
MOTA
                                         31.992
                                                 47.552
                                                         1.00 63.32
                                 90.819
                 LYS B 48
ATOM
       3864
             CA
                                                 48.404
                                                         1.00 65.16
                                                                          R
                                                                               С
             CB
                                 92.026
                                         32.447
ATOM
        3865
                 LYS B 48
                                         31.960
                                                 49.882
                                                         1.00 68.26
                                                                          В
                                                                               С
                                 92.006
ATOM
        3866
             CG
                 LYS B 48
                                                                          В
                                                                               С
                                 92.624
                                         32.966
                                                 50.914
                                                         1.00 68.15
MOTA
        3867
             CD LYS B 48
                                                 52.381
                                                                          В
                                                                               С
                                 92.395
                                         32.511
                                                          1.00 67.65
MOTA
        3868
             CE
                 LYS B 48
                                         33.502
                                                 53.431
                                                         1.00 64.57
                                                                          В
                                                                               N
                                 92.781
ATOM
        3869
             NZ
                 LYS B 48
                                         30.535
                                                 47,059
                                                         1.00 64.00
                                                                               ¢
                                 90.953
ATOM
        3870
             С
                 LYS B 48
                                                                               0
                                                 45.981
                                                          1.00 64.64
                                                                          В
                                         30.213
ATOM
        3871
             0
                  LYS B 48
                                 90.445
                                                 47.831
                                                          1.00 63.38
                                                                               N
                                         29.650
ATOM
        3872
              N
                  ASP B 49
                                 91.594
                                                                               С
                                                 47.435
                                                          1.00 62.53
                                                                          В
                 ASP B 49
                                 91.752
                                         28.231
ATOM
        3873
             CA
                                                                               C
                                                 47.727
                                                          1.00 63.62
                 ASP B
                        49
                                 93.184
                                         27.726
ATOM
        3874
                                                          1.00 64.89
                                                                               С
                                                 47.003
                        49
                                 93.522
                                         26.404
ATOM
        3875
             CG
                 ASP B
                                                          1.00 63.90
                                                                               0
                                 94.693
                                         25.949
                                                 47.100
MOTA
        3876
             OD1 ASP B
                        49
                                                          1.00 66.46
                                                                          В
                                                                               0
                                 92.629
                                         25.819
                                                 46.333
        3877
              OD2 ASP B
                        49
ATOM
                                                                               C
                  ASP B 49
                                 90.748
                                         27,360
                                                 48.186
                                                          1.00 60.66
ATOM
        3878
              С
                                                                          В
                                                                               0
                                         26.631
                                                 49.117
                                                          1.00 60.61
                  ASP B
                        49
                                 91.099
        3879
              0
MOTA
                                                                               N
                  THE B 50
                                 89.494
                                         27.437
                                                  47.767
                                                          1.00 58.74
                                                                          В
        3880
              N
ATOM
                                                                               C
                                         26.676
                                                  48.402
                                                          1.00 57.73
                                                                          В
             CA ILE B 50
                                 88.440
ATOM
        3881
                                                  47.729
                                                          1.00 57.22
                                                                          В
                                                                               ¢
                                         26.995
              CB ILE B 50
                                 87.067
ATOM
        3882
                                         28.378
                                                  47.092
                                                          1.00 57.89
                                                                               C
                        50
                                 87.114
ATOM
        3883
              CG2 ILE B
                                                          1.00 58.76
                                                                          В
                                                                               C
                                         25.995
                                                  46.625
MOTA
        3884
              CG1. ILE B
                        50
                                 86.754
                                                          1.00 58.46
                                         24.919
                                                  47.072
                                                                          В
                                                                               С
ATOM
        3885
              CD1 ILE B
                        50
                                 85.832
                                                                          В
                                                  48.347
                                                          1.00 57.10
                                         25.183
 ATOM
        3886
              С
                  ILE B 50
                                 88.766
                                         24.410
                                                  49.215
                                                          1.00 56.67
        3887
                  ILE B
                        50
                                 88.350
 ATOM
              ٥
                                                  47.346
                                                          1.00 56.54
                                         24.766
                  SER B 51
                                 89.529
 ATOM
        3888
                                                  47.273
                                                          1.00 57.44
                         51
                                 89.865
                                         23.355
 ATOM
        3889
              CA
                  SER B
                                                          1.00 58.96
                                                 45.995
                                 90.616
                                         23.012
 ATOM
        3890
              СВ
                  SER B 51
                                                  46.075
                                                          1.00 60.05
                                         21.659
 ATOM
        3891
              OG
                  SER B
                                  91.065
                                                  48.446
                                                         1.00 56.95
                  SER B
                         51
                                  90.710
                                          22.890
        3892
              С
 ATOM
                  SER B
                                  90.293
                                         22.019
                                                  49.195
                                                         1.00 56.91
                         51
        3893
 ATOM
                                                  48.586
                                                         1.00 56.48
                                                                               N
                                 91.901
                                         23.466
                         52
                  LYS B
 MOTA
        3894
              N
                                         23.097
                                                  49.653
                                                          1.00 56.04
                                                                           В
                                                                               С
                                  92.819
                  LYS B
                         52
 ATOM
        3895
              CA
                                                  49.619
                                                         1.00 59.24
                                         23.990
 ATOM
        3896
              CB
                  LYS B
                                 94.068
```

| MOTA         | 3897         | CG       | LYS E | 3 52 | 95.423           | 23.262           | 49.829           | 1.00 64.17               | В      | С      |
|--------------|--------------|----------|-------|------|------------------|------------------|------------------|--------------------------|--------|--------|
| ATOM         | 3898         | CD       | LYS I |      | 95.844           | 22.360           | 48.624           | 1.00 67.46               | ı B    | C      |
| ATOM         | 3899         | CE       | LYS E |      | 96.306           | 23.160           | 47.383           | 1.00 67.87               | В      | C      |
| ATOM<br>ATOM | 3900<br>3901 | NZ<br>C  | LYS E |      | 96.561<br>92.154 | 22.246<br>23.199 | 46.220<br>51.014 | 1.00 69.37<br>1.00 54.36 | B<br>B | C<br>N |
| ATOM         | 3902         | ŏ        | LYS I |      | 92.653           | 22.656           | 51.992           | 1.00 55.13               | В      | ŏ      |
| ATOM         | 3903         | N        | SER I |      | 91.034           | 23.902           | 51.088           | 1.00 50.67               | В      | N      |
| ATOM         | 3904         | CA       | SER E | 53   | 90.346           | 24.029           | 52.357           | 1.00 47.30               | В      | С      |
| ATOM         | 3905         | СВ       | SER E |      | 89.448           | 25.253           | 52.356           | 1.00 47.45               | В      | С      |
| ATOM         | 3906         | OG       | SER E |      | 90.221           | 26.407           | 52.098           | 1.00 49.17               | В      | 0      |
| ATOM         | 3907         | C        | SER I |      | 89.514<br>89.342 | 22.786           | 52.515           | 1.00 45.35               | B<br>B | 0      |
| ATOM<br>ATOM | 3908<br>3909 | O<br>N   | SER I |      | 88.993           | 22.275<br>22.290 | 53.616<br>51.402 | 1.00 45.51<br>1.00 42.35 | В      | N      |
| ATOM         | 3910         | CA       | LEU I |      | 88.184           | 21.095           | 51.470           | 1.00 39.04               | В      | ĉ      |
| ATOM         | 3911         | СВ       | LEU E |      | 87.544           | 20.807           | 50.121           | 1.00 36.42               | В      | С      |
| ATOM         | 3912         | CG       | LEU E | 3 54 | 86.434           | 21.752           | 49.714           | 1.00 32.43               | В      | С      |
| ATOM         | 3913         |          | LEU I |      | 85.838           | 21.199           | 48.452           | 1.00 32.45               | В      | C      |
| ATOM         | 3914         |          | LEU I |      | 85.361           | 21.854           | 50.787           | 1.00 30.68               | В      | Ç      |
| ATOM         | 3915<br>3916 | С<br>0   | LEU I |      | 89.024<br>88.556 | 19.912<br>19.092 | 51.926<br>52.705 | 1.00 37.97<br>1.00 37.31 | B<br>B | C      |
| ATOM<br>ATOM | 3917         | N        | THR I |      | 90.266           | 19.830           | 51.460           | 1.00 37.26               | В      | N      |
| ATOM         | 3918         | CA       | THR B |      | 91.128           | 18.728           | 51.858           | 1.00 37.55               | В      | C      |
| ATOM         | 3919         | CB       | THR I | 3 55 | 92.478           | 18.740           | 51.096           | 1.00 37.35               | В      | C      |
| MOTA         | 3920         | OG1      | THR I | 55   | 92.249           | 18.465           | 49.708           | 1.00.37.73               | В      | 0      |
| MOTA         | 3921         |          | THR 1 |      | 93.421           | 17.686           | 51.651           | 1.00 36.42               | В      | C      |
| MOTA         | 3922         | C        | THR I |      | 91.390           | 18.794           | 53.354           | 1.00 37.00               | В      | C      |
| ATOM         | 3923         | 0        | THR I |      | 91.198<br>91.820 | 17.810<br>19.946 | 54.059<br>53.852 | 1.00 38.32               | B<br>B | O<br>N |
| ATOM<br>ATOM | 3924<br>3925 | N<br>CA  | ASN I |      |                  | 20.060           | 55.278           | 1.00 33.55               | В      | Č      |
| 'ATOM        |              | СВ       | ASN I |      |                  | 21.451           | 55.624           | 1.00 34.80               | В      | Č      |
| ATOM         |              | CG       | ASN I |      |                  | 21.729           | 55.043           | 1.00 36.65               | В      | С      |
| ATOM-        | 3928         | OD1      | ASN I | 3 56 | 94.795           | 20.869           | 55.068           | 1.00 38.21               | В      | 0      |
| 'ATOM        | 3929         |          | ASN I |      |                  | 22.926           | 54.514           | 1.00 38.43               | В      | N      |
| ATOM         | 3930         | C        | ASN I |      |                  | 19.742           | 56.061           | 1.00 32.86               | В      | C.     |
| ATOM         | 3931<br>3932 | O<br>N   | ASN I |      | 90.859<br>89.736 | 18.931<br>20.383 | 56.969<br>55.705 | 1.00 32.44               | B<br>B | O<br>N |
| MOTA<br>MOTA | 3933         | CA       | LEU I |      | 88.495           | 20.121           | 56.382           | 1.00 32.17               | В      | Ċ      |
| ATOM         | 3934         | СВ       | TEO I |      | 87.349           | 20.796           | 55.665           | 1.00 32.46               | . В    | C      |
| ATOM         | 3935         | CG       | LEU I |      | 87.242           | 22.263           | 56.011           | 1.00 33.28               | В      | С      |
| ATOM         | 3936         |          | LEU I |      | 86.470           | 22.948           | 54.926           | 1.00 33.96               | В      | C      |
| ATOM         | 3937         |          | LEU I |      | 86.589           | 22.435           | 57.372           | 1.00 32.34               | В      | C      |
| MOTA         | 3938         | C        | LEU I |      | 88.206           | 18.648           | 56.447           | 1.00 32.89               | . B    | C      |
| ATOM<br>ATOM | 3939<br>3940 | N<br>O   | LEU I |      | 87.571<br>88.644 | 18.188<br>17.895 | 57.377<br>55.454 | 1.00 33.55<br>1.00 33.67 | . В    | O<br>N |
| ATOM         | 3941         | CA       | SER I |      |                  | 16.477           | 55.485           | 1.00 33.98               | В      | Ċ      |
| ATOM         | 3942         | СВ       | SER I |      |                  | 15.868           | 54.106           | 1.00 34.59               | В      | С      |
| MOTA         | 3943         | OG       | SER I | B 58 | 89.917           | 15.719           | 53.806           | 1.00 36.25               | В      | 0      |
| ATOM         | 3944         | С        | SER I |      |                  | 15.745           | 56.472           | 1.00 34.63               | В      | C      |
| ATOM         | 3945         | 0        | SER I |      | _                | 14.772           | 57.072           | 1.00 34.99               | B<br>B | O<br>N |
| ATOM<br>ATOM | 3946<br>3947 | n<br>Ca  | LYS I |      |                  | 16.187<br>15.520 | 56.637<br>57.571 | 1.00 35.25               | В      | C      |
| ATOM         | 3948         | CB       | LYS   |      |                  | 16.154           | 57.558           | 1.00 36.68               | В      | č      |
| ATOM         | 3949         | CG       | LYS   |      |                  | 15.929           | 56.267           | 1.00 40.81               | В      | С      |
| ATOM         | 3950         | CD       | LYS I | B 59 | 94.875           | 16.775           | 56.205           | 1.00 44.20               | В      | С      |
| ATOM         | 3951         | CE       | LYS I |      |                  | 15.934           | 56.303           | 1.00 45.65               | В      | C      |
| MOTA         | 3952         | NZ       | LYS   |      |                  | 16.748           | 56.021           | 1.00 46.73               | В      | N      |
| MOTA<br>MOTA | 3953         | C        | LYS   |      |                  | 15.590<br>14.804 | 58.973<br>59.845 | 1.00 35.70<br>1.00 35.70 | . B    | . O    |
| ATOM         | 3954<br>3955 | N<br>N   | LYS I |      |                  | 16.513           | 59.200           | 1.00 35.70               | В      | N      |
| ATOM         | 3956         | CA       | VAL   |      |                  | 16.625           | 60.521           | 1.00 35.49               | В      | C      |
| ATOM         | 3957         | СВ       | VAL   |      |                  | 18.062           | 61.042           | 1.00 35.32               | В      | C      |
| MOTA         | 3958         | CG1      | VAL   | B 60 |                  | 19.002           | 60.078           | 1.00 37.03               | В      | С      |
| ATOM         | 3959         |          | VAL   |      |                  | 18.165           | 62.410           | 1.00 37.09               | В      | C      |
| ATOM         | 3960         | C        | VAL   |      |                  | 16.192           | 60.632           | 1.00 35.57               | В      | C      |
| ATOM         | 3961         | 0        | VAL   |      |                  | 15.880<br>16.152 | 61.716<br>59.527 | 1.00 35.63<br>1.00 35.76 | B<br>B | O<br>N |
| MOTA<br>MOTA | 3962<br>3963 | N<br>CA  | TYR I |      |                  | 15.765           | 59.630           | 1.00 35.70               | В      | C      |
| ATOM         | 3964         | CB       | TYR   |      |                  | 16.861           | 59.036           | 1.00 39.68               | В      | č      |
| MOTA         | 3965         | CG       | TYR   |      |                  | 18.011           | 59.991           | 1.00 42.39               | . В    | С      |
| ATOM         | 3966         | CD1      | TYR I | B 61 |                  | 17.940           | 60.925           | 1.00 46.43               | В      | С      |
| ATOM         | 3967         |          | TYR I |      |                  | 18.992           | 61.814           | 1.00 46.02               | В      | C      |
| ATOM         | 3968         |          | TYR   |      |                  | 19.164           | 59.971<br>60.859 | 1.00 43.75               | В      | C      |
| ATOM<br>ATOM | 3969         |          | TYR I |      |                  | 20.224           | 61.775           | 1.00 45.09<br>1.00 45.84 | B<br>B | C      |
| MOTA<br>MOTA | 3970<br>3971 | CZ<br>OH | TYR I |      |                  | 21.150           | 62.670           | 1.00 48.49               | B      | Ö      |
| 013          | 3711         | Oli      |       | _    |                  | ,_,              |                  |                          | _      |        |

| ATOM | 3972  | С   | TYR B   | 61     | 85.498 | 14.425 | 58.988           | 1.00 | 36.91          | I   | 3      | С      |
|------|-------|-----|---------|--------|--------|--------|------------------|------|----------------|-----|--------|--------|
| ATOM | 3973  | Ó   | TYR B   | 61     | 84.512 | 13.786 | 59.331           | 1.00 | 37.90          | I   | 3      | 0      |
| ATOM | 3974  | N   | GLY B   | 62     | 86.346 | 13.997 | 58.063           | 1.00 | 36.89          | I   | 3      | N      |
| ATOM | 3975  | CA  | GLY B   | 62     | 86.121 | 12.725 | 57.416           | 1.00 | 35.57          | ì   | 3      | С      |
| ATOM | 3976  | C   | GLY B   | 62     | 86.034 | 12.875 | 55,921           | 1.00 | 35.34          | 1   | 3      | С      |
| ATOM | 3977  | 0   | GLY B   | 62     | 86.286 | 13.948 | 55.391           | 1.00 | 36.17          | ı   | 3      | 0      |
| ATOM | 3978  | N   | PRO B   |        | 85.697 | 11,805 | 55.208           | 1.00 | 33.77          | 1   | 3      | N      |
| ATOM | 3979  | CD  | PRO B   | 63     | 85.688 | 10.418 | 55.685           | 1.00 | 33.67          | E   | 3      | С      |
| ATOM | 3980  | CA  | PRO B   |        | 85.580 | 11.829 | 53.762           | 1.00 | 34.06          | 1   | 3      | С      |
| ATOM | 3981  | ÇB  | PRO B   |        | 85.820 | 10.386 | 53.390           | 1.00 | 35.46          | 1   | 3      | С      |
| ATOM | 3982  | CG  | PRO B   | 63     | 85.098 | 9.674  | 54.503           | 1.00 | 34.16          | 1   | 3      | C      |
| ATOM | 3983  | С   | PRO B   | 63     | 84.203 | 12,278 | 53.340           | 1.00 | 33.31          | 1   | 3      | С      |
| ATOM | 3984  | 0   | PRO B   | 63     | 83.924 | 12.392 | 52.157           | 1.00 | 35.57          | 1   | 3      | 0      |
| ATOM | 3985  | N   | VAL B   | 64     | 83.314 | 12.496 | 54.288           | 1.00 | 32.09          | 1   | 3      | N      |
| ATOM | 3986  | CA  | VAL B   | 64     | 81.989 | 12.931 | 53.895           | 1.00 | 31.43          | 1   | 3      | С      |
| ATOM | 3987  | CB  | VAL B   | 64     | 80.997 | 11.774 | 53.780           | 1.00 | 30.34          | 1   | 3      | C      |
| ATOM | 3988  | CG1 | VAL B   | 64     | 79.659 | 12.315 | 53.343           | 1.00 | 30.29          | 1   | 3      | С      |
| ATOM | 3989  | CG2 | VAL B   | 64     | 81.493 | 10.750 | 52.778           | 1.00 | 29.93          | 1   | 3      | С      |
| ATOM | 3990  | С   | VAL B   | 64     | 81,445 | 13.920 | 54.874           | 1,00 | 31.69          | 1   | 3      | С      |
| ATOM | 3991  | 0   | VAL B   | 64     | 80.766 | 13.564 | 55.830           | 1.00 | 31.01          | 1   | 3      | 0      |
| MOTA | 3992  | N   | PHE B   | 65     | 81.748 | 15.181 | 54.615           | 1.00 |                |     | 3      | N      |
| ATOM | 3993  | CA  | PHE B   | 65     | 81.307 | 16.239 | 55.489           | 1.00 |                | 1   | 3      | С      |
| ATOM | 3994  | CB  | PHE B   | 65     | 82.504 | 16.988 | 56.040           | 1.00 |                |     | 3      | С      |
| MOTA | 3995  | CG  | PHE B   | 65     | 83.444 | 17.512 | 54.990           | 1.00 | 31.47          | _ 1 | 3      | С      |
| MOTA | 3996  | CD1 | PHE B   | 65     | 84.297 | 16.664 | 54.300           |      | 30.56          |     | 3      | С      |
| MOTA | 3997  | CD2 | PHE B   | 65     | 83.555 | 18.869 | 54.771           | 1.00 | 30.74          | 1   | 3      | С      |
| MOTA | 3998  | CE1 | PHE B   | 65     | 85.252 | 17.175 | 53.430           |      | 31.15          |     | 3      | С      |
| MOTA | .3999 | CE2 | PHE B   | 65     | 84.509 | 19.377 | 53.901           |      | 31.52          | 1   | В      | С      |
| ATOM | 4000  | CZ  | PHE . B | 65     | 85.352 | 18.529 | 53.239           |      | 31.80          |     | 3      | C      |
| MOTA | 4001  | C · | PHE B   | 65     | 80.378 | 17.229 | 54.828           |      | 34.52          |     | В      | C      |
| ATOM | 4002  | 0   | PHE B   | 65     | 80.346 | 17.330 | 53.604           |      | 36.25          |     | В      | 0      |
| ATOM | 4003  | N   | THR B   | · 66·  | 79.642 | 17.970 | 55.662           |      | 36.14          |     | В      | N      |
| MOTA | 4004  | CA  | THR E   | - 66 ∶ | 78.679 | 18.994 | 55.227.          |      | 36.60          |     | В      | C      |
| ATOM | 4005  | CB  | THR B   | .66    | 77.414 | 18.993 | 56.113           |      | 37.45          |     | В      | С      |
| ATOM | 4006  | OG1 | THR E   | 66     | 76.896 | 17.661 | 56.226           |      | 40.47          |     | В      | 0      |
| MOTA | 4007  | CG2 | THR · E | 66     | 76.355 | 19.899 | 55.513           |      | 38.72          |     | В      | С      |
| ATOM | 4008  | С   | THR E   | 66     | 79.279 | 20.397 | 55.306           |      | 36.37          |     | В      | С      |
| ATOM | 4009  | 0   | THR E   | 66     | 79.933 | 20.743 | 56.283           |      | 36.66          |     | В      | 0      |
| MOTA | 4010  | N   | LEU E   | 67     | 79.039 | 21.216 | 54.290           |      | 36.49          |     | В      | N      |
| ATOM | 4011  | CA  | LEU E   | 67     | 79.565 | 22.569 | 54.311           |      | 37.45          |     | В      | C      |
| ATOM | 4012  | CB  | PEO E   | 67     | 80.677 | 22.704 | 53.285           |      | 35,26          |     | В      | C .    |
| ATOM | 4013  | CG  | LEU E   | 67     | 81.938 | 23.317 | 53.887           |      | 34.88          |     | В      | C      |
| ATOM | 4014  | CD1 | LEU E   | 67     | 82.303 | 22.591 | 55.150           |      | 33.85          |     | В      | С      |
| ATOM | 4015  | CD2 | LEU E   | 67     | 83.072 | 23.258 | 52.887           |      | 35.14          |     | В      | C      |
| ATOM | 4016  | С   | LEU F   |        | 78.474 | 23.597 | 54.062           |      | 39.38          |     | В      | C      |
| MOTA | 4017  | 0   | LEU E   | 67     | 77.464 | 23.285 | 53.446           |      | 40.15          |     | В      | 0      |
| ATOM | 4018  | N   | TYR E   | 68     | 78.651 | 24.818 | 54.547           |      | 42.08          |     | В      | N      |
| MOTA | 4019  | CA  | TYR E   |        | 77.615 | 25,818 | 54.323           |      | 45.28          |     | В      | C      |
| ATOM | 4020  | CB  | TYR E   |        | 77.015 | 26.313 | 55.650           |      | 46.41          |     | В      | C      |
| ATOM | 4021  | CG  | TYR I   |        | 75.910 | 25.437 | . 56.228         |      | 46.84          |     | В      | C      |
| ATOM | 4022  |     | TYR E   |        | 76.186 | 24.498 | 57.221           |      | 47.33          |     | В      | Ç      |
| MOTA | 4023  |     | TYR I   |        | 75.185 | 23.674 | 57.748           |      | 48.35          |     | В      | C      |
| MOTA | 4024  |     | TYR E   |        | 74.594 | 25.534 | 55.770           |      | 48.51          |     | В      | C      |
| ATOM | 4025  |     | TYR E   |        | 73.583 | 24.709 | 56.291           |      | 49.03          |     | В      | C      |
| MOTA | 4026  |     | TYR E   |        | 73.894 | 23.778 | 57.284           |      | 48.33          |     | В      |        |
| ATOM | 4027  | OH  | TYR I   |        | 72.913 | 22,952 | 57.802           |      | 50.71<br>47.41 |     | В      | O<br>C |
| ATOM | 4028  | C   | TYR     |        | 78.031 | 27.022 | 53.488           |      | 47.91          |     | В      |        |
| ATOM | 4029  | 0   | TYR I   |        | 78.795 | 27.880 | 53.922           |      | 48.63          |     | B<br>B | o<br>N |
| MOTA | 4030  | N   | PHE I   |        | 77.519 | 27.067 | 52.266           |      | 50.91          |     | В      | C      |
| ATOM | 4031  | CA  | PHE I   |        | 77.779 | 28.183 | 51.382           |      | 49.97          |     |        | č      |
| ATOM | 4032  | CB  | PHE I   |        | 77.901 | 27.727 | 49.942           |      | 49.97          |     | B      | C      |
| ATOM | 4033  | CG  | PHE I   |        | 79.159 | 26.991 | 49.672           |      | 49.90          |     | В      | c      |
| ATOM | 4034  |     | PHE I   |        | 80.127 | 27.530 | 48.843           |      | 49.90          |     | В      | C      |
| ATOM | 4035  |     | PHE I   |        | 79.400 | 25.775 | 50.290           |      | 50.32          |     | В      | C      |
| ATOM | 4036  |     | PHE I   |        | 81.328 | 26.872 | 48,643           |      | 48.76          |     | В      | c      |
| ATOM | 4037  |     | PHE I   |        | 80.586 | 25.109 | 50.102           |      |                |     | В      | c      |
| ATOM | 4038  | CZ  | PHE I   |        | 81.554 | 25.652 | 49.274           |      | 49.66<br>53.73 |     | В      | C      |
| ATOM | 4039  | С   | PHE I   |        | 76.564 | 29.060 | 51.564           |      | 53.73          |     | B      |        |
| ATOM | 4040  | 0   | PHE I   |        | 75.484 | 28.796 | 51.020           |      | 54.27          |     | B      | О<br>N |
| ATOM | 4041  | N   | GLY I   |        | 76.753 | 30.105 | 52.364           |      | 54.26          |     | В      | C<br>C |
| ATOM | 4042  | CA  | GLY I   |        | 75.673 | 31.018 | 52.679           |      | 54.00          |     | B<br>B | c      |
| ATOM | 4043  | C   | GLY I   |        | 74.741 | 30.267 | 53.599           |      | 53.92          |     | B<br>B | Ö      |
| ATOM | 4044  | 0   | GLY I   |        | 75.094 | 29.968 | 54.741<br>53.110 |      | 53.56          |     | В<br>В | N.     |
| MOTA | 4045  | N   | LEU I   |        | 73.547 | 29.964 | 53.110           |      | 54.65          |     | B<br>B | C N.   |
| ATOM | 4046  | CA  | LEU     | в 71   | 72.571 | 29.220 | 33.902           | 1.00 | 303            |     | u      | ٠      |
|      |       |     |         |        |        |        |                  |      |                |     |        |        |

|                                                              |                                                                                                              |                                                                                |                                               |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              |                                                                                                                                     |   | _                                     | _                                       |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------|-----------------------------------------|
| MOTA                                                         | 4047                                                                                                         | CB                                                                             | LEU                                           | В                                     | 71                                                             | 71.236                                                                                                                         | 29.973                                                                                                                          | 53.983                                                                                                                                   | 1.00                                                         |                                                                                                                                     |   | В                                     | С                                       |
| ATOM                                                         | 4048                                                                                                         |                                                                                | LEU                                           | В                                     | 71                                                             | 71.160                                                                                                                         | 31.371                                                                                                                          | 54.616                                                                                                                                   | 1.00                                                         | 57.86                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4049                                                                                                         | _                                                                              | LEU                                           |                                       | 71                                                             | 69.785                                                                                                                         | 31.954                                                                                                                          | 54.331                                                                                                                                   | 1.00                                                         | 59.29                                                                                                                               |   | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       |                                                                |                                                                                                                                | 31.297                                                                                                                          | 56.117                                                                                                                                   |                                                              | 57.96                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4050                                                                                                         |                                                                                | LEU                                           |                                       | 71                                                             | 71.407                                                                                                                         |                                                                                                                                 |                                                                                                                                          |                                                              | 54.17                                                                                                                               |   | В                                     | č                                       |
| ATOM                                                         | 4051                                                                                                         | С                                                                              | LEU                                           | В                                     | 71                                                             | 72.358                                                                                                                         | 27.907                                                                                                                          | 53.180                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| ATOM                                                         | 4052                                                                                                         | 0                                                                              | LEU                                           | В                                     | 71                                                             | 71.497                                                                                                                         | 27.107                                                                                                                          | 53.551                                                                                                                                   |                                                              | 54.26                                                                                                                               |   | В                                     | 0                                       |
| MOTA                                                         | 4053                                                                                                         | N                                                                              | LYS                                           | В                                     | 72                                                             | 73.157                                                                                                                         | 27.694                                                                                                                          | 52.136                                                                                                                                   | 1.00                                                         | 54.12                                                                                                                               |   | В                                     | N                                       |
| ATOM                                                         | 4054                                                                                                         |                                                                                | LYS                                           |                                       | 72                                                             | 73.058                                                                                                                         | 26.475                                                                                                                          | 51.346                                                                                                                                   | 1.00                                                         | 53.55                                                                                                                               |   | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       |                                                                | 73.388                                                                                                                         | 26.766                                                                                                                          | 49.873                                                                                                                                   |                                                              | 55.94                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4055                                                                                                         | CB                                                                             | LYS                                           |                                       | 72                                                             |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              |                                                                                                                                     |   | В                                     | Ċ                                       |
| MOTA                                                         | 4056                                                                                                         | CG                                                                             | LYS                                           | В                                     | 72                                                             | 72.817                                                                                                                         | 25.739                                                                                                                          | 48.902                                                                                                                                   |                                                              | 58.48                                                                                                                               |   |                                       |                                         |
| MOTA                                                         | 4057                                                                                                         | CD                                                                             | LYS                                           | В                                     | 72                                                             | 72.969                                                                                                                         | 26.166                                                                                                                          | 47.439                                                                                                                                   | 1.00                                                         | 60.29                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4058                                                                                                         | CE                                                                             | LYS                                           | В                                     | 72.                                                            | 72.363                                                                                                                         | 25.119                                                                                                                          | 46.502                                                                                                                                   | 1.00                                                         | 61.43                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4059                                                                                                         | NZ                                                                             | LYS                                           |                                       | 72                                                             | 70.941                                                                                                                         | 24.786                                                                                                                          | 46.868                                                                                                                                   | 1.00                                                         | 61.31                                                                                                                               |   | В                                     | N                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       | 72                                                             | 73.992                                                                                                                         | 25,407                                                                                                                          | 51.902                                                                                                                                   | 1.00                                                         | 52.23                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4060                                                                                                         | C                                                                              | LYS                                           |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              |                                                                                                                                     |   | В                                     | ō                                       |
| ATOM                                                         | 4061                                                                                                         | 0                                                                              | LYS                                           | В                                     | 72                                                             | 75.189                                                                                                                         | 25,631                                                                                                                          | 52.052                                                                                                                                   |                                                              | 52.92                                                                                                                               |   |                                       |                                         |
| ATOM                                                         | 4062                                                                                                         | N                                                                              | PRO                                           | В                                     | 73                                                             | 73.438                                                                                                                         | 24.240                                                                                                                          | 52.258                                                                                                                                   |                                                              | 51.04                                                                                                                               |   | В                                     | Ŋ                                       |
| MOTA                                                         | 4063                                                                                                         | CD                                                                             | PRO                                           | В                                     | 73                                                             | 71.997                                                                                                                         | 23,959                                                                                                                          | 52.411                                                                                                                                   | 1.00                                                         | 51.22                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4064                                                                                                         | CA                                                                             | PRO                                           |                                       | 73                                                             | 74.239                                                                                                                         | 23.144                                                                                                                          | 52.800                                                                                                                                   | 1.00                                                         | 49.79                                                                                                                               | • | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       | 73                                                             | 73.225                                                                                                                         | 22.367                                                                                                                          | 53.629                                                                                                                                   |                                                              | 49.81                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4065                                                                                                         | CB                                                                             | PRO                                           |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 50.73                                                                                                                               |   | В                                     | č                                       |
| MOTA                                                         | 4066                                                                                                         | CG                                                                             | PRO                                           | В                                     | 73                                                             | 71.988                                                                                                                         | 22.491                                                                                                                          | 52.801                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| ATOM                                                         | 4067                                                                                                         | С                                                                              | PRO                                           | В                                     | 73                                                             | 74.807                                                                                                                         | 22,325                                                                                                                          | 51.649                                                                                                                                   |                                                              | 48.08                                                                                                                               |   | В                                     | C                                       |
| ATOM                                                         | 4068                                                                                                         | 0                                                                              | PRO                                           | В                                     | 73                                                             | 74.114                                                                                                                         | 22.060                                                                                                                          | 50.667                                                                                                                                   | 1.00                                                         | 48.26                                                                                                                               |   | В                                     | 0                                       |
| ATOM                                                         | 4069                                                                                                         | N                                                                              | ILE                                           |                                       | 74                                                             | 76.071                                                                                                                         | 21.937                                                                                                                          | 51.769                                                                                                                                   | 1.00                                                         | 45.88                                                                                                                               |   | В                                     | N                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       | 74                                                             | 76.738                                                                                                                         | 21.153                                                                                                                          | 50.735                                                                                                                                   | 1.00                                                         | 44.14                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4070                                                                                                         | CA                                                                             | ILE                                           |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              |                                                                                                                                     |   | В                                     | Ċ                                       |
| MOTA                                                         | 4071                                                                                                         | CB                                                                             | ILE                                           | В                                     | 74                                                             | 77.890                                                                                                                         | 21.949                                                                                                                          | 50.080                                                                                                                                   |                                                              | 44.72                                                                                                                               |   |                                       |                                         |
| ATOM                                                         | 4072                                                                                                         | CG2                                                                            | ILE                                           | В                                     | 74                                                             | 78.558                                                                                                                         | 21.108                                                                                                                          | 49.012                                                                                                                                   |                                                              | 45,82                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4073                                                                                                         | CG1                                                                            | ILE                                           | В                                     | 74                                                             | 77.363                                                                                                                         | 23.249                                                                                                                          | 49.478                                                                                                                                   | 1.00                                                         | 44.97                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4074                                                                                                         | -                                                                              |                                               | В                                     | 74                                                             | 76.429                                                                                                                         | 23.064                                                                                                                          | 48.325                                                                                                                                   | 1.00                                                         | 46.05                                                                                                                               |   | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       | 74                                                             | 77.335                                                                                                                         |                                                                                                                                 | 51,337                                                                                                                                   |                                                              | 41.82                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4075                                                                                                         | C                                                                              | ILE                                           |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 42.17                                                                                                                               |   | В                                     | ō                                       |
| MOTA                                                         | 4076                                                                                                         | 0                                                                              | ILE                                           | В                                     | 74                                                             | 77.712                                                                                                                         | 19.873                                                                                                                          | 52.504                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| ATOM                                                         | 4077                                                                                                         | N                                                                              | VAL                                           | В                                     | 75                                                             | 77.412                                                                                                                         | 18.835                                                                                                                          | 50.536                                                                                                                                   |                                                              | 39.71                                                                                                                               |   | В                                     | N                                       |
| ATOM                                                         | 4078                                                                                                         | CA                                                                             | VAL                                           | В                                     | 75                                                             | 77.998                                                                                                                         | 17.579                                                                                                                          | 50.982                                                                                                                                   | 1.00                                                         | 38.49                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4079                                                                                                         | СВ                                                                             | VAL                                           |                                       | 75                                                             | 77.025                                                                                                                         | 16.408                                                                                                                          | 50.796                                                                                                                                   | 1.00                                                         | 37.65                                                                                                                               |   | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                | VAL                                           |                                       | 75                                                             | 77.523                                                                                                                         | 15.185                                                                                                                          | 51.538                                                                                                                                   | 1.00                                                         | 38.54                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4080                                                                                                         |                                                                                |                                               |                                       |                                                                |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 38.02                                                                                                                               |   | В                                     | c                                       |
| ATOM                                                         | 4081                                                                                                         | CG2                                                                            | VAL                                           |                                       | 75                                                             |                                                                                                                                | 16.805                                                                                                                          | 51.282                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| MOTA                                                         | 4082                                                                                                         | C                                                                              | VAL                                           | В                                     | 75                                                             | 79.229                                                                                                                         |                                                                                                                                 | 50.105                                                                                                                                   |                                                              | 37.21                                                                                                                               |   | В                                     | C                                       |
| ATOM                                                         | 4083                                                                                                         | 0                                                                              | VAL                                           | В                                     | 75                                                             | 79.122                                                                                                                         | 17.244                                                                                                                          | 48.883                                                                                                                                   | 1.00                                                         | 38.14                                                                                                                               |   | В                                     | 0                                       |
| ATOM                                                         | 4084                                                                                                         | N                                                                              | VAL                                           | В                                     | 76                                                             | 80.396                                                                                                                         | 17.361                                                                                                                          | 50.742                                                                                                                                   | 1.00                                                         | 35.14                                                                                                                               |   | B.                                    | N                                       |
|                                                              | 4085                                                                                                         | CA                                                                             | VAL                                           |                                       | 76                                                             | B1.673                                                                                                                         | 17.203                                                                                                                          | 50.052                                                                                                                                   | 1.00                                                         | 34.54                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         |                                                                                                              |                                                                                |                                               |                                       |                                                                |                                                                                                                                |                                                                                                                                 | 50.700                                                                                                                                   |                                                              | 34.09                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4086                                                                                                         | CB                                                                             | VAL                                           |                                       | 76                                                             | 82.748                                                                                                                         | 18.110                                                                                                                          |                                                                                                                                          |                                                              |                                                                                                                                     |   |                                       | Č                                       |
| MOTA                                                         | 4087                                                                                                         | CG1                                                                            | VAL                                           | В                                     | 76                                                             | 84.040                                                                                                                         | 18.085                                                                                                                          | 49.905                                                                                                                                   |                                                              | 33.51                                                                                                                               |   | В                                     |                                         |
| MOTA                                                         | 4088                                                                                                         | CG2                                                                            | VAL                                           | В                                     | 76                                                             | 82.216                                                                                                                         | 19.507                                                                                                                          | 50.834                                                                                                                                   | 1.00                                                         |                                                                                                                                     |   | В                                     | С                                       |
| ATOM                                                         | 4089                                                                                                         | C                                                                              | VAL                                           |                                       | 76                                                             | 82.158                                                                                                                         | 15.753                                                                                                                          | 50,138                                                                                                                                   | 1.00                                                         | 33.28                                                                                                                               |   | В                                     | C                                       |
|                                                              | 4090                                                                                                         | ŏ                                                                              | VAL                                           |                                       | 76                                                             | 82.262                                                                                                                         | 15.199                                                                                                                          | 51.224                                                                                                                                   | 1.00                                                         | 35.03                                                                                                                               |   | В                                     | 0                                       |
| ATOM                                                         |                                                                                                              |                                                                                |                                               |                                       |                                                                |                                                                                                                                |                                                                                                                                 | 49.001                                                                                                                                   |                                                              | 30.43                                                                                                                               |   | В                                     | N                                       |
| MOTA                                                         | 4091                                                                                                         | N                                                                              | LΕÜ                                           |                                       | 77                                                             | 82.432                                                                                                                         | 15.130                                                                                                                          |                                                                                                                                          |                                                              |                                                                                                                                     |   |                                       | Ċ                                       |
| ATOM                                                         | 4092                                                                                                         | CA                                                                             | TE0                                           | В                                     | 77                                                             | 82.933                                                                                                                         | 13.770                                                                                                                          | 49.013                                                                                                                                   |                                                              | 28.19                                                                                                                               |   | В                                     |                                         |
| ATOM                                                         | 4093                                                                                                         | CB                                                                             | LEU                                           | В                                     | 77                                                             | 82.283                                                                                                                         | 12.955                                                                                                                          | 47.915                                                                                                                                   | 1.00                                                         | 27.08                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4094                                                                                                         | CG                                                                             | LEU                                           | В                                     | 77                                                             | 80.774                                                                                                                         | 13.112                                                                                                                          | 47.901                                                                                                                                   | 1.00                                                         | 27.37                                                                                                                               |   | В                                     | С                                       |
| ATOM                                                         | 4095                                                                                                         |                                                                                | LEU                                           |                                       | 77                                                             | 80.204                                                                                                                         | 12.284                                                                                                                          | 46.776                                                                                                                                   | 1.00                                                         | 28.13                                                                                                                               |   | В                                     | С                                       |
|                                                              |                                                                                                              |                                                                                |                                               |                                       |                                                                | 80.174                                                                                                                         | 12.694                                                                                                                          | 49,228                                                                                                                                   |                                                              | 28.04                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         | 4096                                                                                                         |                                                                                | LEU                                           |                                       | 77                                                             |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 28.28                                                                                                                               |   | В                                     | Č                                       |
| MOTA                                                         | 4097                                                                                                         | С                                                                              | LEU                                           |                                       | 77                                                             | 84.425                                                                                                                         | 13.894                                                                                                                          | 48.774                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| ATOM                                                         | 4098                                                                                                         | 0                                                                              | LEU                                           | В                                     | 7 <b>7</b>                                                     | 84.847                                                                                                                         | 14.443                                                                                                                          | 47.759                                                                                                                                   |                                                              | 28.32                                                                                                                               | • | В                                     | 0                                       |
| MOTA                                                         | 4099                                                                                                         | N                                                                              | HIS                                           | В                                     | 78                                                             | 85.233                                                                                                                         | 13.382                                                                                                                          | 49.692                                                                                                                                   |                                                              | 30.59                                                                                                                               |   | В                                     | N                                       |
| ATOM                                                         | 4100                                                                                                         | CA                                                                             | HIS                                           |                                       | 78                                                             | 86.655                                                                                                                         | 13.546                                                                                                                          | 49.519                                                                                                                                   | 1.00                                                         | 32.31                                                                                                                               |   | В                                     | C.                                      |
|                                                              | 4101                                                                                                         | CB                                                                             | HIS                                           |                                       | 78                                                             | 87.293                                                                                                                         | 13.987                                                                                                                          | 50.818                                                                                                                                   | 1.00                                                         | 33.23                                                                                                                               |   | В                                     | C                                       |
| ATOM                                                         |                                                                                                              |                                                                                |                                               |                                       |                                                                | 88.596                                                                                                                         | 14.684                                                                                                                          | 50.616                                                                                                                                   |                                                              | 34.53                                                                                                                               |   | В                                     | C                                       |
| ATOM                                                         | 4102                                                                                                         | CG                                                                             | HIS                                           |                                       | .78                                                            |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 37.11                                                                                                                               |   | В                                     | C                                       |
| ATOM                                                         | 4103                                                                                                         |                                                                                | HIS                                           |                                       | 78                                                             | 88.880                                                                                                                         | 15.861                                                                                                                          | 50.007                                                                                                                                   |                                                              |                                                                                                                                     |   |                                       |                                         |
| ATOM                                                         | 4104                                                                                                         | ND1                                                                            | HIS                                           | В                                     | 78                                                             | 89.812                                                                                                                         | 14.136                                                                                                                          | 50.971                                                                                                                                   |                                                              | 36.57                                                                                                                               |   | В                                     | N                                       |
| ATOM                                                         |                                                                                                              |                                                                                |                                               |                                       |                                                                | 90.787                                                                                                                         | 14.942                                                                                                                          | E0 E02                                                                                                                                   | 1 00                                                         | 37.86                                                                                                                               |   | В                                     | С                                       |
| MOTA                                                         |                                                                                                              |                                                                                |                                               |                                       | 78                                                             |                                                                                                                                | 14.744                                                                                                                          | 50.582                                                                                                                                   | 1.00                                                         | 5                                                                                                                                   |   | -                                     |                                         |
|                                                              | 4105                                                                                                         | CEl                                                                            | HIS                                           | В                                     | 78<br>78                                                       |                                                                                                                                |                                                                                                                                 |                                                                                                                                          |                                                              | 38.97                                                                                                                               |   | В                                     | N                                       |
|                                                              | 4105<br>4106                                                                                                 | CE1<br>NE2                                                                     | HIS<br>HIS                                    | B<br>B                                | 78                                                             | 90.248                                                                                                                         | 15.995                                                                                                                          | 49.993                                                                                                                                   | 1.00                                                         | 38.97                                                                                                                               |   | В                                     |                                         |
| ATOM                                                         | 4105<br>4106<br>4107                                                                                         | CE1<br>NE2<br>C                                                                | HIS<br>HIS<br>HIS                             | B<br>B                                | 78<br>78                                                       | 90.248<br>87.489                                                                                                               | 15.995<br>12.429                                                                                                                | 49.993<br>48.950                                                                                                                         | 1.00                                                         | 38.97<br>34.95                                                                                                                      |   | B<br>B                                | С                                       |
| ATOM<br>ATOM                                                 | 4105<br>4106                                                                                                 | CE1<br>NE2                                                                     | HIS<br>HIS<br>HIS                             | B<br>B<br>B                           | 78<br>78<br>78                                                 | 90.248<br>87.489<br>87.884                                                                                                     | 15.995<br>12.429<br>12.472                                                                                                      | 49.993<br>48.950<br>47.792                                                                                                               | 1.00<br>1.00<br>1.00                                         | 38.97<br>34.95<br>36.29                                                                                                             |   | B<br>B<br>B                           | C                                       |
|                                                              | 4105<br>4106<br>4107                                                                                         | CE1<br>NE2<br>C                                                                | HIS<br>HIS<br>HIS                             | B<br>B<br>B                           | 78<br>78                                                       | 90.248<br>87.489<br>87.884<br>87.794                                                                                           | 15.995<br>12.429<br>12.472<br>11.431                                                                                            | 49.993<br>48.950<br>47.792<br>49.766                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00                                 | 38.97<br>34.95<br>36.29<br>36.88                                                                                                    |   | B<br>B<br>B                           | И<br>О<br>С                             |
| MOTA<br>MOTA                                                 | 4105<br>4106<br>4107<br>4108<br>4109                                                                         | CE1<br>NE2<br>C<br>O<br>N                                                      | HIS<br>HIS<br>HIS<br>GLY                      | B<br>B<br>B<br>B                      | 78<br>78<br>78<br>79                                           | 90.248<br>87.489<br>87.884                                                                                                     | 15.995<br>12.429<br>12.472                                                                                                      | 49.993<br>48.950<br>47.792                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00                                 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70                                                                                           |   | B<br>B<br>B<br>B                      | О<br>И<br>С                             |
| MOTA<br>MOTA<br>MOTA                                         | 4105<br>4106<br>4107<br>4108<br>4109<br>4110                                                                 | CE1<br>NE2<br>C<br>O<br>N<br>CA                                                | HIS<br>HIS<br>HIS<br>GLY<br>GLY               | B<br>B<br>B<br>B                      | 78<br>78<br>78<br>79<br>79                                     | 90.248<br>87.489<br>87.884<br>87.794<br>88.636                                                                                 | 15.995<br>12.429<br>12.472<br>11.431<br>10.342                                                                                  | 49.993<br>48.950<br>47.792<br>49.766                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00                                 | 38.97<br>34.95<br>36.29<br>36.88                                                                                                    |   | B<br>B<br>B                           | И<br>О<br>С                             |
| MOTA<br>ATOM<br>ATOM<br>ATOM                                 | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111                                                         | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C                                           | GLY<br>GLY<br>HIS<br>HIS<br>HIS               | B<br>B<br>B<br>B<br>B                 | 78<br>78<br>78<br>79<br>79<br>79                               | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080                                                                       | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580                                                                         | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18                                                                                  |   | B<br>B<br>B<br>B                      | О<br>И<br>С                             |
| MOTA ATOM ATOM ATOM ATOM ATOM                                | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112                                                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C                                           | GTA<br>GTA<br>GTA<br>HIS<br>HIS<br>HIS        | B B B B B B                           | 78<br>78<br>78<br>79<br>79<br>79                               | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864                                                             | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451                                                                | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93                                                                         |   | B<br>B<br>B<br>B<br>B                 | 0<br>N<br>C<br>O                        |
| MOTA MOTA MOTA MOTA MOTA MOTA                                | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113                                         | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N                                 | GLY<br>GLY<br>GLY<br>GLY<br>TYR               | B B B B B B B B B                     | 78<br>78<br>78<br>79<br>79<br>79<br>79                         | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.961                                                   | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072                                                       | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24                                                                |   | B<br>B<br>B<br>B<br>B<br>B            | 0<br>N<br>C<br>O<br>N                   |
| MOTA ATOM ATOM ATOM ATOM ATOM                                | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112                                                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C                                           | GTA<br>GTA<br>GTA<br>HIS<br>HIS<br>HIS        | B B B B B B B B B                     | 78<br>78<br>78<br>79<br>79<br>79                               | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.961<br>88.525                                         | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296                                              | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08                                                       |   | B<br>B<br>B<br>B<br>B<br>B            | C O N C C O N C                         |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114                                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA                           | TYR<br>GLY<br>GLY<br>GLY<br>HIS<br>HIS<br>HIS | B B B B B B B B B B B B B B B B B B B | 78<br>78<br>79<br>79<br>79<br>79<br>79<br>80<br>80             | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.961                                                   | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072                                                       | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083<br>45.479                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68                                              |   | B<br>B<br>B<br>B<br>B<br>B<br>B       | CONCCONCC                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114                                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB                     | HIS HIS GLY GLY TYR TYR                       | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 78<br>78<br>79<br>79<br>79<br>79<br>79<br>80<br>80             | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.680<br>86.864<br>88.961<br>88.525                                         | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296                                              | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08                                                       |   | B<br>B<br>B<br>B<br>B<br>B            | 000000000000000000000000000000000000000 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115                         | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB                     | HIS HIS GLY GLY TYR TYR TYR                   | B B B B B B B B B B B B B B B B B B B | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80             | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.961<br>89.525<br>89.697                               | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383                            | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.249<br>46.083<br>45.479<br>44.523                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83                                     |   | B B B B B B B B B                     | 000000000000000000000000000000000000000 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115<br>4116                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB<br>CG               | HIS HIS HIS GLY GLY TYR TYR TYR               | B                                     | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80             | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.961<br>89.525<br>89.697<br>89.269                     | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383<br>6.656                   | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083<br>45.479<br>44.523<br>43.200                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83<br>43.76                            |   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 000000000000000000000000000000000000000 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115<br>4116<br>4117<br>4118 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1<br>CE1 | HIS HIS GLY GLY GLY TYR TYR TYR TYR           | B                                     | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80<br>80       | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.525<br>89.697<br>89.269<br>89.487                     | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383<br>6.656<br>5.638          | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083<br>45.479<br>44.523<br>43.200<br>42.322           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83<br>43.76<br>45.59                   |   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                         |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115<br>4116                 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1<br>CE1 | HIS HIS HIS GLY GLY TYR TYR TYR               | B                                     | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80             | 90.248<br>87.489<br>87.394<br>88.636<br>88.080<br>86.864<br>88.961<br>88.525<br>89.697<br>89.269<br>88.914<br>88.487<br>89.191 | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383<br>6.656<br>5.638<br>5.062 | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.969<br>47.249<br>46.083<br>45.479<br>44.523<br>43.200<br>42.322<br>44.951 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83<br>43.76<br>45.59<br>43.68          |   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                         |
| MOTA ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115<br>4116<br>4117<br>4118 | CE1<br>NE2<br>C<br>O<br>N<br>CA<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD1<br>CE1 | HIS HIS GLY GLY TYR TYR TYR TYR TYR           | B B B B B B B B B B B B B B B B B B B | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80<br>80<br>80 | 90.248<br>87.489<br>87.884<br>87.794<br>88.636<br>88.080<br>86.864<br>88.525<br>89.697<br>89.269<br>89.487                     | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383<br>6.656<br>5.638<br>5.062 | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.249<br>46.083<br>45.479<br>44.523<br>43.200<br>42.322<br>44.951<br>44.086 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83<br>43.76<br>43.59<br>43.68<br>46.67 |   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                         |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 4105<br>4106<br>4107<br>4108<br>4109<br>4110<br>4111<br>4112<br>4113<br>4114<br>4115<br>4116<br>4117<br>4118 | CE1 NE2 C O N CA C O N CA CB CG CD1 CE1                                        | HIS HIS GLY GLY GLY TYR TYR TYR TYR           | B B B B B B B B B B B B B B B B B B B | 78<br>78<br>79<br>79<br>79<br>79<br>80<br>80<br>80<br>80       | 90.248<br>87.489<br>87.394<br>88.636<br>88.080<br>86.864<br>88.961<br>88.525<br>89.697<br>89.269<br>88.914<br>88.487<br>89.191 | 15.995<br>12.429<br>12.472<br>11.431<br>10.342<br>9.580<br>9.451<br>9.072<br>8.296<br>7.500<br>6.383<br>6.656<br>5.638          | 49.993<br>48.950<br>47.792<br>49.766<br>49.291<br>48.106<br>47.249<br>46.083<br>45.479<br>44.523<br>43.200<br>42.322<br>44.951<br>44.086 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 38.97<br>34.95<br>36.29<br>36.88<br>38.70<br>39.18<br>40.93<br>39.24<br>40.08<br>41.68<br>42.83<br>43.76<br>45.59<br>43.68          |   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                         |

| MOTA | 4122 | OH  | TYR | В  | 80   | 87.966 | 3.324  | 41.930 | 1.00 | 47.99 |     | В   | 0   |
|------|------|-----|-----|----|------|--------|--------|--------|------|-------|-----|-----|-----|
| ATOM | 4123 | C   | TYR |    | 80   | 87,428 | 7,300  | 46.449 |      | 39.86 |     | В   | С   |
| ATOM | 4124 | ŏ   | TYR |    | 80   | 86.378 | 7,268  | 45.816 | 1.00 |       |     | В   | Ó   |
| ATOM | 4125 | N   | GLU |    | 81   | 87.705 | 6.477  | 47.461 |      | 42.87 |     | В   | N   |
| ATOM | 4126 | CA  | GLU |    | 81   | 86.765 | 5.460  | 47.910 |      | 44.73 |     | В   | c   |
|      |      | CB  | GLU |    | 81   | 87.183 | 4.906  | 49.279 |      | 48.22 |     | B   | č   |
| ATOM | 4127 |     |     |    |      |        |        |        |      | 56.18 |     | В   | č   |
| ATOM | 4128 | CG  | GLU |    | 81   | 88.358 | 3.922  | 49.202 |      |       |     |     |     |
| MOTA | 4129 | CD  | GLU |    | 81   | 88.092 | 2.726  | 48.272 |      | 60.53 |     | В   | C   |
| ATOM | 4130 |     | GLU |    | 81   | 89.089 | 2.091  | 47.819 |      | 61.57 |     | В   | 0   |
| ATOM | 4131 | OE2 | GLU | B  | 81   | 86.895 | 2.422  | 47.997 |      | 62.72 |     | В   | 0   |
| MOTA | 4132 | С   | GLU | В  | 81   | 85.342 | 5.990  | 47.965 | 1.00 | 44.43 |     | В   | С   |
| ATOM | 4133 | 0   | GLU | В  | 81   | 84.422 | 5.403  | 47.389 | 1.00 | 44.37 |     | В   | 0   |
| ATOM | 4134 | N   | ALA | В  | 82   | 85.163 | 7.105  | 48.663 | 1.00 | 44.32 |     | В   | N   |
| ATOM | 4135 | CA  | ALA | В  | 82   | 83.853 | 7.739  | 48.786 | 1.00 | 41.86 |     | В   | С   |
| ATOM | 4136 | CB  | ALA |    | 82   | 83.941 | 8.891  | 49.751 | 1.00 | 41.85 |     | В   | С   |
| ATOM | 4137 | C   | ALA | В  | 82   | 83.387 | 8.239  | 47.429 | 1.00 | 42.27 |     | В   | С   |
| ATOM | 4138 | õ   | ALA |    | 82   | 82.250 | 8.003  | 47.030 |      | 43.09 |     | В   | 0   |
| ATOM | 4139 | N   | VAL |    | 83   | 84.277 | 8.929  | 46.718 |      | 41.38 |     | В   | N   |
| ATOM | 4140 | CA  | VAL |    | 83   | 83.952 | 9,482  | 45.405 |      | 40.30 |     | В   | c   |
| ATOM | 4141 | CB  | VAL |    | 83   | 85.189 | 10.052 | 44.722 |      | 39.40 |     | В   | č   |
|      |      |     | VAL |    | 83   | 84.778 | 10.829 | 43.498 |      | 38.81 |     | В   | č   |
| MOTA | 4142 |     |     |    |      |        |        | 45.684 |      | 39.37 |     | В   | č   |
| ATOM | 4143 |     | VAL | В  | 83   | 85.968 | 10.901 |        |      |       |     |     | Č   |
| ATOM | 4144 | C   | VAL |    | 83   | 83.405 | 8.408  | 44.498 |      | 41.16 |     | В   |     |
| MOTA | 4145 | 0   | VAL |    | 83   | 82.388 | 8.584  | 43.821 |      | 40.06 |     | В   | 0   |
| ATOM | 4146 | N   | LYS |    | 84   | 84.108 | 7.285  | 44.488 |      | 43.70 |     | В   | N   |
| MOTA | 4147 | CA  | LYS | В  | 84   | 83.717 | 6.154  | 43.667 |      | 47.17 |     | В   | С   |
| MOTA | 4148 | CB  | LYS | В  | 84   | 84.722 | 5.017  | 43.819 | 1.00 | 49.31 |     | . В | С   |
| MOTA | 4149 | CG  | LYS | В  | 84   | 84.313 | 3.773  | 43.061 | 1.00 | 52.16 |     | В   | С   |
| MOTA | 4150 | CD  | LYS | В  | 84   | 85.132 | 2.563  | 43.449 | 1.00 | 54.63 | . • | В   | C   |
| MOTA | 4151 | CE  | LYS | В  | 84   | 84.228 | 1.328  | 43.633 | 1.00 | 56.64 | ·^. | В   | C   |
| MOTA | 4152 | NZ  | LYS |    | 84   | 83.637 | 0.777  | 42,362 | 1.00 | 55.13 | Gu. | ·B  | N   |
| ATOM | 4153 | C   | LYS |    | B4   | 82.353 | 5,641  | 44.074 |      |       |     | ·B  | C   |
| MOTA | 4154 | ŏ   | LYS |    | 84   | 81.428 | 5.567  | 43.261 |      | 47.60 | •   | В   | . 0 |
|      |      |     | GTA |    | 85   | 82.251 | 5.291  | 45.350 |      | 48.31 |     | В   | N - |
| ATOM | 4155 | N   |     |    | 85   |        | 4.748  | 45.900 |      | 49.59 | í   | ĵВ  | c   |
| ATOM | 4156 | CA  | GLU |    |      | 81.021 |        |        |      |       |     | В   | č   |
| MOTA | 4157 | CB  | GLU |    | 85   | 81.103 | 4.667  | 47.428 | 1.00 |       |     |     | Ċ   |
| ATOM | 4158 | CG  | GLU |    | 85   | 80.209 | 3.594  | 48.033 |      | 54.37 |     | В   |     |
| ATOM | 4159 | CD  | GLU |    | 85   | 80.362 | 3.467  | 49.541 | 1.00 |       | •   | В   | C   |
| MOTA | 4160 |     | GLU |    | 85   | 81.513 | 3.554  | 50.039 |      | 56.86 |     | В   | 0   |
| ATOM | 4161 | OE2 | GLU |    | 85   | 79.328 | 3.267  | 50.236 |      | 58.86 | •   | - В | ٥   |
| ATOM | 4162 | С   | GLU | В  | 85   | 79.792 | 5.546  | 45.494 |      | 49.94 |     | В   | С   |
| ATOM | 4163 | 0   | GLU | В  | 85   | 78.724 | 4.976  | 45.265 | 1.00 | 51.24 |     | В   | 0   |
| ATOM | 4164 | N   | ALA | В  | 86   | 79.934 | 6.862  | 45.387 | 1.00 | 48.63 |     | В   | N   |
| ATOM | 4165 | CA  | ALA | В  | 86   | 78.793 | 7.688  | 45.016 | 1.00 | 46.77 |     | В   | С   |
| ATOM | 4166 | СВ  | ALA |    | 86   | 78.933 | 9.074  | 45.610 | 1.00 | 47.24 |     | В   | С   |
| ATOM | 4167 | C   | ALA |    | 86   | 78.643 | 7.781  | 43,510 | 1.00 | 45.47 |     | В   | C   |
| ATOM | 4168 | ō   | ALA |    | 86   | 77.662 | 7.303  | 42.944 |      | 46.08 |     | В   | 0   |
| ATOM | 4169 | N   | LEU |    | 87   | 79.627 | 8.391  | 42.868 |      | 45.71 |     | В   | N   |
|      | 4170 | CA  | LEU |    | 87   | 79.577 | 8.575  | 41.437 |      | 46.41 |     | В   | Ċ   |
| MOTA |      |     |     |    | 87   |        | 9.235  | 40.945 | 1.00 |       |     | В   | č   |
| MOTA | 4171 | CB  | LEU |    |      | 80.860 |        |        |      | 46.20 |     | В   | Č   |
| MOTA | 4172 | CG  | LEU |    | 87   | 80.765 | 10.741 | 40.671 |      |       |     | В   | č   |
| ATOM | 4173 |     | LEU |    | 87   | 80.514 | 11.500 | 41.951 |      | 45.94 |     | В   | Č   |
| ATOM | 4174 |     | LEU |    | 87   | 82.051 | 11.205 | 40.024 |      | 46.40 |     |     | Ċ   |
| ATOM | 4175 | С   | LEU |    | 87   | 79.298 | 7.318  | 40.625 |      | 47.16 |     | В   |     |
| ATOM | 4176 | 0   | LEU |    | 87   | 78.610 | 7.387  | 39,606 |      | 47.96 |     | В   | 0   |
| ATOM | 4177 | N   | ILE |    | 88   | 79.807 | 6.166  | 41.054 |      | 48.10 |     | В   | N   |
| ATOM | 4178 | CA  | ILE | В  | 88   | 79.555 | 4.941  | 40.292 |      | 48.73 |     | В   | С   |
| ATOM | 4179 | CB  | ILE | В  | 88   | 80.852 | 4.163  | 40.005 | 1.00 | 47.93 |     | В   | С   |
| ATOM | 4180 | CG2 | ILE | В. | . 88 | 80.523 | 2.869  | 39.281 | 1.00 | 48.12 |     | В   | С   |
| ATOM | 4181 | CG1 | ILE | B  | 88   | 81.780 | 4.991  | 39.117 | 1.00 | 47.53 |     | В   | С   |
| ATOM | 4182 | CD1 | ILE | В  | 88   | 83.093 | 4.294  | 38.819 | 1.00 | 47.36 |     | В   | ` C |
| ATOM | 4183 | С   | ILE |    | 88   | 78.542 | 3.984  | 40.922 | 1.00 | 50.13 |     | В   | С   |
| ATOM | 4184 | ŏ   | ILE |    | 88   | 77.474 | 3.757  | 40.356 |      | 50.03 |     | В   | 0   |
| ATOM | 4185 | N   | ASP |    | 89   | 78.876 |        | 42.076 |      | 51.78 |     | В   | N   |
|      |      |     |     |    | 89   | 77.974 | 2.479  | 42.742 |      | 54.23 |     | В   | Ĉ   |
| MOTA | 4186 | CA  | ASP |    |      |        | 2.069  | 44.117 |      | 55.93 |     | В   | č   |
| ATOM | 4187 | CB  | ASP |    | 89   | 78.540 |        | 44.029 |      | 58.78 |     | В   | Č   |
| ATOM | 4188 | CG  | ASP |    | 89   | 79.932 | 1.390  |        |      |       |     |     | Ö   |
| ATOM | 4189 |     | ASP |    | 89   | 80.411 | 0.869  | 45.077 |      | 60.26 |     | В   |     |
| ATOM | 4190 |     | ASP |    | 89   | 80.551 | 1.379  | 42.934 |      | 58.09 |     | В   | 0   |
| ATOM | 4191 | С   | ASP |    | 89   | 76.537 | 3.036  | 42.881 |      | 55.37 |     | В   | C   |
| MOTA | 4192 | 0   | ASP |    | 89   | 75.566 |        | 42.815 |      | 56.38 |     | В   | 0   |
| ATOM | 4193 | N   | LEU | В  | 90   | 76.405 | 4.345  | 43.084 |      | 56.13 |     | В   | N   |
| MOTA | 4194 | CA  | LEU | В  | 90   | 75.096 | 4.996  | 43.195 |      | 56.25 |     | В   | C   |
| MOTA | 4195 | CB  | LEU |    | 90   | 74.966 | 5.714  | 44.525 | 1.00 | 57.00 |     | В   | С   |
| MOTA | 4196 | CG  | LEU |    | 90   | 74.836 |        | 45.759 | 1.00 | 57.71 |     | В   | С   |
|      |      |     | _   |    |      |        |        |        |      |       |     |     |     |

| ATOM | 4197 | CD1 | LEU B   | 90    | 73.652 | 3.920  | 45.543 | 1.00 59.22 | B | С   |
|------|------|-----|---------|-------|--------|--------|--------|------------|---|-----|
| ATOM | 4198 |     | LEU B   | 90    | 76.102 | 4.037  | 45.993 | 1,00 57.89 | В | С   |
| ATOM | 4199 |     | LEU B   | 90    | 74.980 | 6.022  | 42.086 | 1.00 57.31 | В | С   |
|      | 4200 | -   | LEU B   | 90    | 74.418 | 7,106  | 42.270 | 1.00 57.43 | В | 0   |
| MOTA |      |     |         |       | 75.528 | 5.670  | 40.932 | 1,00 58.26 | В | N   |
| ATOM | 4201 | N   | GLY B   | 91    |        |        | 39.793 | 1.00 58.98 | В | C   |
| ATOM | 4202 | CA  | GLY B   | 91    | 75.517 | 6.564  |        | 1.00 58.93 | В | č   |
| MOTA | 4203 | С   | GLY B   | 91    | 74.237 | 7.334  | 39.569 |            |   |     |
| ATOM | 4204 | 0   | GLY B   | 91    | 74.249 | 8.563  | 39.564 | 1.00 59.48 | В | 0   |
| ATOM | 4205 | N   | GLU B   | 92    | 73.131 | 6.626  | 39.382 | 1.00 58.65 | В | N   |
| ATOM | 4206 | CA  | GLU B   | 92    | 71.873 | 7.305  | 39.129 | 1.00 59.42 | В | С   |
| ATOM | 4207 | CB  | GLU B   | 92    | 70.723 | 6.306  | 38.971 | 1.00 61.87 | В | С   |
| ATOM | 4208 | CG  | GLU B   | 92    | 70.218 | 6.149  | 37.525 | 1.00 64.82 | В | С   |
|      | 4209 | CD  | GLU B   | 92    | 69.688 | 7.458  | 36.928 | 1.00 67.38 | В | С   |
| ATOM | 4210 |     | GLU B   | 92    | 68.966 | 8,208  | 37.636 | 1.00 66.53 | В | 0   |
| ATOM |      |     |         |       |        | 7.733  | 35.735 | 1.00 69.60 | В | ō   |
| ATOM | 4211 |     | GLU B   |       | 69.980 | 8.295  | 40.230 | 1.00 58.41 | В | č   |
| ATOM | 4212 | С   | GLU B   | 92    | 71.549 |        |        |            | В | ŏ   |
| ATOM | 4213 | 0   | GLU B   | 92    | 71.179 | 9.436  | 39.958 | 1.00 58.05 |   |     |
| MOTA | 4214 | N   | GLU B   | 93    | 71.709 | 7.865  | 41.474 | 1.00 56.02 | В | Ŋ   |
| ATOM | 4215 | CA  | GLU B   | 93    | 71.413 | 8,722  | 42.613 | 1.00 55.93 | В | С   |
| ATOM | 4216 | CB  | GLU B   | 93    | 71.642 | 7.938  | 43.916 | 1.00 57.74 | В | C   |
| MOTA | 4217 | CG  | GLU B   | 93    | 70.648 | 6.778  | 44.195 | 1.00 59.51 | В | С   |
| ATOM | 4218 | CD  | GLU B   | 93    | 70.804 | 5.563  | 43.261 | 1.00 62.22 | В | C   |
| ATOM | 4219 |     | GLU B   | 93    | 71.934 | 5.013  | 43.129 | 1.00 63.66 | В | 0   |
|      | 4220 | OE2 |         |       | 69.783 | 5.130  | 42.677 | 1.00 63.26 | В | 0   |
| MOTA |      |     |         | 93    | 72.228 | 10,029 | 42.634 | 1.00 54.09 | В | С   |
| MOTA | 4221 | C   | GLU B   |       |        |        | 43.317 | 1.00 54.35 | В | ō   |
| MOTA | 4222 | 0   | GLU B   | 93    | 71.861 | 10.988 |        |            | В | N   |
| MOTA | 4223 | N   | PHE B   | 94    | 73.321 | 10.080 | 41.883 | 1.00 52.25 |   |     |
| MOTA | 4224 | CA  | PHE B   | 94    | 74.166 | 11.276 | 41.867 | 1.00 50.57 | В | C   |
| MOTA | 4225 | CB  | PHE B   | 94    | 75.549 | 10.918 | 42.409 | 1.00 49.12 | В | C   |
| MOTA | 4226 | CG  | PHE B   | 94    | 75.588 | 10.719 | 43.909 | 1.00 46.48 | В | С   |
| ATOM | 4227 | CD1 | PHE B   | 94    | 75.801 | 11.797 | 44.762 | 1.00 45.81 | В | С   |
| ATOM | 4228 |     | PHE B   |       | 75.431 | 9.454  | 44.467 | 1.00 47.05 | В | С   |
| MOTA | 4229 |     | PHE B   |       | 75.864 | 11.623 | 46.144 | 1.00 45.91 | В | C.  |
|      |      |     | PHE B   |       | 75.490 | 9.269  | 45,850 | 1.00 44.45 | В | C   |
| ATOM | 4230 |     |         |       |        | 10.355 | 46.687 | 1.00 44.81 | В | С   |
| ATOM | 4231 | CZ  | PHE B   |       | 75.708 |        |        | 1.00 50.93 | В | c   |
| MOTA | 4232 | C   | PHE B   |       | 74.294 | 11.891 | 40.464 |            |   | ŏ   |
| MOTA | 4233 | 0   | PHE B   | 94    | 75.298 | 12.551 | 40.140 | 1.00 51.93 | В |     |
| MOTA | 4234 | N   | SER B   | 95    | 73.274 | 11.680 | 39.634 | 1.00 48.90 | В | Ν., |
| MOTA | 4235 | CA  | SER B   | 95    | 73.287 | 12.207 | 38.278 | 1.00 46.53 | В | С   |
| ATOM | 4236 | СВ  | SER B   |       | 72.407 | 11.336 | 37.345 | 1.00 48.35 | В | С   |
| ATOM | 4237 | OG  | SER B   |       | 71.005 | 11.480 | 37.567 | 1.00 49.63 | В | 0   |
|      |      |     | SER B   | _     | 72.855 | 13.678 | 38.227 | 1.00 44.26 | В | С   |
| MOTA | 4238 | C   |         |       | 73.199 | 14.402 | 37.289 | 1.00 43.40 | В | 0   |
| ATOM | 4239 | 0   | SER B   |       |        |        | 39.249 | 1.00 43.04 | В | N   |
| ATOM | 4240 | N   | GLY B   |       | 72.126 | 14.118 |        | 1.00 41.72 | В | Ċ   |
| ATOM | 4241 | CA  | GLY B   |       | 71.664 | 15.492 | 39.296 |            | В | č   |
| ATOM | 4242 | С   | GLY B   | 96    | 72.738 | 16.568 | 39.245 | 1.00 40.99 |   |     |
| ATOM | 4243 | 0   | GLY B   | 96    | 73.794 | 16.444 | 39.871 | 1.00 41.17 | В | 0   |
| MOTA | 4244 | N   | ARG B   | 97    | 72.461 | 17.631 | 38.489 | 1.00 40.18 | B | N   |
| ATOM | 4245 | CA  | ARG B   | 97    | 73.395 | 18.743 | 38.352 | 1.00 38.80 | В | C   |
| MOTA | 4246 | CB  | ARG E   | 97    | 73.291 | 19.380 | 36.970 | 1.00 37.71 | В | C   |
| ATOM | 4247 | CG  | ARG E   |       | 74.110 | 20.641 | 36.846 | 1.00 34.48 | В | С   |
| ATOM | 4248 | CD  | ARG E   |       | 75.569 | 20.351 | 37.051 | 1.00 33.26 | В | С   |
|      |      | NE  | ARG E   |       | 76.114 | 19.563 | 35.937 | 1.00 31.66 | В | N   |
| ATOM | 4249 |     |         |       | 77.216 | 18.821 | 36.018 | 1.00 28.55 | В | C   |
| ATOM | 4250 | CZ  | ARG E   |       |        |        | 34.976 | 1.00 26.42 | В | N   |
| ATOM | 4251 |     | ARG E   |       | 77.641 | 18.148 |        |            | В | N   |
| MOTA | 4252 |     | ARG F   |       | 77.891 | 18.738 | 37.149 | 1.00 29.19 | В | c   |
| ATOM | 4253 | С   | ARG E   |       | 73.142 | 19.816 | 39.392 | 1.00 40.80 |   |     |
| MOTA | 4254 | ٥.  | ARG E   | 3 97  | 72,101 | 20.464 | 39.390 | 1.00 41.00 | В | 0   |
| MOTA | 4255 | N   | GLY E   | 3 98  | 74.113 | 20.018 | 40.270 | 1.00 43.10 | В | N   |
| ATOM | 4256 | CA  | GLY F   |       | 73.968 | 21.028 | 41.303 | 1.00 45.40 | В | С   |
| ATOM | 4257 | C   | GLY E   |       | 74.051 | 22.454 | 40.787 | 1.00 47.67 | В | C   |
|      | 4258 | ŏ   | GLY F   |       | 75.056 | 22.859 | 40.190 | 1.00 47.93 | В | 0   |
| MOTA |      |     |         |       | 73.002 | 23.233 | 41.023 | 1.00 50.12 | В | N   |
| ATOM | 4259 | N   | ILE E   |       |        |        | 40.566 | 1.00 51.67 | В | С   |
| ATOM | 4260 | CA  | ILE I   |       | 73.030 | 24.609 |        | 1.00 52.83 | В | č   |
| MOTA | 4261 | СВ  | ILE E   |       | 71.719 | 25.018 | 39.912 |            |   | Č   |
| MOTA | 4262 |     | ILE I   |       | 71.775 | 26.517 | 39.555 | 1.00 53.38 | В |     |
| ATOM | 4263 | CG1 | ILE I   | в 99  | 71.463 | 24.093 | 38.709 | 1.00 54.47 | В | Ç,  |
| ATOM | 4264 |     | ILE I   |       | 70.223 | 24.397 | 37.894 | 1.00 55.15 | В | С   |
| ATOM | 4265 | C   | ILE I   |       | 73.315 | 25.577 | 41.678 | 1.00 52.11 | В | C   |
| ATOM | 4266 | ŏ   | ILE I   |       | 72.708 | 25.510 | 42.747 | 1.00 52.60 | В | 0   |
|      |      |     |         |       | 74.276 | 26.458 | 41.428 | 1,00 53.99 | В | N   |
| MOTA | 4267 | Ŋ   |         | B 100 |        | 27.485 | 42.398 | 1.00 54.57 | B | C   |
| ATOM | 4268 | CA  |         | B 100 | 74.639 |        |        | 1.00 54.74 | В | č   |
| ATOM | 4269 | CB  |         | B 100 | 76.162 | 27.695 |        |            | В | Č   |
| ATOM | 4270 | CG  |         | в 100 | 76.861 | 26.955 |        | 1.00 53.60 |   | C   |
| ATOM | 4271 | CDI | L PHE I | в 100 | 78.250 | 26.912 | 43.627 | 1.00 54.03 | В | Ü   |
|      |      |     |         |       |        |        |        |            |   |     |

| MOTA  | 4272 | CD2 | PHE | В | 100   | 76.136           | 26.300           | 44.567 | 1.00 54.36 | В  | С   |
|-------|------|-----|-----|---|-------|------------------|------------------|--------|------------|----|-----|
| ATOM  | 4273 | CE1 | PHE | В | 100   | 78.909           | 26.227           | 44.650 | 1.00 54.83 | В  | С   |
| MOTA  | 4274 |     | PHE |   |       | 76.787           | 25.611           | 45.597 | 1.00 53.34 | В  | C   |
| ATOM  | 4275 | CZ  | PHE |   |       | 78.173           | 25.573           | 45.636 | 1.00 53.82 | В  | С   |
| ATOM  | 4276 | C   | PHE |   |       | 73.943           | 28.764           | 41.940 | 1.00 56.49 | В  | C   |
| ATOM  | 4277 | ō   | PHE |   |       | 73.695           | 28.960           | 40.741 | 1.00 57.42 | В  | 0   |
| ATOM  | 4278 | N   | PRO |   |       | 73,605           | 29.643           | 42.890 | 1.00 57.01 | В  | N   |
| ATOM  | 4279 | CD  | PRO |   |       | 73.897           | 29.492           | 44.327 | 1.00 57.27 | В  | C   |
| ATOM  | 4280 | CA  | PRO |   | 101   | 72.933           | 30.914           | 42,631 | 1.00 55.78 | В  | Č   |
| MOTA  | 4281 | CB  | PRO |   |       | 73.194           | 31.684           | 43.911 | 1.00 56.34 | В  | C   |
| ATOM  | 4282 | CG  | PRO |   |       | 73.090           | 30.603           | 44.936 | 1,00 56.97 | В  | Č   |
|       |      |     | PRO |   | 101   | 73.400           | 31.676           | 41.391 | 1.00 55.34 | В  | č   |
| ATOM  | 4283 | C   | PRO |   |       | 72.645           | 31.819           | 40.430 | 1.00 56.59 | В  | ō   |
| MOTA  | 4284 | 0   | LEU |   |       | 74.640           | 32.161           | 41.416 | 1.00 53.85 | В  | . и |
| MOTA  | 4285 | N   | PEO |   |       | 75.180           | 32.942           | 40.305 | 1.00 51.55 | В  | Č   |
| ATOM  | 4286 | CA  | LEU |   |       | 76.700           | 33.074           | 40.418 | 1.00 49.92 | В  | č   |
| MOTA  | 4287 | CB  | LEU |   |       |                  | 33.966           | 39.360 | 1.00 48.55 | В  | č   |
| ATOM  | 4288 | CG  |     |   |       | 77.379           | 33.186           | 38.096 | 1.00 49.07 | В  | č   |
| ATOM  | 4289 |     | LEU |   |       |                  |                  | 39.095 | 1.00 47.71 | В. |     |
| ATOM  | 4290 |     | LEU |   |       | 76.542           | 35.203<br>32.364 | 38.952 | 1.00 52.45 | В  | č   |
| ATOM  | 4291 | C   | LEU |   |       | 74.822           |                  | 38.016 | 1.00 51.65 | В  | ŏ   |
| MOTA  | 4292 | 0   | LEU |   |       | 74.499           | 33.099           |        | 1.00 53.76 | В  | N   |
| ATOM  | 4293 | N   | ALA |   |       | 74.885           | 31.043           | 38.850 |            | В  | · C |
| ATOM  | 4294 | CA  | ALA |   |       | 74.560           | 30.381           | 37.603 | 1.00 56.20 | В  | C   |
| ATOM  | 4295 | CB  | ALA |   |       | 75.002           | 28.933           | 37.647 | 1.00 56.29 |    |     |
| MOTA  | 4296 | C   | ALA |   |       | 73.063           | 30.468           | 37.383 | 1.00 57.97 | В  | C   |
| MOTA  | 4297 | 0   | ALA |   |       | 72.600           | 30.934           | 36.336 | 1.00 58.83 | В  | 0   |
| MOTA  | 4298 | N   | GLU |   |       | 72.296           | 30.043           | 38.379 | 1.00 60.01 | В  | N   |
| MOTA  | 4299 | CA  | GLU |   |       | 70.846           | 30.072           | 38.246 | 1.00 62.56 | В  | c   |
| MOTA  | 4300 | CB  |     |   | 104 . |                  | 29.893           | 39.601 | 1.00 63.71 | В  | C   |
| MOTA  | 4301 | CG  | GLU |   |       | 68.696           | 29.611           | 39.449 | 1.00 67.55 | В  | C   |
| ATOM  | 4302 | CD  | GLU |   |       | 68.145           | 28.773           | 40.583 | 1.00 69.92 | В  | C   |
| MOTA  | 4303 | OE1 | GLU | В | 104   | 68.112           | 29.282           | 41.731 | 1.00 70.38 | В  | 0   |
| MOTA  | 4304 | OE2 | GLU | В | 104   | 67.765           | 27.593           | 40.331 | 1.00 71.95 | В  | 0   |
| ATOM  | 4305 | С   | GTO | В | 104   | 70.324           | 31.347           | 37.588 | 1.00 63.49 | В  | C   |
| MOTA' | 4306 | 0   | GLU | В | 104   | 69.460           | 31.292           | 36.699 | 1.00 63.55 | В  | 0   |
| ATOM  | 4307 | N   | ARG | В | 105   | 70.873           | 32.484           | 38.015 | 1.00 64.98 | В  | N   |
| ATOM  | 4308 | CA  | ARG | В | 105   | 70.482           | 33.801           | 37.499 | 1.00 65.81 | В  | С   |
| MOTA  | 4309 | CB  | ARG | В | 105   | 70.804           | 34.889           | 38.542 | 1.00 68.02 | В  | С   |
| MOTA  | 4310 | CG  | ARG | В | 105   | 69.886           | 34.905           | 39.786 | 1.00 71.57 | В  | С   |
| MOTA  | 4311 | CD  | ARG | В | 105   | 68.412           | 35.052           | 39.385 | 1.00 75.10 | В  | С   |
| ATOM  | 4312 | NE  | ARG | В | 105   | 68.158           | 36.280           | 38.629 | 1.00 77.67 | В  | N   |
| ATOM  | 4313 | CZ  | ARG | В | 105   | 68.118           | 37.497           | 39.164 | 1.00 78.39 | В  | С   |
| ATOM  | 4314 |     | ARG |   |       | 67.888           | 38.559           | 38.390 | 1.00 78.33 | В  | N   |
| ATOM  | 4315 |     | ARG |   |       | 68.296           | 37,651           | 40.472 | 1.00 78.51 | В  | N   |
| ATOM  | 4316 | С   |     |   | 105   | 71.118           | 34.181           | 36.151 | 1.00 64.92 | В  | . C |
| ATOM  | 4317 | ō   |     |   | 105   | 70.612           | 35.066           | 35.447 | 1.00 64.40 | В  | 0   |
| ATOM  | 4318 | N   |     |   | 106   | 72.219           | 33.523           | 35.791 | 1.00 64.01 | В  | N   |
| ATOM  | 4319 | CA  |     |   | 106   | 72.891           | 33.827           | 34.532 | 1.00 63.64 | В  | С   |
| ATOM  | 4320 | СВ  |     |   | 106   | 74.406           | 33.877           | 34.746 | 1.00 61.31 | В  | С   |
| ATOM  | 4321 | c   |     |   | 106   | 72.548           | 32.859           | 33.399 | 1.00 64.55 | В  | С   |
| ATOM  | 4322 | ō   |     |   | 106   | 73.022           | 33.027           | 32.272 | 1.00 64.92 | В  | 0   |
| ATOM  | 4323 | N   |     |   | 107   | 71.710           | 31.865           | 33.681 | 1.00 65.27 | В  | . N |
| ATOM  | 4324 | CA  | ASN |   |       | 71.332           | 30.882           | 32.659 | 1.00 66.86 | В  | С   |
| ATOM  | 4325 | СВ  |     |   | 107   | 71.779           | 29.473           | 33.099 | 1.00 66.71 | В  | С   |
| MOTA  | 4326 | CG  |     |   | 107   | 73.285           | 29.253           | 32.939 | 1.00 67.41 | В  | C   |
| MOTA  | 4327 |     | ASN |   |       | 74.096           | 29.852           | 33.652 | 1.00 68.42 | В  | 0   |
| ATOM  | 4328 |     | ASN |   |       | 73.661           | 28.388           | 32.003 | 1.00 66.90 | В  | N   |
| ATOM  | 4329 | C   |     |   | 107   | 69.844           | 30.858           | 32.255 | 1.00 67.32 | В  | С   |
| ATOM  | 4330 | ŏ   |     |   | 107   | 69.006           | 30.211           | 32.904 | 1.00 68.34 | В  |     |
| ATOM  | 4331 | N   |     |   | 108   | 69.514           | 31.568           | 31.179 | 1.00 66.70 | В  |     |
|       |      | CA  |     |   | 108   | 68.135           | 31.585           | 30.679 | 1.00 66.66 | В  |     |
| ATOM  | 4332 |     |     |   |       | 67.849           | 32.881           | 29.885 | 1.00 67.92 | В  |     |
| ATOM  | 4333 | CB  |     |   | 108   |                  |                  | 30.504 | 1.00 68.68 | В  |     |
| MOTA  | 4334 | CG  |     |   | 108   | 66.788<br>67.121 | 33.815           |        | 1.00 70.34 | В  |     |
| MOTA  | 4335 | CD  |     |   | 108   |                  | 34,169           | 31.958 | 1.00 70.34 | В  |     |
| ATOM  | 4336 | NE  |     |   | 108   | 66.663           | 35.497           | 32.353 | 1.00 71.08 | В  |     |
| ATOM  | 4337 |     | ARG |   |       | 66.954           | 36.618           | 31.696 |            |    |     |
| ATOM  | 4338 |     | ARG |   |       | 67.699           | 36.571           | 30.596 | 1.00 71.66 | В  |     |
| MOTA  | 4339 |     | ARG |   |       | 66.524           | 37.794           | 32.149 | 1.00 73.33 | В  |     |
| ATOM  | 4340 | С   |     |   | 108   | 68.031           | 30.380           | 29.752 | 1,00 65.67 | В  |     |
| MOTA  | 4341 | 0   |     |   | 108   | 68.439           | 30.430           | 28.591 | 1.00 66.62 | В  |     |
| MOTA  | 4342 | N   |     |   | 109   | 67.510           | 29.286           | 30.275 | 1.00 64.18 |    | . N |
| MOTA  | 4343 | CA  |     |   | 109   | 67.396           | 28.109           | 29.445 | 1.00 62.65 | В  |     |
| MOTA  | 4344 | С   |     |   | 109   | 68.362           | 27.008           | 29.821 | 1.00 61.70 | В  |     |
| MOTA  | 4345 | 0   |     |   | 109   | 69.543           | 27.233           | 30.103 | 1.00 60.91 | В  |     |
| ATOM  | 4346 | N   | PHE | В | 110   | 67.836           | 25.794           | 29.807 | 1.00 61.91 | В  | N   |

| MOTA | 4347 | CA  | PHE | R  | 110  | 68.603 | 24.518 | 30.157 | 1.00 | 61.62 |   | В | C  |
|------|------|-----|-----|----|------|--------|--------|--------|------|-------|---|---|----|
|      | 4348 | CB  | PHE |    | 110  | 67.823 | 23,824 | 31.195 |      | 63.59 |   | В | Ċ  |
| ATOM |      |     |     |    |      |        |        |        |      |       |   | В | č  |
| ATOM | 4349 | CG  | PHE |    |      | 67.413 | 24.656 | 32.368 |      | 67.69 | • |   |    |
| ATOM | 4350 |     | PHE |    |      | 68.373 | 25.133 | 33.258 |      | 69.31 |   | В | C  |
| ATOM | 4351 | CD2 | PHE | В  | 110  | 66.074 | 25.011 | 32.561 | 1.00 | 69.09 |   | В | С  |
| ATOM | 4352 | CE1 | PHE | В  | 110  | 68.017 | 25.957 | 34.331 | 1.00 | 71.55 |   | В | C  |
| ATOM | 4353 | CE2 | PHE | В  | 110  | 65.690 | 25.837 | 33.629 | 1.00 | 71.42 |   | В | С  |
| ATOM | 4354 | CZ  | PHE |    |      | 66.664 | 26.314 | 34.521 |      | 72.54 |   | В | C  |
|      |      |     | PHE |    |      | 68.919 | 23.781 | 28.928 |      | 60.20 |   | В | č  |
| ATOM | 4355 | С   |     |    |      |        |        |        |      |       |   |   |    |
| MOTA | 4356 | 0   | PHE |    |      | 68.025 | 23.295 | 28.225 |      | 59.49 |   | В | 0  |
| ATOM | 4357 | N   | GLY | В  | 111  | 70.216 | 23.652 | 28.668 | 1.00 | 59.00 |   | В | N  |
| ATOM | 4358 | CA  | GLY | В  | 111  | 70.689 | 22.872 | 27.542 | 1.00 | 55.64 |   | В | С  |
| ATOM | 4359 | С   | GLY | В  | 111  | 71.153 | 21.514 | 28.024 | 1.00 | 53.15 |   | В | С  |
| ATOM | 4360 | ō   | GLY |    | 111  | 70.341 | 20.654 | 28.348 | 1.00 | 53.63 |   | В | 0  |
| ATOM | 4361 | N   |     |    | 112  | 72.459 | 21.320 | 28.112 |      | 50.01 |   | В | N  |
|      |      |     |     |    |      |        |        | 28.542 |      | 46.17 |   | В | Ċ  |
| ATOM | 4362 | CA  | ILE |    |      | 72.968 | 20.028 |        |      |       |   |   |    |
| ATOM | 4363 | CB  |     |    | 112  | 73.807 | 19.392 | 27.418 |      | 45.10 |   | В | C  |
| MOTA | 4364 | CG2 | ILE | В  | 112  | 74.747 | 20.414 | 26.863 |      | 47.06 |   | В | С  |
| MOTA | 4365 | CG1 | ILE | В  | 112  | 74.606 | 18.201 | 27.926 | 1.00 | 43.92 |   | В | С  |
| ATOM | 4366 | CD1 | ILE | В  | 112  | 75.404 | 17.517 | 26.814 | 1.00 | 42.03 |   | В | С  |
| ATOM | 4367 | C   |     |    | 112  | 73,781 | 20.103 | 29.822 | 1.00 | 45.16 |   | В | С  |
|      |      |     |     |    | 112  | 73.742 | 19.178 | 30.626 |      | 46.54 |   | В | Õ  |
| ATOM | 4368 | 0   |     |    |      |        |        |        |      |       |   |   |    |
| ATOM | 4369 | N   |     |    | 113  | 74.497 | 21.207 | 30.027 |      | 43.45 |   | В | N  |
| MOTA | 4370 | CA  |     |    | 113  | 75.330 | 21.353 | 31.222 |      | 40.88 |   | В | С  |
| ATOM | 4371 | CB  | VAL | В  | 113  | 76.312 | 22.528 | 31.097 | 1.00 | 40.29 |   | В | С  |
| ATOM | 4372 | CG1 | VAL | В  | 113  | 77.093 | 22.692 | 32.385 | 1.00 | 39.88 |   | В | С  |
| ATOM | 4373 | CG2 | VAL | В  | 113  | 77.256 | 22.295 | 29.947 | 1.00 | 40.39 |   | В | ·C |
| ATOM | 4374 | C   |     |    | 113  | 74.536 | 21.562 | 32.493 |      | 40.87 |   | В | C  |
|      |      |     |     |    |      |        |        | 33.546 |      | 40.88 |   | В | ŏ  |
| ATOM | 4375 | 0   |     |    | 113  | 74.886 | 21.028 | •      |      |       |   |   |    |
| MOTA | 4376 | N   |     |    | 114  | 73.474 | 22.346 | 32.404 |      | 41.12 |   | В | N  |
| ATOM | 4377 | CA  | PHE | B  | 114  | 72.683 | 22.624 | 33.583 | 1.00 | 41.15 |   | В | Ç  |
| ATOM | 4378 | CB  | PHE | В  | .114 | 72.618 | 24.124 | 33.805 | 1.00 | 40.43 |   | В | С  |
| MOTA | 4379 | CG  | PHE | В  | 114  | 73.937 | 24.728 | 34.130 | 1.00 | 38.73 |   | В | C  |
| ATOM | 4380 |     | PHE |    | •    | 74.579 | 25.574 | 33.232 | 1.00 | 39.54 |   | В | С  |
| ATOM |      |     | PHE |    |      | 74.547 | 24.445 | 35.340 |      | 39.98 |   | В | Č  |
|      | 4381 |     |     |    |      |        |        |        |      |       |   | В | č  |
| MOTA | 4382 |     | PHE |    |      | 75.818 | 26.134 | 33.544 |      | 40.50 |   |   |    |
| MOTA | 4383 | CE2 | PHE | В  | 114  | 75.779 | 24,995 | 35.666 |      | 41.24 |   | В | С  |
| ATOM | 4384 | CZ  | PHE | В, | 114  | 76.418 | 25.843 | 34.768 |      | 41.36 |   | В | С  |
| MOTA | 4385 | С   | PHE | B  | 114  | 71.298 | 22.056 | 33.496 | 1.00 | 42.16 |   | В | С  |
| ATOM | 4386 | 0   | PHE | В  | 114  | 70.347 | 22.619 | 34.038 | 1.00 | 43.27 |   | В | 0  |
| ATOM | 4387 | N   |     |    | 115  | 71.172 | 20.925 | 32.822 | 1.00 | 43.94 |   | В | N  |
|      |      | CA  |     |    | 115  | 69.860 | 20.312 | 32.670 |      | 44.60 |   | В | C  |
| MOTA | 4388 |     |     |    |      |        |        |        |      | 45.90 |   | В | č  |
| ATOM | 4389 | CB  |     |    | 115  | 69.751 | 19.676 | 31.289 |      |       |   |   |    |
| ATOM | 4390 | OG  |     |    | 115  | 68.530 | 20.053 | 30.661 |      | 47.95 |   | В | 0  |
| ATOM | 4391 | С   | SER | В  | 115  | 69.608 | 19.276 | 33.740 | 1.00 | 44.92 |   | В | С  |
| ATOM | 4392 | 0   | SER | В  | 115  | 70.329 | 19.191 | 34.724 | 1.00 | 45.47 |   | В | 0  |
| ATOM | 4393 | N   | ASN | В  | 116  | 68.558 | 18.499 | 33.562 | 1.00 | 46.66 |   | В | N  |
| MOTA | 4394 | CA  | ASN | В  | 116  | 68.257 | 17.468 | 34.528 | 1.00 | 48.98 |   | В | C  |
| ATOM | 4395 | СВ  |     |    | 116  | 68.021 | 18.078 | 35.918 | 1.00 | 48.61 |   | В | С  |
|      |      |     |     |    | 116  | 68.751 | 17.320 | 37.014 |      | 49.67 |   | В | C  |
| ATOM | 4396 | CG  |     |    |      |        |        |        |      | 50.36 |   | В | ō  |
| ATOM | 4397 |     | ASN |    |      | 68.774 | 16.080 | 37.015 | _    |       |   |   |    |
| ATOM | 4398 | ND2 | ASN |    |      | 69.338 | 18.051 | 37.960 |      | 49.37 |   | В | N  |
| ATOM | 4399 | С   | ASN | В  | 116  | 67.049 | 16.640 | 34.101 |      | 50.94 |   | В | C  |
| ATOM | 4400 | 0   | ASN | В  | 116  | 66.238 | 17.071 | 33.269 |      | 51.74 |   | В | 0. |
| ATOM | 4401 | N   | GLY | В  | 117  | 66.957 | 15.436 | 34.668 | 1.00 | 52.04 |   | В | N  |
| ATOM | 4402 | CA  | GLY | В  | 117  | 65.866 | 14,527 | 34.364 | 1.00 | 52.95 |   | В | C  |
| ATOM | 4403 | c   |     |    | 117  | 65.650 | 14.308 | 32.877 |      | 53.98 |   | В | С  |
|      |      |     |     |    |      | 66.544 | 14.543 | 32.065 |      | 53.90 |   | В | ō  |
| ATOM | 4404 | 0   |     |    | 117  |        |        |        |      | 55.26 |   | В | N  |
| ATOM | 4405 | N   |     |    | 118  | 64.456 | 13.852 | 32.521 |      |       |   |   |    |
| ATOM | 4406 | CA  |     |    | 118  | 64.124 | 13.605 | 31.127 |      | 56.95 |   | В | C  |
| MOTA | 4407 | CB  | LYS | В  | 118  | 62.599 | 13.649 | 30.909 |      | 59.52 |   | В | С  |
| ATOM | 4408 | CG  | LYS | В  | 118  | 61.796 | 14.532 | 31.909 | 1.00 | 63.68 |   | В | С  |
| ATOM | 4409 | CD  |     |    | 118  | 62.215 | 16.021 | 31.932 | 1.00 | 62.93 |   | В | C  |
| ATOM | 4410 | CE  |     |    | 118  | 61.172 | 16.878 | 32.644 |      | 61.69 |   | В | С  |
|      |      |     |     |    |      | 60.734 | 16.292 | 33.949 |      | 60.34 |   | В | N  |
| ATOM | 4411 | NZ  |     |    | 118  |        |        |        |      | 55.61 |   |   | c  |
| ATOM | 4412 | Ç   |     |    | 118  | 64.805 | 14.556 | 30.147 |      |       |   | В |    |
| ATOM | 4413 | 0   |     |    | 118  | 65.280 | 14.113 | 29.105 |      | 56.68 |   | В | 0  |
| ATOM | 4414 | N   | LYS | В  | 119  | 64.876 | 15.850 | 30.451 |      | 54.04 |   | В | N  |
| ATOM | 4415 | CA  |     |    | 119  | 65.517 | 16.750 | 29.493 |      | 53.62 |   | В | Ç  |
| ATOM | 4416 | CB  |     |    | 119  | 65.421 | 18,215 | 29.931 | 1.00 | 52.23 |   | В | С  |
| ATOM | 4417 | CG  |     |    | 119  | 65.649 | 19,216 | 28.792 | 1.00 | 51.72 |   | В | С  |
|      |      |     |     |    |      | 65.515 | 20.649 | 29.302 |      | 53.72 |   | ъ | č  |
| ATOM | 4418 | CD  |     |    | 119  |        |        | 28.195 |      | 54.82 |   | В | č  |
| ATOM | 4419 | CE  |     |    | 119  | 65.217 | 21.661 |        |      |       |   |   |    |
| ATOM | 4420 | NZ  |     |    | 119  | 63.801 | 21.603 | 27.714 |      | 56.25 |   | В | N  |
| ATOM | 4421 | С   | LYS | В  | 119  | 66.977 | 16.363 | 29.324 | 1.00 | 53.84 |   | В | С  |

| ATOM   | 4422 | 0   | LYS   | В | 119  | 67.425 | 16.064  | 28.218           | 1.00 | 53.58 |   | В      | 0   |
|--------|------|-----|-------|---|------|--------|---------|------------------|------|-------|---|--------|-----|
| ATOM   | 4423 | N   | TRP   | В | 120  | 67.715 | 16.358  | 30.429           |      | 53.05 |   | В      | N   |
| ATOM   | 4424 | CA  | TRP   | В | 120  | 69.129 | 16.007  | 30.394           |      | 52.26 |   | В      | Ċ   |
| ATOM   | 4425 | CB  | TRÞ   | В | 120  | 69.715 |         | 31.804           |      | 50.59 |   | В      | č   |
| ATOM   | 4426 | CG  | TRP   | В | 120  | 71.079 |         | 31.925           |      | 47.26 |   | В      | č   |
| ATOM   | 4427 | CD2 | TRP   | В | 120  | 71.403 |         | 32.488           |      | 45.64 |   | B      | č   |
| ATOM   | 4428 |     | TRP   |   |      | 72.799 |         | 32.379           |      | 45.36 |   | В      | Č   |
| ATOM   | 4429 |     | TRP   |   |      | 70.650 |         | 33.091           |      | 45.88 |   | В      | Č   |
| MOTA   | 4430 |     | TRP   |   |      | 72.254 |         | 31.497           |      | 47.13 |   | В      | Č   |
| ATOM   | 4431 |     | TRP   |   |      | 73.296 |         | 31.764           |      | 45.94 |   | В      | N   |
| MOTA   | 4432 |     | TRP   |   | 120  | 73.457 |         | 32,829           |      | 45.91 |   |        |     |
| ATOM   | 4433 |     | TRP   |   |      | 71.298 | _       | 33.540           |      | 46.70 |   | B<br>B | C   |
| ATOM   | 4434 |     | TRP   |   |      | 72.695 | 11.933  |                  |      | 47.20 |   |        | C   |
| ATOM   | 4435 | C   | TRP   |   |      | 69.348 | 14.616  | 33.412<br>29.796 |      |       |   | В      | C   |
| ATOM   | 4436 | ŏ   |       |   | 120  | 70.127 |         |                  |      | 53.49 |   | В      | C   |
| ATOM   | 4437 | N   |       |   | 121  | 68.656 |         | 28.857           |      | 53.53 |   | В      | 0   |
| MOTA   | 4438 | CA  | LYS   |   |      |        |         | 30.335           |      | 54.71 |   | В      | N   |
| ATOM   |      |     |       |   |      | 68.794 | 12.253  | 29.847           |      | 55.38 |   | В      | С   |
|        | 4439 | CB  |       |   | 121  | 67.720 |         | 30.460           |      | 57.03 |   | В      | С   |
| ATOM   | 4440 | CG  |       |   | 121  | 67.867 | 11.173  | 31.980           |      | 61.34 |   | В      | C   |
| MOTA   | 4441 | CD  |       |   | 121  | 66.940 | 10.098  | 32.567           |      | 63.58 |   | В      | С   |
| ATOM   | 4442 | CE  | LYS   |   |      | 67.557 | 8.691   | 32.538           |      | 65.58 |   | В      | С   |
| MOTA   | 4443 | NZ  | LYS   |   |      | 67.910 | 8.195   | 31.172           | 1.00 | 67.13 |   | В      | N   |
| MOTA   | 4444 | С   | LYS   |   |      | 68.743 | 12.188  | 28.330           |      | 55.28 |   | В      | C   |
| ATOM   | 4445 | 0   | LYS   |   |      | 69.654 | 11.646  | 27.690           | 1.00 | 56.27 |   | В      | 0   |
| MOTA   | 4446 | N   | GLU   | В | 122  | 67.703 | 12.758  | 27.733           | 1.00 | 55.99 |   | В      | N   |
| ATOM   | 4447 | CA  | GLU   | В | 122  | 67.583 | 12.721  | 26.275           | 1.00 | 54.95 |   | В      | С   |
| ATOM   | 4448 | CB  | GLU   | В | 122  | 66.154 | 13.081  | 25.854           | 1.00 | 57.42 |   | В      | С   |
| ATOM   | 4449 | CG  | GLU   | В | 122  | 65.086 | 12.133  | 26.395           | 1.00 | 60.84 |   | В      | С   |
| MOTA   | 4450 | CD  | GLU   | В | 122  | 63.701 | 12.407  | 25.821           | 1.00 | 63.26 |   | В      | С   |
| ATOM   | 4451 | OE1 | GLU   | В | 122  | 62.713 | 11.863  | 26.369           | 1.00 | 64.52 |   | В      | 0   |
| ATOM   | 4452 | OE2 | GLU   | В | 122  | 63.596 | 13.156  | 24.818           | 1.00 | 64.00 |   | В      | ō   |
| ATOM   | 4453 | С   | GLU   | В | 122  | 68.580 | 13:591. |                  |      | 52.63 |   | В      |     |
| ATOM   | 4454 | 0   | GLU   | В | 122  | 69.136 | 13.138  | 24.521           |      | 53.39 |   | В      | ŏ   |
| ATOM   | 4455 | N   | ILE   | В | 123  | 68.816 | 14.824  | 25.966           |      | 49.73 |   | В      | N   |
| MOTA   | 4456 | CA  | ILE   |   |      |        | 15.689  | 25,251           |      | 47.08 |   | B      | Ċ.  |
| ATOM   | 4457 | CB  | ILE   |   |      | 69.725 | 17.138  | 25.747           |      | 45.94 |   | В      | č   |
| ATOM   | 4458 |     | ILE   |   |      | 70.615 | 17.995  | 24.863           |      | 43.42 |   | В      | č   |
| ATOM   | 4459 |     | ILE   |   |      |        | 17.700  |                  |      | 47.34 |   | В      | Č   |
| ATOM   | 4460 |     | ILE   |   |      | 68.171 | 18.996  |                  |      | 49.76 |   | В      | c   |
| ATOM   | 4461 | c   | ILE   |   |      | 71.181 | 15.214  | 25.353           |      |       |   |        |     |
| ATOM   | 4462 | ŏ   | ILE   |   |      | 71.990 | 15.508  |                  |      | 46.72 |   | В      | C.  |
| ATOM   | 4463 | N   | ARG   |   |      | 71.509 |         | 24.478           |      | 46.16 |   | В      | 0   |
| ATOM   | 4464 |     | ARG   |   |      |        | 14.502  | 26.422           |      | 46.40 |   | В      | N   |
| ATOM   | 4465 | CA  |       |   | 124  | 72.874 | 14.006  | 26.569           |      | 47.29 |   | В      | C   |
| ATOM   | 4466 | CB  | ARG   |   | 124  | 73.162 | 13.602  | 28.011           |      | 46.85 |   | В      | C   |
|        |      | CG  | ARG   |   |      | 74.473 | 12.836  | 28.163           |      | 46.37 |   | В      | C   |
| MOTA   | 4467 | CD  | ARG   |   | 124  | 74.563 | 12.139  | 29.522           |      | 46.85 |   | В      | С   |
| ATOM   | 4468 | NE  | ARG   |   |      | 75.724 | 11.243  | 29.627           |      | 45.97 |   | В      | N   |
| ATOM   | 4469 | CZ  | ARG   |   |      | 76.978 | 11.642  | 29.825           |      | 45.94 |   | В      | С   |
| MOTA   | 4470 |     | ARG   |   |      | 77.266 | 12.934  | 29.946           |      | 43.39 |   | В      | Ŋ   |
| ATOM   | 4471 |     | ARG   |   |      | 77.947 | 10.743  | 29.904           |      | 45.84 |   | В      | N   |
| ATOM   | 4472 | C   | ARG   |   |      | 73.047 | 12.788  | 25.684           |      | 49.51 |   | В      | С   |
| ATOM   | 4473 | 0   | ARG   |   |      | 73.996 | 12.704  | 24.903           |      | 49.15 | • | В.     | 0   |
| ATOM   | 4474 | N   | ARG   |   |      | 72.111 | 11.846  | 25.819           |      | 51.76 |   | В      | N   |
| ATOM   | 4475 | CA  | ARG   |   |      | 72.142 | 10.612  | 25.044           |      | 53.00 |   | В      | С   |
| ATOM   | 4476 | CB  | ARG   |   |      | 70.833 | 9.823   | 25.200           |      | 56.37 |   | В      | С   |
| ATOM   | 4477 | CG  | ARG   | В | 125  | 70.885 | 8.451   | 24.533           | 1.00 | 61.99 |   | В      | С   |
| ATOM   | 4478 | CD  | ARG   | В | 125  | 69.757 | 7.513   | 24.991           | 1.00 | 68.57 |   | В      | С   |
| MOTA   | 4479 | NE  | ARG   | В | 125  | 69.952 | 6.150   | 24.475           | 1.00 | 76.25 |   | В      | N   |
| ATOM   | 4480 | CZ  | ARG   | В | 125  | 69.185 | 5.101   | 24.782           | 1.00 | 79.27 |   | В      | С   |
| ATOM   | 4481 | NH1 | ARG   | В | 125  | 68.156 | 5.254   | 25.609           | 1.00 | 80.94 |   | В      | N   |
| ATOM . | 4482 | NH2 | ARG   | В | 125  | 69.449 | 3.901   | 24.263           |      | 80.01 |   | В      | N   |
| ATOM   | 4483 | C   | ARG   |   |      | 72.382 | 10.918  | 23.578           |      | 51.96 |   | В      | Ċ   |
| ATOM   | 4484 | ŏ   | ARG   |   |      | 73.269 | 10.335  | 22,948           |      | 52.91 |   | В      | o   |
| ATOM   | 4485 | N   | PHE   |   |      | 71.591 | 11.836  | 23.034           |      | 50.69 |   | В      | N   |
| ATOM   | 4486 | CA  | PHE   |   |      | 71.729 | 12.214  | 21.633           |      | 48.94 |   |        |     |
| ATOM   | 4487 | CB  | PHE   |   |      |        |         |                  |      | 47.35 |   | В      | C   |
| ATOM   |      |     |       |   |      | 70.598 | 13.174  | 21.218           |      |       |   | В      | C   |
|        | 4488 | CG  | PHE   |   |      | 70.868 | 13.918  | 19.934           |      | 45.70 |   | В      | С   |
| MOTA   | 4489 |     | PHE   |   |      | 71.470 | 15.174  | 19.956           |      | 47.01 |   | В      | C   |
| ATOM   | 4490 |     | PHE   |   |      | 70.536 | 13.358  | 18.701           |      | 47.03 |   | В      | С   |
| MOTA   | 4491 |     | PHE : |   |      | 71.738 | 15.868  | 18.772           |      | 47.02 |   | В      | С   |
| ATOM   | 4492 |     | PHE   |   |      | 70.799 | 14.042  | 17.506           |      | 47.24 |   | В      | С   |
| ATOM   | 4493 | CZ  | PHE   |   |      | 71.401 | 15.302  | 17.541           |      | 46.60 |   | В      | С   |
| ATOM   | 4494 | C   | PHE 1 |   |      | 73.093 | 12.845  | 21.361           |      | 48.53 |   | В      | С   |
| MOTA   | 4495 | 0   | PHE   |   |      | 73.786 | 12.446  | 20.435           |      | 49.24 |   | В      | 0   |
| MOTA   | 4496 | N   | SER   | В | 127. | 73.494 | 13.804  | 22.182           | 1.00 | 47.50 |   | В      | . N |
|        |      |     |       |   |      |        |         |                  |      |       |   |        |     |

| ATOM | 4497 | CA  | SER   | В  | 127 | 74.767 | 14.470  | 21.964 | 1.00 | 47.21  |      | В   | С   |
|------|------|-----|-------|----|-----|--------|---------|--------|------|--------|------|-----|-----|
| ATOM | 4498 | CB  |       |    | 127 | 74.956 | 15.572  | 22.990 |      | 46.53  |      |     |     |
|      |      |     |       |    |     |        |         |        |      |        |      | В   | С   |
| MOTA | 4499 | OG  |       |    | 127 | 73.842 | 16.434  | 22.949 |      | 45.60  |      | , B | 0   |
| ATOM | 4500 | С   | SER   | В  | 127 | 75.954 | 13.528  | 22.002 | 1.00 | 47.64  |      | В   | С   |
| ATOM | 4501 | 0   | SER   | В  | 127 | 76.900 | 13.669  | 21.217 | 1.00 | 47.68  | }    | В   | 0   |
| ATOM | 4502 | N   | LEU   | В  | 128 | 75.919 | 12.578  | 22.924 | 1.00 | 48.76  | ;    | В   | N   |
| ATOM | 4503 | CA  | LEU   | В  | 128 | 77.010 | 11.627  | 23.027 |      | 50.75  |      | В   | c   |
| ATOM | 4504 | СВ  | LEU   |    |     |        |         |        |      |        |      |     |     |
|      |      |     |       |    |     | 76.807 | 10.700  | 24.218 |      | 50.04  |      | В   | С   |
| ATOM | 4505 | CG  |       |    | 128 | 77.592 | 11.083  | 25.465 | 1.00 | 49.89  | )    | В   | . С |
| MOTA | 4506 | CD1 | LEU   | В  | 128 | 77.291 | 10.067  | 26.554 | 1.00 | 48.85  | i    | В   | С   |
| ATOM | 4507 | CD2 | LEU   | В  | 128 | 79.094 | 11.116  | 25.139 | 1.00 | 48,87  | ,    | В   | С   |
| ATOM | 4508 | С   |       |    | 128 | 77.080 | 10.806  | 21.757 |      | 52.65  |      | В   |     |
| ATOM | 4509 | ŏ   |       |    | 128 |        | 10.358  |        |      |        |      |     | C   |
|      | -    |     |       |    |     | 78.154 |         | 21.345 |      | 53.44  |      | В   | 0   |
| MOTA | 4510 | N   | MET   |    |     | 75.923 | 10.619  | 21.138 |      | 54.33  |      | В   | N   |
| MOTA | 4511 | CA  | MET   | В  | 129 | 75.818 | 9.845   | 19.912 | 1.00 | 56.49  | l    | В   | С   |
| MOTA | 4512 | CB  | MET   | В  | 129 | 74.347 | 9.694   | 19.513 | 1.00 | 60.29  | 1    | В   | С   |
| ATOM | 4513 | CG  | MET   | В  | 129 | 74.066 | 8.516   | 18.604 |      | 66.24  |      | В   | Ċ   |
| ATOM | 4514 | SD  | MET   |    |     | 73.659 | 7.043   | 19.588 |      | 73.85  |      |     |     |
| ATOM | 4515 | CE  |       |    |     |        |         |        |      |        |      | В   | 8   |
|      |      |     | MET   |    |     | 71.835 | 7.113   | 19.564 |      | 72.71  |      | В   | С   |
| ATOM | 4516 | С   | MET   |    |     | 76.553 | 10.564  | 18.794 | 1.00 | 55.27  |      | В   | С   |
| ATOM | 4517 | 0   | MET   | В  | 129 | 77.545 | 10.070  | 18.251 | 1.00 | 55.37  |      | В   | 0   |
| MOTA | 4518 | N   | THR   | В  | 130 | 76.038 | 11.742  | 18.467 | 1.00 | 53.15  |      | В   | N   |
| ATOM | 4519 | CA  | THR   |    |     | 76.572 | 12.573  | 17.406 |      | 52.60  |      | В   | Ċ   |
| MOTA | 4520 | CB  | THR   |    |     | 75.743 |         | 17.280 |      | 53.06  |      |     |     |
|      |      |     |       |    |     |        | 13.848  |        |      |        |      | В   | C   |
| ATOM | 4521 |     | THR   |    |     | 75.997 | 14.689  | 18.408 |      | 55.21  |      | В   | 0   |
| ATOM | 4522 | CG2 | THR   | В  | 130 | 74.268 | 13.505  | 17.254 | 1.00 | 54.34  |      | В   | С   |
| ATOM | 4523 | С   | THR   | В  | 130 | 78.025 | 12.954  | 17.607 | 1.00 | 51.51  |      | В   | С   |
| ATOM | 4524 | 0   | THR   | В  | 130 | 78.670 | 13.466  | 16.691 | 1.00 | 51.87  |      | В   | ō   |
| ATOM | 4525 | N   | LEU   |    |     | 78.552 | 12.710  | 18.798 |      |        |      |     |     |
| ATOM |      |     |       |    |     |        |         |        |      | 51.13  |      | В   | N   |
|      | 4526 | CA  | LEU   |    |     | 79.941 | 13.060  | 19.052 |      | 50.41  |      | В   | C   |
| ATOM | 4527 | СB  | LEU   | В  | 131 | 80.094 | 13.640  | 20.456 | 1.00 | 48.79  |      | В   | С   |
| ATOM | 4528 | CG  | LEU   | В  | 131 | 79.433 | 15,003  | 20.592 | 1.00 | 47.95  |      | В   | С   |
| ATOM | 4529 | CD1 | LEU   | В  | 131 | 79.487 | 15.442  | 22.028 |      | .47.29 |      | В,  | Č   |
| ATOM | 4530 |     | LEU   |    |     | 80.107 | 16.018  | 19.674 |      |        |      | - / |     |
| ATOM |      |     |       |    |     |        |         |        |      | 46.13  | •    | В   | C   |
|      | 4531 | С   | LEU   |    |     | 80.895 | 11.884  | 18.857 | 1.00 | 51.03  |      | В   | С   |
| ATOM | 4532 | 0   | LEU   | В  | 131 | 82.079 | 12.002  | 19.151 | 1.00 | 51.04  | 2000 | В   | 0   |
| ATOM | 4533 | N   | ARG   | В  | 132 | 80.368 | 10.764  | 18.369 | 1.00 | 52.18  |      | В   | N   |
| ATOM | 4534 | CA  | ARG   | В  | 132 | 81.191 | 9.604   | 18.104 |      | 53.68  |      | ъ.  | C   |
| ATOM | 4535 | СВ  | ARG   |    |     | 80.336 | 8.375   | 17.814 |      |        |      |     |     |
| ATOM | 4536 |     |       |    |     |        |         |        |      | 56.41  |      | В   | С   |
|      |      | CG  | ARG   |    |     | 79.865 | 7.643   | 19.059 |      | 61:85  | , .  | В   | С   |
| ATOM | 4537 | CD  | ARG   |    |     | 79.490 | 6.210   | 18.698 | 1.00 | 65.64  |      | В   | С   |
| MOTA | 4538 | NE  | ARG   | В  | 132 | 78.321 | 6.162   | 17.824 | 1.00 | 68.94  |      | В   | N   |
| ATOM | 4539 | CZ  | ARG   | В  | 132 | 77.082 | 5.944   | 18.247 |      | 70.21  |      | В   | C   |
| ATOM | 4540 | NH1 | ARG   |    |     | 76.846 | 5.746   | 19.542 |      | 69.76  |      | B   | Ŋ   |
| ATOM | 4541 |     |       |    |     |        |         |        |      |        |      |     |     |
|      |      |     | ARG   |    |     | 76.087 | 5.925   | 17.369 |      | 70.24  |      | В   | N   |
| MOTA | 4542 | Ç   | ARG   |    |     | 82.059 | 9.922   | 16.892 | 1.00 | 53.03  |      | В   | С   |
| ATOM | 4543 | 0   | ARG   | В  | 132 | 81.625 | 10.641  | 15.991 | 1,00 | 53.16  |      | В   | 0   |
| ATOM | 4544 | N   | ASN   | В  | 133 | 83.280 | 9.391   | 16.865 | 1.00 | 52.86  |      | В   | N   |
| ATOM | 4545 | CA  | ASN   | В  | 133 | 84.203 | 9.657   | 15.769 |      | 52.46  |      | В   | C   |
| MOTA | 4546 | СВ  | ASN   |    |     | 85.316 | 8.618   | 15.763 |      | 52.47  |      | В.  |     |
|      |      |     |       |    |     |        |         |        |      |        |      |     | C   |
| ATOM | 4547 | ĊG  | ASN   |    |     | 86.513 | 9.064   | 14.940 |      | 54.12  |      | В   | С   |
| ATOM | 4548 |     | ASN   |    |     | 87.507 | 8.332   | 14.803 | 1.00 | 56.86  |      | В   | 0   |
| ATOM | 4549 | ND2 | ASN   | В  | 133 | 86.431 | 10.280  | 14.389 | 1.00 | 52.79  |      | В   | N   |
| ATOM | 4550 | С   | ASN   | В  | 133 | 83.544 | 9.729   | 14.389 | 1:00 | 53.41  |      | В   | С   |
| ATOM | 4551 | 0   | ASN   |    |     | 83.859 | 10.614  | 13.588 |      | 52.19  |      | В   | ŏ   |
| ATOM | 4552 | N   | PHE   |    |     | 82.636 | 8.795   | 14.117 |      | 53.82  |      |     | -   |
| ATOM | 4553 | CA  | PHE   |    |     |        |         |        |      |        |      | В   | N   |
|      |      |     |       |    |     | 81.912 | . 8.732 | 12.839 |      | 54.83  |      | В   | С   |
| ATOM | 4554 | СВ  | PHE   |    |     | 82.232 | 7.427   | 12.111 |      | 54.80  |      | В   | С   |
| ATOM | 4555 | CG  | PHE   | В  | 134 | 83.581 | 7.399   | 11.461 | 1.00 | 55.30  |      | В   | С   |
| ATOM | 4556 | CD1 | PHE   | В  | 134 | 83.768 | 7.947   | 10.193 | 1.00 | 55.31  |      | В   | С   |
| ATOM | 4557 |     | PHE   |    |     | 84.662 | 6.799   | 12.103 |      | 55.01  |      | В   | č   |
| ATOM | 4558 |     | PHE   |    |     | 85.018 |         |        |      | 56.68  |      |     |     |
|      |      |     |       |    |     |        | 7.896   | 9.566  |      |        |      | В   | C   |
| ATOM | 4559 |     | PHE   |    |     | 85.920 | 6.739   | 11.492 |      | 55.57  |      | В   | С   |
| ATOM | 4560 | CZ  | PHE   |    |     | 86.100 | 7.289   | 10.217 |      | 56.66  |      | В   | С   |
| ATOM | 4561 | С   | PHE   | В  | 134 | 80.413 | 8.770   | 13.091 | 1.00 | 55.94  |      | В   | · C |
| ATOM | 4562 | 0   | PHE   |    |     | 79.662 | 7.989   | 12.504 |      | 56.81  |      | B   | ō   |
| ATOM | 4563 | N   | GLY   |    |     | 79.969 | 9.677   | 13.955 |      | 57.19  |      |     |     |
|      |      |     |       |    |     |        |         |        |      |        |      | В   | N   |
| ATOM | 4564 | CA  | GLY   |    |     | 78.548 | 9.749   | 14.269 |      | 58.28  |      | В   | С   |
| MOTA | 4565 | C   | GLY   | В  | 135 | 77.701 | 10.645  | 13.378 | 1.00 | 59.41  |      | В   | C   |
| ATOM | 4566 | 0   | GLY   | B. | 135 | 76.474 | 10.567  | 13.415 | 1.00 | 59.06  |      | В   | 0   |
| ATOM | 4567 | N   | MET   |    |     | 78.348 | 11.490  | 12.579 |      | 61.71  |      | В   | N   |
| ATOM | 4568 |     | MET   |    | _   | 77.629 | 12.405  | 11.695 |      | 61.95  |      | В   |     |
|      |      |     |       |    |     |        |         |        |      |        |      |     | C   |
| MOTA | 4569 |     | MET   |    |     | 77.428 | 13.762  | 12.385 |      | 62.26  |      | В   | С   |
| ATOM | 4570 |     | MET : |    |     | 78.650 | 14.254  | 13.174 |      | 64.35  |      | В   | С   |
| MOTA | 4571 | SD  | MET : | В  | 136 | 78.466 | 15.848  | 14.076 | 1.00 | 67.28  |      | В   | S   |
|      |      |     |       |    |     |        |         |        |      |        |      |     |     |

### Figure 3 -

| ATO          | M 4572 | CE      | MET        | В  | 136        | 80,102           | 16.643           | 13.755           | 1.00 65.62               | 1      | в с |
|--------------|--------|---------|------------|----|------------|------------------|------------------|------------------|--------------------------|--------|-----|
| ATO          |        | С       |            |    | 136        | 78.273           | 12.612           | 10.316           | 1.00 62.11               |        | B C |
| ATO          |        | 0       | MET        | В  | 136        | 79.125           | 13.489           | 10.123           | 1.00 62.69               |        | 8 0 |
| ATO          | M 4575 | N       | GLY        | В  | 137        | 77.850           | 11.798           | 9.352            | 1.00 62.05               |        | в и |
| ATO          | M 4576 | CA      | GLY        | ₿  | 137        | 78.380           | 11.913           | 8.004            | 1.00 60.87               | J      | в с |
| ATO          | M 4577 | C       | GLY        | В  | 137        | 79.669           | 11.166           | 7.802            | 1.00 59.89               | 1      | в с |
| ATO          |        | 0       |            |    | 137        | 80.140           | 10.439           | 8.682            | 1.00 59.86               | 1      | в о |
| OTA          |        | N       |            |    | 138        | 80.242           | 11.374           | 6.623            | 1.00 59.01               | 1      | B N |
| ATO          |        | CA      |            |    | 138        | 81.487           | 10.727           | 6.218            | 1.00 59.44               | 1      | в с |
| ATO          |        | CB      |            |    | 138        | 81.600           | 10.788           | 4.678            | 1.00 60.84               | I      |     |
| OTA          |        | CG      |            |    | 138        | 80.302           | 10.327           | 3.957            | 1.00 63.25               |        | в с |
| ATO          |        | CD      |            |    | 138        | 80.459           | 10.019           | 2.446            | 1.00 65.75               | I      |     |
| OTA          |        | CE      |            |    | 138        | 80.711           | 11.254           | 1.557            | 1.00 66.54               | I      |     |
| ATO<br>ATO   |        | NZ<br>C |            |    | 138<br>138 | 80.781           | 10.876           | 0.106            | 1.00 64.75               | I      |     |
| ATO          |        | ò       |            |    | 138        | 82.705<br>83.681 | 11.369<br>10.693 | 6.903<br>7.241   | 1.00 57.82<br>1.00 57.67 | E      |     |
| ATO          |        | N       |            |    | 139        | 82.624           | 12.678           | 7.122            | 1.00 55.02               | I      | _   |
| ATO          |        | CA      |            |    | 139        | 83.689           | 13.421           | 7.784            | 1.00 51.66               | E      |     |
| ATO          |        | СВ      |            |    | 139        | 83.424           | 14.913           | 7.608            | 1.00 51.46               | Ē      |     |
| ATO          |        | CG      |            |    | 139        | 84.612           | 15.804           | 7.803            | 1.00 50.47               | Ē      |     |
| ATO          | M 4592 | CD      | ARG        | В  | 139        | 84.219           | 17.217           | 7.392            | 1.00 51.85               | E      |     |
| ATO:         | M 4593 | NE      | ARG        | В  | 139        | 85.124           | 18.247           | 7.908            | 1.00 51.62               | E      |     |
| ATO          | M 4594 | CZ      | ARG        | В  | 139        | 86.419           | 18.329           | 7.623            | 1.00 51.12               | E      |     |
| ATO:         | M 4595 | NH1     | ARG        | В  | 139        | 87.145           | 19.311           | 8.150            | 1.00 50.99               | E      |     |
| ATO          |        | NH2     | ARG        |    |            | 86.983           | 17.434           | 6.812            | 1.00 51.46               | E      | 8 N |
| ATO          |        | C       |            |    | 139        | 83.663           | 13.001           | 9.258            | 1.00 50.71               | E      | 3 C |
| ATO          |        | 0       |            |    | 139        | 82.610           | 13.001           | 9.897            | 1.00 51.82               | E      | 3 0 |
| ATO          |        | N       |            |    | 140        | 84.826           | 12.635           | 9.785            | 1.00 48.23               | P      |     |
| ATO          |        | CA      |            |    | 140        |                  | 12.157           | 11.168           | 1.00 46.32               | E      |     |
| ATO          |        | CB      |            |    | 140        | 85.903           | 10.963           | 11.192           | 1.00 46.91               | E      |     |
| ATO          |        | OG      |            |    | 140        | 87.211           | 11.376           | 10.800           | 1.00 45.77               | . E    |     |
| ATO<br>ATO   |        | C       |            |    | 140<br>140 | 85.497           | 13.173           | 12.155           | 1.00 44.11               | È      |     |
| ATO          |        | O<br>N  | ILE        |    |            | 86.252<br>85.157 | 14.069<br>13.009 | 11.785           | 1.00 44.81               | E      |     |
| ATO          |        | CA      |            |    | 141        | 85.677           | 13.937           | 13.425<br>14.407 | 1.00 35.43               | . B    |     |
| ATO          |        | СВ      | ILE        |    |            | 85.344           | 13.499           | 15.826           | 1.00 35.46               | . В    |     |
| ATO          |        |         | ILE        |    |            | 85.772           | 14.565           | 16.805           | 1.00 35.87               | E      |     |
| ATO          |        |         | ILE        |    |            | 83.840           | 13.247           | 15.940           | 1.00 35.40               | B      |     |
| ATO          |        |         | ILE        |    |            | 82.993           | 14.477           | 15.755           | 1.00 32.73               | В      |     |
| ATO          |        | С       | ILE        |    |            | 87.195           | 13.994           | 14.247           | 1.00 35.05               | В      |     |
| ATO          |        | 0       | ILE        |    |            | 87.771           | 15.072           | 14.126           | 1.00 34.41               | В      |     |
| ATO          | 4613   | N       | GLU        | В  | 142        | 87.844           | 12.839           | 14.205           | 1.00 35.19               | В      |     |
| ATO          | 4614   | CA      | GLU        | В  | 142        | 89.290           | 12.829           | 14.058           | 1.00 35.24               | В      | C   |
| ATO          |        | CB      | GLU        | В  | 142        | 89.803           | 11.399           | 13.991           | 1.00 36.50               | В      | C   |
| ATO          |        | CG      | GLU        |    |            | 91.299           | 11.281           | 13.843           | 1.00 37.95               | В      |     |
| ATO          |        | CD      | GLU        |    |            | 91.744           | 9.898            | 14.172           | 1.00 39.93               | В      |     |
| ATO          |        |         | GLU        |    |            | 90.859           | 9.096            | 14.564           | 1.00 42.29               | В      |     |
| ATO          |        |         | GLU        |    |            | 92.959           | 9.603            | 14.056           | 1.00 40.91               | В      |     |
| ATO          |        | C<br>O  | GLU<br>GLU |    |            | 89.784<br>90.831 | 13.604<br>14.243 | 12.842           | 1.00 34.76               | В      |     |
| ATO          |        | N       | ASP        |    |            | 89.043           | 13.540           | 12.886<br>11.745 | 1.00 32.09               | B      |     |
| ATO          |        | CA      | ASP        | •  |            | 89.457           | 14.266           | 10.548           | 1.00 38.34               | 9      |     |
| ATO          |        | CB      | ASP        |    |            | 88.538           | 13.952           | 9.363            | 1.00 49.17               | В      |     |
| ATO          |        | CG      | ASP        |    |            | 89.249           | 13.174           | 8.267            | 1.00 56.20               | В      |     |
| ATO          |        |         | ASP        |    |            |                  |                  |                  | 1.00 57.48               | В      |     |
| ATO          | 4627   | OD2     | ASP        | В  | 143        | 88.603           | 12.250           | 7.688            | 1.00 60.62               | В      | ō   |
| ATO          | 4628   | С       | ASP .      | В. | 143        | 89.434           | 15.769           | 10.795           | 1.00 40.91               | В      |     |
| ATO          | 4629   | 0       | ASP        | В  | 143        | 90.300           | 16.496           | 10.308           | 1.00 41.54               | В      | 0   |
| ATO          | 4630   | N       | ARG        | В  | 144        | 88.417           | 16.229           | 11.525           | 1.00 38.77               | B      | N   |
| ATO          | 4631   | CA      | ARG        |    |            | 88.256           | 17.647           | 11.826           | 1.00 34.57               | В      | С   |
| OTA          |        | CB      | ARG        |    |            | 86.910           | 17.869           | 12.535           | 1.00 35.52               | В      |     |
| ATO          |        | CG      | ARG        |    |            | 85.670           | 17.412           | 11.715           | 1.00 37.69               | В      |     |
| ATO          |        | CD      | ARG        |    |            | 84.366           | 17.367           | 12.546           | 1.00 39.22               | В      |     |
| ATON         |        | NE      | ARG        |    |            | 83.169           | 16.848           | 11.851           | 1.00 40.29               | В      |     |
| ATON         |        | CZ      | ARG        |    |            | 82.480           | 17.502           | 10.916           | 1.00 42.04               | В      |     |
| ATON         |        |         | ARG        |    |            | 82.855           | 18.714           | 10.529           | 1.00 42.00               | В      |     |
| ATON         |        |         | ARG        |    |            | 81.390           | 16.958           | 10.395           | 1.00 43.65               | В      |     |
| ATON         |        | C       | ARG        |    |            | 89.410           | 18.112           | 12.695           | 1:00 31.88               | В      |     |
| ATON<br>ATON |        | 0<br>N  | ARG.       |    |            | 90.069           | 19.116           | 12.412           |                          | В      |     |
| ATON         |        | N<br>CA | VAL<br>VAL |    |            | 89.657<br>90.729 | 17.363<br>17.724 | 13.759<br>14.653 | 1.00 28.18<br>1.00 25.12 | B<br>B |     |
| ATON         |        | CB      | VAL        |    |            | 90.728           | 16.867           | 15.884           | 1.00 21.93               | В      |     |
| ATON         |        |         | VAL        |    |            | 91.704           | 17.422           | 16.876           | 1.00 20.72               | В      |     |
| ATON         |        |         | VAL        |    |            | 89.340           | 16.815           | 16.460           | 1.00 18.15               | В      |     |
| ATON         |        | C       | VAL        |    |            | 92.084           | 17,610           | 13.982           | 1.00 26.85               | В      |     |
|              |        |         |            | -  |            |                  |                  |                  |                          | -      |     |

Figure 3 ·

| ATOM         | 4647         | 0          | VAL        | В | 145        | 92.991             | 18.380           | 14.286           | 1.00 | 25.77                        |   | В      | 0      |
|--------------|--------------|------------|------------|---|------------|--------------------|------------------|------------------|------|------------------------------|---|--------|--------|
| MOTA         | 4648         | N          | GLN        |   |            | 92.243             | 16.666           | 13.064           | 1.00 | 28.19                        |   | В      | N      |
| ATOM         | 4649         | CA         | GLN        | В | 146        | 93.534             | 16.554           | 12.408           |      | 30.34                        |   | В      | С      |
| ATOM         | 4650         | CB         | GLN        | В | 146        | 93.602             | 15.328           | 11.514           |      | 33.44                        |   | В      | С      |
| MOTA         | 4651         | CG         | GLN        | В | 146        | 93.940             | 14.081           | 12.275           |      | 39.62                        |   | В      | С      |
| ATOM         | 4652         | ÇD         | GLN        | В | 146        | 94.206             | 12.908           | 11.370           |      | 41.56                        |   | В      | C      |
| MOTA         | 4653         | OE1        | GLN        | В | 146        | 95.181             | 12.910           | 10.619           |      | 44.50                        |   | В      | 0      |
| ATOM         | 4654         | NE2        | GLN        |   | 146        | 93.333             | 11.897           | 11.425           |      | 42.49                        |   | В      | N      |
| MOTA         | 4655         | С          | GLN        |   | 146        | 93.808             | 17.784           | 11.591           |      | 31.05                        |   | В      | C      |
| MOTA         | 4656         | 0          | GLN        |   | 146        | 94.951             | 18.258           | 11.525           |      | 31.79                        |   | В      | 0      |
| MOTA         | 4657         | N          | GLU        |   | 147        | 92.753             | 18.297           | 10.959           |      | 32.42                        |   | В      | Ŋ      |
| ATOM         | 4658         | CA         | GLU        |   | 147        | 92.845             | 19.507           | 10.126           |      | 32.86<br>34.03               |   | B<br>B | C      |
| ATOM         | 4659         | CB         | GLU        |   | 147        | 91.508             | 19.811           | 9.425<br>8.746   |      | 37.05                        |   | В      | c      |
| MOTA         | 4660         | CG         | GLU        |   | 147        | 91.465<br>90.218   | 21.191<br>21.422 | 7.867            |      | 39.67                        |   | В      | č      |
| MOTA         | 4661         | CD         | GLU<br>GLU |   | 147        | 89.085             | 21.052           | 8.288            |      | 38.81                        |   | В      | ŏ      |
| MOTA         | 4662         | OE1<br>OE2 | GLU        |   |            | 90.371             | 21.996           | 6.750            |      | 41.95                        |   | В      | ŏ      |
| ATOM         | 4663<br>4664 | C          | GLU        |   |            | 93.187             | 20.681           | 11.009           |      | 32.21                        |   | В      | Ċ      |
| ATOM<br>ATOM | 4665         | 0          | GLU        |   |            | 94.190             | 21.374           | 10.804           |      | 31.90                        |   | В      | 0      |
| ATOM         | 4666         | N          | GLU        |   |            | 92.336             | 20.894           | 12.002           |      | 30.56                        |   | В      | N      |
| ATOM         | 4667         | CA         | GLU        |   |            | 92.572             | 21.993           | 12.886           | 1.00 | 30.26                        |   | В      | С      |
| ATOM         | 4668         | СВ         | GLU        |   |            | 91.603             | 21.967           | 14.054           | 1.00 | 30.82                        |   | В      | С      |
| ATOM         | 4669         | CG         | GLU        |   |            | 91.499             | 23.316           | 14.743           | 1.00 | 32.47                        |   | В      | С      |
| ATOM         | 4670         | CD         | GLU        |   |            | 91.124             | 24.429           | 13.778           | 1.00 | 33.27                        |   | В      | С      |
| ATOM         | 4671         | OE1        | GLU        |   |            | 90.059             | 24.330           | 13.115           | 1.00 | 33.04                        |   | В      | 0      |
| ATOM         | 4672         | OE2        | GLU        | В | 148        | 91.894             | 25.410           | 13.687           |      | 33.87                        |   | В      | 0      |
| MOTA         | 4673         | C          | GLU        | В | 148        | 94.010             | 21.919           | 13.366           | 1.00 | 30.08                        |   | В      | С      |
| MOTA         | 4674         | 0          | GLU        | В | 148        | 94.642             | 22.937           | 13.603           |      | 27.82                        |   | В      | 0      |
| ATOM         | 4675         | N          | ALA        | В | 149        | 94.544             | 20.713           | 13.471           |      | 30.68                        |   | В      | N      |
| ATOM         | 4676         | CA         | ALA        | В | 149        | 95.909             | 20.547           | 13.931           |      | 32.90                        |   | В      | c      |
| ATOM         | 4677         | CB,        | AĻA        |   | 149        | 96.240             | 19.085           | 14.039           | 1.00 |                              |   | В      | C      |
| ATOM         | 4678         | C          | ALA        |   | 149        | 96.990             | 21.246           | 13.112           |      | 35.08                        |   | В      | C      |
| MOTA         | 4679         | 0.         | ALA        |   | 149        | 97.818             | 21.961           | 13.681           |      | 34.03                        |   | В      | 0      |
| ATOM         | 4680         | N          | ARG        |   | 150        | 97.025             | 21.041           | 11.793           |      | 40.00                        |   | B<br>B | N<br>C |
| ATOM         | 4681         | CA         | ARG        |   | 150        | 98.092             | 21.680           | 11.012           | -    | 43.69                        |   | В      | c      |
| MOTA         | 4682         | CB.        | ARG        |   |            | 98.226             | 21.073           | 9.602            |      | 45.27<br>49.86               |   | В      | C      |
| ATOM         | 4683         | CG         | ARG        |   |            | 97.013             | 21.153           | 8.712<br>7.228   |      | 53.95                        |   | В      | č      |
| ATOM '       | 4684         | CD         | ARG        |   |            | 97.370             | 20.845           | 6.334            |      | 57.18                        |   | В      | Ŋ      |
| ATOM .       | 4685         | NE.        | ARG        |   |            | 96.215<br>95.196   | 21.030<br>20.176 | 6.216            |      | 58.65                        |   | В      | Ċ      |
| MOTA         | 4686         | CZ         | ARG        |   |            | 94.187             | 20.457           | 5.388            |      | 59.71                        |   | В      | N      |
| ATOM         | 4687<br>4688 |            | ARG        |   |            | 95.195             | 19.034           | 6.905            |      | 58.05                        |   | В      | N      |
| ATOM<br>ATOM | 4689         | C          | ARG        |   |            | 97.930             | 23.181           | 10.936           |      | 44.37                        |   | В      | С      |
| ATOM         | 4690         | Ö          | ARG        |   |            | 98.915             | 23.923           | 10,978           |      | 46.37                        |   | В      | 0      |
| ATOM         | 4691         | N          | CYS        |   |            | 96.686             | 23.632           | 10.840           |      | 44.25                        |   | В      | N      |
| ATOM         | 4692         | CA         | CYS        |   |            | 96.409             | 25.062           | 10.797           |      | 43.91                        |   | В      | С      |
| ATOM         | 4693         | СВ         | CYS        |   |            | 94.902             | 25.304           | 10.871           | 1.00 | 44.80                        |   | В      | С      |
| ATOM         | 4694         | SG         | CYS        |   |            | 94.012             | 24.762           | 9.412            | 1.00 | 47.34                        |   | В      | s      |
| ATOM         | 4695         | C          | CYS        |   |            | 97.080             | 25.681           | 12.002           | 1.00 | 43.93                        |   | В      | С      |
| ATOM         | 4696         | 0          | CYS        | В | 151        | 97.795             | 26.677           | 11.893           |      | 44.99                        |   | В      | 0      |
| ATOM         | 4697         | N          | LEU        | В | 152        | 96.831             | 25.064           | 13.152           |      | 43.13                        |   | В      | N      |
| MOTA         | 4698         | ÇA         | LEU        | В | 152        | 97.388             | 25.505           | 14.422           |      | 42.19                        |   | В      | C      |
| ATOM .       | 4699         | CB         | LEU        | В | 152        | 97.124             | 24.439           | 15.490           |      | 39.89                        |   | В      | C      |
| MOTA         | 4700         | CG         | LEU        |   | 152        | 97.201             | 24.809           | 16.971           |      | 37.78                        |   | В      | C      |
| MOTA         | 4701         | CD1        |            |   |            | 96.529             | 23.728           | 17.779           |      | 36.27                        |   | В      | C      |
| ATOM         | 4702         |            | LEU        |   |            | 98.632             | 24.993           | 17.411           |      | 36.00                        | • | В      | C      |
| MOTA         | 4703         | C          |            |   | 152        | 98.878             | 25.694           | 14.226           |      | 42 <sup>-</sup> .75<br>43.20 |   | B<br>B | Ö      |
| MOTA         | 4704         | 0          |            |   | 152        | 99.455             | 26.691           | 14.648<br>13.569 |      | 44.57                        |   | В      | N      |
| ATOM         | 4705         | N          |            |   | 153        | 99.488             | 24.722           | 13.301           |      | 47.99                        |   | В      | Č      |
| ATOM         | 4706         | CA         |            |   | 153        | 100.903            | 24.783           |                  |      | 47.52                        |   | В      | Ċ      |
| MOTA         | 4707         | CB         |            |   | 153        | 101.399            | 23.535           | 12.596<br>12.330 |      | 48.31                        |   | В      | č      |
| ATOM         | 4708         |            | VAL        |   |            | 102.892            | 23.644           | 13.429           |      | 48.55                        |   | В      | č      |
| ATOM         | 4709         |            | VAL        |   |            | 101.081<br>101.160 | 22.327<br>25.941 | 12.371           |      | 50.15                        |   | В      | Ċ      |
| MOTA         | 4710         | C          |            |   | 153        |                    |                  | 12.630           |      | 49.93                        |   | В      | ō      |
| ATOM         | 4711         | 0          |            |   | 153        | 102.027            | 26.776<br>25.983 | 11.274           |      | 53.22                        |   | В      | N      |
| ATOM         | 4712         | N          |            |   | 154<br>154 | 100.419            | 27.056           | 10.324           |      | 56.64                        |   | В      | č      |
| ATOM.        | 4713         | CA         |            |   |            | 100.607<br>99.450  | 27.038           | 9.320            |      | 60.24                        |   | В      | Ċ      |
| ATOM         | 4714         | CB         |            |   | 154<br>154 | 99.450<br>99.888   | 26.803           | 7.855            |      | 66.93                        |   | В      | Ċ      |
| ATOM         | 4715         | CG<br>CD.  |            |   | 154        | 100.406            | 25.368           | 7.610            |      | 70.80                        |   | В      | č      |
| ATOM         | 4716         |            | GLU        |   |            | 101.455            | 24.974           | 8.200            |      | 71.20                        |   | В      | ō      |
| ATOM<br>ATOM | 4717<br>4718 |            | GLU        |   |            | 99.760             | 24.641           | 6.807            |      | 71.86                        |   | В      | ō      |
| ATOM         | 4719         | C          |            |   | 154        | 100.722            | 28.369           | 11.101           |      | 56.94                        |   | В      | С      |
| ATOM         | 4720         | ŏ          |            |   | 154        | 101.801            | 28.955           | 11.162           |      | 57.48                        |   | ·B     | 0      |
| ATOM         | 4721         | N          |            |   | 155        | 99.639             | 28.804           | 11.738           | 1.00 | 56.10                        |   | В      | N      |
| 013          |              |            |            | _ |            | ,,,,,,             |                  |                  |      | _                            |   |        |        |

| MOTA         | 4722         | CA        | GLU P      | 155            |    | 99.665             | 30.044             | 12.503           | 1.00 |                | E |        | C      |
|--------------|--------------|-----------|------------|----------------|----|--------------------|--------------------|------------------|------|----------------|---|--------|--------|
| ATOM         | 4723         | CB        | GLU E      |                |    | 98.343             | 30.219             | 13.234           | 1.00 |                | E |        | C      |
| ATOM         | 4724         | CG        | GLU E      |                | ,  | 97.248             | 30.607             | 12.268<br>11.881 | 1.00 | 60.44          | E |        | C      |
| MOTA         | 4725         | CD<br>OF1 | GLU E      |                |    | 97.318<br>96.843   | 32.076<br>32.434   | 10.775           |      | 63.81          | Ē |        | ŏ      |
| ATOM<br>ATOM | 4726<br>4727 | OE2       | GLU E      |                |    | 97.836             | 32.879             | 12.696           |      | 63.89          | E |        | ō      |
| ATOM         | 4728         | c         | GLU E      |                |    | 100.843            | 30.142             | 13.457           | 1.00 | 53.51          | E |        | С      |
| ATOM         | 4729         | Ō         | GLU E      |                |    | 101.379            | 31.227             | 13.676           |      | 53.63          | I |        | 0      |
| ATOM         | 4730         | N         | LEU E      |                |    | 101.254            | 29.017             | 14.021           |      | 52.83          | 1 |        | N      |
| MOTA         | 4731         | CA        | LEU E      |                |    | 102.401            | 29.020             | 14.922<br>15.627 |      | 52.60<br>51.67 | E |        | C      |
| ATOM         | 4732<br>4733 | CB<br>CG  |            | 3 156<br>3 156 |    | 102.533<br>101.594 | 27.670<br>27.448   | 16.803           |      | 51.22          | i |        | č      |
| MOTA<br>MOTA | 4734         |           | PEO I      |                |    | 101.653            | 25.994             | 17.267           |      | 51.36          | 1 |        | C      |
| ATOM         | 4735         |           | LEU I      |                |    | 101.999            | 28.390             | 17.926           | 1.00 | 51.10          | 1 |        | C      |
| ATOM         | 4736         | С         | LEU I      | 3 156          |    | 103.677            | 29.299             | 14.133           |      | 53.27          | 1 |        | C      |
| MOTA         | 4737         | 0         |            | 3 156          |    | 104.687            | 29.708             | 14.697           |      | 52.53          | 1 |        | Ŋ      |
| MOTA         | 4738         | N         |            | 3 157          |    | 103.647            | 29.076<br>29.323   | 12.829<br>12.043 |      | 54.21<br>55.80 | 1 |        | C      |
| ATOM         | 4739<br>4740 | CA<br>CB  |            | B 157<br>B 157 |    | 104.845            | 28.455             | 10.778           |      | 55.99          | i |        | Č.     |
| ATOM<br>ATOM | 4741         | CG        |            | B 157          |    | 106.176            | 27.774             | 10.478           |      | 56.99          | 1 | 3      | C.     |
| ATOM         | 4742         | ÇD        |            | B 157          |    | 106.145            | 27.064             | 9.129            |      | 57.45          |   | 3      | С      |
| MOTA         | 4743         | NE        |            | B 157          |    | 105.352            | 25.830             | 9.091            |      | 56.59          |   | 3      | N      |
| MOTA         | 4744         | CZ        |            | B 157          |    | 105.789            | 24.633             | 9.480<br>9.952   |      | 56.27<br>54.34 |   | 3<br>3 | C<br>N |
| MOTA         | 4745         |           | ARG I      | _              |    | 107.025<br>105.002 | 24,497 .<br>23,565 | 9.358            |      | 56.60          |   | 3      | N      |
| ATOM<br>ATOM | 4746<br>4747 | C         |            | B 157          |    | 104.930            | 30.809             | 11.684           |      | 56.50          |   | 3      | C      |
| ATOM         | 4748         | ŏ         |            | B 157          |    | 106.017            | 31.363             | 11.494           | 1.00 | 55.64          | 1 | 3      | 0      |
| ATOM         | 4749         | N         |            | B 158          |    | 103.768            | 31,450             | 11.616           |      | 58.01          |   | 3      | N      |
| ATOM         | 4750         | CA        |            | в 158          |    | 103.670            | 32.867             | 11.282           |      | 59.27          |   | 3      | C      |
| ATOM         | 4751         | CB        |            | B 158          |    | 102.190            | 33.259<br>32.611   | 11.109<br>9.887  |      | 59.33<br>59.93 |   | B<br>B | c      |
| MOTA         | 4752         | CG<br>CD  |            | B 158<br>B 158 |    | 101.512            |                    | 9.456            |      | 61.30          |   | В      | č      |
| ATOM<br>ATOM | 4753<br>4754 | CE        |            | B 158          |    | 99.582             | 32.718             | 8.208            |      | 62.49          |   | В      | C      |
| ATOM         | 4755         | NZ        |            | B 158          |    | 100.550            | 32.527             | 7.082            | 1.00 | 64.38          |   | В      | N      |
| ATOM         | 4756         | С         | LYS        | B 158          | -1 | 104.344            | 33.763             | 12.332           |      | 60.44          |   | В      | C      |
| atom         | 4757         | 0         |            | B 158          |    | 104.673            | 34.918             | 12.060<br>13.526 |      | 61.51<br>61.88 |   | B<br>B | N<br>O |
| ATOM         | 4758         | N         |            | B 159<br>B 159 |    | 104.560<br>105.202 | 33.232<br>34.005   | 14.578           |      | 62.58          |   | В      | ċ      |
| MOTA<br>MOTA | 4759<br>4760 | CA<br>CB  | THR        |                |    | 105.025            | 33.325             | 15.939           |      | 62.67          |   | В      | C      |
| ATOM         | 4761         |           |            | B 159          |    | 106.026            | 32.307             | 16.110           |      | 62.71          |   | В      | 0      |
| ATOM         | 4762         | CG2       | THR        | в 159          |    | 103.640            | 32.685             | 16.017           |      | 62.06          |   | В      | C      |
| MOTA         | 4763         | С         |            | B 159          |    | 106.700            | 34.132             | 14.287           |      | 63.42<br>62.94 |   | B<br>B | С<br>0 |
| ATOM         | 4764         | 0         |            | B 159          |    | 107.468<br>107.109 | 34.616<br>33.676   | 15.119<br>13.108 |      | 64.98          |   | В      | N      |
| MOTA<br>MOTA | 4765<br>4766 | N<br>CA   |            | B 160<br>B 160 |    | 108.506            | 33.757             | 12.679           |      | 66.56          |   | В      | С      |
| ATOM         | 4767         | СВ        |            | B 160          |    | 108.797            | 35.176             | 12.137           | 1.00 | 68.34          |   | В      | С      |
| ATOM         | 4768         | CG        | LYS        |                |    | 109.492            | 35.267             | 10.754           |      | 69.89          |   | В      | c      |
| MOTA         | 4769         | CD        | LYS        |                |    | 109.987            | 36.704             | 10.427           |      | 70.40          |   | B<br>B | C      |
| ATOM         | 4770         | CE        | LYS        |                |    | 110.766            | 36.787<br>38.107   | 9.096<br>8.847   | 1.00 |                |   | В      | N      |
| MOTA<br>MOTA | 4771<br>4772 | NZ<br>C   | LYS<br>LYS |                |    | 111.438<br>109.518 | 33.415             | 13.791           | 1.00 |                |   | В      | C      |
| ATOM         | 4773         | Ö         | LYS        |                |    | 110.578            | 34.036             | 13.876           | 1.00 |                |   | В      | 0      |
| ATOM         | 4774         | N         | ALA        | B 161          |    | 109.191            | 32.444             | 14.643           |      | 66.58          |   | В      | N      |
| MOTA         | 4775         | CA        |            | B 161          |    | 110.091            | 32.010             | 15.729           |      | 66.20          |   | B<br>B | C      |
| ATOM         | 4776         |           |            | B 161          |    | 111.318            | 31.316<br>33.102   | 15.139<br>16.699 |      | 66.46<br>65.64 |   | В      | c      |
| ATOM         | 4777         | 0         |            | B 161<br>B 161 |    | 110.553<br>111.723 | 33.139             | 17.103           |      | 65.75          |   | В      | ō      |
| atom<br>atom | 4778<br>4779 | N         |            | B 162          |    | 109.635            | 33.983             | 17.076           |      | 64.68          |   | В      | N      |
| ATOM         | 4780         | CA        |            | B 162          |    | 109.946            | 35.072             | 17.988           |      | 62.90          |   | В      | С      |
| MOTA         | 4781         | CB        |            | B 162          |    | 109.701            | 36.404             | 17.285           |      | 63.15          |   | В      | C      |
| ATOM         | 4782         | OG        |            | B 162          |    | 108.392            | 36.431             | 16.745<br>19.211 |      | 61.81<br>62.04 |   | B<br>B | C      |
| ATOM         | 4783         | C         |            | B 162<br>B 162 |    | 109.047            | 34.955<br>34.353   | 19.211           |      | 62.80          |   | В      | ŏ      |
| MOTA<br>MOTA | 4784<br>4785 | O<br>N    |            | B 163          |    | 107.963            | 35.529             | 20.351           |      | 61.06          |   | В      | N      |
| ATOM         | 4786         |           |            | B 163          |    | 110.762            | 36.205             | 20.561           | 1.00 | 61.26          |   | В      | C      |
| MOTA         | 4787         |           |            | в 163          |    | 108.697            | 35.489             |                  |      | 59.39          |   | В      | C      |
| ATOM         | 4788         | СB        |            | в 163          |    | 109.456            | 36.466             |                  |      | 60.20          |   | В      | C      |
| ATOM         | 4789         |           |            | B 163          |    | 110.871            | 36.242             |                  |      | 60.85          | • | B<br>B | C      |
| MOTA         | 4790         |           |            | B 163          |    | 107.219<br>106.857 | 35.852<br>36.845   |                  |      | 57.48          |   | В      | ŏ      |
| ATOM<br>ATOM | 4791<br>4792 |           |            | B 163<br>B 164 |    | 106.374            | 35.040             | 22.085           |      | 56.04          |   | В      | N      |
| ATOM         | 4793         |           |            | B 164          |    | 104.940            | 35.262             | 22.022           |      | 54.47          |   | В      | C      |
| ATOM         | 4794         |           |            | В 164          |    | 104.372            | 34.669             |                  | _    | 55.36          |   | В      | C      |
| ATOM         | 4795         | SG        | CYS        | B 164          |    | 103.742            | 32.974             |                  |      | 56.18          |   | B<br>B | S      |
| MOTA         | 4796         | С         | CYS        | B 164          | •  | 104.140            | 34.641             | 23.170           | 4.00 | 52.70          |   | D      | C      |

| MOTA   | 4797 | 0   | CYS | В | 164 | 104.618 | 33.772 | 23.908  | 1.00  | 52.62 |   | В | 0   |
|--------|------|-----|-----|---|-----|---------|--------|---------|-------|-------|---|---|-----|
| ATOM   | 4798 | N   | ASP | В | 165 | 102.886 | 35.082 | 23.252  | 1.00  | 50.24 |   | В | N   |
| ATOM   | 4799 | CA  | ASP | В |     | 101.935 | 34.590 | 24.225  | 1.00  | 46.33 |   | В | Ċ.  |
|        | 4800 |     | ASP |   | 165 |         |        | 24.869  |       | 49.03 |   |   |     |
| MOTA   |      | CB  |     |   |     | 101.151 | 35.723 |         |       |       |   | В | C   |
| ATOM   | 4801 | CG  | ASP |   | 165 | 100.009 | 35.206 | 25.717  |       | 51.64 |   | В | С   |
| MOTA   | 4802 | OD1 | ASP | В | 165 | 99.213  | 36.015 | 26.252  | 1.00  | 53.52 |   | В | 0   |
| ATOM   | 4803 | OD2 | ASP | В | 165 | 99.907  | 33.969 | 25.851  | 1.00  | 52.67 |   | В | 0   |
| ATOM   | 4804 | C   | ASP |   | 165 | 100.933 | 33.667 | 23.542  |       | 43.40 |   | В | c   |
|        |      |     |     |   |     | 99.955  | 34.125 |         |       |       |   |   |     |
| ATOM   | 4805 | 0   |     |   | 165 |         |        | 22.937  |       | 44.27 |   | В | 0   |
| MOTA   | 4806 | N   | PRO | В | 166 | 101.139 | 32.356 | 23.671  | 1.00  | 39.45 |   | В | , N |
| ATOM   | 4807 | CD  | PRO | В | 166 | 102.063 | 31.750 | 24.635  | 1.00  | 38.23 |   | В | С   |
| ATOM   | 4808 | CA  | PRO | В | 166 | 100.287 | 31.327 | 23.091  | 1.00  | 36.21 |   | В | С   |
| ATOM   | 4809 | CB  |     |   | 166 | 100.922 | 30.053 | 23.598  |       | 36.14 |   | В | Č   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4810 | CG  | PRO |   | 166 | 101.351 | 30.463 | 24.967  |       | 36.30 |   | В | С   |
| ATOM   | 4811 | С   | PRO | В | 166 | 98.841  | 31.429 | 23.533  | 1.00  | 34.56 |   | В | С   |
| ATOM   | 4812 | 0   | PRO | В | 166 | 97.956  | 30.905 | 22.865  | 1.00  | 35.61 |   | В | 0   |
| ATOM   | 4813 | N   | THR | В | 167 | 98.590  | 32.084 | 24.660  | 1.00  | 34.27 |   | В | N   |
| ATOM   | 4814 | CA  | THR | R | 167 | 97.218  | 32.187 | 25.153  |       | 34.91 |   | В | Ċ   |
|        |      | CB  |     |   |     |         |        | 26.079  |       |       |   |   | č   |
| MOTA   | 4815 |     |     |   | 167 | 96.981  | 33.409 |         |       | 36.14 |   | В |     |
| ATOM   | 4816 |     | THR |   | 167 | 97.779  | 33.305 | 27.268  |       | 36.08 |   | В | 0   |
| ATOM   | 4817 | CG2 | THR | В | 167 | 95.502  | 33.463 | 26.484  | 1.00  | 36.63 |   | В | С   |
| ATOM   | 4818 | С   | THR | В | 167 | 96.172  | 32.284 | 24.043  | 1.00  | 36.17 |   | В | С   |
| ATOM   | 4819 | 0   |     |   | 167 | 95.197  | 31.528 | 24.044  |       | 37.62 |   | В | 0   |
|        | •    |     |     |   | 168 | 96.360  |        | 23.106  |       | 36.83 |   | В |     |
| MOTA   | 4820 | N   |     |   |     |         | 33.219 |         |       |       |   |   | N   |
| ATOM   | 4821 | CA  | PHE | В | 168 | 95.393  | 33.424 | 22.015  | 1.00  | 35.83 |   | В | С   |
| ATOM   | 4822 | CB  | PHE | В | 168 | 95.716  | 34.714 | 21.228  | 1.00  | 37.43 |   | В | С   |
| ATOM . | 4823 | CG  | PHE | В | 168 | 94.644  | 35.097 | 20.211  | 1.00  | 37.95 |   | В | С   |
| MOTA   | 4824 |     | PHE |   | 168 | 94.971  |        | 18.861  |       | 40.06 |   | В | č   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4825 |     | PHE |   | 168 | 93.301  |        | .20.595 |       | 37.81 |   | В | С   |
| MOTA   | 4826 | CE1 | PHE | В | 168 | 93.987  |        | 17.912  | 1.00  | 36.79 |   | В | ¢   |
| ATOM   | 4827 | CE2 | PHE | В | 168 | 92.307  | 35.494 | 19.653  | 1.00  | 37.47 | - | В | С   |
| ATOM   | 4828 | CZ  | PHE | В | 168 | 92.652  | 35.673 | 18.311  | 1.00  | 37.36 |   | В | С   |
| ATOM   | 4829 | Ç   |     |   | 168 |         | 32.248 | 21.050  |       | 33.59 |   | В | Ċ   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4830 | 0   |     |   | 168 | 94.248  | 31.575 | 20.996  |       | 32.18 |   | В | 0   |
| MOTA   | 4831 | N   | ILE | В | 169 | 96.318  | 32.033 | 20.265  | 1.00  | 31.14 |   | В | N   |
| MOTA   | 4832 | CA  | ILE | В | 169 | 96.345  | 30.934 | 19.318  | 1.00  | 29.91 |   | В | С   |
| ATOM   | 4833 | CB  | ILE | В | 169 | 97.761  | 30.670 | 18.940  | 1.00  | 29.35 |   | В | С   |
| MOTA   | 4834 |     | ILE |   |     |         |        | 18.146  |       | 28.51 |   | В | C   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4835 |     | ILE |   | •   |         | 31.955 | 18.295  |       | 31.20 |   | В | C   |
| MOTA   | 4836 | CD1 | ILE | В | 169 | 99.635  | 31.883 | 17.754  | 1.00  | 33.84 |   | В | С   |
| MOTA   | 4837 | С   | ILE | В | 169 | 95.740  | 29.682 | 19.913  | 1.00  | 30.35 |   | В | С   |
| ATOM   | 4838 | 0   |     |   | 169 | 94.747  | 29.160 | 19.407  | 1.00  | 30.19 |   | В | 0   |
| ATOM   | 4839 |     |     |   | 170 | 96.337  | 29.205 | 20.996  |       | 30.79 |   | В | N   |
|        |      | N   |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4840 | CA  |     |   | 170 | 95.849  | 28.019 | 21.670  | 1,00  | 30.36 |   | В | C   |
| ATOM   | 4841 | CB  | LEU | В | 170 | 96.568  | 27.828 | 22.987  | 1.00  | 28.30 |   | В | С   |
| ATOM   | 4842 | CG  | LEU | В | 170 | 97.814  | 26,967 | 22.907  | 1.00  | 26.76 |   | В | C   |
| ATOM   | 4843 |     | LEU |   |     | 98.318  | 26.854 | 21.495  |       | 26.74 |   | В | č   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4844 |     | LEU |   |     | 98.851  | 27.574 | 23.800  |       | 25.84 |   | В | Ç   |
| MOTA   | 4845 | С   |     |   | 170 | 94.380  | 28.053 | 21.951  |       | 32.23 |   | В | C   |
| MOTA   | 4846 | 0   | LEU | В | 170 | 93.760  | 27.008 | 22.033  | 1.00  | 35.48 |   | В | 0   |
| ATOM   | 4847 | N   | GLY | В | 171 | 93.814  | 29.239 | 22.124  | 1.00  | 34.10 |   | В | N   |
| ATOM   | 4848 | CA  |     |   | 171 | 92.385  | 29.311 | 22.416  |       | 35.23 |   | В | C   |
| ATOM   | 4849 | C   | GLY | _ | 171 | 91.493  | 29.161 |         |       | 35.23 |   | В | Č   |
|        |      |     |     |   |     |         |        | 21.197  |       |       |   |   |     |
| MOTA   | 4850 | 0   |     |   | 171 | 90.359  | 28.681 | 21.289  |       | 34.10 |   | В | 0   |
| ATOM   | 4851 | N   | CYS | В | 172 | 92.018  | 29.590 | 20.058  |       | 35.63 |   | В | N   |
| ATOM   | 4852 | CA  | CYS | В | 172 | 91.302  | 29.525 | 18.802  | 1.00  | 38.39 |   | В | C   |
| ATOM   | 4853 | CB  | CYS | В | 172 | 92,072  | 30.289 | 17.727  | 1.00  | 42.27 | • | В | С   |
| MOTA   | 4854 | SG  |     |   | 172 | 92.472  | 32,003 | 18.166  |       | 49.13 |   | В | S   |
|        |      |     |     |   |     |         |        |         |       | 38.11 |   |   |     |
| ATOM   | 4855 | С   |     |   | 172 | 91.139  | 28.075 | 18.370  |       |       |   | В | C   |
| MOTA   | 4856 | 0   | CYS | В | 172 | 90.038  | 27.633 | 18.009  | 1.00  | 39.52 |   | В | 0   |
| MOTA   | 4857 | N   | ALA | В | 173 | 92.253  | 27.344 | 18.416  | 1.00  | 35.42 |   | В | N   |
| ATOM   | 4858 | CA  |     |   | 173 | 92.301  | 25.930 | 18,028  |       | 32.24 |   | В | С   |
| ATOM   | 4859 | СВ  |     |   | 173 | 93.595  | 25.305 | 18.512  |       | 32.25 |   | В | Č   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| ATOM   | 4860 | C   |     |   | 173 | 91.114  | 25,130 | 18.540  |       | 30.48 |   | В | ·c  |
| MOTA   | 4861 | 0   | ALA | В | 173 | 90.250  | 24.730 | 17.766  |       | 29.47 |   | В | 0   |
| ATOM   | 4862 | N   | PRO | В | 174 | 91.051  | 24.900 | 19.856  | 1.00  | 30.52 |   | В | N   |
| MOTA   | 4863 | CD  | PRO |   |     | 91.910  | 25.489 | 20.886  |       | 30.51 |   | В | С   |
| ATOM   | 4864 | CA  | PRO |   |     | 89.965  | 24.144 | 20.475  |       | 31.09 |   | В | Č   |
|        |      |     |     |   |     | -       |        |         |       |       |   |   |     |
| ATOM   | 4865 | СВ  | PRO |   |     | 90.186  | 24.364 | 21.969  |       | 30.69 |   | В | C   |
| ATOM   | 4866 | CG  | PRO |   |     |         | 24.572 | 22.063  |       | 32.01 |   | В | С   |
| MOTA   | 4867 | С   | PRO | В | 174 | 88.618  | 24.659 | 20.029  | .1.00 | 33.18 |   | В | С   |
| ATOM   | 4868 | 0   | PRO |   |     | 87.748  | 23.891 | 19.622  | 1.00  | 33.76 |   | В | 0   |
| ATOM   | 4869 | N   | CYS |   |     | 88.454  | 25,972 | 20.088  |       | 34.72 |   | В | N   |
|        |      |     |     |   |     |         |        |         |       |       |   |   |     |
| MOTA   | 4870 | CA  | CYS |   |     | 87.196  | 26.597 | 19.698  |       | 37.17 |   | В | C   |
| ATOM   | 4871 | CB  | CYS | В | 175 | 87.324  | 28.125 | 19.741  | 1.00  | 39.39 |   | В | С   |

|      |      |     |       |     |     |        |        |        |      |        | _             |     | _  |
|------|------|-----|-------|-----|-----|--------|--------|--------|------|--------|---------------|-----|----|
| ATOM | 4872 | SG  | CYS   | В   | 175 | 85.709 | 28.982 | 19.647 |      | 44.04  | В             |     | S  |
| MOTA | 4873 |     | CYS 1 | a · | 175 | 86.792 | 26.159 | 18.297 | 1.00 | 36.16  | В             |     | С  |
|      |      |     |       |     |     |        | 25.751 | 18.061 | 1 00 | 36.21  | В             |     | ٥  |
| MOTA | 4874 | -   | CYS   |     |     | 85.648 |        |        |      |        |               |     |    |
| MOTA | 4875 | N   | ASN : | В   | 176 | 87.744 | 26.231 | 17.375 | 1.00 | 34.30  | В             |     | N  |
| ATOM | 4876 | CA  | ASN : | R   | 176 | 87.479 | 25.853 | 16.003 | 1.00 | 32.50  | 3             |     | С  |
|      |      |     |       |     |     |        |        | 15.175 |      | 33.07  | В             |     | С  |
| MOTA | 4877 | CB  | ASN : |     | 176 | 88.740 | 25.969 |        |      |        |               |     |    |
| ATOM | 4878 | ÇG  | ASN : | В   | 176 | 88.667 | 27.103 | 14.218 |      | 32.89  | В             |     | С  |
| ATOM | 4879 | ODI | ASN : | R   | 176 | 87.636 | 27.311 | 13.590 | 1.00 | 31.47  | В             |     | 0  |
|      |      |     |       |     |     |        |        | 14.103 |      | 33.96  | В             |     | N  |
| MOTA | 4880 | NDZ | ASN   |     |     | 89.750 | 27.867 |        |      |        |               |     |    |
| ATOM | 4881 | С   | ASN   | В   | 176 | 86.927 | 24.462 | 15.869 | 1.00 | 31.18  | В             |     | C. |
| ATOM | 4882 | 0   | ASN   | R   | 176 | 85.997 | 24.221 | 15.111 | 1.00 | 31.23  | B             |     | 0  |
|      |      |     |       |     |     |        |        | 16.595 |      | 30.33  | В             |     | N  |
| ATOM | 4883 | N   | VAL   |     |     | 87.523 | 23,538 |        |      |        |               |     |    |
| ATOM | 4884 | CA  | VAL   | В   | 177 | 87.054 | 22.174 | 16.549 | 1.00 | 29.40  | E             |     | С  |
|      | 4885 | CB  | VAL   |     | 177 | 87.806 | 21,333 | 17.529 | 1.00 | 29.37  | . В           |     | С  |
| ATOM |      |     |       |     |     |        |        |        |      | 28.97  | Е             |     | C  |
| ATOM | 4886 |     | VAL   |     |     | 87.209 | 19.953 | 17.577 |      |        |               |     |    |
| MOTA | 4887 | CG2 | VAL   | В   | 177 | 89,278 | 21.311 | 17.141 | 1.00 | 27.84  | E             | •   | С  |
| ATOM | 4888 | C   | VAL   |     |     | 85.576 | 22.100 | 16.905 | 1.00 | 30.00  | E             | 1   | С  |
|      |      |     |       |     |     |        |        |        |      | 30.06  | . E           |     | 0  |
| ATOM | 4889 | 0   | VAL   |     |     | 84.797 | 21.506 | 16.174 |      |        | •             |     |    |
| MOTA | 4890 | N   | ILE   | В   | 178 | 85.192 | 22.684 | 18.040 | 1.00 | 30.53  | E             | ı   | И. |
| ATOM | 4891 | CA  | ILE   |     |     | 83.794 | 22.663 | 18.462 | 1.00 | 31.22  | E             | ,   | С  |
|      |      |     |       |     |     |        |        |        |      | 30.11  | E             |     | C  |
| ATOM | 4892 | CB  | ILE   |     |     | 83.597 | 23.376 | 19.795 |      |        |               |     |    |
| ATOM | 4893 | CG2 | ILE   | В   | 178 | 82.141 | 23.436 | 20.113 | 1.00 | 30.22  | E             | l . | С  |
|      | 4894 |     | ILE   |     |     | 84.277 | 22.609 | 20.927 | 1.00 | 31.04  | E             | l . | С  |
| ATOM |      |     |       |     |     |        |        |        |      | 32,20  | Ē             |     | C  |
| ATOM | 4895 | CD1 | ILE   | В   | 178 | 85.783 | 22.624 | 20.903 |      |        |               |     |    |
| ATOM | 4896 | С   | ILE   | В   | 178 | 82.989 | 23.404 | 17.420 | 1.00 | 32.98  | E             | }   | С  |
|      |      |     | ILE   |     |     | 81.813 | 23.110 | 17.153 | 1.00 | 32.24  | · E           | ı   | 0  |
| MOTA | 4897 | 0   |       |     |     |        |        |        |      |        |               |     |    |
| ATOM | 4898 | N   | CYS   | В   | 179 | 83.670 | 24.380 | 16.836 |      | 34.97  | . · E         |     | N  |
| ATOM | 4899 | CA  | CYS   | В   | 179 | 83.145 | 25.253 | 15.793 | 1.00 | 37.21  | . E           | } . | С  |
|      |      |     | CYS   |     |     | 84.210 | 26,296 | 15.466 | 1.00 | 37.73  |               | 1   | С  |
| MOTA | 4900 | CB  |       |     |     |        |        |        |      |        | -             |     | S  |
| ATOM | 4901 | SG  | CYS   | В   | 179 | 83.572 | 27.907 | 15.066 |      |        | 4. O - 4      |     |    |
| ATOM | 4902 | С   | CYS   | В   | 179 | 82.802 | 24.469 | 14.532 | 1.00 | 37.67  | <b>. .</b>    | 3   | С  |
|      |      |     | CYS   |     |     | 81.772 | 24.694 | 13.898 | 1.00 | 38:11  |               | ١.  | 0  |
| ATOM | 4903 | 0   |       |     |     |        |        |        |      |        |               |     |    |
| ATOM | 4904 | N   | SER   | В   | 180 | 83.699 | 23.551 | 14.184 |      | 37, 52 | , ', E        |     | N  |
| ATOM | 4905 | CA  | SER   | В   | 180 | 83.578 | 22.698 | 13.008 | 1.00 | 36.28  |               | 3   | С  |
|      |      |     |       |     |     |        |        | 12.644 | 1 00 | 37.29  |               | 1   | С  |
| MOTA | 4906 | CB  | SER   |     |     | 84.972 | 22.182 |        |      |        |               |     |    |
| MOTA | 4907 | OG  | SER   | В   | 180 | 84.949 | 21.351 | 11.498 | 1.00 | 40:59  | 1 . · · · · I | 3   | 0  |
| ATOM | 4908 | С   | SER   | n   | 180 | 82.632 | 21.526 | 13.267 | 1.00 | 35.66  | - 1           | 3   | С  |
|      |      |     |       |     |     |        |        |        |      | 34.88  | . 23.1        | 1   | 0  |
| ATOM | 4909 | 0   | SER   | В   | 180 | 82.110 | 20.925 | 12.345 |      |        |               |     |    |
| ATOM | 4910 | N   | ILE   | В   | 181 | 82.412 | 21,203 | 14.531 | 1.00 | 36.48  | • ; 1         | 3   | 'n |
| ATOM | 4911 | CA  | TT.E  | D   | 181 | 81.541 | 20.092 | 14.874 | 1,00 | 36.62  | . 1           | 3   | С  |
|      |      |     |       |     |     |        |        |        |      |        | 1             |     | С  |
| ATOM | 4912 | CB  | ILE   | В   | 181 | 81.838 | 19.594 | 16.293 |      | 35.69  |               |     |    |
| ATOM | 4913 | CG2 | ILE   | В   | 181 | 80.905 | 18.450 | 16.664 | 1.00 | 34.76  | 1             | 3   | С  |
|      |      |     | ILE   |     |     | 83.298 | 19.176 | 16.381 | 1.00 | 34.54  | 1             | 3   | С  |
| ATOM | 4914 |     |       |     |     |        |        |        |      |        |               | 3   | С  |
| ATOM | 4915 | CD1 | ILE   | В   | 181 | 83.717 | 18.729 | 17.752 |      | 34.74  |               |     |    |
| ATOM | 4916 | С   | ILE   | В   | 181 | 80.075 | 20.488 | 14.806 | 1.00 | 38.64  | 3             | 3   | С  |
|      |      | ō   | ILE   |     |     | 79.195 | 19.658 | 14.585 | 1.00 | 38.84  | 1             | 3   | 0  |
| ATOM | 4917 |     |       |     |     |        |        |        |      |        |               | 3   | N  |
| MOTA | 4918 | N   | ILE   | В   | 182 | 79.809 | 21.768 | 15.003 |      | 39.51  |               |     |    |
| ATOM | 4919 | CA  | ILE   | В   | 182 | 78.441 | 22.223 | 14.986 | 1.00 | 40.16  | 1             | В   | C  |
|      |      |     | ILE   |     | 182 | 78.209 | 23.322 | 15.987 | 1 00 | 39.63  | 1             | В   | С  |
| MOTA | 4920 | CB  |       |     |     |        |        |        |      |        |               |     | Č  |
| MOTA | 4921 | CG2 | ILE   | В   | 182 | 76.767 | 23.759 | 15.911 |      | 39.33  |               | В   |    |
| ATOM | 4922 | CG1 | ILE   | В   | 182 | 78.537 | 22.841 | 17.378 | 1.00 | 39.38  |               | В   | C  |
|      |      |     |       |     |     | 77,521 |        | 17.902 | 1 00 | 40.57  |               | В   | C  |
| MOTA | 4923 |     | IĻЕ   |     | 182 |        |        |        |      |        |               |     |    |
| MOTA | 4924 | С   | ILE   | В   | 182 | 78.062 | 22.796 | 13.647 |      | 41.93  |               | В   | C  |
| MOTA | 4925 | 0   | ILE   | В   | 182 | 76.946 | 22.597 | 13.173 | 1.00 | 41.11  |               | В   | 0  |
|      |      |     |       |     |     | 79.007 | 23.513 | 13.059 |      | 43.33  |               | В   | N  |
| MOTA | 4926 | N   |       |     | 183 |        |        |        |      |        |               | В   | Ċ  |
| ATOM | 4927 | CA  | PHE   | В   | 183 | 78.793 | 24.169 | 11.798 |      | 44.94  |               |     |    |
| ATOM | 4928 | CB  | PHE   | В   | 183 | 79.443 | 25.539 | 11.833 | 1.00 | 44,91  |               | В   | ¢  |
|      |      |     |       |     |     |        | 26.429 | 12.896 |      | 42.33  |               | В   | C  |
| MOTA | 4929 | CG  |       |     | 183 | 78.914 |        |        |      |        |               |     | č  |
| ATOM | 4930 | CD1 | PHE   | В   | 183 | 79.625 | 27.571 | 13.260 |      | 43.97  |               | В   |    |
| ATOM | 4931 |     | PHE   |     |     | 77.716 | 26.133 | 13.541 | 1.00 | 43.82  |               | В   | С  |
|      |      |     |       |     |     |        | 28.408 | 14.261 |      | 45.69  |               | В   | С  |
| MOTA | 4932 |     | PHE   |     |     | 79.152 |        |        |      |        |               |     |    |
| MOTA | 4933 | CE2 | PHE   | В   | 183 | 77.225 | 26.963 | 14.547 |      | 45.10  |               | В   | С  |
| ATOM | 4934 | CZ  |       |     | 183 | 77.947 | 28,110 | 14.914 | 1.00 | 45.41  |               | В   | С  |
|      |      |     |       |     |     |        |        | 10.610 |      | 48.04  |               | В   | С  |
| MOTA | 4935 | С   |       |     | 183 | 79.307 | 23.413 |        |      |        |               |     |    |
| ATOM | 4936 | 0   | PHE   | В   | 183 | 79.052 | 23.787 | 9.473  | 1,00 | 49.27  |               | В   | 0  |
|      |      | N   |       |     | 184 | 80.057 | 22.355 | 10.857 | 1.00 | 52.31  |               | В   | N  |
| ATOM | 4937 |     |       |     |     |        |        |        |      | 54.82  |               | В.  | Ċ  |
| ATOM | 4938 | CA  | HIS   | В   | 184 | 80.591 | 21.563 | 9.749  |      |        |               |     |    |
| ATOM | 4939 | CB  |       |     | 184 | 79.503 | 21.308 | 8.701  | 1.00 | 58.34  |               | В   | С  |
|      |      |     |       |     |     | 80.030 | 21.221 | 7.309  | 1.00 | 63.18  |               | В   | С  |
| ATOM | 4940 | CG  |       |     | 184 |        |        |        |      |        |               | B   | Č  |
| ATOM | 4941 | CD2 | HIS   | В   | 184 | 80.469 |        | 6.588  |      | 65.51  |               |     |    |
| MOTA | 4942 |     | HIS   |     |     | 80.273 | 22.338 | 6.537  | 1.00 | 65.39  |               | В   | N  |
|      |      |     |       |     |     |        | 21.972 | 5.406  | 1.00 | 67.01  |               | В   | C  |
| MOTA | 4943 |     | HIS   |     |     | 80.844 |        |        |      |        |               |     | N  |
| ATOM | 4944 | NE2 | HIS   | В   | 184 | 80.977 | 20.656 | 5.410  |      | 67.46  |               | В   |    |
| ATOM | 4945 | С   |       |     | 184 | 81.802 | 22.189 | 9.054  | 1.00 | 53.55  |               | В   | С  |
| -    |      |     |       |     |     |        |        | 8.415  |      | 53.99  |               | В   | 0  |
| ATOM | 4946 | 0   | HIS   | В   | 184 | 82.584 | 21.480 | 0,110  |      |        |               | -   | -  |

| 3.004  | 4047 |     | LYS | - | 100 |        | 00 400 | 0 104  |      | 52.69 |    | n   | **  |
|--------|------|-----|-----|---|-----|--------|--------|--------|------|-------|----|-----|-----|
| MOTA   | 4947 | N   |     |   |     | 81.970 | 23.497 | 9.194  |      |       |    | В   | N   |
| MOTA   | 4948 | CA  | LYS | В | 185 | 83.093 | 24.157 | 8.549  | 1.00 | 53.76 |    | В   | С   |
| ATOM   | 4949 | ÇВ  | LYS | В | 185 | 82.589 | 24.908 | 7.300  | 1.00 | 58.14 |    | В   | С   |
| MOTA   | 4950 | CG  | LYS | В | 185 | 83.257 | 26.277 | 7.014  | 1.00 | 63.95 |    | В   | С   |
| ATOM   | 4951 | CD  | LYS |   |     | 82.653 | 26.991 | 5.778  |      | 66.84 |    | В   | Ċ   |
|        |      |     |     |   |     |        |        |        |      |       |    |     |     |
| MOTA   | 4952 | CE  | LYS |   |     | 82.725 | 28.531 | 5.907  |      | 68.43 |    | ₿ ' | С   |
| ATOM   | 4953 | NZ  | LYS | В | 185 | 81.605 | 29.139 | 6.713  | 1.00 | 69.58 |    | В   | N   |
| ATOM   | 4954 | С   | LYS | В | 185 | 83.810 | 25.110 | 9.486  | 1.00 | 51.06 |    | В   | С   |
| MOTA   | 4955 | 0   | LYS |   |     | 83.175 | 25.955 | 10.105 | 1 00 | 52.02 |    | В   | Ó   |
|        |      |     |     |   |     |        |        | 9.587  |      |       |    | В   |     |
| ATOM   | 4956 | N   | ARG |   |     | 85.130 | 24.995 |        |      | 47.42 |    |     | N   |
| ATOM   | 4957 | ÇA  | ARG |   |     | 85.870 | 25.891 | 10.469 |      | 44.35 |    | В   | С   |
| MOTA   | 4958 | CB  | ARG | В | 186 | 87.296 | 25.382 | 10.689 | 1.00 | 44.00 |    | В   | C   |
| ATOM   | 4959 | CG  | ARG | В | 186 | 88.165 | 25.377 | 9.451  | 1.00 | 41.53 |    | В   | C   |
| ATOM   | 4960 | CD  | ARG |   |     | 89.561 | 24.878 | 9.765  | 1 00 | 38.85 |    | В   | Ċ   |
|        |      |     |     |   |     |        |        | 10.471 |      |       |    |     |     |
| MOTA   | 4961 | NE  | ARG |   |     | 90.425 | 25.838 |        |      | 37.49 |    | В   | N   |
| ATOM   | 4962 | CZ  | ARG |   |     | 91.203 | 26.735 | 9.868  |      | 38.65 |    | B   | С   |
| ATOM   | 4963 | NH1 | ARG | В | 186 | 91.226 | 26.821 | 8.545  | 1.00 | 39.77 |    | В   | N   |
| MOTA   | 4964 | NH2 | ARG | В | 186 | 92.002 | 27.506 | 10.581 | 1.00 | 37.47 |    | В   | N   |
| ATOM   | 4965 | С   | ARG | В | 186 | 85.918 | 27.314 | 9.919  | 1.00 | 44.45 |    | В   | С   |
| ATOM   | 4966 | ō   | ARG |   |     | 85.271 | 27.611 | 8.919  |      | 45.33 |    | В   | ō   |
|        |      |     |     |   |     | 86.666 |        | 10.595 |      | 44.86 |    | В   | N   |
| ATOM   | 4967 | N   | PHE |   |     |        | 28.189 |        |      |       |    |     |     |
| MOTA   | 4968 | CA  | PHE |   |     | 86.837 | 29.591 | 10.199 |      | 44.59 |    | В   | С   |
| ATOM   | 4969 | CB  | PHE | В | 187 | 86.277 | 30.557 | 11.241 | 1.00 | 46.44 |    | В   | C   |
| MOTA   | 4970 | CG  | PHE | ₿ | 187 | 84.798 | 30.572 | 11.330 | 1.00 | 49.27 |    | В.  | C   |
| ATOM   | 4971 | CD1 | PHE | В | 187 | 84.119 | 29.519 | 11.927 | 1.00 | 51.22 |    | В   | . C |
| ATOM   | 4972 |     | PHE |   | 187 | 84.075 | 31.640 | 10.823 |      | 51.55 |    | В   | Č   |
|        |      |     |     |   |     |        |        |        |      | 53.27 |    |     |     |
| ATOM   | 4973 |     | PHE |   |     | 82.732 | 29.519 | 12.024 |      |       |    | В   | С   |
| ATOM   | 4974 | CE2 | PHE | В | 187 | 82.687 | 31.658 | 10.911 |      | 53.72 |    | В   | C,  |
| ATOM   | 4975 | CŹ  | PHE | В | 187 | 82.014 | 30.590 | 11.514 | 1.00 | 54.28 | •  | В   | C,  |
| ATOM   | 4976 | С   | PHE | В | 187 | 88.312 | 29.871 | 10.137 | 1.00 | 44.43 |    | В   | С.  |
| ATOM   | 4977 | 0   | PHE |   |     | 89.100 | 29,147 | 10.726 | 1.00 | 44.24 |    | В   | 0.  |
| ATOM   | 4978 | N   | ASP |   |     | 88.700 | 30.930 | 9.438  |      | 47.97 |    | В   | N . |
|        |      |     |     |   |     |        |        |        |      |       |    |     | _   |
| ATOM   | 4979 | CA  | ASP |   |     | 90.109 | 31.272 | 9.392  |      | 50.95 |    | В   | C., |
| ATOM   | 4980 | CB  | ASP |   |     | 90.406 | 32.180 | 8.196  | 1,00 | 52.83 |    | В   | С   |
| ATOM   | 4981 | CG  | ASP | В | 188 | 91.884 | 32.180 | 7.818  | 1.00 | 55.83 |    | В   | С   |
| ATOM   | 4982 | OD1 | ASP | В | 188 | 92.671 | 32.906 | 8.465  | 1.00 | 56.59 |    | В   | 0 - |
| ATOM   | 4983 |     | ASP |   |     | 92.264 | 31.443 | 6.876  |      | 57.72 |    | В   | 0   |
|        |      |     | ASP |   |     | 90.337 | 32.000 | 10.724 |      | 52.36 |    | В   | -   |
| ATOM   | 4984 | C   |     |   |     |        |        |        |      |       |    |     |     |
| ATOM   | 4985 | 0   | ASP |   |     | 89.411 | 32,601 | 11.271 |      | 51.48 |    | В   | Ο,  |
| ATOM   | 4986 | N   | TYR | В | 189 | 91.551 | 31.932 | 11.263 | 1.00 | 54.34 |    | В   | N · |
| MOTA   | 4987 | CA  | TYR | В | 189 | 91.833 | 32.585 | 12.537 | 1.00 | 56.57 |    | В   | С   |
| ATOM   | 4988 | CB  | TYR | В | 189 | 93.252 | 32.258 | 13.013 | 1.00 | 56.39 |    | В   | С   |
| ATOM   | 4989 | CG  | TYR |   |     | 93.449 | 30.817 | 13.447 |      | 55.67 |    | В   | С   |
|        |      |     |     |   |     |        |        |        |      | 55.15 |    | В   | Č   |
| MOTA   | 4990 |     | TYR |   |     | 94.670 | 30.386 | 13.976 |      |       |    |     |     |
| ATOM   | 4991 |     | TYR |   |     | 94.877 | 29.050 | 14.322 |      | 53.84 |    | В   | C   |
| ATOM   | 4992 | CD2 | TYR | В | 189 | 92.430 | 29.868 | 13.287 | 1.00 | 54.91 |    | В   | C   |
| ATOM   | 4993 | CE2 | TYR | В | 189 | 92.628 | 28.533 | 13.634 | 1.00 | 54.27 |    | В   | С   |
| ATOM   | 4994 | CZ  | TYR |   |     | 93.853 | 28.132 | 14.143 | 1.00 | 53.51 |    | В   | С   |
| ATOM   | 4995 | OH  | TYR |   |     | 94.065 | 26.808 | 14.433 |      | 53.61 |    | В   | 0   |
|        |      |     |     |   |     |        |        | 12.480 |      | 58.94 |    | В   | č   |
| ATOM   | 4996 | C   | TYR |   |     | 91.666 | 34.094 |        |      |       |    |     |     |
| ATOM   | 4997 | 0   | TYR |   |     | 91.893 | 34.791 | 13.475 |      | 59.72 |    | В   | 0   |
| ATOM   | 4998 | N   | LYS | В | 190 | 91.266 | 34.599 | 11.320 | 1.00 | 59.35 |    | В   | N   |
| ATOM   | 4999 | CA  | LYS | В | 190 | 91.087 | 36.034 | 11.149 | 1.00 | 60.04 |    | В   | С   |
| ATOM   | 5000 | СВ  | LYS |   |     | 92.039 | 36.534 | 10.060 | 1.00 | 63.23 |    | В   | С   |
| ATOM   | 5001 | CG  | LYS |   |     | 93.524 | 36.513 | 10.467 | 1.00 | 67.30 |    | В   | С   |
| ATOM   | 5002 | CD  | LYS |   |     | 94.440 | 36.039 | 9.319  | 1.00 | 70.75 |    | В   | č   |
|        |      |     |     |   |     |        |        |        |      |       |    |     |     |
| MOTA   | 5003 | CE  | LYS |   |     | 94.301 | 36.885 | 8.027  |      | 72.83 |    | В   | C   |
| ATOM . | 5004 | ΝŻ  | LYS |   |     | 94.894 | 38.268 | 8.092  |      | 72.62 | •  | В   | N   |
| MOTA   | 5005 | С   | LYS | В | 190 | 89.648 | 36.430 | 10.833 | 1.00 | 58.50 |    | В   | C   |
| ATOM   | 5006 | 0   | LYS | В | 190 | 89.260 | 37.575 | 11.050 | 1.00 | 56.42 |    | В   | 0   |
| ATOM   | 5007 | N   | ASP |   |     | 88.865 | 35.475 | 10.337 | 1.00 | 57.75 |    | В   | N   |
|        |      |     |     |   |     |        |        | 9.994  |      | 57.72 |    | В   | c   |
| MOTA   | 5008 | CA  | ASP |   |     | 87.465 | 35.708 |        |      | 60.76 |    |     |     |
| ATOM   | 5009 | СВ  | ASP |   |     | 86.780 | 34.360 | 9.739  |      |       |    | В   | C   |
| ATOM   | 5010 | ÇG  | ASP |   |     | 85.363 | 34,505 | 9.215  |      | 64.66 |    | В.  | С   |
| MOTA   | 5011 | OD1 | ASP | В | 191 | 84.834 | 33.518 | 8.646  |      | 67.22 |    | В   | 0   |
| ATOM   | 5012 | OD2 | ASP | В | 191 | 84.774 | 35.594 | 9.373  | 1.00 | 65.52 | ٠. | В   | 0   |
| ATOM   | 5013 | C   | ASP |   |     | 86.754 | 36.475 | 11.109 |      | 57.11 |    | В   | C · |
| MOTA   | 5014 | Ö   | ASP |   |     | 86.890 | 36.135 | 12.277 |      | 59.28 |    | Б.  | ō   |
|        |      |     |     |   |     |        |        |        |      |       |    | В   |     |
| ATOM   | 5015 | N   | GLN |   |     | 85.979 | 37.501 | 10.769 |      | 55.36 |    |     | N   |
| ATOM   | 5016 |     | GLN |   |     | 85.313 | 38.286 | 11.813 |      | 52.96 |    | В   | C   |
| MOTA   | 5017 | ÇВ  | GLN | В | 192 | 84.711 | 39.558 | 11.223 |      | 52.66 |    | В   | С   |
| ATOM   | 5018 | CG  | GLN | В | 192 | 84.636 | 40.677 | 12.246 |      | 52.78 |    | В   | C   |
| ATOM   | 5019 | CD  | GLN |   |     | 86.005 | 40.993 | 12.848 | 1.00 | 53.25 |    | В   | C   |
| ATOM   | 5020 |     | GLN |   |     | 86.978 | 41.251 | 12.118 |      | 52.70 |    | В   | Ó   |
|        |      |     |     |   |     |        |        | 14.180 |      |       |    | В   | N   |
| ATOM   | 5021 | NEZ | GLN | В | 192 | 86.088 | 40.971 | 14.100 | 1.00 | 51.70 |    | D.  | 14  |
|        |      |     |     |   |     |        |        |        |      |       |    |     |     |

- 1208 5057

3003

1.000

32729

). . TA

in State

1 . P. 1 

595.

501.8

35 11

3.37

595

#### 264/514

```
12.634 1.00 50.98
                                       84.257
                                                                                 В
                       GLN B 192
                                               37.558
     ATOM
            5022
                       GLN B 192
                                       84.274
                                               37.649
                                                        13.860
                                                                1.00 50.13
     MOTA
            5023
                       GLN B 193
                                       83.342
                                               36.858
                                                        11.961
                                                                1.00 50.13
            5024
     ATOM
                                       82.270
                                               36.109
                                                        12.623
                                                                1.00 50.06
                                                                                 В
                                                                                      C
            5025
                   CA
                       GLN B 193
     ATOM
                                       81,649
                                                                1.00 52.74
     MOTA
            5026
                   CB
                       GLN B 193
                                               35.095
                                                        11.646
                                       81.223
                                                        10.282
                                                                1.00 58.77
                                                                                 В
     ATOM
            5027
                   CG
                       GLN B 193
                                               35.633
                       GLN B 193
                                       80.868
                                               34.520
                                                         9.270
                                                                1.00 62.64
            5028
     ATOM
                   CD
                   OE1
                       GLN B 193
                                       79.994
                                               33,676
                                                         9.531
                                                                1.00 63.30
                                                                                 В
            5029
     ATOM
                                                         8.102
                                                                1.00 63.69
                       GLN B 193
                                       81.549
                                               34.525
                                                                                 В
            5030
                   NE2
     ATOM
                                                                1.00 48.34
                                                                                 B
                       GLN B 193
                                       82.854
                                               35.345
                                                        13.813
            5031
     ATOM
                   C
                                                                1.00 46.82
                                       82,239
                                               35.250
                                                        14.883
                       GLN B 193
     ATOM
            5032
                   0
                                                                1.00 45.85
                                       84.053
                                               34.808
                                                        13.576
                                                                                 В
     ATOM
            5033
                   N
                       PHE B 194
                                       84.842
                                               34.016
                                                        14.521
                                                                1.00 42.78
                       PHE B 194
     ATOM
            5034
                   CA
                       PHE B 194
                                       86.022
                                               33.370
                                                        13,777
                                                                 1.00 40.95
                                                                                      C
     ATOM
            5035
                   CB
                                       86.824
                                               32.390
                                                        14.605
                                                                1.00 38.66
                                                                                      C
                       PHE B 194
     MOTA
            5036
                   CG
                                       88.201
                                               32.560
                                                        14.781
                                                                1.00 36.95
                                                                                      C
                   CD1 PHE B 194
     ATOM
            5037
                                               31.308
                                       86.209
                                                        15.216
                                                                1.00 38.02
                                                                                      С
     MOTA
            5038
                   CD2 PHE B 194
                                               31.662
                                                        15.558
                                                                 1.00 33.93
                                                                                      С
                                       88.954
     MOTA
            5039
                   CE1 PHE B 194
                                               30.408
                                                                 1.00 36.65
                                                                                      C
                                       86.948
                                                        15.991
     ATOM
            5040
                   CE2 PHE B 194
                                                        16.162
                                                                 1.00 34.37
                                                                                      С
                                       88.327
                                               30.591
     MOTA
             5041
                       PHE B 194
                   CZ
                                                                 1.00 43.21
                                                                                      С
            5042
                       PHE B 194
                                       85.360
                                               34.858
                                                        15.679
     MOTA
                   С
                                               34.730
35.718
                                                                 1.00 44.44
                                                        16.802
                                                                                      ٥
             5043
                       PHE B 194
                                       84.875
     ATOM
                   0
                                                                 1.00 42.53
                                                                                      N
                                                        15.403
     ATOM
             5044
                   N
                     · LEU B 195
                                       86.340
                                               36.582
                                                        16.428
                                                                 1.00 41.23
                                                                                 В
                                                                                      С
            5045
                       LEU B 195
                                       86.926
     MOTA
                   CA
                                                                 1.00 41.04
                                                                                      С
                                                                                 В
             5046
                       LEU B 195
                                       87.748
                                               37.694
                                                        15.787
     ATOM
                   CB
                                                                 1.00 42.01
                                                                                      C
                                                        15.499
                                                                                 В
                       LEU B 195
                                       89.211
                                               37.355
     ATOM
             5047
                   CG
                                                                                      C
     MOTA
             5048
                   CD1 LEU B 195
                                       89.547
                                               37.872
                                                        14.112
                                                                 1.00 41.36
                                                                                 В
             5049
                   CD2 LEU B 195
                                        90.141
                                               37.981
                                                        16.556
                                                                 1.00 43.00
                                                                                 R
                                                                                      С
     ATOM
                                        85.875
                                               37.188
                                                        17.348
                                                                 1.00 40.50
                                                                                 В
                                                                                      С
             5050
                       LEU B 195
     ATOM
                   C
                                               37.511
                                                        18.491
                                                                 1.00 39.73
                                                                                 В
                                                                                      0
                       LEU B 195
                                        86.172
            5051
                   ٥
     ATOM
                                               37,350
                                                                 1.00 42.43
                                                                                 В
                                                                                      N
                       ASN B 196
                                        84.657
                                                        16.849
     ATOM
             5052
                   N
                                                                 1.00 44.01
                                        83.591
                                                37.885
                                                        17.671
                                                                                      С
                       ASN B 196
     ATOM
             5053
                   CA
                                                                                 В
                                                                                      C
                                        82.340
                                               38.144
                                                        16.853
                                                                 1.00 46.95
 MOTA :::
                       ASN B 196
             5054
                   CB
                                        82.420
                                               39.409
                                                        16.044
                                                                 1.00 50.64
     ATOM
             5055
                   CG
                       ASN B 196
                                                                                 В
                                        81.477
                                                39.733
                                                        15.313
                                                                 1.00 52.97
  ATOM
             5056
                   OD1 ASN B 196
                                        83.535
                                                40.149
                                                        16.174
                                                                 1.00 51.32
     MOTA
             5057
                   ND2 ASN B 196
                                               36.855
                                                        18.711
                                                                 1.00 43.65
                                        83.230
  ... ATOM
             5058
                       ASN B 196
                                                        19.903
                                                                 1.00 45.28
ATOM
             5059
                   0
                       ASN B 196
                                        83.183
                                               37.140
                                                                 1.00 43.16
                                                        18.238
                                        82.958
                                                35.645
             5060
                   N
                       LEU B 197
                                                        19.107
                                                                 1.00 43.05
                                                                                      ¢
     ATOM
             5061
                   CA
                       LEU B 197
                                        82.563
                                               34.548
                                                                 1.00 41.90
                                                                                 В
                                                                                      · C
                                                        18.268
             5062
                   СВ
                       LEU B 197
                                        82.199
                                                33.332
     ATOM
                                                                 1.00 42.72
                                                                                      C
                                                        19,067
             5063
                       LEU B 197
                                        81.854
                                               32.085
      MOTA
                   CG
                                                        20.143
                                                                 1.00 42.81
                                                                                  В
                                                                                       C
                   CD1 LEU B 197
                                        80.824
                                                32.399
      ATOM
             5064
                                                                                       C
                       LEU B 197
                                       81.335
                                               31.023
                                                        18.121
                                                                 1.00 42.76
                                                                                  В
      ATOM
             5065
                   CD2
                                                                                       С
                                        83.662
                                                34.193
                                                        20.076
                                                                 1.00 43.59
      ATOM
             5066
                       LEU B 197
                   С
                                        83.414
                                                33.903
                                                        21.241
                                                                 1.00 42.79
                                                                                       0
      MOTA
             5067
                   0
                       LEU B 197
                                        84.880
                                                34.211
                                                        19.567
                                                                 1.00 45.32
                                                                                       N
      ATOM
             5068
                       MET B 198
                   N
             5069
                       MET B 198
                                        86.046
                                                33.921
                                                        20.362
                                                                 1.00 47.57
                                                                                  В
                                                                                       ¢
                   CA
      ATOM
                       MET B 198
                                        87.267
                                                34.044
                                                        19.462
                                                                 1.00 50.58
                                                                                       С
             5070
                   СВ
      ATOM
                                                33.588
                                                        20.060
                                                                 1.00 54.60
                                                                                  В
                                                                                       С
                       MET B 198
                                        88.561
             5071
                   CG
      ATOM
                                                                 1.00 57.03
                                                31.854
                                                        19.802
                                                                                       S
                       MET B 198
                                        88.730
             5072
                   SD
      ATOM
                                                        21.393
                                                                                  В
                                                                                       C
                                        88.192
                                                31.220
                                                                 1.00 57.52
                       MET B 198
      ATOM
             5073
                   CE
                                                                                       С
                                        86.094
                                                34.968
                                                        21.488
                                                                 1.00 48.86
      ATOM
             5074
                   С
                       MET B 198
                                                                                       0
                                        86.245
                                                34.627
                                                        22.661
                                                                 1.00 50.04
                                                                                  В
                       MET B 198
      ATOM
             5075
                   0
                                                36.238
                                                        21.114
                                                                 1.00 49.54
      ATOM
             5076
                   N
                       GLU B 199
                                        85.940
                                        85.967
                                                37.371
                                                        22.044
                                                                 1.00 51.03
                                                                                       С
      MOTA
             5077
                   CA
                       GLU B 199
                                                38.691
                                                        21.264
                                                                 1.00 54.44
                                                                                       С
                                        85.754
      ATOM
             5078
                   CB
                       GLU B 199
                                                40.003
                                                                                       C
                                        85.602
                                                        22.096
                                                                 1.00 59.17
             5079
                    CG
                        GLU B 199
      ATOM
                                                41.290
                                                        21.217
                                                                 1.00 62.74
      ATOM
             5080
                   CD
                        GLU.B 199
                                        85.504
                                                41.653
                                                        20.555
                                                                 1.00 63.87
      ATOM
             5081
                    OE1 GLU B 199
                                        86.512
                                                                                       ٥
                                                        21.196
                                                                 1.00 63.56
                       GLU B 199
                                        84.426
                                                41.938
      ATOM
             5082
                   OE2
                                                                                       C
                                        84.934
                                                37.239
                                                        23.169
                                                                 1.00 49.96
                                                                                  В
      MOTA
             5083
                        GLU B 199
                   С
                                                                                       0
                                        85.282
                                                37.336
                                                        24.351
                                                                 1.00 50.98
             5084
                        GLU B 199
      ATOM
                   0
                                                                                       N
                        LYS B 200
                                        B3.673
                                                37.011
                                                        22.805
                                                                 1.00 48.61
                                                                                  В
             5085
      ATOM
                   N
                                                                                       С
                                                36.856
                                                        23.783
                                                                 1.00 46.63
                                                                                  В
                       LYS B 200
                                        82.597
             5086
                    CA
      ATOM
                                                36.638
                                                        23,059
                                                                 1.00 47.45
                                                                                       C
                        LYS B 200
                                        81.254
      ATOM
             5087
                    CB
                                                37.699
                                                        23,312
                                                                                       С
                                        80.153
                                                                 1.00 50.05
                                                                                  В
                       LYS B 200
      ATOM
             5088
                    CG
                                                39.168
                                                        23.141
                                                                 1.00 51.73
                                                                                       С
                                        80.620
      ATOM
             5089
                    CD
                       LYS B 200
                                                39.454
                                                        21.757
                                                                 1.00 52.48
                                        81.219
      ATOM
             5090
                    CE
                        LYS B 200
                                                40.839
                                                        21,576
                                                                 1.00 53.40
      ATOM
             5091
                        LYS B 200
                                        81.776
                    NZ
                                                35.677
                                                        24.717
                                                                 1.00 45.00
      ATOM
             5092
                        LYS B 200
                                        82.908
                                                        25.930
                                                35.773
                                                                 1.00 44.17
      ATOM
             5093
                    0
                        LYS B 200
                                        82.735
                                                                                       N
                                                        24,160
                                                                 1.00 44.69
                                        83.376
                                                34.567
      ATOM
             5094
                        LEU B 201
                    N
                                                        25,006
                                                                 1.00 43.65
                        LEU B 201
                                        83.697
                                                33.431
                                                                                  В
      MOTA
             5095
                    CA
                                                        24.175
                                                                 1.00 42.74
                                        84.136
                                                32,229
      ATOM
             5096
                    СВ
                        LEU B 201
```

Talling of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s

| MOTA | 5097 | CG  | LEU B 20  | 1      | 82.962 | 31.444 | 23.566 | 1.00 | 43.52 | E   |     | С  |
|------|------|-----|-----------|--------|--------|--------|--------|------|-------|-----|-----|----|
|      |      |     |           |        |        |        |        |      | 44.16 | E   |     | С  |
| ATOM | 5098 |     | LEU B 20  |        | 83.482 | 30.160 | 22.938 |      |       |     |     |    |
| ATOM | 5099 | CD2 | LEU B 20  | 1      | 81.920 | 31.123 | 24.635 | 1.00 | 44.74 | E   |     | С  |
|      | 5100 | C   | LEU B 20  |        | 84,776 | 33.803 | 26.013 | 1.00 | 43.64 | E   | ı   | С  |
| MOTA |      |     |           |        |        |        | _      |      |       | · E |     | Ō  |
| ATOM | 5101 | 0   | LEU B 20  | 7      | 84.623 | 33.518 | 27.197 |      | 43.21 |     |     |    |
| ATOM | 5102 | N   | ASN B 20  | 2      | 85.852 | 34.449 | 25.570 | 1.00 | 44.42 | E   | ,   | N  |
|      |      | CA  | ASN B 20  |        | 86.907 | 34.838 | 26,505 | 1.00 | 46.17 | E   | l . | С  |
| MOTA | 5103 |     |           |        |        |        |        |      |       | E   |     | Č  |
| ATOM | 5104 | CB  | ASN B 20  | 2      | 88.063 | 35.527 | 25.790 |      | 47.52 |     |     |    |
| ATOM | 5105 | CG  | ASN B 20  | 2      | 88.891 | 34.578 | 24.979 | 1.00 | 49.96 | E   | l . | С  |
|      |      |     |           |        | 89.892 | 34.974 | 24.380 |      | 49.56 | E   | 1   | 0  |
| ATOM | 5106 |     | ASN B 20  |        |        |        |        |      |       |     |     |    |
| ATOM | 5107 | ND2 | ASN B 20  | 2      | 88.489 | 33.307 | 24.952 | 1.00 | 51.74 | E   | i   | N  |
| ATOM | 5108 | С   | ASN B 20  | 2      | 86.438 | 35.772 | 27.594 | 1.00 | 47.23 | E   | 1   | С  |
|      |      |     |           |        |        |        |        |      | 46.64 | F   |     | 0  |
| MOTA | 5109 | 0   | ASN B 20  | 2      | 86.997 | 35.772 | 28.686 |      |       |     |     |    |
| ATOM | 5110 | N   | GLU B 20  | 3      | 85.437 | 36.587 | 27.297 | 1.00 | 48.98 | E   | 1   | N  |
|      | 5111 | CA  | GLU B 20  |        | 84.956 | 37.528 | 28.294 | 1.00 | 51.22 | 1   | l   | С  |
| ATOM |      |     |           |        |        |        |        |      |       |     |     | Č  |
| MOTA | 5112 | СB  | GLU B 20  | 3      | 84.046 | 38.591 | 27.652 |      | 55.06 |     |     |    |
| ATOM | 5113 | CG  | GLU B 20  | 3      | 83.938 | 39.918 | 28.446 | 1.00 | 61.12 | E   | 1   | С  |
|      | 5114 | CD  | GLU B 20  |        | 83.031 | 40.966 | 27.782 | 1.00 | 65.28 | H   | 1   | С. |
| MOTA |      |     |           |        |        |        |        |      |       | 1   |     |    |
| ATOM | 5115 | QE1 | GLU B 20  | 3      | 83.188 | 41.202 | 26.549 |      | 67.23 |     |     | 0  |
| ATOM | 5116 | OE2 | GLU B 20  | 3      | 82.175 | 41.568 | 28.497 | 1.00 | 67.47 | F   | }   | 0  |
|      |      |     | GLU B 20  |        | 84.219 | 36.783 | 29.406 | 1.00 | 49.64 | I   | ì   | C  |
| MOTA | 5117 | С   |           |        |        |        |        |      |       | Ī   |     | ō  |
| ATOM | 5118 | 0   | GLU B 20  | 3      | 84.536 | 36.976 | 30.568 |      | 50.21 |     |     |    |
| ATOM | 5119 | N   | ASN B 20  | 4      | 83.271 | 35.915 | 29.066 | 1.00 | 48.61 | E   | } - | N  |
|      |      | CA  | ASN B 20  |        | 82.551 | 35.186 | 30.103 |      | 47.37 | 1   | 3   | С  |
| atom | 5120 |     |           |        |        |        |        |      |       |     |     |    |
| ATOM | 5121 | CB  | ASN B 20  |        | 81.644 | 34.137 | 29.509 |      | 48.09 | 5   |     | C  |
| MOTA | 5122 | CG  | ASN B 20  | 4      | 80.530 | 34.741 | 28.745 | 1.00 | 48.95 | 1   | ι.  | С  |
|      |      |     |           |        | 79.681 | 34.047 | 28.212 | 1 00 | 51.65 | 3   | ı   | 0  |
| MOTA | 5123 |     | ASN B 20  |        |        |        |        |      |       |     |     |    |
| ATOM | 5124 | ND2 | ASN B 20  | 4 ;    | 80.517 | 36.063 | 28.688 |      | 48.91 | 1   |     | N  |
| ATOM | 5125 | С   | ASN B 20  | 4      | 83.489 | 34.494 | 31.043 | 1.00 | 47.81 | 1   | 3   | С  |
|      |      |     |           |        | 83.186 | 34.302 | 32,219 |      | 47.92 | 1   | 1   | 0  |
| MOTA | 5126 |     | ASN B 20  |        |        |        |        |      |       |     |     |    |
| ATOM | 5127 | N   | ILE B 20  | 15     | 84.626 | 34.078 | 30.515 | 1.00 | 47.04 | . 1 |     | N  |
| ATOM | 5128 | CA: | ILE B 20  | 5 -    | 85.589 | 33.408 | 31.350 | 1.00 | 47.61 | 1   | 3   | С  |
|      |      |     |           |        |        | -      | 30.521 |      | 47.66 | 1   |     | С  |
| MOTA | 5129 |     | ILE B 20  |        | 86.702 | 32.790 |        |      |       |     |     |    |
| MOTA | 5130 | CG2 | ILE B 20  | 15     | 87.599 | 31.987 | 31.421 | 1.00 | 44.73 | 1   | 3   | С  |
| ATOM | 5131 |     | ILE B 20  |        | 86.108 | 31.889 | 29.437 | 1.00 | 48.21 | 1   | 3   | С  |
|      |      |     |           |        |        |        |        |      |       |     | 3   | C  |
| MOTA | 5132 | CDI | ILE B 20  | 15     | 87.164 | 31.367 | 28.482 |      | 51.29 |     |     |    |
| ATOM | 5133 | С.  | ILE B. 20 | )5 .   | 86.183 | 34.423 | 32.317 | 1.00 | 49.16 |     | 3   | С  |
|      |      |     | ILE B 20  |        | 86.152 | 34.207 | 33.526 | 1.00 | 50.87 | 1   | 3   | 0  |
| MOTA | 5134 |     |           |        |        |        |        |      |       |     | 3   |    |
| MOTA | 5135 | N   | LYS B 20  | )6 ''' | 86.705 | 35.539 | 31.786 |      | 49.48 |     |     | N  |
| ATOM | 5136 | CA  | LYS B 20  | 16 ' ' | 87.301 | 36.595 | 32.595 | 1.00 | 49.08 | 1   | 3   | С  |
|      |      |     |           |        | 87.631 | 37.809 | 31.724 | 1.00 | 52.13 | 1   | 3   | С  |
| ATOM | 5137 | CB  | LYS B 20  |        |        |        |        |      |       |     |     |    |
| MOTA | 5138 | CG  | LYS B 20  | )6     | 88.781 | 37.584 | 30.756 |      | 59.24 |     | 3   | С  |
| ATOM | 5139 | CD  | LYS B 20  | )6     | 89.069 | 38.835 | 29.942 | 1.00 | 63.85 | i   | 3   | С  |
|      |      |     |           |        | 90.220 | 38.610 | 28.974 | 1 00 | 66.06 |     | 3   | С  |
| ATOM | 5140 | CE  | LYS B 20  |        |        |        |        |      |       |     |     |    |
| MOTA | 5141 | NZ  | LYS B 20  | )6     | 90.515 | 39.828 | 28.168 |      | 64.33 |     | В   | N  |
| ATOM | 5142 | С   | LYS B 20  | 16     | 86.367 | 37.011 | 33.727 | 1.00 | 47.00 |     | В   | C  |
|      |      |     |           |        | 86.819 | 37.298 | 34.830 | 1.00 | 46.76 |     | В   | 0  |
| ATOM | 5143 | 0   | LYS B 20  |        |        |        |        |      |       |     |     | N  |
| MOTA | 5144 | N   | ILE B 20  | )7     | 85.064 | 37.039 | 33.438 |      | 46.06 |     | В   |    |
| MOTA | 5145 | CA  | ILE B 20  | )7     | 84.049 | 37.411 | 34.420 | 1.00 | 44.33 |     | В   | С  |
|      |      |     |           |        | 82.645 | 37.638 | 33.781 | 1 00 | 43.84 |     | В   | С  |
| ATOM | 5146 | CB  | ILE B 20  |        |        |        |        |      |       |     |     | Č  |
| MOTA | 5147 | CG2 | ILE B 20  | )7     | 81.622 | 37.964 | 34.861 |      | 43.89 |     | В   |    |
| ATOM | 5148 | CG1 | ILE B 20  | 7      | 82.665 | 38.779 | 32.777 | 1.00 | 44.63 |     | В   | С  |
|      |      |     | ILE B 20  |        | 81.313 | 38.987 | 32.115 | 1.00 | 44.06 |     | В   | С  |
| ATOM | 5149 |     |           |        |        |        |        |      |       |     | В   | ē  |
| MOTA | 5150 | C   | ILE B 20  | 37     | 83.874 | 36.282 | 35.425 |      | 44.39 |     |     |    |
| ATOM | 5151 | 0   | ILE B 20  | 7      | 83.820 | 36.518 | 36.624 | 1.00 | 44.75 |     | В   | 0  |
|      |      |     |           |        | 83.773 | 35.060 | 34.920 | 1.00 | 44.39 |     | В   | N  |
| ATOM | 5152 | N   | LEU B 20  |        |        |        |        |      |       |     |     |    |
| MOTA | 5153 | CA  | LEU B 20  | 80     | 83.586 | 33.899 | 35.761 |      | 45.49 |     | В   | C  |
| ATOM | 5154 | CB  | LEU B 2   |        | 83.095 | 32.721 | 34.916 | 1.00 | 43.71 |     | В   | С  |
|      |      |     |           |        |        |        | 34.586 |      | 43.54 |     | В   | С  |
| ATOM | 5155 | CG  | LEU B 2   |        | 81.602 | 32.753 |        |      |       |     |     |    |
| MOTA | 5156 | CD1 | LEU B 2   | 80     | 81.239 | 31.663 | 33.587 |      | 42.54 |     | В   | С  |
| ATOM | 5157 |     | LEU B 2   |        | 80.819 | 32.580 | 35.870 | 1.00 | 43.73 |     | В   | С  |
|      |      |     |           |        |        |        | 36.540 |      | 48.17 |     | В   | С  |
| ATOM | 5158 | С   | LEU B 2   |        | 84.831 | 33.487 |        |      |       |     |     |    |
| MOTA | 5159 | 0   | LEU B 2   | 08     | 84.746 | 32.663 | 37.452 |      | 48.66 |     | В   | 0  |
| ATOM | 5160 | N   | SER B 2   |        | 85.979 | 34.071 | 36.198 | 1.00 | 50.43 |     | В   | N  |
|      |      |     |           |        |        |        |        |      | 52.68 |     | В   | С  |
| MOTA | 5161 | CA  | SER B 2   |        | 87.256 | 33.752 | 36.841 |      |       |     |     |    |
| ATOM | 5162 | CB  | SER B 2   | 09     | 88.355 | 33.653 | 35.793 |      | 53.24 |     | В   | C  |
| ATOM | 5163 | OG  | SER B 2   |        | 88.776 | 34.954 | 35.403 | 1.00 | 53.27 |     | В   | 0  |
|      |      |     |           |        |        |        | 37.861 |      | 55.00 |     | В   | С  |
| ATOM | 5164 | С   | SER B 2   |        | 87.682 | 34.796 |        |      |       |     |     |    |
| MOTA | 5165 | 0   | SER B 2   | 09     | 88.858 | 34.876 | 38.236 |      | 55.96 |     | В   | 0  |
| ATOM | 5166 | N   | SER B 2   |        | 86.740 | 35.627 | 38.276 | 1.00 | 56.45 |     | В   | N  |
|      |      |     |           |        |        |        | 39.261 |      | 58.60 |     | В   | C  |
| MOTA | 5167 | CA  | SER B 2   |        | 87.059 | 36.630 |        |      |       |     |     |    |
| ATOM | 5168 | CB  | SER B 2   | 10     | 86.213 | 37.884 | 39.066 |      | 59.67 |     | В   | C  |
| ATOM | 5169 | OG  | SER B 2   |        | 86.195 | 38.634 | 40.278 | 1.00 | 62.00 |     | В   | 0  |
|      |      |     |           |        |        |        | 40.631 |      | 58.78 |     | В   | C. |
| MOTA | 5170 | С   | SER B 2   |        | 86.784 | 36.066 |        |      |       |     |     |    |
| ATOM | 5171 | 0   | SER B 2   | 10     | 85.768 | 35.401 | 40.844 | 1.00 | 59.24 |     | В   | 0  |
|      |      | -   |           |        |        |        |        |      |       |     |     |    |
|      |      |     |           |        |        |        |        |      |       |     |     |    |

|              |              |           |       |                |                  |                  | *                |                          |        |        |
|--------------|--------------|-----------|-------|----------------|------------------|------------------|------------------|--------------------------|--------|--------|
| ATOM         | 5172         | N         | PRO E | B 211          | 87.692           | 36.320           | 41.574           | 1.00 59.06               | В      | N      |
| ATOM         | 5173         | CD        | PRO E | B 211          | 89.026           | 36.891           | 41.343           | 1.00 59.01               | В      | C      |
| MOTA         | 5174         | CA        |       | B 211          | 87.563           | 35.848           | 42.944           | 1.00 59.94               | В      | C      |
| ATOM         | 5175         | CB        |       | B 211          | 88.768           | 36.461           | 43.622           | 1.00 59.15               | B<br>B | C      |
| ATOM         | 5176         | CG        |       | B 211<br>B 211 | 89.795<br>86.264 | 36.392<br>36.280 | 42.546<br>43.587 | 1.00 59.90<br>1.00 61.62 | В      | C.     |
| ATOM<br>ATOM | 5177<br>5178 | С<br>0    |       | B 211          | 85.566           | 35.459           | 44.173           | 1.00 61.32               | В      | ŏ      |
| ATOM         | 5179         | N         |       | B 212          | 85.920           | 37.556           | 43.483           | 1.00 64.33               | В      | N      |
| ATOM         | 5180         | CA        |       | B 212          | 84.705           | 37.972           | 44.139           | 1.00 67.99               | В      | С      |
| ATOM         | 5181         | СВ        | TRP I | B 212          | 84.624           | 39.522           | 44.251           | 1.00 73.15               | В      | С      |
| ATOM         | 5182         | CG        |       | B 212          | 84.020           | 40.317           | 43.115           | 1.00 79.31               | В      | C      |
| MOTA         | 5183         |           | TRP 1 |                | 82.855           | 41.163           | 43.191           | 1.00 83.37               | В      | C      |
| ATOM         | 5184         |           | TRP I |                | 82.710<br>81.919 | 41.788           | 41.928<br>44.206 | 1.00 84.50<br>1.00 85.56 | B<br>B | C      |
| MOTA<br>MOTA | 5185<br>5186 | -         | TRP I |                | 84.514           | 41.453<br>40.461 | 41.847           | 1.00 81.72               | В      | Č      |
| ATOM         | 5187         |           | TRP   |                | 83.734           | 41.343           | 41.132           | 1.00 82.90               | В      | N      |
| ATOM         | 5188         |           | TRP   |                | 81.668           | 42.695           | 41.649           | 1.00 85.66               | В      | C      |
| MOTA         | 5189         | CZ3       | TRP 1 | B 212          | 80.882           | 42.355           | 43.928           | 1.00 85.85               | В      | С      |
| ATOM         | 5190         | CH2       | TRP I |                | 80.769           | 42.962           | 42.656           | 1.00 85.90               | В      | C      |
| ATOM         | 5191         | С         |       | B 212          | 83.429           | 37.358           | 43.558           | 1.00 67.23               | · В    | C      |
| MOTA         | 5192         | 0         |       | B 212          | 82.343           | 37.912           | 43.689           | 1.00 67.95<br>1.00 66.79 | B<br>B | Ŋ      |
| ATOM         | 5193         | N         |       | B 213<br>B 213 | 83.551<br>82.380 | 36.191<br>35.512 | 42.935<br>42.384 | 1.00 66.79               | В      | C      |
| ATOM<br>ATOM | 5194<br>5195 | CA<br>CB  |       | B 213          | 82.748           | 34.612           | 41.176           | 1.00 66.20               | В      | č      |
| ATOM         | 5196         |           | ILE I |                | 81.662           | 33.565           | 40.937           | 1.00 64.33               | В      | Č      |
| ATOM         | 5197         |           | ILE I |                | 82.867           | 35.466           | 39.920           | 1.00 66.93               | В      | C      |
| ATOM         | 5198         |           |       | B 213          | 81.524           | 35.967           | 39.406           | 1.00 68.02               | В      | С      |
| ATOM         | 5199         | С         | ILE   | B 213          |                  | 34,649           | 43.460           | 1.00 67.64               | В      | С      |
| ATOM         | 5200         | 0         |       | В 213          |                  | 34.535           | 43.533           | 1.00 68.30               | В      | 0      |
| ATOM         | 5201         | N         |       | B 214          |                  | 34.032           | 44.286           | 1.00 67.36               | B<br>B | N<br>C |
| ATOM         | 5202         | CA        |       | B 214          | 82.094           |                  | 45.370<br>46.094 | 1.00 66.76<br>1.00 67.01 | В      | c      |
| ATOM<br>ATOM | 5203<br>5204 | CB        |       | B 214<br>B 214 |                  | 32.547<br>31.071 | 45.814           | 1.00 67.71               | В      | č      |
| ATOM         | 5205         | CD        |       | B 214          |                  | 30.765           | 44.333           | 1.00 67.89               | B      | č      |
| ATOM         | 5206         |           |       | B 214          |                  | 31,139           | 43,576           | 1.00 67.63               | В      | 0      |
| MOTA         | 5207         | NE2       | GLN   | B 214          | 82.270           | 30.092           | 43.907           | 1.00 66.79               | В      | N      |
| MOTA         | 5208         | С         | GLN : | B 214          | 81,298           | 34.044           | 46.338           | 1.00 65.96°              |        | С      |
| ATOM         | 5209         | 0         |       | B 214          | 80.317           |                  | 46.930           | 1.00 66.03               | В      | 0      |
| ATOM         | 5210         | N         |       | В 215          | 81.724           | 35.290           | 46.501           | 1.00 63.98               | В      | N      |
| ATOM         | 5211         | CA        |       | B 215          |                  | 36.178           | 47.393           | 1.00 62.35<br>1.00 62.30 | B<br>B | C      |
| ATOM         | 5212<br>5213 | CB<br>CC1 |       | B 215<br>B 215 | 81.642<br>80.761 | 37.591<br>38.552 | 47.409<br>48.184 | 1.00 62.30               | В      | C      |
| ATOM<br>ATOM | 5213         | CG2       |       | B 215          | 83.018           | 37.527           | 48.069           | 1.00 61.31               | В      | č      |
| ATOM         | 5215         | C         |       | B 215          | 79.562           | 36,233           | 46.912           | 1.00 61.03               | В      | Ċ      |
| ATOM         | 5216         | ō         |       | B 215          | 78.674           | 36.623           | 47.660           | 1.00 62.47               | В      | 0      |
| ATOM         | 5217         | N         | TYR   | B 216          | 79.325           | 35,821           | 45.669           | 1.00 58.50               | В      | N      |
| ATOM         | 5218         | CA        |       | B 216          | 77.970           | 35.812           | 45.140           | 1.00 56.96               | В      | Ç      |
| ATOM         | 5219         | CB        |       | B 216          | 77.965           | 35.796           | 43.617           | 1.00 56.16               | В      | C      |
| ATOM         | 5220         | CG        | -     | B 216          | 77.984           | 37.158<br>37.449 | 42.984<br>41.925 | 1.00 56.82<br>1.00 56.98 | B<br>B | c      |
| ATOM<br>ATOM | 5221<br>5222 |           |       | B 216<br>B 216 | 77.147<br>77.155 | 38.690           | 41.325           | 1.00 58.80               | В      | č      |
| ATOM         | 5223         |           |       | B 216          | 78.843           | 38.149           | 43.435           | 1.00 57.49               | В      | Č      |
| ATOM         | 5224         |           |       | B 216          | 78.863           | 39.407           | 42.839           | 1.00 58.12               | В      | С      |
| ATOM         | 5225         | CZ        | TYR   | в 216          | 78.013           | 39.668           | 41.784           | 1.00 59.49               | В      | С      |
| ATOM         | 5226         | OH        |       | B 216          | 77.996           | 40.908           | 41.177           | 1.00 62.87               | В      | 0      |
| MOTA         | 5227         | C         |       | B 216          | 77.194           | 34.602           | 45.631           | 1.00 56.42               | В      | C      |
| ATOM         | 5228         | 0         |       | B 216          | 76.129           | 34.730<br>33.418 | 46.241<br>45.360 | 1.00 57.12<br>1.00 56.23 | B<br>B | О<br>И |
| ATOM<br>ATOM | 5229<br>5230 | N<br>CA   |       | B 217<br>B 217 | 77.722<br>77.049 | 32.186           | 45,753           | 1.00 54.99               | В      | č      |
| ATOM         | 5231         | CB        |       | B 217          | 77.837           | 31.000           | 45.223           | 1.00 53.94               | В      | C      |
| ATOM         | 5232         | CG        |       | B 217          | 78.061           | 31.089           | 43.742           | 1.00 53.70               | В      | С      |
| ATOM         | 5233         |           |       | B 217          | 77.110           | 31.109           | 42.953           | 1.00 53.29               | В      | 0      |
| ATOM         | 5234         | ND2       | ASN   | B 217          | 79.325           | 31.162           | 43.346           | 1.00 52.97               | В      | N      |
| ATOM         | 5235         | ¢         |       | B 217          | 76.874           | 32.087           | 47.252           | 1.00 55.19               | В      | C      |
| MOTA         | 5236         | 0         |       | B 217          | 75.946           | 31.434           | 47.742           | 1.00 54.29               | В      | 0      |
| ATOM         | 5237         | N         |       | B 218          | 77.767           | 32.749           | 47.974           | 1.00 55.93               | В      | И      |
| ATOM         | 5238         | CA        |       | B 218          | 77.701           | 32.755<br>33.189 | 49.422<br>50.004 | 1.00 58.12<br>1.00 59.33 | B<br>B | C      |
| ATOM<br>ATOM | 5239<br>5240 | CB<br>CG  |       | B 218<br>B 218 | 79.055<br>79.982 | 32.011           | 50.004           | 1.00 59.33               | В      | c      |
| ATOM         | 5240         |           |       | B 218          | 79.679           | 31.152           | 51.117           | 1.00 61.90               | В      | ō      |
| ATOM         | 5242         |           |       | B 218          | 81.114           | 31.961           | 49.575           | 1.00 61.97               | В      | N      |
| ATOM         | 5243         | C         |       | B 218          | 76.576           | 33.680           | 49,909           | 1.00 58.09               | В      | C      |
| ATOM         | 5244         | 0         | ASN   | B 218          | 75.986           | 33.461           | 50.968           | 1.00 58.23               | В      | . 0    |
| ATOM         | 5245         | N         |       | В 219          | 76.259           | 34.696           | 49,113           | 1.00 56.89               | В      | N      |
| ATOM         | 5246         | CA        | PHE   | B 219          | 75.210           | 35:628           | 49.474           | 1.00 55.35               | В      | С      |

| MOTA | 5247  | СВ  | PHE B 219 | 75.829   | 36.918   | 50.013 | 1.00 56.31 | В   | С   |
|------|-------|-----|-----------|----------|----------|--------|------------|-----|-----|
|      | 5248  | CG  | PHE B 219 | 76.898   | 36,696   | 51.067 | 1.00 57.27 | В   | С   |
| ATOM |       |     | PHE B 219 | 78.241   | 36.924   | 50.774 | 1.00 58.48 | В   | С   |
| ATOM | 5249  |     |           |          | 36.302   | 52.357 | 1.00 59.38 | В   | C   |
| MOTA | 5250  |     | PHE B 219 | 76.563   |          |        | 1.00 58.94 | В   | č   |
| ATOM | 5251  |     | PHE B 219 | 79.236   | 36.767   | 51.750 |            | В   |     |
| ATOM | 5252  | CE2 | PHE B 219 | 77.551   | 36.142   | 53.342 | 1.00 59.97 |     | C   |
| MOTA | 5253. | C2  | PHE B 219 | 78.888   | 36.379   | 53.033 | 1.00 58.62 | В   | С   |
| ATOM | 5254  | С   | PHE B 219 | 74.362   | 35.911   | 48.236 | 1.00 54.25 | В   | С   |
| ATOM | 5255  | ō   | PHE B 219 | 74.562   | 36.910   | 47,554 | 1.00 54.22 | В   | 0   |
|      |       |     | PRO B 220 | 73.410   | 35.020   | 47.918 | 1,00 53.66 | В   | N   |
| MOTA | 5256  | N   |           |          | 33.931   | 48.760 | 1.00 54.57 | В   | c   |
| MOTA | 5257  | CD  | PRO B 220 | 72.893   |          |        | 1,00 53.54 | В   | č   |
| ATOM | 5258  | CA  | PRO B 220 | 72.551   | 35.207   | 46.748 |            |     |     |
| MOTA | 5259  | CB  | PRO B 220 | 71.541   | 34.069   | 46.870 | 1.00 54.03 | В   | С   |
| ATOM | 5260  | CG  | PRO B 220 | 71.426   | 33.888   |        | 1.00 54.23 | В   | C   |
| MOTA | 5261  | С   | PRO B 220 | 71.887   | 36.560   | 46,785 | 1.00 54.16 | В   | С   |
| ATOM | 5262  | Ó   | PRO B 220 | 71.880   | 37.297   | 45.804 | 1.00 54.80 | В   | 0   |
|      | 5263  | N   | ALA B 221 | 71.324   | 36.876   | 47.944 | 1.00 54.60 | В   | N   |
| ATOM |       |     | ALA B 221 | 70.722   | 38.184   | 48.096 | 1.00 54.25 | В   | С   |
| MOTA | 5264  | CA  |           |          |          | 49.550 | 1.00 56.40 | В   | č   |
| ATOM | 5265  | CB  | ALA B 221 | 70.233   | 38.350   |        |            | В   | Č   |
| ATOM | 5266  | С   | ALA B 221 | 71.530   | 39.367   | 47.657 | 1.00 53.72 |     |     |
| MOTA | 5267  | 0   | ALA B 221 | 70.869   | 40.439   | 47.430 | 1.00 55.96 | В   | 0   |
| ATOM | 5268  | N   | LEU B 222 | 72.774   | 39,307   | 47.358 | 1.00 52.44 | В   | N   |
| ATOM | 5269  | CA  | LEU B 222 | 73.881   | 40.052   | 46.858 | 1.00 50.64 | В   | С   |
| ATOM | 5270  | CB  | LEU B 222 |          | 39.562   | 47.334 | 1.00 51.01 | В   | Ç   |
|      |       | CG  | LEU B 222 |          | 39.528   | 48.830 | 1.00 51.92 | В   | С   |
| ATOM | 5271  |     |           |          | 38.896   | 49.070 | 1.00 51.84 | В   | С   |
| MOTA | 5272  |     | LEU B 222 |          |          |        | 1.00 51.73 | В   | Ċ   |
| ATOM | 5273  | CD2 | LEU B 222 |          |          | 49.420 |            |     |     |
| ATOM | 5274  | С   | LEU B 222 | 73.895   | 40.395   | 45.367 | 1.00 15.00 | В   | C   |
| ATOM | 5275  | 0   | LEU B 222 | 73.836   | 41.638   | 45.133 | 1.00 49.09 | В   | 0   |
| ATOM | 5276  | N   | LEU B 223 | 73.952   | 39.470   | 44.481 | 1.00 46.32 | В   | N   |
| ATOM | 5277  | CA  | LEU B 22  |          | 39.501   | 42,995 | 1.00 47.25 | , в | Ç   |
|      |       |     | LEU B 223 |          | 38.085   | 42 534 | 1:00:46.68 | В   | C   |
| ATOM | 5278  | CB  |           |          | 37.157   |        | 1.00 47.03 | В   | C   |
| MOTA | 5279  | CG  | LEU B 22  |          |          |        | 1.00 49.27 | . В | č   |
| ATOM | 5280  |     | LEU B 223 |          | 36.115   | 43.802 |            |     |     |
| ATOM | °5281 | CD2 | LEU B 223 | 75.435   | 36.664   |        | 1.00 51.04 | В   | C   |
| MOTA | 5282  | С   | LEU B 223 | 72.588   | 40.419   | 42.687 | 1.00 49.48 | В   | С   |
| ATOM | 5283  | Ō   | LEU B 22  | 72.954   | 41.313   | 41.836 | 1.00 51.04 | В   | 0   |
| ATOM | 5284  | СВ  | ASP B 22  |          | 41,219   | 43:660 | 1.00 67.19 | В   | C   |
|      |       | CG  | ASP B 22  |          | 40.069   | 43,309 |            | · в | С   |
| MOTA | 5285  |     |           |          | 39.665   | 42,166 | 1.00 70.28 | В   | 0   |
| MOTA | 5286  |     | ASP B 22  | ·        |          |        | 1.00 68.94 | В   | ŏ   |
| ATOM | 5287  | OD2 | ASP B 22  |          | 39.569   | 44.290 |            | В   |     |
| MOTA | 5288  | С   | ASP B 22  |          | 43.093   | 43.307 | 1.00 66.50 |     | C   |
| ATOM | 5289  | 0   | ASP B 22  | 70.233   | 43.938   | 42.534 | 1.00 67.48 | В   | 0   |
| ATOM | 5290  | N   | ASP B 22  | 71.556   | 40.682   | 43.386 | 1.00 66.48 | В   | N   |
| MOTA | 5291  | CA  | ASP B 22  | 70.341   | 41.598   | 43.097 | 1.00 66.53 | В   | С   |
| ATOM | 5292  | N   | TYR B 22  | _        | 43.270   | 44.218 | 1.00 67.26 | В   | N   |
|      | 5293  | CA  | TYR B 22  |          | 44.590   | 44.512 | 1.00 67.21 | В   | С   |
| ATOM |       |     | TYR B 22  |          | 44.670   | 45.973 | 1.00 68.53 | В   | С   |
| MOTA | 5294  | CB  |           |          | 44.700   | 47,001 | 1.00 70.23 | В   | С   |
| ATOM | 5295  | CG  | TYR B 22  |          |          |        |            | В   | Č   |
| ATOM | 5296  | CD1 | TYR B 22  |          | 43.694   | 47.035 | 1.00 72.39 |     |     |
| MOTA | 5297  | CE1 | TYR B 22  | 5 69.488 | 43.689   | 48.003 | 1.00 73.64 | В   | C   |
| ATOM | 5298  | CD2 | TYR B 22  | 5 71.405 | 45.711   | 47.965 | 1.00 72.41 | В   | c   |
| ATOM | 5299  | CE2 |           |          | 45.714   | 48.941 | 1.00 73.72 | В   | С   |
| MOTA | 5300  | CZ  | TYR B 22  |          | 44.693   | 48.952 | 1.00 74.27 | В   | C   |
|      |       | OH  | TYR B 22  |          | 44.664   | 49.920 | 1.00 75.71 | В   | ٥   |
| ATOM | 5301  |     |           |          | 44.989   | 43.583 | 1.00 66.26 | В   | С   |
| MOTA | 5302  | С   | TYR B 22  |          | 46.167   | 43.452 | 1.00 66.14 | В   | ō   |
| MOTA | 5303  | 0   | TYR B 22  |          |          |        | 1.00 66.27 | В   | N   |
| MOTA | 5304  | , N | PHE B 22  |          | 44.017   | 42.940 |            |     |     |
| ATOM | 5305  | CA  | PHE B 22  |          | 44.345   | 42.021 | 1.00 67.01 | В   | C   |
| MOTA | 5306  | CB  | PHE B 22  | 6 76.294 | 44.146   | 42.691 | 1.00 66.57 | В   | C   |
| ATOM | 5307  | CG  | PHE B 22  |          | 45.152   | 43.768 | 1.00 66.96 | B   | С   |
|      |       |     | PHE B 22  |          | 45.048   | 45.022 | 1.00 66.26 | В   | С   |
| ATOM | 5308  |     | PHE B 22  |          | 46,221   | 43.523 | 1.00 68.58 | В   | С   |
| MOTA | 5309  |     |           |          | 45.991   | 46.012 | 1.00 66.46 | В   | C . |
| ATOM | 5310  |     | PHE B 22  |          |          | 44.507 | 1.00 68.19 | В   | Č   |
| ATOM | 5311  |     | PHE B 22  |          | 47.170   |        |            | В   | č   |
| MOTA | 5312  | CZ  | PHE B 22  |          | 47.055   |        | 1.00 67.46 |     |     |
| ATOM | 5313  | С   | PHE B 22  | 6 74.825 |          | 40.763 | 1.00 67.22 | В   | C   |
| MOTA | 5314  | ō   | PHE B 22  |          | 42.704   | 40.460 |            | В   | 0   |
| MOTA | 5315  | Ŋ   | PRO B 22  |          | <b>-</b> | 40.003 | 1.00 67.02 | . В | И   |
|      | 5315  |     | PRO B 22  |          |          |        | 1.00 67.54 | В   | С   |
| ATOM |       | CD  |           |          |          |        |            | В   | С   |
| MOTA | 5317  | CA  | PRO B 22  |          |          |        |            | В   | c   |
| MOTA | 5318  | CB  | PRO B 22  |          |          |        |            | В   | c   |
| ATOM | 5319  | CG  | PRO B 22  |          |          |        |            |     | Č   |
| ATOM | 5320  | С   | PRO B 22  | 7 74.643 |          |        |            | В   |     |
| ATOM | 5321  | ō   | PRO B 22  |          | 42.333   | 36.821 | 1.00 66.24 | В   | 0   |
|      |       | •   |           |          |          |        |            |     |     |

| ATOM | 5322 | N   | GLY | В | 228 | 75.517   | 44.094 | 37.990 | 1.00 | 65.44 |      | В    | N   |
|------|------|-----|-----|---|-----|----------|--------|--------|------|-------|------|------|-----|
| ATOM | 5323 | CA  | GLY |   |     | 76.652   | 44.289 | 37.099 | 1.00 | 63.96 |      | В    | С   |
|      |      | c.  | GLY |   |     | 77.131   | 42.974 | 36.506 |      | 63.05 |      | В    | Č   |
| ATOM | 5324 |     |     |   |     |          |        |        |      |       |      | В    | ŏ   |
| MOTA | 5325 | 0   | GLY |   |     | 77.078   | 42.749 | 35.291 |      | 64.22 |      |      |     |
| ATOM | 5326 | N   | THR |   |     | 77.593   | 42.085 | 37.376 |      | 61.34 |      | В    | N   |
| MOTA | 5327 | CA  | THR | В | 229 | . 78.060 | 40.782 | 36.934 |      | 58.02 |      | В    | С   |
| MOTA | 5328 | CB  | THR | В | 229 | 79.096   | 40.219 | 37.901 | 1.00 | 58.24 |      | В    | С   |
| ATOM | 5329 | OG1 | THR | В | 229 | 80.265   | 41.051 | 37.873 | 1.00 | 58:34 |      | В    | 0   |
| ATOM | 5330 |     | THR |   |     | 79.472   | 38.800 | 37.516 |      | 57.93 |      | В    | С   |
|      |      |     | THR |   |     | 76.847   | 39.873 | 36.893 |      | 55.72 |      | В    | Č   |
| MOTA | 5331 | C   |     |   |     |          |        |        |      |       |      |      |     |
| MOTA | 5332 | 0   | THR |   |     | 76.114   | 39.767 | 37.865 |      | 56.34 |      | В    | 0   |
| ATOM | 5333 | N   | HIS | В | 230 | 76.643   | 39.243 | 35.749 |      | 52.99 |      | В    | N   |
| ATOM | 5334 | CA  | HIS | В | 230 | 75.524   | 38.342 | 35.499 | 1.00 | 52.28 |      | В    | С   |
| ATOM | 5335 | CB  | HIS | В | 230 | 74.790   | 37.919 | 36.793 | 1.00 | 51.90 |      | В    | С   |
| ATOM | 5336 | CG  | HIS | В | 230 | 73.493   | 38.635 | 37.054 | 1.00 | 53.74 |      | В    | С   |
| ATOM | 5337 |     | HIS |   |     | 73.190   | 39.617 | 37.940 | 1.00 | 55.30 |      | B    | Ċ   |
|      | 5338 |     | HIS |   |     | 72.322   | 38.312 | 36.416 |      | 54.44 |      | В    | N   |
| ATOM |      |     |     |   |     |          |        | 36.898 |      | 55.10 |      | В    | Ċ   |
| ATOM | 5339 |     | HIS |   |     | 71.338   | 39.061 |        |      |       |      |      |     |
| ATOM | 5340 |     | HIS |   |     | 71.838   | 39.856 | 37.820 |      | 55.50 |      | В    | N   |
| ATOM | 5341 | С   | HIS | В | 230 | 74.589   | 39.014 | 34.529 |      | 52.07 |      | В    | С   |
| ATOM | 5342 | 0   | HIS | В | 230 | 73.659   | 38.397 | 34.031 | 1.00 | 52.43 |      | В.   | 0   |
| ATOM | 5343 | N   | ASN | В | 231 | 74.815   | 40.290 | 34.260 | 1.00 | 51.47 |      | В    | N   |
| ATOM | 5344 | CA  | ASN |   |     | 73,978   | 40,937 | 33.268 | 1.00 | 51.15 |      | В    | С   |
| ATOM | 5345 | CB  | ASN |   |     | 73.745   | 42.421 | 33.569 | 1.00 | 51.93 |      | В    | С   |
|      |      | CG  | ASN |   |     | 72.332   | 42.698 | 34.111 |      | 53.46 |      | В    | C   |
| ATOM | 5346 |     |     |   |     |          |        |        |      | 52.52 |      | В    | ŏ   |
| MOTA | 5347 |     | ASN |   |     | 71.427   | 41.858 | 33.993 |      |       | ٠,٠  |      | N . |
| MOTA | 5348 | ND2 | ASN |   |     | 72.136   | 43.887 | 34.686 |      | 53.17 |      | В    |     |
| MOTA | 5349 | С   | ASN | В | 231 | 74.790   | 40.752 | 32.005 |      | 51.10 |      | В    | C   |
| MOTA | 5350 | 0   | ASN | В | 231 | 74.243   | 40.453 | 30.948 | 1.00 | 51.76 | . 3  | В    | 0:  |
| ATOM | 5351 | N   | LYS | В | 232 | 76.109   | 40.890 | 32.130 | 1.00 | 50.86 | 3.7  | B ^  | ٠N: |
| MOTA | 5352 | CA  | LYS | В | 232 | 76.992   | 40.696 | 30.980 | 1.00 | 51.66 | 17:  | В    | C:  |
| MOTA | 5353 | СВ  | LYS |   |     | 78.439   | 41.100 | 31,299 | 1.00 | 52.42 | 15.3 | В    | Cx  |
|      | 5354 | CG  | LYS |   |     | 78.620   | 42.544 | 31.714 |      | 55.41 |      | В.,  | C   |
| ATOM |      |     |     |   |     |          |        | 33.176 |      | 58.46 |      | В    | Č.  |
| ATOM | 5355 | CD  | LYS |   |     | 79.046   | 42.687 |        |      |       | :    |      |     |
| ATOM | 5356 | CE  | LYS |   |     | 80.495   | 42.265 | 33.406 |      | 60.49 |      | В    | С   |
| ATOM | 5357 | NZ  | LYS |   |     | 81.489   | 43.098 | 32.661 |      | 62.12 |      |      | N   |
| ATOM | 5358 | С   | LYS | В | 232 | 76.966   | 39.223 | 30.591 |      | 51.04 | 100  |      | C   |
| ATOM | 5359 | 0   | LYS | В | 232 | 76.996   | 38.877 | 29.402 | 1.00 | 51.42 |      | ·B · | 0,  |
| MOTA | 5360 | N   | LEU | В | 233 | 76.916   | 38.353 | 31.592 | 1.00 | 48.73 | ٠,   | В .  | N . |
| ATOM | 5361 | CA  | LEU |   |     | 76.875   | 36.927 | 31.309 | 1.00 | 47.64 |      | 'в ' | C ~ |
| ATOM | 5362 | СВ  | LEU |   |     | 76.911   | 36.109 | 32.608 |      | 46.18 |      | В    | С   |
|      | 5363 | CG  | LEU |   |     | 78.165   | 36.215 | 33.493 |      | 44.94 |      | В    | Ċ   |
| ATOM |      |     |     |   |     |          |        | 34.771 |      | 43.08 |      | В    | č   |
| ATOM | 5364 |     | LEU |   |     | 77.918   | 35.459 |        |      |       |      |      |     |
| ATOM | 5365 |     | LEU |   |     | 79.385   | 35.682 | 32.768 |      | 44.26 |      | В.   | C   |
| ATOM | 5366 | С   |     |   | 233 | 75.598   | 36.627 | 30.526 |      | 47.40 |      | В    | С   |
| MOTA | 5367 | 0   | LEU | В | 233 | 75.604   | 35.762 | 29.660 | 1.00 | 48.49 |      | В    | 0   |
| ATOM | 5368 | N   | LEU | В | 234 | 74.509   | 37.345 | 30.810 | 1.00 | 46.87 |      | В    | N   |
| MOTA | 5369 | CA  | LEU | В | 234 | 73.267   | 37.108 | 30.079 | 1.00 | 45.45 |      | В    | С   |
| MOTA | 5370 | СВ  | LEU | В | 234 | 72.047   | 37.619 | 30.864 | 1.00 | 45.09 |      | В    | С   |
| ATOM | 5371 | CG  |     |   | 234 | 71.586   | 36.796 | 32.086 | 1.00 | 45.83 |      | В    | С   |
| ATOM | 5372 |     | LEU |   |     | 70.303   | 37.387 | 32,680 |      | 45.14 |      | В    | С   |
|      |      |     |     |   |     | 71.347   | 35.350 | 31.671 |      | 45.48 |      | В    | č   |
| MOTA | 5373 |     | LEU |   |     |          |        |        |      | 44.52 |      | В    | č   |
| ATOM | 5374 | C   |     |   | 234 | 73.321   | 37.759 | 28.694 |      |       |      |      |     |
| ATOM | 5375 | 0   |     |   | 234 | 72.819   | 37.192 | 27.722 |      | 43.36 |      | В    | 0   |
| ATOM | 5376 | N   |     |   | 235 | 73.944   | 38.934 | 28.605 |      | 44.85 |      | В    | N   |
| MOTA | 5377 | CA  | LYS | В | 235 | 74.070   | 39.645 | 27.335 |      | 46.16 |      | В    | С   |
| ATOM | 5378 | CB  | LYS | В | 235 | 74.651   | 41.051 | 27.547 | 1.00 | 48.83 |      | В    | С   |
| ATOM | 5379 | CG  | LYS | В | 235 | 74.685   | 41.902 | 26.276 | 1.00 | 54.18 |      | В    | С   |
| ATOM | 5380 | CD  |     |   | 235 | 75.195   | 43.327 | 26.507 | 1.00 | 57.82 |      | В    | C   |
| ATOM | 5381 | CE  |     |   | 235 | 74.983   | 44.236 | 25.282 |      | 60.01 |      | В    | С   |
|      |      |     |     |   |     |          | 45.637 | 25.473 |      | 60.36 |      | В    | N   |
| ATOM | 5382 | NZ  |     |   | 235 | 75.498   |        |        |      |       |      |      |     |
| ATOM | 5383 | С   |     |   | 235 | 74.975   | 38.877 | 26.383 |      | 44.83 |      | В    | C   |
| ATOM | 5384 | 0   |     |   | 235 | 74.650   | 38.701 | 25.210 |      | 45.39 |      | В    | 0   |
| MOTA | 5385 | N   | ASN | В | 236 | 76.113   | 38.424 | 26.894 |      | 43.64 |      | В    | N   |
| ATOM | 5386 | CA  | ASN | В | 236 | 77.056   | 37.675 | 26.078 | 1.00 | 42.12 |      | В    | C   |
| ATOM | 5387 | CB  |     |   | 236 | 78.364   | 37.481 | 26.836 | 1.00 | 41.81 |      | В    | С   |
| ATOM | 5388 | CG  |     |   | 236 | 79.222   | 38.728 | 26.812 |      | 42.15 |      | В    | С   |
| ATOM | 5389 |     | ASN |   |     | 80.102   | 38.921 |        |      | 42.04 |      | В    | ō   |
|      |      |     |     |   |     |          | 39.589 | 25.828 |      | 43.31 |      | В    | N   |
| ATOM | 5390 |     | ASN |   |     |          |        | 25.626 |      | 41.45 |      | В    | Č   |
| ATOM | 5391 | C   |     |   | 236 | 76.475   | 36.343 |        |      |       |      |      |     |
| MOTA | 5392 | 0   |     |   | 236 | 76.635   | 35.959 | 24.469 |      | 41.30 |      | В    | 0   |
| MOTA | 5393 | N   |     |   | 237 | 75.791   | 35.647 | 26,532 |      | 41.23 |      | В    | N   |
| ATOM | 5394 | CA  | VAL | В | 237 | 75.164   | 34.378 | 26.203 |      | 40.51 |      | В    | C   |
| ATOM | 5395 | CB  | VAL | В | 237 | 74.523   | 33.725 | 27.455 | 1.00 | 39.10 |      | В    | С   |
| ATOM | 5396 |     | VAL |   |     | 73.551   | 32.624 | 27.053 | 1.00 | 38.70 |      | В    | С   |
|      |      |     |     |   |     |          |        |        |      |       |      |      |     |

|      |      |     |     |   |       |        |        |        |      |       | _  | _  |
|------|------|-----|-----|---|-------|--------|--------|--------|------|-------|----|----|
| MOTA | 5397 |     | VAL |   |       | 75.614 | 33.151 | 28.345 |      | 38.69 | В  | С  |
| ATOM | 5398 | С   | VAL | В | 237   | 74.091 | 34.619 | 25.145 |      | 42.19 | В  | C  |
| ATOM | 5399 | 0   | VAL | ₿ | 237   | 73.812 | 33.750 | 24.331 | 1.00 | 43.52 | В  | 0  |
| ATOM | 5400 | N   | ALA | В | 238   | 73.492 | 35.800 | 25.134 | 1.00 | 43.19 | В  | N  |
| ATOM | 5401 | CA  | ALA | В | 238   | 72.475 | 36.063 | 24.133 | 1.00 | 44.23 | В  | С  |
| ATOM | 5402 | СВ  | ALA |   |       | 71.707 | 37,334 | 24.478 |      | 46.27 | В  | C  |
| ATOM | 5403 | c   | ALA |   |       | 73.125 | 36,190 | 22.756 |      | 43.68 | В  | C  |
|      |      |     | ALA |   |       | 72.727 |        | 21.817 |      | 45.02 | В  | ŏ  |
| ATOM | 5404 | 0   |     |   |       |        | 35.505 |        |      | 43.43 |    |    |
| ATOM | 5405 | N   | PHE |   |       | 74.126 | 37.060 | 22.640 |      |       | В  | N  |
| MOTA | 5406 | CA  | PHE |   |       | 74.827 | 37.275 | 21.373 |      | 43.06 | В  | С  |
| ATOM | 5407 | CB  | PHE |   |       | 76.033 | 38.194 | 21.593 |      | 42.88 | В  | С  |
| MOTA | 5408 | CG  | PHE | В | 239   | 76.912 | 38.342 | 20.391 | 1.00 | 44.13 | В  | C  |
| ATOM | 5409 | CD1 | PHE | В | 239   | 76.368 | 38.491 | 19.123 | 1.00 | 44.72 | В  | С  |
| ATOM | 5410 | CD2 | PHE | В | 239   | 78.290 | 38.350 | 20.528 | 1.00 | 45.21 | В  | С  |
| ATOM | 5411 |     | PHE |   |       | 77.189 | 38.646 | 18.006 | 1.00 | 45.82 | В  | C  |
| ATOM | 5412 |     | PHE |   |       | 79.121 | 38.506 | 19.418 |      | 46.69 | В  | С  |
| ATOM | 5413 | CZ  | PHE |   |       | 78.570 | 38.654 | 18.155 |      | 46.56 | В  | C  |
|      | 5414 | C   | PHE |   |       | 75.281 | 35.965 | 20.734 |      | 42.45 | В  | Ċ  |
| ATOM |      |     |     |   |       |        |        |        |      | 42.92 | В. | ŏ  |
| ATOM | 5415 | 0   | PHE |   |       | 75.361 | 35.858 | 19.509 |      |       |    |    |
| ATOM | 5416 | N   |     |   | 240   | 75.587 | 34.981 | 21.573 |      | 43.32 | В  | N  |
| ATOM | 5417 | CA  | MET |   |       | 76.008 | 33.676 | 21.095 |      | 43.28 | В. | C  |
| MOTA | 5418 | CB  | MET | В | 240   | 76.776 | 32.921 | 22.194 |      | 42.40 | В  | С  |
| ATOM | 5419 | CG  | MET | В | 240   | 78.309 | 33.040 | 22.117 | 1.00 | 39.96 | В  | С  |
| ATOM | 5420 | \$D | MET | В | 240   | 79.119 | 32.824 | 23.720 | 1.00 | 39.00 | В  | S  |
| ATOM | 5421 | ÇE  | MET | В | 240   | 78.297 | 31.432 | 24.304 | 1.00 | 38.42 | В  | С  |
| ATOM | 5422 | C   | MET |   |       | 74.757 | 32.897 | 20.661 | 1.00 | 43.79 | В  | С  |
|      | 5423 | ŏ   | MET |   |       | 74.744 | 32.322 | 19.583 |      | 44.82 | В  | ō  |
| ATOM |      |     | LYS |   |       | 73.703 | 32.901 | 21.475 |      | 44.45 | В  | N  |
| ATOM | 5424 | N   |     |   |       |        |        |        |      |       |    | Č  |
| ATOM | 5425 | CA  | LYS |   |       | 72.475 | 32.193 | 21.127 |      | 45.26 | В  |    |
| MOTA | 5426 | CB  | LYS |   |       | 71.426 | 32.340 | 22.240 |      | 45.84 | В  | С  |
| MOTA | 5427 | CG  | LYS | В | 241   | 71.450 | 31.271 | 23.351 |      | 46.20 | В  | С  |
| ATOM | 5428 | CD  | LYS | В | 241   | 70.770 | 31.790 | 24.640 | 1.00 | 47.57 | В  | С  |
| MOTA | 5429 | CE  | LYS | В | 241   | 69.674 | 30.866 | 25.184 | 1.00 | 47.82 | В  | С  |
| ATOM | 5430 | NZ  | LYS | В | 241   | 68.404 | 30.879 | 24.384 | 1.00 | 49.91 | В  | N  |
| MOTA | 5431 | c   | LYS |   |       | 71.889 | 32.709 | 19.807 | 1.00 | 46.64 | В  | С  |
| ATOM | 5432 | ō   | LYS |   |       | 71.278 | 31.949 | 19.055 |      | 47.48 | В  | 0  |
|      | 5433 | N   | SER |   |       | 72.070 | 33.995 | 19.522 |      | 46.71 | В  | N  |
| MOTA |      |     |     |   |       | 71.547 | 34.566 | 18.288 |      | 48.01 | В  | c  |
| ATOM | 5434 | CA  | SER |   |       |        |        |        |      | 48.56 | В  | c  |
| ATOM | 5435 | CB  | SER |   |       | 71.507 | 36.089 | 18.376 |      |       |    |    |
| ATOM | 5436 | OG  | SER |   |       | 71.027 | 36.641 | 17.151 |      | 50.12 | В  | 0  |
| ATOM | 5437 | С   | SER | В | 242   | 72.409 | 34.158 | 17.105 |      | 48.26 | В  | С  |
| ATOM | 5438 | 0   | SER | В | 242 . | 71,904 | 33.699 | 16.082 | 1.00 | 49.03 | В  | 0  |
| ATOM | 5439 | N   | TYR | В | 243   | 73.718 | 34.338 | 17.256 | 1.00 | 48.69 | В  | N  |
| ATOM | 5440 | ÇA  | TYR | В | 243   | 74.682 | 33.987 | 16.217 | 1.00 | 48.20 | В  | С  |
| ATOM | 5441 | СВ  | TYR |   |       | 76.102 | 34.102 | 16.749 |      | 50.25 | В  | C  |
| MOTA | 5442 | CG  |     |   | 243   | 77.159 | 33.697 | 15.755 |      | 53.37 | В  | Ċ  |
|      |      |     | TYR |   |       | 77.302 | 34.376 | 14.553 |      | 54.77 | В  | Č  |
| ATOM | 5443 |     |     |   |       |        |        |        |      | 56.19 | В  | Č  |
| MOTA | 5444 |     | TYR |   |       | 78.302 | 34.034 | 13.647 |      |       |    | Ċ  |
| ATOM | 5445 | CD2 |     |   |       | 78.042 | 32.655 | 16.031 |      | 54.92 | В  |    |
| ATOM | 5446 | CE2 | TYR | В | 243   | 79.052 | 32.301 | 15.125 |      | 55.23 | В  | С  |
| ATOM | 5447 | CZ  | TYR | В | 243   | 79.178 | 32.998 | 13.938 | 1.00 | 55.47 | В  | C  |
| ATOM | 5448 | OH  | TYR | В | 243   | 80.187 | 32.690 | 13.051 | 1.00 | 54.95 | В  | 0  |
| ATOM | 5449 | С   | TYR | В | 243   | 74.457 | 32.567 | 15.758 | 1.00 | 47.59 | В  | С  |
| MOTA | 5450 | 0   |     |   | 243   | 74.599 | 32.265 | 14.584 | 1.00 | 47.82 | В  | 0  |
| ATOM | 5451 | N   | ILE | В | 244   | 74.137 | 31.695 | 16.707 | 1.00 | 47.54 | В  | N  |
| ATOM | 5452 | CA  |     |   | 244   | 73.884 | 30.295 | 16.405 |      | 47.15 | В  | С  |
| ATOM | 5453 | СВ  |     |   | 244   | 73.797 | 29.467 | 17.678 |      | 46.32 | В  | С  |
|      |      |     | ILE |   |       | 73.183 | 28.109 | 17.374 |      | 45.96 | В  | C  |
| ATOM | 5454 |     |     |   |       | 75.186 |        |        |      | 45.56 | В  | Č  |
| MOTA | 5455 |     | ILE |   |       |        | 29.357 | 18.307 |      |       | В  | č  |
| ATOM | 5456 |     | ILE |   |       | 75.172 | 28.798 | 19.715 |      | 45.17 |    |    |
| ATOM | 5457 | С   |     |   | 244   | 72.565 | 30.191 | 15.676 |      | 47.80 | В  | С  |
| ATOM | 5458 | 0   |     |   | 244   | 72.499 | 29.688 | 14.559 |      | 48.89 | В  | 0  |
| ATOM | 5459 | N   | LEU | В | 245   | 71.513 | 30.673 | 16.325 |      | 49.31 | В  | N  |
| MOTA | 5460 | CA  |     |   | 245   | 70.183 | 30.662 | 15.745 | 1.00 | 49.50 | В  | C  |
| ATOM | 5461 | СВ  |     |   | 245   | 69.283 | 31.644 | 16.504 |      | 50.57 | В  | С  |
| ATOM | 5462 | CG  |     |   | 245   | 67.790 | 31.656 | 16.175 |      | 53.06 | В  | С  |
|      |      |     |     |   |       |        |        | 14.921 |      | 54.34 | В  | Č  |
| ATOM | 5463 |     | LEU |   |       | 67.511 | 32.481 |        |      | 52.66 | В  | č  |
| ATOM | 5464 |     | LEU |   |       | 67.313 | 30.215 | 16.003 |      |       |    |    |
| MOTA | 5465 | С   |     |   | 245   | 70.285 | 31.060 | 14.281 |      | 49.73 | В  | C. |
| ATOM | 5466 | 0   | LEU | В | 245   | 69.631 | 30.467 | 13.429 |      | 49.38 | В  | 0  |
| ATOM | 5467 | N   | GLU | В | 246   | 71.106 | 32.069 | 13.998 |      | 50.41 | В  | N  |
| ATOM | 5468 | CA  |     |   | 246   | 71.310 | 32.529 | 12.626 | 1.00 | 50.41 | В  | С  |
| MOTA | 5469 | СВ  |     |   | 246   | 72.441 | 33.577 | 12.592 | 1.00 | 52.58 | В  | С  |
| ATOM | 5470 | CG. |     |   | 246   | 72.863 | 34.092 | 11.201 |      | 56.02 | В  | С  |
| ATOM |      |     |     |   | 246   | 74.064 | 35.057 | 11.243 |      | 59.52 | B  | Ċ  |
| 011  | 5471 | CD  | GHO | ٥ | 440   | 73.004 | 55.057 |        |      |       | -  | -  |

97 OLS B CD SER 97 L5 BLA B: C1 920 3 (C1 CL) B C2 CL B C3 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL B C4 CL

270/514

| MOTA | 15472 | OE1 | GLU B 246 | 74.063          | 35.982 | 12.097 | 1.00 58.62 | В   | 0   |
|------|-------|-----|-----------|-----------------|--------|--------|------------|-----|-----|
| ATOM | 5473  | OE2 | GLU B 246 | 75.003          | 34.897 | 10.412 | 1.00 62.01 | В   | 0   |
|      | 5474  |     | GLU B 246 | 71.687          | 31.298 | 11.794 | 1.00 50.34 | В   | С   |
| ATOM |       | -   |           |                 | 31.002 | 10.786 | 1.00 51.45 | В   | 0   |
| ATOM | 5475  |     | GLU B 246 | 71.058          |        |        |            | B   |     |
| ATOM | 5476  |     | LYS B 247 | 72.695          | 30.566 | 12.257 | 1.00 49.68 |     | N   |
| ATOM | 5477  | CA  | LYS B 247 | 73.177          | 29.379 | 11.575 | 1.00 48.81 | В   | С   |
| ATOM | 5478  | CB  | LYS B 247 | 74.377          | 28.806 | 12.334 | 1.00 47.41 | В   | С   |
|      | 5479  |     | LYS B 247 | 75.729          | 29.065 | 11.686 | 1.00 47.15 | В   | С   |
| ATOM |       |     |           | 76.109          | 30.543 | 11.631 | 1.00 47.21 | В   | С   |
| ATOM | 5480  | CD  | LYS B 247 |                 |        |        |            | В   | Č   |
| MOTA | 5481  | CE  | LYS B 247 | 77.500          | 30.764 | 10.994 | 1.00 47.47 |     |     |
| ATOM | 5482  | NZ  | LYS B 247 | 77.587          | 30.428 | 9.528  | 1.00 49.50 | В   | N   |
| ATOM | 5483  | С   | LYS B 247 | 72.124          | 28.293 | 11.359 | 1.00 48.74 | В   | С   |
|      | 5484  | ŏ   | LYS B 247 | 72.071          | 27.686 | 10.298 | 1.00 49.45 | В   | 0   |
| ATOM |       |     |           | 71.278          | 28.046 | 12.352 | 1.00 49.27 | В   | N   |
| MOTA | 5485  | N   | VAL B 248 |                 |        |        |            | В   | Ċ   |
| ATOM | 5486  | CA  | VAL B 248 | 70.262          | 27.013 | 12.214 | 1.00 51.08 |     |     |
| ATOM | 5487  | CB  | VAL B 248 | 69.589          | 26.698 | 13.547 | 1.00 50.98 | В   | С   |
| ATOM | 5488  | CG1 | VAL B 248 | 70.648          | 26.525 | 14.616 | 1.00 52.15 | В   | С   |
|      | 5489  |     | VAL B 248 | 68.606          | 27.804 | 13.905 | 1.00 52.85 | В   | С   |
| MOTA |       |     |           |                 |        | 11.237 | 1.00 53.35 | В   | С   |
| MOTA | 5490  | С   | VAL B 248 | 69.178          | 27.424 |        |            | В   | ŏ   |
| ATOM | 5491  | 0   | VAL B 248 | 68 <i>.</i> 189 | 26.711 | 11.059 | 1.00 53.14 |     |     |
| MOTA | 5492  | N   | LYS B 249 | 69.338          | 28.593 | 10.628 | 1.00 55.02 | . В | N   |
| ATOM | 5493  | CA  | LYS B 249 | 68.365          | 29.046 | 9.652  | 1.00 56.65 | В   | С   |
|      | 5494  | СВ  | LYS B 249 | 68.080          | 30.544 | 9.819  | 1,00 57.72 | В   | С   |
| ATOM |       |     |           |                 |        | 11.006 | 1.00 59.78 | В   | Ċ   |
| MOTA | 5495  | CG  | LYS B 249 | 67.178          | 30.862 |        |            |     |     |
| ATOM | 5496  | CD  | LYS B 249 | 66.557          | 32.250 | 10.876 | 1.00 61.55 | В   | C   |
| ATOM | 5497  | CE  | LYS B 249 | 65.551          | 32.542 | 11.998 | 1.00 61.89 | В   | С   |
| MOTA | 5498  | NZ  | LYS B 249 | 64.464          | 31.511 | 12.100 | 1.00 60.53 | В   | N   |
|      |       |     |           | 68.962          | 28.740 | 8,288  | 1.00 56.74 | · B | C   |
| ATOM | 5499  | C   | LYS B 249 |                 |        |        |            | _   | ō   |
| ATOM | 5500  | 0   | LYS B 249 | 68.267          | 28.283 | 7.389  |            |     |     |
| MOTA | 5501  | N   | GLU B 250 | 70.266          | 28.969 | 8.156  | 1.00 58.18 | В   | N   |
| ATOM | 5502  | CA  | GLU B 250 | 70.972          | 28.686 | 6.915  | 1.00 60.53 | B   | С   |
|      | 5503  | CB. | GLU B 250 | 72.413          | 29.133 | 7.010  | 1.00 61.19 | В   | С   |
| MOTA |       |     |           | 72.578          | 30.587 | 7.279  | 1.00 63.62 | В   | C   |
| MOTA | 5504  |     | GLU B 250 |                 |        |        |            |     | č   |
| MOTA | 5505  | CD  | GLU B 250 | 74.023          | 30.952 | 7.464  | 1.00 66.37 | В   |     |
| ATOM | 5506  | OE1 | GLU B 250 | 74.297          | 32.158 | 7.666  | 1.00 67.56 | В   | 0   |
| MOTA | 5507  |     | GLU B 250 | 74.882          | 30.033 | 7.411  | 1.00 67.44 | В   | 0   |
|      |       |     | GLU B 250 | 70.973          | 27.188 | 6,695  | 1.00 61.24 | В   | С   |
| ATOM | 5508  | C   |           |                 |        | 5.570  | 1.00 61.63 | В   | Ô   |
| ATOM | 5509  | 0   | GLU B 250 | 71.083          | 26.702 |        |            |     |     |
| MOTA | 5510  | N   | HIS B 251 | 70.871          | 26.467 | 7.801  | 1.00 61.79 | В   | N   |
| ATOM | 5511  | CA  | HIS B 251 | 70.860          | 25.021 | 7.790  | 1.00 62.88 | В   | С   |
| ATOM | 5512  | CB  | HIS B 251 | 71.377          | 24,485 | 9.124  | 1.00 61.61 | В   | С   |
|      |       |     | HIS B 251 | 72.865          | 24.365 | 9.190  | 1.00 60.62 | В   | С   |
| MOTA | 5513  | CG  |           |                 |        | 9.440  | 1.00 59.65 | В   | Ċ   |
| MOTA | 5514  |     | HIS B 251 | 73.655          | 23.298 |        |            |     |     |
| ATOM | 5515  | ND1 | HIS B 251 | 73.716          | 25.434 | 8,994  | 1.00 60.52 | В   | N   |
| MOTA | 5516  | CEl | HIS B 251 | 74.966          | 25.026 | 9.121  | 1.00 59.57 | В   | С   |
| ATOM | 5517  |     | HIS B 251 | 74.956          | 23.733 | 9.391  | 1.00 60.02 | • В | N   |
|      |       |     |           | 69.474          | 24.463 | 7.518  | 1.00 64.15 | В   | С   |
| ATOM | 5518  | C   | HIS B 251 |                 |        |        | 1.00 65.83 | В   | 0   |
| ATOM | 5519  | 0   | HIS B 251 | 69.340          | 23.496 | 6.784  |            |     |     |
| MOTA | 5520  | N   | GLN B 252 | 68.442          | 25.057 | 8.111  | 1.00 64.80 | В   | N   |
| ATOM | 5521  | CA  | GLN B 252 | 67.087          | 24.573 | 7.885  | 1.00 65.37 | В   | . C |
| ATOM | 5522  | CB  | GLN B 252 | 66.064          | 25.438 | 8.622  | 1.00 64.01 | В   | С   |
|      |       |     |           | 65.800          | 25.008 | 10.053 | 1.00 64.90 | В   | С   |
| ATOM | 5523  | CG  | GLN B 252 |                 |        |        | 1.00 65.23 | В   | C   |
| ATOM | 5524  | CD  | GLN B 252 | 64.853          | 25.964 | 10.760 |            | В   | ŏ   |
| ATOM | 5525  | OE1 | GLN B 252 | 63.764          | 25.571 | 11.188 | 1.00 65.86 |     |     |
| ATOM | 5526  | NE2 | GLN B 252 | 65.269          | 27.233 | 10.887 | 1.00 65.65 | В   | N   |
| ATOM | 5527  | C   | GLN B 252 | 66.783          | 24.572 | 6.393  | 1.00 66.52 | В   | С   |
|      |       |     | GLN B 252 | 66.078          | 23.691 | 5.899  | 1.00 66.18 | В   | 0   |
| MOTA | 5528  | 0   |           |                 | 25.544 | 5,669  | 1.00 68.69 | В   | N   |
| ATOM |       | N   | GLU B 253 | 67.328          |        |        |            | В   | č   |
| ATOM | 5530  | CA  | GLU B 253 | 67.097          | 25.634 | 4.233  | 1.00 71.12 |     |     |
| ATOM | 5531  | CB  | GLU B 253 | 67.469          | 27.041 | 3.732  | 1.00 73.22 | В   | С   |
| ATOM |       | CG  | GLU B 253 | 66.768          | 27.451 | 2,433  | 1.00 77.82 | В   | С   |
|      |       |     |           | 67.355          | 26.782 | 1,203  | 1.00 80.76 | . В | С   |
| MOTA |       | CD  | GLU B 253 |                 |        | 0.150  | 1.00 82.61 | В   | 0   |
| MOTA |       |     | GLU B 253 | 66.668          | 26.745 |        |            |     |     |
| ATOM | 5535  | OE2 | GLU B 253 | 68.511          | 26.303 | 1.285  | 1.00 81.73 | В   | 0   |
| ATOM |       | С   | GLU B 253 | 67.873          | 24.554 | 3.460  | 1.00 71.89 | В   | C   |
| ATOM |       | ō   | GLU B 253 | 67.267          | 23.690 | 2.822  | 1.00 72.66 | В   | 0   |
|      |       |     |           | 69.205          | 24.598 | 3.539  | 1.00 72.93 | В   | N   |
| ATOM |       | N   | SER B 254 |                 |        |        | 1.00 73.01 | В   | Ċ   |
| ATOM |       | CA  | SER B 254 | 70.105          | 23.657 | 2.841  |            |     | č   |
| ATOM | 5540  | CB  | SER B 254 | 71.498          | 24.306 | 2.691  | 1.00 73.07 | В   |     |
| ATOM |       | OG  | SER B 254 | 72.358          | 23.597 | 1.812  | 1.00 72.63 | В   | 0   |
| ATOM |       | c   | SER B 254 | 70.247          | 22.311 | 3.571  | 1.00 72.77 | В   | С   |
|      |       |     |           | 71.195          | 21.557 | 3.336  | 1.00 71.98 | В   | 0   |
| ATOM |       | 0   | SER B 254 |                 |        | 4.456  | 1.00 73.82 | В   | N   |
| MOTA |       | N   | MET B 255 | 69.307          | 22.018 |        |            |     |     |
| ATOM | 5545  | CA  | MET B 255 | 69.337          | 20.777 | 5.209  | 1.00 74.60 | В   | C   |
| ATOM |       | CB  | MET B 255 | 68.404          | 20.871 | 6.428  | 1.00 78.04 | В   | С   |
|      | 20.0  |     |           |                 |        |        |            |     |     |

| MOTA | 5547 | CG  | MET | В   | 255  |    | 67.861 | 19.542 | 6.969   | 1.00 81.63 |   | В  | С |
|------|------|-----|-----|-----|------|----|--------|--------|---------|------------|---|----|---|
|      | 5548 | SD  | MET |     |      |    | 66.224 | 19.105 | 6.257   | 1.00 87.34 |   | В  | S |
| ATOM |      | CE  | MET |     |      |    | 65.065 | 20.025 | 7.397   | 1.00 85.70 |   | В  | Č |
| ATOM | 5549 |     |     |     |      |    |        |        | 4.308   | 1.00 73.64 |   | В  | č |
| MOTA | 5550 | С   | MET |     |      |    | 68.926 | 19.630 |         |            |   |    |   |
| MOTA | 5551 | 0   | MET |     |      |    | 67.889 | 19.688 | 3.629   | 1.00 72.83 |   | В  | 0 |
| ATOM | 5552 | N   | ASP | В   | 256  |    | 69.764 | 18.596 | 4.299   | 1.00 71.90 |   | В  | N |
| ATOM | 5553 | CA  | ASP | В   | 256  |    | 69.542 | 17.392 | 3.506   | 1.00 69.92 |   | В  | C |
| ATOM | 5554 | CB  | ASP | В   | 256  |    | 70.670 | 17.230 | 2.469   | 1.00 70.72 |   | В  | С |
| ATOM | 5555 | CG  | ASP |     |      |    | 70.518 | 15.974 | 1.614   | 1.00 70.58 |   | В  | C |
|      |      |     | ASP |     |      |    | 69.382 | 15.449 | 1.492   | 1.00 70.64 |   | В  | ō |
| ATOM | 5556 |     |     |     |      |    |        |        |         |            |   | В. | ŏ |
| ATOM | 5557 |     | ASP |     |      |    | 71.540 | 15.521 | 1.048   | 1.00 71.56 |   |    |   |
| ATOM | 5558 | С   |     |     | 256  |    | 69.481 | 16.181 | 4.434   | 1.00 68.11 |   | В  | С |
| ATOM | 5559 | 0   | ASP | В   | 256  |    | 70.473 | 15.810 | 5.067   | 1.00 66.52 |   | В  | 0 |
| ATOM | 5560 | N   | MET | В   | 257  |    | 68.286 | 15.601 | 4.530   | 1.00 65.51 |   | В  | N |
| ATOM | 5561 | CA  |     |     | 257  |    | 68.058 | 14.417 | 5.346   | 1.00 65.48 |   | В  | С |
| ATOM | 5562 | СВ  |     |     | 257  |    | 66.563 | 14.052 | 5.380   | 1.00 67.23 |   | В  | С |
|      | 5563 |     | MET |     |      |    | 65.605 | 15.153 | 5.885   | 1.00 68.84 |   | В  | С |
| ATOM |      | CG  |     |     |      |    |        |        | 7.658   | 1.00 71.37 |   | В  | Š |
| MOTA | 5564 | SD  | MET |     |      |    | 65.079 | 15.039 |         |            |   | В  | Ċ |
| ATOM | 5565 | CE  | MET |     |      |    | 64.097 | 16.620 | 7.814   | 1.00 71.82 |   |    |   |
| MOTA | 5566 | С   | MET | В   | 257  |    | 68.838 | 13,331 | 4.609   | 1.00 64.97 |   | В  | С |
| ATOM | 5567 | 0   | MET | В   | 257  |    | 69.107 | 13.477 | 3.414   | 1.00 66.71 |   | В  | 0 |
| ATOM | 5568 | N   | ASN | В   | 258. |    | 69.210 | 12.257 | 5.299   | 1.00 65.17 |   | В  | N |
| ATOM | 5569 | CA  |     |     | 258  |    | 69.961 | 11.176 | 4.654   | 1.00 64.71 |   | В  | Ç |
|      |      |     |     |     | 258  |    | 69.333 | 10.830 | 3.291   | 1.00 66,50 |   | В  | С |
| MOTA | 5570 | CB  |     |     |      |    |        | 10.649 | 3,358   | 1.00 68.28 |   | В  | č |
| MOTA | 5571 | CG  |     |     | 258  |    | 67.811 |        |         |            |   |    |   |
| ATOM | 5572 |     | asn |     |      |    | 67.313 | 9.696  | 3.973   | 1.00 69.64 |   | В  | 0 |
| MOTA | 5573 | ND2 | ASN | В   | 258  |    | 67.068 | 11.565 | 2.718   | 1.00 66.98 |   | В  | N |
| ATOM | 5574 | С   | ASN | В   | 258  |    | 71.418 | 11.593 | 4.425   | 1.00 63.11 |   | В  | С |
| ATOM | 5575 | 0   | ASN | В   | 258  |    | 72.234 | 10.784 | 3.979   | 1.00 63.10 |   | В  | 0 |
| MOTA | 5576 | N   |     |     | 259  |    |        | 12.852 | 4.725   | 1.00 61.91 |   | В  | N |
|      |      |     |     |     |      |    |        | 13,365 | 4.524   | 1.00 60.39 |   | В  | c |
| MOTA | 5577 | CA  |     |     | 259  |    |        |        |         |            |   | В  | č |
| ATOM | 5578 | CB  |     |     | 259  |    | 73.188 | 13.964 | 3.130   | 1.00 61.49 |   |    |   |
| MOTA | 5579 | CG  |     |     | 259. |    | 73.234 | 12.914 | 2.064   | 1.00 62.22 |   | В  | С |
| ATOM | 5580 | OD1 | ASN | В   | 259  |    | 74.224 | 12.186 | 1.941   | 1.00 64.39 |   | В  | 0 |
| ATOM | 5581 | ND2 | ASN | В   | 259  |    | 72.161 | 12.814 | 1.281   | 1.00 62.03 |   | В  | N |
| MOTA | 5582 | С   |     |     | 259  |    | 73.537 | 14.405 | 5.533   | 1.00 59.45 |   | В  | С |
|      | 5583 | ŏ   |     |     | 259  | ٠. |        | 15.425 | 5.161   | 1.00 59.36 |   | В  | 0 |
| ATOM |      |     |     |     | •    | •  |        |        | 6.825   | 1.00 57.71 |   | В  | N |
| ATOM | 5584 | N   |     |     | 260  | •  |        | 14.156 |         |            |   | В  | Ċ |
| MOTA | 5585 | CD  |     |     | 260  |    |        | 12.917 | 7.472   | 1.00 57.55 |   |    |   |
| MOTA | 5586 | CA  | PRO | В   | 260  |    | 73.720 | 15.135 | . 7.821 | 1.00 56.35 |   | В  | С |
| MOTA | 5587 | CB  | PRO | В   | 260  |    | 73.254 | 14.506 | 9.125   | 1.00 56.68 | • | В  | С |
| MOTA | 5588 | CG  | PRO | В   | 260  |    | 73.412 | 13.045 | 8.858   | 1.00 57.06 |   | В  | С |
| ATOM | 5589 | C   |     |     | 260  |    | 75.230 | 15.329 | 7.775   | 1.00 54.67 |   | В  | С |
|      | 5590 | Õ.  |     |     | 260  |    | 75.960 | 14,413 | 7.402   | 1.00 53.80 |   | В  | 0 |
| ATOM |      |     |     |     |      |    |        | 16.520 | 8.152   | 1.00 53.48 |   | В  | N |
| MOTA | 5591 | N   |     |     | 261  |    | 75.690 |        |         |            |   |    | č |
| ATOM | 5592 | CA  |     |     | 261  |    | 77.111 | 16.809 | 8.143   | 1.00 53.59 |   | В  |   |
| ATOM | 5593 | СB  | GLN | В   | 261  |    | 77.464 | 17.707 | 6.966   | 1.00 55.33 |   | В  | C |
| MOTA | 5594 | CG  | GLN | В   | 261  |    | 77.125 | 17.154 | 5.603   | 1.00 59.00 |   | В  | С |
| MOTA | 5595 | CD  | GLN | В   | 261  |    | 78.156 | 17.583 | 4.573   | 1.00 61.42 |   | В  | C |
| ATOM | 5596 | OE1 | GLN | В   | 261  |    | 79.324 | 17.184 | 4.658   | 1.00 62.22 |   | В  | 0 |
| ATOM | 5597 |     | GLN |     |      |    | 77.739 | 18.410 | 3.603   | 1.00 62.78 |   | В  | N |
|      |      | C   |     |     | 261  |    | 77.634 | 17.455 | 9.420   | 1,00 52.56 |   | В  | C |
| ATOM | 5598 |     |     |     |      |    | 78.845 | 17.600 | 9.578   | 1.00 53.23 |   | В  | ō |
| MOTA | 5599 | 0   |     |     | 261  |    |        |        | 10.313  | 1.00 50.51 |   | В  | Ŋ |
| MOTA | 5600 | N   |     |     | 262  |    | 76.741 | 17.877 |         |            |   | В  | Č |
| ATOM | 5601 | CA  |     |     | 262  |    | 77.160 | 18.483 | 11.586  | 1.00 48.20 |   |    |   |
| MOTA | 5602 | CB  | ASP | В   | 262  |    | 77.581 | 19.947 | 11.400  | 1.00 48.05 |   | В  | С |
| ATOM | 5603 | CG  | ASP | В   | 262  |    | 76.466 | 20.835 | 10.848  | 1.00 47.66 |   | В  | С |
| ATOM | 5604 | OD1 | ASP | В   | 262  |    | 76.832 | 21.824 | 10.160  | 1.00 46.01 |   | В. | 0 |
| ATOM | 5605 |     |     |     | 262  |    | 75.263 | 20.567 | 11.108  | 1.00 45.97 |   | В  | 0 |
|      |      |     |     |     | 262  |    | 76.132 | 18.389 | 12.702  | 1.00 47.06 |   | В  | C |
| MOTA | 5606 | С   |     |     |      |    |        | 17.931 | 12.496  | 1.00 46.54 |   | В  | 0 |
| ATOM | 5607 | 0   |     |     | 262  |    | 75.011 |        |         |            |   |    |   |
| ATOM | 5608 | N   |     |     | 263  |    | 76.522 | 18.833 | 13.889  | 1.00 45.53 |   | В  | И |
| ATOM | 5609 | CA  |     |     | 263  |    | 75.639 | 18.759 | 15.032  | 1.00 44.41 |   | В  | C |
| ATOM | 5610 | CB  | PHE | : B | 263  |    | 76.202 | 19.536 | 16.207  | 1.00 44.42 |   | В  | С |
| ATOM | 5611 | CG  |     |     | 263  |    | 75.559 | 19.188 | 17.509  | 1.00 44.28 |   | В  | С |
| ATOM | 5612 |     |     |     | 263  |    | 75.968 | 18.064 | 18.207  | 1.00 45.54 |   | В  | С |
|      |      |     |     |     |      |    | 74.533 | 19.964 | 18.031  | 1.00 44.61 |   | В  | Ċ |
| ATOM | 5613 |     |     |     | 263  |    |        | 17.717 | 19.410  | 1.00 46.26 |   | В  | č |
| ATOM | 5614 |     |     |     | 263  |    | 75.361 |        |         |            |   |    | c |
| MOTA | 5615 |     |     |     | 263  |    | 73.920 | 19.620 | 19.237  | 1.00 44.30 |   | В  |   |
| MOTA | 5616 | CZ  |     |     | 263  |    | 74.336 | 18.495 | 19.926  | 1.00 43.94 |   | В  | C |
| MOTA | 5617 | С   | PHE | : E | 263  |    | 74.265 | 19.300 | 14.727  | 1.00 44.75 |   | В  | С |
| ATOM | 5618 | ō   |     |     | 263  |    | 73.259 | 18.666 | 15.027  | 1.00 44.07 |   | В  | 0 |
| ATOM | 5619 | N   |     |     | 264  |    | 74.215 | 20.485 | 14.133  | 1.00 44.93 | ı | В  | N |
|      |      |     |     |     | 264  |    | 72.927 | 21.100 | 13.820  |            |   | В  | С |
| ATOM | 5620 | CA  |     |     |      |    |        | 22.433 | 13.098  | 1.00 44.47 |   | В  | Č |
| MOTA | 5621 | CB  | TPE | . 8 | 264  |    | 73.118 | 22.300 |         | T100 33141 |   | _  | _ |

|   | MOTA         | 5622         | CG2      | ILE        | В | 264              | 71.773           | 23.017           | 12,730           | 1.00 | 45.20          | В      | С      |
|---|--------------|--------------|----------|------------|---|------------------|------------------|------------------|------------------|------|----------------|--------|--------|
|   | MOTA         | 5623         |          | ILE        |   |                  | 73.862           | 23.400           | 14.019           |      | 43.05          | В      | С      |
|   | ATOM         | 5624         |          | ILE        |   |                  | 74.606           | 24.470           | 13.283           |      | 40.57          | B<br>B | C      |
|   | ATOM         | 5625<br>5626 | С<br>О   | ILE<br>ILE |   |                  | 72.030<br>70.926 | 20.193<br>19.854 | 12.987<br>13.418 |      | 47.22<br>47.36 | В      | 0      |
|   | MOTA<br>MOTA | 5627         | Ŋ        | ASP        |   |                  | 72.496           | 19.807           | 11.800           |      | 48.11          | В      | N      |
|   | ATOM         | 5628         | CA       | ASP        |   |                  | 71.708           | 18.930           | 10.932           |      | 48.71          | В      | C      |
|   | MOTA         | 5629         | CB       | ASP        |   |                  | 72.571           | 18.311           | 9.815            | 1.00 | 51.99          | В      | С      |
|   | ATOM         | 5630         | CG       | ASP        | В | 265              | 72.973           | 19.310           | 8.734            |      | 55.54          | В      | С      |
|   | ATOM         | 5631         |          | ASP        |   |                  | 72.097           | 20.055           | 8.235            |      | 58.02          | В      | 0      |
|   | ATOM         | 5632         |          | ASP        |   |                  | 74.173           | 19.333           | B.366            |      | 57.00          | B<br>B | o<br>C |
|   | ATOM<br>ATOM | 5633<br>5634 | С<br>0   | ASP<br>ASP |   |                  | 71.099<br>69.883 | 17.804<br>17.654 | 11.766<br>11.812 |      | 47.73<br>48.27 | В      | Ö      |
|   | ATOM         | 5635         | N        | CYS        |   |                  | 71.941           | 17.025           | 12.442           |      | 47.92          | В      | N      |
|   | ATOM         | 5636         | CA       | CYS        |   |                  | 71.447           | 15.907           | 13.243           |      | 47.92          | В      | C      |
|   | MOTA         | 5637         | CB       | CYS        | В | 266              | 72.589           | 15.224           | 13.988           |      | 46.83          | В      | С      |
|   | ATOM         | 5638         | SG       | CYS        |   |                  | 74.050           | 14.907           | 12.993           |      | 45.03          | В      | S      |
|   | ATOM         | 5639         | C        |            |   | 266 <sup>-</sup> | 70,400           | 16.352           | 14.251           |      | 48.66          | В      | C      |
|   | ATOM<br>ATOM | 5640<br>5641 | N<br>N   | CYS        |   |                  | 69.517<br>70.510 | 15.581<br>17.592 | 14.626<br>14.708 |      | 49.40<br>49.73 | B<br>B | O<br>N |
|   | ATOM         | 5642         | CA       | PHE        |   |                  | 69.547           | 18.101           | 15,662           |      | 51.00          | В      | c      |
|   | ATOM         | 5643         | СВ       | PHE        |   |                  | 70.099           | 19.314           | 16.428           |      | 50.24          | В      | Ċ      |
|   | MOTA         | 5644         | CG       | PHE        |   |                  | 69.390           | 19.581           | 17.729           | 1.00 | 49.19          | В      | С      |
|   | MOTA         | 5645         |          | PHE        |   |                  | 69.842           | 19.016           | 18.914           |      | 48.78          | В      | C      |
|   | MOTA         | 5646         |          | PHE        |   |                  | 68.223           | 20.329           | 17.753           |      | 48.36          | В      | C      |
|   | ATOM         | 5647         |          | PHE        |   |                  | 69.145           | 19.199           | 20.088           | •    | 47.51          | B<br>B | c<br>c |
|   | ATOM<br>ATOM | 5648<br>5649 | CEZ      | PHE        |   |                  | 67.523<br>67.981 | 20.509<br>19.940 | 18.928           |      | 48.39          | В      | c      |
|   | ATOM         | 5650         | C        |            |   | 267              | 68.311           | 18.515           | 14.876           |      | 52.53          | В      | c      |
|   | MOTA         | 5651         | ō        | PHE        |   |                  | 67.189           | 18.466           | 15.387           |      | 53.33          | В      | 0      |
|   | ATOM         | 5652         | N        | LEU        | В | 268              | 68.508           | 18.928           | 13.630           |      | 53.12          | B      | N      |
|   | ATOM         | 5653         | CA       | LEU        |   |                  | 67.369           | 19.333           | 12.822           |      | 53.68          | В      | С      |
|   | ATOM         | 5654         | CB       | LEU        |   |                  | 67.840           | 20.068           | 11.562           |      | 53.59          | В      | c      |
|   | ATOM         | 5655         | CG       |            |   | 268              | 67.761<br>68.381 | 21.599<br>22.066 | 11.676<br>12.972 |      | 54.06          | B<br>B | C      |
|   | ATOM<br>ATOM | 5656<br>5657 |          | LEU        |   |                  | 68.459           | 22.245           |                  |      |                | В      | c      |
|   | ATOM         | 5658         | C        |            |   | 268              | 66.463           | 18.148           | 12.458           |      | 55.44          | В      | č      |
|   | ATOM         | 5659         | 0        |            |   | 268              | 65.236           | 18.282           | 12.502           | 1.00 | 55.20          | В      | 0      |
|   | ATOM         | 5660         | N        | MET        | В | 269              | 67.069           | 16.999           | 12.130           |      | 56.98          | В      | N      |
|   | ATOM         | 5661         | CA       |            |   | 269              | 66.320           | 15.794           | 11.760           |      | 59.34          | В      | Ç      |
|   | ATOM         | 5662         | CB       |            |   | 269              | 67.140           | 14.876           | 10.823           |      | 60.05          | В      | C      |
|   | ATOM<br>ATOM | 5663<br>5664 | CG<br>SD |            |   | 269.<br>269      | 68.458<br>69.254 | 14.316<br>13.058 | 11.376<br>10.261 |      | 62.72<br>66.06 | B<br>B | C<br>S |
|   | ATOM         | 5665         | CE       |            |   | 269              | 69.481           | 13.994           | 8.727            |      | 64.43          | В      | č      |
|   | ATOM         | 5666         | c        |            |   | 269              | 65.838           | 15.005           | 12.967           |      | 59.39          | В      | C      |
|   | MOTA         | 5667         | 0        | MET        | В | 269              | 64.964           | 14.132           | 12.870           |      | 58.85          | В      | 0      |
|   | ATOM         | 5668         | N        |            |   | 270              | 66.411           | 15.308           | 14.116           |      | 60.86          | В      | N      |
|   | ATOM         | 5669         | CA       |            |   | 270              | 65.984           | 14.625           | 15.313           |      | 63.21          | В      | C      |
|   | ATOM<br>ATOM | 5670<br>5671 | CB<br>CG |            |   | 270<br>270       | 67.010<br>66.573 | 14.811<br>14.230 | 16.425<br>17.750 |      | 62.61<br>62.78 | B<br>B | c      |
|   | ATOM         | 5672         | CD       |            |   | 270              | 66.429           | 12.716           | 17.711           |      | 62.60          | В      | č      |
|   | ATOM         | 5673         | CE       |            |   | 270              | 65.886           |                  | 19.052           |      | 62.44          | В      | С      |
|   | ATOM         | 5674         | NZ       |            |   | 270 ·            | 65.984           | 10.741           | 19.250           |      | 61.09          | В      | N      |
|   | ATOM         | 5675         | С        |            |   | 270              | 64.627           | 15.224           | 15.710           |      | 66.08          | В      | C      |
|   | ATOM         | 5676         | 0        |            | _ | 270              |                  | 14.540           | 16.309           |      |                | B<br>B | O<br>N |
| • | ATOM<br>ATOM | 5677<br>5678 | N<br>CA  |            |   | 271 ·<br>271     | 64.402<br>63.136 | 16.492<br>17.168 | 15.357<br>15.661 |      | 68.08<br>69.76 | В      | C      |
|   | ATOM         | 5679         | CB       |            |   | 271              | 63.212           | 18.665           | 15.343           |      | 70.16          | В      | č      |
|   | ATOM         | 5680         | CG       |            |   | 271              | 64.148           | 19.456           | 16.235           |      | 71.08          | В      | С      |
|   | ATOM         | 5681         | SD       | MET        | В | 271              | 63.955           | 21.264           | 16.059           |      | 71.85          | В      | S      |
|   | MOTA         | 5682         | CE       |            |   | 271              | 64.973           | 21.559           | 14.616           |      | 70.30          | В      | C      |
|   | ATOM         | 5683         | С        |            |   | 271              | 62.026           | 16.566           | 14.819           |      | 71.34          | В      | C      |
|   | ATOM         | 5684         | O<br>N   |            |   | 271<br>272       | 60.918<br>62.339 | 16.316<br>16.350 | 15.302<br>13.544 |      | 70.75<br>73.69 | B<br>B | N      |
|   | MOTA<br>MOTA | 5685<br>5686 | CA       |            |   | 272              | 61.392           | 15.782           | 12.598           |      | 76.77          | В      | c      |
|   | MOTA         | 5687         | CB       |            |   | 272              | 61.943           | 15.877           | 11.159           |      | 77.75          | В      | Ċ      |
|   | ATOM         | 5688         | CG       |            |   | 272              | 60.904           | 15.649           | 10.033           | 1.00 | 80.19          | В      | С      |
|   | MOTA         | 5689         | CD       |            |   | 272              | 60.265           | 16.941           | 9.494            |      | 82.08          | В      | C      |
|   | MOTA         | 5690         |          | GLU        |   |                  | 59.868           | 17.818           | 10.304           |      | 83.11          | В      | 0      |
|   | ATOM         | 5691         |          | Gra        |   |                  | 60.148           | 17.074           | 8.248            |      | 82.13          | B<br>B | C      |
|   | ATOM         | 5692         | C        |            |   | 272              | 61.085           | 14.326<br>13.801 | 12.982<br>12.615 |      | 78.02<br>78.91 | В      | 0      |
|   | ATOM<br>ATOM | 5693<br>5694 | N<br>O   |            |   | 272<br>273       | 60.037<br>61.984 | 13.665           | 13.713           |      | 79.21          | В      | N      |
|   | ATOM         | 5695         | CA       |            |   | 273              | 61.698           | 12.290           | 14.134           |      | 81.62          | В      | Ċ      |
|   | ATOM         | 5696         | CB       |            |   | 273              | 62.971           | 11.560           | 14.611           |      | 81.40          | В      | С      |
|   |              |              |          |            |   |                  |                  |                  |                  |      |                |        |        |

| MOTA | 5697 | CG  | LYS | В | 273 | 63.469 | 10.446 | 13.681  | 1.00 80.97 |     | В  | С   |
|------|------|-----|-----|---|-----|--------|--------|---------|------------|-----|----|-----|
| ATOM | 5698 | CD  | LYS |   |     | 64.672 | 9.694  | 14.277  | 1.00 79.76 |     | В  | С   |
| ATOM | 5699 | CE  | LYS |   |     | 64.285 | 8.424  | 15.048  | 1.00 79.32 |     | В  | С   |
| MOTA | 5700 | NZ  | LYS |   |     | 63.442 | 8.651  | 16.250  | 1.00 78.75 |     | В  | N   |
| ATOM | 5701 | C   | LYS |   |     | 60.667 | 12.330 | 15.264  | 1.00 83.78 |     | В  | С   |
| ATOM | 5702 | ŏ   | LYS |   |     | 59.829 | 11.429 | 15.388  | 1.00 84.35 |     | В  | 0   |
| ATOM | 5703 | N   | GLU |   |     | 60.735 | 13.371 | 16.092  | 1.00 85.85 |     | В  | N   |
| ATOM | 5704 | CA  | GLU |   |     | 59.792 | 13.537 | 17.203  | 1.00 87.81 |     | В  | C   |
| ATOM | 5705 | CB  | GLU |   |     | 60.523 | 13.807 | 18.528  | 1.00 88.21 |     | В  | C   |
| ATOM | 5706 | CG  | GLU |   |     | 61.444 | 12.703 | 19.059  | 1.00 88.84 |     | ₿  | C   |
| ATOM | 5707 | CD  | GLU |   |     | 61.490 | 12.659 | 20.596  | 1.00 89.98 |     | В  | C   |
| ATOM | 5708 | OE1 | GLU |   |     | 61.827 | 13.689 | 21.234  | 1.00 89.79 |     | В  | 0   |
| ATOM | 5709 |     | GLU |   |     | 61.196 | 11.580 | 21.173  | 1.00 90.42 |     | В  | 0   |
| ATOM | 5710 | c   | GLU |   |     | 58.840 | 14.706 | 16,945  | 1.00 88.99 |     | В  | С   |
| ATOM | 5711 | ŏ   | GLU |   |     | 58.807 | 15.662 | .17.720 | 1.00 88.80 |     | В  | 0   |
| ATOM | 5712 | N   | LYS |   |     | 58.076 | 14.662 | 15.856  | 1.00 90.84 |     | В  | N   |
| ATOM | 5713 | CA  | LYS |   |     | 57.145 | 15.769 | 15.596  | 1.00 92.51 |     | В  | С   |
| ATOM | 5714 | CB  | LYS |   |     | 57.217 | 16.257 | 14.141  | 1.00 92.71 |     | В  | С   |
| ATOM | 5715 | CG  | LYS |   |     | 56.568 | 15.304 | 13.135  | 1.00 93.07 |     | В  | C   |
| MOTA | 5716 | CD  | LYS |   |     | 55.942 | 16.023 | 11.930  | 1.00 92.63 |     | В  | С   |
| ATOM | 5717 | CE  | LYS |   |     | 56.979 | 16.788 | 11.106  | 1.00 92.20 |     | В  | С   |
| ATOM | 5718 | NZ  | LYS |   |     | 56.398 | 17.482 | 9.910   | 1.00 89.91 |     | В  | N   |
| ATOM | 5719 | c   | LYS |   |     | 55.699 | 15.385 | 15.904  | 1.00 93.60 |     | В  | С   |
| ATOM | 5720 | ŏ   | LYS |   |     | 54.837 | 16.254 | 15.963  | 1.00 93.67 |     | В  | 0   |
| ATOM | 5721 | N   | HIS |   |     | 55.427 | 14.092 | 16.074  | 1.00 94.71 |     | В  | N   |
| ATOM | 5722 | CA  | HIS |   |     | 54.059 | 13.677 | 16.363  | 1.00 96.32 |     | В  | , с |
| ATOM | 5723 | CB  | HIS |   |     | 53.770 | 12.279 | 15.783  | 1.00 97.55 |     | В  | C   |
| ATOM | 5724 | CG  | HIS |   |     | 53.459 | 12.273 | 14.310  | 1.00 99.48 |     | В. |     |
| ATOM | 5725 |     | HIS |   |     | 53.902 | 11.476 | 13.305  | 1.00100.35 |     | В  |     |
| ATOM | 5726 |     |     |   | 276 | 52.532 | 13.122 | 13.737  | 1.00100.59 |     | В  | N.  |
| ATOM | 5727 |     | HIS |   |     | 52.415 | 12.845 | 12.450  | 1.00100.68 |     | В  | C   |
| ATOM | 5728 |     | HIS |   |     | 53.235 | 11.849 | 12.161  | 1.00100.47 | . ' | В  | N   |
| ATOM | 5729 | c   | HIS |   |     | 53.723 | 13.717 | 17.870  | 1.00 96.16 |     | В  | C - |
| ATOM | 5730 | ŏ   | HIS |   |     | 52.644 | 14.183 | 18.259  | 1.00 97.04 |     | В: | 0   |
| ATOM | 5731 | N   | ASN |   |     | 54.642 | 13.226 | 18.704  | 1.00 95.48 |     | В  |     |
| ATOM | 5732 | CA  | ASN |   |     | 54.481 | 13.227 | 20.162  | 1.00 95.07 |     | В- | C   |
| ATOM | 5733 | СВ  | ASN |   |     | 55.234 | 12.030 | 20.777  | 1.00 94.90 |     | В. | C.  |
| ATOM | 5734 | CG  | ASN |   |     | 55.286 | 10.814 | 19.836  | 1.00 95.36 | ٠   | B  | C . |
| ATOM | 5735 |     | ASN |   |     | 56.004 | 10.819 | 18.827  | 1.00 94.64 |     | В  | 0   |
| ATOM | 5736 |     | ASN |   |     | 54.521 | 9.774  | 20.166  | 1.00 94.72 |     | В  | Ń   |
| ATOM | 5737 | C   | ASN |   |     | 55.126 | 14.560 | 20.578  | 1.00 94.36 |     | В  | С   |
| ATOM | 5738 | ŏ   | ASN |   |     | 56.330 | 14.617 | 20.830  | 1.00 94.37 |     | В  | 0   |
| ATOM | 5739 | N   | GLN |   |     | 54.311 | 15.618 | 20,656  | 1.00 92.88 |     | В  | N   |
| ATOM | 5740 | CA  | GLN |   |     | 54.790 | 16.981 | 20.931  | 1.00 90.78 |     | В  | С   |
| ATOM | 5741 | CB  | GLN |   |     | 53.732 | 18.007 | 20.468  | 1.00 92.71 |     | В  | C   |
| ATOM | 5742 | CG  |     |   | 278 | 54.310 | 19.339 | 19.928  | 1.00 94.75 |     | В  | C   |
| ATOM | 5743 | CD  |     |   | 278 | 54.903 | 19.230 | 18.514  | 1.00 96.29 |     | В  | С   |
| MOTA | 5744 | OE1 |     |   |     | 54.179 | 19.305 | 17.510  | 1.00 96.62 |     | В  | 0   |
| MOTA | 5745 | NE2 |     |   |     | 56.223 | 19.045 | 18,437  | 1.00 97.65 |     | В  | N   |
| ATOM | 5746 | C   |     |   | 278 | 55.346 | 17.419 | 22.289  | 1.00 88.62 |     | В  | С   |
| ATOM | 5747 | ō   |     |   | 278 | 55.760 | 18.581 | 22.428  | 1.00 88.03 |     | В  | 0   |
| ATOM | 5748 | N   |     |   | 279 | 55.334 | 16.547 | 23.316  | 1.00 86.91 |     | В  | N   |
| ATOM | 5749 | CD  |     |   | 279 | 54.736 | 15.223 | 23.580  | 1.00 86.58 |     | В  | С   |
| ATOM | 5750 | CA  |     |   | 279 | 55.925 | 17.121 | 24.532  | 1.00 85.27 |     | В  | С   |
| ATOM | 5751 | СВ  |     |   | 279 | 55.975 | 15.927 | 25.482  | 1.00 85.50 |     | В  | С   |
| ATOM | 5752 | CG  | PRO | В | 279 | 54.733 | 15.160 | 25.101  | 1.00 86.84 |     | В  | С   |
| ATOM | 5753 | Ċ   |     |   | 279 | 57.330 | 17.623 | 24.120  | 1.00 83.26 |     | В  | С   |
| ATOM | 5754 | 0   |     |   | 279 | 57.753 | 18.717 | 24.509  | 1.00 83.50 |     | В  | 0   |
| ATOM | 5755 | N   |     |   | 280 | 58.006 | 16.811 | 23.298  | 1.00 80.24 |     | В  | N   |
| MOTA | 5756 | CA  |     |   | 280 | 59.337 | 17.078 | 22.726  | 1.00 77.42 | •   | В  | С   |
| ATOM | 5757 | CB  |     |   | 280 | 59.200 | 17.703 | 21.336  | 1.00 77.72 |     | В  | С   |
| MOTA | 5758 | OG  |     |   | 280 | 60.491 | 17.986 | 20.800  | 1.00 78.85 |     | В  | 0   |
| MOTA | 5759 | C   |     |   | 280 | 60.365 | 17.910 | 23.489  | 1.00 75.24 |     | В  | С   |
| ATOM | 5760 | ŏ   |     |   | 280 | 60.177 | 19.109 | 23.736  | 1.00 75.01 |     | В  | 0   |
| ATOM | 5761 | N   |     |   | 281 | 61.487 | 17.281 | 23.816  | 1.00 72.24 |     | В  | N   |
| ATOM | 5762 | CA  |     |   | 281 | 62.550 | 17.974 | 24.545  | 1.00 67.62 |     | В  | С   |
| ATOM | 5763 | CB  |     |   | 281 | 63.282 | 16.971 | 25.442  | 1.00 68.81 |     | В  | C   |
| ATOM | 5764 | CG  |     |   | 281 | 63.454 | 17.415 | 26.901  | 1.00 71.33 |     | В  | С   |
| ATOM | 5765 | CD  |     |   | 281 | 62.149 | 17.472 | 27.689  | 1.00 72.38 |     | В  | С   |
| ATOM | 5766 |     | ĞLU |   |     | 61.391 | 18.457 | 27.531  | 1.00 73.57 |     | В  | 0   |
| ATOM | 5767 |     | GLU |   |     | 61.875 | 16.526 | 28.472  | 1.00 73.31 |     | В  | 0   |
| ATOM | 5768 | C   |     |   | 281 | 63.516 | 18.624 | 23.533  | 1.00 64.19 |     | В  | С   |
| ATOM | 5769 | ŏ   |     |   | 281 | 64.493 | 19.274 | 23.916  | 1.00 63.18 |     | В  | 0   |
| ATOM | 5770 | N   |     |   | 282 | 63.214 | 18.459 | 22.244  | 1.00 59.60 |     | В  | N   |
| ATOM | 5771 | CA  |     |   | 282 | 64.049 | 19.022 | 21.197  | 1.00 55.52 |     | В  | С   |
|      |      |     |     |   |     |        |        |         | •          |     |    |     |

11'ON

A.301.

274/514

```
PHE B 282
                                  64.424
                                          17.958
                                                   20.175 1.00 54.02
                                                                                 С
 MOTA
        5772 CB
                  PHE B 282
                                                   20.719
                                                           1.00 51.83
                                                                            R
              CG
                                  65.320
                                           16.897
 ATOM
        5773
                                           15.860
                                                           1.00 51.43
              CD1
                  PHE B 282
                                  64.802
                                                   21.490
 ATOM
        5774
                                                                           ۱ в
                                                           1.00 50.44
              CD2 PHE B 282
                                  66.689
                                           16.946
                                                   20.487
 ATOM
        5775
                                                           1.00 51.62
              CE1 PHE B 282
                                  65.637
                                           14.886
                                                   22.031
 ATOM
        5776
                                                           1.00 49.74
              CE2 PHE B 282
                                   67.536
                                           15.978
                                                   21.020
        5777
 ATOM
                                  67.009
                                           14.944
                                                   21.794
                                                           1.00 50.75
                  PHE B 282
              CZ
 ATOM
        5778
                                                   20.477
                                                           1.00 54.37
                  PHE B 282
                                  63.400
                                           20.187
 MOTA
        5779
              С
                                                   19.576
                                                           1.00 54.22
                  PHE B 282
                                           19.995
                                  62.581
 ATOM
        5780
              ٥
                                                   20.880
                                                           1.00 52.76
                  THR B 283
                                  63.769
                                           21.397
 MOTA
        5781
              N
                                                           1,00 51.45
                                                   20,265
 MOTA
        5782
              CA
                  THR B 283
                                  63.230
                                           22.600
                                                                                  C
                                                   21.289
                                                           1.00 52.95
        5783
              СВ
                  THR B 283
                                   62.504
                                          23.499
                                                                             В
                                                                                  C
 ATOM
                                           24.054
                                                   22,196
                                                           1.00 54.36
                                                                                  ٥
 MOTA
        5784
              OG1 THR B 283
                                   63.466
                                                   22.080
                                          22.695
                                                           1.00 54.03
        5785
              CG2 THR B 283
                                   61.476
                                                                             В
                                                                                  С
 ATOM
                                                           1.00 50.36
                                                                                  c
                                                   19.698
        5786
                  THR B 283
                                   64.386
                                           23.387
                                                                             В
 ATOM
              С
                                                   20.052
                                                           1.00 49.28
                                                                                  0
 ATOM
        5787
                  THR B 283
                                   65.539
                                           23.157
                                                                            В
                                                   18.812
                                                           1.00 50.52
        5788
                   ILE B 284
                                   64.075
                                           24.319
                                                                             В
                                                                                  N
 ATOM
                                                           1.00 50.69
                                                                                  Ċ
 ATOM
        5789
              CA
                  ILE B 284
                                   65.103
                                           25.149
                                                   18.217
                                                                             В
                                                                                  C
 ATOM
        5790
              CB
                  ILE B 284
                                   64.495
                                           26.222
                                                   17.302
                                                           1.00 51.43
                                                                            В
              CG2 ILE B 284
                                   65.595
                                           26.882
                                                   16.482
                                                           1.00 50.58
                                                                             В
                                                                                  C
 ATOM
        5791
              CG1 ILE B 284
                                   63.429
                                           25,593
                                                   16.395
                                                           1.00 53.74
                                                                             В
                                                                                  C
 MOTA
        5792
                                                                                  С
              CD1 ILE B 284
                                   63.973
                                           24.583
                                                   15.391
                                                           1.00 55.57
                                                                             B.
 ATOM
        5793
 ATOM
        5794
              С
                   ILE B 284
                                   65.855
                                           25.840
                                                   19.354
                                                           1.00 51.91
                                                                             В
                                                                                  C
                  ILE B 284
                                   67.054
                                           26.071
                                                   19.261
                                                           1.00 51.67
                                                                             R
                                                                                  0
        5795
 MOTA
              ٥
                                   65.149
                                           26,172
                                                   20.430
                                                           1.00 52.50
                                                                            В
                                                                                  N
 MOTA
        5796
              N
                   GLU B 285
                                           26.831
                                   65.805
                                                   21.546
                                                           1.00 52.98
                                                                            В
        5797
              CA
                   GLU B 285
 ATOM
                                           27.182
                   GLU B 285
                                   64.800
                                                   22.642
                                                           1.00 55.22
                                                                             В
                                                                                  С
 MOTA
        5798
              CB
                                                            1.00 59.27
                                   65.265
                                           28.317
                                                   23.555
                                                                             В
                                                                                  С
                   GLU B 285
              CG
 ATOM
        5799
                                                           1.00 62.82
                                                                             В
                                                                                  С
                                   64.408
                                           28.476
                                                   24.803
                   GLU B 285
 ATOM
        5800
              CD
                                           28.382
                                   63.165
                                                   24.677
                                                            1.00 63.35
              OE1 GLU B 285
 MOTA
        5801
                                                                             В
                                                                                  0
                                   64.976
                                           28.717
                                                   25.902
                                                            1.00 63.79
 MOTA
        5802
              OE2 GLU B 285
                                   66.886
                                                   22.113
                                                            1.00 51.50
                                                                             В
                                                                                  С
                                           25.911
 ATOM-
        5803
              С
                   GLU B 285
                                                            1.00 50.72
                                                                             В
                                                                                  0
                                   68.061
                                           26.279
                                                   22.144
        5804
              0
                   GLU B 285
: ATOM
                                           24.713
                                                   22.543
                                                            1.00 50.65
                                                                             В
                                                                                  N
        5805
                   SER B 286
                                   66.488
 ATOM
              N
                                                            1.00 48.41
                                                                             В
                                                                                  С
                                           23.743
        5806
                   SER B 286
                                   67.428
                                                   23.113
 ATOM
              CA
                                                                                  С
                                                            1.00 48.10
                                                                             В
                   SER B 286
                                   66.726
                                           22.414
                                                   23,417
 ATOM
        5807
              CB
                                                                                  0
                                                                             В
                                                            1.00 49.68
                   SER B 286
                                   65.667
                                           22.167
                                                   22.513
 ATOM
        5808
              OG
                                                                                  С
                   SER B 286
                                   68.638
                                           23.501
                                                   22.223
                                                           1.00 47.27
                                                                             В
 ATOM
        5809
              С
                                                                                  0
                                                                             В
        5810
              0
                   SER B 286
                                   69.749
                                           23.355
                                                   22.718
                                                           1.00 46.11
MOTA
 ATOM
        5811
                   LEU B 287
                                   68.435
                                           23.452
                                                   20.916
                                                           1.00 47.21
                                                                             В
                                                                                  N
              N
                                                                                  С
                                   69.572
                                           23.267
                                                   20.044
                                                            1.00 47.53
                                                                             В
              CA
                   LEU B 287
 ATOM
        5812
                                                                                  C
                                   69.170
                                           23.425
                                                   18.582
                                                           1.00 47.04
                                                                             В
 MOTA
        5813
              CB
                   LEU B 287
                                                                                  C
                                           23.421
                                                   17.576
                                                            1.00 46.90
                                                                             В
              CG
                   LEU B 287
                                   70.321
 ATOM
        5814
                                           22.135
                                                   17.717
                                                            1.00 46.41
                                                                             В
                                                                                  С
              CD1 LEU B 287
                                   71.109
 MOTA
        5B15
                                                                                  С
                                                   16.148
                                                            1.00 46.99
                                                                             A
              CD2 LEU B 287
                                   69.797
                                           23,588
 ATOM
        5816
                                                            1.00 48.73
                                                                             В
                                                                                  C
                   LEU B 287
                                   70.570
                                           24,352
                                                   20.447
 ATOM
         5817
              C
                                                   20.819
                                                            1.00 50.57
                                                                                  ٥
                   LEU B 287
                                   71.701
                                           24.053
 ATOM
         5818
              0
                                           25.607
26.747
                                   70.131
                                                   20.420
                                                            1.00 49.70
                                                                                  Ŋ
                   GLU B 288
 ATOM
         5819
              N
                                                   20.785
                                                            1.00 51.07
                                                                                  С
                                   70.976
 ATOM
         5820
               CA
                   GLU B 288
                                           28.019
                                                                                  С
                                                            1.00 53.72
                                                   20.892
 ATOM
         5821
               CB
                   GLU B 288
                                   70.138
                                                   19.619
                                                            1.00 57.64
                                                                             В
                                                                                  С
                                           28,442
 ATOM
         5822
               ÇG
                   GLU B 288
                                   69.444
                                                   19.854
                                           29.512
                                                            1.00 61.33
                                                                             В
         5823
               CD
                   GLU B 288
                                   68.382
 ATOM
                   GLU B 288
                                   67.980
                                           30.191
                                                   18.876
                                                            1.00 62.67
                                                                             В
                                                                                  0
  ATOM
         5824
               OE1
                                                                                  0
                                                            1.00 63.66
                                                                             В
               OE2 GLU B 288
                                   67.930
                                           29.676
                                                   21.014
 MOTA
         5825
                                                            1.00 50.03
                                                                                  C _
                   GLU B 288
                                   71.703
                                           26.556
                                                   22.108
                                                                             В
  ATOM
         5826
               С
                                                            1.00 49.82
                                                                             В
                                                   22.189
                   GLU B 288
                                   72.926
                                           26.701
  ATOM
         5827
                                                            1.00 48.58
                                                                             В
  ATOM
         5828
              N
                   ASN B 289
                                   70.931
                                           26.256
                                                   23.150
                                                                                  С
                   ASN B 289
                                                                             В
                                   71.475
                                           26.041
                                                   24.482
                                                            1.00 46.94
  ATOM
         5829
               CA
                                                                                  С
         5830
               СВ
                   ASN B 289
                                   70.358
                                           25.647
                                                   25.453
                                                            1.00 51.57
                                                                             В
  ATOM
                                                                                  C
                   ASN B 289
                                   69.340
                                           26.768
                                                   25.673
                                                            1.00 55.39
                                                                             В
  ATOM
         5831
               CG
                                           26.601
                                                   26.417
                                                            1.00 58.92
                                                                             R
                                                                                  0
               OD1 ASN B 289
                                   68.366
  ATOM
         5832
                                           27.911
                                                    25.034
                                                            1.00 56.07
                                                                             В
                                                                                  N
               ND2 ASN B 289
                                   69.561
         5833
  ATOM
                                                    24.437
                                                            1.00 44.40
                                                                             В
                                                                                  C
                                   72.530
                                           24.949
  MOTA
         5834
               C
                   ASN B 289
                                           25.133
                                                   24.907
                                                            1.00 43.86
                                                                                  0
                                   73.648
  ATOM
         5835
               0
                   ASN B 289
                                           23.809
                                                    23.860
                                                            1.00 41.43
                                                                             В
                                                                                  N
                                   72.191
  ATOM
         5836
               N
                   THR B 290
                                           22.751
                                                    23.813
                                                            1.00 38.18
         5837
               CA
                   THR B 290
                                   73.171
  ATOM
                                                            1.00 38.13
                                                   23,240
                                           21.451
                   THR B 290
                                   72.569
  ATOM
         5838
               CB
                                                            1.00 38.91
                                           21.316
                                                    23.691
                                                                             В
               OG1 THR B 290
                                   71.216
  ATOM
         5839
                                                            1.00 37.35
                                                                             В
                                   73.353
                                           20.241
                                                    23.736
  ATOM
         5840
               CG2 THR B 290
                                   74.391
                                           23.188
                                                    23.006
                                                            1.00 35.59
                                                                             В
  ATOM
         5841
               C
                   THR B 290
                                                                                  0
                   THR B 290
                                   75.486
                                           22.685
                                                    23.213
                                                            1.00 35.99
         5842
  ATOM
               0
                                   74.223
                                           24.140
                                                    22.103
                                                            1.00 34.13
                                                                             В
                   ALA B 291
  ATOM
         5843
               N
                                                            1.00 33.37
                                                                             B
                                   75.357
                                           24.595
                                                    21.314
                   ALA B 291
  ATOM
         5844
               CA
                                           25.363
                                                    20,120
                                                            1.00 33.01
                                                                             В
                                                                                   C
                   ATA B 291
                                   74.886
         5845
  ATOM
               CB
                                                           1.00 33.47
                                   76.269
                                            25.477
                                                    22,142
                   ALA B 291
  ATOM
         5846
               С
```

Figure 3

| ATOM | 5847 | 0   | ALA I | 2 | 291 | 77.475 | 25.258   | 22.201 | 1.00  | 34.57 |   | В  | 0   |
|------|------|-----|-------|---|-----|--------|----------|--------|-------|-------|---|----|-----|
|      |      |     |       |   |     |        |          |        |       | 33.14 |   | В  | N   |
| ATOM | 5848 | N   | VAL I |   |     | 75.701 | 26.495   | 22.770 |       |       |   | _  |     |
| ATOM | 5849 | CA  | VAL I | В | 292 | 76,527 | 27.372   | 23.569 | 1.00  | 32.40 |   | В  | С   |
| ATOM | 5850 | СВ  | VAL I | R | 292 | 75.697 | 28.395   | 24.307 | 1.00  | 32.46 |   | В  | С   |
|      |      |     |       |   |     |        |          |        |       |       |   | В  | Č   |
| MOTA | 5851 | CG1 | VAL 1 | 8 | 292 | 75.110 | 29.368   | 23.325 |       | 31.75 |   |    |     |
| MOTA | 5852 | CG2 | VAL   | В | 292 | 74.617 | 27.687   | 25.099 | 1.00  | 33.57 |   | В  | С   |
|      |      |     | VAL I |   |     | 77.296 | 26.562   | 24.576 | 1.00  | 32.96 |   | В  | С   |
| ATOM | 5853 | С   |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5854 | 0   | VAL   | В | 292 | 78.474 | 26.818   | 24.798 | 1.00  | 33.13 |   | В  | 0   |
| ATOM | 5855 | N   | ASP 1 | В | 293 | 76.632 | 25.589   | 25.197 | 1.00  | 33.02 |   | В  | N   |
|      |      |     | ASP   |   |     | 77.327 | 24.765   | 26.183 | 1 00  | 34.56 |   | В  | С   |
| ATOM | 5856 | CA  |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5857 | CB  | ASP 1 | В | 293 | 76.399 | 23.698   | 26.795 | 1.00  | 37.72 |   | В  | С   |
| ATOM | 5858 | CG  | ASP : | В | 293 | 75.334 | 24.306   | 27.717 | 1.00  | 41.87 |   | В  | С   |
|      |      |     | ASP : |   |     | 74.568 | 23.540   | 28.356 | 1 00  | 43.62 |   | В  | 0   |
| MOTA | 5859 |     |       |   |     |        |          |        |       |       |   |    |     |
| MOTA | 5860 | OD2 | ASP : | В | 293 | 75.249 | 25.562   | 27.811 | 1.00  | 45.09 |   | В  | 0   |
| ATOM | 5861 | C   | ASP : | B | 293 | 78.539 | 24.131   | 25.483 | 1.00  | 33.46 |   | В  | С   |
|      |      |     | ASP   |   |     | 79.673 | 24.369   | 25.894 | 1 00  | 33.81 |   | В  | 0   |
| MOTA | 5862 | 0   |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5863 | N   | LEU : | В | 294 | 78.322 | 23.371   | 24.414 |       | 29.68 |   | В  | N   |
| ATOM | 5864 | CA  | LEU   | В | 294 | 79.446 | 22.778   | 23.734 | .1.00 | 26.68 |   | В  | С   |
|      |      |     | LEU   |   |     | 78.997 | 22.115   | 22.448 | 1 00  | 24.49 |   | В  | С   |
| ATOM | 5865 | СВ  |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5866 | CG  | LEU : | В | 294 | 77.961 | 21.082   | 22.875 |       | 22.62 |   | В  | С   |
| ATOM | 5867 | CD1 | LEU : | В | 294 | 77.575 | 20.298   | 21.673 | 1.00  | 23.12 |   | В  | С   |
|      | 5868 |     | LEU   |   |     | 78.495 | 20.154   | 23.966 | 1 00  | 21.20 |   | В  | С   |
| ATOM |      |     |       |   |     |        |          |        |       |       |   | В  | Ċ   |
| ATOM | 5869 | С   | TEO : |   |     | 80.521 | 23.813   | 23.471 |       | 26.91 |   |    |     |
| ATOM | 5870 | О.  | LEU   | В | 294 | 81.707 | 23.524   | 23,589 | 1.00  | 27.24 |   | В  | 0   |
| ATOM | 5871 | N   | PHE   | B | 295 | 80.134 | 25.031   | 23.139 | 1.00  | 28.45 |   | В  | N   |
|      |      |     |       |   |     |        |          |        |       | 30.62 |   | В  | C   |
| ATOM | 5872 | CA  | PHE   |   |     | 81.143 | 26.047   | 22.900 |       |       |   |    |     |
| ATOM | 5873 | CB  | PHE   | В | 295 | 80.506 | 27.302   | 22.328 | 1.00  | 30.93 |   | В  | С   |
| ATOM | 5874 | CG  | PHE   | R | 295 | 80.648 | 27.404   | 20.848 | 1.00  | 31.09 |   | В  | С   |
|      |      |     |       |   |     |        | 27.752   | 20.280 |       | 32.65 |   | В  | C   |
| ATOM | 5875 |     | PHE.  |   |     | 81.872 |          |        |       |       |   |    |     |
| ATOM | 5876 | CD2 | PHE   | В | 295 | 79.574 | 27.118   | 20.016 | 1,00  | 31.25 |   | В  | C   |
| ATOM | 5877 | CE1 | PHE   | R | 295 | 82.027 | 27.801   | 18.908 | 1.00  | 33.38 |   | В  | C   |
|      |      | 4.7 |       |   |     |        |          | 18.646 |       | 31.32 |   | В  | C   |
| ATOM | 5878 | CEZ | PHE   |   |     | 79.720 | 27.166   |        |       |       |   |    |     |
| ATOM | 5879 | CZ  | PHE   | В | 295 | 80.949 | 27.512   | 18.087 | 1.00  | 32.67 |   | В  | С   |
| MOTA | 5880 | С   | PHE   | В | 295 | 81.930 | 26.402   | 24.154 | 1.00  | 32.23 |   | В  | С   |
|      |      |     |       |   |     |        |          | 24.175 |       | 33.44 |   | В  | 0   |
| MOTA | 5881 | Ó   | PHE   |   |     | 83.156 |          |        |       |       |   |    |     |
| ATOM | 5882 | N'  | GLY   | В | 296 | 81.230 | 26.820   | 25.202 | 1.00  | 33.49 |   | В  | , N |
| ATOM | 5883 | CA  | GLY   | В | 296 | 81.897 | 27.205   | 26.431 | 1.00  | 33.72 |   | В  | C   |
|      |      | C   | GLY   |   |     | 82.604 | 26.078   | 27.141 | 1 00  | 34.41 | • | В  | С   |
| ATOM | 5884 |     |       |   |     |        |          |        |       |       |   |    | ō   |
| ATOM | 5885 | 0   | GLY.  | В | 296 | 83.759 |          | 27.552 |       | 35.18 |   | В  |     |
| ATOM | 5886 | N   | ALA   | В | 297 | 81.897 | 24.964   | 27.294 | 1.00  | 34.11 |   | В  | N   |
|      | 5887 | CA  | ALA   |   |     | 82.434 |          | 27.965 | 1.00  | 33.96 |   | В  | С   |
| ATOM |      |     |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5888 | CB  | ALA   | В | 297 | 81.348 | 22.760   | 28.132 |       | 33.13 |   | В  | C   |
| ATOM | 5889 | С   | ALA   | В | 297 | 83.592 | 23.180   | 27.189 | 1.00  | 34.65 |   | В  | С   |
| ATOM | 5890 | ō   | ALA   |   |     | 84.508 |          | 27.780 | 1.00  | 37.33 |   | В  | 0   |
|      |      |     |       |   |     |        |          |        |       |       |   | В  | N   |
| MOTA | 5891 | N   | GLY   | В | 298 | 83.550 |          | 25,870 |       | 33.44 |   |    |     |
| MOTA | 5892 | CA  | GLY   | В | 298 | 84.609 | 22.740   | 25.073 | 1.00  | 32.09 |   | В  | С   |
| ATOM | 5893 | С   | GLY   | R | 298 | 85.775 | 23.648   | 24.772 | 1.00  | 32.86 |   | В  | С   |
|      |      |     |       |   |     |        |          | 24.167 |       | 35.89 |   | В  | 0   |
| ATOM | 5894 | 0   | GLY   |   |     | 86.747 |          |        |       |       |   |    |     |
| MOTA | 5895 | N   | THR   | В | 299 | 85.721 | 24.898   | 25.206 | 1.00  | 32.96 |   | В  | N   |
| ATOM | 5896 | CA  | THR   | В | 299 | 86.812 | 25.796   | 24.891 | 1.00  | 32.92 |   | В  | C   |
|      |      |     | THR   | _ |     | 86.291 |          | 24.400 | 1 00  | 33.29 |   | В  | С.  |
| MOTA | 5897 | CB  |       |   |     |        |          |        |       |       |   |    |     |
| MOTA | 5898 | OG1 | THR   | В | 299 | 85.348 |          | 23.351 |       | 35.54 |   | В  | 0   |
| MOTA | 5899 | CG2 | THR   | В | 299 | 87.446 | 27.976   | 23.878 | 1.00  | 35.18 |   | В  | С   |
| ATOM | 5900 | C   | THR   |   |     | 87.804 |          | 25.984 | 1.00  | 33.30 |   | В  | С   |
|      |      |     |       |   |     |        |          | 25.875 |       | 32.60 |   | В  | ō   |
| MOTA | 5901 | 0   | THR   |   |     | 88.994 |          |        |       |       |   |    |     |
| ATOM | 5902 | N   | GLU   | В | 300 | 87.311 | 26.739   | 27.026 |       | 35.97 |   | В  | , N |
| ATOM | 5903 | CA  | GLU   |   |     | 88.148 |          | 28.131 | 1.00  | 37.91 |   | В  | С   |
|      | 5904 |     | GLU   |   |     | 87.272 |          | 29.317 |       | 43.82 | • | В  | С   |
| ATÓM |      | CB  |       |   |     |        |          |        |       |       |   |    |     |
| ATOM | 5905 | CG  | GLU   | В | 300 | 88.034 |          | 30.604 |       | 51.85 |   | В  | C   |
| ATOM | 5906 | CD  | GLU   | В | 300 | 89.330 | 28.710   | 30.368 | 1.00  | 56.78 |   | В  | С   |
|      | 5907 |     | GLU   |   |     | 89.863 |          | 31.376 | 1.00  | 60.33 |   | В  | 0   |
| ATOM |      |     |       |   |     |        |          | 29.206 |       | 58.68 |   | В. | ŏ   |
| MOTA | 5908 | OE2 | GLU   |   |     | 89.825 |          |        |       |       |   |    |     |
| ATOM | 5909 | С   | GLU   | В | 300 | 89.107 | 26.040   | 28.560 |       | 37.17 |   | В  | C   |
| ATOM | 5910 | ō   | GLU   |   |     | 90.302 |          | 28.232 | 1.00  | 36.37 |   | В  | 0   |
|      |      |     |       |   |     |        |          | 29.272 |       | 35.41 |   | В  | N   |
| ATOM | 5911 | N   | THR   |   |     | 88.552 |          |        |       |       |   |    |     |
| ATOM | 5912 | CA  | THR   | В | 301 | 89.288 |          | 29.840 |       | 33.32 |   | В  | С   |
| ATOM | 5913 | СВ  | THR   |   |     | 88.306 | 22.875   | 30.304 | 1.00  | 36.72 |   | В  | С   |
|      |      |     |       |   |     |        |          | 30.168 |       | 40.83 |   | В  | 0   |
| MOTA | 5914 |     | TḤR   |   |     | 86.951 |          |        |       |       |   |    |     |
| MOTA | 5915 | CG2 | THR   | В | 301 | 88.539 |          | 31.752 |       | 40.90 |   | В  | С   |
| ATOM | 5916 | С   | THR   |   |     | 90.341 | 23.320   | 28.949 | 1.00  | 30.51 |   | В  | С   |
|      |      |     |       |   |     | 91.485 | <b>-</b> | 29.343 | 1.00  | 29.16 |   | В  | 0   |
| ATOM | 5917 | 0   | THR   |   |     |        |          |        |       |       |   | В  | N   |
| ATOM | 5918 | N   | THR   | В | 302 | 89.953 |          | 27.736 |       | 27.68 |   |    |     |
| ATOM | 5919 | CA  | THR   | В | 302 | 90.878 | 22.396   | 26.802 |       | 25.88 |   | В  | С   |
| ATOM |      | СВ  | THR   |   |     | 90.166 |          | 25.544 | 1.00  | 25.65 |   | В  | С   |
|      | 5920 |     |       |   |     |        |          | 25.859 |       | 27.39 |   | В  | 0.  |
| ATOM | 5921 | OG1 | THR   | В | 302 | 88.861 | 21.0/0   | 23.033 | 1.00  |       |   | ט  | 0   |
|      |      |     |       |   |     |        |          |        |       |       |   |    | -   |

| MOTA | 5922 | CG2 | THR   | В  | 302 |       | 90.927  | 21,224 | 24.688 | 1.00 | 25.20 |   | В   | С  |
|------|------|-----|-------|----|-----|-------|---------|--------|--------|------|-------|---|-----|----|
| ATOM | 5923 | С   | THR   |    |     |       |         |        |        |      |       |   |     |    |
|      |      |     |       |    |     |       | 92.031  | 23,320 | 26.533 |      | 26.85 |   | В   | С  |
| ATOM | 5924 | 0   |       |    | 302 |       | 93.218  | 22.973 | 26.653 | 1.00 | 28.02 |   | В   | 0  |
| MOTA | 5925 | N   | SER   | В  | 303 |       | 91.644  | 24.522 | 26.155 | 1.00 | 27.80 |   | В   | N  |
| ATOM | 5926 | CA  | SER   | R  | 303 |       | 92.578  | 25.579 | 25.849 |      | 27.43 |   |     |    |
|      |      |     |       |    |     |       |         |        |        |      |       |   | В   | C  |
| ATOM | 5927 | СВ  |       |    | 303 |       | 91.832  | 26.905 | 25.866 |      | 28.46 |   | В   | С  |
| MOTA | 5928 | OG  | SER   | В  | 303 |       | 92.621  | 27.911 | 25.282 | 1.00 | 32,26 |   | В   | 0  |
| ATOM | 5929 | С   | SER   | В  | 303 |       | 93.659  | 25.587 | 26.916 |      | 27.03 |   | В   | c  |
| ATOM | 5930 | ō   |       |    | 303 |       |         |        |        |      |       |   |     |    |
|      |      |     |       |    |     |       | 94.831  | 25.297 | 26.659 |      | 26.00 |   | В   | 0  |
| ATOM | 5931 | N   | THR   | В  | 304 |       | 93.238  | 25.899 | 28.130 | 1.00 | 25.02 |   | В   | N  |
| ATOM | 5932 | CA  | THR   | В  | 304 |       | 94.150  | 25.978 | 29.246 | 1.00 | 23.00 |   | В   | С  |
| ATOM | 5933 | СВ  | тир   | B  | 304 |       | 93.350  | 26.079 | 30.528 |      | 23.42 |   |     |    |
|      |      |     |       |    |     |       |         |        |        |      |       |   | В   | С  |
| MOTA | 5934 |     | THR   |    |     |       | 92.322  | 27.053 | 30.342 | 1.00 | 22.16 |   | В   | 0  |
| ATOM | 5935 | CG2 | THR   | В  | 304 |       | 94.228  | 26.521 | 31.668 | 1.00 | 25.45 |   | В   | С  |
| ATOM | 5936 | С   | THR   | В  | 304 |       | 95.154  | 24.824 | 29.319 |      | 22.75 |   | В   | Č  |
| ATOM | 5937 | ō   |       |    | 304 |       | 96.366  |        |        |      |       |   |     |    |
|      |      |     |       |    |     |       |         | 25.045 | 29.343 |      | 21.68 |   | В   | 0  |
| ATOM | 5938 | N   | THE   | В  | 305 |       | 94.639  | 23.600 | 29.350 | 1.00 | 21.36 |   | В   | N  |
| ATOM | 5939 | CA  | THR   | В  | 305 |       | 95.457  | 22.385 | 29.413 | 1.00 | 18.95 |   | В   | C  |
| ATOM | 5940 | CB  | THR   | R  | 305 |       | 94.577  | 21.184 | 29.133 |      | 20.47 |   | В   |    |
| ATOM | 5941 |     |       |    |     |       |         |        |        |      |       |   |     | С  |
|      |      |     | THR   |    |     |       | 93.230  | 21.548 | 29.428 | 1.00 | 20.70 |   | В   | 0  |
| ATOM | 5942 | CG2 | THR   | В  | 305 |       | 94.959  | 20.024 | 30.022 | 1.00 | 21.88 |   | В   | С  |
| ATOM | 5943 | С   | THR   | В  | 305 |       | 96.585  | 22.499 | 28.378 | 1.00 | 17.68 |   | В   | С  |
| ATOM | 5944 | 0   |       |    | 305 |       | 97.757  | 22.372 | 28.712 |      |       |   |     |    |
|      |      |     |       |    |     |       |         |        |        |      | 14.31 |   | В   | 0  |
| MOTA | 5945 | N   |       |    | 306 |       | 96.213  | 22.747 | 27.128 | 1.00 | 15.48 |   | В   | N  |
| ATOM | 5946 | CA  | LEU   | В  | 306 |       | 97.207  | 22.948 | 26.114 | 1.00 | 16.12 |   | В   | С  |
| ATOM | 5947 | CB  | LEU   | В  | 306 |       | 96.594  | 23.402 | 24.823 |      | 16.12 |   | в ( | Ċ  |
| ATOM | 5948 | CG  |       |    | 306 |       |         |        |        |      |       |   |     |    |
|      |      |     |       |    |     |       | 95.930  | 22.251 | 24.152 |      | 18.74 | • | В,  | C  |
| ATOM | 5949 | CD1 | LEU   | В  | 306 |       | 95.025  | 22.788 | 23.090 | 1.00 | 18.93 |   | В   | С  |
| ATOM | 5950 | CD2 | LEU   | В  | 306 |       | 96.972  | 21.303 | 23.563 | 1.00 | 21.46 |   | В   | Ċ  |
| ATOM | 5951 | С   |       |    | 306 |       | 98.180  | 24.019 |        |      |       |   |     |    |
|      |      |     |       |    |     |       |         |        | 26.561 |      | 18.08 |   | В   | С  |
| MOTA | 5952 | 0   |       |    | 306 |       | 99.385  | 23.809 | 26.541 | 1.00 | 19.27 |   | В   | 0  |
| ATOM | 5953 | N   | ARG   | В  | 307 |       | 97.678  | 25.177 | 26.973 | 1.00 | 19.37 |   | В   | N  |
| ATOM | 5954 | CA  | ARG   | В  | 307 |       | 98.576  | 26.260 | 27.396 |      | 19.79 |   | В   | Ċ  |
| ATOM | 5955 | СВ  | ARG   |    |     |       |         |        |        |      |       |   |     |    |
|      |      |     |       |    |     | • . • | 97.779  | 27.479 | 27.896 |      | 21.32 |   | В   | С  |
| ATOM | 5956 | CG  | ARG   | В  | 307 |       | 98.565  | 28.806 | 27.911 | 1.00 | 23.50 |   | В   | С  |
| ATOM | 5957 | CD  | ARG   | В  | 307 |       | 97.888  | 29.863 | 28.806 | 1.00 | 25.91 |   | В   | C  |
| ATOM | 5958 | NE  | ARG   |    |     |       | 96.425  | 29.779 | 28.729 |      |       |   |     |    |
|      |      |     |       |    |     | •     |         |        |        |      | 31.08 |   | В   | N  |
| ATOM | 5959 | CZ  | ARG   |    |     |       | 95.576  | 30.189 | 29.677 | 1.00 | 33.91 |   | В   | С  |
| ATOM | 5960 | NH1 | ARG   | В  | 307 | . ,   | 96.026  | 30.734 | 30.808 | 1.00 | 37.34 |   | В   | N  |
| ATOM | 5961 | NH2 | ARG   | В  | 307 |       | 94.265  | 30.032 | 29.505 | 1.00 | 33.98 |   | В   | N  |
| ATOM | 5962 | С   | ARG   |    | 307 |       |         |        |        |      |       |   |     |    |
|      |      |     |       |    |     |       | 99.506  | 25.775 | 28.503 |      | 19.68 |   | В   | С  |
| ATOM | 5963 | 0   | ARG   | В  | 307 |       | 100.723 | 25.988 | 28.466 | 1.00 | 18.80 |   | В   | 0  |
| ATOM | 5964 | N   | TYR   | В  | 308 |       | 98.912  | 25.113 | 29.488 | 1.00 | 18.80 |   | В   | N  |
| ATOM | 5965 | CA  | TYR   | P  | 308 |       | 99.629  | 24.586 | 30.643 |      | 16.88 |   |     |    |
|      |      |     |       |    |     |       |         |        |        |      |       |   | В   | С  |
| ATOM | 5966 | CB  | TYR   |    |     |       | 98.607  | 24.090 | 31.652 | 1.00 | 14.24 |   | В   | С  |
| ATOM | 5967 | CG  | TYR   | В  | 308 |       | 98.969  | 24.430 | 33.057 | 1.00 | 11.61 |   | В   | С  |
| ATOM | 5968 | CD1 | TYR   | В  | 308 |       | 97.993  | 24.651 | 34.007 |      | 11.98 |   | В   | C  |
| ATOM | 5969 |     | TYR   |    |     |       | 98.334  |        | 35.311 |      |       |   |     |    |
|      |      |     |       |    |     |       |         | 24.963 |        |      | 11.22 |   | В   | С  |
| MOTA | 5970 |     | TYR   |    |     |       | 100.294 | 24.527 | 33.443 | 1.00 | 11.42 | • | В   | С  |
| ATOM | 5971 | CE2 | TYR   | В  | 30B |       | 100.639 | 24.832 | 34.737 | 1.00 | 11.20 |   | В   | C  |
| ATOM | 5972 | CZ  | TYR   | В  | 308 |       | 99.661  | 25.051 | 35.668 |      | 10.16 |   | В   | C  |
| ATOM | 5973 | OH  | TYR   |    |     |       | 100.019 |        | -      |      |       |   |     |    |
|      |      |     |       |    |     |       |         | 25.359 | 36.949 | 1.00 | 8.36  |   | В   | 0  |
| MOTA | 5974 | С   | TYR   |    |     |       | 100.569 | 23.462 | 30.247 | 1.00 | 16.86 |   | В   | С  |
| ATOM | 5975 | 0   | TYR   | В  | 308 |       | 101.577 | 23.215 | 30.906 | 1.00 | 16.33 |   | В   | ٠0 |
| ATOM | 5976 | N   | ALA   | В  | 309 |       | 100.218 | 22.760 | 29.178 |      | 16.71 |   | В   | N  |
| ATOM | 5977 |     |       | _  |     |       |         |        |        |      |       |   |     |    |
|      |      | CA  | ALA   |    |     |       | 101.067 | 21.679 | 28.724 |      | 19.39 |   | В   | С  |
| ATOM | 5978 | CB  | ALA   | В· | 309 |       | 100.432 | 20.961 | 27.550 | 1.00 | 19.62 |   | В   | С  |
| ATOM | 5979 | C   | ALA   | В  | 309 |       | 102.415 | 22.286 | 28.320 | 1.00 | 20.58 |   | В   | С  |
| ATOM | 5980 | 0   | ALA   |    |     |       | 103.441 | 21.983 | 28.922 |      | 21.45 |   | B   | ŏ  |
|      |      |     |       |    |     |       |         |        |        |      |       |   |     |    |
| ATOM | 5981 | N   | LEU   |    |     |       | 102.401 | 23.150 | 27.312 |      | 23.65 |   | В   | N  |
| ATOM | 5982 | CA  | LEU   | В  | 310 |       | 103.617 | 23.790 | 26.833 | 1.00 | 25.38 |   | В   | С  |
| ATOM | 5983 | CB  | LEU   | В  | 310 |       | 103.286 | 24.889 | 25.817 |      | 25.92 |   | В   | С  |
| MOTA | 5984 | CG  | LEU   |    |     |       |         | 24.469 |        |      |       |   |     |    |
|      |      |     |       |    |     |       | 102.409 |        | 24.647 |      | 26.72 |   | В   | С  |
| ATOM | 5985 |     | LEU   |    |     |       | 102.170 | 25.641 | 23.707 | T.00 | 28.19 |   | В   | С  |
| ATOM | 5986 | CD2 | LEU   | В  | 310 |       | 103.066 | 23.337 | 23.908 | 1.00 | 26.72 |   | 8   | С  |
| ATOM | 5987 | C   | LEU   |    |     |       | 104.468 | 24.382 | 27.960 |      | 26.28 |   | В   | č  |
|      |      |     |       |    |     |       |         |        |        |      |       |   |     |    |
| MOTA | 5988 | 0   | LEU   |    |     |       | 105.697 | 24.304 | 27.932 | 1.00 | 27.54 |   | В   | 0  |
| ATOM | 5989 | N   | LEU   | В  | 311 |       | 103.826 | 24.994 | 28.942 | 1.00 | 26.28 | • | В   | N  |
| ATOM | 5990 |     | LEU   |    |     |       | 104.581 | 25.569 | 30,043 |      | 25.97 |   | В   | Ċ  |
| ATOM | 5991 |     |       |    |     |       |         |        |        |      |       |   |     |    |
|      |      |     | LEU   |    |     |       | 103.627 | 26.083 | 31.119 |      | 25.04 |   | В   | С  |
| MOTA | 5992 | CG  | LEU   | В  | 311 |       | 104.258 | 26.768 | 32.324 | 1.00 | 23.78 |   | В   | С  |
| ATOM | 5993 |     | LEU : |    |     |       | 105.158 | 27.910 | 31.887 |      | 24.45 |   | В   | C  |
| ATOM | 5994 |     |       |    |     |       |         |        | 33.220 |      |       |   |     |    |
|      |      |     | LEU   |    |     |       | 103.151 | 27.275 |        |      | 23.81 |   | В   | C  |
| ATOM | 5995 |     | LEU : |    |     |       | 105.502 | 24.489 | 30.615 | 1.00 | 26.20 |   | В   | С  |
| MOTA | 5996 |     | LEU : |    |     |       | 106.730 | 24.632 | 30.641 |      | 25.70 | 1 | В   | 0  |
|      |      |     |       |    |     |       |         |        |        |      |       |   |     | -  |

| ATOM         | 5997         | N      | LEU        | В   | 312 | 104.894            | 23.389           | 31.045           | 1.00 | 26.44          |   | В      | N      |
|--------------|--------------|--------|------------|-----|-----|--------------------|------------------|------------------|------|----------------|---|--------|--------|
| ATOM         | 5998         | CA     | LEU        | В   | 312 | 105.635            |                  | 31.610           |      | 25.54          |   | В      | c      |
| ATOM         | 5999         | CB     |            |     | 312 | 104.663            |                  | 31.966           | 1.00 | 21.77          |   | В      | С      |
| ATOM         | 6000         | CG     |            |     | 312 | 103.739            |                  | 33.053           |      | 18.47          |   | В      | С      |
| ATOM<br>ATOM | 6001<br>6002 |        | LEU<br>LEU |     |     | 102.525            | 20.797           | 33.207           |      | 19.53          | • | В      | C      |
| ATOM         | 6003         | CD2    |            |     | 312 | 104.520<br>106.727 | 21.778<br>21.748 | 34.332           |      | 16.54          |   | В      | C      |
| ATOM         | 6004         | ŏ      |            |     | 312 | 107.865            | 21.746           | 30.676<br>31.107 |      | 26.74<br>28.10 |   | B<br>B | Ç      |
| ATOM         | 6005         | N      |            |     | 313 | 106.391            | 21.534           | 29.405           |      | 26.88          |   | В      | N      |
| MOTA         | 6006         | CA     | LEU        | В   | 313 | 107.380            | 21.047           | 28.451           |      | 28.17          |   | В      | c      |
| ATOM         | 6007         | CB     |            |     | 313 | 106.730            | 20.791           | 27.090           |      | 24.47          |   | В      | Č      |
| ATOM         | 6008         | CG     |            |     | 313 | 105.737            | 19.637           | 27.091           |      | 22.63          |   | В      | C      |
|              | 6009         |        | LEU        |     | 313 | 105.155            | 19.429           | 25.714           |      | 20.78          |   | В      | , c    |
| ATOM<br>ATOM | 6010<br>6011 | CDZ    | LEU        |     | 313 | 106.440            | 18.390           | 27.570           |      | 22.07          |   | В      | C      |
| ATOM         | 6012         | .0     |            |     | 313 | 108.544<br>109.555 | 22.029<br>21.732 | 28.321<br>27.684 |      | 30.65<br>31.95 |   | В      | C      |
| ATOM         | 6013         | N      | LEU        |     |     | 108.400            | 23,200           | 28.934           |      | 32.72          |   | B<br>B | O<br>N |
| ATOM         | 6014         | CA     | LEU        |     |     | 109.452            | 24.210           | 28.901           |      | 35.40          |   | В      | C      |
| MOTA         | 6015         | CB     | LEU        | В   | 314 | 108.865            | 25.614           | 28.973           |      | 35.01          |   | В      | č      |
| ATOM         | 6016         | CG     | LEU        |     |     | 108.590            | 26.319           | 27.665           | 1.00 | 36.14          |   | В      | C      |
| MOTA         | 6017         |        | LEU        |     |     | 107.709            | 27.525           |                  |      | 37.85          |   | В      | С      |
| ATOM<br>ATOM | 6018         |        | LEU        |     |     | 109.898            | 26.739           | 27.040           |      | 37.13          |   | В      | С      |
| ATOM         | 6019<br>6020 | C<br>O | LEU        |     |     | 110.328<br>111.548 | 24.003           | 30.110           |      | 37.92          |   | В      | C      |
| ATOM         | 6021         | N      | LYS        |     |     | 109.672            | 23.922<br>23.933 | 30.011<br>31.258 |      | 39.82<br>39.41 |   | B<br>B | 0      |
| ATOM         | 6022         | CA     | LYS        |     |     | 110.346            | 23.736           | 32.523           |      | 41.54          |   | В      | N<br>C |
| ATOM         | 6023         | CB     | LYS        |     |     | 109.310            | 23.621           | 33.639           |      | 41.46          |   | В      | č      |
| ATOM         | 6024         | CG     | LYS        | В   | 315 | 109.864            | 23.350           | 35.019           |      | 42.70          |   | В      | č      |
| ATOM         | 6025         | CD     | LYS        |     |     | 110.166            | 24.630           | 35.769           | 1.00 | 45.46          |   | В      | c      |
| ATOM         | 6026         | CE     | LYS        |     |     | 110.238            | 24.374           | 37.277           | 1.00 | 49.13          |   | В      | С      |
| MOTA         | 6027         | NZ     | LYS        |     |     | 110.453            | 25.633           |                  |      | 52.38          |   | В      | N      |
| MOTA<br>MOTA | 6028<br>6029 | 0      | LYS<br>LYS |     |     | 111.184            |                  | 32.452           |      | 44.25          |   | В      | С      |
| ATOM         | 6030         | N      | HIS        |     |     | 112.357<br>110.582 | 22.452<br>21.385 |                  |      | 45.87          |   | В      | 0      |
| MOTA         | 6031         | CA     | HIS        |     |     | 111.257            | 20,100           | 31.862           |      | 45.81          |   | B<br>B | N<br>C |
| ATOM         | 6032         | CB     | HIS        |     |     | 110.338            | 19.016           | 32.397           |      |                |   | В      | c      |
| MOTA         | 6033         | CG     | HIS        | В   | 316 | 109.631            | 19.406           | 33.648           |      |                |   | В      | Č      |
| ATOM         | 6034         |        | HIS        |     |     | 108.425            | 19.986           | 33.843           | 1.00 | 47.00          |   | В      | С      |
| ATOM         | 6035         |        | HIS        |     |     | 110.191            | 19.250           | 34.897           |      |                |   | В      | N      |
| ATOM<br>ATOM | 6036<br>6037 |        | HIS        |     |     | 109.358            | 19.715           | 35.809           |      | 48.39          |   | В      | С      |
| ATOM         | 6038         | C      | HIS<br>HIS |     | 316 | 108.278<br>111.673 | 20.169           | 35.196           |      | 47.67          |   | В      | N      |
| ATOM         | 6039         | ŏ      | HIS        |     |     | 110.976            | 19.745<br>19.012 | 30.444<br>29.732 |      | 46.68<br>45.89 |   | B<br>B | C      |
| ATOM         | 6040         | N      | PRO        |     |     | 112.811            | 20.284           | 30.004           |      | 47.98          |   | B      | N      |
| ATOM         | 6041         | CD     | PRO        | В   | 317 | 113.640            | 21.333           | 30.627           |      | 48.10          |   | B .    | Ċ      |
| MOTA         | 6042         | CA     | PRO        |     |     | 113.275            | 19.970           | 28.651           | 1.00 | 47.06          |   | В      | С      |
| ATOM         | 6043         | CB     | PRO        |     |     | 114.467            | 20.917           | 28.465           |      | 47.48          |   | В      | С      |
| ATOM<br>ATOM | 6044         | CG     | PRO        |     | 317 | 114.934            | 21.182           | 29.872           |      | 48.78          |   | В      | С      |
| ATOM-        | 6045<br>6046 | C<br>O | PRO        |     |     | 113.647<br>113.678 | 18.488           | 28.533<br>27.436 |      | 47.51          |   | В      | C      |
| ATOM         | 6047         | N      | GLU        |     | 318 | 113.917            | 17.948<br>17.841 | 29.666           |      | 47.55<br>48.27 |   | B<br>B | O<br>N |
| ATOM         | 6048         | CA     | GLU        |     |     | 114.260            | 16.427           | 29.649           |      | 48.57          |   | В      | C      |
| ATOM         | 6049         | CB     | GLU        | В   | 318 | 114.574            | 15.915           | 31.060           |      | 52.43          |   | В      | č      |
| MOTA         | 6050         | CG     | GLU.       | В   | 318 | 116.015            | 15.400           | 31.270           | 1.00 | 55.62          |   | В      | C      |
| ATOM         | 6051         | CD     | GLU        |     |     | 117.001            | 16.520           | 31.611           |      | 58.79          | : | В      | С      |
| ATOM         | 6052         |        | GLU        |     |     | 117.211            | 17.418           | 30.745           |      | 59.93          |   | В      | 0      |
| ATOM<br>ATOM | 6053<br>6054 | C<br>C | GLU<br>GLU |     |     | 117.559<br>113.081 | 16.497           | 32.743           |      | 58.56          |   | В      | 0      |
| ATOM         | 6055         | Ö      | GLU :      |     |     | 113.061            | 15.636<br>14.711 | 29.085<br>28.286 |      | 48.02<br>49.76 |   | B<br>B | C<br>O |
| ATOM         | 6056         | N      | VAL        |     |     | 111.875            | 16.014           | 29.499           |      | 46.13          |   | B      | N      |
| ATOM         | 6057         | CA     | VAL :      |     |     | 110.655            | 15.346           | 29.043           |      | 43.43          |   | В      | .C     |
| ATOM         | 6058         | CB     | VAL :      |     |     | 109.436            | 15.819           | 29.811           | 1.00 | 42.09          |   | В      | С      |
| ATOM         | 6059         |        | VAL :      |     |     | 108.228            | 15.014           | 29.371           |      | 42.42          | 1 | 3      | С      |
| ATOM         | 6060         |        | VAL        |     |     | 109.684            | 15.694           | 31.283           |      | 42.28          |   | 3      | С      |
| MOTA         | 6061         | C      | VAL I      |     |     | 110.358            | 15.620           | 27.577           |      | 43.25          |   | 3      | C      |
| ATOM<br>ATOM | 6062<br>6063 | O<br>N | VAL I      |     |     | 109.911            | 14.737           | 26.837           |      | 43.49<br>41.43 |   | 3      | 0      |
| ATOM         | 6064         | CA     | THR I      |     |     | 110.575<br>110.352 | 16.870<br>17.323 | 27.190<br>25.836 |      | 40.43          |   | 3      | N      |
| ATOM         | 6065         | CB     | THR:       |     |     | 110.352            | 18.802           | 25.704           |      | 40.48          | 1 | 3      | C      |
| ATOM         | 6066         |        | THR I      | •   |     | 110.006            | 19.631           | 26.539           |      | 41.79          | I |        | Ö      |
| ATOM         | 6067         |        | THR I      |     |     | 110.703            | 19.296           | 24.280           |      | 42.62          | 1 |        | Č      |
| ATOM         | 6068         | С      | THR 1      | 3 : | 320 | 111.118            | 16.419           | 24.865           |      | 40.64          | Ī |        | Č      |
| ATOM         | 6069         | 0      | THR I      |     |     | 110.542            | 15.841           | 23.934           |      | 39.90          | I |        | 0      |
| ATOM         | 6070         | N      | ALA I      |     |     | 112.418            | 16.282           | 25.118           |      | 41.45          | I |        | N      |
| ATOM         | 6071         | CA     | ALA I      | 3 : | 321 | 113.315            | 15.452           | 24.301           | 1.00 | 39.93          | E | 3      | C      |

| ATOM | 6072 | CB  | ·ALA  | В | 321 |   | 114.704 | 15,412 | 24.938   | 1.00 | 41.34   |                 | В    | С    |
|------|------|-----|-------|---|-----|---|---------|--------|----------|------|---------|-----------------|------|------|
| ATOM | 6073 | С   | ALA   | В | 321 |   | 112.802 | 14.030 | 24.092   |      | 38.53   |                 | В    | С    |
| ATOM | 6074 | 0   | ALA   | В | 321 |   | 112.793 | 13.547 | 22.966   |      | 38.50   |                 | В    | 0    |
| ATOM | 6075 | N   |       |   | 322 | • | 112.406 | 13.365 | 25.177   |      | 37.07   |                 | В    | N    |
| ATOM | 6076 |     | LYS   |   |     |   | 111.886 | 12.023 | 25.077   |      | 35.90   |                 | В    | č    |
| ATOM | 6077 | СВ  | LYS   |   |     |   | 111.571 | 11.446 | 26.457   |      | 37.24   |                 | В    | č    |
| ATOM | 6078 | CG  | LYS   |   |     |   | 112.791 |        |          |      |         |                 |      |      |
|      |      |     |       |   |     |   |         | 11.153 | 27.350   |      | 40.85   |                 | В    | C    |
| ATOM | 6079 | CD  |       |   | 322 |   | 112.407 | 10.348 | 28.606   |      | 43.26   |                 | ₿    | ¢    |
| ATOM | 6080 | CE  |       |   | 322 |   | 113.542 | 10.267 | 29.626   |      | 44.61   |                 | В    | С    |
| ATOM | 6081 | NZ  | LYS   | В | 322 |   | 113.144 | 9.532  | 30.864   | 1.00 | 46.77   |                 | В    | N    |
| ATOM | 6082 | С   | LYS   | В | 322 |   | 110.633 | 12.068 | 24.221   | 1.00 | 34.59   |                 | В    | С    |
| ATOM | 6083 | 0   | LYS   | В | 322 |   | 110.555 | 11.376 | 23.215   | 1.00 | 35.31   |                 | В    | 0    |
| ATOM | 6084 | N   | VAL   | В | 323 |   | 109.654 | 12.891 | 24.584   | 1.00 | 33.80   |                 | В    | N    |
| ATOM | 6085 | CA  | VAL   | В | 323 |   | 108.445 | 12.966 |          |      | 32.64   |                 | В    | Ċ    |
| ATOM | 6086 | СВ  |       |   | 323 |   | 107.489 | 14.094 | 24.201   |      | 31.01   |                 | В    | Č    |
| ATOM | 6087 |     | VAL   |   |     |   | 106.296 | 14.124 | 23.256   |      |         |                 |      |      |
| ATOM | 6088 |     | VAL   |   |     |   |         |        |          |      | 28.67   |                 | В    | C    |
|      |      |     |       |   |     |   | 107.010 | 13.870 | 25.630   |      | 31.27   |                 | В    | С    |
| MOTA | 6089 | C   |       |   | 323 |   | 108.797 | 13.200 | 22.303   |      | 33.77   |                 | В    | С    |
| ATOM | 6090 | 0   | VAL   |   | 323 |   | 108.157 | 12.628 | 21.434   |      | 33.70   |                 | В    | 0    |
| ATOM | 6091 | N   |       |   | 324 |   | 109.789 | 14.035 | 22.007   | 1.00 | 36.25   |                 | В    | N    |
| MOTA | 6092 | CA  | GLN   | В | 324 |   | 110.132 | 14.253 | 20.610   | 1.00 | 38.23   |                 | В    | С    |
| MOTA | 6093 | CB  | GLN   | В | 324 |   | 111.050 | 15.458 | 20.458   | 1.00 | 39.04   |                 | В    | С    |
| ATOM | 6094 | CG  | GLN   | В | 324 |   | 110.275 | 16.758 | 20.447   | 1.00 | 40.83   |                 | В    | C    |
| MOTA | 6095 | CD  | GLN   | В | 324 |   | 111.110 | 17.954 | 20.058   |      | 41.94   |                 | В    | Č    |
| ATOM | 6096 |     | GLN   |   |     |   | 110.608 | 18.883 | 19.430   |      | 41.29   |                 | В    | ŏ    |
| ATOM | 6097 |     | GLN   |   |     |   | 112.388 | 17.949 |          |      |         |                 |      |      |
|      |      |     |       |   | 324 |   |         |        | 20.445   |      | 42.60   |                 | В    | N    |
| ATOM | 6098 | C   |       |   |     |   | 110.746 | 13.030 | 19.964   |      | 40.23   |                 | В.   |      |
| MOTA | 6099 | 0   | GLN   |   |     |   | 110.462 | 12.735 | 18.805   |      | 40.01   |                 |      | . 0  |
| ATOM | 6100 | N   |       |   | 325 |   | 111.591 | 12.317 | 20.710   | 1.00 | 43.24   | 7               | В    | N    |
| MOTA | 6101 | CA  | . GLU |   |     |   | 112.220 | 11.090 | 20.199   | 1.00 | 46.06   |                 | В,   | ∴ C  |
| ATOM | 6102 | CB  | GLU.  | В | 325 |   | 113.083 | 10.403 | 21.280   | 1.00 | 49.42   |                 | В    | C    |
| MOTA | 6103 | CG  | GLU   | В | 325 |   | 114.351 | 11.153 | 21.741   | 1.00 | 55.36   | 3.              | B :- | C    |
| ATOM | 6104 | CD  | GLU   | В | 325 |   | 114.992 | 10.562 | 23.036   | 1.00 | 58.90   |                 | В.   |      |
| MOTA | 6105 | OE1 | GLU   |   |     |   | 116.020 | 11.124 | 23.504   |      | 60.38   |                 | В    |      |
| ATOM | 6106 |     | GLU   |   |     | • | 114.474 | 9.550  | 23.584   |      | 59.04   |                 | В.   | . 0  |
| ATOM | 6107 | C   | GLU   |   |     |   | 111.094 | 10.133 | 19.788   |      |         |                 |      |      |
| ATOM |      |     |       |   |     |   |         |        |          |      | 45.72   | ** *            |      | ,C   |
|      | 6108 | 0   | GLU   |   |     |   | 111.125 | 9.566  | 18.689   |      | 46.02   | . 4.            | В.   | 0    |
| ATOM | 6109 | N   | GLU   |   |     |   | 110.106 |        | . 20.677 |      | 44.89   | $Q \rightarrow$ |      | 'N . |
| ATOM | 6110 | CA  | GLU   |   |     |   | 108.958 | 9.105  | 20.451   |      | 43.50   |                 | В,   |      |
| ATOM | 6111 | СВ  | GLU   |   |     |   | 107.959 | 9.219  | 21.621   | 1.00 | 43.40   | •               | В    | С    |
| ATOM | 6112 | CG  | GLU   | В | 326 |   | 106.832 | 8.176  | 21.650   | 1.00 | 45.19   |                 | В    | С    |
| ATOM | 6113 | CD  | GLU   | В | 326 |   | 106.877 | 7.271  | 22.884   | 1.00 | 48.03   |                 | В    | С    |
| ATOM | 6114 | OE1 | GLU   | В | 326 |   | 107.857 | 6.504  | 23.039   | 1.00 | 50.38   |                 | В    | 0    |
| ATOM | 6115 |     | GLU   |   |     |   | 105.937 | 7.317  | 23.713   |      | 48.48   |                 | В    | ŏ    |
| ATOM | 6116 | C   | GTA   |   |     |   | 108.287 | 9.481  | 19.138   |      | 42.87   |                 | В    | č    |
| ATOM | 6117 | ŏ   | GLU   |   |     |   | 107.916 |        | 18.349   |      |         |                 |      |      |
|      |      |     |       |   |     |   |         | 8.608  |          |      | 43.29 . |                 | В    | 0    |
| ATOM | 6118 | N   | ILE   |   |     |   | 108.140 | 10.774 | 18.875   |      | 42.42   |                 | В    | N    |
| ATOM | 6119 | CA  | ILE   |   |     |   | 107.508 | 11.165 | 17.616   |      | 41.33   |                 | В.   | С    |
| ATOM | 6120 | СВ  | ILE   |   |     |   | 107.203 | 12.679 | 17.556   |      | 40.36   |                 | В    | С    |
| ATOM | 6121 |     | ILE   |   |     |   | 106.500 | 12.998 | 16.254   | 1.00 | 39.21   |                 | В    | С    |
| MOTA | 6122 | CG1 | ILE   | В | 327 |   | 106.311 | 13.078 | 18.748   | 1.00 | 39.36   |                 | В    | С    |
| ATOM | 6123 | CD1 | ILE   | В | 327 |   | 106.040 | 14.565 | 18.868   | 1.00 | 36.49   |                 | В    | С    |
| ATOM | 6124 | С   | ILE   | В | 327 |   | 108.423 | 10.788 | 16.455   | 1.00 | 41.97   |                 | В    | С    |
| MOTA | 6125 | 0   | ILE   | В | 327 |   | 107.998 | 10.088 | 15.544   | 1.00 | 41.93   |                 | В    | 0    |
| ATOM | 6126 | N   | GLU   |   |     |   | 109.677 | 11,235 | 16.500   |      | 42.25   |                 | В    | N    |
| MOTA | 6127 | CA  | GLU   |   |     |   | 110,656 | 10.922 | 15.454   |      | 45.01   |                 | В    | C    |
| ATOM | 6128 | СВ  | GLU   |   |     |   | 112.072 | 11.274 | 15.924   |      | 48.44   |                 | В    | č    |
| ATOM | 6129 | CG  | GLU   |   |     |   | 112.595 | 12.618 | 15.453   |      | 55.87   |                 | В    | č    |
|      |      |     |       |   |     |   |         |        |          |      |         |                 |      |      |
| MOTA | 6130 | CD  | GLU   |   |     |   | 112.824 | 12.651 | 13.953   |      | 61.01   |                 | В    | C    |
| MOTA | 6131 |     | GLU   |   |     |   | 113.363 | 13.682 | 13.451   |      | 64.29   |                 | В    | 0    |
| MOTA | 6132 | OE2 | GLU   |   |     |   | 112.467 | 11.650 | 13.271   | 1.00 | 61.47   |                 | В    | 0    |
| ATOM | 6133 | С   | GLU   |   |     |   | 110.623 | 9.441  | 15.084   | 1.00 | 43.86   |                 | В    | С    |
| ATOM | 6134 | 0   | GLU   | В | 328 |   | 110.524 | 9.078  | 13.914   | 1.00 | 44.24   |                 | В    | 0    |
| ATOM | 6135 | N   | ARG   |   |     |   | 110.705 | 8.587  | 16.096   |      | 43.24   |                 | В    | N    |
| ATOM | 6136 | CA  | ARG   |   |     |   | 110.706 | 7.143  | 15.892   |      | 42.88   |                 | В    | Ċ    |
| ATOM | 6137 | CB  | ARG   |   |     |   | 111.080 | 6.444  | 17.209   |      | 43.61   |                 | В    | Č    |
| MOTA |      |     |       |   |     |   |         |        |          |      |         |                 |      |      |
|      | 6138 | CG  | ARG   |   |     |   | 111.176 | 4.919  | 17.141   |      | 43.94   |                 | В.   | C    |
| MOTA | 6139 | CD  | ARG   |   |     |   | 111.784 | 4.351  | 18.421   |      | 44.33   |                 | В    | C    |
| ATOM | 6140 | NE  | ARG   |   |     |   | 110.883 | 4.448  | 19.570   |      | 45.26   |                 | В    | N    |
| ATOM | 6141 | CZ  | ARG   |   |     |   | 109.698 | 3.843  | 19.648   |      | 46.89   |                 | В    | C.   |
| ATOM | 6142 |     | ARG   |   |     |   | 108.944 | 3.980  | 20.740   | 1.00 | 45.83   |                 | В    | N    |
| MOTA | 6143 | NH2 | ARG   | В | 329 |   | 109.271 | 3.099  | 18.629   | 1.00 | 46.09   |                 | В    | N    |
| ATOM | 6144 | С   | ARG   |   |     |   | 109.398 | 6.567  | 15.355   |      | 42.14   |                 | В    | С    |
| MOTA | 6145 | 0   | ARG   |   |     |   | 109.421 | 5.681  | 14.500   |      | 43.05   |                 | В    | 0    |
| ATOM | 6146 | N   | VAL   |   |     |   | 108.264 | 7.074  | 15.840   |      | 42.36   |                 | В    | N    |
|      |      |     | •     | _ | ·   |   |         | • . •  |          |      |         |                 | -    |      |

Figure 3

| ATOM | 6147 | CA  | VAL | R   | 330 | 106.950 | 6.561  | 15.425 | 1.00 | 41.94 | E   | ı   | C          |
|------|------|-----|-----|-----|-----|---------|--------|--------|------|-------|-----|-----|------------|
|      | 6148 | CB  | VAL |     | 330 | 105.933 | 6.580  | 16.572 |      | 40.17 | E   |     | Č          |
| ATOM |      |     | VAL |     |     | 104.639 |        | 16.114 |      | 38.75 | Ē   |     | c          |
| ATOM | 6149 |     |     |     |     |         | 5.926  |        |      | 39.68 | E   |     | c          |
| MOTA | 6150 |     | VAL |     | 330 | 106.492 | 5.881  | 17.774 |      |       |     |     |            |
| MOTA | 6151 | C   | VAL |     | 330 | 106.250 | 7.246  | 14.264 |      | 43.49 | E   |     | C          |
| ATOM | 6152 | 0   | VAL |     | 330 | 105.592 | 6.591  | 13.448 |      | 44.61 | E   |     | 0          |
| ATOM | 6153 | N   | ILE | В   | 331 | 106.350 | 8.563  | 14.211 |      | 43.88 | E   |     | N          |
| ATOM | 6154 | CA  | ILE | В   | 331 | 105.704 | 9.336  | 13.162 | 1.00 | 44.17 | E   | ,   | С          |
| ATOM | 6155 | CB  | ILE | В   | 331 | 104.613 | 10.268 | 13.791 | 1.00 | 40.75 | E   | ,   | С          |
| ATOM | 6156 | CG2 | ILE | В   | 331 | 103.820 | 10.964 | 12.709 | 1.00 | 43.00 | E   | ļ   | С          |
| ATOM | 6157 |     | ILE |     | 331 | 103.639 | 9.442  | 14.623 | 1.00 | 36.78 | E   |     | С          |
| ATOM | 6158 |     | ILE |     | 331 | 102.749 | 10.243 | 15.520 |      | 31.22 | E   |     | С          |
| ATOM | 6159 | Ç   | ILE |     | 331 | 106.822 | 10.155 | 12.528 |      | 46.37 | E   |     | С          |
| ATOM | 6160 | ŏ   | ILE |     | 331 | 107.464 | 10.947 | 13.201 |      | 48.30 | Ē   |     | ŏ          |
|      |      |     | GLY |     | 332 | 107.081 | 9.957  | 11.248 |      | 48.54 | Ē   |     | N          |
| ATOM | 6161 | N   |     |     |     |         |        |        |      | 53.22 | Ē   |     | C          |
| ATOM | 6162 | CA  | GLY |     | 332 | 108.154 | 10.722 | 10.638 |      |       |     |     |            |
| ATOM | 6163 | C   | GLY |     | 332 | 107.902 | 12.222 | 10.631 |      | 56.20 | E   |     | C          |
| MOTA | 6164 | 0   | GLY |     | 332 | 106.822 | 12.670 | 11.013 |      | 56.08 | E   |     | 0          |
| ATOM | 6165 | N   | ARG | В   | 333 | 108.895 | 13.007 | 10.213 |      | 59.38 | E   |     | N          |
| MOTA | 6166 | CA  | ARG | В   | 333 | 108.714 | 14.453 | 10.141 |      | 61.62 | E   |     | С          |
| MOTA | 6167 | CB  | ARG | В   | 333 | 110.062 | 15.193 | 10.120 | 1.00 | 64.51 | F   | 1   | С          |
| MOTA | 6168 | CG  | ARG | В   | 333 | 110.394 | 15.912 | 11.433 | 1.00 | 69.62 | E   | ,   | С          |
| ATOM | 6169 | CD  | ARG | В   | 333 | 111.600 | 16.856 | 11.308 | 1.00 | 75.15 | E   | ,   | С          |
| ATOM | 6170 | NE  | ARG |     | 333 | 112.922 | 16.205 | 11.349 | 1.00 | 80.35 | ΄ Ε | ,   | N          |
| ATOM | 6171 | CZ  | ARG |     | 333 | 113.572 | 15.718 | 10.290 |      | 82.75 | . 1 |     | С          |
| ATOM | 6172 |     | ARG |     | 333 | 113.025 | 15.789 | 9.082  |      | 83.49 | Ī   |     | N          |
| ATOM | 6173 |     | ARG |     | 333 | 114.791 | 15.206 | 10.437 |      | 84.43 |     |     | N          |
|      |      |     |     |     | 333 |         | 14.767 |        |      | 61.80 | . I |     | c          |
| ATOM | 6174 | C   | ARG |     |     | 107.922 |        | 8.874  |      | 62.72 |     |     |            |
| ATOM | 6175 | 0   | ARG |     | 333 | 107.859 | 15.914 | 8.433  |      |       | E   |     | 0          |
| MOTA | 6176 | N   | ASN | -   | 334 | 107.319 | 13.730 | 8.297  |      | 61.66 | Ē   |     | N          |
| ATOM | 6177 | CA  | ASN | В   | 334 | 106.513 | 13.877 | 7.099  |      | 61.88 | E   |     | С          |
| MOTA | 6178 | CB. | ASN | В   | 334 | 106.849 | 12.764 | 6.093  | 1.00 | 62.61 | E   | l . | <b>C</b> . |
| MOTA | 6179 | CG  | ASN | В   | 334 | 108.163 | 13.031 | 5.344  | 1.00 | 63.77 | E   | 1   | С          |
| MOTA | 6180 | OD1 | ASN | В   | 334 | 109.185 | 13.374 | 5.952  | 1.00 | 62.52 | 1   | l   | 0          |
| ATOM | 6181 | ND2 | ASN | В   | 334 | 108.136 | 12.876 | 4.020  | 1.00 | 64.68 | E   |     | N          |
| ATOM | 6182 | C   | ASN |     |     | 105.023 | 13.889 | 7.444  | 1.00 | 60.68 | E   | 3   | С          |
| ATOM | 6183 | ō   | ASN |     | 334 | 104.472 | 14.959 | 7.726  |      | 62.79 | E   |     | Ο,         |
| ATOM | 6184 | N   | ARG |     | 335 | 104.370 | 12.725 | 7.461  |      | 58.13 | F   |     | N          |
|      |      | CA  | ARG |     | 335 | 102.920 | 12.660 | 7.752  |      | 54.45 | Ī   |     | c          |
| ATOM | 6185 |     |     |     |     |         |        |        |      |       | Ī   |     | č          |
| ATOM | 6186 | СВ  | ARG |     | 335 | 102.441 | 11.209 | 7.768  |      | 53.78 |     |     |            |
| ATOM | 6187 | CG  |     |     | 335 | 102.590 | 10.506 | 9.115  |      | 53.57 | I   |     | C          |
| ATOM | 6188 | CD  | ARG |     | 335 | 101.525 | 9.417  | 9.262  |      | 53.99 | I   |     | C          |
| ATOM | 6189 | NE  | ARG |     | 335 | 101.557 | 8.693  | 10.538 |      | 54.75 | I   |     | N          |
| ATOM | 6190 | CZ  | ARG |     | 335 | 102.440 | 7.750  | 10.860 |      | 56.49 | I   |     | С          |
| ATOM | 6191 | NH1 | ARG | В   | 335 | 103.396 | 7.390  | 10.013 | 1.00 | 57.63 | I   | 3   | N          |
| ATOM | 6192 | NH2 | ARG | В   | 335 | 102.347 | 7.140  | 12.026 | 1.00 | 56.10 |     | 3   | N          |
| ATOM | 6193 | С   | ARG | В   | 335 | 102.464 | 13.331 | 9.053  | 1.00 | 53.69 | i   | 3   | С          |
| ATOM | 6194 | 0   | ARG | В   | 335 | 103.272 | 13.692 | 9,907  | 1.00 | 53.82 | 1   | 3   | 0          |
| MOTA | 6195 | N   | SEŔ | · в | 336 | 101.149 | 13.489 | 9.198  |      | 50.08 | I   | 3   | N          |
| ATOM | 6196 | CA  | SER |     | 336 | 100.576 | 14.110 | 10.395 |      | 46.69 | 1   | 3   | С          |
| ATOM | 6197 | CB  | SER |     |     | 99.387  | 15.025 | 10.025 |      | 47.66 |     | 3.  | C          |
| ATOM | 6198 | OG  | SER |     |     | 98.927  | 14.804 | 8.697  |      | 46.97 | Ī   |     | ō          |
| ATOM | 6199 | C   | SER |     | 336 | 100.122 | 13.077 | 11,425 |      | 43.96 |     | 3   | Č          |
|      |      |     |     |     |     |         |        | 11.080 |      |       | i   |     | ō          |
| ATOM | 6200 | 0   |     |     | 336 | 99.541  | 12.041 |        |      | 43.25 | ,   |     | N          |
| MOTA | 6201 | N   |     |     | 337 | 100.367 | 13.360 | 12.712 |      |       |     |     |            |
| MOTA | 6202 | CD  |     |     | 337 | 100.946 | 14.580 | 13.296 |      | 38.37 | 1   |     | C          |
| MOTA | 6203 | CA  |     |     | 337 | 99.966  | 12.422 | 13.760 |      | 37.15 | 1   |     | C          |
| ATOM | 6204 | CB  |     |     | 337 | 100.279 | 13.184 | 15.039 |      | 36.50 | 1   |     | С          |
| MOTA | 6205 | CG  |     |     | 337 | 101.410 | 14.079 | 14.640 | 1.00 | 37.61 | 1   |     | С          |
| ATOM | 6206 | С   | PRO | В   | 337 | 98.497  | 12.055 | 13.653 | 1.00 | 37.46 | 1   | 3   | С          |
| MOTA | 6207 | d   | PRO | В   | 337 | 97.686  | 12.814 | 13.120 | 1.00 | 38.01 | 1   | 3   | 0          |
| MOTA | 6208 | N   | CYS | В   | 338 | 98.165  | 10.877 | 14.162 | 1.00 | 36.90 | 1   | 3   | N          |
| ATOM | 6209 | CA  |     |     | 338 | 96.795  | 10.398 | 14.155 |      | 37.92 | 1   | 3   | С          |
| MOTA | 6210 | СВ  |     |     | 338 | 96.514  | 9.528  | 12.937 |      | 40.62 |     | 3   | C          |
| MOTA | 6211 | SG  |     |     | 338 | 96.791  | 7.768  | 13.250 |      | 46.61 |     | 3   | s          |
|      | 6212 |     |     |     | 338 | 96.631  | 9.558  | 15.404 |      | 37.37 | i   |     | Č          |
| MOTA |      | C   |     |     | 338 | 97.607  | 9.039  | 15.958 |      | 35.85 |     |     | ŏ          |
| MOTA | 6213 | 0   |     |     |     |         |        |        |      |       | i   |     | N          |
| ATOM | 6214 | N   |     |     | 339 | 95.385  | 9.421  | 15.830 |      | 37.63 |     |     |            |
| ATOM | 6215 | CA  |     |     | 339 | 95.061  | 8.671  | 17.026 |      | 38.05 |     | 3   | C          |
| MOTA | 6216 | CB  |     |     | 339 | 93.548  | 8,548  | 17.164 |      | 36.86 |     | 3   | C          |
| MOTA | 6217 | CG  |     |     | 339 | 92.932  | 9.780  | 17.758 |      | 35.00 | 1   |     | С          |
| MOTA | 6218 | SD  |     |     | 339 | 94.132  | 10.658 | 18.787 |      | 35.24 | 1   |     | S          |
| MOTA | 6219 | CE  | MET | В   | 339 | 93.935  | 9.745  | 20.398 | 1.00 | 32.88 | 1   | 3   | С          |
| ATOM | 6220 | C   |     |     | 339 | 95.691  | 7.293  | 17.136 | 1.00 | 40.12 | 1   | 3   | С          |
| MOTA | 6221 | ō   |     |     | 339 | 96.130  | 6.876  | 18.214 |      | 40.08 |     | 3   | 0          |
|      |      |     |     |     |     |         |        |        |      |       |     |     |            |

TOPE

STORE

STO

280/514

| AROM 6222 N GIAN B 340 95.716 6.575 16.023 1.00 42.67 AROM 6224 CB GIAN B 340 96.220 4.465 14.631 1.00 44.01 47.02 AROM 6225 CC GIAN B 340 94.975 3.011 14.340 1.00 52.42 AROM 6226 CD GIAN B 340 94.975 3.011 14.340 1.00 52.42 AROM 6227 ORI GIAN B 340 95.020 3.218 12.528 1.00 47.22 AROM 6228 PREZ GIAN B 340 96.020 2.550 12.518 1.00 55.61 AROM 6220 C GIAN B 340 95.046 2.550 12.518 1.00 55.61 AROM 6221 C GIAN B 340 97.722 5.254 16.033 1.00 42.79 AROM 6221 C GIAN B 340 97.722 5.254 16.033 1.00 42.79 AROM 6221 C GIAN B 340 97.722 5.254 16.033 1.00 42.79 AROM 6221 C GIAN B 340 97.722 5.254 16.033 1.00 42.79 AROM 6231 C GASP B 341 100.654 7.423 15.885 1.00 44.99 AROM 6231 C GASP B 341 100.654 7.423 15.885 1.00 44.99 AROM 6231 C GASP B 341 100.656 7.423 15.885 1.00 44.99 AROM 6231 C GASP B 341 100.465 8.577 14.138 1.00 55.34 AROM 6232 C GASP B 341 100.466 8.557 16.503 1.00 55.34 AROM 6232 C GASP B 341 100.466 8.557 16.503 1.00 55.34 AROM 6232 C GASP B 341 100.466 8.557 16.503 1.00 55.34 AROM 6232 C GASP B 341 100.466 8.557 16.500 10.358 B 341 100.466 8.557 16.500 10.358 B 341 100.466 8.557 16.500 10.358 0.344 AROM 6232 C GASP B 341 100.256 6.557 16.500 10.0 55.34 AROM 6232 C GASP B 341 100.256 6.557 16.500 10.0 55.34 AROM 6232 C GASP B 341 100.256 6.557 16.500 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 55.75 10.0 |       |      |     |     |    |     |         |        |        |            |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-----|----|-----|---------|--------|--------|------------|--------|--------|
| ATOM 6223 CA GLN B 340 96.228 4.65 12.53 1.0.0 44.01 ATOM 6225 CG GLN B 340 94.975 3.811 14.340 1.00 62.42 ATOM 6226 CD GLN B 340 94.975 3.811 14.340 1.00 67.22 ATOM 6227 ORI GLN B 340 96.046 2.650 12.518 1.00 67.62 ATOM 6228 NEZ GLN B 340 96.046 2.650 12.518 1.00 67.62 ATOM 6229 C GLN B 340 97.722 5.254 16.544 1.00 42.79 ATOM 6230 O GLN B 340 97.722 5.254 16.544 1.00 42.79 ATOM 6231 N ASP B 341 98.472 6.324 16.303 17.189 1.00 42.67 ATOM 6232 CA ASP B 341 98.472 6.324 16.303 17.189 1.00 42.67 ATOM 6232 CA ASP B 341 100.629 7.433 15.986 1.00 41.47 ATOM 6233 CS ASP B 341 100.654 7.469 1.05 1.00 64.99 ATOM 6235 ODI ASP B 341 100.654 7.469 1.05 1.00 64.99 ATOM 6235 ODI ASP B 341 100.499 8.092 13.715 1.00 53.34 ATOM 6236 OD2 ASP B 341 100.499 8.092 13.715 1.00 53.34 ATOM 6238 O ASP B 341 100.499 8.092 13.715 1.00 53.39 ATOM 6239 N ASR B 341 100.499 8.092 13.715 1.00 53.99 ATOM 6240 CA ASP B 341 100.215 6.555 18.229 1.00 39.19 ATOM 6240 CA ASP B 341 100.215 6.555 18.229 1.00 39.19 ATOM 6240 CA ASP B 341 100.215 6.555 18.229 1.00 39.19 ATOM 6241 CB ASR B 342 99.103 6.597 18.970 1.00 41.47 ATOM 6242 CG ASR B 342 99.103 6.597 18.970 1.00 41.63 ATOM 6244 NE ASR B 342 99.103 6.597 18.970 1.00 41.81 ATOM 6244 NE ASR B 342 99.791 7.463 20.999 1.00 40.83 ATOM 6245 CZ ASR B 342 99.791 7.463 20.999 1.00 40.83 ATOM 6245 CS ASR B 342 99.791 7.463 20.999 1.00 40.83 ATOM 6245 CS ASR B 342 99.791 7.463 20.999 1.00 40.80 ATOM 6255 O ASR B 342 99.594 6.797 22.2930 1.00 40.81 ATOM 6256 NH 11R B 344 100.498 3.198 21.498 1.00 44.23 ATOM 6257 CR HIS B 344 100.498 3.198 21.498 1.00 44.73 ATOM 6258 CR HIS B 344 100.498 3.198 21.498 1.00 44.03 ATOM 6258 CR HIS B 344 100.499 3.198 2.198 1.00 44.03 ATOM 6259 CR HIS B 344 100.499 3.198 2.198 1.00 44.03 ATOM 6250 CR SER B 343 100.554 2.910 21.442 1.00 46.02 ATOM 6250 CR BER B 343 100.554 2.910 21.442 1.00 46.03 ATOM 6250 CR BER B 343 100.554 2.910 21.442 1.00 46.03 ATOM 6265 CR HIS B 344 100.498 3.198 3.198 3.100 3.00 40.774 ATOM 6268 CR HIS B 344 100.498 3.198 3.199 3.100 4.00 40.88 ATOM 6268  | ATOM  | 6222 | N   | GLN | JE | 340 | 95.716  | 6.575  | 16.023 | 1.00 42.67 | В      | N      |
| ATOM 6224 CB GLN B 340 96,220 4,645 14,631 1,00 47,22 42 ATOM 6225 CG GLN B 340 95,020 3,218 12,928 1,00 56,61 ATOM 6226 CD GLN B 340 95,020 3,218 12,928 1,00 56,61 ATOM 6227 081 GLN B 340 95,020 3,218 12,928 1,00 56,61 ATOM 6228 NEZ GLN B 340 93,912 3,347 12,177 1,00 59,25 ATOM 6230 O GLN B 340 98,136 4,303 17,189 1,00 42,79 ATOM 6231 N APP B 341 99,857 6,360 16,747 1,00 42,79 ATOM 6231 N APP B 341 99,857 6,360 16,747 1,00 42,79 ATOM 6232 CA APP B 341 100,629 7,423 15,986 1,00 44,99 ATOM 6233 CB APP B 341 100,629 7,423 15,986 1,00 44,99 ATOM 6233 CB APP B 341 100,629 7,423 15,986 1,00 44,99 ATOM 6234 CG APP B 341 100,629 7,143 15,986 1,00 44,99 ATOM 6236 OD APP B 341 100,499 8,092 13,715 1,00 50,47 ATOM 6236 OD APP B 341 100,499 8,092 13,715 1,00 50,47 ATOM 6237 C APP B 341 100,499 8,092 13,715 1,00 53,99 ATOM 6238 O APP B 341 100,499 8,092 13,715 1,00 53,99 ATOM 6239 N ARG B 342 99,939 6,697 18,692 100 41,64 ATOM 6243 CG ARG B 342 99,939 6,697 18,692 100 41,64 ATOM 6242 CG ARG B 342 99,193 6,697 18,692 100 40,83 ATOM 6242 CG ARG B 342 99,193 6,697 18,970 1,00 41,64 ATOM 6244 CB ARG B 342 99,193 7,791 7,463 20,949 1,00 40,83 ATOM 6244 CB ARG B 342 99,193 7,791 7,463 20,949 1,00 40,83 ATOM 6244 CB ARG B 342 99,193 7,791 7,745 20,500 100 37,30 ATOM 6246 CB ARG B 342 99,193 8,697 12,350 100 37,30 ATOM 6246 CB ARG B 342 99,193 8,697 12,350 100 37,30 ATOM 6246 CB ARG B 342 99,193 8,697 12,350 100 37,30 ATOM 6246 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,250 100 40,86 ATOM 6245 CB ARG B 342 99,193 8,697 12,25 | ATOM. | 6223 | CA  |     |    |     |         |        |        |            | В      | Č      |
| ATOM 6225 CG GLN B 340 94.975 3.811 14.340 1.00 52.42 ATOM 6226 CD GLN B 340 95.020 3.218 12.929 1.00 56.61 ATOM 6227 OEI GLN B 340 95.020 3.218 12.929 1.00 56.61 ATOM 6229 C GLN B 340 97.722 5.254 16.544 1.00 42.79 ATOM 6223 CO A SPB B 341 98.472 6.324 16.303 17.189 1.00 42.79 ATOM 6231 N ASP B 341 98.472 6.324 16.303 17.189 1.00 42.79 ATOM 6232 CA ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6233 CB ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 CD ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 CD ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 CD ASP B 341 100.654 7.149 11.513 1.00 50.47 ATOM 6237 C ASP B 341 100.654 7.149 11.513 1.00 50.47 ATOM 6238 CD ASP B 341 100.698 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 100.278 6.557 18.970 1.00 41.64 ATOM 6236 CD ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 341 20.22 4.00 ASP B 342 20.22 4.00 ASP B 341 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20.22 4.00 ASP B 342 20 | MOTA  | 6224 | CB  |     |    |     |         |        |        |            | В      | č      |
| ATOM 6226 CD GLN B 340 95.020 3.218 12.928 1.00 56.61 ATOM 6228 NEZ ORI GLN B 340 93.912 3.347 12.177 1.00 59.25 ATOM 6228 NEZ GLN B 340 93.912 3.347 12.177 1.00 59.25 ATOM 6230 O GLN B 340 98.136 4.303 17.189 1.00 42.79 ATOM 6231 N ABP B 341 99.857 6.366 16.747 1.00 42.79 ATOM 6231 N ABP B 341 99.857 6.366 16.747 1.00 42.79 ATOM 6232 CA ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6233 CB ABP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6234 CG ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6235 ODI ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 ODZ ASP B 341 100.918 5.971 14.138 1.00 53.34 ATOM 6236 ODZ ASP B 341 100.918 5.971 14.138 1.00 53.94 ATOM 6238 O ASP B 341 100.078 6.555 18.223 1.00 41.24 ATOM 6239 N ARG B 342 98.93 6.555 18.223 1.00 41.24 ATOM 6239 N ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6240 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 97.823 7.764 22.451 1.00 37.30 ATOM 6241 CB ARG B 342 97.823 7.767 42.2451 1.00 37.30 ATOM 6242 CG ARG B 342 97.823 7.767 42.2451 1.00 37.30 ATOM 6244 NE ARG B 342 97.823 7.791 7.453 20.949 1.00 40.83 ATOM 6244 NE ARG B 342 97.823 7.791 72.930 1.00 37.31 ATOM 6246 NE ARG B 342 97.823 7.791 72.930 1.00 37.31 ATOM 6246 NE ARG B 342 97.823 7.791 72.930 1.00 37.31 ATOM 6246 NE ARG B 342 99.933 6.558 21.145 1.00 38.16 ATOM 6245 C ARG B 342 99.933 8.791 22.930 1.00 37.31 ATOM 6245 C ARG B 342 99.933 8.791 22.930 1.00 40.65 ATOM 6245 C ARG B 342 99.933 8.791 22.930 1.00 40.65 ATOM 6245 C ARG B 342 99.933 8.791 22.930 1.00 40.66 ATOM 6245 NE ATOM 6245 C ARG B 342 99.933 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.66 ATOM 6245 C ARG B 342 99.934 8.791 22.930 1.00 40.60 ATOM 6245 C ARG B 342 99.934 8. | MOTA  | 6225 | CG  | GLN | В  | 340 |         |        |        | 1.00 52.42 | В      | č      |
| ATOM 6228 NEZ GLN B 340 93.912 3.347 12.177 1.00 59.25 ATOM 6230 O GLN B 340 98.136 4.303 17.189 1.00 42.79 ATOM 6231 N ABP B 341 99.857 6.360 16.747 1.00 42.79 ATOM 6231 N ABP B 341 100.654 7.142 15.986 1.00 44.99 ATOM 6233 CB ABP B 341 100.654 7.142 15.986 1.00 44.99 ATOM 6235 ODI ABP B 341 100.654 7.142 15.986 1.00 44.99 ATOM 6235 ODI ABP B 341 100.654 7.149 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.149 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.149 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.169 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.169 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.169 14.513 1.00 53.34 ATOM 6236 ODI ABP B 341 100.654 7.169 14.518 1.00 53.34 ATOM 6236 ODI ABP B 341 100.676 6.555 18.229 1.00 39.19 ATOM 6237 C ABP B 341 100.678 6.555 18.229 1.00 41.24 ATOM 6239 N ABG B 342 99.193 6.557 18.692 1.00 39.19 ATOM 6240 CA ABG B 342 99.193 6.557 18.970 1.00 41.64 ATOM 6240 CA ABG B 342 99.193 6.557 18.970 1.00 41.64 ATOM 6240 CA ABG B 342 97.791 7.463 20.949 1.00 40.83 ATOM 6244 NE ABG B 342 97.791 7.463 20.949 1.00 40.83 ATOM 6244 NE ABG B 342 99.504 7.791 22.930 1.00 37.30 ATOM 6245 NII ABG B 342 99.379 8.478 23.608 1.00 40.06 ATOM 6245 CZ ABG B 342 99.193 6.557 18.502 10.00 37.30 ATOM 6245 NII ABG B 342 99.504 7.791 22.930 1.00 37.41 ATOM 6250 N SER B 343 99.98 3.18 21.639 1.00 40.06 ATOM 6250 N SER B 343 99.504 7.956 21.914 1.00 40.66 ATOM 6250 N SER B 343 99.504 1.00 40.06 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 40.06 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 40.06 ATOM 6250 N SER B 343 90.098 1.098 1.099 1.00 40.06 ATOM 6250 N SER B 343 90.098 1.00 40.06 ATOM 6250 N SER B 343 90.098 1.00 40.00 ATOM 6250 N SER B 343 90.098  |       | 6226 |     |     |    |     | 95.020  |        |        | 1.00 56.61 | В      | Č      |
| ATOM 6229 C GLN B 340 97.722 5.254 16.544 1.00 42.57 ATOM 6231 N ASP B 341 98.472 6.334 16.303 17.189 1.00 42.57 ATOM 6232 CA ASP B 341 100.629 7.423 15.966 1.00 44.99 ATOM 6235 OD GLN B 340 99.857 6.360 16.747 1.00 42.70 ATOM 6235 OD ASP B 341 100.629 7.423 15.966 1.00 44.99 ATOM 6235 OD ASP B 341 100.629 7.423 15.966 1.00 44.99 ATOM 6235 OD ASP B 341 100.918 5.791 14.138 1.00 50.47 ATOM 6236 OD ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6239 N ASR B 342 99.93 6.565 18.290 1.00 41.64 ATOM 6240 CA ASG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ASR B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6242 CG ASG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6243 CD ASP B 341 100.278 6.559 18.290 1.00 40.83 ATOM 6244 NE ASG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6247 NE ASG B 342 95.404 7.971 22.930 1.00 40.66 ATOM 6247 NEL ASG B 342 95.404 7.971 22.930 1.00 40.66 ATOM 6247 NEL ASG B 342 95.504 5.558 21.451 1.00 37.41 ATOM 6245 CZ ASG B 342 93.183 7.916 23.532 1.00 40.66 ATOM 6246 N SER B 343 99.098 3.318 7.916 23.532 1.00 40.66 ATOM 6250 N SER B 343 99.098 3.183 7.916 23.532 1.00 40.86 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6252 C SES B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6255 N SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6256 N SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6257 CA HIS B 344 100.406 1.983 1.799 1.00 44.03 ATOM 6258 CB HIS B 344 100.407 1.983 1.9866 1.00 49.74 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.03 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 46.22 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 46.52 ATOM 6252 CB SER B 343 99.098 3.318 21.639 1.00 46.53 ATOM 6255 CB HIS B 344 100.408 1.997 1.797 1.00 50.18 ATOM 6261 ND HIS B 344 100.408 1.997 1.998 1.00 50.18 ATOM 6262 CB HIS B 344 100.408 1.999 1.00 50.18 ATOM 6263 NE B 344 100.408 1.999 1.990 |       | 6227 |     |     |    |     | 96.046  | 2.650  |        | 1.00 57.82 | В      | ō      |
| ATOM 6231 N ASP B 341 98.472 6.324 16.303 1.00 42.67 ATOM 6232 CA ASP B 341 99.857 6.360 16.747 1.00 42.00 ATOM 6233 CB ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6234 CG ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6235 ODL ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 ODL ASP B 341 100.629 7.423 15.986 1.00 44.99 ATOM 6236 ODL ASP B 341 100.409 8.092 13.175 1.00 50.47 ATOM 6236 ODL ASP B 341 100.409 8.092 13.175 1.00 50.47 ATOM 6237 C ASP B 341 100.409 8.092 13.175 1.00 50.39 ATOM 6238 O ASP B 341 100.409 8.092 13.175 1.00 39.19 ATOM 6238 N ARG B 342 98.993 6.597 18.970 1.00 41.63 ATOM 6239 N ARG B 342 99.103 6.597 18.970 1.00 41.64 ATOM 6240 CD ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6244 NE ARG B 342 99.103 6.916 20.389 1.00 40.83 ATOM 6244 NE ARG B 342 99.504 7.701 22.393 1.00 37.41 ATOM 6246 NH ARG B 342 96.726 8.569 22.945 1.00 37.41 ATOM 6246 NH ARG B 342 94.572 9.570 24.348 1.00 40.06 ATOM 6246 NH ARG B 342 94.572 9.570 24.348 1.00 40.06 ATOM 6246 NH ARG B 342 99.504 5.658 21.155 1.00 40.66 ATOM 6248 C ARG B 342 99.504 5.658 21.155 1.00 40.66 ATOM 6248 C ARG B 342 99.504 5.658 21.155 1.00 44.03 ATOM 6245 CZ ARG B 342 99.504 5.658 21.155 1.00 44.23 ATOM 6250 N SER B 343 99.098 3.318 7.916 23.532 1.00 44.23 ATOM 6250 N SER B 343 99.098 3.318 7.916 23.532 1.00 44.03 ATOM 6255 CR SER B 343 99.098 3.318 1.00 44.01 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.73 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.73 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.73 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.03 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.03 ATOM 6255 CR SER B 343 99.504 5.658 21.155 1.00 44.03 ATOM 6256 CR SER B 343 99.504 5.658 21.155 1.00 44.03 ATOM 6256 CR SER B 343 99.504 5.658 21.155 1.00 44.03 ATOM 6256 CR SER B 343 99.504 5.658 21.10 1.00 40.86 ATOM 6257 CR SER B 343 99.504 5.658 21.10 1.00 40.86 ATOM 6258 CB HIS B 344 100.40 4.03 3.404 4.00 4.00 4.00 4.00 4.0                                 |       |      |     |     |    |     | 93.912  | 3.347  | 12.177 | 1.00 59.25 | В      | N      |
| ATOM 6231 N ASP B 341 98.472 6.324 16.303 1.00 41.47 ATOM 6232 CA ASP B 341 100.629 7.423 15.386 1.00 42.00 ATOM 6233 CB ASP B 341 100.654 7.149 14.513 1.00 53.34 ATOM 6235 ODI ASP B 341 100.654 7.149 14.513 1.00 53.34 ATOM 6236 ODZ ASP B 341 100.918 5.971 14.138 1.00 53.34 ATOM 6236 ODZ ASP B 341 100.078 6.565 18.229 1.00 41.24 ATOM 6237 C ASP B 341 100.078 6.565 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.078 6.565 18.229 1.00 41.24 ATOM 6239 N ARG B 342 98.993 6.697 18.970 1.00 41.64 ATOM 6240 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6242 CG ARG B 342 99.6726 8.569 22.949 1.00 40.83 ATOM 6240 CA ARG B 342 99.6726 8.569 22.949 1.00 40.83 ATOM 6244 NE ARG B 342 99.6726 8.569 22.939 1.00 37.30 ATOM 6244 NE ARG B 342 99.6726 8.569 22.939 1.00 37.31 ATOM 6245 CZ ARG B 342 99.6726 8.569 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6246 NEL ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 40.66 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 40.06 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 40.06 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 40.06 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 40.06 ATOM 6240 CZ ARG B 342 99.504 7.971 22.930 1.00 44.01 ATOM 6250 N SER B 343 99.098 3.338 21.691 1.00 46.22 ATOM 6250 N SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6250 CZ ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6251 CA SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6255 C B SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6255 C B SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6255 C B SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6255 C B SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6255 C B SER B 343 99.098 3.338 21.693 1.00 44.01 ATOM 6256 N BER B 344 100.506 2.150 22.242 1.00 45.25 ATOM 6256 N BER B 344 100.506 2.150 22.242 1.00 45.39 ATOM 6257 C A BER B 344 100.506 2.150 22.424 1.00 35.75 ATOM 6258 CB HER B 344 100.307  |       |      |     |     |    |     | 97.722  | 5.254  | 16.544 | 1.00 42.79 | В      | С      |
| ATOM 6232 CA ASP B 341 99.857 6.3560 16.747 1.00 42.00 ATOM 6233 CB ASP B 341 100.654 7.149 11.513 1.00 50.47 ATOM 6236 OD1 ASP B 341 100.654 7.149 11.513 1.00 50.47 ATOM 6236 OD2 ASP B 341 100.409 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.215 6.597 18.692 1.00 39.19 ATOM 6238 O ASP B 341 100.215 6.597 18.692 1.00 39.19 ATOM 6239 N ARG B 342 98.993 6.697 18.970 1.00 41.64 ATOM 6240 CA ARG B 342 99.103 6.915 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 99.103 6.915 20.389 1.00 40.83 ATOM 6242 CG ARG B 342 97.829 7.629 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 99.103 6.915 20.399 1.00 40.83 ATOM 6244 NE ARG B 342 99.526 8.569 22.945 1.00 37.41 ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NH1 ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6247 NH2 ARG B 342 94.379 8.478 23.508 1.00 40.06 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 40.06 ATOM 6249 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 99.098 3.318 21.693 1.00 40.86 ATOM 6250 N SER B 343 99.098 3.318 21.693 1.00 40.86 ATOM 6251 CA SER B 343 99.098 3.318 21.693 1.00 40.86 ATOM 6255 CB SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6255 CB SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 42.25 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 42.25 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 43.94 ATOM 6257 CA HIS B 344 101.198 3.436 20.404 1.00 43.93 ATOM 6258 CG HIS B 344 101.198 3.436 20.404 1.00 45.39 ATOM 6266 N HIS B 344 101.198 3.436 20.404 1.00 45.39 ATOM 6267 CA HIS B 344 101.198 3.436 20.404 1.00 45.39 ATOM 6268 CB HIS B 344 101.198 3.436 20.404 1.00 43.89 ATOM 6268 CB HIS B 344 101.198 3.436 20.404 1.00 43.93 ATOM 6268 CB HIS B 344 101.198 3.436 20.404 1.00 43.93 ATOM 6269 CB HIS B 344 101.198 3.436 20.404 1.00 43.93 ATOM 6260 CD HIS B 344 101.198 3.436 20.404 1.00 36.38 ATOM 6261 N HIS B 344 101.337 7. |       |      |     |     |    |     |         | 4.303  | 17.189 | 1.00 42.67 | В      | . 0    |
| ATOM 6234 CB ASP B 341 100.629 7.423 15.96 1.00 44.99 ATOM 6235 OD1 ASP B 341 100.629 7.423 15.96 1.00 44.93 ATOM 6236 OD2 ASP B 341 100.409 8.092 13.715 1.00 53.34 ATOM 6237 C ASP B 341 100.078 6.565 18.229 1.00 39.19 ATOM 6238 O ASP B 341 100.078 6.565 18.229 1.00 31.24 ATOM 6239 N ARG B 342 98.993 6.697 18.970 1.00 41.64 ATOM 6230 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6240 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6242 CG ARG B 342 99.791 7.653 20.994 1.00 38.16 ATOM 6245 CZ ARG B 342 99.791 7.674 22.451 1.00 38.16 ATOM 6245 CZ ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 37.41 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.83 ATOM 6246 NH1 ARG B 342 99.504 7.971 22.933 1.00 40.60 ATOM 6246 NH2 ARG B 342 99.504 7.971 22.933 1.00 40.60 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.60 ATOM 6246 NH2 ARG B 342 99.504 7.971 22.933 1.00 40.64 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.64 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.64 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.64 ATOM 6245 CZ ARG B 342 99.504 7.971 22.933 1.00 40.64 ATOM 6245 CZ ARG B 342 99.504 7.971 22.930 1.00 40.64 ATOM 6250 N SER B 343 99.504 7.971 22.930 1.00 40.62 ATOM 6250 N SER B 343 99.504 1.00 40.91 ATOM 6255 N SER B 343 99.504 1.00 40.91 ATOM 6255 C SER B 343 99.799 4.561 20.999 1.00 44.01 ATOM 6255 C SER B 343 99.504 1.00 40.91 ATOM 6255 C SER B 343 100.554 2.910 21.442 1.00 42.23 ATOM 6250 N SER B 344 100.10 8.11 ATOM 6255 N SER B 344 100.91 8.91 8.661 1.00 49.74 ATOM 6256 N SER B 343 100.554 2.910 21.442 1.00 42.23 ATOM 6260 CD2 HIS B 344 101.198 3.456 20.404 1.00 40.84 ATOM 6255 C B HIS B 344 101.198 3.456 20.404 1.00 40.84 ATOM 6260 CD2 HIS B 344 101.198 3.456 20.404 1.00 40.83 ATOM 6260 CD2 HIS B 344 101.198 3.456 20.404 1.00 55.289 ATOM 6261 ND HIS B 344 101.198 3.456 20.404 1.00 55.289 ATOM 6262 CR HIS B 344 101.198 3.458 20.404 1.00 35.75 ATOM 6262 CR HIS B 344 101.198 3.456 20.404  |       |      |     |     |    |     |         |        |        |            | В      | N      |
| ATOM 6234 CC ASP B 341 100.654 7.149 14.513 1.00 50.47 ATOM 6235 ODI ASP B 341 100.918 5.971 14.138 1.00 53.39 ATOM 6236 OD2 ASP B 341 100.0409 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.64 ATOM 6238 N ARG B 342 98.993 6.597 18.970 1.00 41.64 ATOM 6238 N ARG B 342 99.103 6.597 18.970 1.00 41.64 ATOM 6240 CD ARG B 342 99.103 6.597 18.970 1.00 41.64 ATOM 6240 CD ARG B 342 99.103 6.597 18.970 1.00 41.64 ATOM 6242 CG ARG B 342 97.829 7.629 7.674 22.451 1.00 38.16 ATOM 6242 CG ARG B 342 97.829 7.629 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 96.726 8.569 22.945 1.00 37.30 ATOM 6244 NE ARG B 342 96.726 8.569 22.945 1.00 37.30 ATOM 6244 NE ARG B 342 94.572 95.004 7.971 22.930 1.00 37.41 ATOM 6246 NHL ARG B 342 94.542 95.700 24.348 1.00 41.00 ATOM 6246 NHL ARG B 342 94.542 95.700 24.348 1.00 41.00 ATOM 6248 C ARG B 342 94.542 95.700 24.348 1.00 41.00 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6250 CS SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6255 C SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6255 C SER B 343 98.179 8.279 4.561 20.929 1.00 44.01 ATOM 6255 C SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6255 C SER B 343 98.148 2.171 21.230 1.00 46.23 ATOM 6255 C SER B 343 98.148 2.171 21.230 1.00 46.23 ATOM 6256 C SER B 344 100.96 2.150 22.242 1.00 43.04 ATOM 6256 C SER B 344 100.96 2.150 22.242 1.00 43.04 ATOM 6256 C SER B 344 100.96 2.150 22.242 1.00 43.04 ATOM 6256 C SER B 344 100.96 2.150 22.254 1.00 39.05 ATOM 6266 C SER B 344 100.96 2.150 22.242 1.00 40.88 ATOM 6256 C SER B 344 100.96 2.150 22.150 22.242 1.00 35.23 ATOM 6266 C SER B 344 100.96 2.150 22.150 22.242 1.00 35.23 ATOM 6266 C SER B 344 100.96 2.150 22.150 22.241 1.00 35.23 ATOM 6266 C SER B 344 100.96 2.150 2.150 22.150 22.241 1.00 35.23 ATOM 6266 C SER B 344 100.96 2.150 2.150 22.142 1.00 3 |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6236 ODL ASP B 341 100.918 5.971 14.138 1.00 53.34 ATOM 6236 ODZ ASP B 341 100.409 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.409 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.1215 6.557 18.692 1.00 39.193 ATOM 6239 N ARG B 342 99.993 6.697 18.970 1.00 41.64 ATOM 6240 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6242 CG ARG B 342 99.629 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 99.6226 8.569 22.935 1.00 37.30 ATOM 6244 NE ARG B 342 99.6226 8.569 22.935 1.00 37.30 ATOM 6246 NH1 ARG B 342 94.379 8.478 23.608 1.00 40.66 ATOM 6246 NH1 ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NH1 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NH2 ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6246 NH1 ARG B 342 99.504 7.971 22.930 1.00 37.41 ATOM 6245 C ARG B 342 99.504 7.971 22.930 1.00 41.00 ATOM 6246 C ARG B 342 99.504 7.971 22.930 1.00 44.23 ATOM 6240 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 99.509 5.658 21.155 1.00 40.62 ATOM 6250 N SER B 343 99.079 4.561 20.991 1.00 44.73 ATOM 6251 CA SER B 343 99.079 4.561 20.991 1.00 44.73 ATOM 6254 C SER B 343 99.079 8.138 21.639 1.00 44.01 ATOM 6255 N SER B 343 99.079 8.3.18 21.639 1.00 44.01 ATOM 6255 N SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 C D SER B 344 100.504 1.893 17.978 1.00 50.18 ATOM 6256 C D SER B 344 100.504 1.893 17.978 1.00 50.18 ATOM 6256 C D SER B 344 100.504 1.893 17.978 1.00 50.18 ATOM 6260 CO2 HIS B 344 100.554 2.910 21.442 1.00 45.39 ATOM 6260 CO2 HIS B 344 100.108 1.927 17.167 1.00 52.89 ATOM 6260 CO2 HIS B 344 100.3537 4.174 20.736 1.00 38.92 ATOM 6260 CO2 HIS B 344 100.3537 4.174 20.736 1.00 38.92 ATOM 6260 CO2 HIS B 344 100.3537 4.174 20.736 1.00 38.92 ATOM 6265 O RIS B 344 100.3537 4.174 20.056 1.00 38.72 ATOM 6260 CO2 HIS B 345 100.3507 7.104 22.566 1.00 38.72 ATOM 6260 C B HIS B |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6237 C ASP B 341 100.409 8.092 13.715 1.00 53.99 ATOM 6237 C ASP B 341 100.078 6.565 18.229 1.00 41.24 ATOM 6238 O ASP B 341 100.215 6.597 18.970 1.00 39.19 ATOM 6239 N ARG B 342 99.933 6.597 18.970 1.00 41.64 ATOM 6240 CA ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CE ARG B 342 97.791 7.463 20.949 1.00 48.3 ATOM 6242 CG ARG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6244 NE ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NH1 ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6246 NH1 ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6247 NH2 ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6240 NA ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6240 NA SER B 343 99.504 5.658 21.145 1.00 40.86 ATOM 6250 N SER B 343 99.504 5.658 21.145 1.00 46.23 ATOM 6251 CA SER B 343 99.098 3.318 21.699 1.00 46.22 ATOM 6254 CE SER B 343 99.098 3.318 21.699 1.00 44.03 ATOM 6255 O SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6255 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 42.25 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 42.25 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 42.25 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 40.88 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 40.88 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 35.75 ATOM 6256 N HIS B 344 102.871 2.994 18.668 1.00 35.75 ATOM 6257 CA HIS B 344 102.871 2.994 18.668 1.00 35.75 ATOM 6266 N MET B 345 103.537 4.174 20.736 1.00 35.29 ATOM 6267 CB HIS B 344 102.873 3.488 2.994 1.00 35.75 ATOM 6268 CB HIS B 344 102.873 3.488 2.994 1.00 35.75 ATOM 6268 CB HIS B 344 102.873 3.915 2.910 21.442 1.00 35.75 ATOM 6267 CA HIS B 344 102.873 3.915 2.910 21.403 1.00 35.75 ATOM 6268 CB HIS B 344 102.873 3.915 2.910 21.403 1.00 35.75 ATOM 6268 CB HIS B 344 102.873 3.915 2.910 21.403 1.00 35.75 ATOM 6268 CB HIS B 344 102.873 3.915 2.910 2.910 3.915 3.915 3.915 3.915 3 |       |      |     |     |    |     |         |        |        |            | В      | Ç      |
| ATOM 6237 C ASP B 341 100.078 6.555 18.229 1.00 41.24 ATOM 6238 N ARG B 342 98.993 6.697 18.970 1.00 39.19 ATOM 6240 CA ARG B 342 98.993 6.697 18.970 1.00 41.64 ATOM 6241 CB ARG B 342 97.791 7.463 20.389 1.00 40.83 ATOM 6242 CG ARG B 342 97.791 7.463 20.949 1.00 37.30 ATOM 6244 N E ARG B 342 97.791 7.463 20.949 1.00 37.30 ATOM 6244 N E ARG B 342 97.791 7.463 20.949 1.00 37.30 ATOM 6244 N E ARG B 342 96.726 8.569 2.945 1.00 37.30 ATOM 6244 NE ARG B 342 94.379 8.478 2.945 1.00 37.31 ATOM 6246 NH1 ARG B 342 94.379 8.478 2.945 1.00 37.31 ATOM 6246 NH1 ARG B 342 94.379 8.478 2.3608 1.00 40.06 ATOM 6247 NH2 ARG B 342 99.504 7.971 22.930 1.00 40.08 ATOM 6248 C ARG B 342 99.504 7.971 22.930 1.00 40.08 ATOM 6240 C ARG B 342 99.504 7.971 22.930 1.00 40.08 ATOM 6240 C ARG B 342 99.504 7.971 22.930 1.00 40.08 ATOM 6240 C ARG B 342 99.504 7.916 23.532 1.00 40.08 ATOM 6250 N SER B 343 99.504 7.916 23.532 1.00 44.23 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6253 OS SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6255 O SER B 343 100.554 2.910 21.402 1.00 46.22 ATOM 6256 N HIS B 344 102.602 3.144 2.100 42.25 ATOM 6257 CA HIS B 344 102.602 3.144 20.153 1.00 46.23 ATOM 6258 CB HIS B 344 102.602 3.144 20.153 1.00 40.88 ATOM 6256 N HIS B 344 102.602 3.144 20.153 1.00 40.88 ATOM 6266 N HIS B 344 102.602 3.144 20.153 1.00 50.18 ATOM 6267 CA HIS B 344 102.602 3.144 20.153 1.00 50.18 ATOM 6268 CB HIS B 344 102.602 3.144 20.153 1.00 50.18 ATOM 6268 CB HIS B 344 102.602 3.144 20.153 1.00 50.18 ATOM 6266 N HIS B 344 102.602 3.144 20.153 1.00 38.92 ATOM 6267 CA HIS B 344 102.602 3.144 20.153 1.00 38.92 ATOM 6268 CB HIS B 344 102.602 3.144 20.153 1.00 38.92 ATOM 6268 CB HIS B 344 104.733 4.180 20.454 1.00 38.92 ATOM 6268 CB HIS B 344 104.733 4.180 20.454 1.00 38.92 ATOM 6268 CB HIS B 344 104.739 4.180 20.168 1.00 38.92 ATOM 6268 CB HIS B 345 102.995 5.078 21.463 1.00 38.92 ATOM 6268 CB HIS B 345 102.995 5.078 21.463 1.0 |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6238 O ASP B 341 101.215 6.597 18.692 1.00 39.19 ATOM 6240 CA ARG B 342 98.993 6.697 18.970 1.00 41.64 ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 97.791 7.663 20.949 1.00 42.50 ATOM 6242 CG ARG B 342 97.791 7.663 20.949 1.00 38.16 ATOM 6243 CD ARG B 342 97.792 7.674 22.451 1.00 38.16 ATOM 6244 NE ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6246 NH1 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NH2 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 40.86 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 40.86 ATOM 6250 N SER B 343 99.504 5.658 21.145 1.00 40.86 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 40.86 ATOM 6250 CR SER B 343 99.098 3.318 21.639 1.00 40.66.23 ATOM 6250 CR SER B 343 98.779 4.561 20.929 1.00 44.01 ATOM 6250 N SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6250 N SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6250 N SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6250 N SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6250 C SER B 344 102.801 2.994 1.00 40.88 ATOM 6256 N HIS B 344 102.802 3.114 20.153 1.00 40.88 ATOM 6257 CA HIS B 344 102.802 3.114 20.153 1.00 40.88 ATOM 6258 CB HIS B 344 102.802 3.114 20.153 1.00 40.88 ATOM 6256 C DE SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 CB HIS B 344 102.802 3.114 20.153 1.00 40.88 ATOM 6256 CB HIS B 344 102.802 3.114 20.153 1.00 40.88 ATOM 6256 CB HIS B 344 102.803 3.436 2.0404 1.00 40.88 ATOM 6256 CB HIS B 344 102.803 3.436 2.0404 1.00 52.85 ATOM 6257 CA HIS B 344 102.803 3.436 2.0404 1.00 52.85 ATOM 6256 CB HIS B 344 102.803 3.436 2.0404 1.00 35.75 ATOM 6257 CB HIS B 344 102.803 3.436 2.0404 1.00 35.75 ATOM 6258 CB HIS B 344 102.803 3.406 3.00 40.88 ATOM 6256 CB HIS B 344 102.803 3.406 3.00 40.88 ATOM 6256 CB HIS B 344 102.803 3.406 3.00 40.88 ATOM 6256 CB HIS B 344 102.803 3.60 4.00 4.00 48.84 ATOM 6256 CB HIS B 344 100.900 6.627 1.00 35.75 ATOM 6268 CB HIS B 344 100.900 6.627 1.00 35.75 ATOM 6268 CB HIS B 344  |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6239 N ARG B 342 98.993 6.997 18.970 1.00 41.64 ATOM 6241 CB ARG B 342 97.991 7.463 20.949 1.00 40.83 ATOM 6241 CB ARG B 342 97.791 7.463 20.949 1.00 40.83 ATOM 6243 CD ARG B 342 97.792 7.674 22.451 1.00 37.30 ATOM 6244 NE ARG B 342 95.726 8.569 22.445 1.00 37.30 ATOM 6244 NE ARG B 342 95.404 7.971 22.930 1.00 47.41 ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 44.03 ATOM 6246 NH1 ARG B 342 94.379 8.478 23.608 1.00 44.00 ATOM 6247 NH2 ARG B 342 99.570 24.348 1.00 41.00 ATOM 6248 NH1 ARG B 342 94.379 8.478 23.100 40.06 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6246 CA ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6250 CR SER B 343 98.797 4.561 20.929 1.00 44.73 ATOM 6250 CS ER B 343 98.272 1.803 19.866 1.00 45.74 ATOM 6255 CS ER B 343 98.272 1.803 19.866 1.00 45.74 ATOM 6255 CS ER B 343 101.055 2.150 2.242 1.00 46.22 ATOM 6255 CS ER B 343 101.055 2.150 2.242 1.00 46.22 ATOM 6255 CS ER B 343 101.055 2.150 2.242 1.00 46.22 ATOM 6255 CS ER B 343 101.055 2.150 2.242 1.00 46.22 ATOM 6256 N HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 40.88 ATOM 6256 CD HIS B 344 102.602 3.114 20.155 1.00 50.18 ATOM 6266 CD D HIS B 344 102.602 3.114 20.155 1.00 35.75 ATOM 6266 CD HIS B 344 102.602 3.114 20.155 1.00 35.75 ATOM 6266 CD HIS B 344 102.602 3.114 20.155 1.00 35.75 ATOM 6267 CD HIS B 344 102.602 3.114 20.155 1.00 35.75 ATOM 6268 CB MET B 345 103.93 3.63 2.100 30.00 30.00 ATOM 6267 CD HIS B 344 102.602 3.114 20.00 30.00 30.00 ATOM 6267 CD HIS B 344 102.602 3.114 20.00 30.00 30.00 ATOM 6267 CD HIS B 345 103.93 3.13 3.10 3.10 3.10 3.10 3.10 3.10 3.1                                     |       |      |     |     |    |     |         |        |        |            | B<br>B | C      |
| ATOM 6241 CB ARG B 342 99.103 6.916 20.389 1.00 42.50 ATOM 6241 CB ARG B 342 97.781 7.674 22.481 1.00 38.16 ATOM 6242 CG ARG B 342 97.829 7.674 22.481 1.00 38.16 ATOM 6243 CD ARG B 342 95.404 7.971 22.481 1.00 37.30 ATOM 6244 NE ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6245 CZ ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6246 NH1 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NH2 ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6240 N SER B 343 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 99.504 5.658 21.145 1.00 44.23 ATOM 6251 CR SER B 343 99.098 3.318 21.639 1.00 40.86 ATOM 6251 CR SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6254 CS SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6253 CG SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 C SER B 344 102.871 2.910 21.442 1.00 42.25 ATOM 6255 C SER B 344 102.871 2.910 21.442 1.00 42.25 ATOM 6256 C HIS B 344 102.871 2.994 18.648 1.00 40.88 ATOM 6256 C HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6256 C CH SER B 344 102.101 1.893 17.978 1.00 50.18 ATOM 6256 C CH SER B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6266 C CD HIS B 344 102.101 1.997 17.167 1.00 52.89 ATOM 6267 C A MET B 345 103.139 17.978 1.00 50.18 ATOM 6267 C A MET B 345 103.139 17.978 1.00 50.18 ATOM 6268 C C HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6268 C C HIS B 344 100.700 0.627 1.60 53.75 ATOM 6267 C A MET B 345 103.139 6.130 22.142 1.00 33.50 ATOM 6268 C C HIS B 344 100.700 0.627 1.60 55.29 ATOM 6268 C C HIS B 344 100.89 1.00 32. |       | 1    |     |     |    |     |         |        |        |            | В      | O<br>N |
| ATOM 6241 CB ARG B 342 97.791 7.463 20.949 1.00 40.83 ATOM 6242 CG ARG B 342 97.892 7.674 22.451 1.00 38.16 ATOM 6243 NB ARG B 342 96.726 8.569 22.945 1.00 37.30 ATOM 6244 NB ARG B 342 96.726 8.569 22.945 1.00 37.30 ATOM 6246 NB ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NB ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6247 NB ARG B 342 94.379 8.478 23.500 1.00 40.06 ATOM 6247 NB ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NB ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6240 0 ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6240 0 ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6250 CS SER B 343 98.179 1.623 1.639 1.00 44.01 ATOM 6250 CS SER B 343 98.179 1.00 29.91 1.00 46.22 ATOM 6250 CS SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6250 N SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6250 CS SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6250 CS SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6250 CS SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 CS SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 N HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6250 CD2 HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6250 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.52.89 ATOM 6261 ND1 HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6266 N MET B 345 103.514 7.455 21.463 1.00 33.75 ATOM 6267 CA MET B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6266 N MET B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6267 CD HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6267 CD HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6267 CD HIS B 344 102.404 1.00 0.627 16.855 1.00 55.29 ATOM 6267 CD HIS B 344 102.404 1.00 0.627 16.855 1.00 55.29 ATOM 6267 CD HIS B 344 102.404 1.00 0.627 16.855 1.00 55.29 ATOM 6267 CD HIS B 344 102.404 1.00 0.627 16.855 1.00 53.75 ATOM 6268 CB HIS B 344 102.404 1.00 0.627 16.855 1.00 53.75 ATO |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6243 CD ARG B 342 97.829 7.674 22.451 1.00 38.16 ATOM 6243 CD ARG B 342 96.726 8.569 22.945 1.00 37.30 ATOM 6244 NE ARG B 342 96.726 8.569 22.945 1.00 37.31 ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NHI ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6247 NH2 ARG B 342 99.504 5.658 21.145 1.00 46.23 ATOM 6249 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6251 CR SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6255 CB SER B 343 98.212 1.803 19.866 1.00 49.74 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 101.996 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.84 ATOM 6256 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6256 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6256 CB HIS B 344 102.602 3.114 20.153 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 NDI HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 NDI HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6263 NEZ HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6263 NEZ HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 55.29 ATOM 6261 NDI HIS B 344 101.070 0.627 16.855 1.00 54.35 ATOM 6267 CR HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 55.29 ATOM 6260 CD2 HIS B 344 101.070 0.627 16.855 1.00 54.35 ATOM 6260 CD2 HIS B 345 103.59 ATOM 6260 CD2 HIS B 345 103.59 ATOM 6260 CD2 HIS B 345 103.59 ATOM 6260 CD2 HIS B 345 103.59 ATOM 6260 CD2 HIS B 345 103.59 ATOM 6260 CD2 HIS B 345 103.99 ATOM 6260 CD2 HIS B 345 103.99 ATOM 6260 CD2 HIS B | MOTA  | 6241 | CB  |     |    | •   |         |        |        |            | В      | č      |
| ATOM 6244 NE ARG B 342 95.404 7.971 22.930 1.00 37.30 ATOM 6245 CZ ARG B 342 95.404 7.971 22.930 1.00 37.41 ATOM 6246 NH1 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NH2 ARG B 342 93.183 7.916 23.532 1.00 40.66 ATOM 6247 NH2 ARG B 342 93.183 7.916 23.532 1.00 40.66 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6249 O ARG B 342 100.470 5.654 21.924 1.00 44.23 ATOM 6250 N SER B 343 99.598 3.318 21.639 1.00 44.73 ATOM 6251 CA SER B 343 99.598 3.318 21.639 1.00 44.73 ATOM 6252 CB SER B 343 98.179 4.561 20.929 1.00 44.73 ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 CB HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6259 CG HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6250 CC HIS B 344 102.104 1.993 17.978 1.00 50.18 ATOM 6260 CC2 HIS B 344 102.104 1.993 17.978 1.00 50.18 ATOM 6260 CC2 HIS B 344 102.104 1.993 17.978 1.00 50.18 ATOM 6260 CC2 HIS B 344 102.104 1.993 17.7167 1.00 52.89 ATOM 6260 CC2 HIS B 344 102.104 1.993 17.7167 1.00 52.89 ATOM 6260 NET B 344 102.104 1.993 17.7167 1.00 52.89 ATOM 6260 NET B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6260 NET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6260 NET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6260 NET B 345 103.537 6.100 36.77 ATOM 6260 CB MET B 345 103.537 6.100 30.40 ATOM 6260 NET B 345 103.537 6.100 30.677 ATOM 6260 NET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.533 6.100 36.77 ATOM 6260 CB MET B 345 103.633 6.100 36.77 ATOM 6260 CB MET B 345 103.633 6.100 36.77 ATOM 6260 CB MET B 345 103.633 6.100 36.77 ATOM 6260 CB MET B 345 103.6 | ATOM  | 6242 | CG  |     |    |     |         |        |        |            | В      | č      |
| ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6245 CZ ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6246 NH1 ARG B 342 94.542 9.570 24.348 1.00 41.00 ATOM 6247 NH2 ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6253 CG SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6254 C SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6255 CB SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6256 CB SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6257 CA HIS B 344 100.554 2.910 21.442 1.00 42.25 ATOM 6258 CB HIS B 344 100.505 2.150 22.242 1.00 43.04 ATOM 6256 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6258 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6250 CC LIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6260 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6261 NDI HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6262 CC LIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6263 NEZ HIS B 344 101.564 -0.177 17.452 1.00 53.75 ATOM 6264 C HIS B 344 101.564 -0.177 17.452 1.00 53.75 ATOM 6265 N MET B 345 100.570 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 103.537 4.174 20.736 1.00 36.77 ATOM 6267 CA MET B 345 103.933 1.0393 1.0393 1.00 36.77 ATOM 6267 CA MET B 345 103.933 1.0393 1.00 20.404 1.00 37.96 ATOM 6267 CA MET B 345 103.933 1.00 20.404 1.00 37.96 ATOM 6267 CA MET B 345 103.933 1.00 20.404 1.00 30.27 ATOM 6267 CA MET B 345 103.933 1.00 20.404 1.00 30.97 ATOM 6267 CA MET B 345 103.933 1.00 20.404 1.00 30.97 ATOM 6269 CG MET B 345 103.933 1.00 20.404 1.00 30.904 ATOM 6269 CG MET B 345 103.933 1.00 20.404 1.00 30.904 ATOM 6269 CG MET B 345 103.933 1.00 20.404 1.00 30.904 ATOM 6269 CG MET B 345 103.933 1.00 20.404 1.00 30.904 ATOM 6269 CC MET B 345 103.933 1.00 20.404 1.00 30.904 ATOM 6269 CC MET B 345 103.933 1.00 20.304 1.00 30.904 ATOM 6269 CC MET B  | ATOM  | 6243 | CD  | ARG | В  | 342 |         |        |        |            | В      | č      |
| ATOM 6245 C2 ARG B 342 94.379 8.478 23.608 1.00 40.06 ATOM 6247 NH2 ARG B 342 94.52 9.570 24.348 1.00 41.00 ATOM 6248 C ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6249 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 99.509 3.182 21.639 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.182 21.639 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.182 21.639 1.00 44.01 ATOM 6252 CB SER B 343 99.098 3.182 21.639 1.00 44.01 ATOM 6253 OG SER B 343 99.272 1.803 19.866 1.00 49.74 ATOM 6254 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6256 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CC2 HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CC2 HIS B 344 102.108 1.997 17.167 1.00 52.89 ATOM 6260 CC2 HIS B 344 102.402 0.551 18.136 1.00 53.75 ATOM 6261 NDI HIS B 344 102.402 0.551 18.136 1.00 53.75 ATOM 6263 NEZ HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 N MET B 345 100.700 0.627 16.855 1.00 54.35 ATOM 6266 N MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6266 N MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6266 CB MIS B 344 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6267 CA MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6260 N MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6260 CB MET B 345 100.790 0.627 16.855 1.00 54.35 ATOM 6260 CB MET B 345 100.390 0.627 1.00 30.40 ATOM 6270 CB MET B 345 100.790 0.627 1.00 30.40 ATOM 6270 CB MET B 345 100.390 0.627 1.00 30.40 ATOM 6270 CB MET B 345 100.590 0.627 1.00 30.40 ATOM 6270 CB MET B 345 100.590 0.627 1.00 30.40 ATOM 6270 CB MET B 345 100.590 0.620 0.620 0.620 0.620 0.620 | MOTA  | 6244 | NE  | ARG | В  | 342 | 95.404  |        |        |            | В      | N      |
| ATOM 6248 C ARG B 342 93.183 7.916 23.532 1.00 40.86 ATOM 6249 O ARG B 342 100.470 5.658 21.145 1.00 44.23 ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 44.01 ATOM 6253 OG SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6255 O SER B 343 101.096 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6257 CA HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CG HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CG HIS B 344 102.014 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 102.101 1.893 17.978 1.00 50.18 ATOM 6261 NDI HIS B 344 102.242 0.561 18.136 1.00 53.75 ATOM 6266 CD2 HIS B 344 100.1018 1.927 17.167 1.00 52.89 ATOM 6266 N MET B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6266 N MET B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6266 N MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6266 N MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6267 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6267 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6267 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6269 CG MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6267 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.393 6.217 23.606 1.00 36.77 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 6.130 2.142 1.00 35.23 ATOM 6270 CA MET B 345 103.793 7.094 2.1333 1.00 3.00 3.00 ATOM 6270 CA MET B 345 103.793 7.094 2.1343 1.00 30.40 ATOM 6270 CA MET B 345 103.793 7.094 2.1343 1.00 33.29 ATOM 6270 CA PRO B 346 104.601 6.515 26.575 1.00 32.79 ATOM 6280 CB TYR B 347 109.601 1. |       |      | CZ  | ARG | В  | 342 | 94.379  | 8.478  | 23.608 |            | В      | Ċ      |
| ATOM 6248 C ARG B 342 99.504 5.658 21.145 1.00 44.23 ATOM 6259 N SER B 343 99.709 4.561 20.929 1.00 44.73 ATOM 6250 N SER B 343 99.709 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6253 OG SER B 343 98.148 2.171 21.230 1.00 44.01 ATOM 6254 C SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6258 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6250 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6263 NEZ HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NEZ HIS B 344 101.353 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 103.733 4.174 20.736 1.00 38.92 ATOM 6267 NEZ HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6268 CB MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6267 NEZ HIS B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.793 6.130 22.142 1.00 35.75 ATOM 6267 NEZ HIS B 345 103.793 6.130 22.142 1.00 35.73 ATOM 6268 CB MET B 345 103.793 6.130 22.142 1.00 35.73 ATOM 6267 CA MET B 345 103.393 8.763 19.094 1.00 30.40 ATOM 6270 CB MET B 345 103.393 8.763 19.094 1.00 30.70 ATOM 6271 CE MET B 345 103.393 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.393 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.393 8.763 19.094 1.00 30.40 ATOM 6273 C PRO B 346 104.661 4.188 20.007 1.00 28.79 ATOM 6280 CB MET B 345 103.333 6.217 23.606 1.00 35.76 ATOM 6270 C PRO B 346 104.661 4.188 20.007 1.00 28.67 ATOM 6280 CB TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 CB TYR B 347 105.836 8.083 27.070 1.00 29.48 ATOM 6280 CB TYR B 347 109.660 12.083 30.102 1.00 30.73 ATOM 6280 CB TYR B 347 109.660 12.083 30.102 1.00 30.73 ATOM 6280 CB TYR B |       |      |     |     |    |     | 94.542  | 9.570  | 24.348 | 1.00 41.00 | В      | N      |
| ATOM 6250 N SER B 343 98.779 4.561 20.929 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6252 CB SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6253 OG SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6255 C SER B 343 101.0554 2.910 21.442 1.00 42.25 ATOM 6255 C SER B 343 101.096 2.150 22.242 1.00 43.04 ATOM 6255 C SER B 343 101.096 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.88 ATOM 6258 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6262 CEI HIS B 344 101.018 1.927 17.167 1.00 53.75 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 C C C HIS B 344 100.700 0.627 16.855 1.00 38.92 ATOM 6266 N MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6267 CA MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6267 CA MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6267 CA MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6271 CE MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6272 C MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6273 D MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6276 CA PRO B 346 104.861 4.188 24.4067 1.00 36.38 ATOM 6270 SD MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6275 CD PRO B 346 104.861 4.188 24.4067 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.4067 1.00 36.77 ATOM 6272 C MET B 347 105.336 8.083 27.070 1.00 32.61 ATOM 6280 CB TYR B 347 105.836 8.083 27.070 1.00 29.66 ATOM 6281 C TYR B 347 105.836 8.083 27.070 1.00 29.48 ATOM 6280 CB TYR B 347 105.836 8.083 27.070 1.00 29.48 ATOM 6280 CB TYR B 347 106.863 11.558 27.918 1.00 29.54 ATOM 6290 CH TYR B 347 109.908 11.176 29.222 1.00 28.67 ATOM 6290 CH TYR B 347 109.908 11.176 29.222 1.00 28.67 ATOM 6295 CB THR B 348 104.748 9.666 25.608 1.00 27.39 ATOM 6295 CB T |       |      |     |     |    |     | 93.183  | 7.916  | 23.532 | 1.00 40.86 | В      | N      |
| ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.73 ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 98.188 2.171 21.230 1.00 44.01 ATOM 6253 GS SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6254 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6256 N HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6257 CA HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6258 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CD HIS B 344 101.018 1.927 17.167 1.00 50.18 ATOM 6261 NDI HIS B 344 101.018 1.927 17.167 1.00 50.18 ATOM 6262 CEI HIS B 344 100.700 0.627 16.855 1.00 55.29 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 CB HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 CB HIS B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 CB MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 CB MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 35.23 ATOM 6269 CB MET B 345 103.514 7.455 21.463 1.00 35.23 ATOM 6270 CB MET B 345 103.319 8.763 19.094 1.00 30.40 ATOM 6271 CC MET B 345 103.319 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.319 8.763 19.094 1.00 30.40 ATOM 6273 CD MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6270 CB MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6271 CC MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.339 8.763 19.094 1.00 30.40 ATOM 6273 CD PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6270 CB PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6271 CC MET B 345 103.537 7.126 24.041 1.00 37.96 ATOM 6272 C MET B 345 103.532 6.197 23.690 1.00 37.79 ATOM 6280 C PRO B 346 104.861 1.188 24.067 1.00 33.50 ATOM 6281 C TYR B 347 107.926 9.395 27.544 1.00 29.48 ATOM 6280 C PRO B 346 104.861 1.188 24.067 1.00 33.50 ATOM 6280 C TYR B 347 107.926 9.395 27.544 1.00 29.48 ATOM 6280 C TYR B 347 109.908 11.767 29.222 1.00 28.72 ATOM 6280 C TYR B 347 1 |       |      |     |     |    |     |         |        | 21.145 | 1.00 44.23 | В      | С      |
| ATOM 6251 CA SER B 343 99.098 3.318 21.639 1.00 44.01 ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 44.01 ATOM 6253 OG SER B 343 98.148 2.171 21.230 1.00 44.01 ATOM 6254 C SER B 343 98.148 2.171 21.230 1.00 42.25 ATOM 6255 O SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6256 N HIS B 344 102.105 2.1242 1.00 40.88 ATOM 6257 CA HIS B 344 102.102 3.114 20.153 1.00 40.84 ATOM 6258 CB HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6250 CC HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CC2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 NDI HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6262 CEI HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 C HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 C HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 C MET B 345 102.952 5.078 21.536 1.00 36.77 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 38.05 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 38.05 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 36.77 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 36.77 ATOM 6266 C MET B 345 103.537 4.174 20.736 1.00 36.77 ATOM 6267 C MET B 345 103.531 4.7.455 21.463 1.00 33.70 ATOM 6267 C MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 C MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.139 8.763 19.094 1.00 37.96 ATOM 6272 C MET B 345 103.343 6.217 23.606 1.00 36.78 ATOM 6273 C MET B 345 103.343 6.217 23.606 1.00 36.78 ATOM 6276 C A PRO B 346 104.681 6.515 26.575 1.00 33.50 ATOM 6276 C A PRO B 346 104.681 6.515 26.575 1.00 33.50 ATOM 6276 C A PRO B 346 104.681 6.515 26.575 1.00 33.50 ATOM 6282 C A TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C B TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C B TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C C TYR B 347 106.863 11.588 27.918 1.00 27.34 ATOM 6280 C C TYR B 347 106. |       |      |     |     |    |     |         |        |        | 1.00 46.23 | В      | 0      |
| ATOM 6252 CB SER B 343 98.148 2.171 21.230 1.00 46.22 ATOM 6253 OG SER B 343 98.272 1.803 19.866 1.00 49.74 ATOM 6254 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 101.096 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 101.096 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6256 CB HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6258 CB HIS B 344 102.602 3.114 20.153 1.00 50.18 ATOM 6259 CG HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6262 CE1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6264 C HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6265 N MET B 345 100.2992 5.078 21.536 1.00 38.92 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 CB MET B 345 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 345 103.593 6.130 22.142 1.00 35.23 ATOM 6266 CB MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.79 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.70 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.77 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 37.70 ATOM 6270 SD PRO B 346 104.861 4.188 24.007 1.00 36.44 ATOM 6270 SD PRO B 346 104.861 4.188 24.007 1.00 36.44 ATOM 6270 SD PRO B 346 104.861 6.515 26.575 1.00 33.50 ATOM 6280 CD PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CD PR |       |      |     |     |    |     |         |        |        |            | В      | N      |
| ATOM 6253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6255 C SER B 343 100.554 2.910 21.442 1.00 42.25 ATOM 6255 O SER B 343 101.095 2.150 22.242 1.00 43.04 ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6259 CG HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6259 CG HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6262 CD1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6266 CD HIS B 344 101.733 4.160 20.454 1.00 38.92 ATOM 6265 O HIS B 344 101.733 4.160 20.454 1.00 38.92 ATOM 6266 CD HIS B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 CD HIS B 345 103.593 6.130 22.142 1.00 35.23 ATOM 6266 CD MET B 345 103.593 6.130 22.142 1.00 35.23 ATOM 6267 CA MET B 345 103.593 6.130 22.142 1.00 35.23 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6271 CE MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6271 CE MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.940 5.281 24.401 1.00 37.96 ATOM 6277 CB PRO B 346 104.504 9.912 19.106 1.00 27.79 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6278 C PRO B 346 104.861 4.188 24.067 1.00 33.50 ATOM 6278 C PRO B 346 104.323 4.020 26.326 1.00 33.50 ATOM 6278 C PRO B 346 104.861 4.188 24.067 1.00 36.78 ATOM 6278 C PRO B 346 104.861 4.188 24.067 1.00 36.78 ATOM 6278 C PRO B 346 104.861 4.188 24.067 1.00 36.79 ATOM 6280 C PRO B 346 104.861 4.188 24.067 1.00 36.79 ATOM 6280 C PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6280 C PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6280 C PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6280 C PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6280 C PRO B 346 |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6255 O SER B 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6256 N HIS B 344 101.198 3.436 20.404 1.00 40.88 ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6258 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6259 CG HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6262 CE1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 N MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6269 CG MET B 345 103.793 6.130 22.142 1.00 33.70 ATOM 6269 CG MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.393 6.217 23.606 1.00 37.96 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 104.861 4.188 24.067 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 33.50 ATOM 6278 CG PRO B 346 104.323 4.020 26.326 1.00 33.50 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 33.50 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 33.50 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 33.50 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 33.50 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB PRO B 346 104.450 3.160 25.804 1.00 37.27 ATOM 6280 CB TYR B 347 105.386 8.083 27.070 1.00 28.67 ATOM 6280 CB TYR B 347 108.811 10.666 27.041 1.00 29.48 ATOM 6280  |       | •    |     |     |    |     |         |        |        |            | В      |        |
| ATOM 6257 CA HIS B 344 102.602 3.114 20.153 1.00 40.84 ATOM 6258 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6259 CG HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.0564 -0.177 17.452 1.00 53.75 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6265 NB2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 NBET B 345 102.992 5.078 21.536 1.00 38.92 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 N MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6266 CB MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 102.932 5.28 24.001 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6278 CG PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6279 C PRO B 346 104.851 4.188 24.067 1.00 33.50 ATOM 6279 C PRO B 346 104.851 5.56.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.851 5.56.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.851 6.515 26.575 1.00 32.61 ATOM 6280 CG TYR B 347 105.328 6.917 26.370 1.00 28.48 ATOM 6280 CG TYR B 347 105.328 6.917 26.370 1.00 28.48 ATOM 6280 CC TYR B 347 105.328 6.917 26.370 1.00 28.48 ATOM 6280 CC TYR B 347 107.926 9.395 27.454 1.00 27.49 ATOM 6280 CC TYR B 347 107.926 9.395 27.454 1.00 27.39 ATOM 6280 CC TYR B 347 108.861 1.558 27.918 1.00 29.54 ATOM 6280 CC TYR B 347 107.926 9.395 27.454 1.00 27.39 ATOM 6280 CC TYR B 347 109.998 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.998 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.608 11.558 27.918 1.00 29.54 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 3 |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6258 CB HIS B 344 102.871 2.994 18.648 1.00 45.39 ATOM 6250 CG HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 101.02422 0.561 18.136 1.00 53.75 ATOM 6262 CE1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6266 CHIS B 344 101.564 -0.177 17.452 1.00 38.92 ATOM 6266 CHIS B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6266 CHIS B 344 103.537 4.174 20.736 1.00 38.05 ATOM 6266 C MIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 CB MET B 345 102.992 5.078 21.536 1.00 35.23 ATOM 6266 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 27.79 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 27.79 ATOM 6273 O MET B 345 103.940 5.281 24.401 1.00 36.38 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6277 CB PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6278 CG PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6279 C PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6270 CB PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6280 CG PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6280 CG PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 32.61 ATOM 6280 CG PRO B 346 104.861 6.515 26.575 1.00 27.88 ATOM 6280 CG PRO B 346 104.861 1.588 27.918 1.00 29.54 ATOM 6280 CG PRO B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6280 CG PRO B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6280 CG PRO B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6280 C |       |      |     |     |    |     |         |        |        |            | В      | N      |
| ATOM 6259 CG HIS B 344 102.104 1.893 17.978 1.00 50.18 ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6262 CE1 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 38.92 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 35.23 ATOM 6266 CE MET B 345 103.537 4.174 20.736 1.00 36.77 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 37.96 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6273 O MET B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6280 C PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6280 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6280 C PRO B 346 104.863 1.558 27.918 1.00 29.54 ATOM 6280 C PRO B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6280 CD TYR B 347 107.926 9.395 27.454 1.00 27.38 ATOM 6280 CD TYR B 347 107.926 9.395 27.454 1.00 27.38 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6280 CD TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6290 CD TYR B 347 109.640 12.083 30.102 1.00 27.39 ATOM 6290 CD TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6295 CD TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6295 CD TY |       |      |     |     |    |     |         |        |        |            | B<br>B | C      |
| ATOM 6260 CD2 HIS B 344 101.018 1.927 17.167 1.00 52.89 ATOM 6261 ND1 HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6262 CE1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 C HIS B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 C MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6266 C MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6266 C MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6275 CD PRO B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6276 CA PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6280 O PRO B 346 104.950 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 346 104.951 3.160 25.080 1.00 37.27 ATOM 6281 N TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 346 104.950 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6280 C PRO B 346 104.951 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 37.27 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 27.34 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 27.34 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 27.34 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 27.34 ATOM 6280 C PRO B 346 104.953 3.160 25.080 1.00 27.34 ATOM 6280 C PRO B 347 108.66 10.00 27.34 ATOM 6280 C PRO B 347 108.863 11.558 27.91 |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6261 ND1 HIS B 344 102.422 0.561 18.136 1.00 53.75 ATOM 6262 CE1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6266 CE1 HIS B 344 100.700 0.627 16.855 1.00 38.92 ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6266 CE MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6266 CE MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6267 CA MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.433 6.217 23.606 1.00 37.96 ATOM 6273 O MET B 345 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6279 C PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6279 C PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 37.96 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 33.50 ATOM 6279 C PRO B 346 104.861 4.188 24.067 1.00 33.50 ATOM 6279 C PRO B 346 104.816 5.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.816 5.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.818 6.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.818 6.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.818 6.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.818 6.515 26.575 1.00 32.61 ATOM 6280 C PRO B 346 104.823 3.100 25.880 1.00 37.27 ATOM 6280 C PRO B 347 108.81 10.5886 8.083 27.070 1.00 27.88 ATOM 6280 C PRO B 347 108.81 10.863 11.558 27.918 1.00 27.88 ATOM 6280 C PRO B 347 108.81 10.5886 8.083 27.070 1.00 27.88 ATOM 6280 C PRO B 347 108.81 10.5886 311.558 27.918 1.00 27.88 ATOM 6280 C PRO B 347 108.81 10.5886 311.558 27.918 1.00 27.88 ATOM 6280 C PRO B 347 108.881 10.5866 27.0 |       |      |     |     |    |     |         |        |        |            | В      | c      |
| ATOM 6262 CE1 HIS B 344 101.564 -0.177 17.452 1.00 55.29 ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6264 C HIS B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.95 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6269 CG MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6279 C PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6279 C PRO B 346 104.851 3.160 25.080 1.00 37.27 ATOM 6282 CA TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6286 CE1 TYR B 347 105.836 8.083 27.070 1.00 28.48 ATOM 6287 CD2 TYR B 347 109.968 11.558 27.918 1.00 27.49 ATOM 6280 C TYR B 347 109.988 11.558 27.918 1.00 27.49 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 27.49 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 O TYR B 347 109.998 11.176 29.222 1.00 27.39 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6292 O TYR B 347 104.868 9.229 26.857 1.00 27.49 ATOM 6292 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6293 N THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                              |       | -    |     |     |    |     |         |        |        |            | В      | N      |
| ATOM 6263 NE2 HIS B 344 100.700 0.627 16.855 1.00 54.35 ATOM 6264 C HIS B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6260 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.433 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 37.27 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6279 C PRO B 346 104.323 4.020 26.326 1.00 37.27 ATOM 6280 O PRO B 346 104.323 4.020 26.326 1.00 37.27 ATOM 6280 C PRO B 346 103.307 7.094 27.343 1.00 37.27 ATOM 6280 C PRO B 346 103.307 7.094 27.343 1.00 37.27 ATOM 6280 C PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 28.67 ATOM 6282 CA TYR B 347 105.328 6.917 26.370 1.00 28.67 ATOM 6285 CD1 TYR B 347 107.926 9.395 27.454 1.00 27.49 ATOM 6286 CE1 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6286 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD1 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.560 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 108.863 11.560 29.222 1.00 28.72 ATOM 62 | ATOM  |      |     |     |    |     |         |        |        |            | B.     | C      |
| ATOM 6264 C HIS B 344 103.537 4.174 20.736 1.00 38.92 ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.943 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 33.50 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6285 CD1 TYR B 347 107.213 8.458 26.534 1.00 27.34 ATOM 6286 CE1 TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6287 CD2 TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6289 CZ TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6280 C TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 C TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 27.39 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 27.39 ATOM 6290 OH TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                          |       |      |     |     |    |     |         |        |        |            | В      | N      |
| ATOM 6265 O HIS B 344 104.733 4.180 20.454 1.00 38.05 ATOM 6266 N MET B 345 102.992 5.078 21.536 1.00 36.77 ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.794 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.654 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 103.433 6.217 23.606 1.00 27.79 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 0 MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 37.96 ATOM 6275 CD PRO B 346 103.632 5.280 25.824 1.00 35.76 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 107.926 9.395 27.454 1.00 28.48 ATOM 6285 CD1 TYR B 347 108.761 9.912 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6280 CF TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CF TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CF TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CF TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CF TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CF TYR B 347 108.863 11.558 27.918 1.00 27.39 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 27.39 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6294 CA THR B 348 104.4748 9.646 25.608 1.00 27.39 ATOM 6294 CA THR B 348 104.4748 9.646 25.608 1.00 27.39 ATOM 6294 CA THR B 348 104.4748 9.646 25.608 1.00 27.60 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6 | ATOM  | 6264 | С   | HIS | В  | 344 |         |        |        |            | В      | Ċ      |
| ATOM 6267 CA MET B 345 103.793 6.130 22.142 1.00 35.23 ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 104.504 9.912 19.106 1.00 27.79 ATOM 6272 C MET B 345 102.735 7.126 24.041 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6273 CD PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6285 CD1 TYR B 347 107.926 9.395 27.454 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6280 CE TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6280 CE TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6280 CE TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 27.39 ATOM 6290 CH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6290 CH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 109.640 12.083 30.102 1.00 27.39 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.88 ATOM 6292 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6292 C TYR B 347 104.233 9.711 27.792 1.00 27.89 ATOM 6293 N THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 104.748 9.646 25.608 THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB  |       | 6265 | 0   | HIS | В  | 344 | 104.733 | 4.180  | 20.454 |            | В      | . 0    |
| ATOM 6268 CB MET B 345 103.514 7.455 21.463 1.00 33.70 ATOM 6269 CG MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 104.504 9.912 19.106 1.00 27.79 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6277 CB PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6270 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6285 CD1 TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6285 CD1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6287 CD2 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6294 CA THR B 348 104.748 9.646 25.608 1.00 27.39 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 |       |      |     |     |    |     | 102.992 | 5.078  | 21.536 | 1.00 36.77 | В      | N      |
| ATOM 6270 SD MET B 345 103.854 7.418 20.008 1.00 32.71 ATOM 6270 SD MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 104.504 9.912 19.106 1.00 27.79 ATOM 6272 C MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6277 CB PRO B 346 104.861 4.188 24.067 1.00 35.76 ATOM 6277 CB PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6286 CE1 TYR B 347 108.761 9.912 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.912 29.648 1.00 27.84 ATOM 6286 CE2 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.088 11.76 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.76 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 62 |       |      |     |     |    |     |         | 6.130  | 22.142 | 1.00 35.23 | В      | C      |
| ATOM 6271 CE MET B 345 103.139 8.763 19.094 1.00 30.40 ATOM 6271 CE MET B 345 104.504 9.912 19.106 1.00 27.79 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6277 CB PRO B 346 104.450 3.160 25.080 10.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 28.867 ATOM 6286 CEI TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6286 CEI TYR B 347 108.79 9.032 28.766 1.00 27.34 ATOM 6286 CEI TYR B 347 108.79 9.032 28.766 1.00 27.34 ATOM 6286 CEI TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6290 OH TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.88 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.773 1.00 27.60                                                                                                                                                                                 |       |      |     |     |    |     |         |        |        |            | . в    |        |
| ATOM 6271 CE MET B 345 104.504 9.912 19.106 1.00 27.79 ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.38 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6278 CG PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6287 CD2 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 27.34 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 27.49 ATOM 6280 CD TYR B 347 108.863 11.558 27.918 1.00 27.49 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 THR B 348 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6272 C MET B 345 103.433 6.217 23.606 1.00 36.78 ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6285 CD1 TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.912 29.648 1.00 27.34 ATOM 6287 CD2 TYR B 347 108.761 9.912 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.863 11.558 27.918 1.00 27.49 ATOM 6280 CE TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 CH TYR B 347 109.098 11.176 29.222 1.00 28.73 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6292 CA THR B 348 104.748 9.646 25.608 1.00 27.39 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |     |    |     |         |        |        |            | В      | S      |
| ATOM 6273 O MET B 345 102.735 7.126 24.041 1.00 37.96 ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6283 CB TYR B 347 105.328 6.917 26.370 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6291 C TYR B 348 104.748 9.646 25.608 1.00 27.39 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |     |     |    | _   |         |        |        |            | В      | C      |
| ATOM 6274 N PRO B 346 103.940 5.281 24.401 1.00 36.38 ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6286 CE2 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6280 CZ TYR B 347 109.640 12.083 30.102 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 28.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.38 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 27.39 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6275 CD PRO B 346 104.861 4.188 24.067 1.00 36.44 ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6285 CD1 TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6286 CE1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.89 ATOM 6293 N THR B 348 104.748 9.646 25.608 THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.8716 10.867 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |     |     |    |     |         |        |        |            | B<br>B | O<br>N |
| ATOM 6276 CA PRO B 346 103.632 5.280 25.824 1.00 33.50 ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6283 CB TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6277 CB PRO B 346 104.323 4.020 26.326 1.00 35.76 ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6283 CB TYR B 347 107.926 9.395 27.454 1.00 27.34 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6278 CG PRO B 346 104.450 3.160 25.080 1.00 37.27 ATOM 6279 C PRO B 346 104.081 6.515 26.575 1.00 32.61 ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.328 6.917 26.370 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.761 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6286 CE2 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.48 ATOM 6288 CE2 TYR B 347 109.686 27.041 1.00 29.48 ATOM 6289 CZ TYR B 347 109.686 27.041 1.00 29.48 ATOM 6280 CZ TYR B 347 109.686 27.041 1.00 29.48 ATOM 6280 CZ TYR B 347 109.686 27.041 1.00 29.54 ATOM 6290 CZ TYR B 347 109.686 11.76 29.222 1.00 28.72 ATOM 6290 CT TYR B 347 109.680 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6291 C TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |     |     |    |     |         |        |        |            | В      | Č      |
| ATOM 6280 O PRO B 346 103.307 7.094 27.343 1.00 32.61 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6281 N TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6285 CD1 TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.761 9.911 29.648 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.89 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |     |     |    |     |         |        |        |            | В      | Č      |
| ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 33.29 ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6284 CG TYR B 347 107.213 8.458 26.534 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.79 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.89 ATOM 6292 O TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 THR B 348 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.816 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA  | 6279 | С   |     |    |     |         |        |        |            | В      | č      |
| ATOM 6281 N TYR B 347 105.328 6.917 26.370 1.00 30.27 ATOM 6282 CA TYR B 347 105.836 8.083 27.070 1.00 28.67 ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CE2 TYR B 347 109.690 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.89 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.62 ATOM 6295 CB THR B 348 103.855 10.727 25.272 1.00 26.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOTA  | 6280 | 0   |     |    |     |         |        |        |            | В      | ŏ      |
| ATOM 6283 CB TYR B 347 107.213 8.458 26.534 1.00 28.48 ATOM 6284 CG TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.761 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.54 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.89 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATOM  | 6281 | N   | TYR | В  | 347 |         |        |        |            | В      | N      |
| ATOM 6284 CG TYR B 347 107.926 9.395 27.454 1.00 27.88 ATOM 6285 CD1 TYR B 347 108.179 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.861 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.868 9.229 26.857 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOTA  | 6282 | CA  | TYR | В  | 347 | 105.836 | 8.083  | 27.070 | 1.00 28.67 | В      | C      |
| ATOM 6285 CD1 TYR B 347 108.779 9.032 28.766 1.00 27.34 ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.861 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      | CB  |     |    |     | 107.213 | 8.458  | 26.534 |            | В      | С      |
| ATOM 6286 CE1 TYR B 347 108.761 9.911 29.648 1.00 27.49 ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.89 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |     |     |    |     | 107.926 | 9.395  | 27.454 | 1.00 27.88 | В      | С      |
| ATOM 6287 CD2 TYR B 347 108.281 10.666 27.041 1.00 29.48 ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |     |     |    |     |         | 9.032  | 28.766 |            | В      | С      |
| ATOM 6288 CE2 TYR B 347 108.863 11.558 27.918 1.00 29.54 ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |     |     |    |     |         |        |        |            | В      | C      |
| ATOM 6289 CZ TYR B 347 109.098 11.176 29.222 1.00 28.72 ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      | CD2 | TYR | В  | 347 |         |        |        |            | В      | С      |
| ATOM 6290 OH TYR B 347 109.640 12.083 30.102 1.00 30.73 ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88 ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39 ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92 ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62 ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6291 C TYR B 347 104.868 9.229 26.857 1.00 27.88<br>ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39<br>ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92<br>ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62<br>ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |     |     |    |     |         |        |        | _          | В      | C      |
| ATOM 6292 O TYR B 347 104.233 9.711 27.792 1.00 27.39<br>ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92<br>ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62<br>ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6293 N THR B 348 104.748 9.646 25.608 1.00 26.92<br>ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62<br>ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |     |     |    |     |         |        |        |            | В      | С      |
| ATOM 6294 CA THR B 348 103.855 10.727 25.272 1.00 26.62<br>ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |     |     |    |     |         |        |        |            | В      | 0      |
| ATOM 6295 CB THR B 348 103.716 10.807 23.793 1.00 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |     |     |    |     |         |        |        |            | В      | N      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |     |     |    |     |         |        |        |            | ·B     | C      |
| 103,000 11,003 23,636 1,00 23,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |     |     |    |     |         |        |        |            | В      | C      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 5220 |     |     | ~  | 740 | 703.000 | 11.003 |        |            | В      | 0      |

|   |              |              |          |            |    |            | •                  |                  |                  |                          |   |         |         |
|---|--------------|--------------|----------|------------|----|------------|--------------------|------------------|------------------|--------------------------|---|---------|---------|
|   | ATOM         | 6297         | CG2      | THR        | В  | 348        | 102.751            | 11.899           | 23.429           | 1.00 27.60               |   | В       | С       |
|   | ATOM         | 6298         | Ċ.       | THR        | В  | 348        | 102.478            | 10.645           | 25.915           | 1.00 26.05               |   | В       | Ċ       |
|   | ATOM         | 6299         | 0        | THR        | ₽  | 348        | 102.052            | 11.575           | 26.610           | 1.00 26.31               |   | В       | o       |
|   | MOTA         | 6300         | N        | ASP        | ₿  | 349        | 101.774            | 9.548            | 25.690           | 1.00 25.61               |   | В       | N       |
|   | MOTA         | 6301         | CA       |            |    | 349        | 100.470            | 9.416            | 26.293           | 1.00 25.56               |   | В       | С       |
|   | MOTA         | 6302         | CB       |            |    | 349        | 99.898             | 8.027            | 26.044           | 1.00 25.01               |   | В       | С       |
|   | ATOM         | 6303         | CG       |            |    | 349        | 98.498             | 7.891            | 26.568           | 1.00 28.16               |   | В       | С       |
|   | ATOM         | 6304         |          | ASP        |    |            | 98.326             | 8.121            | 27.777           | 1.00 32.44               |   | В       | 0       |
|   | ATOM         | 6305         |          | ASP        |    |            | 97.566             | 7.559            | 25.800           | 1.00 28.05               |   | В       | 0       |
|   |              | 6306         | C        |            |    | 349        | 100.600            | 9.688            | 27.788           | 1.00 26.34               |   | В       | С       |
|   | ATOM         | 6307         | 0        |            |    | 349        | 99.683             | 10.231           | 28.410           | 1.00 27.40               |   | В.      | 0       |
|   | ATOM<br>ATOM | 6308<br>6309 | N<br>CA  |            |    | 350<br>350 | 101.735<br>101.917 | 9.332<br>9.590   | 28.380           | 1.00 26.49               |   | В.      | N       |
|   | ATOM         | 6310         | CB       |            |    | 350        | 103.152            | 8.877            | 29.814<br>30.321 | 1.00 25.78<br>1.00 28.12 |   | В       | C       |
|   | ATOM         | 6311         | C        |            |    | 350        | 102.041            | 11.090           | 30.076           | 1.00 25.64               |   | B<br>B  | C       |
|   | ATOM         | 6312         | ŏ        |            |    | 350        | 101.398            | 11.620           | 30.977           | 1.00 24.89               |   | В       | C       |
|   | ATOM         | 6313         | N        |            |    | 351        | 102.867            | 11.765           | 29.282           | 1.00 22.52               |   | В       | N       |
|   | ATOM         | 6314         | CA       |            |    | 351        | 103.029            | 13.185           | 29.461           | 1.00 19.54               |   | В       | Ċ       |
|   | MOTA         | 6315         | CB       | VAL        | В  | 351        | 103.923            | 13.762           | 28.389           | 1.00 20.03               |   | В       | Č       |
| • | ATOM         | 6316         | CG1      | VAL        | В  | 351        | 103.909            | 15.281           | 28.463           | 1.00 20.69               |   | В       | С       |
|   | ATOM         | 6317         | CG2      | VAL        | В  | 351        | 105.335            | 13.223           | 28.581           | 1.00 20.22               |   | В       | С       |
|   | ATOM         | 6318         | С        | VAL        | В  | 351        | 101.668            | 13.864           | 29.446           | 1.00 20.13               |   | В       | С       |
|   | ATOM         | 6319         | 0        |            |    | 351        | 101.287            | 14.550           | 30.400           | 1.00 19.84               |   | В       | 0       |
|   | ATOM         | 6320         | N        |            |    | 352        | 100.912            | 13.649           | 28.379.          | 1.00 18.45               |   | В       | N       |
|   | ATOM         | 6321.        | CA       |            |    | 352        | 99.580             | 14.241           | 28.293           | 1.00 16.77               |   | В       | С       |
|   | MOTA         | 6322         | CB       |            |    | 352        | 98.775             | 13.658           | 27.139           | 1.00 16.46               |   | В       | С       |
|   | ATOM         | 6323         |          | VAL        |    |            | 97.373             | 14.243           | 27.165           | 1.00 16.11               |   | В       | С       |
|   | MOTA         | 6324         |          | VAL        |    |            | 99.469             | 13.937           | 25.843           | 1.00 15.69               |   | В       | C       |
|   | ATOM         | 6325         | C        |            |    | 352<br>352 | 98.766             | 13.996           | 29.576           | 1.00 18.89               |   | В       | C       |
|   | ATOM         | 6326<br>6327 | 0        | VAL        | ۵. | 352        |                    | 14.920           | 30.129           | 1.00 19.47               |   | В       | 0       |
|   | ATOM<br>ATOM | 6328         | N<br>Ca  | HIS        |    |            | 98.738<br>97.993   | 12.748<br>12.423 | 30.037           | 1.00 18.61               |   | В       | N       |
|   | ATOM         | 6329         | CB       |            |    |            | 98.015             | 10.924           | 31.240<br>31.503 | 1.00 17.43               |   | B<br>B  | C       |
|   | ATOM         | 6330         | CG       | HIS        |    |            | 97.089             | 10.324           | 30.640           | 1.00 19.57               |   | В       | c       |
|   | ATOM         | 6331         |          | HIS        |    |            |                    | 9.973            | 29.299           | 1.00 20.71               |   | В       | Č       |
|   | ATOM         | 6332         |          | HIS        |    |            | 96.107             | 9.315            | 31.163           | 1.00 20.06               |   | В       | N       |
|   | ATOM         | 6333         |          | HIS        |    |            | 95.487             | 8.686            | 30.184           | 1.00 20.84               |   | В       | c       |
|   | ATOM         | 6334         |          | HIS        |    |            | 96.030             | 9.068            | 29.039           | 1.00 21.67               |   | В       | N       |
|   | ATOM         | 6335         | С        |            |    | 353        | 98.561             | 13.142           | 32.454           | 1.00 19.21               |   | В       | C       |
|   | ATOM         | 6336         | 0        | HIS        | В  | 353        |                    | 13.773           |                  | 1.00 17.74               |   | В       | 0       |
|   | ATOM         | 6337         | N'       | GĿΰ        | В  | 354        | 99.868             | 13.028           | 32.652           | 1.00 20.08               |   | В       | N       |
|   | ATOM ·       | 6338         | CĄ       | GLU        | В  | 354        | 100.535            | 13.676           | 33.765           | 1.00 21.64               |   | В       | С       |
|   | ATOM         | 6339         | CB       | GLU        | В  | 354        | 102.053            | 13.453           | 33.683           | 1.00 21.65               |   | В       | С       |
|   | ATOM         | 6340         | CG       | GLU        |    |            | 102.882            | 14.046           | 34.835           | 1.00 21.96               |   | В       | C       |
|   | ATOM         | 6341         | CD       | GLU        |    |            | 102.383            | 13.654           | 36.223           | 1.00 25.18               |   | В       | С       |
|   | ATOM         | 6342         |          | GLU        |    |            | 101.239            | 13.135           | 36.312           | 1.00 25.01               |   | В       | 0       |
|   | ATOM         | 6343         |          | GLU        |    |            | 103.116            | 13.878           | 37.245           | 1.00 24.77               |   | В       | 0       |
|   | MOTA         | 6344         | C        | GLU        |    |            | 100.201            | 15.159           | 33.740           | 1.00 23.39               |   | В       | C       |
|   | ATOM         | 6345         | 0        | GLU        |    |            | 99.947             | 15.746           | 34.780           | 1.00 25.50               |   | В       | 0       |
|   | MOTA<br>MOTA | 6346<br>6347 | N<br>CA  | VAL<br>VAL |    |            | 100.181            | 15.772           | 32.562<br>32.502 | 1.00 22.72               |   | В       | N       |
|   | ATOM         | 6348         | CB       | VAL        |    |            | 99.834<br>99.892   | 17.184<br>17.723 | 31.080           | 1.00 21.11               |   | B<br>B  | C       |
|   | ATOM         | 6349         |          | VAL        |    |            | 99.114             | 19.026           | 30.969           | 1.00 22.19               |   | В       | Ċ       |
|   | ATOM         | 6350         |          | VAL        |    |            | 101.332            | 17.932           | 30.703           | 1.00 22.72               |   | В       | Ċ       |
|   | ATOM         | 6351         | c        | VAL        |    |            |                    | 17.378           |                  | 1.00 21.67               |   | В       | č       |
|   | ATOM         | 6352         | 0        | VAL        |    |            | 98.231             | 18.220           | 33.923           | 1.00 22.83               |   | В       | ō       |
|   | ATOM         | 6353         | N        | GLN        | В  | 356        | 97.466             | 16.587           | 32.622           | 1.00 20.18               |   | В       | N       |
|   | MOTA         | 6354         | CA       | GLN        | В  | 356        | 96.134             | 16.735           | 33.150           | 1.00 18.80               |   | В       | С       |
|   | ATOM         | 6355         | CB       | GLN        | В  | 356        | 95.179             | 15.792           | 32.449           | 1.00 18.52               | : | В       | С       |
|   | MOTA         | 6356         | CG       | GLN        |    |            | 94.844             | 16.277           | 31.090           | 1.00 20.04               | : | В       | C       |
|   | MOTA         | 6357         | CD       | GLN        |    |            | 93.867             | 15.401           | 30.346           | 1.00 22.08               | • | В       | С       |
|   | MOTA         | 6358         |          | GLN        |    |            | 94.254             | 14.437           | 29.679           | 1.00 22.27               |   | В       | 0       |
|   | ATOM         | 6359         |          | GLN        |    |            | 92.584             | 15.727           | 30.459           | 1.00 21.73               |   | В       | N       |
|   | ATOM         | 6360         | C        | GLN        |    |            | 96.069             | 16.515           | 34.649           | 1.00 18.78               |   | В       | C       |
|   | MOTA         | 6361         | 0        | GLN        |    |            | 95.506             | 17.329           | 35.360           | 1.00 20.56               |   | В       | 0       |
|   | ATOM         | 6362         | N        | ARG        |    |            | 96.666             | 15.443           | 35.152           | 1.00 20.09               |   | В       | N       |
|   | ATOM         | 6363         | ÇA       | ARG        |    |            | 96.602             | 15.172           | 36.590           | 1.00 19.73               |   | В       | C       |
|   | ATOM         | 6364         | CB       | ARG        |    |            | 97.221             | 13.819           | 36.903           | 1.00 19.64               |   | В       | C       |
|   | ATOM         | 6365         | CG       | ARG        |    |            | 97.095             | 13.410           | 38.355           | 1.00 19.66               |   | В       | C       |
|   | ATOM         | 6366         | CD       | ARG<br>ARG |    |            | 98.197<br>99.459   | 12,442           | 38.710           | 1.00 18.65               |   | В       | C       |
|   | ATOM<br>ATOM | 6367<br>6368 | NE<br>CZ | ARG        |    |            | 99.459             | 13.137<br>13.919 | 38.594<br>39.544 | 1.00 19.20               |   | В.      | N<br>.C |
|   | ATOM         | 6369         |          | ARG        |    |            | 101.115            | 14.546           | 39.358           | 1.00 21.64               |   | в.<br>В | N       |
|   | ATOM         | 6370         |          | ARG        |    |            | 99.295             | 14:040           | 40.696           | 1.00 22.89               |   | B       | Ŋ       |
|   | ATOM         | 6371         | C        | ARG        |    |            | 97.275             | 16.205           | 37.483           | 1.00 21.42               |   | В       | Ċ       |
|   |              |              | -        |            | _  |            |                    |                  |                  | 2,77 24172               |   | -       | -       |

Figure 3

|      |      |     |      |   |     |         |        |         |       |       | _   | _   |
|------|------|-----|------|---|-----|---------|--------|---------|-------|-------|-----|-----|
| ATOM | 6372 | 0   | ARG  |   |     | 96.735  | 16.588 | 38.513  |       | 21.18 | В   |     |
| ATOM | 6373 | N   | TYR  | В | 358 | 98.468  | 16.628 | 37.108  |       | 22.29 | В   | N   |
| ATOM | 6374 | CA  | TYR  | В | 358 | 99.184  | 17.591 | 37.909  | 1.00  | 24.34 | В   | С   |
| ATOM | 6375 | СВ  | TYR  | В | 358 | 100.525 | 17.887 | 37.295  | 1.00  | 25.29 | В   | C   |
| ATOM | 6376 | CG  | TYR  | В | 358 | 101.232 | 19.073 | 37.900  | 1.00  | 27.17 | В   | С   |
| ATOM | 6377 | CD1 |      |   |     | 101.255 | 20.307 | 37.249  |       | 28.53 | В   |     |
|      |      |     | TYR  |   |     | 102.047 | 21.343 | 37.719  |       | 28.98 | В   |     |
| ATOM | 6378 |     |      |   |     |         |        |         |       |       |     |     |
| ATOM | 6379 | CD2 |      |   |     | 101.998 | 18.918 | 39.053  |       | 28.26 | B   |     |
| ATOM | 6380 | CE2 |      |   |     | 102.795 | 19.946 | 39.535  |       | 28.43 | В   |     |
| ATOM | 6381 | CZ  | TYR  | В | 358 | 102.828 | 21.152 | 38.856  | 1.00  | 29.15 | В   | C   |
| ATOM | 6382 | OH  | TYR  | В | 358 | 103.716 | 22.133 | 39.243  | 1.00  | 29.63 | В   | 0   |
| ATOM | 6383 | C   | TYR  | В | 358 | 98.504  | 18.910 | 38.099  | 1.00  | 25.55 | В   | С   |
| ATOM | 6384 | 0   | TYR  | В | 358 | 98.390  | 19.407 | 39.223  | 1.00  | 25.62 | В   | 0   |
| ATOM | 6385 | N   | ILE  |   |     | 98.083  | 19.509 | 36.996  |       | 24.64 | В   |     |
| ATOM | 6386 | CA  | ILE  |   |     | 97.471  | 20.821 | 37.082  |       | 25.41 | В   |     |
|      |      |     | ILE  |   |     | 97.471  |        | 35.733  |       | 22.79 | В   |     |
| ATOM | 6387 | CB  |      |   |     |         | 21.526 |         |       |       |     |     |
| MOTA | 6388 |     | ILE  |   |     | 98.779  | 21.250 | 35.030  |       | 23.04 | . B |     |
| ATOM | 6389 |     | ILE  |   |     | 96.323  | 21.063 | 34.875  |       | 20.61 | В   |     |
| ATOM | 6390 | CD1 | ILE  | В | 359 | 96.393  | 21.620 | 33.479  | 1.00  | 18.60 | В   |     |
| ATOM | 6391 | С   | ILE  | В | 359 | 96.083  | 20.827 | 37.662  | 1.00  | 27.76 | В   | C   |
| ATOM | 6392 | 0   | ILE  | В | 359 | 95.675  | 21.795 | 38.299  | 1.00  | 29.12 | В   | . 0 |
| ATOM | 6393 | N   | ASP  |   |     | 95.338  | 19.761 | 37.449  | 1.00  | 27.84 | В   | N   |
| ATOM | 6394 | CA  | ASP  |   |     | 94.022  | 19.724 | 38.042  |       | 29.50 | В   |     |
| ATOM | 6395 | СВ  | ASP  |   |     | 94.133  | 19.555 | 39.545  |       | 31.21 | В   |     |
|      |      |     |      |   |     |         |        |         |       |       |     |     |
| ATOM | 6396 | CG  | ASP  |   |     | 92.799  | 19.472 | 40.182  |       | 35.40 | В   | C   |
| ATOM | 6397 |     | ASP  |   |     | 92.723  | 19.539 | 41.444  |       | 33.66 | В   |     |
| ATOM | 6398 | OD2 | ASP  | В | 360 | 91.818  | 19.332 | 39.388  |       | 38.10 | В   |     |
| MOTA | 6399 | С   | ASP  | В | 360 | 93.193  | 20.961 | 37.790  | 1:.00 | 27.99 | В   | С   |
| ATOM | 6400 | 0   | ASP  | В | 360 | 93.007  | 21.791 | 38.681  | .1.00 | 28.65 | В   | 0   |
| MOTA | 6401 | N   | LEU  | В | 361 | 92.644  | 21.061 | 36.598  | 1.00  | 29.67 | В   | N   |
| ATOM | 6402 | CA  | LEU  |   |     | 91.837  | 22,221 |         |       | 29.28 | В   | С   |
| ATOM | 6403 | CB  | LEU  |   |     | 91.571  | 22.204 |         |       | 27.03 | В   |     |
|      | 6404 | CG  | LEU  | _ |     | 92.491  | 23.160 |         |       | 27.15 | В   |     |
| ATOM |      |     |      |   |     |         |        |         |       |       |     |     |
| ATOM | 6405 |     | LEU  |   |     | 93.918  | 23.120 |         |       | 25.92 | В   |     |
| ATOM | 6406 |     | LEU  |   |     | 92.409  | 22.785 |         |       | 28.75 | В   |     |
| ATOM | 6407 | С   | LEU  | В | 361 | 90.528  | 22.431 | 37.021  | 1.00  | 29.93 | В   | С   |
| ATOM | 6408 | 0   | LEU  | В | 361 | 90.150  | 23.566 | :37.294 | ~1.00 | 30.77 | В   | 0   |
| ATOM | 6409 | N   | LEU  | В | 362 | 89.838  | 21.353 | ~37.364 | 1.00  | 29.09 | В   | N   |
| ATOM | 6410 | CA  | LEU  |   |     | 88.587  | 21.508 |         | 1.00  | 27.39 | В   | C   |
| ATOM | 6411 | СВ  | LEU  |   |     | 87.450  | 20.960 | 37.221  |       | 23,92 | В   |     |
| ATOM | 6412 | CG  | LEU  |   |     | 87.488  | 21.643 | 35.850  |       | 23.09 | В   |     |
|      |      |     |      |   |     |         |        |         |       |       |     |     |
| ATOM | 6413 |     | LEU  |   |     | 86.387  | 21.131 | 34.958  |       | 21.33 | В   |     |
| ATOM | 6414 |     | LEU  |   |     | 87.356  | 23.134 | 36.030  |       | 23.43 | В   |     |
| MOTA | 6415 | С   |      |   | 362 | 88.662  | 20.807 | 39.417  |       | 30.19 | В   |     |
| MOTA | 6416 | 0   | LEU  | В | 362 | 88.076  | 19.746 | 39.608  | 1.00  | 31.38 | В   | 0   |
| MOTA | 6417 | N   | PRO  | В | 363 | 89.370  | 21.415 | 40.382  | 1.00  | 30.58 | В   | N   |
| ATOM | 6418 | CD  | PRO  | В | 363 | 89.860  | 22.800 | 40.349  | 1.00  | 30.75 | В   | С   |
| ATOM | 6419 | CA  |      |   | 363 | 89.545  | 20.854 | 41.723  |       | 30.29 | В   |     |
| ATOM | 6420 | СВ  |      |   | 363 | 89.911  | 22.068 | 42.547  |       | 31.22 | В   |     |
|      |      |     |      |   |     |         |        |         |       |       | В   |     |
| MOTA | 6421 | CG  |      |   | 363 | 90.725  | 22.851 | 41.603  |       | 30.67 |     |     |
| MOTA | 6422 | С   |      |   | 363 | 88.324  | 20.132 | 42.240  |       | 31.69 | В   |     |
| ATOM | 6423 | 0   | PRO  | _ | 363 | 88.420  | 19.134 | 42.958  |       | 33.71 | В   |     |
| MOTA | 6424 | N   | THR  | В | 364 | 87.167  | 20.668 | 41.904  | 1.00  | 32.43 | В   |     |
| MOTA | 6425 | CA  | THR  | В | 364 | 85.901  | 20.064 | 42.276  |       | 32.78 | В   |     |
| MOTA | 6426 | CB  | THR  |   |     | 85.089  | 20.974 | 43.174  | 1.00  | 33.76 | В   | C   |
| ATOM | 6427 | OG1 | THR  | В | 364 | 84.362  | 21.908 | 42.378  | 1.00  | 35.03 | В   | 0   |
| ATOM | 6428 |     | THR  |   |     | 86.001  | 21.729 | 44.115  |       | 32.31 | В   |     |
| ATOM | 6429 | C   | THR  |   |     | 85.371  | 20.124 | 40.882  |       | 33.82 | В   |     |
|      |      |     | THR  |   |     | 85.582  |        | 40.196  |       | 37.27 | В   |     |
| MOTA | 6430 | 0   |      |   |     |         | 21.127 |         |       |       |     |     |
| ATOM | 6431 | N   |      |   | 365 | 84.722  | 19.076 | 40.417  |       | 34.56 | В   |     |
| MOTA | 6432 | CA  |      |   | 365 | 84.275  | 19.130 | 39.036  |       | 33.37 | В   |     |
| MOTA | 6433 | CB  | SER  | В | 365 | 83.687  | 17.791 | 38.601  | 1.00  | 34.02 | В   |     |
| MOTA | 6434 | QG  | SER  | В | 365 | 82.600  | 17.419 | 39,423  | 1.00  | 37.89 | В   |     |
| MOTA | 6435 | С   |      |   | 365 | 83.237  | 20.205 | 38.883  | 1.00  | 32.14 | В   | C   |
| ATOM | 6436 | Ō   |      |   | 365 | 83.535  | 21.386 | 38.697  |       | 32.78 | В   | 0   |
| ATOM | 6437 | N   |      |   | 366 | 82.001  | 19:765 | 38.935  |       | 31.62 | В   |     |
| ATOM | 6438 | CA  |      |   | 366 | 80.917  | 20.663 | 38.812  |       | 30.94 | В   |     |
|      |      |     |      |   |     |         | 20.578 | 37.431  |       | 29.91 | В   |     |
| ATOM | 6439 | CB  |      |   | 366 | 80.318  |        |         |       |       |     |     |
| ATOM | 6440 | CG  |      |   | 366 | 80.471  | 21.894 | 36.652  |       | 29.47 | В   |     |
| MOTA | 6441 |     | LEU  |   |     | 81.929  | 22.176 | 36.373  |       | 28.90 | В   |     |
| ATOM | 6442 | CD2 | LEU  | В | 366 | 79.695  | 21.803 | 35.346  |       | 28.22 | В   |     |
| ATOM | 6443 | С   | LEU  | В | 366 | 79.943  | 20.219 | 39.856  | 1.00  | 32,79 | В   |     |
| MOTA | 6444 | 0   |      |   | 366 | 79.870  | 19.054 | 40.216  | 1.00  | 33.64 | В   | 0   |
| ATOM | 6445 | N   |      |   | 367 | 79.184  | 21.160 | 40.383  |       | 33.65 | В   | N   |
| ATOM | 6446 | CD  |      |   | 367 | 79.204  | 22.611 | 40.136  |       | 34.99 | В   |     |
|      | 3,10 | 25  | 2.10 |   | 55, |         |        |         |       |       | -   | -   |

|      |      |     |     |   |      |        | , , , , , , , , , , , , , , , , , , , |         |      |       |   | _  | _   |
|------|------|-----|-----|---|------|--------|---------------------------------------|---------|------|-------|---|----|-----|
| ATOM | 6447 | CA  | PRO | В | 367  | 78.217 | 20.805                                | 41.410  | -    | 34.24 |   | В  | С   |
| ATOM | 6448 | CB  | PRO | В | 367  | 77.473 | 22.111                                | 41.617  | 1.00 | 35.24 |   | В  | С   |
| ATOM | 6449 | CG  | PRO | В | 367  | 78.581 | 23.148                                | 41.400  | 1.00 | 36.37 |   | В  | C   |
| ATOM | 6450 | Ċ   | PRO |   |      | 77.324 | 19.652                                | 40.970  | 1.00 | 34.46 |   | В  | С   |
|      |      |     | PRO |   |      | 76.947 | 19.549                                | 39.802  |      | 35.00 |   | В  | ō   |
| MOTA | 6451 | 0   |     |   |      |        |                                       |         |      |       |   |    |     |
| ATOM | 6452 | N   | HIS |   |      | 77.038 | 18.749                                | 41.898  |      | 35.22 |   | В  | N   |
| ATOM | 6453 | CA  | HIS | В | 368  | 76.155 | 17.618                                | 41.631  |      | 37.51 |   | В  | С   |
| ATOM | 6454 | СВ  | HIS | В | 368  | 76.837 | 16.288                                | 41.915  | 1.00 | 38.53 |   | В  | С   |
| ATOM | 6455 | CG  | HIS |   |      | 77.679 | 15.779                                | 40.790  | 1.00 | 38.03 |   | В  | С   |
|      |      |     | HIS |   |      | 78,992 | 15.949                                | 40.521  |      | 38.80 |   | В  | C   |
| MOTA | 6456 |     |     |   |      |        |                                       |         |      | 38.12 |   |    | N   |
| MOTA | 6457 | ND1 |     |   | 368  | 77.176 | 14.986                                | 39.786  |      |       |   | В  |     |
| ATOM | 6458 | CE1 | HIS | В | 368  | 78.150 | 14.684                                | 38.941  |      | 39.53 |   | В  | С   |
| MOTA | 6459 | NE2 | HIS | В | 368  | 79.259 | 15.257                                | 39.365  | 1.00 | 38.69 |   | В  | N   |
| ATOM | 6460 | С   | HIS | В | 368  | 75.014 | 17.766                                | 42.605  | 1.00 | 39.31 |   | В  | . C |
| ATOM | 6461 | ō   | HIS |   |      | 75.021 | 18.667                                | 43.444  | 1.00 | 38.83 |   | В  | 0   |
|      |      |     |     |   |      | 74.050 | 16.858                                | 42.520  |      | 42.56 |   | В  | N   |
| ATOM | 6462 | N   | ALA |   |      |        |                                       |         |      |       |   |    | Ċ   |
| ATOM | 6463 | CA  | ALA |   |      | 72.893 | 16.897                                | 43.410  |      | 45.35 |   | В  |     |
| ATOM | 6464 | CB  | ALA | В | 369  | 71.972 | 18.027                                | 42.995  |      | 46.72 |   | В  | С   |
| ATOM | 6465 | С   | ALA | В | 369  | 72.119 | 15.586                                | 43.405  | 1.00 | 45.82 |   | В  | С   |
| ATOM | 6466 | 0   | ALA | В | 369  | 71.575 | 15.184                                | 42.379  | 1.00 | 46.68 |   | В  | 0   |
| ATOM | 6467 | N   | VAL |   |      | 72.043 | 14.929                                | 44.553  | 1.00 | 47.03 |   | В  | N   |
|      |      |     |     |   |      |        | 13.675                                | 44.595  |      | 48.75 |   | В  | C   |
| MOTA | 6468 | CA  | VAL |   |      | 71.321 |                                       |         |      |       |   |    | Č   |
| MOTA | 6469 | CB  | VAL |   |      | 71.186 | 13.168                                | 46.009  |      | 49.11 |   | В  |     |
| MOTA | 6470 | CG1 | VAL | В | 370  | 72.560 | 12.798                                | 46.527  |      | 49.22 |   | ·B | C   |
| ATOM | 6471 | CG2 | VAL | В | 370  | 70.565 | 14.238                                | 46.873  | 1.00 | 51.71 |   | В  | С   |
| ATOM | 6472 | C   | VAL |   |      | 69.955 | 13.768                                | 43.929  | 1.00 | 50.84 |   | В  | С   |
| ATOM | 6473 | ŏ   | VAL |   |      | 69.309 | 14.817                                | 43.889  |      | 50.00 |   | В  | 0   |
|      |      |     |     | - |      |        |                                       |         |      | 54.27 |   | В  | N   |
| MOTA | 6474 | N   | THR |   |      | 69.541 |                                       | 43.398  |      |       |   |    |     |
| ATOM | 6475 | CA  | THR |   |      | 68.307 |                                       | 42.656  |      | 58.36 |   | В  | С   |
| MOTA | 6476 | CB  | THR | В | 371  | 68.511 | 11.370                                | 41.613  |      | 57.29 |   | В  | С   |
| ATOM | 6477 | OG1 | THR | В | 371  | 68.097 | 11.825                                | ∵40.321 | 1.00 | 58.30 |   | В  | .0  |
| ATOM | 6478 |     | THR |   |      |        | 10.126                                |         | 1.00 | 58.90 |   | В  | С   |
|      |      |     |     |   |      |        | 12.209                                |         |      | 61.81 |   | В  | Č   |
| MOTA | 6479 | C   | THR |   |      |        |                                       |         |      |       |   | В  | ŏ   |
| ATOM | 6480 | 0   | THR |   |      |        | 12.480                                |         |      | 61.94 |   |    |     |
| ATOM | 6481 | N   | CYS | В | 372  | 67.338 | 11.664                                | 44.738  |      | 66.36 |   | В  | N   |
| MOTA | 6482 | CA  | CYS | В | 372  | 66.276 | 11.336                                | 45.700  | 1.00 | 70.81 |   | В  | С   |
| ATOM | 6483 | CB  | CYS | В | 372  | 65.487 | 10.102                                | 45.225  | 1.00 | 72.43 |   | В  | С   |
|      | 6484 | SG  | CYS |   |      |        |                                       | 45.083  | 1.00 | 76.70 |   | В. | s   |
| ATOM |      |     |     |   |      |        |                                       | 47.091  |      | 72.31 |   | В  | Č   |
| ATOM | 6485 | С   | CYS |   |      | 66.864 |                                       |         |      |       |   |    |     |
| ATOM | 6486 | 0   | CYS | В | 372  | 68.072 | 10.879                                |         |      | 73.76 |   | В  | 0   |
| ATOM | 6487 | N   | ASP | В | 373  | 66.039 | 11.066                                | 48.135  | 1.00 | 73.40 |   | В  | N   |
| ATOM | 6488 | CA  | ASP | В | 373  | 66.573 | 10.820                                | 49.485  | 1.00 | 74.50 |   | В  | С   |
| ATOM | 6489 | СВ  | ASP |   |      | 65.433 | 10.745                                |         | 1.00 | 74.83 |   | В  | С   |
|      |      |     |     |   |      | 64.637 | 12.043                                |         |      | 76.03 |   | В  | С   |
| ATOM | 6490 | CG  |     |   | 373. |        |                                       |         |      | 76.38 |   | В  | ŏ   |
| ATOM | 6491 |     | ASP |   |      | 63.941 | 12.386                                |         |      |       |   |    |     |
| MOTA | 6492 | OD2 | ASP | В | 373  | 64.704 | 12.718                                | 51.660  |      | 75.86 |   | В  | 0   |
| MOTA | 6493 | С   | ASP | В | 373  | 67.374 | 9.510                                 | 49.486  | 1.00 | 74.47 |   | В  | С   |
| ATOM | 6494 | 0   | ASP | В | 373  | 66.939 | 8.513                                 | 48.914  | 1.00 | 74.89 |   | В  | 0   |
| ATOM | 6495 | N   | ILE |   | 374  | 68.546 | 9.513                                 |         | 1.00 | 73.54 |   | В  | N   |
|      |      |     |     |   | 374  | 69.359 | 8.303                                 |         |      | 73.51 |   | В  | С   |
| ATOM | 6496 | CA  |     |   |      |        |                                       |         |      | 72.68 |   | В  | Ċ.  |
| ATOM | 6497 | CB  |     |   | 374  | 70.304 | 8.220                                 |         |      |       |   |    |     |
| ATOM | 6498 | CG2 | ILE | В | 374  | 71.308 | 9.368                                 |         |      | 69.86 |   | В  | С   |
| MOTA | 6499 | CG1 | ILE | В | 374  | 71.026 | 6.862                                 | ·48.903 |      | 72.83 |   | В  | С   |
| ATOM | 6500 | CD1 | ILE | В | 374  | 70.085 | 5.647                                 | 48.861  | 1.00 | 72.87 |   | В  | С   |
| MOTA | 6501 | C   | TIE | R | 374  | 70.206 | ·8.153                                | 51.401  | 1.00 | 73.93 |   | В  | С   |
|      | 6502 | ŏ   |     |   | 374  | 70.651 | 9.138                                 |         |      | 74.28 |   | В  | 0   |
| ATOM |      |     |     |   |      | 70.412 |                                       |         |      | 73.55 |   | В  | N   |
| MOTA | 6503 | N   |     |   | 375  |        | 6.907                                 |         |      | 73.14 |   | В  | Č   |
| MOTA | 6504 | CA  |     |   | 375  | 71.219 | 6.612                                 |         |      |       |   |    |     |
| MOTA | 6505 | CB  | LYS | В | 375  | 70.651 | 5.394                                 | 53.743  |      | 74.76 |   | В  | С   |
| ATOM | 6506 | CG  | LYS | В | 375  | 71.274 | 5.148                                 | 55.122  | 1.00 | 75.55 |   | В  | С   |
| ATOM | 6507 | CD  | LVS | R | 375  | 70.206 | 4.922                                 | 56.212  | 1.00 | 76.43 |   | В  | С   |
|      |      |     |     |   |      | 70.233 |                                       |         |      | 77.31 |   | В  | С   |
| ATOM | 6508 | CE  |     |   | 375  |        |                                       |         |      | 77.65 |   | В  | N   |
| ATOM | 6509 | NZ  |     |   | 375  | 69.933 |                                       |         |      |       |   |    |     |
| MOTA | 6510 | C   | LYS | В | 375  | 72.619 |                                       |         |      | 71.80 |   | В  | C   |
| ATOM | 6511 | 0   | LYS | В | 375  | 72.903 | 5.258                                 | 51.935  |      | 72.13 | • | В  | 0   |
| ATOM | 6512 | N   |     |   | 376  | 73.490 |                                       | 52.616  | 1.00 | 69.44 |   | В  | N   |
|      | 6513 |     |     |   |      | 74.843 |                                       |         |      | 66.83 |   | В  | С   |
| MOTA |      | CA  |     |   | 376  |        |                                       |         |      | 64.93 |   | 'B | č   |
| MOTA | 6514 | CB  |     |   | 376  | 75.208 |                                       |         |      |       |   |    | č   |
| MOTA | 6515 | CG  |     |   | 376  | 76.588 |                                       |         |      | 63.16 | • | В  |     |
| ATOM | 6516 | CD1 | PHE | В | 376  | 76.963 |                                       |         |      | 63.22 |   | В  | c   |
| MOTA | 6517 | CD2 | PHE | В | 376  | 77.518 | 9.304                                 | 51.190  |      | 62.33 |   | В  | С   |
| ATOM | 6518 |     | PHE |   |      | 78.252 |                                       |         | 1.00 | 63.21 |   | В  | С   |
|      |      |     |     |   |      | 78.809 |                                       |         |      | 62.26 |   | В  | С   |
| ATOM | 6519 |     | PHE |   |      |        |                                       |         |      | 62.61 |   | В  | · Č |
| ATOM | 6520 | CZ  |     |   | 376  | 79.178 |                                       |         |      |       |   |    | c   |
| ATOM | 6521 | С   | PHE | В | 376  | 75.774 | 7.036                                 | 53.315  | 1.00 | 66.75 |   | В  | L   |
|      |      |     |     |   |      |        |                                       |         |      |       |   |    |     |

| ATOM | 6522 | 0   | PHE  | В  | 376   | 75.837  | 7.923  | 54.163 | 1.00 | 66.50 |   | В | 0 |
|------|------|-----|------|----|-------|---------|--------|--------|------|-------|---|---|---|
| ATOM | 6523 | N   | ARG  |    |       | 76.486  | 5.918  | 53.386 | 1.00 | 66.56 |   | В | N |
|      |      |     |      |    |       |         |        |        |      |       |   | В | c |
| ATOM | 6524 | CA  | ARG  |    | 377   | 77.409  | 5.695  | 54.484 |      | 66.66 |   |   |   |
| MOTA | 6525 | CB  | ARG  | В  | 377   | 78.604  | 6.648  | 54.350 | 1.00 | 65.79 |   | В | С |
| ATOM | 6526 | CG  | ARG  | B  | 377   | 79.419  | 6.481  | 53.051 | 1.00 | 65.17 |   | В | С |
|      |      | CD  | ARG  |    | 377   | 80.599  | 5,519  | 53,206 | 1 00 | 63.83 |   | В | С |
| ATOM | 6527 |     |      |    |       |         |        |        |      |       |   |   |   |
| ATOM | 6528 | NĒ  | ARG  | В  | 377   | 81.875  | 6.215  | 53.414 |      | 60.17 |   | В | N |
| ATOM | 6529 | CZ  | ARG  | В  | 377   | 82.955  | 6.042  | 52.651 | 1.00 | 58.46 |   | В | C |
| ATOM | 6530 |     | ARG  |    | 377   | 82.924  | 5.200  | 51.628 | 1.00 | 56.72 |   | В | N |
|      |      |     |      |    | -     |         | -      |        |      |       |   | В |   |
| ATOM | 6531 | NH2 | ARG  | В  | 377   | 84.070  | 6.707  | 52.910 |      | 56.82 |   |   | N |
| ATOM | 6532 | С   | ARG  | В  | 377   | 76.680  | 5.922  | 55.815 | 1.00 | 67.61 |   | В | C |
| MOTA | 6533 | 0   | ARG  | В  | 377   | 77.282  | 6.370  | 56.792 | 1.00 | 66.26 |   | В | 0 |
|      | 6534 | N   | ASN  |    | 378   | 75.380  | 5.610  | 55.827 |      | 68.43 |   | В | N |
| ATOM |      |     |      |    |       |         |        |        |      | -     |   |   |   |
| ATOM | 6535 | CA  | asn  |    | 378   | 74.527  | 5.756  | 57.015 |      | 70.36 |   | В | Ç |
| MOTA | 6536 | CB  | ASN  | В  | 378   | 75.043  | 4.824  | 58.133 | 1.00 | 73.13 |   | В | С |
| ATOM | 6537 | CG  | ASN  | B  | 378   | 73.987  | 4,500  | 59.218 | 1.00 | 76.47 |   | В | Ç |
|      |      |     |      |    |       | 74.302  | 3.814  | 60.206 | 1 00 | 77.99 |   | В | 0 |
| ATOM | 6538 |     | ASN  |    |       |         |        |        |      |       |   |   |   |
| MOTA | 6539 | ND2 | asn  | В  | 378   | 72.748  | 4.972  | 59.037 |      | 77.44 |   | В | N |
| ATOM | 6540 | С   | ASN  | В  | 378   | 74.519  | 7.225  | 57.486 | 1.00 | 69.43 |   | В | С |
| ATOM | 6541 | Ō   | ASN  |    |       | 74.673  | 7.498  | 58.680 | 1.00 | 69.13 |   | В | 0 |
|      |      |     | TYR  |    |       | 74.339  | 8,169  | 56.556 |      | 68.24 |   | В | N |
| MOTA | 6542 | N   |      |    |       |         |        |        |      |       |   |   |   |
| ATOM | 6543 | CA  | TYR  | В  | 379   | 74.318  | 9.593  | 56.915 |      | 67.10 |   | В | С |
| ATOM | 6544 | CB  | TYR  | В  | 379   | 75.487  | 10.348 | 56,251 | 1.00 | 65.63 |   | В | С |
| ATOM | 6545 | CG  | TYR  | В  | 379   | 76.761  | 10.342 | 57.077 | 1.00 | 65.34 |   | В | C |
|      |      |     |      |    |       |         |        | 56.731 |      | 65.53 |   | В | c |
| ATOM | 6546 |     | TYR  |    |       | 77.847  | 9.524  |        |      |       |   |   |   |
| MOTA | 6547 | CE1 | TYR  | В  | 379   | 79.008  | 9.484  | 57.520 |      | 65.75 |   | В | C |
| MOTA | 6548 | CD2 | TYR  | В  | 379   | 76.866  | 11.120 | 58.230 | 1.00 | 64.24 |   | В | С |
| ATOM | 6549 |     | TYR  |    | •     | 78.013  | 11.087 | 59.020 | 1.00 | 64.92 |   | В | С |
|      |      |     |      |    |       |         |        |        |      |       |   | В | č |
| ATOM | 6550 | CZ  | TYR  | В  | 379   | 79.079  | 10.270 | 58.667 |      | 65.93 |   |   |   |
| MOTA | 6551 | OH  | TYR  | В  | 379   | 80.211  | 10.236 | 59.460 | 1.00 | 66.04 |   | В | 0 |
| ATOM | 6552 | С   |      |    | 379   | 73.000  | 10.307 | 56.615 | 1.00 | 66.78 | • | В | С |
|      |      |     |      |    |       |         | 11.282 | 57.289 |      | 67.86 |   | В | 0 |
| MOTA | 6553 | ,Ο  |      |    |       | 72.646  |        |        |      |       |   |   |   |
| MOTA | 6554 | N   | LEU. | B- | 380   | 72.269  | 9.802  | 55.625 | 1.00 | 66.11 |   | В | N |
| ATOM | 6555 | CA  | LEU  | В  | 380   | -70.986 | 10.380 | 55.218 | 1.00 | 66.42 |   | В | С |
| ATOM | 6556 | CB  | LEU  |    |       | 70.018  | 10.473 | 56.420 | 1.00 | 67.38 |   | В | С |
|      |      |     |      |    |       |         |        | 56.276 |      | 69.09 |   | В | c |
| MOTA | 6557 | CG  | ren. |    |       | 68.655  | 11.191 |        |      |       |   |   |   |
| ATOM | 6558 | CD1 | LEU/ | В  | 380   | 67.843  | 10.547 | 55.159 | 1.00 | 67.54 |   | В | С |
| ATOM | 6559 | CD2 | LEU  | В  | 380   | 67.876  | 11.146 | 57.607 | 1.00 | 69.45 |   | В | С |
|      | 6560 | c   | LEU. |    | 380   | 71.166  | 11.753 | 54.559 | 1.00 | 64.57 |   | В | С |
| ATOM |      |     | ,    | -  |       |         |        |        |      |       |   | В | ō |
| MOTA | 6561 | ο . |      |    | 380 😁 | -71.389 | 12.762 | 55.233 |      | 64.67 |   |   |   |
| ATOM | 6562 | N   | ILE  | В  | 381   | 71.080  | 11.769 | 53.229 | 1.00 | 63.06 |   | В | N |
| MOTA | 6563 | CA  | ILE  | R  | 381   | 71.210  | 12.987 | 52.428 | 1.00 | 60.46 |   | В | С |
|      |      |     |      |    |       |         | 12.879 | 51.409 |      | 58.36 |   | В | С |
| ATOM | 6564 | CB  | ILE  |    |       | 72.391  |        |        |      |       |   |   |   |
| ATOM | 6565 | CG2 | ILE  | В  | 381   | 72.561  | 14.188 | 50.657 |      | 57.52 |   | В | С |
| ATOM | 6566 | CG1 | ILE  | В  | 381   | 73.696  | 12.601 | 52.143 | 1.00 | 57.06 |   | В | С |
| ATOM | 6567 | CD1 | ILE  | R  | 381   | 74.814  | 12,159 | 51.235 | 1,00 | 56.71 |   | В | С |
|      |      |     |      |    |       | 69.898  | 13,189 | 51.658 |      | 59.27 |   | В | С |
| ATOM | 6568 | С   | ILE  |    |       |         |        |        |      |       |   |   |   |
| ATOM | 6569 | 0   | ILE  | В  | 381   | 69.600  | 12.460 | 50.704 |      | 59.80 |   | В | 0 |
| ATOM | 6570 | N   | PRO  | В  | 382   | 69.101  | 14,190 | 52.063 | 1.00 | 57.81 |   | В | N |
| ATOM | 6571 | CD  | PRO  | R  | 382   | 69.456  | 15.198 | 53.077 | 1.00 | 57.70 |   | В | C |
|      |      |     |      |    |       |         | 14.509 | 51.436 |      | 57.56 |   | В | C |
| ATOM | 6572 | CA  | PRO  |    |       | 67.817  |        |        |      |       |   |   | Č |
| ATOM | 6573 | CB  | PRO  | В  | 382   | 67.318  | 15.676 | 52.279 |      | 57.02 |   | В |   |
| ATOM | 6574 | CG  | PRO  | В  | 382   | 68.593  | 16.360 | 52.673 | 1.00 | 58.19 |   | В | С |
| ATOM | 6575 | Ċ   |      |    | .382  | 67.952  | 14.854 | 49.965 | 1.00 | 55.87 |   | В | С |
|      |      |     |      |    |       |         |        | 49.491 | _    | 54.08 |   | В | 0 |
| MOTA | 6576 | 0   |      |    | 382   | 69.046  | 15.137 |        |      |       |   |   |   |
| ATOM | 6577 | N   | LYS  | ₿  | 383   | 66.834  | 14.824 | 49.250 |      | 56.59 |   | В | N |
| ATOM | 6578 | CA  | LYS  | В  | 383   | 66.808  | 15.126 | 47.822 | 1.00 | 57.99 |   | В | С |
| ATOM | 6579 | CB  |      |    | 383   | 65.463  | 14.705 | 47.229 | 1.00 | 59.23 |   | В | C |
|      |      |     |      |    |       |         |        | 45.753 |      | 62.82 |   | В | С |
| MOTA | 6580 | CG  |      | _  | 383   | 65.338  | 15.029 |        |      |       |   |   |   |
| ATOM | 6581 | CD  | LYS  | В  | 383   | 64.026  | 14.531 | 45.144 |      | 65.11 |   | В | C |
| ATOM | 6582 | CE  | LYS  | В  | 383   | 62.835  | 15.366 | 45.598 | 1.00 | 66.33 |   | В | С |
| ATOM | 6583 | NZ  |      |    | 383   | 61.602  | 15.070 | 44.803 | 1.00 | 67.10 |   | В | N |
|      |      |     |      |    |       |         |        | 47.518 |      | 57.17 |   | В | C |
| MOTA | 6584 | С   |      |    | 383   | 67.043  | 16.606 |        |      |       |   |   |   |
| ATOM | 6585 | 0   | LYS  | В  | 383   | 66.431  | 17.473 | 48.131 |      | 59.08 |   | В | 0 |
| ATOM | 6586 | N   | GLY  | В  | 384   | 67.923  | 16.891 | 46.567 | 1.00 | 54.71 |   | В | N |
|      |      | CA  |      |    | 384   | 68.185  | 18.272 | 46.220 | 1.00 | 51.57 |   | В | C |
| ATOM | 6587 |     |      |    |       |         |        |        |      | 49.77 |   | В | Č |
| ATOM | 6588 | С   | GLY  | В  | 384   | 69.497  | 18.834 | 46.728 |      |       |   |   |   |
| MOTA | 6589 | 0   | GLY  | B  | 384   | 70.143  | 19.629 | 46.032 |      | 50.34 |   | В | 0 |
| ATOM | 6590 | N   |      |    | 385   | 69.908  | 18.425 | 47.926 | 1.00 | 47.45 |   | В | N |
|      |      |     |      |    |       |         | 18.916 | 48.497 |      | 44.96 |   | В | C |
| ATOM | 6591 | CA  |      |    | 385   | 71.158  |        |        |      |       |   |   |   |
| MOTA | 6592 | CB  |      |    | 385   | 71.527  | 18.184 | 49.815 |      | 45.73 | ٠ | В | C |
| ATOM | 6593 | OG1 | THR  |    |       | 71.567  | 16.768 | 49.594 | 1.00 | 46.81 |   | В | 0 |
| ATOM | 6594 |     | THR  |    |       | 70.509  | 18.504 | 50.905 | 1.00 | 46.69 |   | В | C |
|      |      |     |      |    |       |         |        | 47.509 |      | 42.58 |   | В | С |
| MOTA | 6595 | C   |      |    | 385   | 72.306  | 18.770 |        |      |       |   |   |   |
| ATOM | 6596 | 0   | THR  | В  | 385   | 72.535  | 17.701 | 46.941 | 1.00 | 42.89 |   | В | 0 |

| MOTA | 6597   | N   | THR   | В | 386 | 73.008   | 19.870 | 47.293   | 1.00  | 38.75 | В  | N   |
|------|--------|-----|-------|---|-----|----------|--------|----------|-------|-------|----|-----|
|      | 6598   | CA  | THR   |   |     | 74.133   | 19.893 | 46.374   | 1.00  |       | В  | c   |
| ATOM |        |     | THR   |   |     | 74.639   | 21.315 | 46.218   |       | 35,22 | В  | Č   |
| ATOM | 6599   | CB  |       |   |     | •        |        |          |       | 36.11 | В  | ŏ   |
| ATOM | 6600   |     | THR   |   |     | 73.567   | 22.144 | 45.751   |       |       |    |     |
| MOTA | 6601   | CG2 | THR   |   |     | 75.782   | 21.363 | 45.243   | 1.00  |       | В  | C   |
| ATOM | 6602   | С   | THR . | В | 386 | 75.264   | 19.006 | 46.870   |       | 33.78 | В  | С   |
| MOTA | 6603   | 0   | THR   | В | 386 | 75.458   | 18.852 | 48.077   | 1.00  | 33.72 | В  | 0   |
| ATOM | 6604   | N   | ILE   | В | 387 | 76.000   | 18.414 | 45.934   | 1.00  | 32.68 | В  | N   |
| ATOM | 6605   | CA  | ILE   |   | 387 | 77.121   | 17.536 | 46.270   | 1.00  | 31.09 | В  | С   |
|      |        | CB  | ILE   |   | 387 | 76.917   | 16.121 | 45.711   |       | 31.44 | В  | С   |
| ATOM | 6606   |     |       |   |     | 78.057   | 15.226 | 46.148   |       | 31.38 | В  | C   |
| ATOM | 6607   |     | ILE   |   |     |          |        |          |       |       | В  | č   |
| ATOM | 6608   |     | ILE   |   |     | 75.590   | 15.553 | 46.196   |       | 32.87 |    |     |
| ATOM | 6609   | CD1 | ILE   | В | 387 | 75.505   | 15.448 | 47.691   |       | 33.98 | В  | С   |
| ATOM | 6610   | С   | ILE   | В | 387 | 78.388   | 18.085 | 45.643   | 1.00  | 29.90 | В  | С   |
| ATOM | 6611   | 0   | ILE   | В | 387 | 78.396   | 18.467 | 44.483   | 1.00  | 29.81 | В  | 0   |
| ATOM | 6612   | N   | LEU   |   |     | 79.466   | 18.119 | 46.394   | 1.00  | 28.61 | В  | N   |
|      | 6613   | CA  | LEU   |   |     | 80.686   | 18,632 | 45.827   |       | 28.48 | В  | С   |
| ATOM |        |     |       |   |     | 81.192   | 19.798 | 46.671   |       | 29.26 | В  | Č   |
| ATOM | 6614   | CB  | LEU   |   |     |          |        |          |       |       | В  | č   |
| ATOM | 6615   | ÇG  | LEU   |   | 388 | 81.139   | 21.202 | 46.052   |       | 30.05 |    |     |
| ATOM | 6616   | CD1 | LEU   | В | 388 | 81.433   | 22.252 | 47.110   |       | 32.12 | B  | C   |
| MOTA | 6617   | CD2 | LEU   | В | 388 | 82.140   | 21.301 | 44.937   |       | 31.58 | В  | С   |
| ATOM | 6618   | C   | LEU   | В | 388 | 81.728   | 17.524 | 45,735   | 1.00  | 28.56 | В  | С   |
| ATOM | 6619   | Ó   | LEU   |   |     | 82.115   | 16.930 | 46.741   | 1.00  | 29.38 | В  | 0   |
| ATOM | 6620   | N   | ILE   |   | 389 | 82.172   | 17.242 | 44.517   | 1.00  | 26.86 | В  | N   |
|      |        |     | ILE   |   |     | 83.151   | 16.199 | 44.300   |       | 24.74 | В  | С   |
| ATOM | 6621   | CA  |       |   |     |          | 15,490 | 42.969   | 1.00  |       | В  | Ċ   |
| ATOM | 6622   | CB  | ILE   |   |     | 82.950   |        |          |       | 26.45 | В  | č   |
| ATOM | 6623   |     | ILE   |   |     | 84.095   | 14.503 | 42.743   |       |       |    |     |
| ATOM | 6624   | CG1 | ILE   | В | 389 | 81.596   | 14.801 | 42.952   | 1.00  | 24.13 | В  | C   |
| ATOM | 6625   | CD1 | ILE   | В | 389 | 81.373   | 13.886 | 44.126   | 1.00  | 21.64 | В. | . С |
| MOTA | 6626   | С   | ILE   | В | 389 | 84.563   | 16.698 | 44.302   | -1.00 | 24.24 | В  | ,C  |
| ATOM | 6627   | Ó   | ILE   |   |     | 84.954   | 17,522 | :43.474: | 1.00  | 25.19 | В  | 0   |
| ATOM | 6628   | N   | SER   |   |     | 85.356   |        | 45.208   |       |       | В  | N   |
|      |        | CA  | SER   |   |     | 86.727   |        | 45.271   |       |       | В  | С   |
| ATOM | 6629   |     |       |   |     | 87.251   | 16.515 | 46.692   |       |       | В  | C   |
| ATOM | 6630   | CB  | SER   |   |     |          |        | 46.706   |       |       | В  | ō   |
| ATOM | 6631   | OG  | SER   |   |     | 88.603   |        |          |       |       |    |     |
| MOTA | 6632   | С   | SER   | В | 390 | 87.670   |        | 44.366   |       |       | В  | C   |
| MOTA | 6633   | 0   | SER   | В | 390 | 88.461   |        | 44.833   |       | 23.30 | В  | 0   |
| ATOM | 6634   | N   | LEU   | В | 391 | 87.606   | 16.125 | 43.075   | .1.00 | 22.57 | В  | N   |
| ATOM | 6635   | CA  | LEU   | В | 391 | 88.501   | 15.475 | 42.140   | 1.00  | 21.67 | В  | С   |
| ATOM | 6636   | СВ  | LEU   |   |     | 88.383   | 16.098 | 40.769   | 1.00  | 18.58 | В  | С   |
|      |        | CG  | LEU   |   |     | 86.954   | 16.010 | 40.281   |       | 16.61 | В  | С   |
| ATOM | 6637   |     |       |   |     | 86.918   | 16.479 | 38.851   |       | 13.19 | В  | C   |
| MOTA | 6638   |     | LEU   |   |     |          |        |          |       | 15.02 | В  | č   |
| ATOM | 6639   |     | LEU   |   |     | 86.436   | 14.590 | 40.419   |       |       | В  | č   |
| ATOM | 6640   | С   | LEU   | В | 391 | 89.939   | 15.603 | 42.583   |       | 23.22 |    |     |
| ATOM | 6641   | 0   | LEU   | В | 391 | 90.715   | 14.667 | 42.433   |       | 23.37 | В  | 0   |
| ATOM | 6642   | N   | THR   | В | 392 | 90.305   | 16.761 | 43.111   |       | 24.12 | В  | N   |
| MOTA | 6643   | CA  | THR   | В | 392 | 91.674   | 16.925 | 43.533   | 1.00  | 26.59 | В  | С   |
| MOTA | 6644   | CB  |       |   | 392 | 91.885   | 18,125 | 44.448   | 1.00  | 28.07 | В  | С   |
| ATOM | 6645   |     | THR   |   |     | 91.542   | 19.327 | 43.758   | 1.00  | 32.35 | В  | 0   |
|      |        |     | THR   |   |     | 93.354   | 18.186 | 44.876   |       | 29.57 | В  | С   |
| ATOM | 6646   |     |       |   |     |          |        | 44.302   |       | 26.92 | В  | С   |
| MOTA | 6647   | C   |       |   | 392 | 92.159   | 15.706 |          |       | 26.38 | В  | ō   |
| ATOM | 6648   | 0   |       |   | 392 | 93.186   | 15.116 | 43.961   |       |       |    | N   |
| ATOM | 6649   | N   | SER   |   |     | 91.414   | 15,332 | 45.334   |       | 26.87 | В  |     |
| ATOM | 6650   | CA  | SER   | В | 393 | . 91.778 | 14,203 | 46.169   |       | 27.79 | В  | C   |
| ATOM | 6651   | CB  | SER   | В | 393 | 90.651   | 13.878 | 47.133   |       | 27.48 | В  | С   |
| ATOM | - 6652 | OG  |       |   | 393 | 89.488   | 13.605 | 46.389   | 1.00  | 29.39 | В  | 0   |
| ATOM | 6653   | c   |       |   | 393 | 92.083   | 12.966 | 45.353   | 1.00  | 27.86 | В  | С   |
|      |        |     |       |   | 393 | 93.009   | 12.210 | 45.657   |       | 30.63 | В  | 0   |
| ATOM | 6654   | 0   |       |   |     |          | 12.740 | 44.313   |       | 25.74 | В  | N   |
| MOTA | 6655   | N   |       |   | 394 | 91.299   |        |          |       | 24.23 | B  | Ċ   |
| MOTA | 6656   | CA  |       |   | 394 | 91.538   | 11.565 | 43.503   |       |       |    |     |
| ATOM | 6657   | CB  |       |   | 394 | 90.357   | 11.274 | 42.590   |       | 22.73 | В  | C   |
| ATOM | 6658   | CG1 | VAL   | В | 394 | 90.518   | 9.912  | 41.970   |       | 24.14 | В  | C   |
| ATOM | 6659   |     | VAL   |   |     | 89.090   | 11.374 | 43.365   |       | 21.34 | В  | C   |
| ATOM | 6660   | c   |       |   | 394 | 92.793   | 11.772 | 42.658   | 1.00  | 25.05 | В  | C   |
|      | 6661   | ō   |       |   | 394 | 93.678   | 10.926 |          |       | 25.29 | В  | 0   |
| MOTA |        |     |       |   |     | 92.876   | 12.909 | 41.984   |       | 24.36 | В  | N   |
| MOTA | 6662   | N   |       |   | 395 |          |        | 41.145   |       | 24.09 | В  | Ċ   |
| MOTA | 6663   | CA  |       |   | 395 | 94.016   |        | _        |       | 25.76 | В  | Č   |
| MOTA | 6664   | CB  |       |   | 395 | 93.767   |        | 40.277   |       |       |    |     |
| MOTA | 6665   | CG  |       |   | 395 | 93.259   |        |          | 1.00  | 28.65 | В  | C   |
| ATOM | 6666   | CD1 | LEU   | В | 395 | 91.761   |        | 38.894   |       | 30.05 | В  | C   |
| ATOM | 6667   |     | LEU   |   |     | 93.619   |        | 38.034   |       | 29.58 | В  | С   |
| ATOM | 6668   | c   |       |   | 395 | 95.312   | 13.415 | 41.870   | 1.00  | 23.29 | В  | С   |
| ATOM | 6669   | õ   |       |   | 395 | 96.369   |        |          |       | 22.34 | В  | 0   |
|      | 6670   |     |       |   |     | 95.257   |        |          |       | 24.47 | В  | N   |
| ATOM |        | N   |       |   | 396 |          |        |          |       | 27.20 | В  | С   |
| MOTA | 6671   | CA  | HIS   | В | 396 | 96.484   | 10.017 |          | 1.00  | 220   | _  | -   |

| ATOM   | 6672 | CB  | HIS | В | 396 | 96.526    | 15.254 | 44.395 | 1.00 | 27.12  | В   | C |
|--------|------|-----|-----|---|-----|-----------|--------|--------|------|--------|-----|---|
| MOTA   | 6673 | CG  | HIS | R | 396 | 96.838    | 16.255 | 43.326 |      | 28.04  | В   | Č |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| MOTA   | 6674 |     | HIS |   | 396 | 96.227    | 16.523 | 42.148 |      | 28.29  | В   | С |
| ATOM   | 6675 | ND1 | HIS | В | 396 | 97.909    | 17.117 | 43.403 | 1.00 | 29.30  | В   | N |
| ATOM   | 6676 | CE1 | HIS | В | 396 | 97.945    | 17.875 | 42.322 | 1.00 | 28.87  | В   | С |
| MOTA   | 6677 |     | HIS |   | 396 | 96.936    | 17.534 | 41.542 |      | 28.53  | В   |   |
|        |      |     |     |   |     |           |        |        |      |        |     | N |
| ATOM   | 6678 | C,  | HIS |   |     | 96.640    | 12.849 | 45.021 | 1.00 | 29.38  | В   | С |
| MOTA   | 6679 | 0   | HIS | В | 396 | 97.389    | 13.100 | 45.958 | 1.00 | 30.46  | В   | 0 |
| ATOM   | 6680 | N   | ASP | В | 397 | 95.941    | 11,727 | 44.927 | 1.00 | 32.68  | В   | N |
|        | 6681 |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   |      | CA  | ASP |   |     | 96.016    | 10.739 | 45.987 | 1.00 | 35.48  | , В | С |
| MOTA   | 6682 | СB  | ASP | В | 397 | 95.371    | 9.434  | 45.556 | 1.00 | 36.01  | В   | С |
| ATOM   | 6683 | CG  | ASP | В | 397 | 95.252    | 8.472  | 46.699 | 1.00 | 38.58  | В   | С |
| MOTA   | 6684 | OD1 | ASP | В | 397 | 96.307    | 8.037  | 47.202 | 1 00 | 38.21  | В   | 0 |
| ATOM   | 66B5 |     | ASP |   | -   |           |        |        |      |        |     |   |
|        |      |     |     |   |     | 94.108    | 8.182  | 47.126 |      | 40.77  | В   | 0 |
| ATOM   | 6686 | С   | ASP |   |     | 97.448    | 10.484 | 46.447 | 1.00 | 37.62  | В   | С |
| MOTA   | 6687 | 0   | ASP | В | 397 | 98.314    | 10.098 | 45.669 | 1.00 | 38,00  | В   | 0 |
| ATOM   | 6688 | N   | ASN | В | 398 | 97.683    | 10.679 | 47.737 | 1.00 | 41.41  | В   | N |
| ATOM   | 6689 | CA  | ASN |   |     | 99.020    | 10.526 | 48.295 |      | 44.81  | В   | c |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6690 | CB  | ASN |   |     | 98.993    | 10.828 | 49.797 | 1.00 | 46.68  | В   | С |
| ATOM   | 6691 | CG  | ASN | В | 398 | 100.151   | 11.718 | 50.215 | 1.00 | 50.23  | В   | С |
| ATOM   | 6692 | OD1 | ASN | В | 398 | 100.037   | 12.558 | 51.127 | 1.00 | 51.64  | В   | 0 |
| ATOM   | 6693 |     | ASN |   |     | 101.288   | 11.536 | 49.540 |      | 48.72  | B   | N |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6694 | C   | ASN |   |     | 99.762    | 9.217  | 48.047 |      | 45.80  | . В | С |
| MOTA   | 6695 | 0   | ASN | ₿ | 398 | 100.994   | 9.211  | 48.013 | 1.00 | 45.72  | В   | 0 |
| ATOM   | 6696 | N   | LYS | В | 399 | 99.014    | 8.128  | 47.86B | 1.00 | 46.72  | В   | N |
| ATOM   | 6697 | CA  | LYS | R | 399 | 99.568    | 6.784  | 47.637 |      | 47.83  | В   | c |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6698 | CB  | LYS |   |     | 98.684    | 5.745  | 48.333 |      | 50.33  | В   | C |
| ATOM   | 6699 | CG  | LYS | В | 399 | 99.132    | 4.321  | 48.121 | 1.00 | 53.77  | В   | С |
| ATOM   | 6700 | CD  | LYS | В | 399 | 98.099    | 3.333  | 48.635 | 1.00 | 56.37  | В   | С |
| ATOM   | 6701 | CE  | LYS |   |     | 98.690    | 1.918  | 48.699 |      | 57.83- | В   | Č |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6702 | NZ  | LYS |   |     | 99.569    | 1.720  | 49.915 |      | 59.13  | В   | N |
| ATOM   | 6703 | Ç   | LYS | В | 399 | 99.693    | 6.408  | 46.151 | 1.00 | 47:31  | ъ В | С |
| ATOM   | 6704 | 0   | LYS | В | 399 | 100.787   | 6.104  | 45.659 | 1000 | 48.23  | ^ в | 0 |
| ATOM   | 6705 | N   | GLU |   |     | 98.561    | 6.408  | 45.451 |      | 44.20  | В   | N |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6706 | CA  | GLU |   |     | 98.532    | 6.080  | 44.031 |      |        | В   | С |
| MOTA   | 6707 | CB  | GLU | В | 400 | 97.132    | 6.296  | 43.460 | 1.00 | 40.70  | В   | С |
| ATOM   | 6708 | CG  | GLU | В | 400 | 96.991    | 5.950  | 41.983 | 1.00 | 40.76  | В   | С |
| MOTA   | 6709 | CD  | GLU |   | 400 | 97.030    | 4.456  | 41,731 |      |        | . В | c |
| ATOM   |      |     |     |   |     |           |        |        |      |        | 4.5 |   |
|        | 6710 |     | GLU |   |     | 97.080    | 4.036  | 40.560 |      | 40.41  | В   | 0 |
| ATOM   | 6711 | OE2 | GLU | В | 400 | 97.004    | 3.689  | 42.713 | 1.00 | 44.81  | " B | 0 |
| ATOM   | 6712 | С   | GLU | В | 400 | . 99.528  | 6.914  | 43.231 | 1.00 | 38.72  | В   | С |
| ATOM · | 6713 | 0   | GLU | R | 400 | 99.946    | 6,506  | 42.159 |      | 39.61  | В   | ō |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| MOTA   | 6714 | N   | PHE |   | 401 | 99.891    | 8.089  | 43.729 |      | 37.19  | В   | N |
| ATOM   | 6715 | CA  | PHE | В | 401 | 100.855   | 8.920  | 43.025 | 1.00 | 35.69  | В   | С |
| ATOM   | 6716 | CB  | PHE | В | 401 | 100.194   | 10.080 | 42.297 | 1.00 | 31.78  | В   | C |
| ATOM   | 6717 | CG  | PHE | В | 401 | 99.129    | 9.689  | 41.320 | 1.00 | 27.99  | . В | С |
| ATOM   | 6718 |     | PHE |   | 401 | 97.801    | 9.958  |        |      | 26.00  |     |   |
|        |      |     |     |   |     |           |        | 41.602 |      |        | В   | С |
| ATOM   | 6719 |     | PHE |   |     | 99.441    | 9.121  | 40.100 |      | 26.66  | В   | С |
| MOTA   | 6720 | CE1 | PHE | В | 401 | 96.795    | 9.681  | 40.689 | 1.00 | 23.12  | В   | С |
| ATOM   | 6721 | CE2 | PHE | В | 401 | 98.426    | 8.839  | 39.178 | 1.00 | 26.25  | В   | С |
| ATOM   | 6722 | CZ  | PHE |   | 401 | 97.104    | 9.123  | 39.489 |      | 24.51  | В   | Č |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| MOTA   | 6723 | С   |     | В | 401 | 101.841   | 9.520  | 44.011 | 1.00 | 39.16  | В   | С |
| ATOM   | 6724 | 0   | PHE | В | 401 | 101.581   | 10.567 | 44.582 | 1.00 | 39.82  | В   | 0 |
| ATOM   | 6725 | N   | PRO | В | 402 | 103.002   | 8.880  | 44.197 | 1.00 | 42.88  | В   | N |
| ATOM   | 6726 | CD  | PRO | В | 402 | 103.481   | 7.814  | 43.303 | 1.00 | 44.32  | В   | С |
| ATOM   | 6727 | CA  |     |   |     |           |        | 45.103 |      | 44.10  | В   | č |
|        |      |     | PRO |   |     | 104.076   | 9.292  |        |      |        |     |   |
| MOTA   | 6728 | CB  | PRO |   |     | 105.315   | 8.939  | 44.320 |      | 45.40  | В   | C |
| MOTA   | 6729 | CG  | PRO | В | 402 | 104.923   | 7.590  | 43.782 | 1.00 | 46.53  | В   | С |
| ATOM   | 6730 | С   | PRO | В | 402 | 104.093   | 10.741 | 45.607 | 1.00 | 46.68  | В   | Ç |
| ATOM   | 6731 | 0   | PRO |   |     | 103.675   | 11.009 | 46.741 |      | 49.69  | В   | Õ |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| MOTA   | 6732 | N   | ASN |   |     | 104.606   | 11.667 | 44.798 |      | 46.36  | В   | N |
| MOTA   | 6733 | CA  | ASN | В | 403 | 104.676   | 13.089 | 45.167 | 1.00 | 46.57  | . В | С |
| ATOM   | 6734 | CB  | ASN | В | 403 | 106.111   | 13.609 | 45.001 | 1.00 | 48.98  | В   | С |
| ATOM   | 6735 | CG  | ASN |   |     | 107.074   | 12,953 | 45.956 |      | 50.51  | В   | ç |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6736 |     | ASN |   |     | 107.010   | 13.179 | 47.165 |      | 52.97  | В   | 0 |
| MOTA   | 6737 | ND2 | ASN | В | 403 | 107.971   | 12.126 | 45.425 |      | 49.45  | В   | N |
| ATOM   | 6738 | С   | ASN | В | 403 | 103.747   | 13.866 | 44.259 | 1.00 | 45.44  | В   | С |
| ATOM   | 6739 | ō   | ASN |   |     | 104.196   | 14.568 | 43.355 |      | 45.43  | В   | ō |
|        |      |     |     |   |     |           |        |        |      |        |     |   |
| ATOM   | 6740 | N   | PRO |   |     | 102.437   | 13,772 | 44.510 |      | 44.08  | В   | N |
| ATOM   | 6741 | CD  | PRO | В | 404 | 101.873   | 13.186 | 45.730 |      | 42.76  | В   | С |
| ATOM   | 6742 | CA  | PRO | В | 404 | . 101.378 | 14.430 | 43.746 | 1.00 | 44.39  | В   | С |
| ATOM   | 6743 | CB  | PRO |   |     | 100.158   | 14.265 | 44.643 |      | 43.37  | В   | С |
| ATOM   | 6744 |     |     |   |     |           | 13.001 | 45.345 |      | 42.10  | В   |   |
|        |      | CG  | PRO |   |     | 100.436   |        |        |      |        |     | C |
| MOTA   | 6745 | С   | PRO |   |     | 101.600   | 15.885 | 43.365 |      | 45.41  | В   | С |
| ATOM   | 6746 | 0   | PRO | В | 404 | 101.075   | 16.341 | 42.360 | 1.00 | 45,66  | В   | 0 |
|        |      |     |     |   |     |           |        |        |      |        |     |   |

|                              |                              |                |       |                                  |                             |                         | •                          |                                        |            |              |
|------------------------------|------------------------------|----------------|-------|----------------------------------|-----------------------------|-------------------------|----------------------------|----------------------------------------|------------|--------------|
| ATOM                         | 6747                         | N              | GLU E | 405                              | 102.377                     | 16.606                  | 44.161                     | 1.00 47.74                             | B N        |              |
| ATOM                         | 6748                         | ÇA             | GLU E | 405                              | 102,621                     | 18.016                  | 43.897.                    | 1.00 50.69                             | в с        |              |
|                              |                              |                |       |                                  |                             |                         |                            | 1.00 54.92                             | ВС         |              |
| ATOM                         | 6749                         | CB             | GLU E |                                  | 102.958                     | 18.728                  | 45.205                     |                                        |            |              |
| ATOM                         | 6750                         | ÇG             | GLU E | 405                              | 101.867                     | 18.568                  | 46.279                     | 1.00 62.07                             | в с        |              |
| ATOM                         | 6751                         | CD             | GLU E | 405                              | 100.595                     | 19,353                  | 45.950                     | 1.00 65.78                             | в с        | · ·          |
|                              |                              |                | GLU E |                                  | 100.556                     | 20.577                  | 46.256                     | 1.00 67.05                             | во         |              |
| ATOM                         | 6752                         |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6753                         | OE2            | GLU E | 405                              | 99.649                      | 18.751                  | 45.375                     | 1.00 67.67                             | ВО         | ' _          |
| ATOM                         | 6754                         | С              | GLU F | 405                              | 103.716                     | 18.276                  | 42.880                     | 1.00 49.86                             | в с        |              |
|                              |                              | ō              | GLU E |                                  | 103.965                     | 19.422                  | 42.496                     | 1.00 50.00                             | ВО         |              |
| ATOM                         | 6755                         |                |       |                                  |                             |                         |                            |                                        |            |              |
| MOTA                         | 6756                         | N              | MET I | 406                              | 104.376                     | 17.216                  | 42.443                     | 1.00 49.20                             | B N        |              |
| ATOM                         | 6757                         | CA             | MET F | 406                              | 105.451                     | 17.363                  | 41.479                     | 1.00 49.59                             | ВС         | •            |
| ATOM                         | 6758                         | CB             | MET E |                                  | 106.720                     | 16.726                  | 42.064                     | 1.00 54.31                             | в с        |              |
|                              |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| MOTA                         | 6759                         | CG             | MET E |                                  | 107.219                     | 17.411                  | 43.354                     | 1.00 60.20                             | в с        |              |
| MOTA                         | 6760                         | SD             | MET I | 406                              | 108.734                     | 18.436                  | 43.134                     | 1.00 65.61                             | B S        |              |
| ATOM                         | 6761                         | CE             | MET E | 406                              | 110.045                     | 17.331                  | 43.846                     | 1.00 64.30                             | в с        |              |
|                              |                              |                | MET E |                                  |                             |                         | 40.116                     | 1.00 47.03                             | ВС         |              |
| MOTA                         | 6762                         | С              |       |                                  | 105.080                     | 16.767                  |                            |                                        |            |              |
| ATOM                         | 6763                         | 0              | MET I | 406                              | 104.290                     | 15.828                  | 40.022                     | 1.00 47.49                             | в о        | 1            |
| MOTA                         | 6764                         | N              | PHE E | 407                              | 105.630                     | 17.329                  | 39.051                     | 1.00 43.90                             | B N        |              |
| ATOM                         | 6765                         | CA             | PHE E |                                  | 105.312                     | 16.833                  | 37.719                     | 1.00 40.32                             | в с        | •            |
|                              |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6766                         | CB             | PHE E |                                  | 105.501                     | 17.945                  | 36.693                     | 1.00 36.66                             | . в с      |              |
| ATOM                         | 6767                         | ÇG             | PHE E | 407                              | 105.182                     | 17.531                  | 35.292                     | 1.00 32.03                             | в с        |              |
| ATOM                         | 6768                         | CD1            | PHE E | 407                              | 103.873                     | 17.269                  | 34.915                     | 1.00 32.06                             | в с        |              |
|                              | 6769                         |                | PHE E |                                  | 106.183                     | 17.410                  | 34.345                     | 1.00 30.34                             | в с        |              |
| ATOM                         |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6770                         | CEI            | PHE E | 407                              | 103.556                     | 16.890                  | 33.608                     | 1.00 29.62                             | в с        |              |
| ATOM                         | 6771                         | CE2            | PHE E | 407                              | 105.883                     | 17.029                  | 33.030                     | 1.00 29.33                             | в с        |              |
| MOTA                         | 6772                         | CZ             | PHE E | 407                              | 104.564                     | 16.771                  | 32.666                     | 1.00 28.28                             | в с        |              |
|                              |                              |                |       |                                  |                             |                         |                            | 1.00 40.18                             |            |              |
| ATOM                         | 6773                         | С              | PHE I |                                  | 106.202                     | 15.665                  | 37.342                     |                                        |            |              |
| ATOM                         | 6774                         | 0              | PHE E | 3 407                            | 107.410                     | 15.828                  | 37.193                     | 1.00 40.78                             | B 10       |              |
| MOTA                         | 6775                         | N              | ASP F | 408                              | 105.633                     | 14.491                  | 37.176                     | 1.00 39.42                             | B N        | ·            |
|                              | 6776                         | CA             | ASP E |                                  | 106.474                     | 13.356                  | 36.798                     | 1.00 38.59                             | в "С       |              |
| MOTA                         |                              |                |       |                                  |                             |                         |                            |                                        | - ,,       |              |
| ATOM                         | 6777                         | CB             | ASP I | 408                              | 106.989                     | 12.647                  | 38.054                     | 1.00 39.88                             | B C        |              |
| ATOM                         | 6778                         | CG             | ASP I | 408                              | 107.994                     | 11.539                  | 37.755                     | 1.00 42.25                             | B FC       | 병 등을 살아 그는 그 |
| ATOM                         | 6779                         |                | ASP I | 408                              | 108.523                     | 10.961                  | 38.742                     | 1.00 42.50                             | в о        | 九 (0) 前 (1)  |
|                              |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6780                         | OD2            | ASP I | 408                              | 108.257                     | 11.244                  | 36.562                     | 1.00 42.88                             | в О        | * 1.0* * 37  |
| MOTA                         | 6781                         | С              | ASP I | 408                              | 105.723                     | 12.388                  | 35.917                     | 1.00 37.04                             | B ⁺C       |              |
| ATOM                         | 6782                         | 0              | ASP I | 408                              | 104.778                     | 11.752                  | .36.356                    | 1.00 36.40                             | в о        | 逐 接到 植绿色     |
|                              |                              | • "            |       |                                  |                             |                         |                            | 1.00 35.17                             | B N        |              |
| MOTA                         | 6783                         | N              | PRO E |                                  | 106.125                     | 12.287                  | 34.646                     |                                        | D - N      |              |
| MOTA                         | 6784                         | CD             | PRO E | 3 409                            | 107.174                     | 13.109                  | 34.027                     | 1.00 36.46                             |            |              |
| ATOM                         | 6785                         | CA.            | PRO F | 409                              | 105.519                     | 11.403                  | 33.656                     | 1.00 36.39                             | в с        | ** D         |
| ATOM                         | 6786                         | СВ             | PRO E |                                  | 106.438                     | 11.550                  | 32.452                     | 1.00 35.98                             | в с        |              |
|                              |                              |                |       |                                  |                             |                         |                            |                                        |            | •            |
| MOTA                         | 6787                         | CG             | PRO E |                                  | 106.891                     | 12.946                  | 32.550                     | 1.00 36.05                             | в с        |              |
| ATOM                         | 6788                         | Ç              | PRO I | 409                              | 105.501                     | 9.979                   | 34.166                     | 1.00 35.87                             | в с        |              |
| ATOM                         | 6789                         | 0              | PRO E | 409                              | 104.602                     | 9.192                   | 33.838                     | 1.00 36.12                             | в о        | <b>)</b>     |
|                              |                              |                |       |                                  |                             |                         | 34.982                     | 1.00 37.10                             | B N        |              |
| MOTA                         | 6790                         | N              | HIS E |                                  | 106.493                     | 9.644                   |                            |                                        |            |              |
| ATOM                         | 6791                         | CA             | HIS E | 3 410                            | 106.582                     | 8,289                   | 35.506                     | 1.00 37.05                             | вс         |              |
| ATOM                         | 6792                         | CB             | HIS H | 410                              | 107.913                     | 8.090                   | 36,260                     | 1.00 38.51                             | в с        |              |
| MOTA                         | 6793                         | CG             | HIS E |                                  | 109.129                     | 8.305                   | 35.408                     | 1.00 41.16                             | в с        | !            |
|                              |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| MOTA                         | 6794                         |                | HIS F |                                  | 110.205                     | 9.112                   | 35.572                     | 1.00 41.99                             | вс         |              |
| MOTA                         | 6795                         | ND1            | HIS E | 3 410                            | 109.305                     | 7.678                   | 34.187                     | 1.00 41.77                             | B N        |              |
| ATOM                         | 6796                         | CE1            | HIS I | 410                              | 110.431                     | 8.101                   | 33.639                     | 1.00 42.56                             | вс         | :            |
|                              | 6797                         |                | HIS I |                                  | 110.997                     | B.973                   | 34.458                     | 1.00 43.05                             | B N        | •            |
| ATOM                         |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6798                         | С              | HIS I | 3 410                            | 105.380                     | 7.883                   | 36.364                     | 1.00 36.89                             | в с        |              |
| ATOM                         | 6799                         | 0              | HIS I | 3 410                            | 105.268                     | 6.713                   | 36.725                     | 1.00 39.63                             | в о        | 1            |
| MOTA                         | 6800                         | N              | HIS I | 411                              | 104.485                     | 8.827                   | 36.685                     | 1.00 37.10                             | B N        | İ            |
|                              | 6801                         | CA             | HIS I |                                  | 103.264                     | 8.502                   | 37.463                     | 1.00 35.36                             | ВС         |              |
| ATOM                         |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6802                         | ÇВ             | HIS I | 3 411                            | 102.477                     | 9.756                   | 37.868                     | 1.00 36.31                             | ВС         |              |
| ATOM                         | 6803                         | CG             | HIS I | 3 411                            | 103.025                     | 10.460                  | 39.068                     | 1.00 37.20                             | в с        | ;            |
| MOTA                         | 6804                         |                | HIS I |                                  | 103.509                     | 11.718                  | 39.224                     | 1.00 37.39                             | в с        | !            |
|                              |                              |                |       |                                  |                             |                         | 40.293                     |                                        | ви         |              |
| MOTA                         | 6805                         |                | HIS I |                                  | 103.151                     | 9.846                   |                            | 1.00 37.32                             |            |              |
| ATOM                         | 6806                         | CE1            | HIS I | 3 411                            | 103.694                     | 10.691                  | 41,157                     | 1.00 37.63                             | в с        |              |
| ATOM                         | 6807                         | NE2            | HIS I | 411                              | 103.920                     | 11.830                  | 40.532                     | 1.00 37.46                             | B N        | !            |
|                              | 6808                         | C              | HIS   |                                  | 102.349                     | 7.665                   | 36.581                     | 1.00 34.23                             | ВС         |              |
| ATOM                         |                              |                |       |                                  |                             |                         |                            |                                        |            |              |
| ATOM                         | 6809                         | 0              | HIS I |                                  | 101.355                     | 7.104                   | 37.042                     | 1.00 34.68                             | ВО         |              |
| MOTA                         | 6810                         | N              | PHE I | 3 412                            | 102.658                     | 7.621                   | 35.294                     | 1.00 33.92                             | B N        | İ            |
| ATOM                         | 6811                         | CA             | PHE I |                                  | 101.846                     | 6.833                   | 34.389                     | 1.00 34.87                             | вс         | :            |
|                              |                              |                |       |                                  |                             |                         | 33.489                     |                                        | ВС         |              |
| ATOM                         | 6812                         | CB             | PHE I |                                  | 101.010                     | 7.745                   |                            | 1.00 32.27                             |            |              |
| ATOM                         | 6813                         | CG             | PHE I | 412                              | 99.878                      | 8.407                   | 34.207                     | 1.00 30.45                             | в с        |              |
| ATOM                         | 6814                         |                | PHE I | 412                              | 100.067                     | 9.605                   | 34.872                     | 1.00 30.54                             | вс         |              |
| ATOM                         |                              |                | PHE I |                                  | 98.629                      | 7.799                   | 34.259                     | 1.00 31.22                             | ВС         |              |
|                              |                              |                |       |                                  |                             | 10.194                  |                            |                                        |            |              |
|                              | 6815                         |                |       |                                  |                             | 10.144                  | 35.587                     | 1.00 31.98                             | вс         |              |
| ATOM                         | 6816                         |                |       | 3 412                            | 99.027                      |                         |                            |                                        |            |              |
|                              |                              |                | PHE I |                                  | 97.575                      | 8.377                   | 34.972                     | 1.00 31.68                             | в с        |              |
| ATOM<br>ATOM                 | 6816<br>6817                 | CE2            | PHE I | 412                              | 97.575                      | 8.377                   | 34.972                     | 1.00 31.68                             |            | :            |
| ATOM<br>ATOM<br>ATOM         | 6816<br>6817<br>6818         | CE2<br>CZ      | PHE I | 3 412<br>3 412                   | 97.575<br>97.778            | 8.377<br>9.575          | 34.972<br>35.636           | 1.00 31.68<br>1.00 32.07               | в с        |              |
| ATOM<br>ATOM<br>ATOM<br>ATOM | 6816<br>6817<br>6818<br>6819 | CE2<br>CZ<br>C | PHE I | 3 412<br>3 412<br>3 412          | 97.575<br>97.778<br>102.712 | 8.377<br>9.575<br>5.882 | 34.972<br>35.636<br>33.575 | 1.00 31.68<br>1.00 32.07<br>1.00 37.26 | в с<br>в с |              |
| ATOM<br>ATOM<br>ATOM         | 6816<br>6817<br>6818         | CE2<br>CZ      | PHE I | 3 412<br>3 412<br>3 412<br>3 412 | 97.575<br>97.778            | 8.377<br>9.575          | 34.972<br>35.636           | 1.00 31.68<br>1.00 32.07               | в с        | :<br>:<br>:  |

## Figure 3

| ATOM 6822<br>ATOM 6823<br>ATOM 6824<br>ATOM 6825 | CA<br>CB<br>CG | LEU<br>LEU |   | 413<br>413 | 104.680<br>105.935 | 4.439  | 33.616 | 1.00 39.74<br>1.00 36.34 | В | С   |
|--------------------------------------------------|----------------|------------|---|------------|--------------------|--------|--------|--------------------------|---|-----|
| ATOM 6824                                        |                | LEU        | В | 413        | 105 025            |        |        |                          |   | _   |
| ATOM 6824                                        |                |            |   |            |                    | 5.168  | 33.147 |                          | В | С   |
|                                                  |                | LEU        |   | 413        | 105.719            | 6.193  | 32.052 | 1.00 32.05               | В | c   |
| A104 0025                                        |                | LEU        |   |            | 107.067            |        |        |                          |   |     |
| 3 move 6006                                      |                |            |   |            |                    | 6.614  | 31.494 | 1.00 30.98               | В | C   |
| ATOM 6826                                        |                | LEU        |   | 413        | 104.857            | 5.598  | 30.954 | 1.00 29.95               | В | С   |
| ATOM 6827                                        | C              |            |   | 413        | 105.093            | 3.301  | 34.561 | 1.00 42.69               | В | С   |
| ATOM 6828                                        | 0              |            |   | 413        | 105.160            | 3.460  | 35.789 | 1.00 42.52               | В | 0   |
| ATOM 6829                                        | N              | ASP        | В | 414        | 105.395            | 2.157  | 33.962 | 1.00 44.11               | В | N   |
| ATOM 6830                                        | CA             | ASP        | В | 414        | 105.823            | 0.998  | 34.713 | 1.00 46.15               | В | C   |
| ATOM 6831                                        | CB             | ASP        | В | 414        | 105.179            | -0.278 | 34.150 | 1.00 43.53               | В | C   |
| ATOM 6832                                        | CG             | ASP        |   | 414        | 105.614            | -0.577 | 32.733 | 1.00 45.66               | В | Č   |
| ATOM 6833                                        |                | ASP        |   |            | 105.011            | -1.468 | 32.092 | 1.00 46.84               | В | ŏ   |
| ATOM 6834                                        |                | ASP        |   |            | 106.568            | 0.071  | 32.249 | 1.00 44.15               | В | ŏ   |
| ATOM 6835                                        | C              | ASP        |   |            | 107.348            |        | 34.638 | 1.00 48.20               |   |     |
|                                                  |                |            |   |            |                    | 0.911  |        |                          | В | C   |
|                                                  | 0              | ASP        |   |            | 107.980            | 1.634  | 33.855 | 1.00 47.88               | В | 0   |
| ATOM 6837                                        | N              | GLU        |   |            | 107.930            | 0.033  | 35.459 | 1.00 49.99               | В | N   |
| ATOM 6838                                        | CA             | GLU        |   | 415        | 109.383            | -0.157 | 35.524 | 1.00 51.46               | В | C   |
| ATOM 6839                                        | CB             | GLŲ        | В | 415        | 109.714            | -1.462 | 36.273 | 1.00 54.49               | В | C   |
| ATOM 6840                                        | CG             | GLU        | В | 415        | 109.199            | -2.762 | 35.622 | 1.00 58.82               | В | С   |
| ATOM 6841                                        | CD             | GLU        | В | 415        | 107.966            | -3.381 | 36.309 | 1.00 62.79               | В | C   |
| ATOM 6842                                        | OE1            | GLU        | В | 415        | 107.423            | -4.373 | 35.748 | 1.00 65.08               | В | 0   |
| ATOM 6843                                        |                | GLU        |   |            | 107.544            | -2.892 | 37.396 | 1.00 64.19               | В | ō   |
| ATOM 6844                                        | c              | GLU        |   |            | 110.005            | -0.164 | 34.130 | 1.00 50.65               | В | č   |
| ATOM 6845                                        | ŏ              |            |   |            |                    |        |        | 1.00 50.03               |   |     |
|                                                  |                | GLU        |   |            | 111.026            | 0.494  | 33.888 |                          | В | 0   |
| ATOM 6846                                        | N              | GLY        |   |            | 109.388            | -0.911 | 33.215 | 1.00 49.03               | В | N   |
| ATOM 6847                                        | CA             | GLY        |   |            | 109.879            | -0.967 | 31.847 | 1.00 48.23               | В | С   |
| ATOM 6848                                        | C-             | GLY        | В | 416        | 109.786            | 0.449  | 31.310 | 1.00 46.79               | В | С   |
| ATOM 6849                                        | 0              | GLY        | В | 416        | 110.461            | 1.365  | 31.795 | 1.00 48.65               | В | 0   |
| ATOM 6850                                        | N              | GLY        | В | 417        | 108.942            | 0.648  | 30.312 | 1.00 45.19               | В | N   |
| ATOM 6851                                        | CA             | GLY        | В | 417        | 108.782            | 1.983  | 29.782 | 1.00 42.93               | В | С   |
| ATOM 6852                                        | С              | GLY        |   |            | 107.348            | 2.130  | 29.330 | 1.00 41.14               | В | C   |
| ATOM 6853                                        |                | GLY.       |   |            | 106.961            | 3.181  | 28.824 | 1.00 41.52               | В | ŏ   |
| ATOM 6854                                        |                | ASN        |   |            | 106.558            |        |        |                          | В |     |
|                                                  |                |            |   |            |                    | 1.072  | 29.531 | 1.00 40.29               |   | N   |
| ATOM 6855                                        | CA             | ASN        |   |            | 105.144            | 1.027  | 29.118 | 1.00 39.24               | В | C   |
| ATOM 6856                                        |                | ASN        |   |            | 104.576            | -0.398 | 29.243 | 1.00 43.00               | В | С   |
| ATOM 6857                                        |                | ASN        |   |            | 105.472            | -1.467 | 28.623 | 1.00 46.10               | В | С   |
| ATOM 6858                                        | OD1            | ASN        | В | 418        | 106.151            | -2.213 | 29.342 | 1.00 47.85               | В | 0   |
| ATOM 6859                                        | ND2            | ASN        | В | 418        | 105.472            | -1.552 | 27.287 | 1.00 45.04               | В | N   |
| ATOM 6860.                                       | С              | ASN        | В | 418        | 104.165            | 1.957  | 29.848 | 1.00 37.15               | В | C   |
| ATOM 6861                                        | 0              | ASN        | В | 418        | 104.456            | 2.526  | 30.899 | 1.00 37.03               | В | 0   |
| ATOM 6862                                        | N              | PHE        |   |            | 102.968            | 2.068  | 29.287 | 1.00 35.45               | В | N   |
| ATOM 6863                                        | CA             | PHE        |   |            | 101.955            | 2.926  | 29.874 | 1.00 33.04               | В | Ċ   |
| ATOM 6864                                        | CB             | PHE        |   |            |                    |        |        |                          | В | Ċ   |
|                                                  |                |            |   |            | 101.040            | 3.491  | 28.767 | 1.00 32.60               |   |     |
| ATOM 6865                                        | CG             | PHE        |   |            | 99.936             | 4.381  | 29.278 | 1.00 31.06               | В | C   |
| ATOM 6866                                        |                | PHE        |   |            | 100.205            | 5.664  | 29.760 | 1.00 31.12               | В | С   |
| ATOM 6867                                        |                | PHE        |   |            | 98.642             | 3.894  | 29.370 | 1.00 31.80               | В | С   |
| ATOM 6868                                        | CE1            | PHE        | В | 419        | 99.196             | 6.435  | 30.338 | 1.00 30.53               | В | C   |
| ATOM 6869                                        | CE2            | PHE        | В | 419        | 97.633             | 4.652  | 29.943 | 1.00 31.80               | В | С   |
| ATOM 6870                                        | CZ             | PHE        | В | 419        | 97.908             | 5.924  | 30.433 | 1.00 30.82               | В | C.  |
| ATOM 6871                                        | С              | PHE        | В | 419        | 101.135            | 2.227  | 30.959 | 1.00 32.27               | В | С   |
| ATOM 6872                                        | o              | PHE        | В | 419        | 100.612            | 1.116  | 30.770 | 1.00 31.23               | В | ō   |
| ATOM 6873                                        | N              | LYS        |   |            | 101.050            | 2.897  | 32.106 | 1.00 32.22               | В | N   |
| ATOM 6874                                        | CA             | LYS        |   |            | 100.316            | 2.395  | 33.257 | 1.00 32.22               | В | Ċ   |
|                                                  |                | LYS        |   |            |                    |        |        | 1.00 35.83               | В | c   |
|                                                  | CB             |            |   |            | 101.196            | 2.393  | 34.509 |                          |   |     |
| ATOM 6876                                        | CG             | LYS        |   |            | 100.467            | 1.732  | 35.686 | 1.00 42.17               | В | C   |
| ATOM 6877                                        | CD             | LYS        |   |            | 101.418            | 1.095  | 36.682 | 1.00 47.40               | В | С   |
| ATOM 6878                                        | CE             | LYS        |   |            | 101.953            | 2.131  | 37.651 | 1.00 51.22               | В | c · |
| ATOM 6879                                        | NZ             | LYS        | В | 420        | 103.127            | 1.595  | 38.408 | 1.00 54.66               | В | N   |
| ATOM 6880                                        | С              | LYS        | В | 420        | 99.070             | 3.189  | 33.598 | 1.00 31.10               | В | С   |
| ATOM 6881                                        | 0              | LYS        | В | 420        | 99.163             | 4.201  | 34.286 | 1.00 33.12               | В | 0   |
| ATOM 6882                                        | N              | LYS        | В | 421        | 97.905             | 2.734  | 33.164 | 1.00 30.34               | В | N   |
| ATOM 6883                                        | CA             |            |   | 421 -      | 96.672             | 3.443  | 33.492 | 1.00 30.25               | В | Ċ   |
| ATOM 6884                                        | СВ             | LYS        |   |            | 95.459             | 2.734  | 32.872 | 1.00 31,99               | В | č   |
|                                                  |                |            |   |            |                    |        |        | 1.00 34.73               |   |     |
| ATOM 6885                                        | CG             | LYS        |   |            | 95.119             | 1.358  | 33.450 |                          | В | C   |
| ATOM 6886                                        | CD             | LYS        |   |            | 94.142             | 0.625  | 32.515 | 1.00 37.84               | В | С   |
| ATOM 6887                                        | CE             | LYS        |   |            | 93.795             | -0.800 | 32.983 | 1.00 38.53               | В | С   |
| ATOM 6888                                        | NZ             | LYS        |   |            | 93.635             | -1.713 | 31.789 | 1.00 41.32               | В | N   |
| ATOM 6889                                        | С              | LYS        | В | 421        | 96.470             | 3.544  | 34.998 | 1.00 30.00               | В | С   |
| ATOM 6890                                        | 0              | LYS        |   |            | 97.285             | 3.032  | 35.761 | 1.00 31.09               | В | 0   |
| ATOM 6891                                        | N              | SER        |   |            | 95.391             | 4.225  | 35.405 | 1.00 30.83               | В | N   |
| ATOM 6892                                        | CA             | SER        |   |            | 94.989             | 4.389  | 36.820 | 1.00 28.97               | В | Ċ   |
| ATOM 6893                                        | CB             | SER        |   |            | 95.745             | 5.527  | 37.497 | 1.00 26.55               | В | c   |
|                                                  |                |            |   |            |                    |        |        | 1.00 24.90               |   |     |
| ATOM 6894                                        | OG             | SER        |   |            | 95.033             | 5.951  | 38.640 |                          | В | 0   |
| 3 move                                           | С              | SER        | В | 422        | 93.504             | 4.708  | 36.889 | 1.00 30.48               | В | С   |
| ATOM 6895                                        |                |            |   |            |                    |        |        | 1 00 00                  |   | _   |
| ATOM 6895<br>ATOM 6896                           | ŏ              | SER        |   | 422        | 92.978             | 5.407  | 36.024 | 1.00 30.30               | В | 0   |

ができた。 を200 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100 では、100

| ATOM         | 6897         | N        | LYS        | В | 423        | 92.820           | 4.196            | 37.904           | 1.00 32.             | 37  | В      | N      |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|----------------------|-----|--------|--------|
| ATOM         | 6898         | CA       | LYS        |   |            | 91.394           | 4.496            | 38.040           | 1.00 34.             | 89  | В      | С      |
| ATOM         | 6899         | CB       | LYS        |   |            | 90.628           | 3.350            | 38.737           | 1.00 35.             |     | В      | C      |
| MOTA         | 6900         | CG       | LYS        |   |            | 91.266           | 2.788.           | 40.010           | 1.00 37.             |     | В      | C      |
| ATOM         | 6901         | CD       | LYS        |   | 423        | 90.365           | 1.751            | 40.720           | 1.00 38.             |     | B<br>B | C      |
| MOTA         | 6902         | CE<br>NZ | LYS<br>LYS |   | 423<br>423 | 91.027<br>90.147 | 1.170<br>0.281   | 41.997<br>42.831 | 1.00 34.             |     | В      | N      |
| ATOM<br>ATOM | 6903<br>6904 | C        | LYS        |   | 423        | 91.243           | 5.790            | 38.827           | 1.00 35.             |     | Б      | Ċ      |
| ATOM         | 6905         | Ö        | LYS        |   |            | 90.148           | 6.305            | 38.994           | 1.00 36.             |     | В      | 0      |
| ATOM         | 6906         | N        | TYR        |   | 424        | 92.371           | 6.306            | 39.300           | 1.00 34.             | 68  | В      | N      |
| ATOM         | 6907         | CA       | TYR        | В | 424        | 92.412           | 7.545            | 40.051           | 1.00 33.             |     | В      | С      |
| MOTA         | 6908         | CB       | TYR        |   | 424        | 93.597           | 7.531            | 41.011           | 1.00 34.             |     | В      | C      |
| ATOM         | 6909         | CG       | TYR        |   | 424        | 93.394           | 6.657            | 42.219           | 1.00 36.             |     | В      | C      |
| ATOM         | 6910         |          | TYR<br>TYR |   | 424        | 93.288           | 7.216<br>6.429   | 43.485<br>44.605 | 1.00 36.<br>1.00 37. |     | B<br>B | C      |
| ATOM<br>ATOM | 6911<br>6912 |          | TYR        |   | 424        | 93.077<br>93.283 | 5.275            | 42.099           | 1.00 38.             |     | В      | č      |
| ATOM         | 6913         |          | TYR        |   | 424        | 93.069           | 4.476            | 43.218           | 1.00 37.             |     | В      | C      |
| ATOM         | 6914         | CZ       | TYR        |   |            | 92.968           | 5.067            | 44.469           | 1.00 38.             | 08  | В      | С      |
| MOTA         | 6915         | OH       | TYR        | В | 424        | 92.763           | 4.298            | 45.590           | 1.00 39.             |     | В      | 0      |
| MOTA         | 6916         | С        | TYR        |   |            | 92.566           | 8.730            | 39.098           | 1.00 32.             |     | В      | C      |
| ATOM         | 6917         | 0        | TYR        |   |            | 92.901           | 9.829            | 39.523<br>37.813 | 1.00 33.             |     | B<br>B | O<br>N |
| ATOM         | 6918<br>6919 | n<br>Ca  | PHE        |   | 425<br>425 | 92.333<br>92.466 | 8.510<br>9.566   | 36.823           | 1.00 26.             |     | В      | c      |
| ATOM<br>ATOM | 6920         | CB       |            |   | 425        | 93.278           | 9.056            | 35.638           | 1.00 23.             |     | В      | Ċ      |
| ATOM         | 6921         | CG       |            |   | 425        | 93.542           | 10.083           | 34.563           | 1.00 20.             |     | В      | С      |
| MOTA         | 6922         | CD1      | PHE        | В | 425        | 94.505           | 11.071           | 34.734           | 1.00 18.             |     | В      | С      |
| ATOM         | 6923         | CD2      | PHE        |   |            | 92.901           | 9.985            | 33.333           | 1.00 17.             |     | В      | C      |
| ATOM         | 6924         |          | PHE        |   | 425        | 94.840           | 11.939           | 33.683           | 1.00 17.             |     | В      | C      |
| ATOM         | 6925         |          | PHE        |   |            | 93.226           | 10.845           | 32.274           | 1.00 16.<br>1.00 17. |     | B<br>B | C<br>C |
| ATOM         | 6926<br>6927 | CZ<br>C  | PHE        |   | 425<br>425 | 94.196<br>91.094 | 11.816<br>9.976  | 32.452<br>36.345 | 1.00 28.             |     | В      | Ċ      |
| ATOM<br>ATOM | 6928         | Ö        |            |   | 425        | 90.554           | 9.387            | 35.409           | 1,00 29.             |     | В      | ō      |
| ATOM         | 6929         | N        | MET        |   | 426        | 90.509           | 10.982           | 36.973           | 1.00 28.             |     | В      | N      |
| ATOM         | 6930         | CA       |            |   | 426        | 89.196           | 11.403           | 36.515           | 1.00 28.             |     | В      | С      |
| ATOM         | 6931         | CB       | MET        |   | 426        | 88.170           | 11,076           | 37.580           | 1.00 27.             |     | В      | C      |
| MOTA         | 6932         | CG       | MET        |   | 426        |                  | 9.819            | 38.325           | 1.00.27              |     | В      | C      |
| ATOM         | 6933         | SD       |            |   | 426        | 87.520<br>86.255 | 9.790            | 39.860<br>39.442 | 1.00 30.             |     | B<br>B | S<br>C |
| MOTA         | 6934<br>6935 | CE       |            |   | 426<br>426 | 86.255<br>89.123 | 8.578<br>12.894  | 36.200           | 1.00 27              |     | В      | č      |
| ATOM<br>ATOM | 6936         | Ö        |            |   | 426        | 88.082           | 13.488           | 36.391           | 1.00 27              |     | В      | ō      |
| ATOM         | 6937         | N        | PRO        |   | 427        | 90.205           | 13.501           | 35.673           | 1.00 25              |     | В      | N      |
| ATOM         | 6938         | CD       | PRO        | В | 427        | 91.154           | 12.865           | 34.749           | 1.00 25              |     | В .    | С      |
| ATOM         | 6939         | CA       |            |   | 427        | 90.128           | 14.928           | 35.383           | 1.00 22              |     | В      | C      |
| MOTA         | 6940         | CB       |            |   | 427        | 91.351           | 15,168           | 34.530           | 1.00 23              |     | B<br>B | C      |
| MOTA         | 6941         | CG       | PRO        |   | 427<br>427 | 91.384<br>88.837 | 13.960<br>15.251 | 33.717<br>34.657 | 1.00 23              |     | В      | Ċ      |
| ATOM<br>ATOM | 6942<br>6943 | 0        | PRO        |   |            | 88.388           | 16.379           | 34.716           | 1.00 22              |     | В      | ō      |
| ATOM         | 6944         | N        |            |   | 428        | 88.243           | 14.274           | 33.971           | 1.00 20              |     | В      | N      |
| ATOM         | 6945         | CA       | PHE        | В | 428        | 86.966           | 14.515           | 33,310           | 1.00 20              |     | В      | С      |
| MOTA         | 6946         | CB       |            |   | 428        | 86.865           | 13.778           | 31.970           | 1.00 21              |     | В      | C      |
| ATOM         | 6947         | CG       | PHE        |   |            | 88.016           | 14.015           | 31.040           | 1.00 21              |     | В      | C      |
| MOTA         | 6948         |          | PHE        |   |            | 89.068           | 13.120<br>15.130 | 30.981<br>30.212 | 1.00 23<br>1.00 23   |     | B<br>B | c      |
| ATOM<br>ATOM | 6949<br>6950 |          | PHE        |   | 428        | 88.046<br>90.141 | 13.329           | 30.108           | 1.00 26              |     | В      | č      |
| ATOM         | 6951         |          |            |   | 428        | 89.119           | 15.347           | 29,332           | 1.00 22              |     | В      | C      |
| ATOM         | 6952         | CZ       |            |   | 428        | 90.169           | 14.444           | 29.282           | 1.00 23              |     | В      | С      |
| ATOM         | 6953         | С        | PHE        | В | 428        | 85.847           | 13.999           | 34.222           | 1.00 20              |     | В      | С      |
| ATOM         | 6954         | 0        |            |   | 428        | 84.736           | 13.742           | 33.783           | 1.00 20              |     | В      | 0      |
| ATOM         | 6955         | N        |            |   | 429        | 86.146           | 13.850           | 35,502           | 1.00 20<br>1.00 22   |     | B<br>B | N<br>C |
| ATOM         | 6956         | CA       |            |   | 429<br>429 | 85.197<br>83.960 | 13.325<br>14.196 | 36.471<br>36.564 | 1.00 22              |     | В      | č      |
| ATOM<br>ATOM | 6957<br>6958 | CB<br>OG |            |   | 429        | 83.051           | 13.619           | 37.469           | 1.00 21              |     | В      | ō      |
| MOTA         | 6959         | C        |            |   | 429        | 84.789           | 11.909           | 36.118           | 1.00 24              |     | В      | С      |
| ATOM         | 6960         | ŏ        | SER        | В | 429        | 85.455           | 11.235           | 35.333           | 1.00 26              |     | В      | 0      |
| ATOM         | 6961         | N        | ALA        | В | 430        | <b>B3.684</b>    | 11.455           | 36.691           | 1.00 26              |     | В      | N      |
| ATOM         | 6962         | CA       |            |   | 430        | 83.221           | 10.103           | 36.445           | 1.00 29              |     | В      | C      |
| MOTA         | 6963         | CB       |            |   | 430        | 84.009           | 9.150            | 37.307<br>36.725 | 1.00 28<br>1.00 32   |     | B<br>B | C      |
| ATOM         | 6964         | C        |            |   | 430        | 81.735<br>81.099 | 9.955<br>10.866  | 36.725           | 1.00 32              |     | В      | Ö      |
| ATOM<br>ATOM | 6965<br>6966 | O<br>N   |            |   | 430        | 81.174           | 8.807            | 36.373           | 1.00 34              |     | В      | N      |
| ATOM         | 6967         | CA       |            |   | 431        | 79.763           | 8.606            | 36.637           | 1.00 37              |     | В      | С      |
| ATOM         | 6968         | C        |            |   | 431        | 78.832           | 8.904            | 35.479           | 1.00 39              | .79 | В      | C .    |
| ATOM         | 6969         | ō        | GLY        | В | 431        | 79.277           | 9.154            | 34.355           | 1.00 39              |     | В      | 0      |
| ATOM         | 6970         | N        |            |   | 432        | 77.529           | 8.885            | 35.752           | 1.00 41              |     | В      | N      |
| MOTA         | 6971         | CA       | LYS        | В | 432        | 76.546           | 9.143            | 34.706           | 1.00 43              | .17 | В      | С      |

Figure 3

| MOTA | 6972 | CB  | LYS | В | 432 | 75.139 | 8.796    | 35.207 | 1.00 | 44.81 |   | В | С   |
|------|------|-----|-----|---|-----|--------|----------|--------|------|-------|---|---|-----|
| MOTA | 6973 | CG  | LYS | В | 432 | 74.814 | 7.319    | 35.022 | 1.00 | 48.61 |   | В | - C |
| ATOM | 6974 | CD  | LYS | В | 432 | 73.379 | 6.986    | 35.396 | 1.00 | 51.62 |   | В | C   |
| ATOM | 6975 | CE  | LYS | В | 432 | 72.939 | 5.642    | 34.792 | 1.00 | 53.39 |   | В | С   |
| ATOM | 6976 | NZ  | LYS |   |     | 72.928 | 5.657    | 33.283 |      | 54.40 |   | В | N   |
|      | 6977 | c   | LYS |   |     | 76.604 | 10.570   | 34.156 |      | 42.71 |   | В | Ċ   |
| ATOM |      |     |     |   |     |        |          |        |      |       |   |   |     |
| MOTA | 6978 | 0   |     |   | 432 | 76.040 | 10.865   | 33.100 |      | 42.71 |   | В | 0   |
| ATOM | 6979 | N.  |     |   | 433 | 77.323 | 11.442   | 34.860 |      | 42.78 |   | В | N   |
| ATOM | 6980 | CA  | ARG | В | 433 | 77.463 | 12.840   | 34.449 |      | 41.46 |   | В | С   |
| ATOM | 6981 | CB  | ARG | В | 433 | 77.079 | 13.762   | 35.622 | 1.00 | 43.17 |   | В | С   |
| ATOM | 6982 | CG  | ARG | В | 433 | 75.597 | 14.148   | 35.671 | 1.00 | 45.43 |   | В | С   |
| MOTA | 6983 | CD  |     |   | 433 | 75.264 | 15.355   | 34.786 | 1.00 | 46.80 |   | В | С   |
| ATOM | 6984 | NE  |     |   | 433 | 73.843 | 15.691   | 34.847 |      | 48.92 |   | В | N   |
|      | 6985 | CZ  |     |   | 433 | 73.324 | 16.883   | 34.549 |      | 51.22 |   | В | Ċ   |
| MOTA |      |     |     |   |     |        |          |        |      |       |   |   |     |
| ATOM | 6986 |     | ARG |   |     | 74.105 | 17.886   | 34.165 |      | 50.24 |   | В | N   |
| ATOM | 6987 | NH2 | ARG |   |     | 72.008 | 17.066   | 34.625 |      | 52.87 |   | В | N   |
| ATOM | 6988 | С   | ARG | В | 433 | 78.870 | 13.174   | 33.936 | 1.00 | 39.70 |   | В | С   |
| ATOM | 6989 | 0   | ARG | В | 433 | 79.230 | 14.343   | 33.817 | 1.00 | 40.07 |   | В | 0   |
| ATOM | 6990 | N   | ILE | В | 434 | 79.650 | 12.141   | 33.629 | 1.00 | 36.43 |   | В | N   |
| ATOM | 6991 | CA  |     |   | 434 | 81.015 | 12.307   | 33.126 | 1.00 | 33.74 |   | В | С   |
| ATOM | 6992 | СВ  | ILE |   |     | 81.611 | 10,983   | 32.713 |      | 34.82 |   | В | Č   |
|      | 6993 |     | ILE |   |     | 80.910 | 10.483   | 31.465 |      | 35.49 |   | В | č   |
| ATOM |      |     |     |   |     |        |          |        |      |       |   |   |     |
| ATOM | 6994 | CG1 | ILE |   |     | 83.077 | 11.151   | 32.365 |      | 34.75 |   | В | C   |
| ATOM | 6995 | CD1 | ILE | В | 434 | 83.726 | 9.837    | 32.042 |      | 35.41 |   | В | С   |
| ATOM | 6996 | С   | ILE | В | 434 | 81.054 | 13.174   | 31.879 | 1.00 | 31.17 |   | В | С   |
| ATOM | 6997 | 0   | ILE | В | 434 | 80.137 | 13,135   | 31.072 | 1.00 | 31.21 |   | В | 0   |
| ATOM | 6998 | N   | CYS | В | 435 | 82.143 | 13.910   | 31.701 | 1.00 | 27.74 |   | В | N   |
| ATOM | 6999 | CA  |     |   | 435 | 82.264 | 14.781   | 30.545 |      | 26.20 |   | В | С   |
| ATOM | 7000 | CB  |     |   | 435 | 83.665 | 15.335   |        |      | 25.71 | • | В | Ċ   |
|      |      |     |     |   |     | 83.842 | 16.018   | 28.710 |      | 29.11 |   | В | Š   |
| ATOM | 7001 | SG  |     |   | 435 |        |          |        |      |       |   |   |     |
| ATOM | 7002 | С   |     |   | 435 | 81.892 | 14.176   | 29.213 |      | 25.59 |   | В | C   |
| ATOM | 7003 | 0   |     |   | 435 | 82.451 | 13.172   | 28.782 |      | 26.16 |   | В | 0   |
| ATOM | 7004 | N   | VAL | В | 436 | 80.975 | 14.854   | 28.540 | 1.00 | 25.30 |   | В | N   |
| ATOM | 7005 | CA  | VAL | В | 436 | 80.528 | 14.444   | 27.232 | 1.00 | 24.68 |   | В | C   |
| ATOM | 7006 | СВ  | VAL | В | 436 | 79.421 | 15.355   | 26.752 | 1.00 | 22.85 |   | В | С   |
| ATOM | 7007 |     | VAL |   |     | 79.315 | 15.323   | 25.259 |      | 22.21 |   | В | С   |
| ATOM | 7008 |     | VAL |   |     | 78.132 | 14.905   | 27.372 |      | 23.03 |   | В | Ċ   |
|      |      |     |     |   |     |        |          | 26.228 |      | 26.78 |   | В | č   |
| ATOM | 7009 | C   |     |   | 436 | 81.672 | 14.439   |        |      |       |   |   |     |
| MOTA | 7010 | 0   |     |   | 436 | 81.785 | 13.543   | 25.396 |      | 28.82 |   | В | 0   |
| ATOM | 7011 | N   |     |   | 437 | 82.543 | 15.428   | 26.314 |      | 27.44 |   | В | N   |
| MOTA | 7012 | CA  | GLY | В | 437 | 83.658 | 15.477   | 25.389 | 1.00 | 29.21 |   | В | С   |
| ATOM | 7013 | С   | GLY | В | 437 | 84.927 | 14.775   | 25.835 | 1.00 | 30.37 |   | В | С   |
| ATOM | 7014 | 0   | GLY | В | 437 | 86.030 | 15.201   | 25.458 | 1.00 | 31.48 |   | В | 0   |
| ATOM | 7015 | N   |     |   | 438 | 84.804 | 13.709   | 26.625 | 1.00 | 30.25 |   | В | N   |
| ATOM | 7016 | CA  |     |   | 438 | 86.004 | 12.998   | 27.078 |      | 29.95 |   | В | C   |
| MOTA | 7017 | СВ  |     |   | 438 | 85.632 | 11.757   | 27.895 |      | 32.05 |   | В | Č   |
|      |      |     |     |   |     |        |          |        |      | 38.82 |   | В | č   |
| ATOM | 7018 | CG  |     |   | 438 | 86.841 | 11.083   | 28.570 |      |       |   |   | Č   |
| ATOM | 7019 | CD  |     |   | 438 | 86.458 | 9.850    | 29.370 |      | 42.64 |   | В |     |
| ATOM | 7020 |     | GLU |   |     | 87.345 | 9.303    | 30.090 |      | 43.98 |   | В | 0   |
| ATOM | 7021 | OE2 | GLU | В | 438 | 85.270 | 9.414    | 29.283 | 1.00 | 43.52 |   | В | 0   |
| ATOM | 7022 | C   | GLU | В | 438 | 86.895 | 12.571   | 25.909 | 1.00 | 27.57 |   | В | С   |
| ATOM | 7023 | 0   | GLU | В | 43B | 88.097 | 12.811   | 25.910 | 1.00 | 25.24 |   | В | 0   |
| ATOM | 7024 | N   | ALA | В | 439 | 86.285 | 11.939   | 24.913 | 1.00 | 27.48 |   | В | N   |
| ATOM | 7025 | CA  |     |   | 439 | 87.012 | 11.466   | 23.753 | 1.00 | 26.05 |   | В | С   |
| ATOM | 7026 | СВ  |     |   | 439 | 86.081 | 10.702   | 22.841 |      | 27.14 |   | В | Č   |
|      |      |     |     |   |     | 87.661 |          | 22.984 |      | 26.34 |   | В | č   |
| ATOM | 7027 | C   |     |   | 439 |        | 12.599   |        |      |       |   |   |     |
| MOTA | 7028 | 0   |     |   | 439 | 88.882 | 12.655   | 22.843 |      | 27.58 |   | В | 0   |
| MOTA | 7029 | ·N  |     |   | 440 | 86.826 | 13,498   | 22.473 |      | 26.54 |   | В | N   |
| ATOM | 7030 | ÇA  | LEU | В | 440 | 87.301 | 14.638   | 21.689 | 1.00 | 25.44 |   | В | С   |
| ATOM | 7031 | CB  | LEU | В | 440 | 86.184 | 15.653   | 21.491 | 1.00 | 24.53 |   | В | С   |
| ATOM | 7032 | CG  | LEU | В | 440 | 86.560 | 16.975   | 20.835 | 1.00 | 23.71 |   | В | С   |
| ATOM | 7033 |     | LEU |   |     | 87.375 | 16.770   | 19.575 | 1.00 | 25.27 |   | В | С   |
| ATOM | 7034 |     | LEU |   |     | 85.278 | 17,698   | 20.525 |      | 23.81 |   | В | Č   |
|      |      |     |     |   |     |        |          | 22.375 |      | 24.89 |   | В | č   |
| ATOM | 7035 | C   |     |   | 440 | 88,461 | 15.311   | 21.761 |      |       |   |   |     |
| MOTA | 7036 | 0   |     |   | 440 | 89.496 | 15.546   |        |      | 24.44 | • | В | 0   |
| ATOM | 7037 | N   |     |   | 441 | 88.276 | 15.642   | 23.644 |      | 25.79 |   | В | N   |
| ATOM | 7038 | CA  |     |   | 441 | 89.336 | 16.286   | 24.384 |      | 27.32 |   | В | C   |
| MOTA | 7039 | СВ  | ALA | В | 441 | 88.973 | 16.390   | 25.851 |      | 27.87 |   | В | С   |
| ATOM | 7040 | С   |     |   | 441 | 90.591 | . 15.456 | 24.212 | 1.00 | 28.61 |   | В | С   |
| ATOM | 7041 | 0   |     |   | 441 | 91.654 | 15.983   | 23.881 | 1.00 | 30.02 |   | В | 0   |
| ATOM | 7042 | N   |     |   | 442 | 90.478 | 14.153   | 24.443 |      | 30.27 |   | В | N   |
| ATOM | 7042 | CA  |     |   | 442 | 91.636 | 13.274   | 24.285 |      | 30.82 |   | В | C   |
| ATOM | 7043 | c   |     |   | 442 | 92.369 | 13.620   | 22.999 |      | 30.60 |   | В | Č   |
|      |      |     |     |   |     |        | 13.020   | 22.998 |      | 31.18 |   | В | ŏ   |
| ATOM | 7045 | 0   |     |   | 442 | 93.561 |          |        |      |       |   |   |     |
| ATOM | 7046 | N   | MET | В | 443 | 91.621 | 13.591   | 21.900 | 1.00 | 29.65 |   | В | N   |
|      |      |     |     |   |     |        |          |        |      |       |   |   |     |

|      |      |     |       |    |       |         |        |        |       |        | _               | _   |
|------|------|-----|-------|----|-------|---------|--------|--------|-------|--------|-----------------|-----|
| ATOM | 7047 | CA  | MET   | В  | 443   | 92.161  | 13,902 | 20.594 | 1.00  | 28.94  | В               | С   |
| ATOM | 7048 | CB  | MET   | B  | 443   | 91.055  | 13.915 | 19.554 | 1.00  | 29.71  | . В             | С   |
|      |      |     |       |    |       |         |        | 19.297 |       | 33.35  | В               | С   |
| MOTA | 7049 | CG  | MET   |    | 443   | 90.501  | 12.557 |        |       |        |                 |     |
| MOTA | 7050 | SD  | MET   | В  | 443   | 89.439  | 12.437 | 17.834 |       | 36.07  | В               | S   |
| ATOM | 7051 | ÇE  | MET   | В  | 443   | 87.952  | 11.589 | 18.528 | 1.00  | 38.37  | В               | C   |
|      |      | Ċ   | MET   |    | 443   | 92.899  | 15.225 | 20.518 | 1.00  | 28.77  | В               | С   |
| ATOM | 7052 |     |       |    |       |         |        |        |       | 29.45  | В               | ō   |
| MOTA | 7053 | 0   | MET   | В  | 443   | 94.094  | 15.277 | 20.220 |       |        |                 | _   |
| MOTA | 7054 | N   | GLU   | В  | 444   | 92.179  | 16.304 | 20.786 | 1.00  | 29.70  | В               | N ' |
|      | 7055 | CA  | GLU   |    | 444   | 92.754  | 17.629 | 20.701 | 1.00  | 29.12  | В               | С   |
| ATOM |      |     |       |    |       |         |        |        |       | 30.49  | В               | Ċ   |
| ATOM | 7056 | CB  | GLU   | В  | 444   | 91.756  | 18.667 | 21.231 |       |        | _               |     |
| MOTA | 7057 | CG  | GLU   | В  | 444   | 90.416  | 18.572 | 20.501 | 1.00  | 34.74  | В               | C · |
| ATOM | 7058 | CD  | GLU   | R  | 444   | 89.503  | 19.766 | 20.711 | 1.00  | 36.00  | В               | С   |
|      |      |     |       |    | 444   | 89.911  | 20.889 | 20.371 | 1 00  | 37.08  | В               | 0   |
| ATOM | 7059 |     | GLU   | _  |       |         |        |        |       |        |                 |     |
| MOTA | 7060 | QE2 | GLU   | В  | 444   | 88.367  | 19.578 | 21.202 |       | 35.77  | В               | 0   |
| ATOM | 7061 | С   | GLU   | В  | 444   | 94.062  | 17.657 | 21.464 | 1.00  | 28.42  | В               | Ç   |
|      | 7062 | ō   | GLU   |    |       | 95.088  | 18.075 | 20.935 | 1.00  | 28.86  | В               | 0   |
| ATOM |      |     |       |    | _     |         |        | 22.693 |       | 27.36  | В               | N   |
| MOTA | 7063 | N   |       |    | 445   | 94.043  | 17.170 |        |       |        |                 |     |
| ATOM | 7064 | CA  | LEU   | В  | 445   | 95.248  | 17.165 | 23.502 |       | 27.39  | В               | С   |
| ATOM | 7065 | CB  | LEU   | В  | 445   | 94.965  | 16.493 | 24.839 | 1.00  | 26.95  | В               | С   |
|      |      |     |       |    |       | 94.088  | 17.472 | 25.595 | 1 00- | 28.28  | В               | С   |
| atom | 7066 | CG  | LEU   |    | 445   |         |        |        |       |        |                 | Č   |
| ATOM | 7067 | CD1 | LEU   | В  | 445   | 93.734  | 16.936 | 26.963 |       | 29.67  | В               |     |
| ATOM | 7068 | CD2 | LEU   | В  | 445   | 94.844  | 18.796 | 25.711 | 1.00  | 28.23  | В               | С   |
| ATOM | 7069 | C   | LEU   |    | 445   | 96.417  | 16.492 | 22.819 | 1.00  | 27.31  | В               | С   |
|      |      |     |       |    |       |         |        | 22.652 |       | 28.19  | В               | 0   |
| ATOM | 7070 | 0   |       |    | 445   | 97.497  | 17.082 |        |       |        |                 |     |
| MOTA | 7071 | N   | PHE   | В  | 446   | 96.185  | 15.250 | 22.418 | 1.00  | 26.05  | В               | N   |
| ATOM | 7072 | CA  | PHE   | В  | 446   | 97.198  | 14.434 | 21.773 | 1.00  | 24.69  | В               | С   |
|      |      |     | PHE   |    |       | 96.674  | 13.006 | 21.604 | 1 00  | 24.91  | В               | С   |
| ATOM | 7073 | CB  |       |    |       |         |        |        |       |        | - B:            |     |
| ATOM | 7074 | CG  | PHE   | В  | 446   | 97.656  | 12.093 | 20.944 |       | 25:44  | -               | ¢   |
| ATOM | 7075 | CD1 | PHE   | В  | 446   | 97.587  | 11.841 | 19.584 | 1.00  | 26.92  | -, ¹ <b>B</b> → | С   |
|      | 7076 |     | PHE   |    |       | 98.690  | 11.523 | 21.679 | 11.00 | 25'.02 | В               | С   |
| MOTA |      |     |       |    |       |         |        |        |       | 24.83  | √ % B" · ·      | Ċ   |
| ATOM | 7077 |     | PHE   |    |       | 98.534  | 11.030 | 18.965 |       |        |                 |     |
| ATOM | 7078 | CE2 | PHE   | В  | 446   | 99.638  | 10.714 | 21.071 | 1.00  | 24.06  | В 1             | C.  |
| ATOM | 7079 | CZ  | PHE   | n  | 446   | 99.563  | 10.466 | 19.714 | 1.00  | 23.70  | В               | С   |
|      |      |     | -     |    |       | 97.707  | 14.958 | 20.426 |       | 23.34  | В               | С   |
| ATOM | 7080 | С   |       |    | 446   |         |        |        |       |        |                 | ŏ   |
| ATOM | 7081 | 0   | PHE   | В  | 446   | 98.907  | 15.137 | 20.233 |       | 22.92  |                 |     |
| MOTA | 7082 | N   | LEU   | В  | 447   | 96.780  | 15.198 | 19.507 | 1.00  | 21.72  | <b>B</b> №      | N   |
| ATOM | 7083 | CA  | LEU   |    | 447   | 97.123  | 15,670 | 18.186 | 1.00  | 20.26  | : B             | С   |
|      |      |     |       |    |       |         |        | 17.299 |       | 17.83  | * B :           | С   |
| ATOM | 7084 | CB  | LEU   |    | 447   | 95.897  | 15.675 |        |       |        |                 |     |
| ATOM | 7085 | CG  | LEU   | В  | 447   | 95.265  | 14.289 | 17.243 |       | 17.96  | . <b>B</b> ⊊    | С   |
| ATOM | 7086 | CD1 | LEU   | В  | 447   | 94.062  | 14.274 | 16.311 | 1.00  | 17.82  | В               | Ç   |
|      |      |     | LEU   |    | 447   | 96.299  | 13,310 | 16.767 | 1.00  | 17.08  | В               | C   |
| MOTA | 7087 |     |       |    |       |         |        |        |       |        |                 | c   |
| ATOM | 7088 | С   | PEA   | В  | 447   | 97.754  | 17.030 | 18.189 |       | 22.05  | В               |     |
| ATOM | 7089 | 0   | LEU   | В  | 447   | 98.775  | 17.231 | 17.545 | 1.00  | 23.67  | В               | 0   |
| ATOM | 7090 | N   | PHE   | пi | 448   | 97.170  | 17.982 | 18.899 | 1.00  | 21.86  | В               | N   |
|      |      |     |       |    |       |         |        | 18.889 |       | 21.86  | В               | С   |
| ATOM | 7091 | CA  | PHE   |    | 448   | 97.791  | 19.288 |        |       |        |                 |     |
| ATOM | 7092 | CB  | PHE   | В  | 448   | 96.997  | 20.325 | 19.654 | 1.00  | 19.53  | В               | С   |
| ATOM | 7093 | CG  | PHE   | В  | 448   | 95.662  | 20.568 | 19.113 | 1.00  | 15.69  | В               | С   |
|      |      |     | PHE   |    |       | 95.374  | 20,281 | 17.804 | 1.00  | 15.42  | В               | С   |
| ATOM | 7094 |     |       |    |       |         |        |        |       | 17.66  | В               | c   |
| MOTA | 7095 | CD2 | PHE   | В  | 448   | 94.675  | 21.082 | 19.920 |       |        |                 |     |
| ATOM | 7096 | CEI | PHE   | В  | 448   | 94.113  | 20.501 | 17.304 | 1.00  | 16.95  | В               | С   |
| ATOM | 7097 | CE2 | PHE   | В  | 448   | 93.405  | 21.306 | 19.423 | 1.00  | 17.45  | В               | С   |
|      |      |     | PHE   |    | 448   | 93.128  | 21.015 | 18.119 | 1.00  | 16.51  | В               | С   |
| MOTA | 7098 | CZ  |       |    |       |         |        |        |       |        | В               | C   |
| MOTA | 7099 | С   | PHE   | В  | 448   | 99.148  | 19.226 | 19.521 |       | 22.75  |                 |     |
| MOTA | 7100 | 0   | PHE   | B. | 448   | 100.073 | 19.870 | 19.050 |       | 23.73  | В               | 0   |
| ATOM | 7101 | N   | LEU   | В  | 449   | 99.281  | 18.473 | 20.602 | 1.00  | 22.90  | В               | N   |
|      |      |     |       |    |       | 100.576 | 18,452 | 21.245 |       | 24.75  | В               | С   |
| ATOM | 7102 | CA  | TIE U | ٥  | 449   |         |        |        |       | 25.71  | В               | č   |
| ATOM | 7103 | CB  | PEO   | В  | 449   | 100.517 | 17.781 | 22,610 |       |        |                 |     |
| ATOM | 7104 | CG  | LEU   | В  | 449   | 99.903  | 18.550 | 23.769 |       | 27.57  | В               | С   |
| ATOM | 7105 |     | LEU   |    |       | 100.223 | 17.754 | 25.013 | 1.00  | 28.10  | В               | С   |
|      |      |     | LEU   |    |       | 100.477 | 19.966 | 23.894 |       | 26.89  | В               | С   |
| MOTA | 7106 | CDZ |       |    |       |         |        |        |       |        |                 | Č   |
| ATOM | 7107 | С   | LEU   | В  | 449   | 101.668 | 17.801 | 20.412 |       | 25.53  | В               |     |
| MOTA | 7108 | 0   | LEU   | В  | 449   | 102.745 | 18.363 | 20.223 | 1.00  | 25.62  | В               | 0   |
|      |      |     |       |    | 450   | 101.403 | 16.613 | 19.903 | 1.00  | 24.80  | В               | N   |
| ATOM | 7109 | N   |       |    |       |         |        |        |       | 23.65  | В               | c   |
| MOTA | 7110 | CA  |       |    | 450   | 102.412 | 15.956 | 19.122 |       |        |                 |     |
| ATOM | 7111 | CB  | THR   | В  | 450   | 101.907 | 14.616 | 18.694 |       | 22.78  | В               | С   |
| ATOM | 7112 |     |       |    | 450   | 100.762 | 14.785 | 17.862 | 1.00  | 23.06  | В               | 0   |
|      |      |     |       |    |       |         |        |        |       | 21.60  | · B             | C   |
| MOTA | 7113 | CG2 |       |    | 450 . | 101.513 | 13.822 | 19.940 |       |        |                 |     |
| MOTA | 7114 | С   | THR   | В  | 450   | 102.722 | 16.880 | 17.959 |       | 25.01  | В               | С   |
| ATOM | 7115 | ŏ   |       |    | 450   | 103.874 | 17.256 | 17.739 | 1.00  | 27.20  | В               | 0   |
|      |      |     |       |    |       |         | 17,301 |        |       | 26.00  | В               | N   |
| ATOM | 7116 | N   |       |    | 451   | 101.686 |        | 17.252 |       |        |                 |     |
| ATOM | 7117 | CA  | SER   | В  | 451   | 101.862 | 18.196 | 16.117 |       | 27.09  | В               | С   |
| ATOM | 7118 | СВ  |       |    | .451  | 100.523 | 18.750 | 15.675 | 1.00  | 29.61  | В               | С   |
|      |      |     |       |    |       | 100.235 | 18,293 | 14.368 |       | 33.86  | В               | 0   |
| MOTA | 7119 | OG  |       |    | 451   |         |        |        |       |        | В               | c   |
| MOTA | 7120 | С   |       |    | 451   | 102.790 | 19.366 | 16.404 |       | 27.79  |                 |     |
| MOTA | 7121 | 0   | SER   | В  | 451   | 103.691 | 19.646 | 15.629 | 1.00  | 30.04  | В               | 0   |
|      |      | -   |       |    |       |         |        |        |       |        |                 |     |

## Figure 3

|        |      |     |       | _  |     |         |        |        |      |       | _  |     |
|--------|------|-----|-------|----|-----|---------|--------|--------|------|-------|----|-----|
| ATOM   | 7122 | N   | ILE   | В  | 452 | 102.556 | 20.055 | 17,510 | 1.00 | 26.02 | В  | N   |
| MOTA   | 7123 | CA  | ILE   | В  | 452 | 103.365 | 21.194 | 17.873 | 1.00 | 23.58 | В  | С   |
|        |      |     | ILE   |    | 452 | 102.863 | 21.766 | 19.191 | 1 00 | 22.95 | В  | С   |
| MOTA   | 7124 | CB  |       |    |     |         |        |        |      |       |    |     |
| ATOM   | 7125 | CG2 | ILE   | В  | 452 | 103.916 | 22.682 | 19.813 | 1.00 | 22.34 | В  | С   |
| ATOM   | 7126 | CG1 | ILE   | В  | 452 | 101.505 | 22.422 | 18.962 | 1.00 | 22.89 | В  | С   |
|        | 7127 |     | ILE   |    | 452 | 100.820 | 22.859 | 20.219 | 1.00 | 22.31 | В  | С   |
| MOTA   |      |     |       |    |     |         |        |        |      |       | B  | Č   |
| ATOM   | 7128 | С   | ILE   | В  | 452 | 104.825 | 20.826 | 18.012 |      | 24.41 |    |     |
| ATOM   | 7129 | 0   | ILE   | В  | 452 | 105.709 | 21.551 | 17.566 | 1.00 | 24.75 | В  | 0   |
|        | 7130 | N   | LEU   |    | 453 | 105.062 | 19.687 | 18.645 | 1.00 | 26.62 | В  | N   |
| ATOM   |      |     |       |    |     |         |        |        |      |       |    |     |
| ATOM   | 7131 | CA  | FEA   | В  | 453 | 106.410 | 19.187 | 18.902 |      | 27.24 | В  | С   |
| ATOM   | 7132 | CB  | LEU   | В  | 453 | 106.361 | 18.191 | 20.058 | 1.00 | 26.43 | В  | С   |
|        | 7133 | CG  | LEU   |    | 453 | 106.102 | 18.812 | 21.429 | 1.00 | 27.77 | В  | С   |
| ATOM   |      |     |       |    |     |         |        |        |      | 27.38 | В  | Č   |
| ATOM   | 7134 |     | LEU   |    | 453 | 105.957 | 17.741 | 22.486 |      |       |    |     |
| ATOM   | 7135 | CD2 | LEU   | В  | 453 | 107.249 | 19.738 | 21.776 | 1.00 | 27.31 | В  | С   |
| ATOM   | 7136 | Ċ   | LEU   |    | 453 | 107.053 | 18.537 | 17.690 | 1.00 | 28.11 | В  | С   |
|        |      |     |       |    |     |         |        |        |      | 27.06 | В  | ō   |
| ATOM   | 7137 | 0   | LEU   |    | 453 | 108.275 | 18.519 | 17.559 |      |       |    |     |
| ATOM   | 7138 | N   | GLN   | В  | 454 | 106.222 | 17.984 | 16.819 | 1.00 | 30.06 | В  | N   |
| ATOM   | 7139 | CA  | GLN   | В  | 454 | 106.733 | 17.348 | 15.624 | 1.00 | 34.08 | В  | С   |
|        |      |     |       |    | 454 | 105.601 | 16.647 | 14.863 | 1 00 | 33.09 | В  | С   |
| MOTA   | 7140 | СВ  |       |    |     |         |        |        | •    |       |    |     |
| ATOM   | 7141 | CG  | GLN   | В  | 454 | 105.856 | 16.491 | 13.365 | 1.00 | 33.28 | В  | С   |
| ATOM   | 7142 | CD  | GLN   | В  | 454 | 104.683 | 15.868 | 12.610 | 1.00 | 35.10 | В  | С   |
| ATOM   | 7143 |     | GLN   |    | 454 | 104.542 | 14.649 | 12.569 | 1.00 | 36.20 | В  | 0   |
|        |      |     |       |    |     |         |        |        |      |       |    |     |
| MOTA   | 7144 | NE2 | GLN   | В  | 454 | 103.834 | 16.711 | 12.009 |      | 36.25 | В  | N   |
| ATOM   | 7145 | С   | GLN   | В  | 454 | 107.365 | 18.414 | 14.741 | 1.00 | 37.76 | В  | C-  |
| ATOM   | 7146 | 0   | GLN   | ъ  | 454 | 108.327 | 18.157 | 14.015 | 1.00 | 40.25 | В  | 0   |
|        |      |     |       |    |     |         |        |        |      |       |    | N   |
| ATOM   | 7147 | N   | ASN   | В  | 455 | 106.839 | 19.630 | 14.840 |      | 41.15 | В  |     |
| MOTA   | 7148 | CA: | ASN   | B. | 455 | 107.295 | 20.755 | 14.015 | 1.00 | 41.20 | В  | С   |
| ATOM   | 7149 | СВ  | ASN   |    |     | 106.077 | 21.462 | 13.441 | 1.00 | 40.40 | В  | C   |
|        |      |     |       |    |     |         |        |        |      | 39.54 | В  | č   |
| MOTA   | 7150 | CG  | ASN   | В  | 455 | 105.489 | 20.718 | 12.276 |      |       |    |     |
| MOTA   | 7151 | OD1 | ASN   | В  | 455 | 105.979 | 20.835 | 11.149 | 1.00 | 42.97 | В  | Ο,  |
| MOTA   | 7152 | MD2 | ASN   | R  | 455 | 104.435 | 19.941 | 12.527 | 1.00 | 38.06 | В  | N-  |
|        |      |     |       |    |     |         |        |        |      |       |    | Ċ.  |
| ATOM   | 7153 | C   | ASN   | В  | 455 | 108.185 | 21.789 | 14.665 |      | 42.11 | В  |     |
| MOTA   | 7154 | 0   | ASN   | В  | 455 | 108.989 | 22.438 | 13.986 | 1.00 | 43.32 | В  | 0   |
| ATOM   | 7155 | N   | PHE   |    |     | 108.037 | 21:951 | 15.972 | 1.00 | 43.44 | В  | N   |
|        |      |     |       |    |     |         |        |        |      |       | В  | C   |
| ATOM   | 7156 | CA  | PHE   | В  | 456 | 108.803 | 22.954 | 16.691 |      | 44.37 |    |     |
| ATOM   | 7157 | CB  | PHE   | В  | 456 | 107.887 | 24.061 | 17.187 | 1.00 | 43.34 | В  | С   |
| ATOM   | 7158 | CG  | PHE   | R  | 456 | 106.995 | 24.615 | 16.138 | 1.00 | 43.01 | В. | C · |
|        |      |     |       |    |     |         |        |        |      | 43.21 | В  | C   |
| ATOM   | 7159 |     |       |    | 456 | 107.436 | 25.634 | 15.310 |      |       |    |     |
| ATOM   | 7160 | CD2 | PHE   | В  | 456 | 105.708 | 24.114 | 15.977 | 1.00 | 41.91 | В  | C · |
| ATOM   | 7161 | CE3 | PHE   | В  | 456 | 106.613 | 26.148 | 14.335 | 1.00 | 41.89 | В  | С   |
|        |      |     |       |    |     |         |        |        |      | 43.45 | В  | Č.  |
| MOTA   | 7162 | CE2 |       |    | 456 | 104.867 | 24.620 | 15.000 |      |       |    |     |
| MOTA   | 7163 | CZ  | PHE   | В  | 456 | 105.320 | 25.644 | 14.175 | 1.00 | 43.35 | В  | С   |
| ATOM   | 7164 | С   | PHE   |    |     | 109.503 | 22.424 | 17.902 | 1.00 | 45.67 | В  | С   |
|        |      |     |       |    |     |         |        |        |      |       | В  | ō   |
| ATOM   | 7165 | 0   |       |    | 456 | 109.087 | 21.438 | 18.502 |      | 46.42 |    |     |
| ATOM   | 7166 | N   | ASN   | В  | 457 | 110.558 | 23.127 | 18.272 | 1.00 | 46.96 | В  | N   |
| MOTA   | 7167 | CA  | ASN   | а  | 457 | 111.326 | 22.809 | 19.454 | 1.00 | 48.94 | В  | С   |
|        |      |     |       |    |     |         |        | 19.097 |      | 49.81 | В  | C   |
| ATOM   | 7168 | СВ  | asn   |    | 457 | 112.808 | 22.727 |        |      |       |    |     |
| ATOM   | 7169 | CG  | ASN   | В  | 457 | 113.381 | 21.342 | 19.306 | 1.00 | 50.62 | В  | С   |
| ATOM   | 7170 | OD1 | ASN   | В  | 457 | 113.393 | 20.828 | 20,430 | 1.00 | 51.87 | В  | 0   |
|        |      |     | ASN   |    |     | 113.863 | 20.728 | 18,226 |      | 49.48 | В. | N   |
| MOTA   | 7171 |     |       |    |     |         |        |        |      |       |    |     |
| ATOM   | 7172 | С   | ASN   | В  | 457 | 111.059 | 23.995 | 20.382 |      | 50.42 | В  | С   |
| ATOM   | 7173 | 0   | ASN   | В  | 457 | 111.473 | 25.105 | 20.095 | 1.00 | 51.82 | В  | 0   |
| ATOM   | 7174 | N   | LEU   |    | 458 | 110.351 | 23.775 | 21.480 | 1.00 | 51.12 | В  | N   |
|        |      |     |       |    |     |         |        |        |      |       |    | C   |
| ATOM   | 7175 | CA  | LEU   |    | 458 | 110.053 | 24.879 | 22.379 |      | 52.15 | В  |     |
| ATOM   | 7176 | CB  | LEU   | В  | 458 | 109.108 | 24.413 | 23.462 | 1.00 | 49.78 | В  | С   |
| ATOM   | 7177 | CG  | I.RII | R  | 458 | 108.017 | 23.586 | 22.820 | 1.00 | 47.91 | В  | С   |
|        |      |     |       |    |     |         |        |        |      | 48.30 | В  | С   |
| ATOM   | 7178 |     | LEU   |    |     | 107.164 | 23.013 | 23.911 |      |       |    |     |
| ATOM   | 7179 | CD2 | LEU   | В  | 458 | 107.196 | 24.429 | 21.857 | 1.00 | 47.96 | В  | С   |
| ATOM   | 7180 | С   | LED   | B  | 458 | 111.289 | 25.478 | 23.023 | 1.00 | 54.45 | В  | С   |
|        |      |     |       |    |     |         |        | 23,371 |      | 54.89 | В  | Ο.  |
| ATOM   | 7181 | 0   |       |    | 458 | 112.228 | 24.761 |        |      |       |    |     |
| ATOM   | 7182 | N   | LYS   | В  | 459 | 111.272 | 26.798 | 23.190 | 1.00 | 57.91 | В  | N   |
| ATOM   | 7183 | CA  |       |    | 459 | 112.383 | 27.510 | 23.813 | 1.00 | 61.56 | В  | С   |
|        |      |     |       |    |     |         |        |        |      | 62.67 | В  | Ċ   |
| ATOM   | 7184 | CB  |       |    | 459 | 113.462 | 27.840 | 22.774 |      |       |    |     |
| ATOM   | 7185 | CG  | LYS   | В  | 459 | 114.737 | 28.445 | 23.377 | 1.00 | 65.44 | В  | С   |
| ATOM   | 7186 | CD  |       |    | 459 | 115.753 | 28.850 | 22.303 |      | 66.44 | В  | С   |
|        |      |     |       |    |     |         |        |        |      |       | В  | Č   |
| ATOM   | 7187 | CE  |       |    | 459 | 117.037 | 29.450 | 22.903 |      | 67.09 |    |     |
| ATOM   | 7188 | NZ  | LYS   | В  | 459 | 116.789 | 30.613 | 23.822 | 1.00 | 66.24 | В  | N   |
|        |      | C   |       |    | 459 | 111.930 | 28.797 | 24.506 | 1,00 | 62.98 | В  | С   |
| ATOM   | 7189 |     |       |    |     |         |        |        |      |       | В  | ō   |
| MOTA   | 7190 | 0   | PAR   | В  | 459 | 111.331 | 29.681 | 23.890 |      | 62.23 |    |     |
| ATOM   | 7191 | N   | SER   | В  | 460 | 112.231 | 28.894 | 25.796 |      | 66.31 | В  | N   |
|        | 7192 | CA  |       |    | 460 | 111.873 | 30.064 | 26.586 | 1.00 | 69.11 | В  | С   |
| MOTA   |      |     |       |    |     |         |        |        |      |       | В  | C   |
| MOTA   | 7193 | СB  | SER   | В  | 460 | 111.682 | 29.677 | 28.062 |      | 69.18 |    |     |
| ATOM   | 7194 | OG  | SER   | В  | 460 | 111.291 | 30.792 | 28.848 | 1.00 | 69.48 | В  | 0   |
|        |      | C   |       |    |     | 112.991 | 31.086 | 26.474 |      | 71.49 | В  | С   |
| ATOM . | 7195 |     |       |    | 460 |         |        |        |      |       | В  | ŏ   |
| MOTA   | 7196 | 0   | SER   | В  | 460 | 113.945 | 30.900 | 25.714 | 1.00 | 72.05 | Þ  | U   |
|        |      |     |       |    |     | -       |        |        |      |       |    |     |

SUBSTITUTE SHEET (RULE 26)

1100 4億。 - 動社 (1577) 1 48 (1582)

r sateria. Sateria

1.35 1

0.000 3.000 3.000

average and the

55.5

Figure 3

```
7197
                 LEU B 461
                                112.870 32.167
                                                  27.234 1.00 74.03
ATOM
            N
                                                  27,232
                                                           1.00
                                                                76.04
                 LEU B 461
                                113.881
                                          33.214
ATOM
       7198
             CA
                                                           1.00 76.87
ATOM
       7199
             CB
                 LEU B 461
                                 113.414
                                          34.411
                                                  26,405
                                                           1.00
                                                                78.16
                 LEU B 461
                                112.084
                                          35,012
                                                  26.867
MOTA
       7200
             CG
                                          36.494
                                                           1.00 78.81
ATOM
       7201
             CD1 LEU B 461
                                112.259
                                                  27.193
                                                  25.778
                                                           1.00 79.26
ATOM
       7202
             CD2 LEU B 461
                                111.043
                                          34.808
                                                                                  C
                                                           1.00 76.89
                                                  28,659
MOTA
       7203
             С
                 LEU B 461
                                114.174
                                          33.665
                                                                                  0
                                          34.760
                                                           1.00 77.43
                                                  28.872
       7204
             0
                 LEU B 461
                                114.692
ATOM
                                                           1.00 77.27
                                                                            В
                                                                                 N
ATOM
       7205
             N
                  VAL B 462
                                 113.832
                                          32.830
                                                  29.636
                                                           1.00 76.69
                                                                            В
                                                                                 С
MOTA
       7206
             CA
                 VAL B 462
                                 114.091
                                          33.183
                                                  31.026
                  VAL B 462
                                 112.785
                                          33.749
                                                  31.730
                                                           1.00 76.77
                                                                            В
                                                                                 С
MOTA
       7207
             CB
                 VAL B 462
                                111.732
                                          32.674
                                                  31.874
                                                           1.00 76.09
                                                                                 С
       7208
             CG1
ATOM
                                                                                 С
             CG2 VAL B 462
                                 113.130
                                          34.369
                                                  33.088
                                                           1.00 76.48
                                                                            В
       7209
MOTA
                  VAL B 462
                                 114.685
                                          32.009
                                                  31.807
                                                           1.00 76.46
                                                                            В
                                                                                 C
       7210
             С
ATOM
                                 114.745
                                                  33.035
                                                           1.00 76.54
                                                                            В
                                                                                  0
             0
                  VAL B 462
                                          32.043
MOTA
       7211
                  ASP B 463
                                 115.144
                                          30.982
                                                  31.090
                                                           1.00 75.64
                                                                                 N
ATOM
       7212
             N
                                                   31.734
                                                           1.00 75.43
                                                                            В
                                                                                  C
       7213
             CA
                 ASP B 463
                                 115.758
                                          29.819
ATOM
       7214
             СВ
                 ASP B 463
                                 116.994
                                          30.268
                                                  32.533
                                                           1.00 74.51
                                                                                  С
ATOM
                 ASP B 463
                                 117.584
                                          29.157
                                                   33.390
                                                           1.00 75.86
                                                                            В
                                                                                  С
             CG
ATOM
       7215
                                                                                  0
             OD1 ASP B 463
                                 117.967
                                          28.096
                                                  32.834
                                                           1.00 76.62
ATOM
       7216
                                                                                  0
             OD2 ASP B 463
                                 117.675
                                          29.346
                                                  34.624
                                                           1.00 75.97
                                                                            В
ATOM
       7217
                                 114.768
                                                           1.00 75.02
                                                                                  С
                                          29.085
                                                  32.654
                  ASP B 463
ATOM
       7218
             С
                                          29.608
                                                  33.702
                                                           1.00 75.06
                  ASP B 463
                                 114.370
MOTA
       7219
             0
                                                   32.288
                                                           1.00 73.77
                                                                                 N
                                 114.389
                                          27.844
MOTA
       7220
             N
                  PRO B 464
                                 115.185
                                          26.995
                                                   31.380
                                                           1.00 73.62
                                                                            В
                                                                                 С
MOTA
       7221
             CD
                  PRO B 464
                                                   33.049
                                                           1.00 72.81
                                                                                 С
                                          27.010
MOTA
       7222
             CA
                  PRO B 464
                                 113.446
                                                                                 С
                                                   32.474
                                                           1.00 72:24
                                                                            В
       7223
             СВ
                  PRO B 464
                                 113.680
                                          25.611
MOTA
                                                                                 С
       7224
                  PRO B 464
                                 115.133
                                          25.653
                                                   32.087
                                                           1.00 72.60
                                                                            В
ATOM
             CG
                                                                                 C
                  PRO B 464
                                 113.663
                                          27.040
                                                   34,563
                                                           1.00 72.06
                                                                            В
ATOM
       7225
             ·C
                                                                                 О
И
О
ATOM.
       7226
             :0
                  PRO B 464
                                 112.710
                                          27.178
                                                   35.349
                                                           1.00 73.87
                                                                            В
MOTA
       7227
             N
                . LYS B 465
                                 114.931
                                          26.894
                                                   34.946
                                                           1.00 71.15
                                                                            В
                  LYS B 465
                                 115.381
                                          26.879
                                                   36.347
                                                           1.00 69.30
                                                                            В
ATOM 5
       7228
             · CA
                                                                                 C
                                 116.891
                                          27.220
                                                   36.402
                                                           1.00 69.35
                                                                            В
ATOM:
       7229
             CB
                  LYS B 465
                                                                                 C
                                                   37.082
                                                           1.00 68.46
                                                                            В
             CG
                  LYS B 465
                                 117.799
                                          26.166
       7230
ATOM.
                                                                                 С
                                                           1.00 67.14
                  LYS B 465
                                 117.611
                                          26.107
                                                   38.624
ATOM ?
       7231
             CD
                                                                             В
                                                                                  С
                  LYS B 465
                                 118.490
                                          25.023
                                                   39.307
                                                           1.00 65.46
ATOM :
       7232
             CE
                  LYS B 465
                                 118.399
                                          25.015
                                                   40.807
                                                           1.00 62.43
ATOM:
       7233
             NZ
                                                                                  С
                                 114.588
                                          27.821
                                                   37.272
                                                           1.00 68.12
                                                                             В
                  LYS B 465
ATOM .
       7234
             · C :
                                          27.579
                                                   38.484
                                                           1.00 68.51
                  LYS B 465
                                 114.495
ATOM
       7235
             0.
                                          28.884
                                                   36.694
                                                           1.00 67.02
                                                                                  N
                  ASN B 466
                                 114.015
ATOM
       7236
             N
                                                   37.444
                                                                                  С
                                                           1.00 66.90
                                          29.882
ATOM
       7237
             CA
                  ASN B 466
                                 113.230
                                                   37.050
                                                           1.00 66.33
                                                                             В
                                                                                  С
                                          31.309
ATOM
       7238
             CB
                  ASN B 466
                                 113.671
                                                                                  C
       7239
             CG
                  ASN B 466
                                 115.188
                                          31.519
                                                   37.171
                                                           1.00 68.89
                                                                             В
ATOM
             OD1 ASN B 466
                                 115.758
                                          31.456
                                                   38.271
                                                           1.00 67.33
                                                                             B
                                                                                  0
ATOM
       7240
                                                                                  N
             ND2 ASN B 466
                                 115.845
                                          31.763
                                                   36.036
                                                           1,00 67.92
                                                                            В
ATOM
       7241
                  ASN B 466
                                 111.699
                                          29.742
                                                   37.260
                                                           1.00 66.63
                                                                             В
                                                                                  С
       7242
             С
ATOM
                                          29,318
                                                   38.191
                                                           1.00 68.29
                                                                            R
                                                                                  0
       7243
             0
                  ASN B 466
                                 111.007
ATOM
       7244
             N
                  LEU B 467
                                 111.191
                                          30.081
                                                   36.066
                                                           1.00 65.79
                                                                             В
                                                                                  N
ATOM
                                                                                  С
                  LEU B 467
                                          30.027
                                                   35.747
                                                           1.00 62.78
                                                                            В
ATOM
       7245
             CA
                                 109.754
       7246
             CB
                  LEU B 467
                                 109.548
                                          29.772
                                                   34.246
                                                           1.00 62.38
                                                                             B
                                                                                  С
ATOM
                  LEU B 467
                                 110.468
                                          28.729
                                                   33.611
                                                           1.00 62.15
                                                                             В
                                                                                  C
       7247
             CG
MOTA
                                 109.765
                                                           1.00 62.11
                                                                             В
                                                                                  С
             CD1 LEU B 467
                                          27.398
                                                   33.578
       7248
MOTA
                                                           1.00 62.37
                                                                             В
                                                                                  С
             CD2, LEU B 467
                                 110.844
                                          29.149
                                                   32.195
       7249
MOTA
                                                           1.00 62.40
                                                                                  C
                  LEU B 467
                                 108.944
                                          29,031
                                                   36.572
                                                                             В
ATOM
       7250
             С
                                                                                  0
                                          27.814
                                                   36.506
                                                           1.00 62.19
                                                                             В
                  LEU B 467
                                 109,138
ATOM
       7251
              0
                                                                                  N
                                                   37.363
                                                           1.00 62.67
                  ASP B 468
                                 108.042
                                          29.603
ATOM
       7252
             N
                                                   38.278
                                                           1.00 62.68
                                                                             В
                                                                                  С
                  ASP B 468
                                 107.133
                                          28.908
ATOM
       7253
              CA
                                                                                  С
                                          29.970
                                                   39.222
                                                           1.00 63.53
                  ASP B 468
ATOM
       7254
             CB
                                 106.541
                                                   40.271
                                                           1.00 65.71
                                                                                  C
                                          29.399
ATOM
       7255
              CG
                  ASP B 468
                                 105.608
                                                           1.00 68.02
                                                   39.905
       7256
             OD1 ASP B 468
                                 104.553
                                          28.828
ATOM
                                                           1.00 64.88
                                                                                  0
                                                   41.474
                                                                             В
              OD2 ASP B 468
                                 105.934
                                          29.533
MOTA
       7257
                                                                                  С
                                                           1.00 61.35
                                                                             В
MOTA
       7258
              С
                  ASP B 468
                                 106.032
                                          28.194
                                                   37.497
                                                                                  0
              0
                  ASP B 468
                                 105.441
                                          28.780
                                                   36.593
                                                           1.00 61.29
                                                                             В
ATOM
       7259
                                 105.759
                                                   37.849
                                                           1.00 60.82
                                                                             В
                                                                                  N
                  THR B 469
                                          26.937
             N
ATOM
       7260
                                                                                  C
                  THR B 469
                                 104.724
                                          26.139
                                                   37.178
                                                           1.00 60.21
                                                                             В
              CA
ATOM
       7261
                                                           1.00 59.49
                                                                             В
                                                                                  C
                                 105.240
                                          24.768
                                                   36.746
                  THR B 469
ATOM
       7262
              CB
                                                                                  0
                                 105.300
                                          23.917
                                                   37.899
                                                           1.00 60.77
MOTA
       7263
              OG1 THR B 469
                                                                                  С
                                                           1.00 58.97
                                 106.615
                                          24.870
                                                   36.125
MOTA
       7264
              CG2 THR B 469
                                          25.847
                                                   38.120
                                                           1.00 60.25
       7265
              С
                  THR B 469
                                 103.564
ATOM
                                          25,221
                                                   37.719
                                                           1.00 59.69
       7266
              0
                  THR B 469
                                 102.578
ATOM
                                                           1.00 61.42
                                                   39.379
        7267
              N
                  THR B 470
                                 103.722
                                          26,257
ATOM
                                                           1.00,62.83
                                                   40.429
                  THR B 470
                                 102.716
                                          26.063
ATOM
        7268
              CA
                                                           1.00 63.25
                                                                                  С
                                                   41.781
ATOM
        7269
              СВ
                  THR B 470
                                 103.205
                                          26.649
                                                           1.00 64.03
MOTA
        7270
              OG1 THR B 470
                                 104.506
                                          26.134
                                                   42.100
                                                           1.00 64.09
                                 102.239
                                          26.288
                                                   42.905
MOTA
        7271
              CG2 THR B 470
```

| ATOM         | 7272         | С        | THR E      | 3 4 | 170        |     | 101.427            | 26.782           | 40.039           |      | 61.86          | , | 3      | С      |
|--------------|--------------|----------|------------|-----|------------|-----|--------------------|------------------|------------------|------|----------------|---|--------|--------|
| MOTA         | 7273         | 0        | THR E      | _   | 170        |     | 101.409            | 28.008           | 39.936           |      | 61.70          |   | 3      | 0      |
| MOTA         | 7274         | N        | PRO E      |     | 171        |     | 100.326            | 26.029           | 39.842           |      | 61.74<br>62.91 |   | 3<br>3 | N<br>C |
| ATOM         | 7275         | CD       | PRO E      |     | 171        |     | 100.188            | 24.626           | 40.272<br>39.453 |      | 62.45          |   | в<br>В | Ċ.     |
| MOTA         | 7276<br>7277 | CA       | PRO I      |     | 171<br>171 |     | 99,017<br>98.058   | 26.574<br>25.403 | 39.433           |      | 62.45          |   | В      | c      |
| ATOM<br>ATOM | 7278         | CB<br>CG | PRO E      |     | 471        |     | 98.926             | 24.199           | 39.550           |      | 63.34          |   | В      | Ċ      |
| ATOM         | 7279         | C        | PRO I      |     | 471        |     | 98.624             | 27.775           | 40.285           |      | 62.29          |   | В      | C      |
| MOTA         | 7280         | ō        | PRO I      |     | 471        |     | 99.077             | 27.924           | 41.417           |      | 63.24          |   | В      | 0      |
| ATOM         | 7281         | N        | VAL I      | В 4 | 472        |     | 97.786             | 28.633           | 39.720           |      | 62.33          |   | В      | N      |
| MOTA         | 7282         | CA       | VAL I      |     | 472        |     | 97.302             | 29.807           | 40.428           |      | 63.26          |   | В      | C      |
| MOTA         | 7283         | CB       | VAL I      |     | 472        |     | 97.679<br>96.956   | 31.096<br>32.301 | 39.659<br>40.238 |      | 63.09<br>63.58 |   | B<br>B | C      |
| ATOM         | 7284<br>7285 |          | VAL I      |     | 472<br>472 |     | 99.188             | 31.308           | 39.750           |      | 62.60          |   | В      | č      |
| MOTA<br>MOTA | 7286         | C        | VAL !      |     | 472        |     | 95.794             | 29.599           | 40.513           |      | 63.75          |   | В      | C      |
| ATOM         | 7287         | ŏ        | VAL        |     | 472        |     | 95.076             | 29.759           | 39.534           | 1.00 | 62.70          |   | В      | 0      |
| ATOM         | 7288         | N        | VAL I      | В   | 473        |     | 95.331             | 29.205           | 41.692           |      | 67.22          |   | В      | N      |
| MOTA         | 7289         | CA       | VAL :      |     | 473        |     | 93.918             | 28.929           | 41.900           |      | 71.16          |   | В      | C      |
| MOTA         | 7290         | СВ       | VAL        |     | 473        |     | 93.716             | 27.835           | 42.989           |      | 71.75<br>72.65 |   | B<br>B | C      |
| ATOM         | 7291         |          | VAL I      |     |            |     | 92.236<br>94.502   | 27.515<br>26.569 | 43.140<br>42.637 |      | 72.53          |   | В      | Č      |
| ATOM<br>ATOM | 7292<br>7293 | CGZ      | VAL I      |     |            |     | 93.093             | 30.141           | 42.320           |      | 73.28          |   | В      | Č      |
| ATOM         | 7294         | Ö        | VAL        |     |            |     | 93.541             | 30,968           | 43.132           |      | 74.08          |   | В      | 0      |
| MOTA         | 7295         | N        | ASN        |     |            |     | 91.883             | 30.236           | 41.761           | 1.00 | 74.94          |   | В      | N      |
| ATOM         | 7296         | CA       | ASN        |     |            |     | 90.926             | 31.309           | 42.080           |      | 75.80          |   | В      | C      |
| ATOM         | 7297         | CB       | ASN        |     |            |     | 91.056             | 32.482           | 41.084           |      | 76.75          |   | В      | C      |
| MOTA         | 7298         | CG       | ASN        |     |            |     | 92.402             | 33.226           | 41.213           |      | 77.74<br>78.76 |   | B<br>B | ò      |
| ATOM         | 7299         |          | ASN        |     |            |     | 93.259<br>92.584   | 33.142<br>33.952 | 42.323           |      | 76.38          |   | В      | N      |
| ATOM<br>ATOM | 7300<br>7301 | C        | ASN .      |     |            |     | 89.492             | 30.754           | 42.108           |      | 75.53          |   | В      | С      |
| ATOM         | 7302         | ŏ        | ASN        |     |            | ٠,  | 88.770             | 30.773           | 41.108           |      | 74.04          |   | В      | 0      |
| ATOM         | 7303         | N        | GLY        |     |            | .,  | 89.108             | 30.255           | 43.282           | _    | 76.14          |   | В      | N      |
| ATOM         | 7304         | CA       | GLY        | В.  | 475        |     | 87.783             | 29.690           | 43.489           |      | 77.22          |   | В      | C      |
| ATOM         | 7305         | С        | GLY        |     |            |     | 87.685             | 28.209           | 43.137           |      | 77.26          |   | B<br>B | C<br>O |
| ATOM         | 7306         | 0        | GLY.       |     |            |     | 88.383             | 27.365<br>27.900 | 43.723<br>42.184 |      | 77.82<br>76.31 |   | В      | N      |
| MOTA         | 7307<br>7308 | N<br>CA  | PHE        |     |            |     | 86.798<br>86.580   | 26.528           | 41.691           |      | 74.61          |   | В      | Ċ      |
| ATOM<br>ATOM | 7309         | CB       | PHE        |     |            |     | 85.082             | 26.263           | 41.402           |      | 75.83          |   | В      | С      |
| ATOM         | 7310         | CG       | PHE        |     |            |     | 84.161             | 26.362           | 42.610           | 1.00 | 75.67          |   | В      | С      |
| ATOM         | 7311         | CD1      | PHE        | B   | 476        | ٠., | 82.783             | 26.566           | 42.414           |      | 75.97          |   | В      | C      |
| ATOM         | 7312         |          | PHE        |     | 476        |     | 84.644             | 26,253           | 43.916           |      | 74.46          |   | B<br>B | C      |
| ATOM         | 7313         |          | PHE        |     | 476        |     | 81.904             | 26.669<br>26.354 | 43.491<br>45.010 |      | 75.55<br>73.63 |   | В      | c      |
| ATOM         | 7314<br>7315 | CE2      | PHE<br>PHE |     |            |     | 83.769<br>82.398   | 26.563           | 44.799           |      | 74.44          |   | В      | č      |
| MOTA<br>MOTA | 7316         | c        | PHE        |     | 476        |     | 87.372             | 26,254           | 40.380           |      | 72.85          |   | В      | С      |
| ATOM         | 7317         | ō        | PHE        |     |            |     | 87.069             | 25.289           | 39.663           |      | 73.17          |   | В      | 0      |
| ATOM         | 7318         | N        | ALA        | В   | 477        |     | 88.354             | 27.106           | 40.066           |      | 68.92          |   | В      | N      |
| MOTA         | 7319         | CA       | ALA        |     | 477        |     | 89.195             | 26.939           | 38.869           |      | 64.79          |   | В      | C      |
| ATOM         | 7320         | CB       | ALA        |     | 477        |     | 88.581             | 27.663           | 37.642<br>39.121 |      | 64.07          |   | B<br>B | č      |
| MOTA         | 7321<br>7322 | 0        | ALA        |     | 477<br>477 |     | 90.615<br>90.845   | 27.455<br>28.238 | 40.050           | 1.00 |                |   | В      | ō      |
| ATOM<br>ATOM | 7323         | N        | SER        |     | 478        |     | 91.554             | 26.994           | 38.291           |      | 58.15          |   | В      | N      |
| ATOM         | 7324         | CA       | SER        |     | 478        |     | 92.964             | 27.377           | 38.363           | 1.00 | 54.58          |   | В      | С      |
| ATOM         | 7325         | CB       | SER        | В   | 478        |     | 93.770             | 26.341           | 39.150           |      | 55.30          |   | В      | C      |
| ATOM         | 7326         | OG       | SER        | _   |            |     | 93.542             |                  |                  |      | 57.14          |   | В      | C      |
| ATOM         | 7327         | С        | SER        |     |            |     | 93.498             | 27.468           | 36.939<br>36.040 |      | 50.41          |   | B<br>B | ŏ      |
| MOTA         | 7328         | O<br>N   | SER<br>VAL |     |            |     | 93.005<br>94.489   | 26.791<br>28.325 | 36.737           |      | 45.66          |   | В      | N      |
| MOTA<br>MOTA | 7329<br>7330 | CA       | VAL        |     |            |     | 95.078             | 28.512           | 35.428           |      | 43.43          |   | В      | С      |
| ATOM         | 7331         | СВ       | VAL        |     |            |     | 94.515             | 29.742           | 34.737           |      | 43.28          |   | В      | С      |
| ATOM         | 7332         |          | VAL        |     |            |     | 93.027             | 29.567           | 34.503           |      | 44.04          |   | В      | C      |
| MOTA         | 7333         | CG2      | VAL        |     |            |     | 94.781             | 30.959           | 35.600           |      | 43.26          |   | В      | C      |
| MOTA         | 7334         | С        |            |     | 479        |     | 96.538             | 28.748           | 35.648           |      | 40.58<br>41.38 |   | B<br>B | C      |
| ATOM         | 7335         | 0        |            |     | 479        |     | 96.952             | 29.067<br>28.598 | 36.751<br>34.601 |      | 37.31          |   | В      | N.     |
| MOTA         | 7336         | N<br>CD  |            |     | 480<br>480 |     | 97.351<br>97.030   | 28.189           | 33.227           |      | 36.99          |   | В      | c      |
| ATOM<br>ATOM | 7337<br>7338 |          |            |     | 480        |     | 98.785             | 28.814           | 34.729           | 1.00 | 37.96          |   | В      | С      |
| MOTA         | 7339         | CB       |            |     | 480        |     | 99.339             | 28.136           | 33.495           |      | 35.71          |   | В      | C      |
| ATOM         | 7340         | CG       |            |     | 480        |     | 98.318             | 28.535           | 32.482           |      | 35.83          |   | В      | C      |
| ATOM         | 7341         | С        | PRO        | В   | 480        |     | 99.111             | 30.301           | 34.718           |      | 37.75<br>37.41 |   | В      | C      |
| MOTA         | 7342         | 0        |            |     | 480        |     | 98.275             | 31.151           | 34.337<br>35.130 |      | 35.85          |   | B<br>B | N      |
| ATOM         | 7343         | И        |            |     | 481        |     | 100.341<br>101.362 | 30.634<br>29.757 |                  |      | 36.77          |   | В      | Č      |
| MOTA         | 7344         | CD       |            |     | 481<br>481 |     | 101.302            | 32.015           | 35.162           |      | 37.26          |   | В      | ¢      |
| MOTA<br>MOTA | 7345<br>7346 |          |            |     | 481        |     | 102.080            | 31.924           |                  |      | 36.28          |   | В      | С      |
| *** 017      | , ,,,,,      |          | - 410      | -   |            |     |                    |                  |                  |      |                |   |        |        |

| ATOM | 7347 | CG  | PRO | R | 481   | 102.601  | 30.578  | 35.577 | 1.00        | 35.98 | В  | С  |
|------|------|-----|-----|---|-------|----------|---------|--------|-------------|-------|----|----|
|      |      |     |     |   |       |          |         |        |             | 37.58 | В  | Č  |
| MOTA | 7348 | C   | PRO |   | 481   | 101.062  | 32.454  | 33.740 |             |       |    |    |
| ATOM | 7349 | 0   | PRO | В | 481 . | 100.795  | 31.732  | 32.779 |             | 38.93 | В  | 0  |
| ATOM | 7350 | N   | PHE | В | 482   | 101.613  | 33.640  | 33.607 | 1.00        | 37.45 | B  | N  |
| ATOM | 7351 | CA  | PHE | В | 482   | 101.917  | 34.121  | 32.300 | 1.00        | 38.65 | В  | С  |
| ATOM | 7352 | СВ  | PHE |   |       | 101.685  | 35.621  | 32.242 | 1.00        | 41.63 | В  | С  |
|      |      |     |     |   |       |          | 36.308  | 31.193 |             | 44.00 | В  | Ċ  |
| ATOM | 7353 | CG  |     |   | 482   | 102.477  |         |        |             |       |    |    |
| ATOM | 7354 |     | PHE |   | 482   | 103.808  | 36.634  | 31.431 |             | 45.84 | В  | C  |
| ATOM | 7355 | CD2 | PHE | В | 482   | 101.908  | 36.632  | 29.968 | 1.00        | 44.53 | В  | C  |
| MOTA | 7356 | CE1 | PHE | В | 482   | 104.569  | 37.276  | 30.468 | 1.00        | 47.38 | В  | С  |
|      | 7357 |     | PHE |   |       | 102.661  | 37.279  | 28.988 |             | 46.45 | В  | С  |
| ATOM |      |     |     |   |       |          |         |        |             | 47.08 | B  | č  |
| ATOM | 7358 | CZ  | PHE |   |       | 103.998  | 37.601  | 29.241 |             |       |    |    |
| MOTA | 7359 | С   | PHE |   |       | 103.350  | 33.758  | 31.986 |             | 38.80 | В  | С  |
| ATOM | 7360 | 0   | PHE | В | 482   | 104.218  | 33.720  | 32.871 | 1.00        | 38.59 | В  | 0  |
| ATOM | 7361 | N   | TYR | В | 483   | 103.586  | 33.474  | 30.712 | 1.00        | 39.07 | В  | N  |
| ATOM | 7362 | CA  | TYR | R | 483   | 104.913  | 33.107  | 30.252 | 1.00        | 39.61 | В  | С  |
|      | 7363 | СВ  | TYR |   |       | 105.218  | 31.670  | 30.655 |             | 38.85 | В  | C. |
| ATOM |      |     |     |   |       |          |         |        |             |       |    |    |
| ATOM | 7364 | CG  | TYR |   | 483   | 104.461  | 30.651  | 29.844 |             | 38.09 | В  | C  |
| MOTA | 7365 | CD1 | TYR | В | 483   | 105.038  | 30.073  | 28.713 | 1.00        | 39.05 | В  | С  |
| ATOM | 7366 | CEl | TYR | В | 483   | 104.335  | 29.182  | 27.927 | 1.00        | 39.62 | В  | С  |
| ATOM | 7367 | CD2 | TYR | В | 483   | 103.157  | 30.304  | 30.171 | 1.00        | 36.85 | В  | С  |
| ATOM | 7368 |     | TYR |   | 483   | 102.441. | 29.413  | 29.391 |             | 37.42 | В  | C  |
|      |      |     |     |   | •     |          |         |        |             | 39.46 | В  | č  |
| ATOM | 7369 | CZ  | TYR |   | 483   | 103.032  | 28.860  |        |             |       |    |    |
| MOTA | 7370 | OH  | TYR | В | 483   | 102.318  | 27.992  | 27.485 |             | 43.22 | В  | 0  |
| ATOM | 7371 | С   | TYR | В | 483   | 104.991  | 33.244  | 28.743 | 1.00        | 40.22 | В  | Ç  |
| ATOM | 7372 | 0   | TYR | В | 483   | 103.973  | 33.282  | 28.050 | 1.00        | 39.29 | В  | 0  |
| ATOM | 7373 | N   | GLN |   | 484   | 106,211  | 33.318. |        | 1.00        | 42.76 | В  | N  |
|      |      |     |     |   |       |          |         | 26.824 |             | 46.91 | В  | Ċ  |
| ATOM | 7374 | CA  | GLN |   | 484   | 106.422  | 33.455  |        |             |       |    |    |
| MOTA | 7375 | CB  | GLN |   |       | 107.002  |         | 26.497 |             | 50.30 | В  | С  |
| ATOM | 7376 | CG  | GLN | В | 484   | 106.132  | 36.012  | 26.916 | 1,00        | 55.40 | В  | С  |
| ATOM | 7377 | CD  | GLN | В | 484   | 106.755  | 37.347  | 26.506 | 1.00        | 56.71 | В  | С  |
| ATOM | 7378 |     | GLN |   | 484   | 107.887  | 37.671  | 26.917 | 100         | 58.03 | В  | 0  |
|      |      |     |     |   |       | 106.024  | 38.129  | 25.697 |             | 56.99 | В  | N  |
| ATOM | 7379 |     | GLN |   | 484   |          |         | ŧ.     | - * · · · · |       |    |    |
| MOTA | 7380 | С   | GLN |   |       | 107.380  | 32.382  | 26.335 |             | 48.19 | В  | C. |
| ATOM | 7381 | 0   | GLN | В | 484   | 108.132  |         | 27.126 |             | 49.64 | В  | 0  |
| ATOM | 7382 | N   | LEU | В | 485   | 107.361  | 32.136  | 25.026 | 1,00        | 47.76 | В  | N  |
| MOTA | 7383 | CA  | LEU | В | 485   | 108.226  | 31.133  | 24.421 | 1.00        | 49.21 | В  | С  |
| ATOM | 7384 | СВ  | LEU |   | 485   | 107.642  |         | 24.666 | 1:00        | 50.10 | В  | C  |
|      |      |     |     |   |       |          |         |        | . ,         | 51.73 | В  | Č  |
| MOTA | 7385 | CG  | LEU |   | 485   | 106.409  |         | 23.836 |             |       |    |    |
| ATOM | 7386 | CD1 | LEU | В | 485.  | 106.025  | 27.937  | 24.210 |             | 53.70 | В  | С  |
| ATOM | 7387 | CD2 | LEU | В | 485   | 105.242  | 30.316  | 24.081 | 1.00        | 52.88 | В  | С  |
| ATOM | 7388 | С   | LEU | В | 485   | 108.375  | 31.348  | 22.919 | 1.00        | 49.95 | В  | С  |
| ATOM | 7389 | ō   | LEU |   |       | 107.539  | 31.994  | 22.282 | 1.00        | 49.66 | В  | 0  |
|      |      |     |     |   |       | 109.444  | 30.808  | 22.349 |             | 50.76 | В  | N  |
| ATOM | 7390 | N   | CYS |   |       |          |         |        |             |       |    |    |
| ATOM | 7391 | ÇA  | CYS |   |       | 109.645  | 30,931  | 20.911 |             | 52.34 | В  | C  |
| MOTA | 7392 | CB  | CYS | В | 486   | 111.079  | 31.389  | 20.588 | 1.00        | 55.46 | В  | С  |
| ATOM | 7393 | SG  | CYS | В | 486   | 111.599  | 32.987  | 21.316 | 1.00        | 63.36 | В. | S  |
| ATOM | 7394 | С   | CYS | В | 486   | 109.391  | 29.571  | 20.254 | 1.00        | 51.17 | В  | С  |
| MOTA | 7395 | ŏ   | CYS |   |       | 109.920  | 28.553  | 20.700 | 1.00        | 52.54 | В  | 0  |
|      |      |     |     |   |       |          | 29.549  | 19.210 |             | 48.15 | В  | N  |
| ATOM | 7396 | N   | PHE |   |       | 108.567  |         |        |             |       |    | Ċ  |
| ATOM | 7397 | CA  | PHE |   |       | 108.299  | 28.309  | 18.504 |             | 44.82 | В  |    |
| ATOM | 7398 | CB  | PHE | В | 487   | 106.883  | 28.298  | 17.921 |             | 40.77 | В  | Ç  |
| MOTA | 7399 | ÇG  | PHE | В | 487   | 105.815  | 28.020  | 18.930 | 1.00        | 36.20 | В  | С  |
| ATOM | 7400 |     | PHE |   |       | 105.383  | 29.014  | 19.790 | 1.00        | 35.43 | В  | С  |
| ATOM | 7401 |     | PHE |   |       | 105.256  | 26.752  | 19.039 | 1.00        | 35.36 | В  | С  |
| **** |      |     |     |   |       |          | 28.752  | 20.742 |             | 32.98 | В  | č  |
| ATOM | 7402 |     | PHE |   |       | 104.414  |         |        |             |       |    |    |
| ATOM | 7403 |     | PHE |   |       | 104.287  | 26.484  | 19.992 |             | 33.51 | В  | C  |
| ATOM | 7404 | CZ  |     |   | 487   | 103.868  | 27.488  | 20.841 |             | 32.62 | В  | С  |
| ATOM | 7405 | С   | PHE | В | 487   | 109.307  | 28.141  | 17.375 | 1.00        | 44.87 | В  | С  |
| MOTA | 7406 | ō   |     |   | 487   | 108.975  | 28.383  | 16.218 |             | 45.28 | В  | 0  |
|      |      | N   |     |   |       | 110.536  | 27.749  | 17.716 |             | 45.26 | В  | N  |
| MOTA | 7407 |     |     |   | 488   |          |         | 16.717 |             | 46.28 | В  | Ċ  |
| ATOM | 7408 | CA  |     |   | 488   | 111.583  | 27.536  |        |             |       |    |    |
| ATOM | 7409 | CB  | ILE | В | 488   | 112.966  | 27.180  | 17.351 |             | 44.71 | В  | С  |
| MOTA | 7410 | CG2 | ILE | В | 488   | 113.911  | 26.638  | 16.285 | 1.00        | 43.31 | В  | С  |
| ATOM | 7411 |     | ILE |   |       | 113.590  | 28.406  | 18.004 | 1.00        | 43.75 | В  | С  |
| ATOM | 7412 |     | ILE |   |       | 112.781  | 28.945  | 19.147 |             | 45.25 | В  | С  |
|      |      |     |     |   |       |          | 26.356  | 15.844 |             | 49.07 | В  | Č  |
| ATOM | 7413 | C   |     |   | 488   | 111.185  |         |        |             |       |    |    |
| MOTA | 7414 | 0   |     |   | 488   | 110.580  | 25,401  | 16.331 |             | 50.33 | В  | 0  |
| MOTA | 7415 | N   | PRO | В | 489   | 111.511  | 26.411  | 14.543 | _           | 51.37 | В  | N  |
| ATOM | 7416 | CD  | PRO | В | 489   | 111.936  | 27,631  | 13.838 | 1.00        | 52.69 | В  | С  |
| ATOM | 7417 | CA  |     |   | 489   | 111.203  | 25.349  | 13.583 | 1.00        | 52.99 | В  | C  |
| ATOM | 7418 | CB  |     |   | 489   | 111.625  | 25,950  | 12.252 |             | 53.87 | В  | С  |
|      |      |     |     |   |       |          | 27.398  | 12.450 |             | 53.92 | В  | Ċ  |
| ATOM | 7419 | CG  |     |   | 489   | 111.396  |         |        |             |       |    |    |
| ATOM | 7420 | С   | PRO | В | 489   | 112.004  | 24.097  | 13.910 |             | 53.73 | В  | С  |
| ATOM | 7421 | 0   | PRO | В | 489   | 112.069  | 23.677  | 15.064 | T.00        | 55.87 | В  | 0  |

| MOTA   | 7422 | N   | VAL | В | 490 | 112.648 | 23.527 | 12.900 | 1.00 | 54.08 | В | N   |
|--------|------|-----|-----|---|-----|---------|--------|--------|------|-------|---|-----|
| MOTA   | 7423 | CA  | VAL | В | 490 | 113.407 | 22.309 | 13.105 | 1.00 | 53.53 | В | С   |
| MOTA   | 7424 | CB  | VAL | В | 490 | 112.534 | 21.110 | 12.662 | 1.00 | 53.56 | В | С   |
| ATOM   | 7425 | CG1 | VAL | В | 490 | 111.437 | 20.863 | 13.685 | 1.00 | 51.64 | В | C   |
| ATOM   | 7426 | CG2 | VAL | В | 490 | 111.886 | 21.418 | 11.285 | 1.00 | 53.09 | В | С   |
| ATOM   | 7427 | С   | VAL | В | 490 | 114.785 | 22.282 | 12.408 | 1.00 | 54.58 | В | С   |
| MOTA   | 7428 | 0   | VAL | В | 490 | 114.851 | 22.385 | 11.147 | 1.00 | 54.44 | В | 0   |
| ATOM   | 7429 | OXT | VAL | В | 490 | 115.793 | 22.143 | 13,156 | 1.00 | 53.98 | В | 0   |
| TER    | 7429 |     | VAL | В | 490 |         |        |        |      |       |   |     |
| MOTA   | 7430 | FE1 | HEM | В | 501 | 84.057  | 18.537 | 29.656 | 1.00 | 16.67 | В | Fe  |
| ATOM   | 7431 | N2  | HEM | В | 501 | 83.673  | 18.710 | 31.784 | 1.00 | 15.91 | В | N   |
| MOTA   | 7432 | N3  | HEM | В | 501 | 86.120  | 18.897 | 29.977 | 1.00 | 12.57 | В | N   |
| ATOM   | 7433 | N4  | HEM | В | 501 | 84.233  | 19.007 | 27.593 | 1.00 | 11.85 | В | N   |
| ATOM   | 7434 | พ5  | HEM | В | 501 | 81.852  | 18.831 | 29.321 | 1.00 | 15.30 | В | N   |
| ATOM   | 7435 | C6  | HEM | В | 501 | 82.551  | 18.153 | 32.325 |      | 17.80 | В | C   |
| ATOM   | 7436 | C7  | HEM | В | 501 | 82.881  | 17.683 | 33.681 |      | 18.40 | В | C   |
| ATOM   | 7437 | C8  | HEM | В | 501 | 84.220  | 17.838 | 33.864 | 1.00 | 16.82 | В | C   |
| ATOM   | 7438 | C9  | HEM | В | 501 | 84.819  | 18.408 | 32.649 | 1.00 | 15.63 | В | С   |
| ATOM   | 7439 | C10 | HEM | В | 501 | 86.811  | 18.802 | 31.109 |      | 13.53 | В | C   |
| ATOM   | 7440 |     | HEM |   |     | 88.217  | 18.925 | 30.807 |      | 13.53 | В | Ċ   |
| ATOM   | 7441 | C12 | HEM | В | 501 | 88.338  | 19.043 | 29.479 |      | 13.52 | В | С   |
| ATOM   | 7442 | C13 | HEM | В | 501 | 87.022  | 19.071 | 28.885 |      | 13.83 | В | C   |
| ATOM   | 7443 | C14 | HEM | В | 501 | 85.396  | 19.244 | 26,950 | 1.00 | 13.88 | В | С   |
| ATOM   | 7444 | C15 | HEM |   |     | 85.112  | 19.472 | 25.546 |      | 14.61 | В | Ċ   |
| ATOM   | 7445 |     | HEM |   |     | 83.792  | 19.498 | 25.365 |      | 16.46 | В | Č   |
| ATOM   | 7446 |     | HEM |   |     | 83.140  | 19.239 | 26.660 |      | 14.40 | B | č   |
| ATOM   | 7447 |     | HEM |   |     | 81.143  | 19.049 | 28.212 |      | 14.87 | В | č   |
| MOTA   | 7448 |     | HEM |   |     | 79.712  | 19.039 | 28.550 |      | 15,38 | В | Č   |
| ATOM   | 7449 |     | HEM |   |     | 79.593  | 18.619 | 29.821 |      | 16.21 | В | č   |
| ATOM   | 7450 |     | HEM |   |     | 80.942  | 18.502 | 30.403 |      | 16.79 | B | Ċ.  |
| ATOM   | 7451 |     | HEM |   |     | 81.225  | 18.118 | 31.671 |      | 16.79 | B | Č   |
| ATOM   | 7452 |     | HEM |   |     | 86.158  | 18.572 | 32.415 |      | 14.27 | В | č   |
| ATOM   | 7453 |     | HEM |   |     | 86.757  | 19.230 | 27.590 |      | 14.50 | B | Č.  |
| MOTA   | 7454 |     | HEM |   |     | 81,792  | 19.278 | 26.894 |      | 17.30 | B | č   |
| MOTA   | 7455 |     | HEM |   |     | 85.019  | 17.724 | 35.112 |      | 15.35 | B | č   |
| MOTA   | 7456 |     | HEM |   |     | 81.853  | 16.873 | 34.514 |      | 17.00 | B | Č   |
| MOTA   | 7457 |     | HEM |   |     | 81.126  | 17.508 | 35.714 |      | 21.69 | В | c   |
| MOTA   | 7458 |     | HEM |   |     | 80.631  | 16.370 | 36.660 |      | 21.98 | В | c ' |
| ATOM   | 7459 |     | HEM |   |     | 79.540  | 15.750 | 36,172 |      | 24.24 | В | ŏ   |
| ATOM " | 7460 |     | HEM |   |     | 81.186  | 16.038 | 37.638 |      | 21.51 | В | ŏ   |
| ATOM   | 7461 |     | HEM |   |     | 89.294  | 18.594 | 31.848 |      | 13.95 | В | č   |
| ATOM   | 7462 |     | HEM |   | 501 | 89.534  | 19.429 | 28.639 |      | 17.36 | В | c   |
| ATOM   | 7463 |     | HEM |   | 501 | 90.648  | 18.406 | 28.616 |      | 19.30 | В | c   |
| MOTA   | 7464 |     | HEM |   |     | 86.207  | 19.898 | 24.590 |      | 11.84 | В | č   |
| ATOM   | 7465 |     | HEM |   |     | 82.970  | 19.411 | 24.090 |      | 16.89 | В | ·č  |
|        |      |     |     |   |     |         |        |        |      |       |   |     |
| ATOM   | 7466 |     | HEM |   |     | 82.224  | 18.080 | 23,860 |      | 21.33 | В | C   |
| MOTA   | 7467 |     | HEM |   |     | 78.623  | 19.215 | 27.527 |      | 13.95 | В | C   |
| ATOM   | 7468 |     | HEM |   |     | 78.327  | 18.448 | 30.673 |      | 15.82 | В | C   |
| ATOM   | 7469 |     | HEM |   | 501 | 78.234  | 17.047 | 31.318 |      | 21.57 | В | С   |
| ATOM   | 7470 |     | HEM |   |     | 76.826  | 16.714 | 31.827 |      | 25.67 | В | C   |
| ATOM   | 7471 |     | HEM |   |     | 76.106  | 15.921 | 31.309 |      | 28.06 | В | 0   |
| ATOM   | 7472 | 043 | HEM | В | 201 | 76.505  | 17.425 | 32.917 | 1.00 | 28.44 | В | 0   |
| END    |      |     |     |   |     |         |        |        |      |       |   |     |

## Figure 4

### Table 7

| ATOM   | 1474 | N         | ILE   | : 7 | 215   |    | 4.223   | 83.036 | 37.035 | 1 00 | 15.00 |   |     |
|--------|------|-----------|-------|-----|-------|----|---------|--------|--------|------|-------|---|-----|
| ATOM   | 1475 |           |       |     | 215   |    |         |        |        |      |       |   | N   |
|        |      |           |       |     |       |    | 3.197   |        |        |      | 15.00 |   | С   |
| MOTA   | 1476 |           |       |     | 215   |    | 3.067   | 84.892 | 38.208 | 1.00 | 15.00 |   | C   |
| ATOM   | 1477 |           |       |     | 215   |    | 2.028   | 85.215 | 39.273 | 1,00 | 15.00 |   | C   |
| ATOM   | 1478 | CG1       | ILE   | P   | 215   |    | 4.414   | 85.493 | 38.614 |      | 15.00 |   | Č   |
| ATOM   | 1479 | CD1       | ILE   |     | 215   |    | 4.380   |        | 38.807 |      | 15.00 |   |     |
| ATOM   | 1480 | C         |       |     | 215   |    |         |        |        |      |       |   | C   |
|        |      |           |       |     |       |    | 1.833   |        | 37.623 |      | 15.00 |   | С   |
| ATOM   | 1481 | 0         | TPE   | P   | 215   |    | 0.973   | 82.562 | 38.475 | 1.00 | 55.09 |   | 0   |
|        |      |           |       |     |       |    |         |        |        |      |       |   |     |
| MOTA   | 5164 | N         | ILE   | В   | 215   |    | 81.352  | 35.442 | 46.381 | 1.00 | 15.00 |   | N   |
| ATOM   | 5165 | CA        | ILE   | В   | 215   |    | 80.598  |        | 47.404 |      | 15.00 |   |     |
| ATOM   | 5166 | СВ        |       |     | 215   |    | 81.045  |        | 47.501 |      |       |   | C   |
| ATÓM   | 5167 |           |       |     | 215   |    | 80.394  |        |        |      | 15.00 |   | С   |
| MOTA   |      |           |       |     |       |    |         | 38.317 | 48.701 |      | 15.00 |   | С   |
|        | 5168 |           |       |     | 215   |    | 82.565  | 37.732 | 47.651 | 1.00 | 15.00 |   | С   |
| ATOM   | 5169 |           |       |     | 215   |    | 83.091  | 39.143 | 47.828 | 1.00 | 15.00 |   | С   |
| ATOM   | 5170 | С         | ILE   | В   | 215   |    | 79.094  | 36.111 | 47.112 | 1.00 | 15.00 |   | С   |
| ATOM   | 5171 | 0         | ILE   | В   | 215   |    | 78.271  | 36.250 | 48.021 |      | 48.67 |   | ŏ   |
|        |      |           |       |     |       |    |         |        |        |      | ,     |   | •   |
| ATOM   | 1482 | N         | CVS   | A   | 216   |    | 1.623   | 82.622 | 26 221 | 1 00 | 15 00 |   |     |
| ATOM   | 1483 | CA        |       |     |       |    |         |        | 36.321 |      | 15.00 |   | N   |
|        |      |           |       |     | 216   |    | 0.370   | 82.084 | 35.808 | 1.00 | 15.00 |   | С   |
| ATOM   | 1484 | СB        |       |     | 216   |    | 0.244   | 82.381 | 34.313 | 1.00 | 15.00 |   | C   |
| ATOM   | 1485 | SG        | CYS   | Α   | 216   |    | 0.287   | 84.150 | 33.907 | 1.00 | 15.00 |   | . S |
| MOTA   | 1486 | С         | CYS   | A   | 216   |    | 0.283   | 80.580 | 36.072 |      | 15.00 |   | č   |
| ATOM   | 1487 | 0         |       |     | 216   |    | -0.809  | 80.032 |        |      |       |   |     |
|        |      | •         |       | ••  |       |    | 0.003   | 00.032 | 36.242 | 1.00 | 44.98 |   | 0   |
| ATOM   | 6170 | <b>NT</b> | CVO   |     | 320   | -, | 70 ***  |        | 45     |      |       |   |     |
|        | 5172 | N         |       |     | 216   |    | 78.749  | 35.959 | 45.837 | 1.00 | 15.00 |   | N   |
| ATOM   | 5173 | CA        | CYS   | В   | 216   |    | 77.355  | 35.886 | 45.407 | 1.00 | 15.00 |   | С   |
| ATOM   | 5174 | CB        | CÝS   | В   | 216   |    | 77.253  | 36.134 | 43.900 | 1.00 | 15.00 |   | c   |
| ATOM   | 5175 | SG        | CYS   | В   | 216.  |    | 77.846  | 37.757 | 43.356 |      | 15.00 |   | s   |
| ATOM   | 5176 | C         |       |     | 216   |    | 76.743  | 34.530 |        |      |       |   |     |
| ATOM   | 5177 | ō.        |       |     | 216   |    | 75.547  |        | 45.750 |      | 15.00 |   | C   |
| AT OF  | 3177 | υ,        | CIS   | В   | . 410 |    | 75.547  | 34.433 | 46.035 | 1.00 | 51.99 |   | 0   |
|        |      |           |       | _   |       |    |         |        |        |      |       |   | •   |
| MOTA   | 1515 | N         |       |     | 220   |    | -3.379  | 79.751 | 39.065 | 1.00 | 15.00 | • | N   |
| ATOM   | 1516 | CA        | SER   | A   | 220   |    | -4.329  | 79.529 | 37.983 | 1.00 | 15.00 |   | С   |
| ATOM   | 1517 | CB.       | SER   | Α   | 220   |    | -4.969  | 78.135 | 38.108 |      | 15.00 |   | c   |
| ATOM   | 1518 | OĠ        |       |     | 220   |    | -5.608  | 77.953 | 39.368 |      | 15.00 |   |     |
| ATOM   | 1519 | c ·       |       |     | .220  |    |         |        |        |      |       |   | 0   |
|        |      |           |       |     |       |    | -5.412  | 80.607 | 37.811 |      | 15.00 |   | С   |
| MOTA   | 1520 | 0         | SER   | А   | 220   |    | -5.844  | 80.872 | 36.688 | 1.00 | 50.32 |   | 0   |
|        |      |           |       |     |       |    |         |        |        |      |       |   |     |
| ATOM   | 5205 | N         | SER   | В   | 220   |    | 72.877  | 35.045 | 48.647 | 1.00 | 15.00 |   | N   |
| MOTA   | 5206 | CA        | SER   | В   | 220   |    | 71.967  | 35.210 | 47.518 |      | 15.00 |   | C   |
| ATOM   | 5207 | CB        | SER   | В   | 220   |    | 70.808  | 34.203 | 47.612 |      | 15.00 |   | č   |
| ATOM   | 5208 | OG        | SER   |     |       |    | 70.117  | 34.298 | 48.855 |      |       |   |     |
| ATOM   | 5209 | c         |       |     |       |    |         |        |        |      | 15.00 |   | 0   |
|        |      |           |       |     | 220   |    | 71.429  | 36.633 | 47.314 |      | 15.00 |   | С   |
| MOTA   | 5210 | ٥.        | SER   |     | 220   |    | 71.171  | 37.038 | 46.181 | 1.00 | 51.16 |   | 0   |
|        |      |           |       | •   |       |    |         | •      |        |      |       |   |     |
| ATOM   | 1521 | N         | PRO   | Α   | 221   |    | -5.890  | 81.214 | 38.916 | 1.00 | 15.00 |   | N   |
| AŤOM   | 1522 | CD        | PRO   | A   | 221   |    | -5.680  | 80.848 | 40.329 | 1.00 | 15.00 |   | С   |
| MOTA   | 1523 | CA        | PRO   |     |       |    | -6.925  | 82.249 | 38.807 |      | 15.00 |   | Č   |
| ATOM   | 1524 | CB        | PRO   |     |       |    | -7.492  | 82.306 |        |      |       |   |     |
| ATOM   |      |           |       |     |       |    |         |        | 40.226 |      | 15.00 |   | C   |
|        | 1525 | CG        | PRO.  |     |       |    | -6.300  | 82.007 | 41.063 |      | 15.00 | • | С   |
| ATOM   | 1526 | С         | PRO   |     |       |    | -6.425  | 83.625 | 38.355 | 1.00 | 15.00 |   | С   |
| ATOM   | 1527 | 0.        | PRO   | Α   | 221   |    | -7.203  | 84.577 | 38.280 | 1.00 | 51.31 |   | 0   |
|        |      |           |       |     |       |    | •       |        |        |      |       |   |     |
| MOTA   | 5211 | N         | PRO   | В   | 221   |    | 71,206  | 37.391 | 48.407 | 1.00 | 15.00 |   | 'n  |
| ATOM   | 5212 | CD        | PRO   |     |       |    | 71.113  | 36.974 | 49.819 |      | 15.00 |   |     |
| ATOM   | 5213 | CA        |       |     |       |    |         |        |        |      |       |   | c   |
|        |      |           | PRO   |     |       |    | 70.693  | 38.757 | 48.244 |      | 15.00 |   | С   |
| ATOM . | 5214 | CB        | PRO   |     |       |    | 70.095  | 39.056 | 49.618 | 1.00 | 15.00 |   | С   |
| ATOM   | 5215 | CG        | PRO   | В   | 221   |    | 70.984  | 38.290 | 50.537 | 1.00 | 15.00 |   | С   |
| ATOM   | 5216 | С         | PRO   | В   | 221   |    | 71.718  | 39.823 | 47.838 | 1.00 | 15.00 |   | С   |
| MOTA   | 5217 | 0         | PRO   |     |       |    | 71.450  | 41.019 | 47.965 |      | 46.61 |   | ō   |
|        |      | •         |       | _   |       |    | .21.100 |        | 47,505 | 1.00 |       |   | •   |
| ATOM   | 1528 | N         | ILE   | 70  | 222   |    | -5 101  | 02 751 | 20 100 | 1 00 | 15.00 |   | **  |
|        |      |           |       |     |       |    | -5.121  | 83.751 | 38.129 |      |       |   | N   |
| ATOM   | 1529 | CA        | ILE   |     |       |    | -4.559  | 85.019 | 37.679 |      | 15.00 |   | С   |
| MOTA   | 1530 | CB        | ILE   |     |       |    | -3.083  | 85.168 | 38.106 | 1.00 | 15.00 |   | С   |
| MOTA   | 1531 | CG2       | ILE   | A   | 222   |    | -2.379  | 86.251 | 37.290 | 1.00 | 15.00 |   | С   |
| ATOM   | 1532 | CG1       | ILE   | A   | 222   |    | -3.020  | 85.485 | 39.601 |      | 15.00 |   | С   |
| ATOM   | 1533 |           | ILE   |     |       |    | -1.630  | 85.776 | 40.115 |      |       |   | č   |
| ATOM   | 1534 | C         | ILE   |     |       |    | -4.723  |        |        |      |       |   |     |
|        |      |           |       |     |       |    |         | 85.171 | 36.170 | 1.00 |       |   | C   |
| MOTA   | 1535 | 0         | ILE . | A   | 222   |    | -4.843  | 86.285 | 35.658 | 1.00 | 28.80 |   | 0   |
|        |      |           |       |     | ٠.    |    |         |        |        |      |       |   |     |
| ATOM   | 5218 | N         | ILE   | B.  | 222   |    | 72.908  | 39.398 | 47.423 | 1.00 | 15.00 |   | N   |
|        |      |           |       |     |       |    |         |        |        |      |       |   |     |

· 298/514

| ATOM | 5219 | CA  | ILE  | В | 222 |   | 73.943 | 40.337 | 46.995 |      | 15.00 |   | C |
|------|------|-----|------|---|-----|---|--------|--------|--------|------|-------|---|---|
| ATOM | 5220 | CB  | ILE  | В | 222 |   | 75.368 | 39.820 | 47.340 | 1.00 | 15.00 |   | С |
| ATOM | 5221 | CG2 | ILE  | В | 222 |   | 76.438 | 40.579 | 46.551 | 1.00 | 15.00 |   | С |
| ATOM | 5222 | CG1 | ILE  | В | 222 |   | 75.615 | 39.962 | 48.845 | 1.00 | 15.00 |   | C |
| ATOM | 5223 | CD1 |      |   | 222 |   | 77.029 |        | 49,276 | 1.00 | 15.00 | • | C |
| MOTA | 5224 | c   |      |   | 222 |   | 73.819 |        | 45.503 | 1.00 | 15.00 |   | С |
| ATOM | 5225 | ō   |      |   | 222 |   | 74,114 |        | 45.061 |      | 39.34 |   | 0 |
| AIOM | 3423 | J   | **** | _ |     |   | 14444  | 421102 |        |      |       |   | _ |
| MOTA | 1536 | N   | ILE  | Α | 223 |   | -4.728 | 84.041 | 35.469 | 1.00 | 15.00 |   | N |
| ATOM | 1537 | CA  |      |   | 223 |   | -4.891 | B4.018 | 34.016 | 1.00 | 15.00 |   | С |
| ATOM | 1538 | CB  |      |   | 223 | • | -4.744 | 82.580 | 33.453 | 1.00 | 15.00 |   | C |
| ATOM | 1539 | CG2 |      |   | 223 |   | -4.742 |        | 31.925 |      | 15.00 |   | Ċ |
| ATOM | 1540 | CG1 |      |   |     |   | -3.447 |        | 33.965 |      | 15.00 | , | С |
| ATOM | 1541 | CD1 |      |   | 223 |   | -3.270 |        | 33.543 |      | 15.00 |   | C |
| ATOM |      | .c  |      |   | 223 |   | -6.269 |        |        |      | 15.00 |   | Č |
|      | 1543 | .0  |      |   | 223 |   | -6.446 |        | 32.554 |      | 67.97 |   | ō |
| ATOM | 1545 | U   | IDE  | • | 223 |   | -0.440 | 03.133 | 32.331 | 1.00 | 0,.5. |   | • |
| MOTA | 5226 | N   | TLE  | R | 223 |   | 73.381 | 39.644 | 44.737 | 1.00 | 15.00 |   | N |
| ATOM | 5227 | CA  |      |   | 223 |   | 73.200 |        | 43.295 |      | 15.00 |   | С |
| ATOM | 5228 | CB  |      |   | 223 |   | 72.752 |        | 42.652 |      | 15.00 |   | C |
| MOTA | 5229 | CG2 |      |   | 223 |   | 72.736 | 38.578 | 41.134 |      | 15.00 |   | C |
| ATOM | 5230 | CG1 |      |   | 223 |   | 73.699 |        | 43.069 |      | 15.00 |   | Ċ |
|      | 5231 | CD1 |      | _ | 223 |   | 73.305 |        | 42.537 |      | 15.00 |   | č |
| ATOM |      | CDI |      |   | 223 |   | 72.153 | 40.874 | 43.004 |      | 15.00 |   | c |
| ATOM | 5232 | 0   |      |   | 223 |   | 72.218 | 41.552 | 41.975 |      | 54.95 |   | ŏ |
|      |      |     |      |   |     |   |        |        |        |      |       |   |   |

### Figure 5 Table 8

|        |     |     | 220   | 2 | 30 | 6 070  | 61 226 | 49.245 | 1 00 | 61.00 |   | N   |
|--------|-----|-----|-------|---|----|--------|--------|--------|------|-------|---|-----|
| ATOM   | 1   | N   | PRO   |   | 30 | 6.878  | 61.335 |        |      |       |   | Ċ   |
| ATOM   | 2   | CA  | PRO   |   | 30 | 8.014  | 61.919 | 48.416 |      | 61.43 |   |     |
| ATOM   | 4   | CB  | PRO   | Α | 30 | 7.464  | 61.966 | 46.979 |      | 61.58 |   | C   |
| ATOM   | 7   | CG  | PRO   | Α | 30 | 6.154  | 61.199 | 47.016 |      | 63.73 |   | С   |
| ATOM   | 10  | CD  | PRO   | Α | 30 | 5.664  | 61.064 | 48.459 | 1.00 | 62.97 |   | C   |
| ATOM   | 13  | С   | PRO   | А | 30 | 8.336  | 63.307 | 48.907 | 1.00 | 58.16 |   | Ç   |
| ATOM   | 14  | ō   | PRO   |   | 30 | 7.494  | 64.150 | 48.681 | 1.00 | 61.01 |   | 0   |
|        |     |     |       |   | 31 | 9.496  | 63.542 | 49,529 |      | 55.37 |   | N   |
| ATOM   | 17  | N   | PRO   |   |    |        |        | 50.431 |      | 53.40 |   | C   |
| ATOM ' | 18  | CA  | PRO   |   | 31 | 9.698  | 64.685 |        |      |       |   | č   |
| ATOM   | 20  | CB  | PRO   |   | 31 | 11.078 | 64.414 | 51.056 |      | 52.92 |   | c   |
| MOTA   | 23  | CG  | PRO   | A | 31 | 11.798 | 63.562 | 50.074 |      | 53.95 |   |     |
| ATOM   | 26  | CD  | PRO   | A | 31 | 10.733 | 62.755 | 49.377 |      | 56.47 |   | С   |
| ATOM   | 29  | С   | PRO   | Α | 31 | 9.722  | 65.984 | 49.683 | 1.00 | 53.45 |   | , c |
| ATOM   | 30  | 0   | PRO   | Α | 31 | 9.553  | 65.933 | 48.486 | 1.00 | 58.59 |   | 0   |
| ATOM   | 31  | N   | GLY   |   | 32 | 9.945  | 67.100 | 50.368 | 1.00 | 53.10 |   | N   |
| ATOM   | 33  | CA  | GLY   |   | 32 | 10.008 | 68.411 | 49.742 | 1.00 | 52.79 |   | С   |
|        | 36  | C   | GLY   |   | 32 | 9.588  | 69.477 | 50.736 |      | 54.93 |   | С   |
| ATOM   |     |     |       |   | 32 | 8.930  | 69.157 | 51.728 |      | 56.94 |   | 0   |
| ATOM   | 37  | 0   | GLY   |   |    |        |        | 50.474 |      | 54.97 |   | N   |
| ATOM   | 38  | N   | PRO   |   | 33 | 9.906  | 70.742 |        |      |       |   | č   |
| ATOM   | 39  | CA  | PRO   | Α | 33 | 9.568  | 71.805 | 51.421 |      | 56.07 |   |     |
| ATOM   | 41  | CB  | PRO   | Α | 33 | 10.115 | 73.090 | 50.767 |      | 55.27 |   | c   |
| ATOM   | 44  | CG  | PRO   | A | 33 | 10.286 | 72.764 | 49.341 |      | 56.42 |   | С   |
| ATOM   | 47  | CD  | PRO   | Α | 33 | 10.501 | 71.274 | 49.241 | 1.00 | 56.05 |   | С   |
| ATOM   | 50  | С   | PRO   |   | 33 | 8.067  | 71.886 | 51.550 | 1.00 | 56.18 |   | С   |
| ATOM   | 51  | ō   | PRO   |   | 33 | 7,380  | 71.707 | 50.543 | 1.00 | 55,49 |   | 0   |
|        |     |     | THR   |   | 34 | 7.599  | 72.100 | 52.779 |      | 58.13 |   | N   |
| MOTA   | 52  | N   |       |   |    | 6.201  | 72.390 | 53.080 |      | 59.19 |   | C   |
| ATOM   | 54  | CA  | THR   |   | 34 |        |        |        |      |       |   | č   |
| ATOM   | 56  | CB  | THR   |   | 34 | 5.926  | 72.433 | 54.640 |      | 62.47 |   |     |
| ATOM   | 58  |     | THR   |   | 34 | 7.144  | 72.686 | 55.359 |      | 67.08 |   | 0   |
| ATOM   | 60  | CG2 | THR   | Α | 34 | 5.437  | 71.068 | 55.183 |      | 63.35 |   | С   |
| ATOM   | 64  | С   | THR   | Α | 34 | 5.791  | 73.729 | 52.439 | 1.00 | 55.16 |   | С   |
| ATOM   | 65  | 0   | THR   | Α | 34 | 6.429  | 74.773 | 52.658 | 1.00 | 49.57 |   | 0   |
| ATOM   | 66  | N   | PRO   |   | 35 | 4.727  | 73.688 | 51.647 | 1.00 | 52.53 |   | N   |
| ATOM   | 67  | CA  | PRO   |   | 35 | 4.228  | 74.872 | 50.942 | 1.00 | 57.60 |   | С   |
|        |     |     |       |   | 35 | 3.455  | 74.258 | 49.792 |      | 58.33 |   | С   |
| ATOM   | 69  | CB  | PRO   |   |    |        | 72.968 | 50.404 |      | 57.16 |   | č   |
| ATOM   | 72  | CG  | PRO   |   | 35 | 2.904  | _      |        |      |       |   | č   |
| MOTA   | 75  | CD  | PRO   |   | 35 | 3.938  | 72.483 | 51.341 |      | 51.06 |   |     |
| MOTA   | 78  | С   | PRO   | Α | 35 |        | 75.743 | 51.773 |      | 62.91 |   | С   |
| MOTA   | 79  | 0   | PRO   | Α | 35 | 2.536  | 75.227 | 52.604 |      | 66.03 |   | 0   |
| ATOM   | 80  | N   | LEU   | A | 36 | 3.305  | 77.048 | 51.521 | 1.00 | 66.79 |   | N.  |
| ATOM   | 82  | CA  | LEU   |   | 36 | 2.446  | 78.003 | 52.213 | 1.00 | 67.88 |   | С   |
| ATOM   | 84  | СВ  | LEU   |   | 36 | 3.057  | 79.408 | 52.135 | 1.00 | 65.49 |   | С   |
| ATOM   | 87  | CG  | LEU   |   | 36 | 4.111  | 79.725 | 53.197 |      | 64.24 |   | С   |
|        |     |     |       |   |    |        | 81.209 | 53.112 |      | 63.99 |   | C   |
| ATOM   | 89  |     | LEU   |   | 36 | 4.514  |        |        |      | 63.01 |   | č   |
| ATOM   | 93  |     | LEU   |   | 36 | 3.662  | 79.351 | 54.623 |      |       |   | č   |
| MOTA   | 97  | С   | LEU   |   | 36 | 1.030  | 77.983 | 51.620 |      | 72.00 |   |     |
| ATOM   | 98  | 0   | LEU   | A | 36 | 0.858  | 77.570 | 50.462 |      | 71.33 |   | 0   |
| ATOM   | 99  | N   | PRO   | Α | 37 | 0.035  | 78.432 | 52.407 |      | 74.53 |   | N   |
| ATOM   | 100 | CA  | PRO   | A | 37 | -1.382 | 78.218 | 52.092 | 1.00 | 74.69 |   | С   |
| ATOM   | 102 | CB  | PRO   | Α | 37 | -2.088 | 79.290 | 52.938 | 1.00 | 76.28 | • | С   |
| ATOM   | 105 | CG  | PRO   |   | 37 | -1.215 | 79.481 | 54.139 | 1.00 | 76.86 |   | С   |
| ATOM   | 108 | CD  | PRO   |   | 37 | 0.187  | 79.182 | 53.674 | 1.00 | 75.76 |   | С   |
|        |     | c   | PRO   |   | 37 | -1.764 | 78.338 | 50.611 |      | 73.79 |   | С   |
| MOTA   | 111 |     |       |   | 37 | -2.268 | 77.360 | 50.048 |      | 77.01 |   | 0   |
| ATOM   | 112 | 0   | PRO   |   |    |        |        |        |      | 70.46 |   | N   |
| ATOM   | 113 | N   | VAL   |   | 38 | -1.543 | 79.487 | 49.985 |      |       |   | Ċ   |
| MOTA   | 115 | CA  | VAL   | A | 38 | -1.994 | 79.671 | 48.593 |      | 71.17 |   |     |
| ATOM   | 117 | CB  | VAL   | A | 38 | -3.048 | 80.830 | 48.485 |      | 72.09 |   | C   |
| ATOM   | 119 | CG1 | VAL   | Α | 38 | -2.494 | 82.160 | 49.039 |      | 72.48 |   | С   |
| MOTA   | 123 | CG2 | VAL   | A | 38 | -3.559 | 80.997 | 47.039 |      | 72.34 |   | С   |
| ATOM   | 127 | C   | VAL   |   | 38 | -0.831 | 79.878 | 47.593 | 1.00 | 70.86 |   | С   |
| ATOM   | 128 | ō   | VAL   |   | 38 | -0.965 | 79.565 | 46.396 | 1.00 | 71.52 |   | 0   |
|        |     |     |       |   | 39 | 0.301  | 80.381 |        |      | 68.60 |   | N   |
| MOTA   | 129 | N   | ILE   |   |    |        | 80.736 | 47.272 |      | 65.17 |   | Ċ   |
| ATOM   | 131 | CA  | ILE   |   | 39 | 1.465  |        | 47.914 |      | 65.20 |   | Č   |
| ATOM   | 133 | CB  | ILE   |   | 39 | 2.272  | 81.901 |        |      |       |   | č   |
| MOTA   | 135 |     | ILE   |   | 39 | 2.423  | 81.696 | 49.430 |      | 67.49 |   |     |
| ATOM   | 138 | CD1 | ILE   | A | 39 | 3.548  | 82.502 | 50.052 |      | 68.54 |   | C   |
| ATOM   | 142 |     | ! ILE |   | 39 | 1.632  | 83.243 | 47.590 |      | 61.63 |   | С   |
| ATOM   | 146 | C   | ILE   |   | 39 | 2.407  | 79.552 | 46.976 | 1.00 | 64.64 |   | C   |
| ATOM   | 147 | ŏ   | ILE   |   | 39 | 3,514  | 79.747 | 46.452 |      | 61.51 |   | 0   |
| ATOM   | 148 | N   | GLY   |   | 40 | 1.966  | 78.333 | 47.292 |      | 61.40 | • | N   |
|        |     |     |       |   |    | 2.721  | 77.146 | 46.949 |      | 57.61 |   | С   |
| ATOM   | 150 | CA  | GLY   |   | 40 |        |        |        |      | 55.40 |   | . c |
| ATOM   | 153 | С   | GLY   |   | 40 | 4.116  | 77.243 | 47.522 |      |       |   | ő   |
| ATOM   | 154 | 0   | GLY   |   | 40 | 4.275  | 77.687 | 48.659 |      | 53.09 |   |     |
| MOTA   | 155 | N   | ASN   | A | 41 | 5.121  | 76.863 | 46.728 | 1.00 | 52.11 |   | N   |
|        |     |     |       |   |    |        |        |        |      |       |   |     |

|              |            |           |            |   |          |                    | Figu             | ıre 5            |      |                |            |   |        |
|--------------|------------|-----------|------------|---|----------|--------------------|------------------|------------------|------|----------------|------------|---|--------|
| MOTA         | 157        | CA        | ASN        |   | 41       | 6.507              | 76.838           | 47.182           |      | 46.90          |            |   | C      |
| ATOM         | 159        | CB        | ASN        |   | 41       | 7.155              | 75.507           | 46.801           |      | 44.37<br>45.32 |            |   | C      |
| ATOM<br>ATOM | 162<br>163 | CG        | ASN<br>ASN |   | 41<br>41 | 6.996<br>7.345     | 74.450<br>74.669 | 47.869<br>49.022 |      | 51.73          |            |   | ŏ      |
| ATOM         | 164        |           | ASN        |   | 41       | 6.492              | 73.289           | 47.493           |      | 46.81          |            |   | N      |
| ATOM         | 167        | C         | ASN        | A | 41       | 7.304              | 78.004           | 46.624           |      | 48.76          |            |   | C      |
| ATOM         | 168        | 0         | ASN        |   | 41       | 8.516              | 77.991           | 46.685           |      | 51.72<br>51.11 |            |   | N<br>N |
| ATOM<br>ATOM | 169<br>171 | n<br>Ca   | ILE        |   | 42<br>42 | 6.621<br>7.251     | 79.034<br>80.137 | 46.128<br>45.395 |      | 54.36          |            |   | Č      |
| ATOM         | 173        | CB        | ILE        |   | 42       | 6.162              | 81.148           | 44.855           |      | 57.29          |            |   | C      |
| ATOM         | 175        |           | ILE        |   | 42       | 6.600              | 81.775           | 43.525           |      | 57.47          |            |   | C      |
| MOTA         | 178        |           | ILE        |   | 42       | 5.581              | 82.752           | 42.926           |      | 56.59          |            |   | C      |
| ATOM<br>ATOM | 182<br>186 | CG2       | ILE        |   | 42<br>42 | 5.853<br>8.306     | 82.270<br>80.922 | 45.876<br>46.158 |      | 57.93<br>56.53 |            |   | Č      |
| ATOM         | 187        | ŏ         | ILE        |   | 42       | 9.143              | 81.564           | 45.547           |      | 63.07          |            |   | 0      |
| ATOM         | 188        | N         | LEU        |   | 43       | 8.248              | 80.956           | 47.481           |      | 60.90          |            |   | N      |
| ATOM         | 190        | CA        | LEU        |   | 43       | 9.274              | 81.697           | 48.228<br>49.705 |      | 61.26<br>60.92 |            |   | C      |
| ATOM<br>ATOM | 192<br>195 | CB<br>CG  | LEU<br>LEU |   | 43<br>43 | 8.884<br>8.148     | 81.871<br>83.156 | 50.143           |      | 58.93          |            |   | č      |
| ATOM         | 197        |           | LEU        |   | 43       | 7.493              | 83.955           | 49.002           | 1.00 | 58.38          |            |   | С      |
| ATOM         | 201        |           | LEU        |   | 43       | 7.126              | 82.814           | 51.210           |      | 58.58          |            |   | C      |
| MOTA         | 205        | C         | LEU        |   | 43<br>43 | 10.605<br>11.626   | 80.962<br>81.576 | 48.079<br>47.847 |      | 61.13<br>63.68 |            | • | С<br>0 |
| ATOM<br>ATOM | 206<br>207 | N<br>O    | LEU<br>GLN |   | 44       | 10.550             | 79.640           | 48.146           |      | 62.00          |            |   | N      |
| ATOM         | 209        | CA        | GLN        |   | 44       | 11.721             | 78.770           | 48.050           |      | 66.10          |            |   | С      |
| MOTA         | 211        | СВ        | GLN        |   | 44       | 11.345             | 77.323           | 48.449           |      | 69.58          |            |   | C      |
| ATOM         | 214<br>217 | CG<br>CD  | GLN<br>GLN |   | 44<br>44 | 10.551<br>11.451   | 77.155<br>77.222 | 49.756<br>50.977 |      | 73.34<br>76.75 |            |   | C<br>C |
| ATOM<br>ATOM | 218        |           | GLN        |   | 44       | 11.565             | 76.239           | 51.717           |      | 77.94          | <i>:</i> : |   | ō      |
| ATOM         | 219        |           | GLN        |   | 44       | 12.069             | 78.389           | 51.198           |      | 78.11          |            |   | N      |
| ATOM         | 222        | C         | GLN        |   | 44       | 12.385             | 78.705           | 46.662           |      | 65.31          |            |   | C      |
| ATOM<br>ATOM | 223<br>224 | N<br>N    | GLN<br>ILE |   | 44<br>45 | 13.589<br>11.611   | 78.448<br>78.890 | 46.582<br>45.586 |      | 68.54<br>62.74 | : •        |   | N      |
| ATOM         | 226        | CA        | ILE        |   | 45       | 12.108             | 78.709           | 44.210           |      | 59.94          |            |   | C      |
| ATOM         | 228        | CB.       | ILE        |   | 45       | 11.257             | 77.650           | 43.458           |      | 59.17          | •          |   | C      |
| ATOM         | 230        |           | ILE        |   | 45       | 10.042             | 78.262           | 42.778           |      | 59.74          |            |   | C      |
| ATOM         | 233<br>237 |           | ILE        |   | 45<br>45 | 9.101<br>10.807    | 77.212<br>76.565 | 42.194<br>44.411 |      | 64.66<br>58.29 |            |   | c      |
| MOTA         | 241        | C         | ILE        |   | 45       | 12.182             | 80.003           | 43.416           |      | 58.66          |            |   | C      |
| ATOM         | 242        | 0         | ILE        |   | 45       | 13.067             | 80.205           | 42.579           |      | 55.39          |            |   | 0      |
| ATOM         | 243        | N         | GLY        |   | 46<br>46 | 11.216<br>11.189   | 80.866<br>82.188 | 43.669<br>43.096 |      | 61.29          |            |   | N<br>C |
| ATOM<br>ATOM | 245<br>248 | CA<br>C   | GLY<br>GLY |   | 46       | 10.771             | 82.129           | 41.655           |      | 62.28          |            |   | č      |
| ATOM         | 249        | ō         | GLY        |   | 46       | 10.257             | 81.138           | 41.155           |      | 62.06          |            |   | 0      |
| ATOM         | 250        | N         | ILE        |   | 47       | 11.045             | 83.218           | 40.981           |      | 66.16          |            |   | C      |
| ATOM<br>ATOM | 252<br>254 | CA<br>CB  | ILE        |   | 47<br>47 | 10.602<br>9.706    | 83.431<br>84.652 | 39.626<br>39.697 |      | 70.11<br>72.59 |            |   | Č      |
| ATOM         | 256        |           | ILE        |   | 47       | 8.668              | 84.626           | 38.596           |      | 77.25          |            |   | С      |
| ATOM         | 259        |           | ILE        |   | 47       | 7.527              | 85.548           | 38.915           |      | 79.30          |            |   | C      |
| ATOM         | 263        |           | ILE        |   | 47       | 10.539             | 85.958<br>83.646 | 39.718<br>38.655 |      | 72.25<br>71.63 |            |   | C      |
| ATOM<br>ATOM | 267<br>268 | С<br>0    | ILE        |   | 47<br>47 | 11.786<br>11.589   | 83.681           | 37.435           |      | 71.09          |            |   | ŏ      |
| ATOM         | 269        | N         | LYS        |   | 48       | 12.998             | 83.739           | 39.230           |      | 72.11          |            |   | N      |
| ATOM         | 271        | CA        | LYS        |   | 48       | 14.245             | 84.111           | 38.551<br>39.565 |      | 71.74          |            |   | C      |
| ATOM<br>ATOM | 273<br>276 | CB<br>CG  | LYS<br>LYS |   | 48<br>48 | 15.256<br>14.664   | 84.732<br>85.544 | 40.784           |      | 77.74          |            |   | c      |
| ATOM         | 279        | CD        | LYS        |   | 48       | 14.879             | 84.830           | 42.170           |      | 75.87          |            |   | C      |
| MOTA         | 282        | CE        | LYS        |   | 48       | 13,932             | 85.358           | 43.272           |      | 74.40          |            |   | C      |
| ATOM         | 285        | NZ        | LYS        |   | 48       | 14.043             | 86.833<br>82.859 | 43.495<br>37.852 |      | 69.34<br>70.54 |            |   | C<br>N |
| ATOM<br>ATOM | 289<br>290 | С<br>0    | LYS<br>LYS |   | 48<br>48 | . 14.827<br>14.159 | 82.275           | 36.991           |      | 69.74          |            |   | ō      |
| ATOM         | 291        | N         | ASP        |   | 49       | 16.050             | 82.443           | 38.204           |      | 66.15          |            |   | N      |
| MOTA         | 293        | CA        | ASP        |   | 49       | 16.589             | 81.165           | 37.735           |      | 64.51          |            |   | C      |
| ATOM         | 295        | CB        | ASP        |   | 49       | 18.131             | 81.134<br>79.934 | 37.775<br>37.002 |      | 65.14<br>64.82 |            |   | Ċ      |
| MOTA<br>MOTA | 298<br>299 | CG<br>OD1 | ASP<br>ASP |   | 49<br>49 | 18.727<br>19.979   | 79.868           | 36.901           |      | 61.50          |            |   | 0      |
| ATOM         | 300        |           | ASP        |   | 49       | 18.031             | 79.028           | 36.462           |      | 62.42          |            |   | 0      |
| MOTA         | 301        | C         | ASP        |   | 49       | . 16.039           | 80.029           | 38.579           |      | 60.79<br>61.71 |            |   | C<br>0 |
| ATOM         | 302<br>303 | O<br>N    | ASP<br>ILE |   | 49<br>50 | 16.607<br>14.945   | 79.675<br>79.436 | 39.610<br>38.127 |      | 57.75          |            |   | N      |
| ATOM<br>ATOM | 305        | CA        | ILE        |   | 50<br>50 | 14.358             | 78.357           | 38.883           | 1.00 | 57.10          |            |   | С      |
| MOTA         | 307        | CB        | ILE        | A | 50       | 12.849             | 78.116           |                  |      | 59.29          |            |   | C      |
| ATOM         | 309        |           | ILE        |   | 50       | 12.662             | 76.997           | 37.540<br>38.188 |      | 62.83<br>65.22 |            |   | C      |
| ATOM<br>ATOM | 312<br>316 |           | ILE        |   | 50<br>50 | 12.269<br>12.135   | 75.679<br>79.399 |                  |      | 62,14          |            |   | č      |
| MOTA         | 320        | C         | ILE        |   | 50       | 15.185             | 77.078           |                  |      | 54.84          |            |   | С      |
|              |            |           |            |   |          |                    |                  |                  |      |                |            |   |        |

```
Figure 5
                       50
                                15.099
                                        76.282 39.738
                                                        1.00 56.71
ATOM
       321
            0
                ILE A
                                                        1.00 53.80
            N
                SER A
                                15.997
                                        76.867
                                                37.780
       322
ATOM
                SER A
                                16.840
                                        75.661
                                                37.760
                                                         1.00 57.11
            CA
ATOM
       324
                                17.529
                                        75.430
                                                36.413
                                                         1.00 58.90
            CB
                SER A
ATOM
       326
                                                                              0
                                18.076
                                        74.107
                                                36.380
                                                         1.00 52.80
                SER A
MOTA
       329
            OG
                                        75.649
                                17.910
                                                38.865
                                                         1.00 59.40
                SER A
                       51
MOTA
       331
            С
                                                                              0
                                        74.581
                                                39.420
                                                         1.00 56.13
                SER A
                       51
                                18.216
MOTA
       332
            0
                                                39.177
                                        76.819
                                                         1.00 59.35
                LYS A
                       52
                                18.477
ATOM
       333
            N
                                        76.942
                                                40.304
                                                         1.00 60.90
                LYS A 52
                                19.409
ATOM
       335
            CA
                                20.018
                                        78.347
                                                40.375
                                                         1.00 65.61
                LYS A 52
ATOM
       337
            CB
                                        78.383
                                                 40.834
                                                         1.00 71.39
                                21.506
ATOM
       340
            CG
                LYS A 52
                                                39.767
                                                         1.00 72.95
                                22.513
                                        77.854
ATOM
       343
            CD
                LYS A 52
                                                38.463
                                                         1.00 72.86
                                        78.668
        346
            CE
                LYS A 52
                                22.500
ATOM
                                                37.643
                                                         1.00 73.52
                                23.724
                                        78.445
MOTA
       349
            NZ
                LYS A 52
                                                         1.00 59.11
                                                41.640
                                                                              С
ATOM
        353
            С
                 LYS A 52
                                18.731
                                        76.612
                                                42.491
41.823
                                                                              0
        354
            0
                LYS A 52
                                19.317
                                        75.938
                                                        1.00 63.39
ATOM
                                                         1.00 51.10
                                        77.079
                                                                              N
ATOM
        355
            N
                 SER A 53
                                17.503
                                        76.777
                                                 43.030
                                                         1.00 49.20
                                                                              С
        357
            CA
                SER A 53
                                16.754
ATOM
                                                 43.018
                                                        1.00 48.90
                                                                              С
ATOM
            CB
                SER A 53
                                15.428
                                        77.513
        359
                                                         1.00 55.27
                                                                              ٥
            OG
                SER A 53
                                15.682
                                        78.902
                                                 43.024
        362
ATOM
                                                         1.00 47.69
            С
                 SER A 53
                                16.494
                                        75.304
                                                 43.196
ATOM
        364
                 SER A 53
                                16.495
                                        74.797
                                                 44.302
                                                         1.00 46.97
                                                                              0
ATOM
        365
            0
        366
            N
                LEU A 54
                                16.257
                                        74.616
                                                 42.092
                                                         1.00 48.67
                                                                              N
ATOM
        368
            CA
                LEU A 54
                                16.047
                                        73.178
                                                 42.121
                                                         1.00 48.30
                                                                              С
ATOM
                                15.619
                                        72,711
                                                 40.746
                                                         1.00 48.96
                                                                              C
        370
            CB
                LEU A 54
ATOM
            CG
                LEU A 54
                                14.265
                                         73.182
                                                 40.250
                                                         1.00 49.52
                                                                              С
ATOM
        373
                                14.093
                                        72.596
                                                 38.867
                                                         1.00 53.06
                                                                              С
        375
            CD1 LEU A 54
ATOM
                                         72.739
                                                 41.160
                                                         1.00 49.72
                                                                              С
        379
            CD2 LEU A 54
                                13.122
ATOM
            C LEU A 54
                                         72.388
                                                 42.536
                                                         1.00 47.43
                                                                              С
                                17.300
        383
ATOM
                                         71.328
                                                 43.138
                                                         1.00 47.64
                                                                              0
        384
            0
                LEU A 54
                                17.190
ATOM
                                         72.899
                                                 42.193
                                                         1.00 45.04
                 THR A 55
                                18.478
        385
            N
MOTA
                                                                              19.725
                                         72.219
                                                 42.493
                                                         1.00 43.51 -
            CA THR A 55
ATOM
        387
            CB THR A 55
                                 20.931
                                         72,812
                                                 41.639
                                                         1.00 43.09
        389
ATOM
                                                         1.00 40.56
                                 20.749
                                         72.557
                                                 40.223
            OG1 THR A 55
ATOM
        391
                                         72,121
                                                 41.989
                                                         1.00 38.93
            CG2 THR A 55
                                22,261
ATOM
        393
                                        72.351
71.373
                                                 43.993
                                                         1.00 43.20
ATOM
        397
            С
                THR A 55
                                 19.951
                                                         1.00 45.90
                                                 44.670
ATOM
        398
             0
                 THR A 55
                                20.258
                                                 44.495
45.920
                                         73.574
                                                         1.00 43.15
                                19.797
        399
            N
                 ASN A 56
ATOM
                                         73.879
                                                         1.00 39.02
        401
            CA
                ASN A 56
                                19.854
ATOM
                                                 46.134
45.746
                                                         1.00 40.32
                                         75.367
        403
            CB
                ASN A 56
                                19.578
ATOM
                                        76.255
75.765
77.565
                                                         1.00 41.95
ATOM
        406
             CG
                ASN A 56
                                 20.769
                                                 45.460
45.740
                                                         1.00 44.95
        407
             OD1 ASN A 56
                                 21.859
ATOM
                                                         1.00 35.62
ATOM
        408
             ND2 ASN A 56
                                 20.555
                                                 46.725
47.732
                                                         1.00 37.78
                                        73.041
ATOM
        411
                 ASN A 56
                                 18.856
                                                         1.00 36.73
        412
                 ASN A 56
                                 19.198
                                         72,450
ATOM
             0
                 LEU A 57
                                 17.624
                                         72,951
                                                 46.268
                                                         1.00 36.18
ATOM
        413
                                                 46.950
                                                         1.00 38.01
                 LEU A 57
                                 16.663
                                         72.091
ATOM
        415
             ÇA
                                                 46.346
                                                         1.00 40.34
                 LEU A 57
                                 15.273
                                         72.225
ATOM
        417
             СВ
                                                         1.00 42.27
                                                 46.695
                 LEU A 57
                                 14.570
                                         73.533
MOTA
        420
             CG
                                                 45.673
             CD1 LEU A 57
                                                         1.00 44.61
                                                                               C
ATOM
        422
                                 13.478
                                        73.797
                                                 48.119
                                                         1.00 45.41
                                                                               C
             CD2 LEU A 57
                                 14.009
                                         73.491
ATOM
        426
                                                 46.947
                                                         1.00 38.39
                                                                              . С
                 LEU A 57
ATOM
        430
             C
                                 17.081
                                        70.629
                                                47.916
             0
                 LEU A 57
                                 16.829
                                         69.926
                                                         1.00 41.36
                                                                               ٥
ATOM
        431
                                                 45.871
                 SER A 58
                                 17.718
                                         70.172
                                                         1.00 40.05
                                                                               N
        432
ATOM
             N
                                         68.783
                                                 45.780
                                                         1.00 38.99
                                                                               С
                 SER A 58
                                 18.178
ATOM
        434
             CA
                                                         1.00 37.77
                                                                               С
                                 18.753
                                         68.457
                                                 44.394
             СВ
                 SER A 58
ATOM
        436
                                         69.088
                                                44.197
                                                         1.00 36.94
                                                                               0
                 SER A 58
                                 20.006
        439
             OG
ATOM
                                                         1.00 38.70
                                                 46.848
                                                                               C
                 SER A 58
                                         68.491
                                 19.220
MOTA
        441
             С
                 SER A 58
                                 19.289
                                         67.376
                                                 47,341
                                                         1.00 31.77
                                                                               0
ATOM
        442
             0
                                         69.505
                                                 47.194
                                                         1.00 40.55
                                                                               N
                 LYS A 59
                                 20.016
        443
             N
ATOM
             CA LYS A
                         59
                                 21.033
                                         69.397
                                                 48.245
                                                         1.00 42.29
                                                                               C
        445
ATOM
                                 21.857
                                         70,691
                                                 48.333
                                                         1.00 43.93
                                                                               C
                LYS A
                         59
ATOM
        447
             CB
                                 23,264
                                                 47.782
                                                         1.00 50.14
                                                                               С
                                         70.609
                 LYS A 59
ATOM
        450
             CG
                                         70.365
                                                 46.253
                                                         1.00 58.54
                                                                               С
                                 23.314
ATOM
        453
             CD
                 LYS A
                         59
                                         70.963
72.375
                                                 45.612
                                                         1.00 60.60
                                                                               C
                                 24.578
ATOM
        456
             CE
                 LYS A
                         59
                                                 46.090
                                                         1.00 63.13
        459
             NZ
                 LYS A
                         59
                                 24.806
ATOM
                                         69.100
68.556
                                                 49.615
                                                         1.00 43.07
                                                                               C
ATOM
        463
                 LYS A
                         59
                                 20.416
                                                 50.477
                                                         1.00 41.74
                 LYS A
                         59
                                 21.095
ATOM
        464
                                         69.476
                                                 49.828
                                                         1.00 43.93
                                 19.146
ATOM
        465
                  VAL A
                                         69.172
                                                 51.091
                                                         1.00 39.04
                                 18.468
MOTA
        467
             CA
                 VAL A
                                         70.420
71.732
                                                 51.791
                                                         1.00 39.98
                                 17.888
ATOM
        469
             CB
                 VAL A
                                                 51.199
                                                         1.00 38.84
                                 18.437
ATOM
        471
             CG1
                 VAL A
                                         70.406
                                                 51.791
                                                         1.00 39.59
                 VAL A
                                 16.378
ATOM
        475
             CG2
                                                 51.001
                                                         1.00 40.95
                  VAL A
                         60
                                 17.398
                                         68.085
ATOM
        479
             С
                                         67.353
                                                 51.969
                                                         1.00 36.94
                                 17.209
                        60
ATOM
                 VAL A
        480
             0
                                         67.931 49.877
                                                        1.00 38.43
                                 16.707
ATOM
        481
                 TYR A 61
```

|              |              |           |            |   |          |                  | Figu             | ıre 5            |      |                |   |        |
|--------------|--------------|-----------|------------|---|----------|------------------|------------------|------------------|------|----------------|---|--------|
| ATOM         | 483          | CA        | TYR        |   | 61       | 15.653           | 66.922           | 49.848           |      | 39.56          |   | C      |
| ATOM         | 485          | CB<br>CG  | TYR        |   | 61<br>61 | 14.333<br>13.850 | 67.503           | 49.347<br>50.230 | 1.00 |                |   | C      |
| ATOM<br>ATOM | 488<br>489   |           | TYR<br>TYR |   | 61       | 13.219           | 68.635<br>68.379 | 51.464           |      | 44.54          |   | č      |
| ATOM         | 491          |           | TYR        |   | 61       | 12.786           | 69.446           | 52.298           |      | 45.74          |   | С      |
| ATOM         | 493          | CZ        | TYR        |   | 61       | 12.998           | 70.768           | 51.889           |      | 46.80          |   | C<br>O |
| MOTA<br>MOTA | 494<br>496   | OH<br>CE2 | TYR<br>TYR |   | 61<br>61 | 12.607<br>13.636 | 71.821 71.042    | 52.675<br>50.674 |      | 45.62<br>47.77 |   | c      |
| ATOM         | 498          |           | TYR        |   | 61       | 14.056           | 69.979           | 49.855           |      | 45.52          |   | С      |
| ATOM         | 500          | C         | TYR        |   | 61       | 16.045           | 65.666           | 49.108           |      | 40.64          |   | C      |
| ATOM<br>ATOM | 501<br>502   | N<br>O    | TYR<br>GLY |   | 61<br>62 | 15.329<br>17.204 | 64.662<br>65.701 | 49.162<br>48.459 |      | 42.58<br>42.28 |   | O<br>N |
| ATOM         | 504          | CA        | GLY        |   | 62       | 17.723           | 64.550           | 47.732           | 1.00 | 38.32          |   | С      |
| ATOM .       | 507          | C         | GLY        |   | 62       | 17.404           | 64.652           | 46.260           |      | 38.27          |   | C      |
| ATOM<br>ATOM | 508<br>509   | O<br>N    | GLY<br>PRO |   | 62<br>63 | 16.932<br>17.647 | 65.696<br>63.568 | 45.789<br>45.532 |      | 31.02          |   | O<br>N |
| ATOM         | 510          | CA        | PRO        |   | 63       | 17.412           | 63,528           | 44.082           |      | 41.74          |   | C      |
| ATOM         | 512          | CB        | PRO        |   | 63       | 18.118           | 62.236           | 43.653           |      | 41.63          |   | С      |
| ATOM<br>ATOM | 515<br>518   | CG<br>CD  | PRO<br>PRO |   | 63<br>63 | 17.973<br>18.148 | 61.366<br>62,281 | 44.819<br>46.017 |      | 39.11<br>36.48 |   | C<br>C |
| ATOM         | 521          | C         | PRO        |   | 63       | 15.949           | 63.440           | 43.664           |      | 43.12          |   | Č      |
| MOTA         | 522          | 0         | PRO        |   | 63       | 15.711           | 63.605           | 42.479           |      | 46.43          |   | 0      |
| MOTA         | 523<br>525   | N<br>CA   | VAL<br>VAL |   | 64<br>64 | 15.012<br>13.585 | 63.149<br>63.064 | 44.567<br>44.199 |      | 44.24          |   | N<br>C |
| ATOM<br>ATOM | 525<br>527   | CB        | VAL        |   | 64       | 13.092           | 61.615           | 44.191           |      | 45.28          |   | č      |
| ATOM         | 529          |           | VAL        |   | 64       | 11.680           | 61.532           | 43.669           |      | 45.09          |   | C      |
| MOTA         | 533          |           | VAL        |   | 64       | 14.016           | 60.732           | 43.360<br>45.168 |      | 48.58<br>45.62 |   | C<br>C |
| ATOM<br>ATOM | 537<br>538   | C .       | VAL<br>VAL |   | 64<br>64 | 12.714<br>12.293 | 63.862<br>63.344 | 46.197           |      | 43.30          |   | Ö      |
| ATOM         | 539          | N         | PHE        |   | 65       | 12.455           | 65.127           | 44.853           | 1.00 | 45.92          |   | N ·    |
| ATOM         | 541          | CA        | PHE        |   | 65       | 11.601           | 65.910           | 45.719           |      | 45.96          |   | C      |
| ATOM<br>ATOM | 543<br>546   | CB        | PHE        |   | 65<br>65 | 12.338<br>12.975 | 67.086<br>68.039 | 46.342           |      | 46.47          | • | C<br>C |
| ATOM ATOM    | 547          |           | PHE        |   | 65       | 14.262           | 67.808           | 44.907           |      | 41.08          |   | С      |
| ATOM         | 549          | CE1       | PHE        |   | 65       | 14.903           | 68.704           | 44.074           |      | 40.21          |   | C      |
| ATOM ATOM    | 551<br>553   | CZ        | PHE        |   | 65<br>65 | 14.263<br>12.972 | 69.865<br>70.130 | 43.691<br>44.159 |      | 45.93<br>47.81 |   | C      |
| ATOM         | 555          |           | PHE        |   | 65       | 12.335           | 69.214           | 45.004           |      | 44.86          |   | С      |
| ATOM -       | 557          | C         | PHE        |   | 65       | 10.311           | 66.370           | 45.087           |      | 46.81          |   | C      |
| ATOM<br>ATOM | 558 ·<br>559 | O<br>N    | PHE        |   | 65<br>66 | 10.177<br>9.374  | 66.370<br>66.741 | 43.866<br>45.976 |      | 39.93<br>47.98 |   | O<br>N |
| ATOM         | 561          | CA        | THR        |   | 66       | 8.054            | 67.268           | 45.647           |      | 47.44          |   | Ċ      |
| ATOM         | 563          | СВ        | THR        |   | 66       | 6.974            | 66.679           | 46.578           |      | 47.1B          |   | C      |
| MOTA         | 565          |           | THR<br>THR |   | 66<br>66 | 6.751<br>5.623   | 65.288<br>67.314 | 46.281<br>46.298 |      | 49.03<br>48.72 |   | O<br>C |
| ATOM<br>ATOM | 567<br>571   | C         | THR        |   | 66       | 8.069            | 68.793           | 45.753           |      | 47.38          |   | č      |
| ATOM         | 572          | Ō         | THR        | A | 66       | 8.704            | 69.363           | 46.632           |      | 45.50          |   | 0      |
| ATOM         | 573          | N         | LEU        |   | 67       | 7.358<br>7.361   | 69.445<br>70.893 | 44.847<br>44.773 |      | 48.54<br>50.54 |   | N<br>C |
| ATOM<br>ATOM | 575<br>577   | CA<br>CB  | LEU        |   | 67<br>67 | 8,410            | 71.363           | 43.776           | -    | 51.26          |   | Ċ      |
| ATOM         | 580          | CG        | LEU        |   | 67       | 9.083            | 72.677           | 44.156           |      | 50.62          |   | С      |
| ATOM         | 582          |           | LEU        |   | 67       | 10.101           | 72.396           | 45.222<br>42.942 |      | 50.37<br>53.87 |   | C      |
| ATOM<br>ATOM | 586<br>590   | CD2       | LEU        |   | 67<br>67 | 9.725<br>5.992   | 73.351<br>71.393 | 44.353           |      | 51.85          |   | Ċ      |
| ATOM         | 591          | ō         | LEU        |   | 67       | 5.364            | 70.828           | 43.459           |      | 52.61          |   | 0      |
| ATOM         | 592          | N         | TYR        |   | 68       | 5.540            | 72.470<br>72.975 | 44.984<br>44.760 |      | 52.53<br>52.74 |   | N<br>C |
| ATOM<br>ATOM | 594<br>596   | CA<br>CB  | TYR<br>TYR |   | 68<br>68 | 4.191<br>3.472   | 73.223           | 46.098           |      | 53.90          |   | Ċ.     |
| ATOM         | 599          | CG        | TYR        |   | 68       | 3.016            | 71.927           | 46.732           |      | 51.78          |   | С      |
| ATOM         | 600          |           | TYR        |   | 68       | 3.846            | 71.219           | 47.588<br>48.147 |      | 53.07<br>52.00 |   | C      |
| MOTA<br>MOTA | 602<br>604   | CE1       | TYR<br>TYR |   | 68<br>68 | 3.437<br>2.198   | 70.004<br>69.488 | 47.828           |      | 49.04          |   | č      |
| ATOM         | 605          | ОН        | TYR        |   | 68       | 1.799            | 68.302           | 48.375           | 1.00 | 49.91          |   | 0      |
| MOTA         | 607          |           | TYR        |   | 6B       | 1.369            | 70.157           | 46.962           |      | 50.81<br>53.21 |   | C      |
| ATOM         | 609          |           | TYR<br>TYR |   | 68<br>68 | 1.780<br>4.240   | 71.371<br>74.231 | 46.415<br>43.925 |      | 50.64          |   | č      |
| atom<br>Atom | 611<br>612   | С<br>О    | TYR        |   | 68       | 4.904            | 75.202           | 44.293           | 1.00 | 48.54          |   | 0      |
| ATOM         | 613          | N         | PHE        | A | 69       | 3.554            | 74.189           | 42.787           |      | 49.74          |   | N      |
| MOTA         | 615          | CA        | PHE        |   | 69<br>69 | 3.350<br>3.550   | 75.373<br>75.005 | 41.956<br>40.484 |      | 53.60<br>56.56 |   | C      |
| ATOM<br>ATOM | 617<br>620   | CB<br>CG  | PHE        |   | 69<br>69 | 4.980            | 75.041           | 40.071           |      | 58.76          |   | С      |
| ATOM         | 621          |           | PHE        |   | 69       | 5.438            | 76.008           | 39.203           |      | 61.14          |   | C      |
| ATOM         | 623          |           | PHE        |   | 69       | 6.750            | 76.056<br>75.154 | 38.859<br>39.394 |      | 62.77<br>63.28 |   | C      |
| MOTA<br>MOTA | 625<br>627   | CZ<br>CE2 | PHE<br>PHE |   | 69<br>69 | 7.637<br>7.199   | 74.195           | 40.280           | 1.00 | 62.51          |   | č      |
| ATOM         | 629          |           | PHE        |   | 69       | 5.885            | 74.146           | 40.618           | 1.00 | 61.18          |   | С      |
|              |              |           |            |   |          |                  |                  |                  |      |                |   |        |

```
Figure 5
                                   1.951 75.922 42.228
                                                           1.00 54.68
MOTA
             C
                  PHE A 69
                                                           1.00 50.49
                                                   41.589
                  PHE A
                         69
                                   0.972
                                          75.501
ATOM
        632
                                                           1.00 54.77
                  GLY A
                         .70
                                   1.872
                                          76.844
                                                   43.195
ATOM
        633
                                                           1.00 53.82
                         70
                                   0.630
                                          77.105
                                                   43.906
ATOM
        635
             CA
                  GLY A
                  GLY A
                                   0.129
                                          75.824
                                                   44.575
                                                           1.00 56.38
ATOM
        638
                                                           1.00 55.79
                  GLY A
                         70
                                   0.739
                                          75.363
                                                   45.552
        639
MOTA
                                  -0.942
                                          75.230
                                                   44.025
                                                           1.00 55.08
                  LEU A
ATOM
        640
             N
                                                                                  C
             CA
                  LEU A
                                  -1.569
                                          74.012
                                                   44.576
                                                           1.00 55.18
        642
ATOM
                                                                                  C
                                                   44.563
                                                           1.00 56.69
                         71
                                  -3.089
                                          74.161
             CB
                  LEU A
ATOM
        644
                                                                                  C
                                                   45.276
                                                           1.00 56.46
             CG
                  LEU A
                         71
                                  -3.800
                                          75.320.
ATOM
        647
                                                                                  C
                                                   45.380
                                                           1.00 54.73
                                  -5.292
                                          74.931
                  LEU A
                         71
ATOM
        649
             CD1
                                                   46.662
                                                           1.00 55.21
                                                                                  C
             CD2 LEU A
                         71
                                  -3.188
                                          75.669
ATOM
        653
                                                   43.845
                                                           1.00 57.42
                                                                                  С
                                  -1.246
                                          72.698
                         71
ATOM
        657
             С
                  LEU A
                                          71.626
                                                   44.293
                                                           1.00 52.71
                                                                                  0
                                  -1.674
MOTA
        658
             0
                  LEU A
                         71
                                          72.798
                                                   42.723
                                                           1.00 61.66
                                                                                  N
                                  -0.516
                         72
        659
             N
                  LYS A
ATOM
                                                   41.863
                                                                                  C
                                          71.661
                                                           1.00 60.29
                                  -0.111
ATOM
        661
             CA
                  LYS. A
                         72
                                                           1.00 61.71
                                           72.188
                                                   40.452
                                                                                  С
                         72
                                   0.209
ATOM
        663
             CB
                  LYS A
                                                   39.350
                                                                                  C
                                   0.368
                                           71.132
                                                           1.00 59.57
        666
              CG
                  LYS A
                         72
ATOM
                                   0.372
                                                                                  C
                                           71.806
                                                   37.973
                                                           1.00 60.32
        669
             CD
                  LYS A
                          72
ATOM
                                                                                  С
                                   1.078
                                           70.969
                                                   36.908
                                                           1.00 61.19
        672
             CE
                  LYS A
                         72
ATOM
                                          69.892
                                   0.226
                                                   36.339
                                                           1.00 62.02
        675
             NZ
                  LYS A
                          72
ATOM
                                           70.939
71.590
                                                                                  С
                                                   42.422
                                                            1.00 59.36
                                   1.130
        679
                  LYS A
                         72
MOTA
              С
                                                   42.683
                                                            1.00 56.33
                                                                                  0
              0
                  LYS A
                          72
                                   2.147
MOTA
        680
                                                            1.00 59.37
                                                                                  N
                                                   42.621
                                           69.616
                  PRO A 73
                                   1.054
MOTA
        681
                                                            1.00 59.06
                                                                                  C
                                                   43.122
                                          68.859
MOTA
        682
              CA
                  PRO A
                          73
                                   2.209
                                                            1.00 58.64
                                                                                  C
                                           67.674
                                                   43.855
ATOM
        684
              CB
                  PRO A
                          73
                                   1.563
                                                            1.00 58.90
                          73
                                   0.253
                                           67.424
                                                   43.104
ATOM
        687
              CG
                  PRO A
                                                            1.00 59.72
                                                                                  С
                                   -0.110
                                           68.730
                                                   42.404
              CD
                  PRO A
        690
ATOM
                                                                                  С
                                                           1.00 57.10
                                   3.083
                                          68.392
                                                   41.959
              С
                  PRO A
ATOM
         693
                                                            1.00 56.75
                                                                                  0
                                   2.597
                                           67.736
                                                   41.031
                  PRO A
                          73
              0
ATOM
         694
                                                                                  N
                                    4.363
                                           68:742
                                                   42.030
                                                            1.00 56.17
                  ILE A
ATOM
         695
              N
                                                                                  C
                                           68.443
                                                   40.999
                                                           1.00 53.86
                  ILE A
                          74
                                   5.362
ATOM
         697
              CA
                                                                                  С
                                           69.767
                                                   40.526
                                                           1.00 53.92
              CB
                  ILE A
                          74
                                    6.014
         699
ATOM
                                                                                  C
              CG1
                  ILE A
                          74
                                    4.961
                                           70.705
                                                   39.933
                                                           1.00 56.77
         701
ATOM
                                                                                  C
                                    4.096
                                           70.067
                                                   38.887
                                                            1.00 55.94
                  ILE A
                          74
              CD1
ATOM
         704
                                                                                  С
                                           69.526
                                                   39.548
                                                           1.00 51.49
                          74
                                    7.147
                  ILE A
ATOM
         708
              CG2
                                           67.590
                                                   41.621
                                                            1.00 50.14
                                                                                  С
                                    6.441
                  ILE A
                          74
ATOM
         712
              С
                                                   42.619
                                                            1.00 51.32
                                                                                  0
                                   7.025
                                           68.001
                  ILE A
                          74
ATOM
         713
              0
                                                   41.056
                                                            1.00 46.26
                                                                                  N
                                    6.722
                                           66.420
MOTA
         714
              N
                  VAL A
                          75
                                                            1.00 46.21
                                           65.703
                                                                                  C
                                   7.957
                                                   41.411
ATOM
         716
              CA
                  VAL A
                          75
                                                            1.00 46.55
                                           64.180
                                                   41.322
                                                                                  C
                                   7.756
         718
              CB
                  VAL A
                          75
ATOM
                                                            1.00 47.93
                                                                                  С
                                           63.436
                                                   41.645
                                    9.033
ATOM
         720
              CG1
                  VAL A
                          75
                                    6.693
                                           63.753
                                                   42.283
                                                            1.00 49.41
                                                                                  C
         724
              CG2
                  VAL A
                          75
ATOM
                                           66.159
                                                   40.526
                                                            1.00 41.49
                                                                                   C
                                    9.150
         728
                  VAL A
                          75
ATOM
                                                                                   0
                                                   39.333
                                                            1.00 43.55
                                           65,971
         729
                  VAL A
                          75
                                    9.116
ATOM
                                                    41.115
                                                            1.00 37.92
                                           66.793
ATOM
         730
                   VAL A
                          76
                                   10.166
                                                                                   С
                                           67.063
                                                    40.446
                                                            1.00 39.38
ATOM
         732
                  VAL A
                         76
                                   11.459
                                           68.313
                                                    41.052
                                                            1.00 38.98
                  VAL A
                          76
                                   12.157
ATOM
         734
              CB
                                                                                   С
                                                    40.386
                                                            1.00 42.09
                                           68.571
         736
              CG1
                  VAL A
                          76
                                   13.475
ATOM
                                                    40.928
                                                            1.00 42.46
                                           69.536
                          76
                                   11.307
         740
              CG2
                  VAL A
 MOTA
                                           65.877
                                                    40.565
                                                            1.00 37.99
                         76
                                   12.465
 ATOM
         744
              C
                   VAL A
                                                    41.663
                                                            1.00 38.01
                                           65.372
                          76
                                   12.687
         745
                   VAL .A
 ATOM
              0
                                                    39.445
                                                            1.00 38.10
                                           65.444
                          77
                                   13.063
 ATOM
         746
              N
                   LEU A
                                                    39.432
                                                            1.00 35.38
                          77
                                   14.171
                                           64.463
 ATOM
         748
              CA
                   LEU A
                                                            1.00 35.52
                                                    38.355
         750
                  LEU A
                          77
                                   13.926
                                           63.441
 ATOM
              CB
                                                    38.325
                                                            1.00 35.97
                  LEU A
                                   12.619
                                           62.673
         753
              CG
 ATOM
                                                            1.00 35.60
                                   12.766
                                           61.531
                                                    37.324
              CD1 LEU A
         755
 ATOM
                                   12.199
                                                    39.693
                                                            1.00 34.85
              CD2 LEU A
                          77
                                           62.167
         759
 ATOM
                                   15.517
                                                    39.127
                                                            1.00.34.72
                                           65.135
                          77
                   LEU A
 ATOM
         763
              С
                                                            1.00 33.92
                                           65.742
                                                    38.087
                   LEU A
                          77
                                   15.652
 ATOM
         764
              ٥
                                                                                   ·N
                                                    40.001
                                   16.517
                                           65.033
                                                            1.00 38.68
                   HIS A
                          78
 ATOM
         765
              N
                                                                                   C
                                           65.849
                                                    39.824
                                                            1.00 39.77
                          78
                                   17.722
 MOTA
         767
              CA
                   HIS A
                                                                                   C
                                           66.464
                                                    41.122
                                                            1.00 38.32
                                   18.182
                          78
 MOTA
         769
              СВ
                   HIS A
                                                                                   С
                                   19.048
                                           67.671
                                                    40.940
                                                            1.00 37.02
 ATOM
         772
               CG
                   HIS A
                          78
                                   20.373
                                           67.701
                                                    41.316
                                                            1.00 39.96
                                                                                   N
 MOTA
         773
               ND1 HIS A
                          78
                                                    41.067
                                                            1,00 39.45
                                                                                   C
                                   20.879
                                           68.900
 ATOM
         775
               CE1 HIS A
                          78
                                           69.653
                                                    40.548
                                                            1.00 38.20
                                   19.925
 ATOM
         777
               NE2 HIS A
                          78
                                                    40.456
                                                            1.00 37.78
                                                                                   C
                                            68.906
                          78
                                   18.770
 MOTA
         779
               CD2
                   HIS A
                                                    39.115
                                                             1.00 44.11
                                            65.154
                           78
                                   18.895
 ATOM
         781
                   HIS A
               С
                                                             1.00 49.18
                                                                                   0
                                            65.371
                                                    37.912
                                   19.109
                           78
 ATOM
         782
               0
                                           64.342
                                                    39.791
                                                             1.00 39.04
                           79
                                   19.682
 ATOM
                   GLY A
         783
               N
                                            63.947
                                                    39.138
                                                             1.00 38.00
                           79
                                   20.921
                   GLY A
 ATOM
         785
               CA
                                                    37.976
                                                             1.00 36.52
                                            62.981
                           79
                                   20.737
                   GLY A
 ATOM
         788
               C
                                                    37.713
                                                             1.00 32.66
                                                                                   0
                                            62.517
                           79
                                   19.630
                   GLY A
 ATOM
         789
               0
                                                    37.306
                                                            1.00 37.59
                                           62.656
                   TYR A
                           80
                                   21.843
 ATOM
         790
               N
                                           61.683
                                                    36.203
                                                             1.00 40.74
                                   21.850
                   TYR A
 ATOM
         792
               CA
```

|              |            |           |            |   |            |                  | Figu             | re 5             |      |                |        |
|--------------|------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|
| ATOM         | 794        | СВ        | TYR        | A | 80         | 23.289           | 61.391           | 35.724           | 1.00 | 44.43          | С      |
| ATOM         | 797        | CG        | TYR        |   | 80         | 23.387           | 60.217           | 34.762           |      | 45.09          | C      |
| ATOM<br>ATOM | 798<br>800 | CD1       | TYR<br>TYR |   | 80<br>80   | 23.319<br>23.392 | 60.406<br>59.333 | 33.382<br>32.499 |      | 46.99<br>43.40 | C<br>C |
| ATOM         | 802        | CZ        | TYR        |   | 80         | 23.545           | 58.062           | 32.986           |      | 44.95          | c      |
| MOTA         | 803        | OH        | TYR        |   | 80         | 23.627           | 56.999           | 32.123           |      | 51.53          | 0      |
| MOTA         | 805        |           | TYR        |   | 80         | 23.609           | 57.845           | 34.336           |      | 46.76          | C      |
| ATOM<br>ATOM | 807<br>809 | CD2       | TYR<br>TYR |   | 80<br>80   | 23.531<br>21.206 | 58.925<br>60.367 | 35.223<br>36.582 |      | 44.09<br>37.19 | C<br>C |
| ATOM         | 810        | ŏ         | TYR        |   | 80         | 20.431           | 59.831           | 35.816           |      | 36.61          | ő      |
| ATOM         | 811        | N         | GLU        |   | 81         | 21.539           | 59.836           | 37.753           |      | 39.16          | N      |
| MOTA         | 813        | CA        | GLU        |   | 81         | 21.082           | 58.496           | 38.097           |      | 43.27          | C      |
| ATOM<br>ATOM | 815<br>818 | CB<br>CG  | GLU<br>GLU |   | 81<br>81   | 21.737<br>23.194 | 57.976<br>57.522 | 39.382<br>39.230 |      | 45.28<br>52.79 | C      |
| ATOM         | 821        | CD        | GLU        |   | 81         | 23.420           | 56.376           | 38.209           |      | 60.01          | č      |
| ATOM         | 822        |           | GLU        |   | 81         | 24.518           | 56.313           | 37.580           |      | 55.78          | 0      |
| MOTA<br>MOTA | 823<br>824 | OE2<br>C  | GLU<br>GLU |   | 81<br>81   | 22.509<br>19.545 | 55.530           | 38.017           |      | 67.94<br>42.25 | 0<br>C |
| ATOM         | 825        | o         | GTO        |   | 81         | 18.952           | 58.438<br>57.531 | 38.145<br>37.563 |      | 41.60          | 0      |
| ATOM         | 826        | N         | ALA        |   | 82         | 18.905           | 59.432           | 38.760           |      | 39.82          | N      |
| ATOM         | 828        | CA        | ALA        |   | 82         | 17.447           | 59.418           | 38.884           |      | 38.05          | C      |
| ATOM<br>ATOM | 830<br>834 | CB<br>C   | ALA<br>ALA |   | 82<br>82   | 16.983<br>16.796 | 60.433<br>59.663 | 39.883<br>37.525 |      | 35.64<br>42.42 | C      |
| ATOM         | 835        | ō         | ALA        |   | 82         | 15.833           | 58.975           | 37.156           |      | 45.90          | ŏ      |
| ATOM         | 836        | N         | VAL        |   | 83         | 17.338           | 60.617           | 36,765           |      | 40.92          | N      |
| ATOM         | 838        | CA<br>CB  | VAL        |   | 83         | 16.842<br>17.636 | 60.913           | 35.415           |      | 37.45          | C      |
| ATOM<br>ATOM | 840<br>842 |           | VAL.       |   | 83<br>83   | 17.184           | 62.046<br>62.288 | 34.759<br>33.348 |      | 36.54<br>34.71 | C      |
| ATOM         | 846        |           | VAL        |   | 83         | 17.503           | 63.323           | 35.549           |      | 38.16          | Č      |
| MOTA         | 850        | C         | VAL        |   | 83         | 16.948           | 59.686           | 34.521           |      | 38.28          | C      |
| ATOM<br>ATOM | 851<br>852 | N<br>O    | VAL<br>LYS |   | 83<br>84   | 16.009<br>18.089 | 59.343<br>59.008 | 33.804<br>34.571 |      | 35.61<br>43.42 | O<br>N |
| ATOM         | 854        | CA        | LYS        |   | 84         | 18.287           | 57.820           | 33.735           |      | 43.42          | C      |
| ATOM         | 856        | СВ        | LYS        |   | 84         | 19.770           | 57.377           | 33.714           |      | 50.74          | С      |
| ATOM         | 859        | CG        | LYS        |   | 84         | 20.071           | 55.884           | 33.992           |      | 54.01          | C      |
| ATOM<br>ATOM | 862<br>865 | CD<br>CE  | LYS<br>LYS |   | 84 .<br>84 | 20.160<br>20.971 | 55.019<br>53.720 | 32.747<br>33.010 |      | 54.09<br>58.22 | : C    |
| ATOM         | 868        | NZ        | LYS        |   | 84         | 20.152           | 52.542           | 33.478           | -    | 52.81          | N      |
| ATOM         | 872        | C         | LYS        |   | 84         | 17.332           | 56.711           | 34.187           | 1.00 | 48.71          | , с    |
| ATOM         | 873<br>874 | N.<br>O   | LYS        |   | 84<br>85   | 16.714           | 56.029           | 33.363           |      | 48.01          | 0      |
| ATOM<br>ATOM | 876        | CA        | GLU        |   | 85         | 17.185<br>16.327 | 56.559<br>55.520 | 35.499<br>36.032 |      | 48.96<br>49.84 | N<br>C |
| ATOM         | 878        | СВ        | GLU        |   | 85         | 16.463           | 55.432           | 37.540           |      | 52.57          | c      |
| ATOM         | 881        | CG        | GLU        |   | 85         | 15.759           | 54.220           | 38.131           |      | 55.65          | C      |
| ATOM<br>ATOM | 884<br>885 | CD<br>OE1 | GLU<br>GLU |   | 85<br>85   | 16.089<br>16.970 | 53.999<br>54.717 | 39.589<br>40.110 |      | 57.08<br>52.12 | C<br>O |
| ATOM         | 886        | OE2       | GLU        |   | 85         | 15.462           | 53.098           | 40.202           |      | 59.10          | ŏ      |
| ATOM         | 887        | C         | GLU        |   | 85         | 14.866           | 55.725           | 35.639           |      | 49.92          | С      |
| ATOM<br>ATOM | 888<br>889 | O<br>N    | GLU<br>ALA |   | 85<br>86   | 14.159<br>14.430 | 54.757<br>56.975 | 35.430<br>35.501 |      | 53.31<br>50.27 | O<br>N |
| ATOM         | 891        | CA        | ALA        |   | 86         | 13.042           | 57.290           | 35.151           |      | 50.40          | C      |
| ATOM         | 893        | СВ        | ALA        | A | 86         | 12.639           | 58.641           | 35.752           |      | 49.66          | С      |
| ATOM         | 897        | C         | ALA        |   | 86         | 12.815           | 57.312           | 33.643           |      | 50.49          | C      |
| ATOM<br>ATOM | 898<br>899 | O<br>N    | ALA<br>LEU |   | 86<br>87   | 12.006<br>13.532 | 56.562<br>58.193 | 33.109<br>32.965 |      | 53.68<br>50.97 | O<br>N |
| ATOM         | 901        | CA        | LEU        |   | 87         | 13.357           | 58.393           | 31.530           |      | 50.43          | Ċ      |
| MOTA         | 903        | СВ        | LEU        |   | 87         | 14.115           | 59.643           | 31.093           |      | 48.89          | C      |
| ATOM<br>ATOM | 906<br>908 | CG        | LEU        |   | 87<br>87   | 13.254<br>12.218 | 60.833<br>61.108 | 30.691<br>31.740 |      | 48.28<br>46.70 | c<br>c |
| ATOM         | 912        |           | LEU        |   | 87         | 14.162           | 62.061           | 30.435           |      | 48.08          | č      |
| MOTA         | 916        | С         | LEU        |   | 87         | 13.766           | 57.196           | 30.657           |      | 49.32          | С      |
| ATOM         | 917        | 0         | LEU        |   | 87         | 13.161           | 56.965           | 29.622           |      | 48.33          | 0      |
| ATOM<br>ATOM | 918<br>920 | n<br>Ca   | ILE        |   | 88<br>88   | 14.785<br>15.216 | 56.448<br>55.255 | 31.072<br>30.338 |      | 51.25<br>51.05 | N<br>C |
| ATOM         | 922        | СВ        | ILE        |   | 88         | 16.765           | 55.275           | 30.149           |      | 50.39          | С      |
| MOTA         | 924        |           | ILE        |   | 88         | 17.131           | 56.242           | 29.022           |      | 49.14          | c      |
| ATOM<br>ATOM | 927<br>931 |           | ILE        |   | 88<br>88   | 18.400           | 57.022           | 29.301           |      | 53.36<br>51.32 | C<br>C |
| ATOM         | 935        | C         | ILE        |   | 88<br>88   | 17.328<br>14.674 | 53.904<br>53.931 | 29.813<br>30.934 |      | 51.32          | c      |
| ATOM         | 936        | ŏ         | ILE        |   | 88         | 14.034           | 53.185           | 30.211           | 1.00 | 48.91          | 0      |
| ATOM         | 937        | N         | ASP        |   |            | 14.879           | 53.649           | 32.227           |      | 56.69          | N      |
| ATOM<br>ATOM | 939<br>941 | CA<br>CB  | ASP<br>ASP |   |            | 14.497<br>15.285 | 52.329<br>52.004 | 32.805<br>34.085 |      | 60.24<br>62.06 | C<br>C |
| ATOM         | 944        | CG        | ASP        |   |            | 16.788           | 51.973           | 33.849           |      | 66.60          | č      |
| ATOM         | 945        | ODl       | ASP        | A | 89         | 17.543           | 52.398           | 34.756           | 1.00 | 68.57          | 0      |
| ATOM         | 946        | OD2       | ASP        | A | 89         | 17.302           | 51.564           | 32.777           | 1.00 | 70.62          | 0      |
|              |            |           |            |   |            |                  |                  |                  |      |                |        |

|              |              |           |            |   |          |                  | Fia              | ıre 5            |                          |   |        |                                        |
|--------------|--------------|-----------|------------|---|----------|------------------|------------------|------------------|--------------------------|---|--------|----------------------------------------|
| ATOM         | 947          | С         | ASP        | A | 89       | 13.000           | 52.147           | 33.060           | 1.00 59.77               |   | С      |                                        |
| MOTA         | 948          | 0         | ASP        |   | 89       | 12.468           | 51.045           | 32.908           | 1.00 59.13               |   | O<br>N |                                        |
| MOTA         | 949          | N<br>CA   | Leu<br>Leu |   | 90<br>90 | 12.319<br>10.862 | 53.220<br>53.224 | 33.435<br>33.442 | 1.00 60.35<br>1.00 59.92 |   | C      |                                        |
| ATOM<br>ATOM | 951<br>953   | CB        | LEU        |   | 90       | 10.339           | 53.685           | 34.802           | 1.00 62.58               |   | С      |                                        |
| ATOM         | 956          | CG        | LEU        |   | 90       | 10.470           | 52.774           | 36.033           | 1.00 63.32               |   | C      |                                        |
| MOTA         | 958          |           | LEU        |   | 90       | 9.957            | 51.354           | 35.769           | 1.00 63.36               |   | C      |                                        |
| MOTA         | 962          |           | LEU        |   | 90<br>90 | 11.902<br>10.353 | 52.749<br>54.126 | 36.553<br>32.303 | 1.00 65.74<br>1.00 59.13 |   | C      |                                        |
| ATOM<br>ATOM | 966<br>967   | C<br>O    | PEA<br>PEA |   | 90       | 9.452            | 54.940           | 32.491           | 1.00 59.17               |   | ō      |                                        |
| ATOM         | 968          | N         | GLY        |   | 91       | 10.931           | 53.952           | 31.115           | 1.00 57.81               |   | N      | •                                      |
| MOTA         | 970          | CA        | GLY        |   | 91       | 10.658           | 54.801           | 29.973           | 1.00 57.43               |   | C      |                                        |
| ATOM         | 973          | C         | GLY        |   | 91       | 9.193<br>8.766   | 55.002           | 29.634<br>29.401 | 1.00 57.59<br>1.00 53.65 |   | 0      |                                        |
| ATOM<br>ATOM | 974<br>975   | O<br>N    | GTA<br>GTA |   | 91<br>92 | 8.435            | 56.146<br>53.903 | 29.594           | 1.00 58.16               |   | N      |                                        |
| ATOM         | 977          | CA        | GLU        |   | 92       | 7.001            | 53.964           | 29.282           | 1.00 59.63               |   | С      |                                        |
| ATOM         | 979          | CB        | GLU        |   | 92       | 6.379            | 52.563           | 29.111           | 1.00 61.16               |   | C      |                                        |
| ATOM         | 982          | CG        | GLU        |   | 92       | 6.013            | 52.162           | 27.678           | 1.00 64.75<br>1.00 65.78 |   | C      |                                        |
| MOTA<br>MOTA | 985<br>986   | CD        | GLU<br>GLU |   | 92<br>92 | 5.100<br>4.081   | 53.153<br>53.574 | 26.965<br>27.558 | 1.00 61.89               |   | ŏ      |                                        |
| ATOM         | 987          |           | GLU        |   | 92       | 5.408            | 53.514           | 25.800           | 1.00 72.35               |   | 0      |                                        |
| ATOM         | 988          | С         | GLU        |   | 92       | 6.257            | 54.706           | 30.385           | 1.00 58.48               |   | C      |                                        |
| ATOM         | 989          | 0         | GLU        |   | 92       | 5.418            | 55.567           | 30.112           | 1.00 60.80               |   | O<br>N | ,                                      |
| ATOM         | 990<br>992   | n<br>Ca   | GT.n       |   | 93<br>93 | 6.574<br>5.893   | 54.374<br>54.969 | 31.629<br>32.775 | 1.00 54.37               |   | C      |                                        |
| MOTA<br>MOTA | 994          | CB        | GLU        |   | 93       | 6.417            | 54.361           | 34.085           | 1.00 56.68               |   | Ċ      |                                        |
| ATOM         | 997          | CG        | GLU        |   | 93       | 5.886            |                  | 34.421           | 1.00 58.27               |   | С      |                                        |
| ATOM         | 1000         | CD        | GLU        |   | 93       | 6.401            | 51.885           | 33.489           | 1.00 59.71               |   | C      | •                                      |
| MOTA         | 1001         |           | GLU<br>GLU |   | 93<br>93 | 7.603<br>5.599   | 51.559<br>51.349 | 33.542<br>32.696 | 1.00 63.03<br>1.00 64.13 |   | 0      | • 6                                    |
| MOTA<br>MOTA | 1002<br>1003 | C         | GLU        |   | 93       | 6.059            | 56.485           | 32.835           | 1.00 50.70               |   | Ċ      | and Samuel                             |
| ATOM         | 1004         | ō         | GLU        |   | 93       | 5.226            |                  | 33.402           | 1.00 51.75               |   | 0      | · 10                                   |
| ATOM         | 1005         | N         | PHE        |   | 94       | 7.145            | 57.006           | 32.269           | 1.00 49.42               |   | N      |                                        |
| ATOM         | 1007         | CA        | PHE        |   | 94       | 7.463            | 58.439<br>58.629 | 32.311<br>32.838 | 1.00 48.02<br>1.00 46.40 |   | C      | 18 - <b>4</b> 7 - 18<br>13 - 3 - 4 - 5 |
| ATOM<br>ATOM | 1009<br>1012 | CB        | PHE        |   | 94<br>94 | 8.891<br>9.019   | 58.526           | 34.331           | 1.00 42.16               |   | Č      | 1. 4.                                  |
| ATOM         | 1013         |           | PHE        |   | 94       | 9.042            | 59.657           | 35.114           | 1.00 41.43               |   | С      |                                        |
| ATOM         | 1015         | CE1       | PHE        |   | 94       | 9.179            |                  | 36.482           | 1.00 43.68               |   | C      |                                        |
| MOTA         | 1017         | CZ        | PHE        |   | 94       | 9.300            |                  | 37.091<br>36.329 | 1.00 42.87<br>1.00 43.19 |   | C      |                                        |
| ATOM<br>ATOM | 1019<br>1021 |           | PHE        |   | 94<br>94 | 9.281<br>9.150   |                  | 34.949           | 1.00 47.22               |   | č      |                                        |
| ATOM         | 1023         | C         | PHE        |   | 94       | 7.324            |                  | 30.928           | 1.00 48.72               | • | С      |                                        |
| MOTA         | 1024         | 0         | PHE        | A | 94       | 7.802            |                  | 30.721           | 1.00 47.69               |   | 0      |                                        |
| ATOM         | 1025         | N         | SER        |   | 95       | 6.644            |                  | 30.005<br>28.637 | 1.00 47.35<br>1.00 47.77 |   | N<br>C |                                        |
| ATOM<br>ATOM | 1027<br>1029 | CA<br>CB  | SER<br>SER |   | 95<br>95 | 6.501<br>6.028   |                  | 27.741           | 1.00 51.35               |   | c      |                                        |
| ATOM         | 1032         | OG        | SER        |   | 95       | 4.613            |                  | 27.561           | 1.00 55.78               |   | 0      |                                        |
| ATOM         | 1034         | С         | SER        | A | 95       | 5.513            |                  | 28.501           | 1.00 47.10               |   | C      |                                        |
| ATOM         | 1035         | 0         | SER        |   | 95       | 5.492            |                  | 27.486           | 1.00 46.32<br>1.00 45.48 |   | O<br>N |                                        |
| MOTA<br>MOTA | 1036<br>1038 | N<br>CA   | GLY<br>GLY |   | 96<br>96 | 4.659<br>3.635   |                  | 29.498<br>29.395 | 1.00 42.45               |   | Ċ      |                                        |
| MOTA         | 1041         | C         | GLY        |   | 96       | 4.199            |                  | 29.349           | 1.00 41.54               |   | С      |                                        |
| ATOM         | 1042         | 0         | GLY        | A | 96       | 5.261            |                  | 29.902           | 1.00 39.29               |   | 0      |                                        |
| MOTA         | 1043         | N         | ARG        |   | 97       | 3.478            |                  | 28.651<br>28.634 | 1.00 43.58<br>1.00 41.22 |   | N<br>C |                                        |
| atom<br>atom | 1045<br>1047 | CA<br>CB  | ARG<br>ARG |   | 97<br>97 | 3.749<br>3.480   |                  | 27.250           | 1.00 39.88               |   | Č      |                                        |
| MOTA         | 1050         | CG        | ARG        |   | 97       | 3.429            |                  | 27.170           | 1.00 40.03               |   | C      |                                        |
| MOTA         | 1053         | CD        | ARG        |   | 97       | 4.775            |                  | 27.274           | 1.00 43.34               |   | C      |                                        |
| ATOM         | 1056         | NE        | ARG        |   | 97       | 5.662            |                  | 26.179           | 1.00 47.30<br>1.00 42.48 |   | N<br>C |                                        |
| MOTA<br>MOTA | 105B<br>1059 | CZ        | ARG<br>ARG |   | 97<br>97 | 6.915<br>7.593   |                  | 26.319<br>25.241 | 1.00 43.86               |   | N      |                                        |
| MOTA         | 1062         |           | ARG        |   | 97       | 7.484            |                  | 27.506           | 1.00 41.33               |   | N      |                                        |
| ATOM         | 1065         | С         | ARG        |   | 97       | 2.785            | 65.584           |                  | 1.00 44.40               |   | C      |                                        |
| ATOM         | 1066         | 0         | ARG        |   | 97       | 1.631            |                  |                  | 1.00 49.09               |   | O<br>N |                                        |
| ATOM         | 1067         | N         | GLY        |   | 98       | 3.250<br>2.448   |                  |                  | 1.00 44.51<br>1.00 43.73 |   | Č      |                                        |
| ATOM<br>ATOM | 1069<br>1072 | CA<br>C   | GLY<br>GLY |   | 98<br>98 | 2.440            |                  |                  | 1.00 45.21               |   | č      |                                        |
| ATOM         | 1072         | Ö         | GLY        |   | 98       | 3.371            |                  |                  | 1.00 45.34               |   | 0      |                                        |
| MOTA         | 1074         | Ņ         | ILE        | A | 99       | 1.231            |                  |                  | 1.00 46.97               |   | N<br>C | •                                      |
| MOTA         | 1076         | CA        | ILE        |   | 99       | 0.935<br>-0.313  |                  |                  | 1.00 47.91<br>1.00 49.72 |   | C      |                                        |
| ATOM<br>ATOM | 1078<br>1080 | CB<br>CG1 | ILE        |   | 99<br>99 | -0.313           |                  |                  | 1.00 52.59               |   | č      |                                        |
| ATOM         | 1083         |           | IĻĒ        |   | 99       | -1.157           |                  |                  | 1.00 55.61               |   | C      |                                        |
| ATOM         | 1087         |           | LLE        | Α | 99       | -0.371           | 71.853           | 28.995           | 1.00 49.85               |   | C      |                                        |
| MOTA         | 1091         | C         | ILE        |   | 99       | 0.726            |                  |                  | 1.00 48.56<br>1.00 47.75 |   | 0      |                                        |
| MOTA         | 1092         | 0         | ILE        | А | 99       | -0.078           | 71.272           | 32.871           | 1.00 4.1.5               |   | -      |                                        |

CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF

| •            |              |           |            |   |            |                  | Fia              | are 5            |                          |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 1093         | N         | PHE        | А | 100        | 1.489            | 72.653           | 32.084           | 1.00 51.94               | N      |
| ATOM         | 1095         | CA        | PHE        |   |            | 1.243            | 73.724           | 33.045           | 1.00 53.50               | C      |
| MOTA         | 1097         | СВ        | PHE        |   |            | 2.512            | 74.574           | 33.235           | 1.00 55.89               | C      |
| MOTA         | 1100         | CG        | PHE        |   |            | 3.527            | 73.949           | 34.159           | 1.00 57.57               | C      |
| ATOM         | 1101         |           | PHE        |   |            | 4.747            | 73.504           | 33.680           | 1.00 58.45               | C      |
| ATOM<br>ATOM | 1103<br>1105 | CEI       | PHE        |   | 100        | 5.662<br>5.373   | 72.901<br>72.746 | 34.532<br>35.879 | 1.00 60.05<br>1.00 59.07 | · c    |
| ATOM         | 1107         |           | PHE        |   |            | 4.178            | 73.192           | 36.372           | 1.00 61.66               | č      |
| ATOM         | 1109         |           | PHE        |   |            | 3.252            | 73.795           | 35.512           | 1.00 60.83               | С      |
| ATOM         | 1111         | С         | PHE        | A | 100        | 0.040            | 74.611           | 32.601           | 1.00 55.02               | С      |
| MOTA         | 1112         | 0         | PHE        |   |            | -0.301           | 74.663           | 31.412           | 1.00 53.13               | 0      |
| ATOM         | 1113         | N         | PRO        |   |            | -0.613           | 75.274           | 33.561           | 1.00 54.67               | N      |
| ATOM         | 1114<br>1116 | CA<br>CB  | PRO<br>PRO |   |            | -1.755<br>-1.775 | 76.159<br>77.074 | 33.282<br>34.504 | 1.00 54.60<br>1.00 54.91 | C<br>C |
| ATOM<br>ATOM | 1119         | CG        | PRO        |   |            | -1.773           | 76.147           | 35.634           | 1.00 55.65               | c      |
| ATOM         | 1122         | CD        | PRO        |   |            | -0.348           | 75.197           | 35.013           | 1.00 55.00               | č      |
| ATOM         | 1125         | С         | PRO        |   |            | -1.680           | 77.000           | 32.021           | 1.00 51.83               | . с    |
| ATOM         | 1126         | 0         | PRO        |   |            | -2.602           | 76.945           | 31.232           | 1.00 52.60               | 0      |
| ATOM         | 1127         | N         | LEU        |   |            | -0.619           | 77.763           | 31.832           | 1.00 50.39               | N      |
| ATOM         | 1129         | CA        | LEU        |   |            | -0.546<br>0.745  | 78.667           | 30.684           | 1.00 49.21               | C<br>C |
| ATOM<br>ATOM | 1131<br>1134 | CB<br>CG  | LEU        |   |            | 1.009            | 79.480<br>80.520 | 30.734<br>29.638 | 1.00 48.07<br>1.00 49.74 | Č      |
| ATOM         | 1136         |           | LEU        |   |            | 1.726            | 79.923           | 28.437           | 1.00 46.56               | č      |
| ATOM         | 1140         |           | LEU        |   |            | -0.277           | 81.272           | 29.203           | 1.00 54.03               | c      |
| ATOM         | 1144         | С.        | LEU        | A | 102        | -0.639           | 77.931           | 29.349           | 1.00 49.72               | C      |
| ATOM         | 1145         | 0         | LEU        |   |            | -1.327           | 78.376           | 28.447           | 1.00 47.65               | 0      |
| ATOM         | 1146         | N         | ALA        |   |            | 0.070            | 76.814           | 29.221           | 1.00 51.44               | N      |
| MOTA         | 1148<br>1150 | CA<br>CB  | ALA<br>ALA |   |            | 0.044<br>1.121   | 76:035<br>74.957 | 27.990<br>28.013 | 1.00 52.60<br>1.00 53.40 | C<br>C |
| ATOM<br>ATOM | 1154         |           | ALA        |   |            | -1.333           | 75.417           | 27.746           | 1.00 52.32               | č      |
| ATOM         |              | ٠٥        | ALA        |   |            | -1.799           | 75.359           | 26.623           | 1.00 51.90               | ō      |
| ATOM         | 1156         |           | GLU        |   |            | -1.975           | 74.955           | 28.801           |                          | N      |
| MOTA         | 1158         |           | GLU        |   |            | -3.311           | 74.416           | 28.689           | 1.00 55.34               | С      |
| MOTA         | 1160         | -         |            |   |            | -3.845           | 74.060           | 30.072           | 1.00 55.38               | c      |
| . ATOM       | 1163         | CG        | GLU        |   |            | -4.636           | 72.774           | 30.124           | 1.00 57.52               | C<br>C |
| ATOM<br>ATOM | 1166<br>1167 | CD<br>OF1 |            |   | 104        | -4.668<br>-4.759 | 72.206<br>72.997 | 31.534<br>32.494 | 1.00 62.35<br>1.00 63.51 | 0      |
| ATOM         |              | OE2       | GLU        |   |            | -4.587           | 70.972           | 31.695           | 1.00 66.97               | ŏ      |
| ATOM         | 1169         | C         | GLU        |   |            | -4.221           | 75.430           | 28.006           | 1.00 55.34               | С      |
| ATOM         | 1170         | 0         | GLU        |   |            | -4.900           | 75.099           | 27.047           | 1.00 61.03               | 0      |
| MOTA         | 1171         | N         | ARG        |   |            | -4.199           | 76.673           | 28.468           | 1.00 54.62               | Ŋ      |
| MOTA         | 1173         | CA        | ARG        |   |            | -5.041           | 77.731           | 27.903           | 1.00 56.34               | C      |
| ATOM<br>ATOM | 1175<br>1178 | CB<br>CG  | ARG<br>ARG |   |            | -5.088<br>-5.788 | 78.924<br>78.608 | 28.848<br>30.142 | 1.00 57.11<br>1.00 63.03 | C      |
| ATOM         | 1181         | CD        | ARG        |   |            | -7.305           | 78.506           | 29.999           | 1.00 66.22               | č      |
| MOTA         | 1184         | NE        | ARG        |   |            | -7.900           | 79.814           | 29.732           | 1.00 65.81               | N      |
| MOTA         | 1186         | CZ        | ARG        |   |            | -8.311           | 80.672           | 30.658           | 1.00 65.18               | С      |
| MOTA         | 1187         |           | ARG        |   |            | -8.831           | 81.837           | 30.288           | 1.00 67.37               | N      |
| ATOM         | 1190         |           | ARG        |   |            | -8.209           | 80386            | 31.949           | 1.00 64.57               | N      |
| ATOM         | 1193         | C         | ARG        |   | 105        | -4.617           | 78.227<br>78.662 | 26.528           | 1.00 55.88               | С<br>О |
| ATOM<br>ATOM | 1194<br>1195 | O<br>N    |            |   | 106        | -5.460<br>-3.318 | 78.164           | 25.745<br>26.241 | 1.00 56.46               | Ŋ      |
| MOTA         | 1197         | CA        |            |   | 106        | -2.749           | 78.709           | 25.003           | 1.00 53.85               | Ĉ      |
| MOTA         | 1199         | СВ        |            |   | 106        | -1.334           | 79.214           | 25.236           | 1.00 50.11               | С      |
| MOTA         | 1203         | C         |            |   | 106        | -2.742           | 77.734           | 23.854           | 1.00 53.83               | Ç      |
| ATOM         | 1204         | 0         |            |   | 106        | -2.327           | 78.103           | 22.765           | 1.00 56.04               | 0      |
| ATOM         | 1205         | И         |            |   | 107        | -3.197           | 76.504           | 24.090           | 1.00 57.65<br>1.00 61.91 | N<br>C |
| ATOM<br>ATOM | 1207         | CA<br>CB  |            |   | 107<br>107 | -3.190<br>-2.210 | 75.451<br>74.331 | 23.066<br>23.439 | 1.00 61.31               | c      |
| ATOM         | 1209<br>1212 | CG        |            |   | 107        | -0.789           | 74.674           | 23.433           | 1.00 62.31               | č      |
| ATOM         | 1213         |           | ASN.       |   |            | 0.033            | 75.010           | 23.925           | 1.00 66.42               | 0      |
| ATOM         | 1214         |           | ASN        |   |            | ~0.496           | 74.623           | 21.782           | 1.00 58.55               | N      |
| MOTA         | 1217         | С         |            |   | 107        | ~4.569           | 74.852           | 22.800           | 1.00 64.72               | C      |
| MOTA         | 1218         | 0         |            |   | 107        | -5.110           | 74.125           | 23.635           | 1.00 69.15               | 0      |
| ATOM         | 1219         | N         |            |   | 108        | -5.125<br>-6.343 | 75.176           | 21.634           | 1.00 64.73<br>1.00 64.12 | N<br>C |
| atom<br>Atom | 1221         | CA        |            |   | 108<br>108 | -6.343<br>-7.287 | 74.549<br>75.593 | 21.142<br>20.493 | 1.00 64.12               | c      |
| ATOM         | 1223<br>1226 | CB<br>CG  |            |   | 108        | -8.573           | 75.846           | 21.280           | 1.00 64.43               | č      |
| ATOM         | 1229         | CD        |            |   | 108        | -8.335           |                  | 22.603           | 1.00 64.96               | . č    |
| MOTA         | 1232         | NE        |            |   | 108        | -9.147           | 77.757           | 22.875           | 1.00 63.73               | N      |
| ATOM         | 1234         | CZ        |            |   | 108        | -9.375           | 78.787           | 22.044           | 1.00 59.32               | . с    |
| ATOM         | 1235         |           | ARG        |   |            | -8.913           | 78.820           | 20.792           | 1.00 53.91               | N      |
| ATOM         | 1238         |           | ARG        |   |            | -10.105          | 79.808           | 22.486           | 1.00 58.65               | . и    |
| ATOM         | 1241         |           | . ARG      |   |            | -5.901<br>-5.520 | 73.498           | 20.134           | 1.00 62.68<br>1.00 67.07 | C<br>0 |
| ATOM<br>ATOM | 1242<br>1243 | И<br>О    |            |   | 108<br>109 | -5.520<br>-5.917 | 73.815<br>72.247 | 18.999<br>20.558 | 1.00 61.37               | N      |
| 517          | 1643         | 14        | 941        | ^ | 200        | 2.727            |                  | 20.000           |                          |        |

|              |              |          |            |   |            |                  | Figu              | ıre 5            |                  |      |        |
|--------------|--------------|----------|------------|---|------------|------------------|-------------------|------------------|------------------|------|--------|
| ATOM         | 1245         | CA       | GLY        | A | 109        | -5.619           | 71.146            | 19.659           | 1.00 6           | 0.30 | С      |
| ATOM         | 1248         | C        | GLY        |   |            | -4.197           | 70.665            | 19.830           | 1.00 5           |      | C      |
| ATOM         | 1249<br>1250 | O<br>N   | GLY<br>PHE |   |            | -3.286<br>-4.021 | 71.459<br>69.352  | 19.986<br>19.794 | 1.00 5<br>1.00 5 |      | O<br>N |
| ATOM<br>ATOM | 1252         | CA       |            |   | 110        | -2.745           | 68.726            | 20.071           | 1.00 5           |      | C      |
| ATOM         | 1254         | СВ       |            |   | 110        | -2.937           | 67.723            | 21.212           | 1.00 5           |      | С      |
| ATOM         | 1257         | CG       | PHE        |   |            | -3.255           | 68.350            | 22.539           | 1.00 5           |      | C      |
| ATOM<br>ATOM | 1258<br>1260 |          | PHE        |   |            | -2.796<br>-3.090 | 69.625<br>70.190  | 22.871<br>24.110 | 1.00 6<br>1.00 6 |      | C<br>C |
| ATOM         | 1262         | CZ       |            |   | 110        | -3.834           | 69.474            | 25.031           | 1.00 6           |      | č      |
| MOTA         | 1264         |          | PHE        |   |            | -4.283           | 68.198            | 24.713           | 1.00 6           |      | С      |
| ATOM         | 1266         |          | PHE        |   |            | -3.994           | 67.646            | 23.474           | 1.00 6           |      | C      |
| ATOM<br>ATOM | 1268<br>1269 | C<br>0   | PHE        |   | 110        | -2.148<br>-2.850 | 68.015<br>67.357  | 18.839<br>18.075 | 1.00 5<br>1.00 5 |      | C<br>0 |
| ATOM         | 1270         | N        | GLY        |   |            | -0.838           | 68.146            | 18.660           | 1.00 5           |      | N      |
| ATOM         | 1272         | CA       | GLY        | A | 111        | -0.137           | 67.458            | 17.591           | 1.00 5           |      | С      |
| ATOM         | 1275         | C        | GLY        |   |            | 0.796            | 66.391            | 18.126           | 1.00 5           |      | C      |
| ATOM<br>ATOM | 1276<br>1277 | O<br>N   | GLY        |   |            | 0.495<br>1.939   | 65.185<br>66.850  | 18.112<br>18.619 | 1.00 4           |      | O<br>N |
| ATOM         | 1279         | CA       | ILE        |   |            | 3.018            | 65.956            | 19.012           | 1.00 4           |      | Ċ      |
| ATOM         | 1281         | CB       |            |   | 112        | 4.045            | 65.887            | 17.874           | 1.00 4           |      | С      |
| ATOM         | 1283         | CG1      | ILE        |   |            | 5.063<br>5.796   | 64.788            | 18.108<br>16.841 | 1.00 4           |      | C<br>C |
| ATOM<br>ATOM | 1286<br>1290 | CD1      | ILE        |   |            | 4.729            | 64.446<br>67.216  | 17.652           | 1.00 5           |      | č      |
| ATOM         | 1294         | C        |            |   | 112        | 3.631            | 66.359            | 20.339           | 1.00 4           |      | Č      |
| ATOM         | 1295         | 0        | ILE        |   |            | 3.807            | 65.509            | 21,222           | 1.00 5           |      | 0      |
| ATOM         | 1296<br>1298 | N        | VAL        |   | 113        | 3.900<br>4.576   | 67.654<br>68.181  | 20.498<br>21.678 | 1.00 4           |      | N<br>C |
| ATOM<br>ATOM | 1300         | CA<br>CB | VAL        |   |            | 4.904            | 69.688            | 21.522           | 1.00 3           |      | Č      |
| ATOM         | 1302         |          | VAL        |   |            | 5.368            | 70.285            | 22.834           | 1.00 4           |      | , с    |
| ATOM         | 1306         |          | VAL        |   |            | 5.961            | •                 | 20.491           | 1.00 3           |      | C      |
| ATOM<br>ATOM | 1310<br>1311 | С<br>0   |            |   | 113<br>113 | 3.737<br>4.288   | 67.995<br>67.806  | 22.938<br>24.015 | 1.00 4           |      | C<br>0 |
| ATOM         | 1312         | N        | PHE        |   |            | 2:413            | 68.069            |                  | 1.00 4           |      | . N    |
| ATOM         | 1314         | CA       | PHE        |   |            | 1.493            | 68.105            | 23.928           | 1.00 4           |      | С      |
| ATOM         | 1316         | CB       | PHE        |   |            | 0.735            | 69.434            | 23.922           | 1.00 4           |      | C      |
| ATOM<br>ATOM | 1319<br>1320 | CG       | PHE        |   |            | 1.577<br>1.682   | 70.614<br>71.707  | 24.297<br>23.452 | 1.00 4           |      | C<br>C |
| ATOM         | 1322         |          | PHE        |   |            | 2.461            | 72.830            | 23.810           | 1.00 4           |      | č      |
| ATOM         | 1324         | CZ       | PHE        | A | 114        | 3.129            | 72.844            | 25.012           | 1.00 4           |      | С      |
| ATOM         | 1326         |          | PHE        |   |            |                  | 71.751            | 25.869           | 1.00 4           |      | C      |
| ATOM<br>ATOM | 1328<br>1330 | C        | PHE        |   |            | 2.245<br>0.508   | 70.649<br>66.942  | 25.511<br>23.944 | 1.00 4           |      | c      |
| ATOM         | 1331         | ō        | PHE        |   |            | -0.343           | 66.846            | 24.823           | 1.00 4           |      | ō      |
| MOTA         | 1332         | N        |            |   | 115        | 0.627            | 66.060            | 22.967           | 1.00 4           |      | Ŋ      |
| ATOM<br>ATOM | 1334<br>1336 | CA<br>CB | SER        |   | 115        | -0.236<br>-0.079 | 64.903<br>64.270  | 22.857<br>21.475 | 1.00 4           |      | · C    |
| ATOM         | 1339         | OG       |            |   | 115        | -0.865           | 64.946            | 20.529           | 1.00 5           |      | ŏ      |
| ATOM         | 1341         | С        | SER        | A | 115        | 0.140            | 63.874            | 23.901           | 1.00 4           |      | С      |
| ATOM         | 1342         | 0        |            |   | 115        | 1.227            | 63.933            | 24.460           | 1.00 4           |      | 0      |
| ATOM<br>ATOM | 1343<br>1345 | N<br>CA  |            |   | 116<br>116 | -0.753<br>-0.515 | 62.911<br>61.772  | 24.113<br>24.994 | 1.00 4           |      | N<br>C |
| ATOM         | 1347         | CB       |            |   | 116        | -1.034           | 62.087            | 26.401           | 1.00 4           |      | Ċ      |
| ATOM         | 1350         | CG       | ASN        | A | 116        | 0.069            | 62.546            | 27.342           | 1.00 4           |      | C      |
| ATOM         | 1351         |          | ASN        |   |            | 0.993            | 61.791°<br>63.771 | 27.646<br>27.815 | 1.00 4           |      | O<br>N |
| ATOM<br>ATOM | 1352<br>1355 | ND2      | ASN<br>ASN |   |            | -0.029<br>-1.185 | 60.520            | 24.409           | 1.00 4           |      | C      |
| ATOM         | 1356         | ō        | ASN        |   |            | -1.844           | 60.589            | 23.378           | 1.00 4           |      | Ō      |
| MOTA         | 1357         | N        |            |   | 117        | -0.990           | 59.366            | 25.026           | 1.00 4           |      | N      |
| ATOM         | 1359         | CA       | GLY<br>GLY |   |            | -1.635<br>-1.357 | 58.153<br>57.796  | 24.542<br>23.084 | 1.00 5           |      | c<br>c |
| ATOM<br>ATOM | 1362<br>1363 | 0        | GLY        |   |            | -0.298           | 58.116            | 22.565           | 1.00 5           |      | ŏ      |
| ATOM         | 1364         | N        |            |   | 118        | -2.313           | 57.127            | 22.431           | 1.00 5           | 7.51 | Ŋ      |
| ATOM         | 1366         | CA       |            |   | 118        | -2.152           | 56.696            | 21.031           | 1.00 5           |      | · C    |
| ATOM<br>ATOM | 1368<br>1371 | CB<br>CG | LYS        |   | 118        | -3.283<br>-4.293 | 55.762<br>55.194  | 20.497<br>21.505 | 1.00 6           |      | C<br>C |
| MOTA         | 1374         | CD       | LYS        |   |            | -5.430           | 56.199            | 21.836           | 1.00 7           |      | č      |
| ATOM         | 1377         | CE       | LYS        | A | 118        | -5,930           | 56.063            | 23.292           | 1.00 7           |      | C      |
| MOTA         | 1380         | NZ       | LYS        |   |            | -5,133           | 56.916            | 24.237<br>20.076 | 1.00 7           |      | И      |
| ATOM<br>ATOM | 1384<br>1385 | C<br>O   | LYS        |   |            | -2.002<br>-1.320 | 57.877<br>57.758  | 19.076           | 1.00 5<br>1.00 5 |      | C<br>0 |
| MOTA         | 1386         | И        | LYS        |   |            | -2.628           | 59.006            | 20.352           | 1.00 4           |      | N      |
| MOTA         | 1388         | CA       | LYS        | A | 119        | -2.446           | 60.156            | 19.475           | 1.00 5           |      | C      |
| ATOM<br>ATOM | 1390         | CB       | LYS        |   |            | -3.293<br>-3.374 | 61.324<br>62.457  | 19.943<br>18.970 | 1.00 5<br>1.00 5 |      | C<br>C |
| ATOM         | 1393<br>1396 | CG<br>CD | LYS        |   | 119        | -3.374<br>-4.486 | 63.439            | 19.376           | 1.00 6           |      | c      |
|              |              |          |            |   |            |                  |                   |                  |                  |      | _      |

|              |              |          |            |   |            |                  | Fic              | ıre 5            |                          |          |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------------------------|----------|--------|
| ATOM         | 1399         | CE       | LYS        | A | 119        | -4.274           | 64.823           | 18.759           | 1.00 63.56               |          | С      |
| ATOM         | 1402         | NZ       | LYS        |   |            | -5.419           | 65.242           | 17.879           | 1.00 68.27               |          | N      |
| MOTA         | 1406         | C        | LYS        |   |            | -0.966           | 60.553           | 19.389           | 1.00 52.86               |          | C      |
| ATOM         | 1407         | 0        | LYS        |   |            | -0.408<br>-0.320 | 60.702           | 18.303           | 1.00 50.93               |          | O<br>N |
| ATOM<br>ATOM | 1408<br>1410 | N<br>CA  | TRP<br>TRP |   |            | 1.102            | 60.694<br>60.968 | 20.540<br>20.565 | 1.00 52.67<br>1.00 50.12 |          | č      |
| ATOM         | 1412         | СВ       | TRP        |   |            | 1:559            | 61.269           | 21.990           | 1.00 49.66               |          | C      |
| ATOM         | 1415         | CG       | TRP        | A | 120        | 3.013            | 61.229           | 22.145           | 1.00 49.11               |          | С      |
| ATOM         | 1416         |          | TRP        |   |            | 3.913            | 62.137           | 21.678           | 1.00 49.51               |          | C<br>N |
| ATOM         | 1418<br>1420 |          | TRP<br>TRP |   |            | 5.187<br>5.121   | 61.744<br>60.567 | 22.004<br>22.699 | 1.00 49.33<br>1.00 48.36 |          | C      |
| ATOM<br>ATOM | 1421         |          | TRP        |   |            | 3.763            | 60.218           | 22.804           | 1.00 47.73               |          | č      |
| ATOM         | 1422         |          | TRP        |   |            | 3.423            | 59.045           | 23.482           | 1.00 50.33               |          | C      |
| ATOM         |              |          | TRP        |   |            | 4.428            | 58.275           | 24.018           | 1.00 50.98               |          | C      |
| MOTA<br>MOTA | 1426<br>1428 |          | TRP        |   |            | 5.770<br>6.134   | 58.654<br>59.796 | 23.898<br>23.247 | 1.00 50.53<br>1.00 47.30 |          | c      |
| ATOM         | 1430         | c        | TRP        |   |            | 1.900            | 59.801           | 19.964           | 1.00 51.47               |          | C      |
| MOTA         | 1431         | 0        | TRP        |   |            | 2.703            | 60.025           | 19.075           | 1.00 51.60               |          | 0      |
| MOTA         | 1432         | N        | LYS        |   |            | 1.665            | 58.575           | 20.439           | 1.00 51.41               |          | N      |
| MOTA         | 1434         | CA<br>CB | LYS        |   |            | 2.448<br>1.826   | 57.388<br>56.089 | 20.048<br>20.615 | 1.00 54.39               |          | C      |
| ATOM<br>ATOM | 1436<br>1439 | CG       | LYS        |   |            | 2.661            | 55.333           | 21.673           | 1.00 64.17               |          | č      |
| ATOM         | 1442         | CD       | LYS        |   |            | 3.559            | 54., 233         | 21.047           | 1.00 71.75               |          | С      |
| ATOM         | 1445         | CE       | LYS        |   |            | 4.678            | 53.750           | 22.018           | 1.00 76.17               |          | C      |
| ATOM         | 1448         | NZ       | LYS        |   |            | 5.840<br>2.540   | 54.721<br>57.255 | 22.197<br>18.538 | 1.00 79.05<br>1.00 55.47 |          | N<br>C |
| ATOM<br>ATOM | 1452<br>1453 | С<br>0   | LYS        |   |            | 3.594            | 56.922           | 17.995           | 1.00 55.98               |          | ŏ      |
| ATOM         | 1454         | N        | GLU        |   |            | 1.427            | 57.548           | 17.871           | 1.00 56.52               |          | N      |
| MOTA         | 1456         | CA       | GLU        |   |            | 1.268            | 57.278           | 16.454           | 1.00 55.85               |          | С      |
| ATOM         | 1458<br>1461 | CB<br>CG | GT0.       |   |            | -0.185<br>-0.628 | 56.955<br>55.584 | 16.127<br>16.602 | 1.00 59.20<br>1.00 63.98 |          | C      |
| MOTA<br>MOTA | 1461         | CD       | GLU        |   |            | -1.942           | 55.150           | 15.989           | 1.00 68.33               | 6 (2.21) | č      |
| ATOM         | 1465         |          | GLU        |   |            | -2.385           | 54.029           | 16.325           | 1.00 72.42               |          | 0      |
| MOTA         | 1466         |          | GLU        |   |            | -2.519           | 55.921           | 15.179           | 1.00 69.53               |          | 0      |
| MOTA         | 1467         | C        | GLU        |   |            | 1,696<br>2.173   | 58.417<br>58.186 | 15.581<br>14.489 | 1.00 52.76               |          | C      |
| ATOM<br>ATOM | 1468<br>1469 | O<br>N   | ILE        |   | 122<br>123 | 1.495            | 59.646           | 16.022           | 1.00 49.67               |          | N      |
| ATOM         | 1471         | CA       |            |   | 123        | 1.965            | 60.788           | 15.250           | 1.00 48.01               | . 10 . 1 | С      |
| MOTA         | 1473         | CB       | ILE        |   |            | 1.217            | 62.073           | 15.663           | 1.00 47.82               | -        | C      |
| MOTA         | 1475         |          | ILE        |   |            | -0.257           | 61.935           | 15.286<br>15.600 | 1.00 53.60<br>1.00 57.92 |          | C      |
| ATOM<br>ATOM | 1478<br>1482 | CD1      | ILE        |   |            | -1.114<br>1.813  | 63.159<br>63.321 | 14.980           | 1.00 47.05               |          | ç      |
| ATOM         | 1486         | c        |            |   | 123        | 3.490            | 60.923           | 15.389           | 1.00 46.68               |          | С      |
| ATOM         | 1487         | 0        |            |   | 123        | 4.186            | 61.268           | 14.436           | 1.00 46.44               |          | 0      |
| ATOM         | 1488         | N        | ARG        |   | 124        | 4.014<br>5.431   | 60.645<br>60.795 | 16.573<br>16.800 | 1.00 43.54               |          | N<br>C |
| ATOM<br>ATOM | 1490<br>1492 | CA<br>CB |            |   | 124        | 5.769            | 60.582           | 18.259           | 1.00 40.13               |          | č      |
| ATOM         | 1495         | CG       |            |   | 124        | 7.217            | 60.839           | 18.587           | 1.00 39.59               |          | С      |
| ATOM         | 1498         | CD       |            |   | 124        | 7.668            | 60.095           | 19.799           | 1.00 39.32               |          | C      |
| ATOM         | 1501         | ne<br>Cz |            |   | 124<br>124 | 9.117<br>9.918   | 60.021<br>61.010 | 19.912<br>20.332 | 1.00 40.38               |          | N<br>C |
| MOTA<br>MOTA | 1503<br>1504 |          | ARG        |   |            | 9.442            | 62.204           | 20.664           | 1.00 38.40               |          | N      |
| ATOM         | 1507         |          | ARG        |   |            | 11.223           | 60.795           | 20.417           | 1.00 39.96               | ŝ        | N      |
| ATOM         | 1510         | C        |            |   | 124        | 6.143            |                  |                  | 1.00 45.13               |          | C      |
| ATOM         | 1511         | 0        |            |   | 124<br>125 | 7.159<br>5.603   |                  | 15.333<br>15.925 | 1.00 46.42               |          | O<br>N |
| ATOM<br>ATOM | 1512<br>1514 | N<br>CA  |            |   | 125        | 6.173            | 57.479           | 15.137           | 1.00 47.65               |          | Ċ      |
| MOTA         | 1516         | CB       |            |   | 125        | 5.395            | 56.181           | 15.362           | 1.00 51.70               |          | С      |
| ATOM         | 1519         | CG       |            |   | 125        | 5.584            | 55.135           | 14.288           | 1.00 59.34               |          | C      |
| ATOM         | 1522         | CD       |            |   | 125<br>125 | 5.388<br>6.514   | 53.695<br>52.855 | 14.751<br>14.316 | 1.00 67.73               |          | N      |
| ATOM<br>ATOM | 1525<br>1527 | NE<br>CZ |            |   | 125        | 6.671            |                  | 14.604           | 1.00 84.24               |          | Ċ      |
| ATOM         | 1528         |          | ARG        |   |            | 5.771            | 50.893           | 15.332           | 1.00 85.90               |          | N      |
| ATOM         | 1531         | NH2      | ARG        | A | 125        | 7.743            |                  | 14.151           | 1.00 84.59               |          | N      |
| ATOM         | 1534         | C        |            |   | 125        | 6.170            |                  | 13.671<br>12.983 | 1.00 44.52               |          | 0      |
| ATOM<br>ATOM | 1535<br>1536 | O<br>N   |            |   | 125<br>126 | 7.164<br>5.066   |                  | 13.200           | 1.00 41.9                |          | N      |
| ATOM         | 1538         | CA       |            |   | 126        | 4.975            |                  | 11.805           | 1.00 41.5                |          | С      |
| MOTA         | 1540         | СВ       | PHE        | A | 126        | 3.591            | 59.457           | 11.511           | 1.00 38.3                |          | C      |
| MOTA         | 1543         | CG       |            |   | 126        | 3.492            |                  | 10.174<br>10.076 | 1.00 35.89               |          | C      |
| ATOM<br>ATOM | 1544<br>1546 |          | PHE        |   |            | 3,519<br>3,443   |                  | 8.853            | 1.00 40.1.               |          | c      |
| ATOM         | 1548         | CEI      |            |   | 126        | 3.335            |                  | 7.713            | 1.00 42.6                | 7        | С      |
| ATOM         | 1550         |          | PHE        |   |            | 3.316            | 60.003           | 7.788            | 1.00 40.0                |          | C      |
| ATOM         | 1552         |          | PHE        |   |            | 3.387            |                  | 9.012<br>11.468  | 1.00 40.13<br>1.00 42.83 |          | C      |
| MOTA         | 1554         | С        | PHE        | A | 126        | 6.031            | 37.003           | 14.400           | 1.00 42.0.               | •        | ·      |

```
Figure 5
MOTA
       1555
                 PHE A 126
                                 6.657 59.820 10.422 1.00 46.75
            0
                 SER A 127
ATOM
       1556
            N
                                 6.204
                                        60.836 12.368 1.00 46.04
                                                                             N
             CA
                 SER A 127
MOTA
       1558
                                 7.041
                                        61.994 12.134
                                                        1.00 48.10
                                                                             C
                 SER A 127
                                 6.808
MOTA
       1560
             CB
                                        63.016 13.252
                                                        1.00 50.05
MOTA
       1563
             OG
                 SER A 127
                                 5.438
                                        63.390 13.306
                                                        1.00 47.88
                                                                              0
ATOM
       1565
             C
                 SER A 127
                                 8.520
                                        61.623 12.042
                                                        1.00 46.15
ATOM
       1566
             0
                 SER A 127
                                 9.233
                                        62.141 11.198
                                                        1.00 49.40
MOTA
       1567
             N
                 LEU A 128
                                 8.971
                                        60.726 12.901
                                                        1.00 43.47
ATOM
       1569
             CA
                 LEU A 128
                                10.348
                                        60.243 12.856
                                                        1.00 46.04
ATOM
       1571
             СВ
                 LEU A 128
                                10.588
                                        59.268 13.987
                                                        1.00 42.96
ATOM
       1574
             CG
                 LEU A 128
                                10.686
                                       59.892 15.358
                                                        1.00 44.34
                                                                             C
ATOM
       1576
             CD1 LEU A 128
                                10.647 58.746 16.350
                                                        1.00 43.52
                                                                             C
ATOM
       1580
             CD2 LEU A 128
                                11.959
                                        60.761
                                                15.490
                                                        1.00 45.14
                                                                             C
       1584
                 LEU A 128
                                10.676
                                                11.550
ATOM
             С
                                        59.527
                                                        1.00 50.43
ATOM
       1585
                 LEU A 128
                                11.792 59.653
             0
                                                11.010
                                                        1.00 51.40
                                                                             0
                 MET A 129
                                 9.709 58.735 11.097
MOTA
       1586
             N
                                                        1.00 53.55
ATOM
                 MET A 129
                                 9.753 58.078
       1588
             CA
                                                 9.808
                                                        1.00 56.49
ATOM
       1590
             CB
                 MET A 129
                                 8.399 57.446
                                                 9.492
                                                        1.00 62.45
                                                                             C
ATOM
       1593
             CG
                 MET A 129
                                 8.487
                                        56.113
                                                 8.790
                                                        1.00 69.75
MOTA
       1596
                 MET A 129
                                 8.948 54.849
                                                 9.981
                                                        1.00 82.31
                                                                             S
MOTA
       1597
             CE
                 MET A 129
                                 7.282 53.892
                                                10.141
                                                        1.00 79.95
                                10.076 59.085
ATOM
       1601
             С
                 MET A 129
                                                 8.731
                                                        1.00 56.03
                                                                             С
ATOM
       1602
             0
                 MET A 129
                                11.023 58.907
                                                       1.00 55.52
                                                 7.986
                                                                             0
ATOM
       1603
                 THR A 130
                                 9.311 60.167
                                                 8.671
                                                       1.00 54.31
                                                                             N
ATOM
       1605
             CA
                 THR A 130
                                 9.472
                                                 7.586
                                                       1.00 56.12
                                        61.119
                                                                             C
ATOM
       1607
             CB
                 THR A 130
                                 8.164 61.912
                                                 7.334
                                                        1.00 56.96
                                                                             С
ATOM
       1609
             OG1 THR A 130
                                 8.071
                                        63.006
                                                 8.245
                                                        1.00 59.65
                                                                             0
ATOM
       1611
             CG2 THR A 130
                                 6.912
                                       61.069
                                                 7.625
                                                        1.00 59.18
                                                                             С
ATOM
       1615
             С
                 THR A 130
                                10.656 62.070
                                                 7.806 1.00 56.43
                                                                             С
ATOM
                 THR A 130
       1616
             0
                                11.105
                                        62.741
                                                 6.871 1.00 60.41
                                                                             0
ATOM
                 LEU A 131
       1617
             N
                                11.167
                                        62.133
                                                 9.027 1.00 55.40
ATOM
                                                                             1619
                 LEU A 131
             CA
                                12.301 62.994
                                                 9.329
                                                       1.00 55.81
                 LEU A 131
ATOM
       1621
             CB
                                12.223 63.480
                                                10.772 1.00 58.24
                                                                             ATOM
       1624
             CG
                LEU A 131
                                11.366 64.718
                                                10.986
                                                        1.00 60.14
ATOM
       1626
             CD1 LEU A 131
                                11.154 64.922
                                                12.465 1.00 60.66
ATOM
       1630
             CD2 LEU A 131
                                12.029 65.926
                                                10.375
                                                        1.00 60.60
ATOM
       1634
             С
                LEU A 131
                                13.649 62.309
                                                 9,109
                                                        1.00 54.44
ATOM
       1635
             0
                 LEU A 131
                                                        1.00 55.06
                                14.694
                                        62,954
                                                 9.244
                                                 8.796
ATOM
       1636
                 ARG A 132
             N
                                13.637
                                        61.015
                                                        1.00 51.19
ATOM
       1638
             CA
                 ARG A 132
                                14.867
                                        60.315
                                                 8.442
                                                        1.00 49.85
ATOM
       1640
             CB
                 ARG A 132
                                14.602
                                        58.851
                                                 8.132
                                                        1.00 50.88
ATOM
       1643
             CG
                 ARG A 132
                                14.000
                                        58.042
                                                 9.276
                                                        1.00.57.04
ATOM
       1646
                 ARG A 132
             CD
                                13.512
                                        56.663
                                                 8.861
                                                        1.00 63.37
                                                                             C
ATOM
       1649
                 ARG A 132
             NE
                                12.635
                                        56.752
                                                 7.685
                                                       1.00 71.37
                                                                             N
ATOM
       1651
             CZ
                 ARG A 132
                                12.199
                                        55.724
                                                 6.962
                                                        1.00 73.89
                                                                             C
ATOM
       1652
             NH1 ARG A 132
                                12.547
                                        54.475
                                                 7.269
                                                        1.00 76.71
                                                                             N
ATOM
       1655
             NH2 ARG A 132
                                11.409
                                        55.957
                                                 5.915
                                                        1.00 71.69
                                                                             N
ATOM
       1658
             С
                 ARG A 132
                                15.424 60.975
                                                 7.200 1.00 48.75
                                                                             С
ATOM
       1659
                 ARG A 132
                                14.673
                                        61,559
                                                 6.414
                                                        1.00 47.35
                                                                             O
ATOM
       1660
             N
                 ASN A 133
                                                 7.011
                                16.735
17.395
                                        60.875
                                                        1.00 48.50
                                                                             N
ATOM
       1662
                 ASN A 133
             CA
                                        61.563
                                                 5.905
                                                        1.00 48.08
                                                                             C ·
ATOM
       1664
             СВ
                 ASN A 133
                                18.874
                                        61.177
                                                 5.820
                                                        1.00 44.64
                                                                             C
                                19.678 62.164
ATOM
       1667
             CG
                 ASN A 133
                                                 5.024
                                                        1.00 45.89
                                                                             C
ATOM
       1668
             OD1 ASN A 133
                                20.524 61.792
                                                 4.220
                                                        1.00 55.72
                                                                             0
       1669
ATOM
             ND2 ASN A 133
                                19.416 63.434
                                                 5.236
                                                        1.00 48.44
                                                                             N
ATOM
       1672
             С
                 ASN A 133
                                                 4.562
                                16.696 61.311
                                                        1.00 51.67
       1673
                                16.365 62.261
ATOM
             0
                 ASN A 133
                                                 3.837
                                                        1.00 43.89
                                                                             0
ATOM
       1674
                                16.467 60.034
15.808 59.670
             N
                 PHE A 134
                                                 4.245 1.00 55.60
       1676
ATOM
             CA
                PHE A 134
                                                 2.984 1.00 61.26
                                                                             С
                                16.629 58.652
17.871 59.222
ATOM
       1678
             CB
                 PHE A 134
                                                 2.172 1.00 62.26
                                                                             C
ATOM
       1681
             CG
                PHE A 134
                                                 1.537
                                                        1.00 63.93
                                                                             С
ATOM
       1682
             CD1 PHE A 134
                                17.790 59.980
                                                0.366
                                                       1.00 63.88
ATOM
       1684
             CE1 PHE A 134
                                18.957 60.498
                                                -0.231
                                                        1.00 65.42
MOTA
       1686
             CZ PHE A 134
                                20.204 60.255
                                                 0.356
                                                        1.00 62.84
ATOM
       1688
             CE2 PHE A 134
                                20.284 59.489
                                                 1.518
                                                        1.00 62.20
MOTA
                                19.129 58.978
       1690
             CD2 PHE A 134
                                                 2.099
                                                        1.00 60.58
                                14.434 59.098
MOTA
       1692
                                                 3.284
                 PHE A 134
                                                        1.00 59.66
                                14.121 57.988
MOTA
       1693
                                                 2.886
                 PHE A 134
                                                       1.00 60.82
ATOM
       1694
                                       59.863
             N
                 GLY A 135
                                13.612
                                                 3.984
                                                       1.00 59.60
ATOM
       1696
            CA
                 GLY A 135
                                12.353 59.343
                                                 4.480
                                                       1.00 58.32
MOTA
       1699
                 GLY A 135
                                11.146 59.821
                                                 3.712
                                                        1.00 57.90
ATOM
       1700
                                10.051 59.467
                                                 4.074
                                                        1.00 51.97
                 GLY A 135
                                                                             0
ATOM
       1701
                                        60.624
                                                        1.00 62.38
            N
                                11.342
                                                 2,666
                 MET A 136
ATOM
       1703
                                        61.203
                                10.223
                                                 1,910
                                                       1.00 61.45
            CA
                MET A 136
                                                                             С
ATOM
       1705
                                9.432
                                       62.214
                                                 2.760
                                                       1.00 59.70
            CB
                MET A 136
                                                                             C
MOTA
       1708
                                                       1.00 58.21
                                10.261 63.222
                                                3.520
            CG
                MET A 136
```

97. 3

da Bakata

าร์ รที่จารีโซานี้ นิย์ม จากระจานมาสาร์กา

পুড়া গাড়াই হিচাপে সাম্প্রিক পিলা প্রেডিক স্কাল সাম্প্রিক প্রাকৃতিক স্কালী

Sex 5 Tr.

310/514

WO 03/035693

```
Figure 5
                                                  4.356 1.00 57.90
           SD MET A 136
                                         64.508
ATOM
      1711
                                 9.277
                 MET A 136
                                 10.468
                                         65.793
                                                  4.566
                                                         1.00 56.52
ATOM
      1712
             CE
                 MET A 136
                                 10.677
                                         61.864
                                                  0.610
                                                        1.00 62.10
ATOM
      1716
                                         63.083
                                                  0.504
                                                        1.00 62.35
ATOM
      1717
             0
                 MET A 136
                                 10.813
                 GLY A 137
                                 10.898
                                         61.041
                                                 -0.395
                                                        1.00 63.89
ATOM
       1718
             N
                 GLY A 137
                                 11.162
                                         61.557
                                                 -1.718
                                                         1.00 64.42
                                                                               C
       1720
             CA
ATOM
                                                 -2.121
                                                         1.00 64.03
                                                                               С
                 GLY A 137
                                 12.598
                                         61.386
       1723
ATOM
             С
                 GLY A 137
                                 13.378
                                         60.668
                                                 -1.486
                                                         1.00 55.86
                                                                               0
       1724
ATOM
             ٥
                                                 -3.210
                                                         1.00 65.53
                 LYS A 138
                                 12.933
                                         62.059
ATOM
       1725
             N
                                                 -3.776
                                                         1.00 67.98
                                                                               C
       1727
             CA
                 LYS A 138
                                 14.271
                                         61.975
ATOM
                                                 ~5.268
                                 14.252
                                         62.356
                                                         1.00 70.59
       1729
             CB
                 LYS A 138
ATOM
                                                -6.095
                                                                                С
             CG
                 LYS A 138
                                 13.207
                                         61.586
                                                         1.00 72.33
ATOM
       1732
                                 13.452
                                         60.069
                                                 -6.062
                                                         1.00 72.37
                 LYS A 138
ATOM
       1735
             CD
                                 12,774
                                         59.359
                                                 -7.248
                                                         1.00 73.72
                 LYS A 138
ATOM
       1738
             CE
                                         59.942
                                                 -8.597
                                                         1.00 68.91
                                 13.111
ATOM
       1741
             NZ.
                 LYS A 138
                                                -2.994
                                                         1.00 62.52
                                 15.225
                                         62.870
MOTA
       1745
             С
                 LYS A 138
                                                -2.877
                                                         1.00 64.39
                                         62.550
                                 16.409
ATOM
       1746
             0
                 LYS 'A 138
                                 14.689
                                                 -2.441
                                                         1.00 57.18
ATOM
       1747
             N
                 ARG A 139
                                         63.964
                                                 -1.718
                                         64.965
                                                         1.00 53.63
                                                                               C
ATOM
       1749
             CA
                 ARG A 139
                                 15.483
                                                         1.00 54.62
                                                                               ¢
                                 14.812
                                                 -1.782
       1751
             CB
                 ARG A 139
                                         66.336
ATOM
                                 15.780 67.490
                                                -1.938
                                                         1.00 57.33
                                                                               C
       1754
             CG
                 ARG A 139
MOTA
                                                         1.00 60.51
                                                                               С
                                                 -2.873
       1757
             CD
                 ARG A 139
                                 15.295
                                         68.559
ATOM
                                                         1.00 61.30
       1760
                 ARG A 139
                                 14.863 69.764
                                                 -2.162
                                                                               N
ATOM
             NE
                                         70.708
                                                         1.00 58.70
                                                -1.716
       1762
                 ARG A 139
                                 15.678
ATOM
             \mathbf{cz}
                                                 -1.108
ATOM
       1763
             NH1 ARG A 139
                                 15.169
                                         71.774
                                                         1.00 64.36
                                                                               N
                                                         1.00 53.81
                                                 -1.865
                                                                               N
ATOM
       1766
             NH2 ARG A 139
                                 16.993
                                         70.590
                 ARG A 139
                                 15.707
                                         64.575
                                                 -0.262
                                                         1.00 48.42
                                                                               C
MOTA
       1769
                                 14.776
                                         64.262
                                                  0.458
                                                         1.00 48.97
                                                                               0
MOTA
       1770
                 ARG A 139
                 SER A 140
                                 16.954
                                         64.598
                                                  0.176
                                                         1.00 46.12
                                                                               N
ATOM
       1771
             N
                                 17,251
                                         64.242
                                                  1.559
                                                         1.00 44.19
                                                                               С
ATOM
       1773
             CA
                 SER A 140
                                 18.650
                                         63.640
                                                  1.674
                                                         1.00 41.52
                                                                               С
ATOM
       1775
            : CB
                 SER A 140
                                 19.632
                                         64.603
                                                  1.380
                                                         1.00 41.89
                                                                               0
ATOM
       1778
                 SER A 140
             OG
                                 17.133
                                         65.451
                                                  2.480
                                                         1.00 41.55
                                                                               С
ATOM
       1780
             С
                 SER A 140
ATOM
       1781
             . 0
                 SER A 140
                                 17,271
                                        66.614
                                                  2.046
                                                         1.00 42.46
                                 16.904
                                         65.174
                                                   3.754
                                                         1.00 34.61
                                                                               N
ATOM
       1782
                 ILE A 141
             N
                                                   4.768
                                                         1.00 33.30
                 ILE A 141
                                 17,007 66.207
MOTA
       1784
             CA
                                                         1.00 33.29
                                 16.906 65.571
                                                   6.169
       1786
             CB
                 ILE A 141
ATOM
                                                         1.00 35.29
                                 15.480 65.065
                                                   6.432
             CG1 TLE A 141
ATOM
       1788
                                 14.354 66.153
                                                   6.336
                                                         1.00 36.02
ATOM
       1791
             CD1 ILE A 141
                                                   7.250
                                                         1.00 33.65
ATOM
       1795
             CG2 ILE A 141
                                 17.367
                                        66.541
                                                   4.627
                                                         1.00 33.98
                                 18.339 66.938
ATOM
       1799
             С
                 ILE A 141
                                        68.170
                                                   4.728
                                                         1.00 32.09
                                 18.395
ATOM
       1800
             0
                 ILE A 141
                                 19.417
                                                   4.385
                                                         1.00 35.58
                                                                                N
                                         66.187
ATOM
       1801
                 GLU A 142
             N
                                                         1.00 37.56
                                                                                C
                                        66.791
                                                   4.363
ATOM
       1803
             CA
                 GLU A 142
                                 20.736
                                                          1.00 42.88
                                 21.832 65.765
                                                   4.185
                                                                                C
       1805
             СВ
                 GLU A 142
ATOM
                                                   4.413
                                                         1.00 44.00
                                                                                C
ATOM
       1808
             CG
                 GLU A 142
                                 23.222
                                        66.353
                                                   4.383
                                         65.304
                                                          1.00 47.02
                                                                                C
ATOM
       1811
             CD
                 GLU A 142
                                 24.308
                                                          1.00 48.33
                                         64.176
       1812
             OE1 GLU A 142
                                 24.080
                                                   4.893
ATOM
             OE2 GLU A 142
                                 25.382
                                         65.616
                                                   3.835
                                                         1.00 49.70
ATOM
       1813
                                                          1.00 36.99
                                         67.797
                                                   3.267
                                                                                С
ATOM
       1814
                 GLU A 142
                                 20.840
             С
                                         68.847
                                                   3.465
                                                          1.00 34.74
       1815
                 GLU A 142
                                 21.389
ATOM
                                                   2.111
                                                          1.00 40.14
                                         67.487
ATOM
       1816
             N
                 ASP A 143
                                 20.283
                                                   0.999
                                                          1.00 45.19
                 ASP A 143
                                 20.368
                                         6B.404
ATOM
       1818
             CA
                                                         1.00 52.89
                                        67.752
                                                  -0.294
                 ASP A 143
                                 19.886
ATOM
       1820
             CB
                                                         1.00 60.06
                                                  -1.498
ATOM
       1823
             CG
                 ASP A 143
                                 20.649
                                         68.275
ATOM
       1824
             OD1 ASP A 143
                                 20.582
                                         69.507
                                                  -1.798
                                                         1.00 57.28
                                                                                0
                                 21.390 67.517
                                                  -2.159
                                                         1.00 70.20
ATOM
       1825
             OD2 ASP A 143
MOTA
       1826
                 ASP A 143
                                 19.581 69.670
                                                   1.245
                                                         1.00 40.39
             С
                                 19.942 70.745
                                                   0.794
                                                         1.00 39.88
       1827
                 ASP A 143
MOTA
                                 18.475
                                         69.52B
                                                   1.946
                                                          1.00 38.83
                                                                                N
ATOM
       1828
             N
                 ARG A 144
                                 17.761
                                         70.683
                                                   2.436
                                                         1.00 36.66
ATOM
       1830
             CA
                 ARG A 144
                                         70.220
                                                   3.178
                                                          1.00 39.28
АТОМ
       1832
                 ARG A 144
                                 16.526
             CB
                                                   2.289
                 ARG A 144
                                 15.515
                                         69.491
                                                          1.00 41.44
ATOM
       1835
             CG
                                         69.098
                                                   3.061
                                                          1.00 44.89
                 ARG A 144
                                 14.285
ATOM
       1838
             CD
                                  13.419
                                         68.146
                                                   2.379
                                                          1.00 46.72
                 ARG A 144
ATOM
       1841
             NE
                                 12.602
                                         68.441
                                                   1.367
                                                          1.00 48.65
                 ARG A 144
ATOM
       1843
             CZ
                                         69.670
                                                   0.854
                                                          1.00 48,96
                                 12.536
MOTA
       1844
             NH1 ARG A 144
                                         67.482
                                                   0.862
                                                          1.00 49.97
                                 11.855
ATOM
       1847
             NH2 ARG A 144
                                         71,530
                                                   3.333
                                                          1.00 33.38
ATOM
       1850
                 ARG A 144
                                 18.682
             С
                                         72.723
                                                   3.078
                                                          1.00 32.43
                                  18.887
                 ARG A 144
ATOM
       1851
                                         70.921
                                                   4.344
                                                          1.00 28.27
                 VAL A 145
                                  19.288
ATOM
       1852
                                         71.699
                                                   5.259
                                                          1.00 27.07
                 VAL A 145
                                  20.120
ATOM
       1854
             CA
                                          70.867
                                                   6.488
                                                          1.00 28.35
                                  20.533
ATOM
       1856
             СВ
                 VAL A 145
                                                   7.421
                                                          1.00 28.98
                                         71.678
                                  21.457
ATOM
       1858
             CG1 VAL A 145
                                                          1.00 20.49
                                                   7.247
ATOM
       1862
             CG2 VAL A 145
                                  19.271
                                         70.366
                                                          1.00 28.29
                                                   4.529
                 VAL A 145
                                  21,324
                                         72.343
             С
ATOM
       1866
```

|              |              |           |            |   |     |                  | Fia              | ıre 5            |      |                |   |        |
|--------------|--------------|-----------|------------|---|-----|------------------|------------------|------------------|------|----------------|---|--------|
| MOTA         | 1867         | 0         | VAL        | A | 145 | 21.615           | 73.528           |                  | 1.00 | 29.76          |   | 0      |
| ATOM         | 1868         | N         | GLN        |   |     | 21.959           | 71.624           | 3.610            |      | 29.99          |   | N      |
| ATOM         | 1870         | CA        | GLN        |   |     | 23.050           | 72.204           | 2.806            |      | 32.25          | • | C      |
| MOTA         | 1872         | CB<br>CG  | GLN<br>GLN |   |     | 23.680<br>24.211 | 71.151           | 1.912            |      | 35.37<br>39.75 |   | C      |
| ATOM<br>ATOM | 1875<br>1878 | CD        | GLN        |   |     | 25.081           | 69.968<br>69.083 | 2.669<br>1.836   |      | 38.10          |   | c      |
| ATOM         | 1879         |           | GLN        |   |     | 26.254           | 69.332           | 1.770            |      | 42.58          |   | ō      |
| MOTA         | 1880         |           | GLN        |   |     | 24.521           | 68.032           | 1.232            |      | 34.88          |   | N      |
| MOTA         | 1883         | C         | GLN        |   |     | 22.639           | 73.396           | 1.937            |      | 32.76          |   | C      |
| ATOM<br>ATOM | 1884<br>1885 | N<br>N    | GLN<br>GLU |   |     | 23.370<br>21.469 | 74.371<br>73.322 | 1.835<br>1.309   |      | 33.88<br>38.41 |   | O<br>N |
| ATOM         | 1887         | CA        | GLU        |   |     | 20.954           | 74.447           | 0.517            |      | 38.47          |   | Ċ      |
| ATOM         | 1889         | CB        | GLU        |   |     | 19.629           | 74.094           | -0.139           |      | 39.29          |   | С      |
| ATOM         | 1892         | CG        | GLU        |   |     | 19.192           | 75.093           | -1.194           |      | 42.12          |   | C      |
| ATOM<br>ATOM | 1895<br>1896 | CD<br>OE1 | GLU        |   |     | 17.845<br>17.416 | 74.750<br>73.558 | -1.834<br>-1.817 |      | 47.56<br>43.64 |   | С<br>0 |
| ATOM         | 1897         |           | GLU        |   |     | 17,223           | 75.690           | -2.382           |      | 48.35          |   | ō      |
| ATOM         | 1898         | С         | GLU        | A | 147 | 20.792           | 75.659           | 1.405            | 1.00 | 39.35          |   | С      |
| ATOM         | 1899         | 0         | GLU        |   |     | 21.222           | 76.758           | 1.070            |      | 40.41          |   | 0      |
| ATOM<br>ATOM | 1900<br>1902 | n<br>Ca   | GLU<br>GLU |   |     | 20.202           | 75.447<br>76.520 | 2.570<br>3.552   |      | 40.17<br>40.28 |   | N<br>C |
| ATOM         | 1904         | СВ        | GLU        |   |     | 19.315           | 76.034           | 4.773            |      | 41.17          |   | č      |
| ATOM         | 1907         | CG        | GLU        | A | 148 | 18.467           | 77.130           | 5.397            | 1.00 | 45.34          |   | С      |
| MOTA         | 1910         | CD        | GLU        |   |     | 17.477           | 77.744           | 4.423            |      | 46.39          |   | C      |
| ATOM<br>ATOM | 1911<br>1912 |           | GLU<br>GLU |   |     | 16.708<br>17.488 | 76.930<br>79.016 | 3.793<br>4.303   |      | 44.62<br>33.39 |   | 0      |
| ATOM         | 1913         | C         | GLU        |   |     | 21.473           | 77.086           | 3.986            |      | 36.84          |   | c      |
| ATOM         | 1914         | 0         | GLU        |   |     | 21.633           | 78.288           | 4.150            |      | 28.95          |   | 0      |
| ATOM         | 1915         | N         | ALA        |   |     | 22.460           | 76.215           | 4.165            |      | 36.05          |   | N      |
| ATOM         | 1917<br>1919 | CA        | ALA<br>ALA |   |     | 23.755<br>24.686 | 76.660           | 4.641<br>4.885   |      | 34.36<br>34.44 |   | C<br>C |
| ATOM<br>ATOM | 1923         | CB<br>C   | ALA        |   |     | 24.352           | 75.480<br>77.659 | 3.667            |      | 35.13          |   | c      |
| MOTA         | 1924         | ō         | ALA        |   |     | 24.697           | 78.775           | 4.074            |      | 26.86          |   | ŏ      |
| MOTA         | 1925         | N         | ARG        |   |     | 24.418           | 77.322           | 2.372            |      | 39.67          |   | N      |
| ATOM         | 1927         | CA        | ARG        |   |     | 24.936           |                  | 1.413            |      | 43.65          |   | Ç      |
| ATOM<br>ATOM | 1929<br>1932 | CB        | ARG        |   |     | 25.402<br>24.405 | 77.736           | ·0.078<br>-0.690 |      | 43.66<br>49.22 |   | Ċ      |
| ATOM         | 1935         | CD        | ARG        |   |     | 24.747           | 76.843           | -2.187           |      | 53.59          |   | c      |
| ATOM         | 1938         | NE        | ARG        |   |     | 23.587           | 76.389           | -2.960           |      | 57.71          |   | N      |
| ATOM         | 1940         | CZ        | ARG        |   |     | 23.081           | 75.156           | -2.900           |      | 57.07          |   | C      |
| MOTA<br>MOTA | 1941<br>1944 |           | ARG<br>ARG |   |     | 22.006<br>23.636 | 74.857<br>74.216 | -3.622<br>-2.125 |      | 62.26<br>53.39 |   | N<br>N |
| ATOM         | 1947         | C         | ARG        |   |     |                  | 79.600           | 1.205            |      | 39.17          |   | c      |
| ATOM         | 1948         | 0         | ARG        |   |     | 24.601           | 80.613           | 0.819            |      | 40.73          |   | 0      |
| ATOM         | 1949         | N         | CYS        |   |     | 22.770           | 79.569           | 1.508            |      | 41.27          |   | N      |
| ATOM<br>ATOM | 1951<br>1953 | CA<br>CB  | CYS        |   |     | 21.967<br>20.485 | 80.812<br>80.527 | 1.545<br>1.518   |      | 43.12<br>43.27 | • | C      |
| ATOM         | 1956         | SG        | CYS        |   |     | 20.027           | 79.494           | 0.119            |      | 57.47          |   | s      |
| ATOM         | 1957         | С         | CYS        |   |     | 22.239           | 81.630           | 2.771            |      | 42.41          |   | С      |
| ATOM         | 1958         | 0         | CYS        |   |     | 22.250           | 82.852           | 2.705            |      | 42.89          |   | 0      |
| ATOM<br>ATOM | 1959<br>1961 | N<br>CA   | LEU        |   |     | 22.430           | 80.941<br>81.573 | 3.893<br>5.148   |      | 43.11<br>44.10 |   | C<br>N |
| ATOM         | 1963         | CB        | LEU        |   |     | 23.055           | 80.507           | 6.218            |      | 46.14          |   | c      |
| ATOM         | 1966         | CG        | LEU        | A | 152 | 22.789           | 80.831           | 7.683            | 1.00 | 48.05          |   | С      |
| ATOM         | 1968         |           | LEU        |   |     | 23,258           | 79.686           | 8.505            |      | 48.48          |   | C      |
| ATOM<br>ATOM | 1972<br>1976 | CD2       | LEU        |   |     | 23.506<br>24.087 | 82.080<br>82.370 | 8.111<br>4.939   |      | 52.41<br>42.72 |   | C<br>C |
| ATOM         | 1977         | ŏ         | LEU        |   |     | 24.206           | 83.493           | 5.423            |      | 39.30          |   | ō      |
| ATOM         | 1978         | N         | VAL        |   |     | 25.031           | 81.756           | 4.223            | 1.00 | 44.41          |   | N      |
| MOTA         | 1980         | CA        | VAL        |   |     | 26.323           | 82.360           | 3.908            |      | 48.03          |   | C      |
| ATOM<br>ATOM | 1982<br>1984 | CB<br>CG1 | VAL        |   |     | 27.301<br>28.537 | 81.316<br>81.993 | 3.310<br>2.698   |      | 49.48<br>49.91 |   | C      |
| ATOM         | 1988         |           | VAL        |   |     | 27,727           | 80.329           | 4.376            |      | 50.79          |   | c      |
| ATOM         | 1992         | C         | VAL        |   |     | 26.180           | 83.543           | 2.948            |      | 48.42          |   | C      |
| MOTA         | 1993         | 0         | VAĻ        |   |     | 26.801           | 84.576           | 3.146            |      | 43.33          |   | 0      |
| MOTA         | 1994         | N         | GLU        |   |     | 25.345           | 83.393           | 1.926            |      | 53.36          |   | N<br>C |
| MOTA<br>MOTA | 1996<br>1998 | CA<br>CB  | GLU        |   |     | 25.060<br>24.122 | 84.496<br>84.043 | 1.017<br>-0.115  |      | 58.51<br>64.45 |   | C      |
| ATOM         | 2001         | CG        | GLU        |   |     | 24.051           | 85.008           | -1.306           |      | 71.79          |   | č      |
| MOTA         | 2004         | CD        | GLU        |   |     | 25.422           | 85.521           | -1.754           | 1.00 | 76.51          |   | С      |
| MOTA         | 2005         |           | GLU        |   |     | 25.593           | 86.757           | -1.866           |      | 75.35          |   | 0      |
| MOTA         | 2006<br>2007 |           | GLU        |   |     | 26.335<br>24.488 | 84.686<br>85.718 | -1.986<br>1.753  |      | 82.18<br>55.90 |   | C      |
| MOTA<br>MOTA | 2007         | С<br>О    | GLU<br>GLU |   |     | 24.400           | 86.848           | 1.753            |      | 56.80          |   | ō      |
| ATOM         | 2009         | N         | GLU        |   |     | 23.538           | 85.496           | 2.655            |      | 53.55          | • | N      |
| MOTA         | 2011         | CA        | GLU        |   |     | 22.923           | 86.605           | 3.398            | 1.00 | 54.56          |   | С      |

|              |              |          |      |   |            |                  | Figu             | re 5             |                  |      |                                         |   |        |
|--------------|--------------|----------|------|---|------------|------------------|------------------|------------------|------------------|------|-----------------------------------------|---|--------|
| MOTA         | 2013         | СВ       | GLU  | A | 155        | 21.669           | 86.153           | 4.155            | 1.00 5           | 4.70 |                                         |   | С      |
| MOTA         | 2016         | CG       | GLU  |   |            | 20.437           | B6.012           | 3.287            | 1.00 5           |      |                                         |   | C      |
| ATOM         | 2019         | CD       | GLU  |   |            | 19.997           | 87.311           | 2.637            | 1.00 5           |      |                                         |   | С      |
| ATOM         | 2020<br>2021 |          | GLU  |   |            | 19.935<br>19.724 | 87.334<br>88.291 | 1.391<br>3.375   | 1.00 5           |      |                                         |   | 0      |
| ATOM<br>ATOM | 2022         | C        | GTO  |   |            | 23.873           | 87.263           | 4.385            | 1.00 5           |      |                                         |   | č      |
| ATOM         | 2023         | ŏ        | GLU  |   |            | 23.731           | 88.447           | 4.690            | 1.00 5           |      |                                         |   | ō      |
| MOTA         | 2024         | N        | LEU  | A | 156        | 24.823           | 86.496           | 4.904            | 1.00 4           | 8.31 |                                         |   | N      |
| MOTA         | 2026         | CA       | LEU  |   |            | 25.786           | 87.048           | 5.830            | 1.00 4           |      |                                         |   | С      |
| MOTA         | 2028         | CB       | LEU  |   |            | 26.454           | 85.932           | 6.634            | 1.00 4           |      |                                         |   | C      |
| ATOM         | 2031         | CG       | LEU  |   |            | 25.615           | 85.273           | 7.737            | 1.00 4           |      |                                         |   | C      |
| ATOM<br>ATOM | 2033<br>2037 |          | LEU  |   |            | 26.284<br>25.410 | 83.995<br>86.214 | 8.204<br>8.918   | 1.00 4           |      |                                         |   | c      |
| ATOM         | 2041         | C        | LEU  |   |            | 26.795           | 87.854           | 5.018            | 1.00 4           |      |                                         |   | č      |
| ATOM         | 2042         | ō        | LEU  |   |            | 27.451           | 88.765           | 5.527            | 1.00 3           |      |                                         |   | 0      |
| ATOM         | 2043         | N        | ARG  | A | 157        | 26.896           | 87.512           | 3.738            | 1.00 4           |      |                                         |   | N      |
| ATOM         | 2045         | CA       | ARG  |   |            | 27.772           | 88.216           | 2.822            | 1.00 5           |      |                                         |   | C      |
| ATOM         | 2047         | CB       | ARG  |   |            | 28.093           | 87.362           | 1.600            | 1.00 5           |      |                                         |   | C      |
| ATOM<br>ATOM | 2050<br>2053 | CG<br>CD | ARG  |   |            | 29.527<br>29.781 | 87.543<br>86.950 | 1.119            | 1.00 6           |      |                                         |   | c      |
| MOTA         | 2056         | NE       | ARG  |   |            | 29.685           | 85.489           | -0.223           | 1.00 6           |      |                                         |   | N      |
| ATOM         | 2058         | CZ       | ARG  |   |            | 30.667           | 84.671           | 0.147            | 1.00 6           |      |                                         |   | С      |
| ATOM         | 2059         | NH1      | ARG  | A | 157        | 31.846           | 85.148           | 0.548            | 1.00 6           |      |                                         |   | N      |
| ATOM         | 2062         |          | ARG  |   |            | 30.463           | 83.359           | 0.129            | 1.00 6           |      |                                         |   | N      |
| MOTA         | 2065         | C        | ARG  |   |            | 27.162           | 89.548           | 2.413            | 1.00 5           |      |                                         |   | C      |
| ATOM         | 2066<br>2067 | O<br>N   | ARG  |   |            | 27.885           | 90.480<br>89.639 | 2.064<br>2.478   | 1.00 5           |      |                                         |   | N      |
| ATOM<br>ATOM | 2069         | CA       | LYS  |   |            | 25.152           | 90.908           | 2.281            | 1.00 5           |      | .,                                      |   | Ĉ      |
| ATOM         | 2071         | СВ       | LYS  |   |            | 23.623           | 90.736           | 2.219            | 1.00 5           |      |                                         |   | Č      |
| ATOM         | 2074         | CG       | LYS  |   |            | 23.124           | 90.098           | 0.900            | 1.00 6           | 4.95 |                                         |   | С      |
| ATOM         | 2077         | CD       | LYS  |   |            | 21.590           | 90.275           | 0.698            | 1.00 7           |      | 4. S                                    |   | С      |
| ATOM         | 2080         | CE       | LYS  |   |            | 20.972           | 89.273           | -0.318           | 1.00 7           |      |                                         | • | _      |
| MOTA         | 2083         | NZ<br>C  | LYS  |   |            | 20.892<br>25.524 | 89.780<br>91.896 | -1.715<br>3.369  | 1.00 7           |      | ,150 ±<br>130 ±                         | • | N<br>C |
| ATOM<br>ATOM | 2087<br>2088 | 0        | LYS  |   |            | 25.559           | 93.088           | 3.102            | 1.00 6           |      | · c.                                    |   | Ö.     |
| ATOM         | 2089         | N        | THR  |   |            | 25.840           | 91.425           | 4.575            | 1.00 5           |      | ,11                                     |   | N      |
| ATOM         | 2091         | CA       | THR  |   |            | 26.150           | 92.346           | 5.686            | 1.00 5           |      | 2                                       |   | С      |
| ATOM         | 2093         | СВ       | THR  |   |            | 26.237           | 91.625           | 7.067            | 1.00 5           |      | À.                                      |   | С      |
| ATOM         | 2095         |          | THR  |   |            | 27.495           | 90.929           | 7.214            | 1.00 5           |      |                                         |   | 0      |
| ATOM         | 2097         |          | THR  |   |            | 25.131           | 90.585           | 7.228<br>5.493   | 1.00 5           | 6.29 | 517                                     |   | C      |
| MOTA<br>MOTA | 2101<br>2102 | С<br>0   | THR  |   |            | 27.407<br>27.663 | 93.184<br>94.074 | 6.306            | 1.00 5           |      | • • • • • • • • • • • • • • • • • • • • |   | ŏ      |
| ATOM         | 2103         | N        | LYS  |   |            | 28.191           | 92.907           | 4.445            | 1.00 6           |      |                                         |   | N      |
| MOTA         | .2105        | CA       | LYS  |   |            | 29.292           | 93.797           | 4.028            | 1.00 6           | 5.70 |                                         |   | С      |
| MOTA         | 2107         | CB       | Päs  |   |            | 28.729           | 95.127           | 3.467            | 1.00 6           |      |                                         |   | С      |
| ATOM         | 2110         | CG       | LYS  |   |            | 28.795           | 95.275           | 1.931            | 1.00 7           |      |                                         |   | C      |
| ATOM<br>ATOM | 2113<br>2116 | CD<br>CE | LYS  |   | 160        | 28.280<br>29.295 | 96.677<br>97.408 | 1.453<br>0.519   | 1.00 8<br>1.00 8 |      |                                         |   | c      |
| ATOM         | 2119         | NZ       |      |   | 160        | 28.878           | 98.789           | 0.088            | 1.00 8           |      |                                         |   | N      |
| ATOM         | 2123         | C        |      |   | 160        | 30.311           | 94.069           | 5.160            | 1.00 6           | 6.08 |                                         |   | С      |
| MOTA         | 2124         | 0        | LYS  | A | 160        | 30.830           | 95.178           | 5.290            | 1.00 6           | 7.10 | •                                       |   | 0      |
| MOTA         | 2125         | N        | ALA  |   |            | 30.573           | 93.053           | 5.984            | 1.00 6           |      |                                         |   | N      |
| ATOM         | 2127         | CA       | ALA  |   |            | 31.623           | 93.101           | 7.004<br>6.344   | 1.00 6<br>1.00 6 |      |                                         |   | C      |
| ATOM<br>ATOM | 2129<br>2133 | CB<br>C  | ALA  |   | 161        | 32.999<br>31.419 | 93.218<br>94.231 | 8.003            | 1.00 6           |      |                                         |   | c      |
| ATOM         | 2134         | ŏ        |      |   | 161        | 32.377           | 94.796           | 8.529            | 1.00 6           |      |                                         |   | ŏ      |
| MOTA         | 2135         | N        |      |   | 162        | 30.163           | 94.545           | 8.275            | 1.00 6           | 5.45 |                                         |   | N      |
| ATOM         | 2137         | CA       | SER  | A | 162        | 29.832           | 95.657           | 9.150            | 1.00 6           |      |                                         |   | С      |
| ATOM         | 2139         | СВ       |      |   | 162        | 28.994           | 96.691           | 8.393            | 1.00 7           |      |                                         |   | C      |
| ATOM         | 2142         | OG       |      |   | 162        | 27.735           | 96.147           | 8.039            | 1.00 7           |      |                                         |   | o<br>C |
| ATOM         | 2144         | C        |      |   | 162        | 29.036<br>28.299 | 95.135<br>94.160 | 10.324<br>10.176 | 1.00 6<br>1.00 6 |      |                                         |   | Ö      |
| ATOM<br>ATOM | 2145<br>2146 | O<br>N   |      |   | 162<br>163 | 29.148           | 95.795           | 11.478           | 1.00 6           |      |                                         |   | N      |
| ATOM         | 2147         | CA       |      |   | 163        | 28.485           | 95.320           | 12.694           | 1.00 6           |      |                                         |   | C      |
| ATOM         | 2149         | СВ       |      |   | 163        | 28.584           | 96.520           | 13.654           | 1.00 6           |      |                                         |   | C      |
| MOTA         | 2152         | CG       |      |   | 163        | 29.119           | 97.638           | 12.852           | 1.00 6           |      |                                         |   | С      |
| MOTA         | 2155         | CD       |      |   | 163        | 29.900           | 97.034           | 11.733           | 1.00 6           |      |                                         |   | C      |
| MOTA         | 2158         | C        |      |   | 163        | 27.035           | 94.950<br>95.615 | 12.439<br>11.672 | 1.00 6           |      |                                         |   | C      |
| ATOM<br>ATOM | 2159<br>2160 | O<br>N   |      |   | 163<br>164 | 26.341<br>26.596 | 93.880           | 13.082           | 1.00 5           |      |                                         |   | N      |
| ATOM         | 2162         | CA       |      |   | 164        | 25.249           | 93.392           | 12.905           | 1.00 5           |      |                                         |   | Ċ      |
| ATOM         | 2164         | CB       |      |   | 164        | 25.148           | 92.681           | 11.562           | 1.00 5           |      |                                         |   | С      |
| ATOM         | 2167         | SG       |      |   | 164        | 25.054           | 90.894           | 11.708           | 1.00 5           |      |                                         |   | 8      |
| ATOM         | 2168         | C        |      |   | 164        | 24.825           | 92.451           | 14.030           | 1.00 5           |      |                                         |   | C      |
| MOTA         | 2169         | 0        |      |   | 164        | 25.629           | 91.740           | 14.618           | 1.00 4           |      |                                         |   | O<br>N |
| ATOM         | 2170         | N        | AS,P | A | 165        | 23.537           | 92.465           | 14.313           | 1.00 4           | 0.23 |                                         |   | 14     |

55,768 B. 35 B.

2318

CYS A 175

```
Figure 5
                                               22.941
                       2172
                             CA
                                ASP A 165
                                                        91.575 15.282 1.00 45.59
                                                                                             ¢
                ATOM
                ATOM
                       2174
                             CB
                                 ASP A 165
                                                21.793
                                                        92.291 15.991
                                                                        1.00 44.75
                ATOM
                       2177
                             CG
                                 ASP A 165
                                                20.934
                                                        91.359 16.801
                                                                        1.00 46.52
                                                        91.782 17.323
                      2178
                             OD1 ASP A 165
                                                19.878
                                                                        1.00 44.23
                ATOM
                      2179
                             OD2 ASP A 165
                                                21.226
                                                        90.171 16.966
                                                                        1.00 49.56
                ATOM
                                                        90.363 14.487
                                 ASP A 165
                                                22.449
                                                                        1.00 45.22
                ATOM
                      2180
                             С
                                                        90.489
                                                                13.687
                                                                        1.00 49.44
                       2181
                                 ASP A 165
                                                21.518
                ATOM
                             0
                                                                        1.00 40.66
                ATOM
                       2182
                             N
                                 PRO A 166
                                                23.054
                                                        89.192
                                                                14.694
                                                                        1.00 36.45
                ATOM
                      2183
                             CA
                                 PRO A 166
                                                22.727
                                                        88.023 13.873
                                 PRO A 166
                                                23.899
                                                       87.078
                                                                14.138
                                                                        1.00 37.27
                ATOM
                      2185
                             CB
                                                                                             C
                                                                        1.00 38.75
                                 PRO A 166
                                                24.336 87.400 15.516
                ATOM
                      2188
                             CG
                                                                        1.00 40.23
                ATOM
                      2191
                             CD
                                 PRO A 166
                                                24.061 88.866
                                                               15.724
                                                                                             C
                                                                        1.00 33.37
                MOTA
                      2194
                             С
                                 PRO A 166
                                                21.403 87.383 14.246
                                                                                             C
                                                                        1.00 35.64
                MOTA
                      2195
                             0
                                 PRO A 166
                                                20.977
                                                       86.471
                                                                13.559
                                                                                             0
                ATOM
                      2196
                            N
                                 THR A 167
                                                20.731 87.881 15.281
                                                                        1.00 32.44
                                                                                             N
                ATOM
                      2198
                            CA
                                 THR A 167
                                                19.504
                                                       87.248
                                                               15.787
                                                                        1.00 33.73
                                                                                             C
                                                18.769 88.183 16.760
                MOTA
                      2200
                            CB
                                 THR A 167
                                                                       1.00 31.29
                                                                                             С
               ATOM
                      2202
                            OG1 THR A 167
                                                19.681
                                                       88.693 17.735
                                                                        1.00 26.72
                                                                                             0
               ATOM
                      2204
                            CG2 THR A 167
                                                17.704
                                                        87.421 17.562 1.00 26.17
               ATOM
                      2208
                            С
                                 THR A 167
                                                18.508
                                                       86.857 14.707
                                                                        1.00 36.83
                                                                                             C
               ATOM
                       2209
                                 THR A 167
                                                17.893 85.789 14.777
                                                                        1.00 36.36
                            0
               ATOM
                       2210
                                 PHE A 168 ,
                                                18.346
                                                       87.746
                                                                13.729
                                                                        1.00 40.24
                            N
                                                                                             N
               ATOM
                      2212
                                 PHE A 168
                                                17.313
                                                        87.591
                                                                12.723
                                                                       1.00 42.35
               ATOM
                       2214
                            СВ
                                 PHE A 168
                                                16.921
                                                       88.929
                                                               12.074
                                                                        1.00 41.38
                                                        88.754 10.927
               ATOM
                       2217
                            CG
                                 PHE A 168
                                                15.983
                                                                        1.00 37.74
                                                        88.848
               ATOM
                       2218
                             CD1 PHE A 168
                                                16.446
                                                                9.607
                                                                        1.00 41.02
                                                15.578
                                                                 8.528
               ATOM
                      2220
                             CE1 PHE A 168
                                                        88.637
                                                                        1.00 40.89
               ATOM
                       2222
                            CZ
                                PHE A 168
                                                14.224
                                                        88.309
                                                                 8.775
                                                                        1.00 39.68
                                                                                             С
                                                        88.191
                       2224
                            CE2 PHE A 168
                                                13.765
                                                                10.089
                                                                        1.00 37.83
               ATOM
               ATOM
                      2226
                             CD2 PHE A 168
                                                14.656
                                                        88.408
                                                                11.161
                                                                        1.00 35.99
                                                                                             С
                                                17.760
                                                        86.604
               ATOM
                       2228
                                 PHE A 168
                                                                11.655
                                                                        1.00 40.71
                                                                                             С
                            С
  MOTA OF THE STORY
                                                17.052
                       2229
                                 PHE A 168
                                                       85.626
                                                               11.383
                                                                        1.00 34.14
                                                                                             0
                            0
  ATOM
                                 ILE A 169
                                                       86.858
                       2230
                                                18.926
                                                                11.054
                                                                        1.00 40.23
                            N
                                                                                             N
                                                19.434
20.757
                                ILE A 169
                      2232
                            CA
                                                        85.958
                                                               10.005
                                                                        1.00 39.29
               MOTA
                                                                                             С
  ATOM ATOM
                                ILE A 169
                                                        86.458
                                                                9.488
                      2234
                            CB
                                                                        1.00 39.44
                                                                                             C
                                                                 8.808
                                                                       1.00 45.10
                            CG1 ILE A 169
                      2236
                                                20.580 87.814
                                                                                             C
                                               21.856
                                                                8.817
                      2239
                            CD1 ILE A 169
                                                       88.693
                                                                        1.00 47.89
ATOM
                                                                       1.00 43.82
                                                21.322 85.486
                                                                8.486
                                                                                             С
                      2243
                            CG2 ILE A 169
                                                       84.480 10.488
                      2247
                            C
                                ILE A 169
                                                19.546
                                                                        1.00 35.83
                                                                                             С
                                                19.010 83.592
                                                                9.870 1.00 35.12
                      2248
                            0
                                ILE A 169
                                                                                             0
                                                                       1.00 32.18
                      2249
                            N
                                LEU A 170
                                                20.210
                                                       84.239
                                                               11.608
                                                                                            N
               ATOM
                      2251
                            CA LEU A 170
                                                20.224
                                                       82.918
                                                               12.241
                                                                       1.00 33.85
                                                                                             С
               ATOM
                      2253
                            CB
                                LEU A 170
                                                21.017
                                                       82.959
                                                               13.553
                                                                        1.00 32.98
                                                                                             С
               ATOM
                       2256
                            CG LEU A 170
                                                22.551
                                                       82.890
                                                               13.547
                                                                        1.00 29.96
                                                                                             С
               ATOM
                      2258
                            CD1 LEU A 170
                                                23.203 83.468
                                                               12.372
                                                                        1.00 29.51
                                                                                             С
                            CD2 LEU A 170
                                                23.065
                                                       83.579
                                                               14.770
                                                                        1.00 31.09
                ATOM
                      2262
                                                        82.364
                                                               12.553
                                                                        1.00 37.36
                ATOM
                      2266
                                 LEU A 170
                                                18.847
                                                               12.548
                ATOM
                      2267
                                 LEU A 170
                                               18.662
                                                        81.158
                                                                        1.00 40.31
                                                                                             0
               ATOM
                      2268
                            N
                                 GLY A 171
                                                17.891
                                                       83.227
                                                               12.894
                                                                        1.00 40.57
                                                                                             N
                ATOM
                       2270
                                 GLY A 171
                                               16.523
                                                       82.786
                                                               13.128
                                                                        1.00 38.18
                                                                                             C
                            CA
                ATOM
                       2273
                                 GLY A 171
                                                15.853
                                                        82.228
                                                                11.877
                                                                        1.00 39.26
               ATOM
                       2274
                                 GLY A 171
                                               15.087
                                                       81.265
                                                                11.967
                                                                        1.00 35.50
                                                                                             0
                ATOM
                       2275.
                            N
                                 CYS A 172
                                                16.154
                                                        82.814
                                                                10.714
                                                                        1.00 40.37
                                                                                             N
               ATOM
                       2277 . CA
                                 CYS A 172
                                                15.505
                                                        82.442
                                                                9.442
                                                                        1.00 44.27
                                                                                             С
                ATOM
                       2279
                                 CYS A 172
                                                15.772
                                                        83.501
                                                                 8.351
                                                                        1.00 47.47
                            CB
                                                       85.131
               ATOM
                       2282
                                 CYS A 172
                                                15,048
                                                                 8.657
                                                                        1.00 48.52
                            SG
               MOTA
                       2283
                                                                 8.917
                                                                        1.00 43.39
                                                                                             С
                            С
                                 CYS A 172
                                                15.940
                                                       81.066
                                                       80.303
                                                                 8.401
                                                                        1.00 42.85
                                                                                             0
               ATOM
                       2284
                                 CYS A 172
                                                15.110
                            ٥
                                                                 9.048
                                                                        1.00 36.70
               ATOM
                       2285
                                 ALA A 173
                                                17.228
                                                       80.747
                                                                                             N
                            N
                                               17.735
                                                                 8.508
                                                                        1.00 32.73
                                                                                             C
               ATOM
                                ALA A 173
                                                        79.499
                      2287
                            CA
                                                                8.655
                                                                        1.00 35.53
                                                                                             C
               ATOM
                                                19.210 79.430
                      2289
                            CB
                                ALA A 173
                                               17.043 78.222
                                                                                             C
                                                                 9.058
                                                                        1.00 35.97
               ATOM
                      2293
                            С
                                 ALA A 173
                                                                8.243 1.00 43.22
               ATOM
                      2294
                            O
                                 ALA A 173
                                               16.622 77.405
                                                                                             0
               ATOM
                      2295
                            N
                                 PRO A 174
                                               16.902
                                                        78.023
                                                               10.384
                                                                        1.00 32.20
                                                                                             N
               ATOM
                       2296
                            CA
                                 PRO A 174
                                                16.187
                                                        76.858
                                                               10.913 1.00 28.23
                                                                                             C
               ATOM
                       2298
                                 PRO A 174
                                                16.326
                                                       76.997
                                                               12.410
                                                                       1.00 24.23
                                                                                             C
                            CB
               ATOM
                       2301
                                 PRO A 174
                                                17.414 77.892
                                                               12.612 1.00 29.97
                                                17.430
                                                               11.471
                                                                        1.00 33.27
                                                                                             C
               ATOM
                       2304
                             CD
                                 PRO A 174
                                                       78.845
                                               14.704
                                                               10.541
                                                                       1.00 33.65
               ATOM
                      2307
                            С
                                 PRO A 174
                                                       76.865
                                                                10.191
                                                                        1.00 30.35
               MOTA
                      2308
                                 PRO A 174
                                                14.158
                                                       75.829
                            0
               MOTA
                      2309
                            N
                                 CYS A 175
                                                14.059
                                                       78.022
                                                               10.607
                                                                        1.00 38.10
               MOTA
                      2311
                            CA
                                 CYS A 175
                                                12.654
                                                       78.107
                                                                10.238
                                                                        1.00 39.75
                                                       79.543
                                                12.143
                                                                10.391
                                                                        1.00 41.38
               ATOM
                                 CYS A 175
                      2313
                            CB
                                                       79.693
                                                                       1.00 47.82
               ATOM
                                                10.421
                                                                 9.894
                      2316
                                 CYS A 175
                            SG
                                                                 8.787
                                                                       1.00 38.34
                                                       77.638
               ATOM
                            C
                                 CYS A 175
                                                12,484
                      2317
                                                       76.856
                                                                 8.465
                                                                       1.00 32.04
               ATOM
                                                11.584
```

The factor of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

1995- 301-118 A ... 2598-1-199 718 A .ers-1-6-318 11:

|              |                |           |                |   |            |     |                  |                  | _                |      |                |   |   |        |
|--------------|----------------|-----------|----------------|---|------------|-----|------------------|------------------|------------------|------|----------------|---|---|--------|
|              |                |           |                |   |            |     |                  |                  | re 5             |      |                |   |   | .,     |
| MOTA         | 2319           |           | ASN            |   |            |     | 13.394           | 78.091           | 7.930            | 1.00 |                |   |   | N<br>C |
| MOTA         | 2321           |           | ASN .          |   |            |     | 13.362           | 77.743           | 6.512            |      | 35.80<br>35.67 |   |   | C      |
| MOTA         | 2323           |           | ASN .<br>ASN . |   |            |     | 14.341<br>13.734 | 78.622<br>79.195 | 5.745<br>4.499   |      | 35.23          |   |   | c      |
| MOTA         | 2326<br>2327   | CG<br>OD1 |                |   | 176 ·      |     | 12.577           | 78.940           | 4.189            |      | 36.40          |   |   | ō      |
| MOTA<br>MOTA | 2328           |           | ASN            |   |            |     | 14.505           | 79.985           | 3.784            |      | 34.37          |   |   | N      |
| ATOM         | 2331           | C         | ASN            |   |            |     | 13.633           | 76.269           | 6.181            | 1.00 | 30.89          |   |   | С      |
| ATOM         | 2332           | 0         | ASN .          | A | 176        |     | 13.188           | 75.765           | 5.162            |      | 28.37          | • |   | 0      |
| ATOM         | 2333           | N         | VAL            |   |            |     | 14,358           | 75.591           | 7.053            |      | 29.80          | • |   | N<br>C |
| ATOM         | 2335           | CA        | VAL            |   |            |     | 14.573           | 74.163           | 6.913<br>7.940   |      | 30.27          |   |   | c      |
| ATOM         | 2337<br>2339   | CB<br>CG1 | VAL<br>VAL     |   |            |     | 15.600<br>15.641 | 73.662<br>72.133 | 7.980            |      | 30.96          |   |   | č      |
| ATOM<br>ATOM | 2343           |           | VAL            |   |            |     | 16.942           | 74.210           | 7.643            |      | 26.94          |   |   | С      |
| ATOM         | 2347           | C         | VAL            |   |            |     | 13.279           | 73.434           | 7.157            |      | 30.62          |   |   | С      |
| MOTA         | 2348           | 0         | VAL            |   |            | ٠.  | 12.983           | 72.431           | 6.497            |      | 30.45          | • |   | 0      |
| ATOM         | 2349           | N         | ILE            |   |            |     | 12.527           | 73.915           | 8.143<br>8.425   |      | 32.05<br>35.82 |   |   | N<br>C |
| ATOM<br>ATOM | 2351<br>2353   | CA<br>CB  | ILE            |   |            |     | 11.217<br>10.730 | 73.352<br>73.719 | 9.868            |      | 39.05          |   |   | č      |
| ATOM         | 2355           |           | ILE            |   |            |     | 11.500           | 72.895           | 10.906           |      | 42.49          |   |   | С.     |
| ATOM         | 2358           |           | ILE            |   |            |     | 12.835           | 73.471           | 11.314           |      | 48.45          |   |   | С      |
| MOTA         | 2362           | CG2       | ILE            |   |            |     | 9.283            | 73.322           | 10.098           |      | 37.53          |   |   | C      |
| MOTA         | 2366           | C         | ILE            |   |            |     | 10.240           | 73.719           | 7.285<br>6.810   |      | 31.93<br>28.92 |   |   | C<br>0 |
| ATOM         | 2367<br>2368   | O<br>N    | ILE<br>CYS     |   |            |     | 9.518<br>10.274  | 72.843<br>74.959 | 6.791            |      | 31.89          |   |   | N      |
| ATOM<br>ATOM | 2370           | CA        | CYS            |   |            |     | 9.500            | 75.323           | 5.586            |      | 32.66          |   |   | C      |
| ATOM         | 2372           | CB        | CYS            |   |            |     | 9.809            | 76.728           | 5.115            |      | 30.18          |   |   | С      |
| MOTA         | 2375           | SG        | CYS            |   |            |     | 9.120            | 77.981           | 6.208            |      | 36.53          |   |   | S      |
| ATOM         | 2376           | C         | CYS            |   |            |     | 9.762            | 74.339           | 4.445            |      | 32.80<br>32.63 |   |   | C<br>0 |
| ATOM         | 2377           | 0         | CYS            |   |            |     | 8.828<br>11.026  | 73.831<br>74.037 | 3.832<br>4.188   |      | 32.16          |   |   | N      |
| ATOM<br>ATOM | 2378<br>2380   | N<br>CA   | SER            |   |            |     | 11.372           | 73.151           | 3.082            |      | 32.38          |   |   | C      |
| ATOM         | 2382           |           | SER            |   |            |     | 12.868           | 73.242           | 2.759            | 1.00 | 34.29          |   |   | C      |
| MOTA         | 2385           | OG        | SER            |   |            |     | 13.292           | 72.158           | 1.939            |      | 40.31          | • |   | 0      |
| MOTA         | 2387           |           | SER            |   |            |     | 10.953           | 71.717           | 3.387<br>2.497   |      | 29.96<br>30.63 |   |   | C<br>0 |
| ATOM<br>ATOM | 2388<br>2389   | O<br>N    | SER            |   |            |     | 10.608<br>10.955 | 70.980<br>71.319 | 4.647            |      | 33.14          | • |   | N      |
| ATOM         | 2391           | CA        | ILE            |   |            |     | 10.601           | 69.946           | 4.996            |      | 33.11          |   |   | C      |
| ATOM         | 2393           | CB        | ILĖ            |   |            | •   | 11.064           | 69.624           | 6.443            |      | 34.14          |   |   | С      |
| MOTA         | 2395           |           | ILE            |   |            |     | 12.565           | 69.334           | 6.495            |      | 32.42          |   | • | C      |
| MOTA         | 2398           |           | ILE            |   |            |     | 13.055           | 69.028           | 7.918<br>7.042   |      | 33.02<br>30.28 |   |   | C      |
| ATOM<br>ATOM | 2402 °<br>2406 | CGZ       | ILE            |   |            |     | 10.286<br>9.094  | 68.415<br>69.738 | 4.892            |      | 36.68          |   |   | č      |
| ATOM         | 2407           | ŏ         | ILE            |   |            |     | B.644            | 68.650           | 4.555            |      | 35.38          |   |   | 0      |
| ATOM         | 2408           | N         | ILE            |   |            |     | 8.324            | 70.774           | 5.230            |      | 38.18          | • |   | N      |
| ATOM         | 2410           | CA        | ILE            |   |            |     | 6.867            | 70.679           | 5,285            |      | 40.14          |   |   | C      |
| ATOM         | 2412           | CB        | ILE            |   |            |     | 6.261<br>6.874   | 71.686<br>71.526 | 6.337<br>7.745   |      | 43.67<br>42.58 |   |   | C      |
| MOTA<br>MOTA | 2414<br>2417   |           | ILE            |   |            |     | 6.299            | 70.414           | 8.560            |      | 44.10          |   |   | Č      |
| ATOM         | 2421           |           | ILE            |   |            |     | 4.717            | 71.598           | 6.357            |      | 40.36          |   |   | С      |
| ATOM         | 2425           | С         | ILE            | A | 182        |     | 6.263            | 70.995           | 3.910            |      | 38.74          |   |   | C      |
| MOTA         | 2426           | 0         |                |   | 182        |     | 5.252            | 70.412           | 3.553            |      | 34.78          |   |   | O<br>N |
| ATOM         | 2427           | N<br>CA   |                |   | 183<br>183 |     | 6.878<br>6.375   | 71.931<br>72.443 | 3.180<br>1.897   |      | 39.11<br>43.95 |   |   | C      |
| ATOM<br>ATOM | 2429<br>2431   | CB        |                |   | 183        |     | 6.283            | 73.976           | 1.939            |      | 42.42          |   |   | Č      |
| ATOM         | 2434           | CG        |                |   | 183        |     | 5.619            | 74.557           | 3.161            | 1.00 | 39.70          |   |   | С      |
| ATOM         | 2435           |           | PHE            |   |            |     | 6.051            | 75,776           | 3.661            |      | 41.57          |   |   | C      |
| ATOM         | 2437           |           | PHE            |   |            |     | 5.441            | 76.362<br>75.741 | 4.775<br>5.385   |      | 42.25<br>38.50 |   |   | C      |
| ATOM<br>ATOM | 2439<br>2441   | CZ        | PHE            |   | 183        |     | 4.383            | 74.537           | 4.886            |      | 43.12          |   |   | č      |
| ATOM         | 2443           |           | PHE            |   |            |     | 4.541            | 73.954           | 3.764            |      | 42.45          |   |   | С      |
| MOTA         | 2445           | C         |                |   | 183        |     | 7.240            | 72.096           | 0.637            |      | 50.81          |   |   | С      |
| ATOM         | 2446           | 0         |                |   | 183        |     | 7.042            | 72.668           | -0.425           |      | 54.29          |   |   | 0      |
| ATOM         | 2447           | N         |                |   | 184        |     | 8.203            | 71.189<br>70.893 | 0.753<br>-0.321  |      | 57.66<br>63.00 |   |   | N<br>C |
| ATOM<br>ATOM | 2449<br>2451   | CA<br>CB  |                |   | 184<br>184 |     | 9.186<br>8.526   | 70.833           | -1.589           |      | 67.13          |   |   | c ·    |
| ATOM         | 2454           | CG        |                |   | 184        |     | 9.408            | 69.372           | -2.344           | 1.00 | 75.19          |   |   | C      |
| MOTA         | 2455           |           | HIS            |   |            |     | 9.175            | 69.007           | -3.653           |      | 83.48          |   |   | N      |
| MOTA         | 2457           |           | HIS            |   |            |     | 10.104           | 68.146           | -4.043           |      | 82.69          |   |   | C      |
| ATOM         | 2459           |           | HIS            |   |            | . • | 10.933           | 67.945           | -3.035<br>-1.963 |      | 80.28<br>76.50 |   |   | N<br>C |
| ATOM         | 2461           |           | HIS            |   | 184<br>184 |     | 10.521<br>10.127 | 68.699<br>71.994 | -0.795           |      | 61.31          |   |   | C      |
| ATOM<br>ATOM | 2463<br>2464   | C         |                |   | 184        |     | 11.017           | 71.733           | -1.598           |      | 65.36          |   |   | ō      |
| ATOM         | 2465           | N         |                |   | 185        |     | 9.962            | 73.211           | -0.327           |      | 60.37          |   |   | N      |
| ATOM         | 2467           | CA        | LYS            | Α | 185        |     | 10.511           | 74.323           | -1.067           |      | 60.66          |   |   | C      |
| ATOM         | 2469           | СВ        |                |   | 185        |     | 9.526            | 74.660           | -2.206           |      | 65.10<br>67.90 |   |   | c      |
| MOTA         | 2472           | CG        | LYS            | A | 185        |     | 9.923            | 75.770           | -3.184           | 1.00 | 01.30          |   |   | C      |

|              |              |           |            |   |            |                  | Fig              | ure 5           |                          |   |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|-----------------|--------------------------|---|--------|
| MOTA         | 2475         | CD        | LYS        | A | 185        | 8.673            | 76.512           | -3.744          | 1.00 69.66               |   | С      |
| ATOM         | 2478         | CE        | LYS        |   |            | 8.723            | 78.058           | -3.494          | 1.00 72.47               |   | C      |
| ATOM         | 2481         | NZ        | LYS        |   |            | 8.413            | 78.518           | -2.086          | 1.00 69.48               |   | N<br>C |
| ATOM<br>ATOM | 2485<br>2486 | C<br>O    | LYS        |   |            | 10.694<br>9.725  | 75.477<br>76.042 | -0.114<br>0.405 | 1.00 57.15<br>1.00 58.77 |   | ō      |
| ATOM         | 2487         | N         | ARG        |   |            | 11.944           | 75.816           | 0.137           | 1.00 52.65               |   | N      |
| ATOM         | 2489         | CA        | ARG        |   |            | 12.246           | 76.972           | 0.943           | 1.00 49.80               |   | С      |
| ATOM         | 2491         | СВ        | ARG        | A | 186        | 13.749           | 77.067           | 1.177           | 1.00 50.42               |   | С      |
| ATOM         | 2494         | CG        |            |   | 186        |                  | 77.620           | 0.000           | 1.00 47.13               |   | C      |
| ATOM         | 2497         | CD        | ARG        |   |            | 16.018           | 77.627           | 0.223           | 1.00 45.71               |   | C      |
| ATOM         | 2500         | NE        | ARG        |   |            | 16.439           | 78.662           | 1.173           | 1.00 45.96               |   | N<br>N |
| ATOM<br>ATOM | 2502<br>2503 | CZ<br>NH1 | ARG<br>ARG |   |            | 16.669<br>16.480 | 79.932<br>80.372 | 0.858<br>-0.373 | 1.00 45.84<br>1.00 45.35 |   | N      |
| ATOM         | 2506         |           | ARG        |   |            | 17.080           | 80.782           | 1.788           | 1.00 46.24               |   | N      |
| ATOM         | 2509         | C         | ARG        |   |            | 11.735           | 78.249           | 0.274           | 1.00 51.88               |   | С      |
| ATOM         | 2510         | 0         | ARG        |   |            | 11.399           | 78.263           | -0.917          | 1.00 54.16               |   | 0      |
| MOTA         | 2511         | N         | PHE        |   |            | 11.680           | 79.315           | 1.064           | 1.00 50.39               | • | N      |
| ATOM         | 2513         | CA        | PHE        |   |            | 11.311           | 80.636           | 0.602           | 1.00 49.44               |   | C      |
| ATOM<br>ATOM | 2515<br>2518 | CB<br>CG  | PHE        |   | 187        | 10.361<br>9.076  | 81.283<br>80.558 | 1.595<br>1.769  | 1.00 49.32<br>1.00 45.79 |   | c      |
| ATOM         | 2519         |           | PHE        |   |            | 8.821            | 79.845           | 2.922           | 1.00 45.38               |   | Č      |
| ATOM         | 2521         |           | PHE        |   |            | 7,621            | 79.196           | 3.093           | 1.00 50.10               |   | C      |
| ATOM         | 2523         | CZ        |            |   | 187        | 6.661            | 79.255           | 2.102           | 1.00 51.53               |   | С      |
| ATOM         | 2525         |           | PHE        |   |            | 6.904            | 79.978           | 0.953           | 1.00 50.11               |   | C      |
| MOTA         | 2527         |           | PHE        |   |            | 8.105            | 80.628           | 0.796           | 1.00 48.18               | • | C<br>C |
| ATOM<br>ATOM | 2529<br>2530 | C<br>O    |            |   | 187<br>187 | 12.532<br>13.327 | 81.490<br>81.382 | 0.586<br>1.491  | 1.00 48.68<br>1.00 49.53 |   | ō      |
| ATOM         | 2531         | N         | ASP        |   |            | 12.674           | 82.363           | -0.404          | 1.00 51.42               | • | N      |
| ATOM         | 2533         | CA        | ASP        |   |            | 13.615           | 83.482           | -0.286          | 1.00 54.11               | • | Ċ      |
| ATOM         | 2535         | СВ        | ASP        | A | 188        | 13.474           | 84.450           | -1.467          | 1.00 56.25               |   | С      |
| ATOM         | 2538         | CG        | ASP        |   |            | 14.674           | 85:370           | -1.617          | 1.00 61.68               |   | С      |
| ATOM         | 2539         |           | ASP        |   |            | 14.801           | 86.334           | -0.833          | 1.00 65.45               | • | 0      |
| ATOM         | 2540         |           | ASP        |   |            | 15.549           | 85.218           | -2.498<br>1.035 | 1.00 69.39<br>1.00 53.31 | • | o<br>C |
| ATOM<br>ATOM | 2541<br>2542 | С<br>0    |            |   | 188<br>188 | 13.307<br>12.157 | 84.196<br>84:245 | 1.457           | 1.00 52.92               |   | ŏ      |
| ATOM         | 2543         | N         |            |   | 189        | 14.328           | 84.728           | 1.697           | 1.00 54.95               |   | N      |
| ATOM         | 2545         | CA        |            |   | 189        | 14.147           | 85.360           | 3.011           | 1.00 57.69               |   | С      |
| MOTA         | 2547         | СВ        | TYR        | A | 189        | 15.508           | 85.598           | 3.691           | 1.00 58.20               |   | С      |
| ATOM         | 2550         | CG        |            |   | 189        | 16.351           | 84.367           | 4.057           | 1.00 58.28               |   | C      |
| ATOM         | 2551         |           | TYR        |   |            | 17.731           | 84.410           | 3.934           | 1.00 55.33<br>1.00 54.84 |   | C<br>C |
| ATOM<br>ATOM | 2553<br>2555 | CZ        | TYR        |   | 189        | 18.545<br>17.980 | 83.323<br>82.170 | 4.270<br>4.750  | 1.00 54.57               |   | c      |
| ATOM         | 2556         | OH        |            |   | 189        | 18.786           | 81.095           | 5.066           | 1.00 52.78               |   | ō      |
| MOTA         | 2558         |           | TYR        |   |            | 16.603           | 82.088           | 4.899           | 1.00 57.86               |   | С      |
| MOTA         | 2560         | CD2       | TYR        |   |            | 15.786           | 83.190           | 4.554           | 1.00 59.01               |   | Ċ      |
| ATOM         | 2562         | С         |            |   | 189        | 13.396           | 86.708           | 2.966           | 1.00 59.64               |   | C      |
| ATOM         | 2563         | 0         |            |   | 189        | 13.168           | 87.331           | 4.010<br>1.762  | 1.00 60.26<br>1.00 61.50 |   | O<br>N |
| ATOM<br>ATOM | 2564<br>2566 | N<br>Ca   |            |   | 190<br>190 | 13.070<br>12.296 | 87.176<br>88.410 | 1.560           | 1.00 63.56               |   | C      |
| ATOM         | 256B         | CB        |            |   | 190        | 12.960           | 89.286           | 0.484           | 1.00 65.95               |   | Č      |
| ATOM         | 2571         | CG        |            |   | 190        | 14.114           | 90.185           | 0.981           | 1.00 69.10               |   | С      |
| MOTA         | 2574         | CD        |            |   | 190        | 15.494           | 89.809           | 0.375           | 1.00 74.58               |   | C      |
| ATOM         | 2577         | CE        |            |   | 190        | 15.487           | 89.583           | -1.157          | 1.00 76.46               |   | C      |
| ATOM<br>ATOM | 2580<br>2584 | NZ        |            |   | 190<br>190 | 14.482<br>10.831 | 90.405<br>88.094 | -1.914<br>1.174 | 1.00 76.18<br>1.00 58.32 |   | N<br>C |
| ATOM         | 2585         | C<br>O    |            |   | 190        | 9.954            | 88.949           | 1,272           | 1.00 56.42               |   | ŏ      |
| ATOM         | 2586         | N         |            |   | 191        | 10.585           | 86.869           | 0.727           | 1.00 53.42               |   | N      |
| ATOM         | 2588         | CA        |            |   | 191        | 9.231            | 86.364           | 0.553           | 1.00 54.37               |   | С      |
| ATOM         | 2590         | СВ        |            |   | 191        | 9.246            | 84.840           | 0.412           | 1.00 54.94               |   | С      |
| ATOM         | 2593         | CG        |            |   | 191        | 7.947            | 84.281           | -0.151          | 1.00 58.73               |   | C      |
| MOTA         | 2594         |           | ASP        |   |            | 8.046<br>6.798   | 83.511<br>84.523 | -1.128<br>0.311 | 1.00 62.18<br>1.00 57.59 |   | 0      |
| ATOM<br>ATOM | 2595<br>2596 | C         | ASP        |   | 191        | 8.381            | 86.749           | 1.744           | 1.00 54.60               |   | c      |
| ATOM         | 2597         | ŏ         |            |   | 191        | 8.742            | 86.473           | 2.881           | 1.00.56.67               |   | ŏ      |
| ATOM         | 2598         | N         |            |   | 192        | 7.243            | 87.378           | 1.480           | 1.00 54.58               |   | N      |
| MOTA         | 2600         | CA        | GLN        | A | 192        | 6.360            | 87.853           | 2.542           | 1.00 52.89               |   | C      |
| ATOM .       | 2602         | СВ        | GLN        |   |            | 5.377            | 88.896           | 1.975           | 1.00 52.65               |   | C      |
| ATOM         | 2605         | CG        |            |   | 192        | 4.540            | 89.640           | 3.028           | 1.00 51.74               |   | C      |
| ATOM .       | 2608<br>2609 | CD<br>OF1 | GLN<br>GLN |   | 192        | 5.388<br>6.241   | 90.448<br>91.213 | 3.978<br>3.540  | 1.00 51.89<br>1.00 52.72 |   | С<br>С |
| MOTA         | 2610         |           | GLN        |   |            | 5.177            | 90.257           | 5.282           | 1.00 48.28               |   | N      |
| ATOM         | 2613         | C         |            |   | 192        | 5.617            | 86.713           | 3.295           | 1.00 49.16               |   | Ċ      |
| ATOM         | 2614         | ō         |            |   | 192        | 5.283            | 86.869           | 4.461           | 1.00 45.83               |   | 0      |
| ATOM         | 2615         | N         |            |   | 193        | 5.352            | 85.583           | 2.642           | 1.00 46.84               |   | N      |
| ATOM         | 2617         | CA        |            |   | 193        | 4.797            | B4.428           | 3.348           | 1.00 49.33               |   | C      |
| MOTA         | 2619         | CB        | GLN        | A | 193        | 4.736            | 83.184           | 2.439           | 1.00 51.92               |   | С      |

|              |              |           |            |   |            |                  | 77.2 m.          | . ma E           |                          |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
|              | 0600         |           | CTN        | 2 | 103        | 3.870            | #191<br>83.278   | re 5             | 1.00 55.09               | С      |
| MOTA<br>MOTA | 2622<br>2625 | CG<br>CD  | GLN<br>GLN |   |            | . 3.564          | 81.902           | 0.506            | 1.00 58.87               | č      |
| MOTA         | 2626         | OE1       |            |   |            | 3.320            | 80.897           |                  | 1.00 55.73               | 0      |
| ATOM         | 2627         | NE2       | GLN        | A | 193        | 3.554            | 81.876           | -0.827           | 1.00 62.20               | N      |
| MOTA         | 2630         | С         | GLN        |   |            | 5.724            |                  | 4.541            | 1.00 50.69               | C<br>0 |
| MOTA         | 2631         | 0         | GLN<br>PHE |   |            | 5.298<br>7.011   | 84.025<br>84.048 | 5.694<br>4.214   | 1.00 48.49               | N.     |
| ATOM<br>ATOM | 2632<br>2634 | n<br>Ca   | PHE        |   |            | 8.067            | 83.688           | 5.125            | 1.00 42.15               | Č      |
| ATOM         | 2636         | CB        | PHE        |   |            | 9.393            | 83.594           | 4.358            | 1.00 42.17               | C      |
| MOTA         | 2639         | CG        | PHE        | A | 194        | 10.518           | 83.068           | 5.184            | 1.00 39.67               | C      |
| MOTA         | 2640         |           | PHE        |   |            | 11.556           |                  | 5.564            | 1.00 35.94               | C      |
| MOTA         | 2642         |           | PHE        |   |            | 12.563<br>12.556 | 83.427<br>82.119 | 6.334<br>6.754   | 1.00 32.98<br>1.00 35.97 | c      |
| MOTA<br>MOTA | 2644<br>2646 | CZ<br>CE2 | PHE        |   |            | 11.518           | 81.276           | 6.413            | 1.00 33.26               | Č      |
| ATOM         | 2648         |           | PHE        |   |            | 10.513           | 81.751           | 5.626            | 1.00 37.61               | С      |
| MOTA         | 2650         | C.        | PHE        |   |            | 8.221            | 84.655           | 6.274            | 1.00 43.38               | c      |
| MOTA         | 2651         | 0         | PHE        |   |            | 8.341            | 84.222           | 7.419<br>5.987   | 1.00 45.14<br>1.00 42.94 | O<br>N |
| ATOM<br>ATOM | 2652<br>2654 | N<br>CA   | LEU        |   | 195        | 8.228<br>8.374   | 85.955<br>86.969 | 7.039            | 1.00 42.54               | Č      |
| MOTA         | 2656         | CB        | LEU        |   |            | 8.513            | 88.353           | 6.437            | 1.00 46.79               | С      |
| MOTA         | 2659         | CG        | LEU        |   |            | 9.769            | 88.587           | 5.611            | 1.00 50.19               | С      |
| MOTA         | 2661         |           | LEU        |   |            | 9.539            | 89.744           | 4.650            | 1.00 50.37               | C      |
| ATÓM         | 2665         |           | LEU        |   |            | 10.947<br>7.222  | 88.855<br>87.014 | 6.521<br>8.040   | 1.00 52.11               | C      |
| MOTA<br>MOTA | 2669<br>2670 | С<br>О    | PEA        |   | 195        | 7.438            | 87.420           | 9.183            | 1.00 39.33               | ŏ      |
| ATOM         | 2671         | Ņ         |            |   | 196        | 6.014            | 86.629           | 7.602            | 1.00 41.66               | N      |
| MOTA         | 2673         | CA        |            |   | 196        | 4.803            |                  | 8.451            | 1.00 41.30               | C      |
| MOTA         | 2675         | CB        |            |   | 196        | 3.523            | 86.410           | 7.626            |                          | C      |
| MOTA         | 2678         | CG        | ASN        |   | 196        | 3.215<br>2.618   | 87.571<br>87.351 | 6.700<br>5.645   |                          |        |
| MOTA<br>MOTA | 2679<br>2680 |           | ASN        |   |            | 3.596            |                  |                  | 1.00 35.35               | N      |
| ATOM         | 2683         | C         |            |   | 196        | 4.832            | 85.445           | 9.434            | ,1.00,42.99              |        |
| MOTA         | 2684         | 0         |            |   | 196        | 4.434            |                  |                  | 1.00 44:63               | . 0    |
| ATOM         | 2685         | N         |            |   | 197        | 5.248            |                  |                  | 1.00 44:26               |        |
| ATOM<br>ATOM | 2687<br>2689 | CA<br>CB  | LEU        |   | 197<br>197 | 5.456<br>5.865   |                  |                  | 1.00:44:28               | č      |
| ATOM         | 2692         | CG        |            |   | 197        | 6.133            |                  | 9.351            | 1.00 48.34               | C      |
| MOTA         | 2694         |           | LEU        | A | 197        | 4.959            |                  | 10.203           | 1.00 49.42<br>1.00 45.66 | . с    |
| MOTA         | 2698         |           | LEU        |   |            | 6.405            | 79.684           | 8.201            | 1.00.49.42               | . C    |
| MOTA         | 2702         | C         |            |   | 197<br>197 | 6.566            |                  |                  | 1.00 45.00               | . 0    |
| MOTA<br>MOTA | 2703<br>2704 | O.<br>N   |            |   | 198        | 7.584            | 84.124           | 10.255           |                          | . N    |
| ATOM         | 2706         | CA        |            |   | 198        | 8.740            | 84.435           |                  | 1.00 49.82               | C      |
| MOTA         | 2708         | CB        |            |   | 198        | 9.859            | 85.035           |                  |                          | C      |
| ATOM         | 2711         | CG        |            |   | 198<br>198 | 11.276<br>11.839 |                  |                  | 1.00 55.14               | C<br>S |
| ATOM<br>ATOM | 2714<br>2715 | SD<br>CE  |            |   | 198        | 12.203           | 82.627           |                  |                          | č      |
| ATOM         | 2719         | c .       |            |   | 198        | 8.310            | 85.392           | 12.204           |                          | С      |
| ATOM         | 2720         | 0         |            |   | 198        | 8.573            | 85.165           |                  | 1.00 55.66               | 0      |
| ATOM         | 2721         | N         |            |   | 199        | 7.603            | 86.439<br>87.427 |                  | 1.00 51.13<br>1.00 53.76 | . С    |
| ATOM<br>ATOM | 2723<br>2725 | CA<br>CB  |            |   | 199<br>199 | 7.091<br>6.313   |                  |                  | 1.00 55.79               | č      |
| ATOM         | 2728         | CG        |            |   | 199        | 5.763            | 89.649           | 12.719           | 1.00 60.71               | С      |
| MOTA         | 2731         |           |            |   |            | 4.840            |                  |                  | 1.00 68.78               |        |
| ATOM         | 2732         |           | GLU        |   |            | 5.288            | 91.510           | 11.291<br>11.620 | 1.00 70.05<br>1.00 73.02 | 0      |
| MOTA         | 2733<br>2734 | C C       | GLU        |   | 199        | 3.671<br>6.192   | 90.044<br>86.800 | 13.845           | 1.00 73.02               | č      |
| ATOM<br>ATOM | 2735         | Ö.        |            |   | 199        | 6.199            |                  | 15.008           | 1.00 50.03               | ō      |
| ATOM         | 2736         | N         |            |   | 200        | . 5.426          | 85.803           | 13.430           | 1.00 50.25               | . N    |
| ATOM         | 2738         | CA        |            |   | 200        | 4.429            | 85.163           | 14.273           | 1.00 49.18<br>1.00 51.30 | . C    |
| MOTA         | 2740<br>2743 | CB        |            |   | ·200       | 3.440<br>1.929   | 84.372<br>84.494 | 13.375<br>13.670 | 1.00 51.30               | C      |
| ATOM<br>ATOM | 2746         | CG<br>CD  |            |   | 200        | 1.332            | 85.934           | 13.638           | 1.00 57.06               | · c    |
| ATOM         | 2749         | CE        |            |   | 200        | 1.592            | 86.687           | 12.349           | 1.00 56.82               | С      |
| ATOM ·       |              | NZ        | LYS        | A | 200        | 1.230            |                  | 12.542           | 1.00 55.60               | N      |
| ATOM         | 2756         | C         |            |   | 200        | 5.160            |                  | 15.259           | 1.00 47.56<br>1.00 47.66 | C<br>0 |
| ATOM<br>ATOM | 2757<br>2758 | N<br>O    |            |   | 200<br>201 | 4.780<br>6.227   | 84.132<br>83.587 | 16.425<br>14.789 | 1.00 47.86               | N      |
| ATOM<br>ATOM | 2750         | n<br>Ca   |            |   | 201        | 6.227            | 82.642           | 15.624           | 1.00 39.52               | č      |
| ATOM         | 2762         | CB        |            |   | 201        | 7.919            | 81.806           | 14.786           | 1.00 36.24               | C      |
| MOTA         | 2765         | CG        | LEU        | A | 201        | 7.252            | 80.681           | 14.008           | 1.00 35.44               | C      |
| ATOM         | 2767         |           | LEU        |   |            | 8.230            | 80.091<br>79.617 | 13.018<br>14.941 | 1.00 35.58<br>1.00 35.36 | , c    |
| ATOM<br>ATOM | 2771<br>2775 | CD2<br>C  | LEU        |   | 201        | 6.740<br>7.774   | 83.353           | 16.692           | 1.00 37.81               | Č      |
| MOTA         | 2776         | Ö         |            |   | 201        | 7.807            | 82.898           | 17.833           | 1.00 31.41               | 0      |
| ATOM         | 2777         | N         |            |   | 202        | 8.382            | 84.481           | 16.305           | 1.00 40.64               | N      |
|              |              |           |            |   |            |                  |                  |                  |                          |        |

|              |              |           |            |   |            | •                | F2               | =                |      |                |   |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|---|--------|
|              |              | ~-        |            |   |            |                  | Fig              |                  |      |                |   | _      |
| ATOM         | 2779<br>2781 | CA<br>CB  | ASN        |   | 202<br>202 | 9.241<br>10.071  | 85.287<br>86.326 | 17.180<br>16.398 |      | 43.14          |   | C<br>C |
| ATOM<br>ATOM | 2784         | CG        |            |   | 202        | 11.172           | 85.689           | 15.531           | _    | 46.05          |   | Č      |
| ATOM         | 2785         |           | ASN        |   |            | 11.711           | 86.327           | 14.640           |      | 50.20          |   | ŏ      |
| ATOM         | 2786         |           | ASN        |   |            | 11.489           | 84.430           | 15.788           |      | 50.10          |   | · N    |
| ATOM         | 2789         | C         |            |   | 202        | 8.443            | 85.984           | 18.259           |      | 47.46          |   | C      |
| ATOM         | 2790         | 0         | ASN        | A | 202        | 8.926            | 86.127           | 19.389           | 1.00 | 50.12          |   | 0      |
| ATOM         | 2791         | N         |            |   | 203        | 7.220            | 86.402           | 17.929           |      | 50.66          |   | 'n     |
| ATOM         | 2793         | CA        |            |   | 203        | 6.345            | 87.044           | 18.916           |      | 51.50          |   | C      |
| MOTA         | 2795         | CB        |            |   | 203        | 5.112            | 87.631           | 18.238           |      | 57.63          |   | C      |
| ATOM<br>ATOM | 2798<br>2801 | CG        | GLU        |   | 203<br>203 | 4.750<br>3.256   | 89.049<br>89.269 | 18.661<br>18.592 |      | 61.15<br>65.93 |   | C      |
| ATOM         | 2802         | CD<br>OE1 | GLU        |   | 203        | 2.689            | 89.008           | 17.503           |      | 70.80          | • | 0      |
| ATOM         | 2803         | OE2       | GLU        |   | 203        | 2.653            | 89.657           | 19.628           |      | 71.90          |   | ŏ      |
| ATOM         | 2804         | С         | GŁU        |   | 203        | 5.939            | 86.056           | 19.995           |      | 45.44          |   | С      |
| - MOTA       | 2805         | 0         | GLU        | A | 203        | 5.925            | 86.377           | 21.170           | 1.00 | 46.07          |   | 0      |
| ATOM         | 2806         | N         |            |   | 204        | 5.637            | 84.836           | 19.599           |      | 46.07          |   | N      |
| ATOM         | 2808         | CA        | ASN        |   | 204        | 5.390            | 83.768           | 20.568           |      | 46.43          |   | c      |
| ATOM         | 2810         | CB        |            |   | 204        | 5.004            | 82.491           | 19.831           |      | 47.59          |   | C      |
| ATOM<br>ATOM | 2813<br>2814 | CG<br>OD1 | ASN        |   | 204        | 3.523<br>2.990   | 82.433<br>81.358 | 19.485<br>19.222 |      | 48.09<br>52.90 |   | C<br>O |
|              | 2815         |           | ASN        |   |            | 2.856            | 83.579           | 19.483           |      | 46.97          |   | N      |
| ATOM         | 2818         | c         |            |   | 204        | 6.568            | 83.507           | 21.523           |      | 46.76          |   | Ċ.     |
| ATOM         | 2819         | 0         |            |   | 204        | 6.373            | 83.199           | 22.689           | 1.00 | 45.84          |   | 0      |
| ATOM         | 2820         | N         | ILE        | A | 205        | 7.788            | 83.643           | 21.017           | 1.00 | 47.49          | • | n      |
| MOTA         | 2822         | CA        |            |   | 205        | 8.992            | 83.492           | 21.826           |      | 46.00          |   | C      |
| MOTA         | 2824         | СВ        |            |   | 205        | 10.202           | 83.354           | 20.883           |      | 43.90          |   | C      |
| MOTA<br>MOTA | 2826<br>2829 |           | ILE        |   | 205        | 10.162<br>10.894 | 82.007<br>82.037 | 20.154<br>18.774 |      | 45.62<br>48.88 |   | C<br>C |
| ATOM         | 2833         |           | ILE        |   |            | 11.495           | 83.476           | 21.637           |      | 41.05          |   | Č      |
| ATOM         | 2837         | C         |            |   | 205        | 9.199            | 84.650           | 22.834           |      | 47.40          |   | Ċ,     |
| ATOM         | 2838         | 0         |            |   | 205        | 9.728            | 84.441           | 23.925           |      | 48.95          |   | 0.     |
| MOTA         | 2839         | N ·       | GLU        | A | 206        | 8.794            | 85.854           | 22.444           | 1.00 | 50.70          |   | N;     |
| MOTA         | 2841         | CA        | GLU        |   | 206        | 8.860            | 87.064           | 23.266           |      | 54.17          |   | > .C.  |
| ATOM         | 2843         | СВ        |            |   | 206        | 8.567            | 88.259           | 22.367           |      | 60.32          |   | 4 C    |
| ATOM         | 2846         | CG<br>CD  | GLU        |   | 206        | 8.713            | 89.641           | 22.979           |      | 68.00<br>73.22 |   | 5 .C.  |
| ATOM<br>ATOM | 2849<br>2850 |           | GLU        |   | 206        | 9.237<br>10.129  | 90.639<br>91.449 | 21.954<br>22.299 |      | 78.78          |   | , C,   |
| ATOM         | 2851         | OE2       | GLU        |   | 206        | 8.766            | 90.594           | 20.789           |      | 78.02          |   | 0      |
| ATOM         | 2852         | c         | GLU        |   | 206        | 7.831            | 87.024           | 24.395           |      | 53.40          |   | , Ci,  |
| ATOM         | 2853         | 0         | GLU        | A | 206        | 8.155            | 87.223           | 25.560           | 1.00 | 51.08          |   | 0:     |
| MOTA         | 2854         | N         | ILE        |   | 207        | 6.580            | 86.758           | 24.038           |      | 50.83          |   | Ŋ      |
| MOTA         | 2856         | CA        | ILE        |   |            | 5.533            | 86.575           | 25.026           |      | 48.09          |   | C      |
| ATOM         | 2858         | CB        | ILE        |   |            | 4.205            | 86.175           | 24.341           |      | 48.12          |   | C      |
| ATOM<br>ATOM | 2860<br>2863 | CG1       | ILE        |   | 207        | 3.639<br>2.685   | 87.327<br>86.853 | 23.508<br>22.410 |      | 52.10<br>53.71 |   | C<br>C |
| ATOM         | 2867         |           | ILE        |   |            | 3.183            | 85.762           | 25.353           |      | 47.85          | • | č      |
| ATOM         | 2871         | C         | ILE        |   |            | 5.966            | 85.496           | 26.017           |      | 48.59          |   | Č      |
| MOTA         | 2872         | 0         | ILE        | A | 207        | 5.845            | 85.680           | 27.221           | 1.00 | 46.31          |   | 0      |
| ATOM         | 2873         | N         | LEU        |   |            | 6.488            | 84.382           | 25.502           |      | 48.71          |   | N      |
| ATOM         | 2875         | CA        | LEU        |   | 208        | 6.795            | 83.215           | 26.324           |      | 48.91          |   | C      |
| ATOM<br>ATOM | 2877<br>2880 | CB<br>CG  | LEU        |   |            | 6.947<br>5.642   | 81.974<br>81.334 | 25.451<br>24.968 |      | 47.58<br>51.21 |   | C<br>C |
| ATOM<br>ATOM | 2882         |           | LEU        |   | 208        | 5.877            | 80.283           | 23.879           |      | 49.13          |   | Č      |
| ATOM         | 2886         | CD2       |            |   |            | 4.852            | 80.712           | 26.142           |      | 54.28          |   | č      |
| MOTA         | 2890         | С         | LEU        |   |            | 8.046            | 83.382           | 27.204           |      | 51.49          |   | С      |
| ATOM         | 2891         | 0         | LEU        |   |            | 8.259            | 82.589           | 28.121           |      | 49.89          |   | 0      |
| ATOM         | 2892         | N         | SER        |   |            | 8.852            | 84.407           | 26.937           |      | 54.38          |   | N      |
| ATOM         | 2894<br>2896 | CA        | SER        |   |            | 10.083           | 84.655           | 27.698           |      | 59.49          |   | c      |
| ATOM<br>ATOM | 2899         | CB<br>OG  | SER        |   |            | 11.211<br>11.047 | 85.028<br>86.364 | 26.730<br>26.299 |      | 60.13          |   | C      |
| ATOM         | 2901         | c         | SER        |   |            | 9.948            | 85.744           | 28.791           |      | 60.23          |   | č      |
| ATOM         | 2902         | ō         | SER        |   |            | 10.915           | 86.059           | 29.496           |      | 59.89          | • | Ö      |
| ATOM         | 2903         | N         | SER        | A | 210        | 8.751            | 86.311           | 28.915           | 1.00 | 61.29          |   | N      |
| ATOM         | 2905         | CA        | SER        |   |            | 8.443            | 87.289           | 29.952           |      | 61.46          |   | С      |
| ATOM         | 2907         | СВ        | SER        |   |            | 7.082            | 87.936           | 29.690           |      | 62.69          |   | C      |
| ATOM         | 2910         | OG        | SER        |   |            | 6.486            | 88.417           | 30.881           |      | 64.51          |   | 0      |
| ATOM         | 2912         | C         | SER        |   |            | 8.435            | 86.593           | 31.305           |      | 61.08<br>57.03 |   | C<br>0 |
| ATOM<br>ATOM | 2913<br>2914 | O<br>N    | SER<br>PRO |   |            | 7.770<br>9.192   | 85.580<br>87.120 | 31.464<br>32.267 | 1.00 |                |   | · N    |
| ATOM         | 2915         | CA        | PRO        |   |            | 9.287            | 86.518           | 33.609           | 1.00 |                |   | Č      |
| ATOM         | 2917         | СВ        | PRO        |   |            | 10.045           | 87.570           | 34.408           |      | 64.15          |   | · č    |
| ATOM         | 2920         | CG        | PRO        |   |            | 10.935           | 88.202           | 33.385           | 1.00 |                |   | С      |
| MOTA         | 2923         | CD        | PRO        |   |            | 10.079           | 88.295           | 32.130           | 1.00 |                |   | C      |
| MOTA         | 2926         | C         | PRO        |   |            | 7.974            | 86.226           | 34.287           |      | 61.22          |   | C      |
| ATOM         | 2927         | 0         | PRO        | A | 211        | 7.900            | 85.284           | 35.065           | 1.00 | 34.39          |   | 0      |

```
Figure 5
                                  6.937 86.997 34.011
                                                          1.00 65.86
                 TRP A 212
ATOM
      2928 N
                                         86.750
                                                  34.719
                                                          1.00 72.63
                 TRP A 212
                                  5.697
       2930
             CA
ATOM
                                                          1.00 76.71
                                                                                c
                                         88.092
                                  5.062
                                                  35.201
       2932
             CB
                 TRP A 212
ATOM
                                                          1.00 88.22
                                         88.788
                                                  34.388
                 TRP A 212
                                  4.011
MOTA
       2935
             CG
                                                          1.00 93.41
       2936
             CD1 TRP A 212
                                  3.923
                                         88.882
                                                  33.026
ATOM
                                                          1.00 96.35
ATOM
       2938
             NE1
                 TRP A 212
                                  2.815
                                         89.620
                                                  32.669
                                                                                C
                                                          1.00 97.47
             CEZ TRP A 212
                                  2.166
                                         90.039
                                                  33.804
ATOM
       2940
                                                          1.00 96.01
             CD2
                 TRP A 212
                                  2.898
                                         89.541
                                                  34.912
ATOM
       2941
                                                          1.00 97.14
                                                                                С
                 TRP A 212
                                  2.437
                                         89.835
                                                  36.213
             CE3
ATOM
       2942
                                                                                C
             CZ3 TRP A 212
                                  1.281
                                         90.604
                                                  36.362
                                                          1.00 98.81
MOTA
       2944
                                                                                C
                                  0.580
                                         91.089
                                                  35.233
                                                          1.00 99.46
             CH2 TRP A 212
ATOM
       2946
                                                                                C
                                  1.005
                                         90.817
                                                  33.952
                                                          1.00 98.51
АТОМ
       2948
             CZ2 TRP A 212
                                  4.799
                                         85.678
                                                  34.036
                                                          1.00 70.15
                                                                                C
       2950
                 TRP A 212
             С
ATOM
                 TRP A 212
                                  3.594
                                         85.643
                                                  34.230
                                                          1.00 75.34
                                                                                0
MOTA
       2951
             0
                 ILE A 213
                                  5.442
                                         84.752
                                                  33.308
                                                          1.00 68.79
                                                                                N
       2952
ATOM
             N
                                         83.509
                                                  32.811
                                                          1.00 67.36
                                                                                C
                 ILE A 213
                                  4.830
             CA
       2954
ATOM
                 ILE A 213
                                  5.586
                                         82.938
                                                  31.555
                                                          1.00 66.57
                                                                                C
       2956
             CB
ATOM
                                         83.819
                                                  30.324
                                                          1.00 66.86
                                                                                С
                 ILE A 213
                                  5.360
ATOM
       2958
             CG1
                                                  29.549
                                                         1.00 67.87
                                                                                C
                 TLE A 213
                                  4.087
                                         83.531
ATOM
       2961
             CD1
                                                  31.245
                                                         .1.00 61.89
                                                                                C
                                  5.178
                                         81.463
       2965
             CG2 ILE A 213
ATOM
                                                  33.879
                                                          1.00 68.71
                                                                                C
                  TLE A 213
                                  4.820
                                         82.423
MOTA
       2969
             С
                                                  33.887
                                                          1.00 72.27
                                                                                0
                  ILE A 213
                                  3.929
                                         81.571
       2970
ATOM
             0
                                  5.827
                                         82.395
                                                  34.745
                                                          1.00 68.14
                                                                                N
                  GLN A 214
ATOM
       2971
             N
                                  5.780
                                         81.454
                                                  35.861
                                                          1.00 67.56
                                                                                С
                 GLN A 214
             CA
ATOM
       2973
                                                          1.00 68.84
                                                                                С
                                  7.170
                                         81.194
                                                  36.444
                 GLN A 214
ATOM
       2975
             CB
                                  7.501
                                         79.702
                                                  36.540
                                                          1.00 70.83
                                                                                C
                  GIN A 214
ATOM
       2978
             CG
                                                          1.00 74.02
                                         78.997
                                                  35.182
                                  7.420
ATOM
       2981
             CD
                 GLN A 214
                                                          1.00 77.71
                                                                                0
                                  7.870
                                         79.539
                                                  34.167
       2982
             OE1 GLN A 214
ATOM
                                         77.803
                                                  35.161
                                                          1.00 71.90
                                  6.834
       2983
             NE2 GLN A 214
ATOM
                                                                                С
                                  4.797
                                         81.926
                                                  36.944
                                                          1.00 65.97
       2986
                  GLN A 214
             С
                                  4.375
                                         81.135
                                                  37.803
                                                          1.00 63.32
       2987 ; 0.
                  GLN A 214
MOTA
                                                  36.893
                                                          1.00 61.28
                                                                                N
                                         83.206
83.711
       2988
                  VAL A 215
                                   4.420
MOTA
                                                  37.781
                                                          1.00 62.05
       2990
                  VAL A 215
                                  3.383
ATOM
             CA
                                                          1.00 63.15
                                                  37.732
                                                                                С
ATOM
       '2992 CB
                  VAL A 215
                                  3.252
                                         85.251
                                                          1.00 62.15
                                                  38.620
                                                                                С
                                         85.743
ATOM
       2994
             CG1
                 VAL A 215
                                  2.097
                                                          1.00 65.08
                                                                                С
                 VAL A 215
                                   4.524
                                         85.892
                                                  38.174
ATOM
       2998

√ CG2

                                                          1.00 59.68
                                                                                С
                  VAL A 215
                                  2.038
                                         83.094
                                                  37.424
       3002
            · C
ATOM
                                                          1.00 63.70
1.00 55.28
                                                                                0
                                                  38.295
                  VAL A 215
                                  1.206
                                         82.878
       3003
            Θ.
ATOM
                                                                                N
                  TYR A 216
                                  1.808
                                         82.833
                                                  36.146
       3004 N
ATOM
                                                  35.745
                                                          1.00 52.57
                                                                                С
                 TYR A 216
                                  0.575
                                         82.182
       3006
            ĊA
MOTA
                                                          1.00 53.55
       3008
             ·CB
                  TYR A 216
                                  0.431 82.195
                                                  34.245
MOTA
                                                          1.00 56.08
                                                                                С
                                  0.139
                                         83.550
                                                  33.652
       3011
             CG
                  TYR A 216
ATOM
                                                          1.00 58.62
       3012
             CD1
                 TYR A 216
                                 -1.064
                                         84.190
                                                  33.906
ATOM
                                                                                Ċ
                                                          1.00 58.60
       3014
             CE1 TYR A 216
                                 -1.354
                                         85.430
                                                  33.345
ATOM
                                 -0.440
                                         86.022
                                                  32.506
                                                          1.00 60.16
                                                                                С
             CZ
                  TYR A 216
ATOM
       3016
                                  -0.751
                                         87.240
                                                  31.952
                                                          1.00 66.31
                                                                                ٥
       3017
             OH
                  TYR A 216
ATOM
                                  0.767
                                         85.399
                                                  32.226
                                                          1.00 58.16
                                                                                С
             CE2
                 TYR A 216
ATOM
       3019
                                          84.171
                                                  32.797
                                                          1.00 56.58
                                                                                C
                 TYR A 216
                                  1.047
       3021
             CD2
ATOM
                                         80.746
                                                  36.242
                                                          1.00 50.90
                                                                                C
                                  0.506
       3023
             С
                  TYR A 216
ATOM
                                  -0.537
                                         80.309
                                                  36.718
                                                          1.00 49.20
                                                                                 0
       3024
                  TYR A 216
ATOM
             ٥
                                         80.020
                                                  36.151
                                                          1.00 51.67
       3025
             N
                  ASN A 217
                                  1.618
ATOM
                  ASN A 217
                                   1.647
                                         78.609
                                                  36.542
                                                          1.00 51.80
                                                                                C
       3027
             CA
ATOM
                                   2.897
                                         77.916
                                                  36.003
                                                          1.00 52.32
                                                                                С
       3029
             CB
                  ASN A 217
ATOM
                                         77.853
                                                  34.483
                                                          1.00 54.34
                                                                                C
                                   2.925
       3032
             CG
                  ASN A 217
ATOM
                                         77.695
                                                  33.825
                                                          1.00 53.14
                                                                                0
                                   1.889
             OD1 ASN A 217
ATOM
       3033
                                         77.982
                                                  33.916
                                                          1.00 54.77
                                   4.119
ATOM
       3034
             ND2 ASN A 217
                                         78.418
                                                  38.046
                                                          1.00 53.34
                                                                                С
                                   1.539
ATOM
       3037
             C
                  ASN A 217
                                         77.371
                                                  38.515
                                                          1.00 53.22
                                                                                0
                                   1.116
MOTA
       3038
             0
                  ASN A 217
                                         79.440
                                                  38.801
                                                          1.00 57.80
                                                                                N
                                  1.907
ATOM
       3039
             N
                  ASN A 218
                                         79.411
                                                  40.243
                                                          1.00 61.66
                                                                                C
                                   1.730
ATOM
       3041
             CA
                  ASN A 218
                                          80.339
                                                  40.935
                                                          1.00 65.93
                                                                                 C
                                   2.739
       3043
             CB
                  ASN A 218
ATOM
                                         79.619
                                                  41.295
                                                          1.00 68.66
                                                                                 C
ATOM
       3046
             CG
                  ASN A 218
                                   4.023
                                                  40.420
                                                          1.00 70.17
                                                                                 0
                                         79.102
       3047
             OD1 ASN A 218
                                   4.721
ATOM
                                                  42.586
                                         79.557
                                                          1.00 71.46
ATOM
       3048
             ND2 ASN A 218
                                   4.321
                                         79.782
                                                                                 С
                                                  40.619
                                                          1.00 61.90
ATOM
       3051
                  ASN A 218
                                  0.300
                                          79.087
                                                  41.418
                                                          1.00 62.42
       3052
                  ASN A 218
                                  -0.313
ATOM
             0
                                          80.869
                                                  40.047
                                                           1.00 60.25
ATOM
       3053
                  PHE A 219
                                  -0.227
                                          81.307
                                                  40.302
                                                          1.00 59.29
        3055
                  PHE A 219
                                  -1.598
ATOM
             CA
                                          82.689
                                                  40.931
                                                           1.00 61.54
                                  -1.594
ATOM
        3057
             CB
                  PHE A 219
                                                  41.923
                                                           1.00 65.00
                                         82.887
                                  -0.519
        3060
             CG
                  PHE A 219
ATOM
                                                  41.973
                                                           1.00 71.57
                                         84.085
                  PHE A 219
                                   0.170
ATOM
        3061
             CD1
                                                  42.908
                                          84.291
                                                           1.00 74.73
                                   1.170
ATOM
        3063
              CE1
                  PHE A 219
                                                  43,803
                                                           1.00 75.22
                                                                                 С
                                   1.482
                                          83.284
ATOM
        3065
                  PHE A 219
              CZ
                                                           1.00 72.97
                                   0.788
                                          82.078
                                                  43.760
                                                                                 С
ATOM
        3067
             CE2 PHE A 219
                                         81.893
                                                  42.828
                                                          1.00 69.65
                                                                                 C
                                  -0.205
ATOM
        3069
             CD2 PHE A 219
                                          81.358
                                                  39.021
                                                          1.00 57.50
ATOM
        3071
                                  -2.417
             C
                  PHE A 219
```

· .

 $1 \leq \log 4$ 

. 73%

6.25

Tang.

. 2020

V-00

2520

15/16/2 (\$10.80 A) 1

and seem of

50.94 ( 30905 etc.

18 8 14 13 15 1 15 TO 3

PM CALLS

300.02

Raporta

25-1: 54

Jack Year

2304 5004

```
Figure 5
                                -2.590 82.438 38.453
                                                         1.00 59.24
MOTA
       3072
            0
                 PHE A 219
                                         80.214 38.554
                                                         1.00 54.68
                                -2.918
       3073
             N
                 PRO A 220
ATOM
                                                         1.00 54.01
             CA
                 PRO A 220
                                -3.673
                                         80.169
                                                37.296
ATOM
       3074
                                                         1.00 52.15
                 PRO A 220
                                -4.018
                                         78.685
                                                37.128
ATOM
       3076
             CB
                                                         1.00 52.55
       3079
             CG
                 PRO A 220
                                -3.746
                                        78.054
                                                38.389
MOTA
MOTA
       3082
             CD
                 PRO A 220
                                -2.780
                                         78.881
                                                 39.153
                                                         1.00 54.22
                                                                               С
                                                         1.00 55.78
                 PRO A 220
                                -4.928
                                        81.058
                                                 37.258
       3085
             С
MOTA
                                                         1.00 59.42
       3086
             0
                 PRO A 220
                                 -5.319
                                         81.453
                                                 36.171
MOTA
                 ALA A 221
                                 -5.528
                                         81.367
                                                 38.402
                                                         1.00 56.62
       3087
             N
ATOM
                 ALA A 221
                                 -6.605
                                         82.355
                                                 38.485
                                                         1.00 57.16
       3089
             CA
MOTA
                                 -6.872
                                         82.710
                                                 39.946
                                                         1.00 59.39
                 ALA A 221
ATOM
       3091
             CB
                                         83.629
                                                 37.693
                                                         1.00 55.85
ATOM
       3095
             С
                 ALA A 221
                                 -6.310
                                 -7.184
                                         84.180
                                                 37.049
                                                         1.00 57.09
       3096
             0
                 ALA A 221
ATOM
                 LEU A 222
                                 -5.070
                                         84.084
                                                 37.745
                                                         1.00 58.19
                                                                               N
ATOM
       3097
             N
                 LEU A 222
                                 -4.635
                                         85.263
                                                 37.004
                                                         1.00 60.63
                                                                               C
       3099
ATOM
             CA
                                                 37.346
                                                         1.00 61.13
                                                                               C
                 LEU A 222
                                 -3.182
                                         B5.584
       3101
             CB
ATOM
                                 -2.904
                                         B6.065
                                                 38.766
                                                         1.00 64.57
                                                                               С
                 LEU A 222
ATOM
       3104
             CG
                                         86.509
                                                         1.00 66.52
                                                                               С
             CD1 LEU A 222
                                 -1.462
                                                 38.827
ATOM
       3106
                                                         1.00 63.43
                                         87.196
                                                                               C
             CD2 LEU A 222
                                 -3.839
                                                 39.208
ATOM
       3110
                                                         1.00 61.19
                                                                               С
                 LEU A 222
                                 -4.742
                                         85.176
                                                 35.480
ATOM
       3114
             С
                                                 34.806
                                                         1.00 60.36
                 LEU A 222
                                 -4.657
                                         86.193
ATOM
       3115
             0
                                                         1.00 62.41
                                                                               N
                 LEU A 223
                                 -4.883
                                         83.982
                                                 34.924
ATOM
       3116
             N
                                                         1.00 62.51
                                 -5.058
                                         83.867
                                                 33.482
                                                                               С
ATOM
       3118
             CA
                 LEU A 223
                                 -5.107
                                         82.406
                                                 33.059
                                                         1.00 62.23
                                                                              , C
                 LEU A 223
MOTA
       3120
             CB
                                         81.706
                                                33.109
                                                         1.00 60.05
                                                                               С
                                 -3.751
                 LEU A 223
ATOM
       3123
             CG
                                         80.186 33.308
                                                         1.00 59.50
                                                                               С
             CD1 LEU A 223
                                 -3.896
ATOM
       3125
                                                         1.00 59.98
                                                                               С
                                 -2.987
                                         82.017 31.847
             CD2 LEU A 223
MOTA
       3129
                                                         1.00 64.96
                                                                               С
                                -6.323
                                         84.608
                                                 33.040
ATOM
       3133
             С
                 LEU A 223
                                                 32.035
                                                         1.00 64.77
                                        85.337
                 LEU A 223
                                 -6,294
ATOM
       3134
             O
                                        84.450
                                                                               N
                                 -7.405
                                                 33.810
                                                         1.00 65.49
ATOM
       3135
             N
                 ASP A 224
                 ASP A 224 -8.658 85.184
ASP A 224 -9.808 84.674
                                        85.184
                                                 33.563
                                                         1.00 67.38
ATOM
       3137
             CA
                                                 34.438
                                                         1.00 66.21
       3139
             CB
ATOM
                                                 34.625
                                                         1.00 69.83
                                        83.177
                                -9.785
ATOM
       3142
             CG
                 ASP A 224
                                                33.718
35.648
                                                         1.00 72.82
                                                                               0
                                -10.275
                                         82.461
ATOM
       3143
             OD1 ASP A 224
                                                         1.00 67.52
                                                                               0
                                -9.298 82.631
ATOM
       3144
             OD2 ASP A 224-19
                                                         1.00 68.14
                                                                               С
       3145
                 ASP A 224
                                 -8.515 86.701
                                                 33.772
ATOM
             С
                                                         1.00 69.23
                                                                               0
                  ASP A 224
                                 -8.988 87.473
                                                32,953
ATOM
       3146
             0
                                                 34.853
                                                         1.00 70.59
                                                                               N
                  TYR A 225
                                 -7.858 87.124
ATOM
       3147
                                                         1.00 73.27
                                                                               C
                 TYR A 225
                                 -7.687 88.564
                                                 35.149
ATOM
       3149
                                                         1.00 73.47
                                                                               С
                 TYR A 225
                                .-7.299 88.794
                                                 36.634
ATOM
       3151
             CB
                                                                               С
ATOM
       3154
             CG
                 TYR A 225
                                -8.339 88.285
                                                37.633
                                                         1.00 76.54
                                                         1.00 79.95
                                                                               С
                                 -8.069
                                         87.194
                                                 38.470
ATOM
       3155
             CD1 TYR A 225
                                                                               С
MOTA
       3157
             CE1 TYR A 225
                                 -9.025
                                        86.720
                                                39.375
                                                         1.00 81.08
                                                                               C
       3159
                 TYR A 225
                                -10.266
                                         87.339
                                                 39.442
                                                         1.00 81.46
MOTA
             CZ
                                         86.893
                                                 40.326
                                                         1.00 81.15
                                                                               0
             OH
                 TYR A 225
                                -11.217
ATOM
       3160
                                         88.417
                                                 38.625
                                                         1.00 79.83
             CE2
                 TYR A 225
                                -10.556
ATOM
       3162
                                         88.886
                                                 37.730
                                                         1.00 78.61
             CD2 TYR A 225
                                 -9.595
MOTA
       3164
                                         89.275
                                                 34.220
                                                         1.00 72.38
       3166
                 TYR A 225
                                 -6.685
             С
ATOM
                                         90.506
                                                 34.160
                                                         1.00 73.38
       3167
                  TYR A 225
                                 -6.679
MOTA
             0
       3168
                  PHE A 226
                                 -5.852
                                         88.502
                                                 33.511
                                                         1.00 72.88
ATOM
             N
                                                                               C
                                         89.030
                                                 32.550
                                                         1.00 72.94
ATOM
       3170
             CA
                  PHE A 226
                                 -4.867
ATOM
       3172
             CB
                  PHE A 226
                                 -3.481
                                         89.130
                                                33.188
                                                         1.00 74.16
                                                                               C
                  PHE A 226
                                 -3.410
                                         90.084
                                                 34.326
                                                         1.00 78.08
ATOM
       3175
             CG
                                         89.658
                                                 35.620
                                                        1.00 80.01
       3176
             CD1 PHE A 226
                                 -3.686
ATOM
                                         90.538
                                                 36.680
                                                         1.00 79.75
             CE1 PHE A 226
                                 -3.623
       3178
MOTA
                                         91.856
                                                 36.455
                                                         1.00 80.67
                                 -3.280
       3180
                 PHE A 226
ATOM
             CZ
                                         92.293
                                                 35.165
                                                         1.00 81.05
                                 -2.998
             CE2 PHE A 226
ATOM
       3182
                                         91.410
                                                 34.111
                                                         1.00 80.50
                                 -3.066
       3184
             CD2 PHE A 226
ATOM
                                                         1.00 71.13
                                 -4.757
                                         88.150
                                                 31.305
                                                                               C
       3186
                  PHE A 226
ATOM
                                         87.592
                                 -3.695
                                                 31.030
                                                         1.00 71.60
ATOM
       3187
                  PHE A 226
                                 -5.823
                                         88.056
                                                 30.518
                                                         1.00 70.87
ATOM
       3188
             N
                  PRO A 227
                                         87.125
                                                 29.388
                                                         1.00 69.87
                                 -5.830
ATOM
       3189
             CA
                  PRO A 227
                                 -7.322 87.005
                                                 29.025
                                                         1.00 70.75
ATOM
       3191
             CB
                  PRO A 227
                                        87.883
                                                 29.976
                                                         1.00 72.12
                                 -8.066
MOTA
       3194
             CG
                  PRO A 227
                                         88.828
                                                 30.586
                                                         1.00 72.55
                                 -7.074
ATOM
       3197
              CD
                  PRO A 227
                                         87.578
                                                 28.174
                                                         1.00 66.45
ATOM
       3200
             С
                  PRO A 227
                                 -5.006
                                                 27.247
                                                         1.00 66.06
                                 -4.903
                                         86.789
ATOM
       3201
                  PRO A 227
                                         88.786
                                                 28.169
                                                         1.00 65.33
ATOM
       3202
                  GLY A 228
                                 -4.442
             N
                                                         1.00 64.08
                                         89.229
                                                 27.083
       3204
                  GLY A 228
                                 -3.568
ATOM
             CA
                                         88.129
                                                 26.594
                                                         1.00 62.88
       3207
                                 -2.633
ATOM
                  GLY A 228
                                                         1.00 63.67
                                         87.747
                                                 25.428
       3208
                                 -2.652
ATOM
                  GLY A 228
                                                 27.499
                                                         1.00 61.75
                                 -1.817
                                         87.603
ATOM
        3209
                  THR A 229
                                                         1.00 59.21
ATOM
       3211
                  THR A 229
                                 -1.003
                                         86.423
                                                 27.212
             CA
ATOM
       3213
                  THR A 229
                                 -0.049
                                         86.111
                                                 28.373
                                                         1.00 58.11
             СВ
                                                         1.00 52.63
                                  0.645
                                         87.291 28.797
       3215
             OG1 THR A 229
ATOM
                                  1.032
                                        85.117 27.930
                                                         1.00 57.82
ATOM
       3217
             CG2 THR A 229
```

|              |              |           |            |   |            |                  | TD 4             | E                    |      |                |             |        |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|----------------------|------|----------------|-------------|--------|
|              |              | _         | mun        | * | 220        | -1.929           | #1gu             | re 5<br>27.114       | 1 00 | 58.21          | (           | 5      |
| ATOM<br>ATOM | 3221<br>3222 | C<br>0    | THR<br>THR |   |            | -2.748           | 85.055           | 28.006               |      | 63.36          |             | 5      |
| ATOM         | 3223         | N         | HIS        |   |            | -1.770           | 84.444           | 26.082               |      | 55.55          |             | Ŋ      |
| ATOM         | 3225         | CA        | HIS        |   |            | -2.633           | 83.272           | 25.840               |      | 54.64          |             | 2      |
| ATOM         | 3227         | CB        | HIS        |   |            | -3.180           | 82.560           | 27.127               |      | 53.08          |             | 2      |
| ATOM         | 3230         | CG        | HIS        |   |            | -4.605<br>-4.979 | 82.873<br>83.014 | 27.527<br>28.852     |      | 56.08<br>56.51 |             | 9      |
| ATOM<br>ATOM | 3231<br>3233 |           | HIS        |   |            | -6.280           | 83.228           | 28.922               |      | 54.04          | . (         |        |
| ATOM         | 3235         |           | HIS        |   |            | -6.774           | 83.200           | 27.697               |      | 54.50          |             | N      |
| ATOM         | 3237         | CD2       | HIS        |   |            | -5.754           | 82.955           | 26.808               |      | 58.43          |             | 2      |
| MOTA         | 3239         | C         | HIS        |   |            | -3.656           | 83.596<br>82.782 | 24.770<br>23.903     |      | 56.27<br>56.85 |             | 2      |
| ATOM<br>ATOM | 3240<br>3241 | O<br>N    | HIS<br>ASN |   |            | -3.878<br>-4.240 | 84.792           | 24.794               |      | 56.80          |             | Ŋ      |
| MOTA         | 3243         | CA        | ASN        |   |            | -5.050           | 85.259           | 23.665               |      | 55.30          |             |        |
| MOTA         | 3245         | СВ        | ASN        |   |            | -5.898           |                  | 24.040               |      | 54.87          |             | 2      |
| ATOM         | 3248         | CG        | ASN        |   |            | -7.193           | 86.142           | 24.816               |      | 56.08<br>46.40 |             | 0      |
| ATOM         | 3249<br>3250 |           | ASN<br>ASN |   |            | -7.606<br>-7.841 | 84.972<br>87.195 | 24.967<br>25.319     |      | 55.22          |             | N      |
| ATOM<br>ATOM | 3253         | C         | ASN        |   |            | -4.150           | 85.610           | 22.470               |      | 53.19          | · · · · · · | С      |
| ATOM         | 3254         | 0         | ASN        |   |            | -4.502           | 85.369           | 21.323               |      | 51.96          |             | 0      |
| ATOM         | 3255         | N         | LYS        |   |            | -2.982           | 86.175           | 22.747               |      | 53.09          |             | N<br>C |
| ATOM         | 3257         | CA        | LYS        |   |            | -2.043<br>-1.002 | 86.535<br>87.519 | 21.689<br>22.210     |      | 53.35<br>55.54 |             | C      |
| ATOM<br>ATOM | 3259<br>3262 | CB<br>CG  | LYS        |   |            | -0.968           | 88.848           | 21.478               |      | 61.56          | (           | С      |
| ATOM         | 3265         | CD        | LYS        |   |            | -0.023           | 89.862           | 22.174               |      | 68.68          |             | С      |
| MOTA         | 3268         | CE        | LYS        |   |            | -0.516           | 90.310           | 23.581               |      | 70.50          |             | C<br>N |
| ATOM         | 3271         | NZ        | LYS        |   |            | 0.601<br>-1.376  | 90.842<br>85.264 | 24.442               |      | 72.70<br>52.07 |             | C      |
| ATOM<br>ATOM | 3275<br>3276 | С<br>О    | LYS        |   |            | -1.106           | 85.155           |                      |      | 51.02          |             | 0      |
| ATOM         | 3277         | N         | LEU        |   |            | 1.138            | 84.300           | 22.035               |      | 47.60          |             | N      |
| MOTA         | 3279         | CA        | LEU        |   |            | -0.608           |                  | 21.636               |      |                |             | C      |
| MOTA         | 3281         | CB        | LEU        |   |            | -0.175<br>0.983  | 82.727           | 22.856               |      |                |             | C      |
| MOTA<br>MOTA | 3284<br>3286 | CG<br>CD1 | LEU        |   |            | 1.300            | 81.921           |                      |      |                |             | C      |
| ATOM         | 3290         |           | LEU        |   |            | 2.231            | 82.896           | 22.806               | 1.00 | 45.55          |             | С      |
| MOTA         | 3294         | С         |            |   | 233        | -1.629           | 82.273           | 20.795               |      |                |             | C      |
| MOTA         | 3295         | 0         | LEU        |   |            | -1.272<br>-2.901 |                  | 19.795 3<br>21.185 4 |      |                |             | 0<br>N |
| ATOM<br>ATOM | 3296<br>3298 | n<br>Ca   | LEU        |   |            | -3.967           |                  | 20.496               |      |                |             | C      |
| ATOM         | 3300         | СВ        | LEU        |   |            | -5.268           | 81.555·          | 21.324 ^             | 1.00 | 43.46          |             | С      |
| MOTA         | 3303         | CG        | LEU        |   |            |                  |                  | 22.421               |      |                |             | C      |
| MOTA         | 3305         |           | LEU        |   |            | -6.603<br>-5.142 | 80.598<br>79.074 | 23.210<br>21.885     |      | 42.67<br>43.52 |             | C      |
| ATOM<br>ATOM | 3309<br>3313 | CD2       | LEU        |   |            | -4.252           | 82.172           | 19.126               |      | 42.32          |             | c.     |
| ATOM         | 3314         | ō         |            |   | 234        | -4.659           | 81.447           | 18.223               |      | 43.50          |             | 0      |
| MOTA         | 3315         | N         |            |   | 235        | -4.033           | 83.473           | 18.999               |      | 43.92          |             | N<br>C |
| ATOM         | 3317<br>3319 | CA<br>CB  |            |   | 235<br>235 | -4.330<br>-4.412 | 84.205<br>85.706 | 17.789<br>18.107     |      | 48.59<br>51.39 |             | C      |
| ATOM<br>ATOM | 3322         | CG        |            |   | 235        | -4.705           | 86.622           | 16.927               |      | 59.27          |             | С      |
| ATOM         | 3325         | CD        |            |   | 235        | -4.754           | 88.104           | 17.345               | 1.00 | 66.01          |             | С      |
| ATOM         | 3328         | CE        |            |   | 235        | -6.163           | 88.549           | 17.807               |      | 72.32          |             | C<br>N |
| ATOM<br>ATOM | 3331<br>3335 | NZ<br>C   |            |   | 235<br>235 | -6.355<br>-3.232 | 88.430<br>83.885 | 19.302<br>16.788     |      | 75.88<br>48.11 |             | C      |
| ATOM         | 3336         | Ö         |            |   | 235        | -3.507           | 83.632           | 15.621               |      | 49.77          |             | 0      |
| ATOM         | 3337         | N         | ASN        | Α | 236        | -1.990           | 83.851           | 17.277               | 1.00 | 50.14          |             | N      |
| ATOM         | 3339         | CA        |            |   | 236        | -0.798           | 83.579           | 16.461<br>17.266     |      | 46.04<br>48.35 |             | C<br>C |
| ATOM ·       | 3341<br>3344 | CB<br>CG  |            |   | 236<br>236 | 0.471<br>0.767   | 83.872<br>85.362 | 17.383               |      | 48.94          |             | c      |
| ATOM         | 3345         |           | ASN        |   |            | 1.597            | 85.788           | 18.205               |      | 45.95          |             | 0      |
| ATOM         | 3346         |           | ASN        | A | 236        | 0.094            | 86.161           | 16.562               |      | 46.81          |             | N      |
| ATOM         | 3349         | C         |            |   | 236        | -0.747           | 82.150           | 15.960               |      | 41.46<br>41.84 |             | с<br>0 |
| ATOM<br>ATOM | 3350<br>3351 | O<br>N    |            |   | 236<br>237 | -0.410<br>-1.085 | 81.885<br>81.223 | 14.811<br>16.826     |      | 38.83          |             | N      |
| ATOM         |              | CA        |            |   | 237        | -1.133           | 79.843           | 16.426               |      | 40.75          |             | С      |
| ATOM         | 3355         | CB        | VAL        | A | 237        | -1.400           | 78.933           | 17.620               |      | 40.19          |             | C      |
| MOTA         | 3357         |           | VAL        |   |            | -1.768           | 77.524           | 17.180               |      | 41.79          |             | C<br>C |
| ATOM         | 3361<br>3365 |           | VAL        |   |            | -0.172<br>-2.199 | 78.892<br>79.690 | 18.505<br>15.350     |      | 42.04<br>46.92 |             | c      |
| ATOM<br>ATOM | 3366         | C<br>O    |            |   | 237<br>237 | -2.199           | 78.983           | 14.356               |      | 51.43          |             | ŏ      |
| MOTA         | 3367         | N         |            |   | 238        | -3.342           | 80.356           | 15.518               | 1.00 | 49.30          |             | N      |
| ATOM         | 3369         | CA        | ALA        | A | 238        | -4.458           | 80.124           | 14.599               |      | 47.64          |             | C<br>C |
| MOTA         | 3371         | CB        |            |   | 238        | -5.750<br>-4.148 | 80.633<br>80.761 | 15.163<br>13.256     |      | 48.80<br>42.47 |             | c      |
| ATOM<br>ATOM | 3375<br>3376 | С<br>0    |            |   | 238<br>238 | -4.146<br>-4.586 | 80.264           | 12.233               |      | 43.29          |             | ŏ      |
| ATOM         | 3377         | N         |            |   | 239        | -3.368           | 81.836           | 13.267               | 1.00 | 38.51          |             | N      |
| MOTA         | 3379         | CA        |            |   | 239        | -2.882           | 82.452           | 12.034               | 1.00 | 40.83          |             | С      |

e jage en en George en en George en en George en en en George en en en

CHARLES A

```
Figure 5
         3381 CB PHE A 239
3384 CG PHE A 239
                                              -2.033 83.677 12.347
                                                                                  1.00 39.27
MOTA
                                                                                  1.00 43.25
                                               -1.491
                                                          84.363 11.133
MOTA
                                               -0.413 - 83.834 10.432
                                                                                  1.00 43.21
                 CD1 PHE A 239
          3385
MOTA
                                               0.100 84.495
                                                                      9.303
                                                                                 1.00 47.45
          3387
                  CE1 PHE A 239
MOTA
                                                                       8.861
                                                                                 1.00 46.14
                                               -0.478
                                                         85.687
ATOM
          3389
                 CZ PHE A 239
                                                                       9.552
                                                                                  1.00 46.91
ATOM
          3391
                  CE2 PHE A 239
                                               -1.558
                                                          86.216
                                                                                  1.00 44.68
                                                                      10.690
                  CD2 PHE A 239
                                               -2.055
                                                          85.559
ATOM
          3393
                                                                                  1.00 43.35
                                                                      11.272
ATOM
          3395
                  С
                         PHE A 239
                                               -2.031
                                                          81.462
                                                                                  1.00 46.74
                                                                      10.077
                         PHE A 239
                                               -2.202
                                                          81.281
          3396
ATOM
                                                                                  1.00 46.36
                         MET A 240
                                               -1.102
                                                          80.843
                                                                      11.992
ATOM
          3397
                  N
                                                                                  1.00 46.87
                        MET A 240
                                               -0.192
                                                          79.877
                                                                      11.426
          3399
                  CA
ATOM
                                                                                  1.00 47.39
                                                0.863
                                                          79.456
                                                                      12.459
ATOM
          3401
                  СВ
                        MET A 240
                                                                                 1.00 48.81
                                                          80.263
                                                                      12.401
          3404
                  ÇG
                         MET A 240
                                                2.152
ATOM
                         MET A 240
                                               2.981
                                                          80.487
                                                                      14.005
                                                                                 1.00 50.96
          3407
                  SD
ATOM
                         MET A 240
                                               2.853
                                                          78.881
                                                                      14.700
                                                                                 1.00 55.49
                                                                                                                 С
          3408
                  CE
ATOM
                                                          78.665
                                                                      10.949
                                                                                  1.00 47.03
                                                                                                                 С
                         MET A 240
                                               -0.978
          3412
                  С
ATOM
                         MET A 240
                                               -0.726
                                                          78.162
                                                                      9.870
                                                                                 1.00 45.17
                                                                                                                 ٥
                   0
ATOM
          3413
                                                          78.201
                                                                      11.743
                                                                                  1.00 48.17
                                                                                                                 N
                         LYS A 241
                                               -1.934
ATOM
          3414
                  N
                                                          77.058
                                                                      11.346
                                                                                 1.00 49.86
                                                                                                                 С
                        LYS A 241
                                               -2.758
ATOM
          3416
                  CA
                                                          76.705
                                                                      12.448
                                                                                  1.00 49.36
                                                                                                                 С
                         LYS A 241
                                               -3.753
          3418
                  CB
ATOM
                                                          75.947
                                                                      13.621
                                                                                  1.00 50.82
                                                                                                                 С
                  CG
                         LYS A 241
                                               -3.159
MOTA
          3421
                                                          75.945
                                                                      14.822
                                                                                  1.00 53.94
                                                                                                                 C
                   CD
                         LYS A 241
                                               -4.106
ATOM
          3424
                         LYS A 241
                                               -4.403
                                                          74.555
                                                                      15.339
                                                                                 1.00 54.13
                                                                                                                ·C
ATOM
          3427
                   CE
                         LYS A 241
                                               -5.170
                                                          73.722
                                                                      14.334
                                                                                  1.00 55.90
                                                                                                                 N
                  NZ
ATOM
          3430
                                                          77.322
                                                                      10.010
                                                                                 1.00 51.85
                        LYS A 241
                                               -3.496
ATOM
          3434
                  С
                                               -3.606
                                                          76.428
                                                                       9.185
                                                                                  1.00 53.51
                                                                                                                 0
                         LYS A 241
ATOM
          3435
                  O
                                                          78.549
                                                                       9.794
                                                                                 1.00 51.73
                                                                                                                 N
                                               ~3.969
ATOM
          3436
                  N
                         SER A 242
                                                                                  1.00 52.02
                                                                                                                 С
                                               -4.656
                                                          78.915
                                                                        8.557
MOTA
          3438
                  CA
                        SER A 242
                                                                        8.622
                                                                                 1.00 50.89
                                                                                                                 C
                                                          80.343
                                               -5.192
                                                                                                       ATOM
          3440
                  CB
                        SER A 242
                                                                                 1.00 54.27
                   OG SER A 242
                                               -6.501
                                                           80.311
                                                                        9.095
ATOM
          3443
                                                                                 1.00 51.51
                                               -3.744
                                                           78.872
                                                                        7.371
ATOM
          3445
                   С
                         SER A 242
                                                                                                      O
N
                                                          78.413
                                                                        6.301
                                                                                 1.00 51.97
          3446
                  0
                         SER A 242
                                               -4.130
ATOM
                                                                        7.560
                                                                                 1.00 52.12
                                               -2.560
                                                          79.442
          3447
                  N
                         TYR A 243
                                                                                                   No. 18 of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control
ATOM
                                                                        6.525
                                                                                 1.00 50.57
                                                          79.541
ATOM
          3449
                 CA TYR A 243
                                               -1.548
                                                                        7.081
                                                                                 1.00 51.77
ATOM
          3451
                   СВ
                        TYR A 243
                                               -0.318
                                                          80.254
                                                                                 1.00 56.12
                                                                        6.127
                   CG TYR A 243
                                               0.826 80.234
ATOM
          3454
                                                                                 1.00 61.57
                   CD1 TYR A 243
                                                0.956
                                                          81.217
                                                                        5.162
ATOM
          3455
                                                                                 1.00 64.35
                   CE1 TYR A 243
                                                                        4.258
                                                1.994 81.191
ATOM
          3457
                   CZ TYR'A 243
                                                2.912
                                                          B0.160
                                                                        4.310
                                                                                 1.00 65.98
MOTA
          3459
                                              3.955
                                                                                 1.00 71.78
                                                           80.133
                                                                        3.404
          3460
                   OH TYR A 243
ATOM
                                                                                                     ).
.
                                                                                 1.00 61.72
                                                          79.159
ATOM
          3462
                   CE2 TYR A 243
                                                2.790
                                                                        5.261
                                                                                 1.00 58.09
                                                                                                                 С
                                               1.755
                                                          79.203
                                                                        6.154
ATOM
          3464
                   CD2 TYR A 243
ATOM
          3466
                   С
                         TYR A 243
                                               -1.169
                                                           78.150
                                                                        6.058
                                                                                  1.00 48.84
           3467
                   0
                         TYR A 243
                                               -1.086
                                                          77.870
                                                                        4.879
                                                                                  1.00 50.21
ATOM
                                               -0.945
                                                           77.272
                                                                        7.014
                                                                                  1.00 48.82
ATOM
           3468
                  N
                         ILE A 244
                                              -0.622
-0.301
                                                          75.898
                                                                        6.725
                                                                                 1.00 48.19
MOTA
           3470
                   CA ILE A 244
                                                          75,146
                                                                        8.045
                                                                                 1.00 47.73
ATOM
           3472
                   CB
                         ILE A 244
                                              1.052 75.626
                                                                       8.580
                                                                                 1.00 46.84
                                                                                                                 С
           3474
                   CG1 ILE A 244
ATOM
                                                           75.625
                                                                     10.073
                                                                                  1.00 46.59
MOTA
           3477
                   CD1 ILE A 244
                                                1.159
                                                                                                                 С
                                              -0.300
                                                          73.593
                                                                       7.862
                                                                                 1.00 44.68
ATOM
           3481
                   CG2 ILE A 244
                                                         75.247
74.458
                                                                                                                  C
                                             -1.764
                                                                        5.989
                                                                                  1.00 48.17
ATOM
           3485
                         ILE A 244
                   С
                                                                        5.100
                                                                                                                  ٥
           3486
                         ILE A 244
                                              -1.537
                                                                                 1.00 55.33
ATOM
                   0
                                               -2.986
                                                          75.568
                                                                        6.372
                                                                                  1.00 49.93
                                                                                                                  N
           3487
                         LEU A 245
MOTA
                   N
                                                          74.979
                                                                         5.758
                                                                                  1.00 49.94
                                                                                                                  C
                                               -4.171
           3489
                   CA
                         LEU A 245
ΣΤΟΜ
                                              -5.440
-6.706
                                                                         6.418
                                                                                  1.00 48.78
                                                                                                                  С
                                                           75.523
                         LEU A 245
           3491
ATOM
                   CB
                                                                                                                  C
                                                                         6.492
                                                                                  1.00 53.41
                                                           74.657
ATOM
           3494
                   CG
                         LEU A 245
                                                                         5.740
                                                                                  1.00 54.25
                                                                                                                  С
                                              -7.850
                                                           75.328
ATOM
           3496
                   CD1 LEU A 245
                                                           73.195
                                                                                  1.00 52.87
                                            -6.523
                                                                         6.014
ATOM
           3500
                   CD2 LEU A 245
                                                          75.269
74.382
                                                                         4.262
                                                                                  1.00 51.59
                   С
                         LEU A 245
                                              -4.220
ATOM
           3504
                                                                                  1.00 51.28
                                                                         3.474
                                               -4.519
ATOM
           3505
                   0
                         LEU A 245
                                               -3.917
                                                           76.505
                                                                         3.870
                                                                                  1.00 52.44
                                                                                                                  N
 ATOM
           3506
                  N
                         GLU A 246
                                                                         2.469
                                                                                  1.00 56.00
                                               -3.987
                                                           76.874
 MOTA
           3508
                   CA
                         GLU A 246
                                                         78.402
                                                                         2.289
                                                                                  1.00 57.06
 ATOM
           3510
                   СВ
                         GLU A 246
                                               -4.075
                                                                         2.283
                                                                                  1.00 61.11
 ATOM
           3513
                   CG
                         GLU A 246
                                               -2.776
                                                           79.186
                                                                                  1.00 66.31
                                                                         2.471
 ATOM
           3516
                   CD
                         GLU A 246
                                               -2.991
                                                           80.698
                                                                         3.369
                                                                                  1.00 68.79
           3517
                    OE1 GLU A 246
                                               -3.758
                                                          81.115
 ATOM
                                                                        1.730
                                                                                  1.00 70.62
                   OE2 GLU A 246
 ATOM
           3518
                                               -2.371 81.490
                                                                        1.729
                                                                                  1.00 57.66
                                               -2.821
                                                           76.218
 ATOM
           3519
                   С
                         GLU A 246
                                                                        0.524
                                                                                  1.00 61.85
                                               -2.864
                                                          75.997
 ATOM
           3520
                   0
                         GLU A 246
                                                                        2.478
                                                                                  1.00 58.99
                                                           75.869
 ATOM
           3521
                         LYS A 247
                                               -1.791
                   N
                                                                                  1.00 56.02
                                                                         1.941
                                                          75.097
 MOTA
           3523
                   CA
                         LYS A 247
                                                -0.685
                                                                        2.883
                                                                                  1.00 56.27
                                                           75.163
 ATOM
           3525
                         LYS A 247
                                                0.511
                   CB
                                                                         2.241
                                                                                  1.00 58.18
           3528
                                                1.720
                                                           75.782
 ATOM
                         LYS A 247
                   CG
 ATOM
                        LYS A 247
                                                           77.245
                                                                         1.959
                                                                                  1.00 58.98
           3531
                                                 1.497
                   CD
                                                                        1.584
                                                                                  1.00 58.06
                                                           77.951
           3534
                                                 2.790
 ATOM
                         LYS A 247
                  CE
                                                                         0.127
                                                                                  1.00 58.10
 MOTA
                                                 2.948
                                                          78.155
           3537 NZ LYS A 247
```

|               |              |           |       |                | • |                  | Figu             | re 5             |                          |   |        |
|---------------|--------------|-----------|-------|----------------|---|------------------|------------------|------------------|--------------------------|---|--------|
| ATOM          | 3541         | С         | LYS A | 247            |   | -1.052           | 73.646           | 1.667            | 1.00 53.51               |   | C      |
| ATOM          | 3542         | 0         | LYS A |                |   | -0.640           | 73.109           | 0.642            | 1.00 55.97               |   | o<br>N |
| MOTA          | 3543         | N         | VAL A |                |   | -1.815           | 73.012           | 2.561<br>2.391   | 1.00 50.22<br>1.00 51.81 | • | Č      |
| ATOM          | 3545         | CA        | VAL A |                |   | -2.176<br>-2.624 | 71.607<br>70.907 | 3.716            | 1.00 52.96               |   | Č      |
| ATOM<br>ATOM  | 3547<br>3549 | CB<br>CG1 | VAL A |                |   | -1.950           | 71.490           | 4.924            | 1.00 52.69               |   | С      |
| ATOM          | 3553         |           | VAL A |                |   | -4.143           | 70.939           | 3.901            | 1.00 56.45               |   | C      |
| ATOM          | 3557         | С         | VAL A |                |   | -3.278           | 71.467           | 1.333            | 1.00 56.28               | • | C      |
| ATOM          | 3558         | 0         | VAL A |                |   | -3.585           | 70.360           | 0.868            | 1.00 52.54               |   | O<br>N |
| ATOM          | 3559         | N         | LYS A |                |   | -3.891           | 72.596           | 0.986<br>-0.037  | 1.00 58.87               |   | Ċ      |
| ATOM          | 3561         | CA<br>CB  | LYS A |                |   | -4.911<br>-5.809 | 72.610<br>73.850 | 0.090            | 1.00 63.22               |   | С      |
| ATOM<br>ATOM  | 3563<br>3566 | CG        | LYS A |                |   | -6.979           | 73.645           | 1.084            | 1.00 64.58               |   | С      |
| ATOM          | 3569         | CD        | LYS A |                |   | -8.028           | 74.776           | 1.008            | 1.00 65.22               | • | C      |
| ATOM          | 3572         | CE        | LYS A |                |   | -8.996           | 74.788           | 2.217            | 1.00 63.09               |   | C<br>N |
| ATOM          | 3575         | NZ        | LYS A |                |   | -9.215           | 73.439<br>72.528 | 2.821<br>-1.377  | 1.00 57.26<br>1.00 60.57 |   | C      |
| ATOM          | 3579         | C         | LYS A |                |   | -4.199<br>-4.456 | 71.599           | -2.141           | 1.00 59.79               |   | ō      |
| atom<br>Atom  | 3580<br>3581 | O<br>N    | GLU A |                |   | -3.275           | 73.463           | -1.624           | 1.00 59.92               |   | N      |
| ATOM          | 3583         | CA        | GLU A |                |   | -2.381           | 73.408           | -2.791           | 1.00 61.16               |   | C      |
| ATOM          | 3585         | CB        | GLU A |                |   | -1.232           | 74.412           | -2.688           | 1.00 62.86               |   | C      |
| MOTA          | 3588         | CG        | GLU A |                |   | -1.626           | 75.881           | -2.640<br>-2.335 | 1.00 67.59               |   | c      |
| ATOM          | 3591         | CD<br>OF1 | GLU A |                |   | -0.447<br>-0.490 | 76.810<br>77.990 | -2.743           | 1.00 73.52               |   | ō      |
| ATOM '        | 3592<br>3593 | OE1       | GLU P |                |   | 0.534            | 76.377           | -1.686           | 1.00 77.91               |   | . 0    |
| ATOM          | 3594         | C         | GLU A |                |   | -1.755           | 72.029           | -2.956           | 1.00 61.04               |   | С      |
| ATOM          | 3595         | 0         | GLU A | 250            |   | -1.480           | 71.609           | -4.074           | 1.00 65.27               |   | 0      |
| ATOM          | 3596         | N         | HIS F |                |   | -1.513           | 71.341           | -1.843           | 1.00 60.36<br>1.00 58.63 | • | N<br>C |
| ATOM          | 3598         | CA        | HIS A |                |   | -0.931<br>-0.281 | 70.001<br>69.650 | -1.868<br>-0.517 | 1.00 55.86               |   | č      |
| MOTA MOTA     | 3600<br>3603 | CB        | HIS F |                |   | 1.114            | 70.169           | -0.382           | 1.00 51.67               |   | C      |
| MOTA          | 3604         |           | HIS A |                |   | 1.427            | 71.500           | -0.555           | 1.00 52.27               |   | N      |
| ATOM          | 3606         |           | HIS A |                |   | 2.728            | 71.667           | -0.407           | 1.00 51.11               | • | C      |
| ATOM          | 3608         |           | HIS A |                |   | 3.271            | 70.490           | -0.148           | 1.00 47.36<br>1.00 47.73 |   | N<br>C |
| MOTA          | 3610         |           | HIS A |                |   | 2.284<br>-1.973  | 69.535<br>68.965 | -0.136<br>-2.258 | 1.00 47.73               |   | č      |
| ATOM          | 3612<br>3613 | 0         | HIS A |                |   | -1.722           | 68.153           | -3.130           | 1.00 62.92               |   | Ö      |
| ATOM          | 3614         | Ŋ         | GLN A |                |   | -3.143           | 69.006           | -1.629           | 1.00 62.22               | • | N      |
| MOTA          | 3616         | CA        | GLN A |                |   | -4.233           | 68.077           | -1.950           | 1.00 61.02               |   | C      |
| MOTA          | 3618         |           | GLN A |                | • | -5.472           | 68.399           | -1.104           | 1.00 59.10               |   | C      |
| ATOM          | 3621         | CG        | GLN A |                |   | -5.469           | 67.681<br>68.135 | 0.235<br>1.193   | 1.00 59.83<br>1.00 58.75 |   | Č      |
| ATOM<br>ATOM  | 3624<br>3625 | CD        | GLN A |                |   | -6.558<br>-7.075 | 67.323           | 1.965            | 1.00 55.04               |   | ō      |
| ATOM          | 3626         | NE2       |       |                |   | -6.885           | 69.426           | 1.164            | 1.00 58.72               |   | N      |
| ATOM          | 3629         | С         | GLN I |                |   | -4.576           | 68.121           | -3.439           | 1.00 61.34               |   | С      |
| ATOM          | 3630         | 0         |       | A 252          |   | -5.036           | 67.143           | -4.011           | 1.00 57.70               |   | O<br>N |
| ATOM          | 3631         | N         |       | A 253          |   | -4.318<br>-4.649 | 69.263<br>69.493 | -4.057<br>-5.445 | 1.00 65.32<br>1.00 71.50 |   | Ċ      |
| ATOM<br>ATOM  | 3633<br>3635 | CA<br>CB  | GLU A | A 253          |   | -4.718           | 71.006           | -5.693           | 1.00 73.40               |   | C      |
| ATOM          | 3638         | CG        |       | A 253          |   | -5.157           | 71.409           | -7.089           | 1.00 78.32               |   | С      |
| ATOM          | 3641         | CD        | GLU 2 | A 253          |   | -3.994           | 71.436           | -8.064           | 1.00 82.83               |   | C      |
| ATOM          | 3642         |           | GLU   |                |   | -4.089           | 70.790           | -9.139           | 1.00 86.38<br>1.00 84.17 | • | 0      |
| ATOM          | 3643         |           | GLU . |                |   | -2.978<br>-3.614 | 72.092<br>68.822 | -7.740<br>-6.347 | 1.00 74.24               | • | Č      |
| ATOM<br>MOTA  | 3644<br>3645 | 0         | GTO : | A 253<br>A 253 |   | -3.958           | 67.984           | -7.185           | 1.00 78.02               |   | 0      |
| ATOM          | 3646         | N         |       | A 254          |   | -2.343           | 69.171           | -6.152           | 1.00 76.13               |   | N      |
| MOTA          | 3648         | CA        |       | À 254          |   | -1.256           | 68.733           | -7.041           | 1.00 76.24               |   | C      |
| MOTA          | 3650         | СВ        |       | A 254          |   | -0.202           | 69.837           | -7.161           | 1.00 75.95<br>1.00 75.05 |   | Ö      |
| MOTA          | 3653         | OG        |       | A·254<br>A 254 |   | 0.651<br>-0.568  | 69.825<br>67.461 | -6.030<br>-6.565 | 1.00 73.53               |   | č      |
| ATOM<br>.ATOM | 3655<br>3656 | 0         |       | A 254          |   | 0.496            | 67.107           | -7.043           | 1.00 72.87               |   | 0      |
| ATOM          | 3657         | N         |       | A 255          |   | -1.185           | 66.767           | -5.631           | 1.00 72.79               |   | N      |
| ATOM          | 3659         | CA        | MET   | A 255          |   | -0.501           | 65.706           | -4.926           | 1.00 72.92               |   | C      |
| MOTA          | 3661         | CB        |       | A 255          |   | -1.278           | 65.339           | -3.662           | 1.00 75.31               |   | c      |
| ATOM          | 3664         | CG        |       | A 255          |   | -0.430<br>-0.903 | 65.021<br>63.416 | -2.462<br>-1.805 | 1.00 77.40               |   | s      |
| ATOM          | 3667<br>3668 | SD<br>CE  |       | A 255<br>A 255 |   | -2.808           | 63.633           | -1.530           | 1.00 84.85               |   | С      |
| MOTA<br>ATOM  | 3672         | C         |       | A 255          |   | -0.397           | 64.489           | -5.814           | 1.00 70.64               |   | C      |
| ATOM          | 3673         | ŏ         |       | A 255          |   | -1.389           | 64.020           | -6.344           | 1.00 69.10               |   | 0      |
| ATOM          | 3674         | N         | ASP   | A 256          |   | 0.815            | 63.978           | -5.959           | 1.00 70.94               |   | N<br>C |
| ATOM          | 3676         | CA        |       | A 256          |   | 1.045            | 62.719<br>62.862 | -6.638<br>-7.580 | 1.00 70.30               |   | Ċ      |
| MOTA          | 3678         | CB        |       | A 256          |   | 2.241<br>2.568   | 61.581           | -8.339           | 1.00 69.39               |   | Ċ      |
| ATOM<br>ATOM  | 3681<br>3682 | CG<br>OD3 | ASP   | A 256<br>A 256 |   | 1.807            | 60.580           | -8.243           | 1.00 61.05               |   | 0      |
| ATOM          | 3683         |           | ASP   |                |   | 3.588            | 61.515           | -9.073           | 1.00 67.87               |   | 0      |
| ATOM          | 3684         | С         |       | A 256          |   | 1.310            | 61.642           | -5.601           | 1.00 69.99               | 1 | С      |
|               |              |           |       |                |   |                  |                  |                  |                          |   |        |

|              |              |           |            |   |            |                  | Figu             | ıre 5            |                          |   |         |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|---|---------|
| MOTA         | 3685         | 0         | ASP        | A | 256        | 2.367            | 61.620           | -4.983           | 1.00 69.26               |   | 0       |
| MOTA         | 3686         | N         | MET        |   |            | 0.340            | 60.753           | -5.421           | 1.00 72.26               |   | N       |
| ATOM         | 3688         | CA        | MET        |   |            | 0.512            | 59.546           | -4.605           | 1.00 74.43               |   | C.      |
| ATOM         | 3690         | CB        | MET<br>MET |   |            | -0.825<br>-2.030 | 58.818<br>59.715 | -4.431<br>-4.032 | 1.00 77.61<br>1.00 80.92 |   | Ċ       |
| ATOM<br>ATOM | 3693<br>3696 | CG<br>SD  | MET        |   |            | -2.225           | 59.934           | -2.238           | 1.00 84.86               |   | s       |
| ATOM         | 3697         | CE        | MET        |   |            | -2.604           | 58.182           | -1.700           | 1.00 82.19               |   | С       |
| ATOM         | 3701         | c         | MET        |   |            | 1.531            | 58.622           | -5.289           | 1.00 74.66               |   | С       |
| ATOM         | 3702         | 0         | MET        | A | 257        | 1.711            | 58.691           | -6.507           | 1.00 78.70               |   | 0       |
| MOTA         | 3703         | N         | ASN        |   |            | 2.187            | 57.754           | -4.517           | 1.00 72.39               |   | N       |
| MOTA         | 3705         | CA        | ASN        |   |            | 3.394            | 57.012           | -4.969           | 1.00 70.60               |   | C       |
| ATOM         | 3707<br>3710 | CB<br>CG  | ASN<br>ASN |   |            | 3.190<br>1.813   | 56.183<br>55.568 | -6.261<br>-6.376 | 1.00 73.74               |   | č       |
| ATOM<br>ATOM | 3711         |           | ASN        |   |            | 1.531            | 54.524           | -5.779           | 1.00 73.92               |   | ō       |
|              | 3712         |           | ASN        |   |            | 0.952            | 56.202           | -7.174           | 1.00 71.60               |   | N       |
| ATOM         | 3715         | С         | ASN        | A | 258        | 4.624            | 57.889           | -5.209           | 1.00 66.47               | • | C       |
| MOTA         | 3716         | 0         | asn        |   |            | 5.659            | 57.372           | -5.626           | 1.00 62.36               |   | 0       |
| ATOM         | 3717         | N         | ASN        |   |            | 4.503            | 59.197           | -4.966           | 1.00 63.68<br>1.00 62.22 |   | N<br>C  |
| MOTA         | 3719         | CA        | ASN<br>ASN |   |            | 5.598<br>5.586   | 60.148<br>60.626 | -5.175<br>-6.626 | 1.00 65.76               |   | Č       |
| ATOM<br>ATOM | 3721<br>3724 | CB<br>CG  | ASN        |   |            | 6.264            | 59.662           | -7.547           | 1.00 64.03               |   | Ċ       |
| ATOM         | 3725         |           | ASN        |   |            | 7.362            | 59.194           | -7.255           | 1.00 62.09               |   | 0       |
| ATOM         | 3726         |           | ASN        |   |            | 5.617            | 59.344           | -8.663           | 1.00 64.02               |   | N       |
| ATOM         | 3729         | С         | ASN        |   |            | 5.575            | 61.364           | -4.237           | 1.00 59.52               |   | C       |
| ATOM         | 3730         | Ò         | ASN        |   |            | 5.686            | 62.513           | -4.680           | 1.00 52.55               |   | N'<br>O |
| ATOM         | 3731         | N         | PRO        |   |            | 5.478<br>5.464   | 61.100<br>62.165 | -2.938<br>-1.944 | 1.00 59.32               |   | Č       |
| ATOM<br>ATOM | 3732<br>3734 | CA<br>CB  | PRO        |   |            | 5.151            | 61.421           | -0.645           | 1.00 59.31               |   | c       |
| ATOM         | 3737         | CG        | PRO        |   |            | 5.665            | 60.045           | -0.863           | 1.00 60.10               |   | Ċ       |
| ATOM         | 3740         | CD        | PRO        |   |            | 5.425            | 59.768           | -2.305           | 1.00 60.45               |   | C       |
| ATOM         | 3743         | С         | PRO        | A | 260        | 6.820            | 62.850           | -1.865           | 1.00 57.41               |   | C       |
| MOTA         | 3744         | 0         | PRO        |   |            | 7.855            | 62.203           | -1.987           |                          |   | 0       |
| MOTA         | 3745         | N         | GLN        |   |            | 6.784            | 64.160<br>64.991 | -1.664<br>-1.663 | 1.00 56.85               |   | N<br>C  |
| ATOM         | 3747<br>3749 | CA<br>CB  | GLN        |   |            | 7.971<br>7.892   | 65.976           | -2.828           |                          |   | č       |
| ATOM<br>ATOM | 3752         | CG        | GLN        |   |            | 7.455            | 65.355           | -4.159           | 1.00 61.87               |   | Ċ       |
| ATOM         | 3755         | CD        | GLN        |   |            | 8.533            | 65.395           | -5.209           | 1.00 62.74               |   | . С     |
| ATOM         | 3756         | OE1       | GLN        | A | 261        | 9.532            | 64.677           | -5.111           | 1.00 62.95               |   | 0       |
| ATOM         | 3757         |           | GLN        |   |            | 8.343            | 66.237           | -6.219           | 1.00 64.98               |   | N       |
| ATOM         | 3760         | C         | GLN        |   |            | 8.197            |                  | -0.344           | 1.00 56.68               |   | C<br>O  |
| ATOM         | 3761<br>3762 | O<br>N    |            |   | 261<br>262 | 9.301<br>7.172   | 66.248<br>65.896 | 0.502            |                          |   | N       |
| MOTA<br>MOTA | 3764         | CA        |            |   | 262        | 7.358            | 66.553           | 1.796            | 1.00 49.85               |   | С       |
| ATOM         | 3766         | CB        | ASP        |   |            | 7.243            | 68.089           | 1.677            | 1.00 48.27               |   | C ·     |
| ATOM         | 3769         | CG        | ASP        | A | 262        | 5.952            | 68.540           | 1.072            | 1.00 47.71               |   | G       |
| MOTA         | 3770         |           | ASP        |   |            | 5.891            | 69.701           | 0.577            | 1.00 39.28               |   | 0       |
| ATOM         | 3771         |           | ASP        |   |            | 4.945            | 67.804<br>65.993 | 1.054<br>2.873   | 1.00 49.62               |   | č       |
| ATOM<br>ATOM | 3772<br>3773 | C<br>0    |            |   | 262<br>262 | 6.451<br>5.782   | 64.976           | 2.668            | 1.00 47.88               |   | ō       |
| ATOM         | 3774         | N         |            |   | 263        | 6.480            | 66.637           | 4.037            | 1.00 47.02               |   | N       |
| ATOM         | 3776         | CA        |            |   | 263        | 5.750            | 66.185           | 5.211            | 1.00 43.00               |   | С       |
| MOTA         | 3778         | CB        |            |   | 263        | 6.016            | 67.129           | 6.361            | 1.00 43.77               |   | C       |
| MOTA         | 3781         | CG        |            |   | 263        | 5.528            | 66.631           | 7.656            | 1.00 46.20               |   | C       |
| ATOM         | 3782         |           | PHE        |   |            | 6.225<br>5.778   | 65.647<br>65.169 | 8.328<br>9.554   | 1.00 48.61               |   | Č       |
| ATOM<br>ATOM | 3784<br>3786 | CZ        | PHE        |   | 263        | 4.627            | 65.683           | 10.110           | 1.00 48.92               |   | Č       |
| ATOM         | 3788         |           | PHE        |   |            | 3.918            | 66.678           | 9.448            | 1.00 47.50               |   | C       |
| ATOM         | 3790         |           | PHE        |   |            | 4.369            | 67.148           | 8.223            | 1.00 48.33               |   | С       |
| MOTA         | 3792         | С         | PHE        | A | 263        | 4.270            | 66.155           | 4.935            | 1.00 42.34               |   | C       |
| MOTA         | 3793         | 0         |            |   | 263        | 3.608            | 65.141           | 5.177            | 1.00 41.90               | • | N<br>O  |
| ATOM         | 3794         | N         |            |   | 264        | 3.748            | 67.268<br>67.335 | 4.427<br>4.089   | 1.00 39.65               |   | Č       |
| ATOM         | 3796         | CA        |            |   | 264<br>264 | 2.329<br>1.987   | 68.708           | 3.449            | 1.00 40.36               |   | Č       |
| ATOM<br>ATOM | 3798<br>3800 | CB<br>CG1 | ILE        |   |            | 1.931            | 69.789           | 4.521            | 1.00 36.77               |   | С       |
| ATOM         | 3803         |           | ILE        |   |            | 1.892            | 71.207           |                  | 1.00 34.91               |   | С       |
| ATOM         | 3807         |           | ILE        |   |            | 0.635            | 68.676           | 2.701            | 1.00 41.67               |   | C       |
| MOTA         | 3811         | С         |            |   | 264        | 1.898            | 66.132           | 3.185            | 1.00 44.29               |   | C       |
| ATOM         | 3812         | 0         |            |   | 264        | 0.968            | 65.416           | 3.546            | 1.00 41.67<br>1.00 43.52 |   | Ŋ       |
| ATOM         | 3813         | N         |            |   | 265        | 2.586<br>2.300   | 65.916<br>64.801 | 2.050<br>1.136   | 1.00 43.52               |   | Č       |
| ATOM<br>ATOM | 3815<br>3817 | CA<br>CB  |            |   | 265<br>265 | 3.398            | 64.596           | 0.055            | 1.00 46.04               |   | Č       |
| ATOM         | 3820         | CG        |            |   | 265        | 3.342            | 65.603           | -1.104           | 1.00 46.70               |   | С       |
| ATOM         | 3821         |           | ASP        |   |            | 2.337            | 66.325           | -1.268           | 1.00 55.07               |   | 0       |
| ATOM         | 3822         |           | ASP        |   |            | 4.288            | 65.733           | -1.923           | 1.00 49.15               |   | 0       |
| MOTA         | 3823         | С         |            |   | 265        | 2.189            | 63.506           | 1.919            | 1.00 43.17               |   | C       |
| ATOM         | 3824         | 0         | ASP        | A | 265        | 1.190            | 62.831           | 1.818            | 1.00 51.04               |   | J       |

|              |                |           |            |    |            |                  | Fic                | ure 5           |      |                |          |        |
|--------------|----------------|-----------|------------|----|------------|------------------|--------------------|-----------------|------|----------------|----------|--------|
| ATOM         | 3825           | N         | CYS        | A  | 266        | 3.203            | 63.155             | 2.705           | 1 00 | 45.23          |          | N      |
| ATOM         | 3827           | CA        |            |    | 266        | 3.200            | 61.870             | 3.437           |      | 46.23          |          | C      |
| ATOM         | 3829           | СВ        |            |    | 266        | 4.515            | 61.651             | 4.177           |      | 44.31          |          | С      |
| ATOM         | 3832           | SG        |            |    | 266        | 5.964            | 61.788             | 3.142           | 1.00 | 50.87          |          | S      |
| MOTA         | 3833           | С         |            |    | 266        | 2.064            | 61.755             | 4.456           |      | 44.09          |          | C      |
| ATOM         | 3834           | 0         |            |    | 266        | 1.621            | 60.674             | 4.774           |      | 43.60          |          | 0      |
| ATOM<br>ATOM | 3835<br>3837   | N<br>CA   |            |    | 267<br>267 | 1.643<br>0.567   | 62.880<br>62.890   | 5.002<br>5.960  |      | 46.05<br>48.61 |          | N<br>C |
| MOTA         | 3839           | CB        |            |    | 267        |                  | 64.219             | 6.734           |      | 48.87          |          | Č      |
| ATOM         | 3842           | CG        |            |    | 267        | -0.221           | 64.175             | 8.036           |      | 49.96          |          | c      |
| MOTA         | 3843           |           | PHE        | A  | 267        | 0.437            | 64.182             | 9.259           |      | 51.26          |          | C      |
| MOTA         | 3845           |           | PHE        |    |            | -0.270           | 64.165             | 10.441          |      | 50.33          |          | С      |
| MOTA         | 3847           | CZ        |            |    | 267        | -1.635           | 64.138             | 10.416          |      | 52.31          |          | C      |
| ATOM<br>ATOM | 3849<br>3851   |           | PHE        |    |            | -2.308<br>-1.607 | 64.132<br>64.160   | 9.205<br>8.032  |      | 52.02<br>49.61 |          | C      |
| ATOM         | 3853           | C         | PHE        |    |            | -0.734           | 62.662             | 5.186           |      | 48.39          |          | Č      |
| ATOM         | 3854           | ō         | PHE        |    |            | -1.564           | 61.843             | 5.585           |      | 46.99          |          | ŏ      |
| MOTA         | 3855           | N         | LEU        | A  | 268        | -0.891           | 63.367             | 4.069           | 1.00 | 47.84          |          | N      |
| ATOM         | 3857           | CA        | PEA        |    |            | -2.106           | 63.275             | 3.259           |      | 49.38          |          | C      |
| ATOM         | 3859           | CB        | LEU        |    |            | -2.033           | 64.209             | 2.041           |      | 45.56          |          | C      |
| ATOM         | 3862           | CG        | PEO        |    |            | -2.891           | 65.488             | 2.006           |      | 47.97          |          | C      |
| ATOM<br>ATOM | 3864<br>3868   |           | LEU        |    |            | -3.402<br>-2.134 | 65.963<br>66.609   | 3.350<br>1.342  |      | 52.53<br>47.02 |          | C      |
| ATOM         | 3872           | C         | LEU        |    |            | -2.325           | 61.829             | 2.830           |      | 52.08          |          | ç      |
| ATOM         | 3873           | 0         | LEU        |    |            | -3.439           | 61.302             | 2.898           |      | 53.44          |          | Ö      |
| MOTA         | 3874           | N         | MET        | A  | 269        | -1.243           | 61.172             | 2.441           |      | 55.67          |          | N      |
| ATOM         | 3876           | CA        | MET        |    |            | -1.336           | 59.817             | 1.952           |      | 60.40          |          | С      |
| MOTA         | 3878           | CB        | MET        |    |            | -0.245           | 59.545             | 0.919           |      | 64.46          | - 47     | C      |
| MOTA<br>MOTA | 3881<br>3884   | CG<br>SD  | MET<br>MET |    |            | 1.153<br>2.194   | 59.419<br>58.561   | 1.447<br>0.228  |      | 70.20 · 81.82  |          | C<br>S |
| ATOM         | 3885           | CE        |            |    |            | 1.912            | 59.560             | -1.275          |      | 79.83          | ,        | č      |
| ATOM         | 3889           | c `       | MET        |    |            | -1.343           | 58.790             | 3.074           |      | 56.12          |          | C      |
| ATOM         | 3890           | 0         | MET        | A  | 269        | -1.759           | 57.655             | 2.871           | 1.00 | ,59.69 🖟       |          | 0      |
| ATOM         | 3891           | N         | LYS        |    |            | -0.898           | 59,185             | 4.253           |      | 55.16          |          | N      |
| ATOM         | 3893           | CA        | LYS        |    |            | -1.143           | 58.382             |                 |      | 56.18.5        |          | C      |
| ATOM<br>ATOM | 3895<br>3898   | CB<br>CG  | LYS        |    |            | -0.327<br>-0.560 | 58.893<br>58.179   | 6.628           |      | 54.94<br>53.34 |          | C      |
| ATOM         | 3901           | CD        | EYS        |    |            | -0.315           | 56.686             | 7.896           |      | 54.42          |          | č      |
| ATOM         | 3904           | CE        | LYS        |    |            | -0.414           |                    |                 |      | 55.33          |          | č      |
| ATOM         | 3907           | NZ        | LYS        | A٠ | 270        | 0.384            | 54.841             | 9.379           |      | 56.41          |          | N      |
| ATOM         | 3911           | С         | LYS        |    |            | -2.645           | 58.404             | 5.748           |      | 58.13          | <b>.</b> | С      |
| ATOM         | 3912           | 0         | LYS        |    |            | -3.178           | 57.422             | 6.233           |      | 57.10          | •        | 0      |
| ATOM<br>ATOM | 3913<br>3915   | N<br>CA   | MET<br>MET |    |            | -3.329<br>-4.764 | . 59.507<br>59.606 | 5.437<br>5.689  |      | 61.89<br>65.56 |          | N<br>C |
| ATOM         | 3917           | CB        | MET        |    |            | -5.269           | 61.028             | 5.491           |      | 64.81          |          | č      |
| ATOM         | 3920           | CG        | MET        |    |            | -4.523           | 62.035             | 6.334           |      | 64.90          |          | Ċ      |
| MOTA         | 3923           | SD        | MET        | A  | 271        | -5.512           | 63.386             | 6.897           |      | 64.75          |          | S      |
| MOTA         | 3924           | CE        | MET        |    |            | -6.023           | 64.107             | 5.349           |      | 60.52          |          | С      |
|              | 3928           | C         | MET        |    |            | -5.532           | 58.658             | 4.796           |      | 70.40          |          | C<br>O |
| ATOM<br>ATOM | 3929<br>3930 . | n<br>N    | MET<br>GLU |    |            | -6.546<br>-5.034 | 58.104<br>58.460   | 5.217<br>3.576  |      | 72.98<br>75.30 |          | И      |
| ATOM         | 3932           | CA        | GLU        |    |            | -5.635           | 57.516             | 2.642           |      | 79.34          |          | c      |
| ATOM         | 3934           | СВ        | GLU        |    |            |                  | 57.710             | 1.239           |      | 82.63          |          | C      |
| ATOM         | 3937           | CG        | GLU        |    |            | -6.006           | 57.288             | 0.121           |      | 85.33          |          | C      |
| ATOM         | 3940           | CD        | GLU        |    |            | -6.800           | 58.457             | -0.444          |      | 87.12          |          | C      |
| ATOM         | 3941           |           | GTO        |    |            | -7.605           | 59.060             | 0.305           |      | 86.17          |          | 0      |
| MOTA<br>MOTA | 3942<br>3943   | C         | GLU        |    |            | -6.614<br>-5.464 | 58.780<br>56.057   | -1.637<br>3.085 |      | 88.86<br>80.00 |          | č      |
| ATOM         | 3944           | Ö         | GLU        |    |            | ~6.394           | 55.272             | 2.986           |      | 81.67          |          | ŏ      |
| MOTA         | 3945           | N         | LYS.       |    |            | -4.292           | 55.691             | 3.587           |      | 81.63          |          | N      |
| MOTA         | 3947           | CA        | LYS        |    |            | -4.083           | 54.323             | 4.063           |      | 84.64          |          | С      |
| MOTA         | 3949           | CB        | LYS        |    |            | -2.581           | 54.018             | 4.216           |      | 86.22          |          | C      |
| MOTA         | 3952           | CG        | LYS        |    |            | -1.839           | 53.924             | 2.852           |      | 90.66          |          | C      |
| ATOM<br>MOTA | 3955           | CD        | LYS        |    |            | -0.300<br>0.437  | 54.098<br>52.754   | 2.952<br>3.103  |      | 94.00<br>94.28 |          | c      |
| MOTA<br>MOTA | 3958<br>3961   | CE<br>NZ  | LYS        |    |            | 0.437<br>0.158   | 52.754             | 4.422           |      | 95.57          |          | Ŋ      |
| ATOM         | 3965           | C         | LYS        |    |            | -4.848           | 54.069             | 5.368           |      | 85.52          |          | C      |
| MOTA         | 3966           | ŏ         | LYS        |    |            | -4.909           | 52.942             | 5.846           |      | 85.12          |          | 0      |
| MOTA         | 3967           | N         | GLU        |    |            | -5.434           | 55.124             | 5.933           |      | 87.84          |          | N      |
| MOTA         | 3969           | CA        | GLU        |    |            | -6.228           | 55.034             | 7.153           |      | 91.15          |          | C      |
| ATOM         | 3971           | CB        | ĞLU        |    |            | -5.670           | 55.995             | 8.203           |      | 91.31          |          | C      |
| MOTA<br>MOTA | 3974           | CG        | GLU        |    |            | -4.388<br>-4.618 | 55.517<br>54.844   | 8.868<br>10.209 |      | 92.06<br>92.75 |          | c      |
| ATOM<br>ATOM | 3977<br>3978   | CD<br>OE1 | GLU<br>GLU |    |            | -5.480           | 55.311             | 10.209          |      | 92.91          |          | ŏ      |
| ATOM         | 3979           |           | GLU        |    |            | -3.921           | 53.846             | 10.487          |      | 94.12          |          | 0      |
| MOTA         | 3980           | С         | GLU        |    |            | -7.701           | 55.361             | 6.931           | 1.00 | 93.99          | •        | С      |
|              |                |           |            |    |            |                  |                    |                 |      |                |          |        |

|              |                |           |                        | Figure 5                                                                    |
|--------------|----------------|-----------|------------------------|-----------------------------------------------------------------------------|
| MOTA         | 3981           | 0         | GLU A 274              | -8.520 55.128 7.821 1.00 95.67 O                                            |
| ATOM         | 3982           | N         | LYS A 275              | -8.045 55.876 5.749 1.00 97.48 N                                            |
| ATOM         | 3984           | CA        | LYS A 275              | -9.407 56.363 5.477 1.00 99.30 °C<br>-9.541 56.929 4.045 1.00 99.38 °C      |
| ATOM         | 3986<br>3989   | CB<br>CG  | LYS A 275<br>LYS A 275 | -9.541 56.929 4.045 1.00 99.38 C<br>-9.802 55.892 2.919 1.00100.16 C        |
| ATOM<br>ATOM | 3992           | CD        | LYS A 275              | -10.784 56.407 1.833 1.00100.38 C                                           |
| ATOM         | 3995           | CE        | LYS A 275              | -10.070 57.168 0.696 1.00 99.77 C                                           |
| ATOM         | 3998           | NZ        | LYS A 275              | -10.751 57.060 -0.630 1.00 96.83 N<br>-10.482 55.301 5.734 1.00100.02 C     |
| ATOM         | 4002<br>4003   | С<br>0    | LYS A 275<br>LYS A 275 | -10.482 55.301 5.734 1.00100.02 C<br>-11.649 55.639 5.937 1.00100.57 O      |
| ATOM<br>ATOM | 4003           | N         | HIS A 276              | -10.092 54.026 5.717 1.00 99.95 N                                           |
| ATOM         | 4006           | CA        | HIS A 276              | -11.025 52.955 6.015 1.00 99.80 C                                           |
| ATOM         | 4008           | CB        | HIS A 276              |                                                                             |
| ATOM<br>ATOM | 4011<br>4012   | CG<br>ND1 | HIS A 276              | -11.112 51.475 3.967 1.00105.46 C<br>-12.163 50.638 3.644 1.00106.73 N      |
| ATOM         | 4014           |           | HIS A 276              | -12.404 50.716 2.346 1.00107.55 C                                           |
| MOTA         | 4016           |           | HIS A 276              | -11.555 51.583 1.815 1.00107.81 N<br>-10.742 52.078 2.808 1.00107.41 C      |
| MOTA         | 4018           |           | HIS A 276              | -10.742 52.078 2.808 1.00107.41 C<br>-11.259 52.862 7.516 1.00 98.85 C      |
| ATOM<br>ATOM | 4020<br>4021   | С<br>0    | HIS A 276<br>HIS A 276 | -12.236 53.438 7.987 1.00 98.10 O                                           |
| ATOM         | 4022           | N         | ASN A 277              | -10.393 52.184 8.275 1.00 99.13 N                                           |
| ATOM         | 4024           | CA .      | ASN A 277              | -10.599 52.121 9.739 1.00100.08 C<br>-9.689 51.104 10.469 1.00100.64 C      |
| ATOM         | 4026           | CB<br>CG  | ASN A 277<br>ASN A 277 | -9.689 51.104 10.469 1.00100.64 C<br>-8.254 51.110 9.968 1.00101.67 C       |
| ATOM<br>ATOM | 4029<br>4030 . |           | ASN A 277              | -7.965 50.592 8.893 1.00100.42 O                                            |
| ATOM         | 4031           |           | ASN A 277              | -7.348 51.683 10.757 1.00102.60 N                                           |
| MOTA         | 4034           | С         | ASN A 277              | -10.510 53.533 10.345 1.00 99.48 C<br>-9.425 54.044 10.644 1.00 97.70 O     |
| ATOM         | 4035<br>4036   | o<br>N    | ASN A 277<br>GLN A 278 | -9.425 54.044 10.644 1.00 97.70 O                                           |
| ATOM<br>ATOM | 4038           | CA        | GLN A 278              | -11.852 55.574% 10.689 1.00 96.27 C                                         |
| ATOM         | 4040           | СВ        | GLN A 278              | -12.869 56.068 9.642 1.00 97.68 C                                           |
| ATOM         | 4043           | CG        | GLN A 278              | -12.989 57.591% 39.439.41.00 98.08 C<br>-11.878 58.187 85590 31.00 99.23 C  |
| ATOM         | 4046<br>4047   | CD<br>OE1 | GLN A 278<br>GLN A 278 | -11.878 58.187 8.590.31.00 99.23<br>-11.328 57.531 37.708 1.00 98.25        |
| MOTA<br>MOTA | 4048           |           | GLN A 278              | -11.554 59.442 8.854 1.00101.33 N                                           |
| ATOM         | 4051           | С         | GLN A 278              | -12.287 56.043: 12.085 1.00 94.50 C                                         |
| ATOM         | 4052           | 0         | GLN A 278              | -13.037 30.303 22.323                                                       |
| ATOM<br>ATOM | 4053<br>4054   | n<br>Ca   | PRO A 279<br>PRO A 279 | -11.774 55.4469 13.167; 1.00 92.31 N<br>-11.590 56.257; 44.378 1.00 88.11 C |
| ATOM         | 4056           | CB        | PRO A 279              | -11.089 55.252 15.440 1.00 90.15 C                                          |
| MOTA         | 4059           | CG        | PRO A 279              | -11.308 53.850 14.850 1.00 91.73 C                                          |
| ATOM         | 4062           | CD        | PRO A 279<br>PRO A 279 | -11.378 54.032 13.364 1.00 92.73 C<br>-10.559 57.342 13.976 1.00 83.50 C    |
| ATOM<br>ATOM | 4065<br>4066   | С<br>0    | PRO A 279              | -10.969 58.485 13.803 1.00-80.58 O                                          |
| ATOM         | 4067           | N         | SER A 280              | -9.291 56.957 13.771 1.00 78.03 N                                           |
| ATOM         | 4069           | CA        | SER A 280              |                                                                             |
| ATOM<br>ATOM | 4071<br>4074   | CB<br>OG  | SER A 280<br>SER A 280 | 0.000                                                                       |
| ATOM         | 4076           | c         | SER A 280              | -7.597 58.987 13.676 1.00 70.18 C                                           |
| MOTA         | 4077           | 0         | SER A 280              |                                                                             |
| ATOM         | 4078           | N         | GLU A 281<br>GLU A 281 | -0.200                                                                      |
| ATOM -       | 4080<br>4082   | CA<br>CB  | GLU A 281              | -4.327 59.241 15.274 1.00 61.08 C                                           |
| ATOM         | 4085           | CG        | GLU A 281              | -4.287 59.374 16.796 1.00 62.72 C                                           |
| ATOM         | 4088           | CD        | GLU A 281              |                                                                             |
| ATOM<br>ATOM | 4089<br>4090   |           | GLU A 281<br>GLU A 281 | 0.543                                                                       |
| ATOM         | 4091           | C         | GLU A 281              | -4.934 60.999 13.537 1.00 58.10 C                                           |
| ATOM         | 4092           | 0         | GLU A 281              |                                                                             |
| ATOM         | 4093           | N         | PHE A 282              | 2.010 00 00 00 00 00 00 00 00 00 00 00 00                                   |
| ATOM<br>ATOM | 4095<br>4097   | CA<br>CB  | PHE A 282              | -3.526 60.785 10.192 1.00 49.52 C                                           |
| ATOM         | 4100           | ÇG        | PHE A 282              | -2.345 60.148 10.799 1.00 51.00 C                                           |
| ATOM         | 4101           |           | PHE A 282              | 2.400                                                                       |
| MOTA         | 4103           |           | PHE A 282              | 1.350                                                                       |
| ATOM<br>ATOM | 4105<br>4107   | CZ<br>CE2 | PHE A 282              | -0.033 60.223 11.395 1.00 50.75 C                                           |
| ATOM         | 4109           |           | PHE A 282              | -1.116 60.791 10.790 1.00 49.66 C                                           |
| MOTA         | 4111           | С         | PHE A 282              | -5.543 62.169 10.529 1.00 47.44 C                                           |
| ATOM         | 4112<br>4113   | Ŋ         | PHE A 282<br>THR A 283 | 0.302 CO 10 CO 1 1 00 45 40 N                                               |
| ATOM<br>ATOM | 4115           | CA        | THR A 283              | -6.675 64.311 10.079 1.00 45.32 C                                           |
| ATOM         | 4117           | CB        | THR A 283              | -7.756 64.578 11.146 1.00 46.15 C                                           |
| MOTA         | 4119           |           | THR A 283              | 7.22                                                                        |
| MOTA<br>MOTA | 4121<br>4125   | CG2<br>C  | THR A 283              | 0.100                                                                       |
| NI ON        | 3163           | ٠.        | 111A B 203             | •                                                                           |

```
Figure 5
      4126 O
                 THR A 283.
                                -4.886 65.921
                                                 9.956
                                                        1.00 50.63
ATOM
                 ILE A 284
                                -6.863
                                        66.522
                                                 9.065
                                                        1.00 46.32
ATOM
       4127
            N
            CA ILE A 284
                                         67.828
                                                 8.680
                                                        1.00 46.94
                                -6.365
ATOM
       4129
                                                . 7.752
            CB ILE A 284
                                        68.580
                                                        1.00 48.34
                                -7.347
ATOM
       4131
                                         67.789
                                                        1.00 50.76
                                -7.650
                                                 6.468
            CG1 ILE A 284
MOTA
       4133
                                                 5.621
                                                        1.00 53.62
ATOM
       4136
            CD1 ILE A 284
                                -6.417
                                         67.413
                                                        1.00 51.69
                                                 7.374
       4140
            CG2 ILE A 284
                                -6.778
                                         69.927
ATOM
                                                        1.00 50.28
                                                 9.952
MOTA
       4144
            С
                 ILE A 284
                                -6.098
                                        68.619
                                                10.029
                                                        1.00 49.78
       4145
                 ILE A 284
                                -5.105
                                         69.309
ATOM
                                                        1.00 53.93
       4146
            N
                 GLU A 285
                                -6.967
                                         68.515
                                                10.956
ATOM
                                                                              C
                                                        1.00 56.06
                 GLU A 285
                                -6.713
                                         69.187
                                                12.229
ATOM
       4148
             CA
                                                        1.00 59.76
                                                                              C
             CB
                 GLU A 285
                                -7.752
                                         68.791
                                                13.301
ATOM
       4150
                                                        1.00 67.71
                                                                              С
                 GLU A 285
                               ·-8.853
                                         69.811
                                                13.561
ATOM
       4153
             CG
                                                                              C
       4156
            CD
                 GLU A 285
                               -8.429
                                        70.993
                                                14.438
                                                        1.00 75.61
ATOM
       4157
             OE1 GLU A 285
                                -7.905
                                        70.762
                                                15.559
                                                        1.00 77.36
                                                                              ٥
ATOM
             OE2 GLU A 285
                                -8.645
                                        72.165
                                                14.013
                                                        1.00 80.87
                                                                              0
       4158
ATOM
       4159
                 GLU A 285
                                -5.293
                                         68.823
                                                12.720
                                                        1.00 54.91
             С
ATOM
                                -4.474
                                         69.696
                                                12.962
                                                        1.00 51.12
                                                                              O
                 GLU A 285
ATOM
       4160
             0
                                -5.006
                                         67.526
                                                12.841
                                                        1.00 54.84
                                                                              N
ATOM
             N
                 SER A 286
       4161
             CA
                                -3.767
                                         67.055
                                                13.485
                                                        1.00 52.23
                                                                             ٠C
                 SER A 286
ATOM
       4163
                                                        1.00 52.69
                                                13.872
                                                                              С
       4165
             СВ
                 SER A 286
                                -3.846
                                        65.563
ATOM
                                         64.708
                                                12.774
                                                        1.00 51.94
                                                                              0
       4168
             OG
                 SER A 286
                                -4.087
MOTA
                 SER A 286
                                -2.500
                                        67.320
                                                12.677
                                                        1.00 51.76
ATOM
       4170
             С
                                -1.408
                                        67.365
                                                13.238
                                                        1.00 49.06
                                                                              0
                 SER A 286
       4171
ATOM
             0
                                -2.657
                                         67.507
                                                        1.00 49.90
                                                 11.371
                 LEU A 287
             N
ATOM
       4172
                               .-1.551
                                         67.852
                                                10.512
                                                        1.00 47.85
                                                                              С
                 LEU A 287
             CA
MOTA
       4174
                                                 9.060
                                                        1.00 48.14
                                -1.909
                                         67.560
ATOM
       4176
             CB
                LEU A 287
                LEU A 287
                                -1.028
                                                        1.00 50.70
                                         68.130
                                                 7.954
ATOM
       4179
             CG
                                         67.692
                                                        1.00 48.07
                                0.393
                                                  8.096
            CD1 LEU A 287
ATOM
       4181
                                        67.709
69.315
                                                        1.00 53.36 to at ag C
                                -1.575
                                                 6.595
ATOM
       4185
            CD2 LEU A 287
                                                        1.00 4B.42
1.00 52.77
1.00 49.64
                                                10.736
                                -1.214
MOTA
       4189
             С
                 LEU A 287
                                -0.051
                                                10.844
       4190
             0
                 LEU A 287
                                         69.665
ATOM
                                                 10.818
                                         70.170
                                -2.227
ATOM
       4191
             N
                 GLU A 288
                                                        1.00 48.59 C.
                                                11.138
                                         71.588
ATOM
       4193
             CA
                 GLU A 288
                                -2.027
                                                11.255
ATOM
       4195
             СВ
                 GLU A 288
                              -3.369
                                         72.334
                                                        1.00 54.59a - - - - - C
1.00 59.08 - - - - - - C
1.00 60.726 - - - - - - - C
                                                 9.989
                 GLU A 288
                                -3.931
                                        72.976
ATOM
       4198
             CG
             CD
                 GLU A 288
                                -5.436
                                        73.231
                                                10.090
       4201
ATOM
             OE1 GLU A 288
                                -5.898
                                        73.816
                                                11.093
       4202
ATOM
                                                        1.00 66.14
                                -6.175
                                        72.823
                                                 9.175
       4203
             OE2 GLU A 288
MOTA
                                                        -1.302
                                        71.716
                                                12.471
                 GLU A 288
ATOM
       4204
             C
                                -0.434
                                                        4205
             0
                 GLU A 288
                                         72.575
                                                12.624
MOTA
                                                                              N
                                        70.863
                                                13.424
                                                        1.00 42.83
       4206
                 ASN A 289
                                -1.692
ATOM
             N
                                                                             C
ATOM
       4208
             CA
                 ASN A 289
                                -1.199
                                         70.901
                                                14.794
                                                        1.00 42.88
                                                                              С
                 ASN A 289
                                -2.045
                                         70.003
                                                15.736
                                                        1.00 46.25
             CB
ATOM
       4210
                                         70.582
                                                16.071
                                                        1.00 47.88
                                                                              С
                 ASN A 289
                                -3.445
ATOM
       4213
             CG
                                         69.899
                                                16.655
                                                        1.00 49.16
             OD1 ASN A 289
                                -4.270
MOTA
       4214
                                         71.820
                                                15.692
                                                        1.00 53.97
                                                                              N
             ND2 ASN A 289
                                -3.701
ATOM
       4215
                                         70.408
                                                14.847
                                                        1.00 43.15 .
                                0.233
                ASN A 289
ATOM
       4218
             С
                                        70.966
                                                15.551
                                                         1.00 44.21
                                                                              ٥
                                 1.070
                 ASN A 289
ATOM
       4219
             0
                                                        1.00 41.61
                                 0.511
                                         69.340
                                                14.113
                                                                              N
                 THR A 290
ATOM
       4220
            N
                                         68.793
                                                         1.00 39.87
                                                                              С
                                 1.847
                                                14.080
             CA THR A 290
ATOM
       4222
                                                         1.00 39.78
                                 1.847
                                         67.428
                                                13.424
                                                                              С
                THR A 290
ATOM
       4224
             CB
                                         66.500
                                                14.259
                                                         1.00 40.52
                                                                              0
ATOM
                                 1.144
             OG1 THR A 290
       4226
                                         66.855
                                                13.400
                                                         1.00 41.10
                                                                              С
                                 3.237
ATOM
       4228
             CG2 THR A 290
                                                         1.00 40.05
                                                                              C
                                         69.759
                                                13.350
                                 2.763
                 THR A 290
ATOM
       4232
                                 3.914
                                         69.954
                                                13.730
                                                        1.00 42.37
                                                                              0
ATOM
       4233
             0
                 THR A 290
                                                                              N
                                         70.397
                                                 12.321
                                                         1.00 38.79
ATOM
       4234
             N
                 ALA A 291
                                 2.233
                                         71.395
                                                11.595
                                                         1.00 35.99
                                 2,987
ATOM
       4236
             CA
                ALA A 291
                                        71.870
72.573
                                                10.382
                                                         1.00 33.56
                                                                              С
                                 2.219
       4238
                ALA A 291
ATOM
             CB
                                                12.482
                                                        1.00 36.34
       4242
                 ALA A 291
                                 3.381
ATOM
             С
                                                12.436
13.283
                                                         1.00 36.86
                                                                              0
                               4.531
                                         72.964
       4243
                 ALA A 291
ATOM
                                         73.137
                                                         1.00 35.96
                                . 2.467
                  VAL A 292
ATOM
       4244
             N
                                                14.066
14.762
                                                         1.00 40.42
                                        74.326
                 VAL A 292
                                 2.826
ATOM
       4246
             CA
                                                         1.00 42.90
                                         75.084
ATOM
       4248
             CB
                 VAL A 292
                                 1.631
                                                13.746
                                                        1.00 46.24
       4250
             CG1 VAL A 292
                                  0.639
                                        75.547
ATOM
                                                        1.00 45.29
                                  0.943
                                        74.247
                                                15.833
       4254
             CG2 VAL A 292
ATOM
                                                        1.00 41.40
                 VAL A 292
                                 3.869
                                         73.963 15.104
ATOM
       4258
             С
                                         74.749
                                                        1.00 40.89
                                  4.780
                                                15.355
                 VAL A 292
ATOM
       4259
             0
                                         72.768
                                                        1.00 41.45
                                 3.727
                                                15.683
                 ASP A 293
ATOM
       4260
            N
                                         72.219
                                                16.636
                                                        1.00 41.81
                ASP A 293
                                  4.695
       4262
             CA
ATOM
                                         70.821
                                                17.093 1.00 43.08
                                  4.263
ATOM
       4264
             CB
                ASP A 293
                                         70.863
                                                18.126
                                                        1.00 45.73
                                  3.151
ATOM
       4267
             CG
                ASP A 293
                                  2.770
                                         69.781
                                                18.644
                                                        1.00 43.55
ATOM
       4268
             OD1 ASP A 293
                                  2.589
                                         71.933
                                                18.474
                                                        1.00 49.62
ATOM
       4269
             OD2 ASP A 293
                                  6.107
                                         72.149
                                                16.048
                                                        1.00 40.69
ATOM
       4270
             С
                ASP A 293
                                                        1.00 39.04
                                        72.752 16.585
                                  7.029
       4271
                 ASP A 293
```

75 :- .

2) .....

TOM

A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA

ATOM

4417

THR A 305

```
Figure 5
                                                                   1.00 36.50
                                                   71.428 14.941
                                            6.259
                           LEU A 294
          MOTA
                 4272
                      N
                                                                                         C
                                                                    1.00 34.20
                                                           14.241
                          LEU A 294
                                            7.532
                                                   71.358
                 4274
                       CA
          ATOM
                                                                   1.00 35.35
                           LEU A 294
                                            7.403
                                                   70.652
                                                           12.883
                 4276
                       CB
          ATOM
                                                                   1.00 36.58
                                                   69.190 12.940
                                            6.925
                       CG
                           LEU A 294
          ATOM
                 4279
                                                                   1.00 37.77
                                                           11.585
                                            6.905
                                                   68.586
                 4281
                       CD1 LEU A 294
          ATOM
                                                   68.334
                                                           13.863
                                                                    1.00 40.10
                                            7.774
                 4285
                       CD2 LEU A 294
          ATOM
                                                           14.070
                                                                    1.00 34.11
                                                   72.740
                                            8.115
                           LEU A 294
                       С
                 4289
          ATOM
                                                           14.401
                                                                    1.00 38.59
                                                   72.933
                                            9.277
                       0
                           LEU A 294
                 4290
          ATOM
                                                   73.713
                                                           13.606
                                                                    1.00 33.64
                                            7.327
                           PHE A 295
                 4291
          ATOM
                                                                    1.00 34.16
                                            7.842
                                                   75.101
                                                           13.449
                           PHE A 295
                 4293
                       CA
          ATOM
                                                                                          C
                                                   76.054
                                                            12.816
                                                                    1.00 33.42
                                            6.811
                           PHE A 295
                 4295
                       CB
          ATOM
                                                                                          C
                                                            11.327
                                                                    1.00 33.85
                                                   75.957
                           PHE A 295
                                            6.737
                 429B
                       CG
          ATOM
                                                   76.521
                                                                    1.00 34.65
                                                                                          С
                                            7.709
                                                            10.541
                       CD1 PHE A 295
                 4299
          MOTA
                                                                    1.00 38.58
                                                                                          С
                                                             9.158
                       CE1 PHE A 295
                                                   76.416
                                            7.657
          MOTA
                 4301
                                                                    1.00 37.71
                                                                                          С
                                                             8.554
                       CZ PHE A 295
                                            6.627
                                                   75.749
          ATOM
                 4303
                                                                                          С
                                                             9.325
                                                                    1.00 38.83
                       CE2 PHE A 295
                                            5.646
                                                   75.185
          ATOM
                 4305
                                                                                          С
                                                            10.711
                                                                    1.00 37.99
                       CD2 PHE A 295
                                            5.702
                                                   75.291
          ATOM
                 4307
                                                            14.767
                                                                    1.00 35.16
                                                                                          С
                                            8.302
                                                   75.704
                           PHE A 295
          MOTA
                 4309
                       С
                                                                                          0
                                                                    1.00 38.42
                                                            14.803
                                            9.290
                                                   76.422
                           PHE A 295
          MOTA
                 4310
                       0
                                                                    1.00 37.08
                                                                                          N
                                                            15.844
                                            7.572
                                                   75.422
                           GLY A 296
          MOTA
                 4311
                       N
                                                                    1.00 38.41
                                                                                          C
                                                            17.117
                                            7.825
                                                   76.058
                           GLY A 296
          MOTA
                 4313
                       CA
                                                                    1.00 39.23
                                                            17.826
                                           8.998
                                                   75.407
                           GLY A 296
          MOTA
                 4316
                       С
                                                                    1.00 34.32
                           GLY A 296
                                          . 9.917
                                                   76.098
                                                            18.293
                 4317
                       ٥
          ATOM
                                                                    1.00 38.83
                           ALA A 297
                                            8.931
                                                   74.075
                                                            17.903
                 4318
                       N
          MOTA
                                                                    1.00 40.50
                                                   73.226
                                                            18.410
                           ALA A 297
                                           10.013
          ATOM
                 4320
                       CA
                                                                    1.00 40.25
                           ALA A 297
                                            9.526
                                                   71.782
                                                            18.596
          MOTA
                 4322
                       CB
                                                                    1.00 41.11
                                                   73.228
                                                            17.564
                                           11.283
                           ALA A 297
                 4326
                       С
          ATOM
                                                                    1.00 50.32
                                                   72.904
                                                            18.083
                                           12.352
                 4327
                       0
                            ALA A 297
          ATOM
                                                                    1.00 41.08
                                                            16.295
                                           11.179
                                                   73.610
                 4328
                       N
                            GLY A 298
          ATOM
                                                                                          С
                                                            15.343
                                                                    1.00 41.53
                                           12.275
                                                   73.477
                       CA
                           GLY A 298
          ATÓM
                 4330
                                                                                          C
                                                            14.998
  ATOM
                                                    74.759
                                                                    1.00 41.91
                                           13.008
                       С
                            GLY A 298
                 4333
                                                                    1.00 43.26

1.00 40.02

1.00 39.54

1.00 40.04

1.00 44.05

1.00 42.04

1.00 38.00

1.00 34.23

1.00 36.60

1.00 38.58

1.00 45.95

1.00 47.39
                                                                                          0
                                           14.022
                                                    74.743
                                                            14.277
                                                                    1.00 43.26
                            GLY A 298
                 4334
          ATÓM
  N
                                                    75.866
                                                            15.533
                                           12.508
                       N
                            THR A 299
          ATOM
                 4335
                                                                                          С
                                                            15.255
                                           13.052
                                                    77.176
                  4337
                       CA
                           THR A 299
          MOTA ·
                                                                                          С
                                                            14.824
                                                    78.101
       ATOM
                 4339
                       СВ
                            THR A 299
                                           11.906
                                                                                          O
 ATOM
                                                    77.660
                                                            13.551
                                           11.409
                       OG1 THR A 299
                  4341
                                                                                          Ç
                                                            14.569
                                                    79.522
                       CG2 THR A 299
                                           12.412
          ATOM
                  4343
                                                                                          С
                                                    77.786
                                                            16.436
ATOM
                            THR A 299
                                           13.814
                       С.
                  4347
                                                                                          ٥
                                                            16.328
ATOM
ATOM
                                                    78.042
                            THR A 299
                                           15.007
                        0
                  4348
                                                                                          N
                                                            17.541
                                                    78.033
                                           13.111
                            GLU A 300
                  4349
                       N
                                                                                          С
                                                            18.645
                                                    78.843
  MOTA
                        CA
                            GLU A 300
                                           13.624
                  4351
                                                            19.756
                                                                                          С
                                           12.550
                                                    78.946
                        CB
                            GLU A 300
          ATOM
                  4353
                                                            21.109
                            GLU A 300
                                           12.940
                                                    79.580
                        CG
           ATOM
                  4356
                                                                     1.00 54.95
                                                                                           С
                                                            20.989
                            GLU A 300
                                           13.737
                                                    80:878
          ATOM
                  4359
                        CD
                                                                    1.00 61.15
                                                                                           ٥
                                                            22.047
                                                    81.352
           ATOM
                        OE1 GLU A 300
                                           14.247
                  4360
                                                                    1.00 58.44
                                                                                           0
                                                    81.441
                                                            19.859
                        OE2 GLU A 300
                                           13.862
           MOTA
                  4361
                                                                    1.00 38.56
                            GLU A 300
                                                    78.302
                                                           19.202
                                           14.954
           ATOM
                  4362
                        C
                                                                    1.00 31.89
                                                                                           0
                            GLU A 300
                                                    79.051
                                                            19.270
                                           15.941
           ATOM
                  4363
                        0
                                                                     1.00 32.62
                            THR A 301
                                                    77.012
                                                            19.567
                                            14.970
           ATOM
                  4364
                        N
                                                                    1.00 31.86
                                                                                           С
                                            16.129
                                                    76.378
                                                            20.178
                            THR A 301
                  4366
                        CA
           ATOM
                                                                    1.00 34.91
                                                    74.957
                                                            20.606
                            THR A 301
                                            15.798
           ATOM
                  4368
                        CB
                                                                    1.00 33.48
                                            14.553
                                                    74.918
                                                            21.319
                        OG1 THR A 301
           ATOM
                  4370
                                                                    1.00 36.38
                                            16.808
                                                    74.497
                                                            21.623
                        CG2 THR A 301
                  4372
           ATOM
                                                                    1.00 31.96
                                          . 17.359
                                                   76.306 19.278
           MOTA
                  4376
                        С
                            THR A 301
                                                    76.640
                                                            19.705
                                                                    1.00 33.40
                                            18.463
                            THR A 301
           ATOM
                  4377
                        0
                                                                    1.00 31.06
                                            17.184
                                                    75.842
                                                           18.045
           ATOM
                  4378
                        Ŋ
                            THR A 302
                                                                     1.00 30.46
                                                    75.841
                                                           17.057
                                            18.268
                            THR A 302
           ATOM
                  4380
                        CA
                                                                    1.00 32.28
                                                    75.300 15.750
                                            17.734
           MOTA
                  4382
                        CB
                            THR A 302
                                                    74.012
                                                            15.960
                                                                     1.00 33.94
                                            17.138
                        OG1 THR A 302
           ATOM
                  4384
                                                            14.750
                                                    75.044
                                                                     1.00 36.15
                                            18.840
                        CG2 THR A 302
           ATOM
                  4386
                                            18.837
                                                    77.260
                                                            16.828
                                                                     1.00 34.33
                             THR A 302
           ATOM
                  4390
                                                    77.494
                                                            16.761
                                                                    1.00 32.95
                                            20.070
                             THR A 302
           ATOM
                  4391
                        0
                                                            16.719
                                                                     1.00 34.01
                                                    78.215
                                            17.922
                            SER A 303
           ATOM
                  4392
                        N
                                                                     1.00 33.01
                                                    79.592
                                                            16.444
                             SER A 303
                                            18.283
           ATOM
                  4394
                        CA
                                                            16.326
                                                                     1.00 31.80
                                                    80.452
                             SER A 303
                                            17.017
                        CB
           ATOM
                  4396
                                                    81.811 16.088
                                                                    1.00 32.26
                                            17.338
                             SER A 303
                        OG
           ATOM
                  4399
                                                            17.562
                                                                     1.00 35.18
                                                    80.103
                             SER A 303
                                            19.187
           ATOM
                  4401
                        С
                                                    80.697
                                                            17.308
                                                                     1.00 37.37
                                            20.242
                             SER A 303
           ATOM
                   4402
                        0
                                                    79.842 18.799
80.404 19.949
                                                                                           N
                                                                     1.00 31.60
                                            18.774
                             THR A 304
           ATOM
                   4403
                        N
                                                                     1.00 31.47
                                            19.437
                                                    80.404
                             THR A 304
           ATOM
                   4405
                        CA
                                                                     1.00 32.14
                                            18.551
                                                    80.243 21.199
                            THR A 304
           ATOM
                   4407
                        CB
                                                                     1.00 30.00
                                                            21.026
                                                    80.976
                                            17.343
                       OG1 THR A 304
           ATOM
                   4409
                                                                                           C
                                                                     1.00 33.91
                                                             22,400
                                            19.180
                                                     80.893
                   4411
                            THR A 304
           ATOM
                        CG2
                                                                     1.00 30.71
                                            20.771
                                                     79.694
                                                            20.133
                             THR A 304
           ATOM
                   4415
                                                                     1.00 24.09
                                                                                           0
                                            21.757
                                                     80.301 20.564
           ATOM
                   4416
                         0
                             THR A 304
                                                                     1.00 30.00
                                                    78.408 19.784
                                            20.797
```

|              |              |           |                      |            |                      | <b>5</b> 2       | E                |        |                |   |        |
|--------------|--------------|-----------|----------------------|------------|----------------------|------------------|------------------|--------|----------------|---|--------|
|              |              |           | B 3                  | ^=         | 22.001               | Figu<br>77.620   | re 5<br>19.961   | 1.00 2 | 8.42           |   | С      |
| MOTA         | 4419<br>4421 |           | THR A 3'<br>THR A 3' |            | 21.743               | 76.155           | 19.682           | 1.00 2 | 29.92          |   | С      |
| atom<br>Atom | 4421         |           | THR A 3              |            |                      | 75.616           | 20.706           | 1,00   |                |   | o<br>C |
| ATOM         | 4425         | CG2       | THR A 3              | 05         |                      | 75.379           | 19.824           | 1.00 2 |                |   | c      |
| MOTA         | 4429         |           | THR A 3              |            | 23.045<br>24.174     | 78.158<br>78.312 | 19.031<br>19.431 | 1.00 2 |                |   | Ō      |
| ATOM         | 4430         |           | THR A 3<br>LEU A 3   |            | 22.644               | 78.496           | 17.808           | 1.00 2 | 27.20          |   | N      |
| ATOM<br>ATOM | 4431<br>4433 |           | LEU A 3              |            | 23.567               | 79.065           | 16.824           | 1.00   |                |   | C<br>C |
| ATOM         | 4435         | CB        | LEU A 3              | 06         | 22.907               |                  | 15.458           | 1.00   |                |   | c      |
| MOTA         | 4438         |           | LEU A 3              |            | 22.742<br>21.603     | 77.875<br>77.917 | 14.735<br>13.716 | 1.00   |                |   | С      |
| ATOM         | 4440<br>4444 |           | LEU A 3<br>LEU A 3   |            | 24.073               | 77.545           | 14.081           | 1.00   | 38.64          |   | C .    |
| ATOM<br>ATOM | 4448         |           | LEU A 3              |            | 24.027               | 80.431           | 17.217           | 1.00   |                |   | С<br>0 |
| MOTA         | 4449         |           | LEU A 3              |            | 25.170               | 80.767           | 17.000<br>17.757 | 1.00   |                |   | N      |
| ATOM         | 4450         |           | ARG A 3              |            | 23.122<br>23.444     | 81.234<br>82.621 | 18.103           | 1.00   |                |   | С      |
| ATOM<br>ATOM | 4452<br>4454 |           | ARG A 3              |            | 22.178               | 83.396           | 18.501           | 1.00   |                |   | C      |
| ATOM         | 4457         | CG        | ARG A 3              | 307        | 22.304               | 84.929           | 18.451           | 1.00   |                |   | C<br>C |
| ATOM         | 4460         |           | ARG A 3              |            | 21.204<br>19.969     | 85.739<br>84.969 | 19.249<br>19.415 | 1.00   |                |   | N      |
| ATOM<br>ATOM | 4463<br>4465 |           | ARG A 3              |            | 19.190               | 84.967           | 20.487           | 1.00   | 43.13          |   | С      |
| MOTA         | 4466         |           | ARG A 3              |            | 19.443               | 85.729           | 21.550           |        | 47.61          |   | n<br>N |
| MOTA         | 4469         |           | ARG A                |            | 18.126               | 84.181<br>82.545 | 20.495<br>19.260 |        | 45.73<br>34.39 |   | Ċ      |
| ATOM         | 4472<br>4473 | C<br>O    | ARG A 3              |            | 24.466<br>25.480     | 83.278           | 19.285           |        | 27.41          |   | 0      |
| ATOM<br>ATOM | 4474         | N         | TYR A                |            | 24.228               | 81.589           | 20.168           |        | 31.21          |   | N      |
| MOTA         | 4476         | CA        | TYR A                | 308        | 25.071               | 81.435           | 21.339           |        | 27.58<br>25.46 |   | C<br>C |
| ATOM         | 4478         | CB        | TYR A                |            | 24.407<br>24.548     | 80.540<br>81.002 | 22.356<br>23.764 |        | 24.94          |   | C      |
| ATOM<br>ATOM | 4481<br>4482 | CG<br>CD1 | TYR A                |            | 23.490               | 80.874           | 24.647           | 1.00   | 25.41          |   | C      |
| ATOM         | 4484         | CE1       | TYR A                | 308 🗀      | 23.591               | 81.258           | 25.952           |        | 26.04          |   | C      |
| MOTA         | 4486         | CZ        |                      |            | № 24.753<br>№ 24.818 | 81.798<br>82.194 | 26.403<br>27.700 |        | 32.31          |   | ō      |
| ATOM         | 4487<br>4489 | OH<br>CE2 | TYR A                |            | 25.834               | 81.962           | 25.551           |        | 33.68          |   | C      |
| MOTA<br>MOTA | 4491         | CD2       | TYR A                | 308        | 25.723               | 81.549           | 24.230           |        | 27.96          |   | C      |
| ATOM         | 4493         | С         | TYR A                | 308        | 26.410               | 80.857           | 20.920<br>21.482 |        | 27.36<br>24.15 |   | 0      |
| ATOM         | 4494         |           | TYR A                | 308<br>308 | 27.445               | 81.228<br>79.974 | 19.914           |        | 23.03          |   | N      |
| ATOM<br>ATOM | 4495<br>4497 | N<br>CA   | ALA A                |            | 27.622               | 79.401           | 19.386           | 1.00   | 22.10          |   | C      |
| MOTA         | 4499         | CB        | ALA A                |            | 27.350               | 78.437           | 18.273           |        | 22.15          |   | C      |
| MOŢA         | 4503         | C         | ALA A                |            | 29.645               | 80.524<br>80.656 | 18.919<br>19.407 |        | 25.09<br>26.55 |   | ō      |
| MOTA<br>MOTA | 4504<br>4505 | N<br>N    | ALA A<br>LEU A       |            | 28.014               | 81.390           | 18.042           |        | 27.53          |   | N      |
| ATOM         | 4507         | CA        | LEU A                |            | 28.835               | 82.497           | 17.549           |        | 28.69<br>28.15 |   | C<br>C |
| ATOM         | 4509         | CB        | LEU A                |            | 28.099<br>27.592     | 83.312<br>82.572 | 16.495<br>15.265 |        | 30.57          |   | č      |
| MOTA<br>MOTA | 4512<br>4514 | CG<br>CD1 | LEU A                |            | 27.051               | 83.598           | 14.257           | 1.00   | 32.46          |   | C      |
| MOTA         | 4518         |           | LEU A                |            | 28.663               | 81.665           | 14.625           |        | 30.26          |   | C      |
| MOTA         | 4522         | С         | LEU A                |            | 29.342               | 83.415           | 18.675<br>18.636 |        | 30.02<br>33.84 |   | Ö      |
| MOTA         | 4523         | O<br>N    | LEU A                |            | 30.466<br>28.528     | 83.881<br>83.656 | 19.687           |        | 31.65          |   | N      |
| MOTA<br>MOTA | 4524<br>4526 | CA        | LEU A                |            | 28.958               | 84.483           | 20.805           |        | 31.86          |   | C      |
| ATOM         | 4528         | CB        | LEU A                |            | 27.843               | 84.614           | 21.849           |        | 30.46<br>30.68 | • | c      |
| MOTA         | 4531         | CG        | LEU A                |            | 28.185<br>28.769     | 85.412<br>86.814 | 22.799           |        | 29.23          |   | С      |
| ATOM<br>ATOM | 4533<br>4537 |           | LEUA                 |            | 26.943               | 85.567           | 23,927           | 1.00   | 32.79          |   | C      |
| MOTA         | 4541         |           | LEU A                | 311        | 30.199               | 83.890           |                  |        | 31.53<br>29.89 |   | C      |
| ATOM         | 4542         |           | LEU A                |            | 31.157<br>30.158     | 84.596<br>82.586 |                  |        | 31.55          |   | N      |
| MOTA<br>MOTA | 4543<br>4545 |           | LEU A                |            | 31.238               | 81.871           | 22.341           | 1.00   | 29.52          |   | C      |
| MOTA         | 4547         |           | LEU A                |            | 30.754               | 80.481           |                  |        | 27.41          |   | C      |
| ATOM         | 4550         |           | LEU A                |            | 29.695               | 80.479<br>79.162 |                  |        | 20.86          |   | č      |
| ATOM         | 4552         |           | L LEU A              |            | 28.952<br>30.332     |                  |                  | 1.00   | 23.48          |   | С      |
| MOTA<br>MOTA | 4556<br>4560 |           | LEU A                |            | 32.456               | 81.792           | 21.428           | 1.00   | 31.79          |   | C      |
| ATOM         | 4561         | . 0       | LEU A                | 312        | 33.582               |                  |                  |        | 31.97<br>36.18 |   | И      |
| MOTA         | 4562         |           | LEU A                |            | 32.234<br>33.348     |                  |                  |        | 37.69          |   | С      |
| MOTA<br>MOTA | 4564<br>4566 |           | LEU A                |            | 32.869               |                  | 17.807           | 1.00   | 34.93          |   | C      |
| ATOM         | 4569         |           | LEU A                |            | 32.417               | 79.753           | 17.784           | 1.00   | 35.90          |   | C      |
| ATOM         | 4571         | CD:       | 1 LEU A              | .313       | 31.724               |                  |                  |        | 34.07<br>34.24 |   | C      |
| ATOM         | 4575         |           | 2 LEU A              |            | 33.576<br>34.054     |                  |                  |        | 39.17          |   | С      |
| ATOM<br>ATOM | 4579<br>4580 |           | LEU A                |            | 35.239               |                  | 18.779           | 1.00   | 37.28          |   | 0      |
| ATOM         | 4581         |           | LEU A                | 314        | 33.328               | 84.099           |                  |        | 40.06<br>44.01 |   | N<br>C |
| ATOM         | 4583         | CA        | LEU A                | 314        | 33.919               | 85.432           | 19.575           | 1.00   | , 33.01        | • | -      |
|              |              |           |                      |            |                      |                  |                  |        |                |   |        |

|              |              |          |       |                |                  |                   |                  | •      |                |   |        |
|--------------|--------------|----------|-------|----------------|------------------|-------------------|------------------|--------|----------------|---|--------|
|              |              |          |       |                |                  | Fiau              | ire 5            |        |                |   |        |
| ATOM .       | 4585         | СВ       | LEU A | 314            | 32.830           | 86.498            | 19.672           | 1.00   | 45.41          |   | С      |
| ATOM .       | 4588         | CG       | LEU A |                | 32.280           | 87.109            | 18.392           |        | 46.40          |   | С      |
| ATOM         | 4590         |          | LEU A |                | 31.401           | 88.300            | 18.757           | 1.00   | 46.13          |   | С      |
| ATOM         | 4594         |          | LEU A |                | 33.393           | 87.531            | 17.468           | 1.00   | 45.33          |   | C.     |
| ATOM         | 4598         | С        | LEU A | 314            | 34.781           | 85.536            | 20.825           |        | 44.45          |   | С      |
| ATOM         | 4599         | 0        | LEU A | 314            | 35.891           | 86.038            | 20.777           |        | 46.24          |   | 0      |
| ATOM         | 4600         | N        | LYS A | 315            | 34.229           | 85.071            | 21.938           |        | 44.37          |   | N      |
| MOTA         | 4602         | CA       | LYS A |                | 34.851           | 85.159            | 23.249           |        | 46.08          |   | C      |
| ATOM         | 4604         | CB       | LYS A |                | 33.849           | 84.663            | 24.306           |        | 46.00<br>49.15 |   | c      |
| ATOM         | 4607         | CG       | LYS A |                | 34.362           | 84.538            | 25.738<br>26.401 |        | 48.81          |   | c      |
| ATOM         | 4610         | CD       | LYS A |                | 34.574<br>34.587 | 85.875<br>85.743  | 27.904           |        | 50.48          |   | č      |
| MOTA         | 4613         | CE<br>N2 | LYS A |                | 34.792           | 87.086            | 28.514           |        | 53.61          |   | N      |
| ATOM         | 4616<br>4620 | C        | LYS A |                | 36.145           | 84.347            | 23.274           |        | 47.76          |   | С      |
| ATOM<br>ATOM | 4621         | ō        | LYS A |                | 37.145           | 84.797            | 23.833           | 1.00   | 50.82          |   | 0      |
| ATOM         | 4622         | N        | HIS A |                | 36.120           | 83.183            | 22.619           | 1.00   | 47.65          |   | N      |
| MOTA         | 4624         | CA       | HIS A | 316            | 37.242           | 82.235            | 22.579           |        | 46.06          |   | C      |
| MOTA         | 4626         | CB       | HIS A | 316            | 36.792           | 80.865            | 23.172           |        | 43.82          |   | C      |
| MOTA         | 4629         | CG       | HIS A | 316            | 36.068           | 80.988            | 24.477           |        | 44.15          |   | C      |
| MOTA         | 4630         |          | HIS A |                | 36.712           | 81.269            | 25.659           |        | 49.16          |   | N.     |
| MOTA         | 4632         |          | HIS A |                | 35.826           | 81.361            | 26.640           |        | 48.59          |   | N      |
| MOTA         | 4634         |          | HIS A |                | 34.625           | 81.144            | 26.136<br>24.781 |        | 45.44<br>48.82 |   | c      |
| ATOM         | 4636         |          | HIS A |                | 34.747<br>37.807 | 80.930<br>82.070  | 21.142           |        | 42.64          |   | č      |
| ATOM         | 4638         | C        | HIS A |                | 37.522           | 81.086            | 20.481           |        | 45.71          |   | ō      |
| MOTA         | 4639<br>4640 | O<br>N   | HIS A |                | 38.609           | 83.012            | 20.652           |        | 40.21          |   | N      |
| MOTA<br>MOTA | 4641         | CA       | PRO A |                | 39.135           | B2.916            | 19.279           |        | 39.19          |   | С      |
| ATOM         | 4643         | СВ       | PRO A |                | 39.787           | 84.285            | 19.040           | 1.00   | 38.72          |   | С      |
| ATOM         | 4646         | CG       | PRO P |                | 40.094           | 84.806            | 20.382           | 1.00   | 41.48          |   | С      |
| ATOM         | 4649         | CD       | PRO P |                | 39.076           | 84.226            | 21.338           |        | 41.29          |   | C      |
| ATOM         | 4652         | С        | PRO P | 317            | 40.152           | 81.788            | 19.056           |        |                |   | Ç      |
| ATOM         | 4653         | 0        | PRO F |                | 40.286           | 81.358            | 17.924           | 1.00   | 38.48          |   | 0      |
| ATOM         | 4654         | N        | GLU A |                | 40.874           | 81.358            | 20.089           |        |                |   | N<br>C |
| ATOM         | 4656         | CA       | GLU A |                | 41.747           | 80.189            | 19.990           |        |                | • | c      |
| MOTA         | 4658         | CB       | GLU F |                | 42.367           | 79.810            | 21.337           |        | 45.60          | • | č      |
| ATOM         | 4661         | CG       | GLU A |                | 43.855<br>44.141 | 80.091<br>81.544  | 21.833           |        |                |   | č      |
| ATOM         | 4664         | CD       | GLU F |                | 44.620           | 82.294            |                  |        | 69.05          |   | 0      |
| ATOM         | 4665         |          | GLU F |                | 43.874           | 81.939            |                  |        |                |   | 0      |
| ATOM<br>ATOM | 4666<br>4667 | C        |       | 318            | 40.950           | 79.005            | 19.505           |        |                |   | С      |
| ATOM         | 4668         | ŏ        |       | A 318          | 41.421           | 78.252            | 18.641           |        |                |   | 0      |
| ATOM         | 4669         | N        |       | A 319          | 39.750           | 78.846            | 20.073           |        | 32.73          |   | N      |
| ATOM         | 4671         | CA       |       | A 319          | 38.834           | 77.759            | 19.723           |        | 27.37          |   | С      |
| ATOM         | 4673         | CB       | VAL A | A 319          | 37.617           | 77.766            | 20.615           |        | 26.11          |   | C      |
| ATOM         | 4675         | CG1      | VAL A | A 319          | 36.608           | 76.738            | 20.151           |        | 25.40          |   | C      |
| MOTA         | 4679         | CG2      | VAL A |                | 38.032           | 77.502            | 22.077           |        | 28.17          |   | C      |
| MOTA         | 4683         | С        |       | A 319          | 38.366           | 77.872            | 18.279           |        | 31.18<br>28.15 |   | ō      |
| ATOM         | 4684         | 0        |       | A 319          | 38.243           | 76.877<br>79.098  | 17.556<br>17.860 |        | 32.86          |   | N      |
| ATOM         | 4685         | N        |       | A 320          | 38.102<br>37.666 | 79.366            | 16.501           |        | 34.09          |   | C      |
| ATOM         | 4687<br>4689 | CA<br>CB |       | A 320<br>A 320 | 37.231           | 80.820            | 16.456           |        | 34.43          |   | С      |
| MOTA<br>MOTA | 4691         |          | THR A |                | 36.133           | 80.982            | 17.364           |        | 41.73          |   | 0      |
| ATOM         | 4693         |          | THR   |                | 36.680           | 81.212            | 15.120           | 1.00   | 32.24          |   | С      |
| ATOM         | 4697         | C        |       | A 320          | 38.782           | 79.050            | 15.479           | 1.00   | 36.30          |   | С      |
| ATOM         | 4698         | 0        |       | A 320          | 38.574           | 78.299            | 14.523           |        | 35.76          |   | 0      |
| ATOM         | 4699         | N        | ALA A | A 321          | 39.965           | 79.609            | 15.708           |        | 37.21          |   | И      |
| MOTA         | 4701         | CA       | ALA 2 | A 321          | 41.171           | 79.262            | 14.953           |        | 35.47          |   | C      |
| MOTA         | 4703         | СВ       |       | A 321          | 42.369           | 79.882            | 15.598           |        | 33.30<br>35.65 |   | C      |
| ATOM         | 4707         | С        |       | A 321          | 41.378           | 77.757            | 14.825<br>13.740 |        | 40.89          |   | ō      |
| ATOM         | 4708         | 0        |       | A 321          | 41.700           | 77.271<br>77.010  | 15.906           |        | 35.57          |   | N      |
| MOTA         | 4709         | N        |       | A 322          | 41.169<br>41.341 | 75.555            | 15.843           |        | 36.74          |   | C      |
| MOTA         | 4711         | CA       |       | A 322<br>A 322 | 41.362           | 74.913            | 17.231           |        | 40.60          |   | c      |
| ATOM         | 4713         | CB       |       | A 322          | 42.676           | 75.165            | 18.015           |        | 47.44          |   | С      |
| ATOM         | 4716<br>4719 | CG       |       | A 322          | 42.932           | 74.115            | 19.119           |        | 52.90          |   | C      |
| MOTA<br>MOTA | 4719         | CE       |       | A 322          | 43.940           | 74.612            | 20.170           | 1.00   | 54.64          |   | С      |
| ATOM         | 4725         | NZ       |       | A 322          | 43.343           | 74.635            | 21.543           | 1.00   | 58.60          |   | N      |
| ATOM         | 4729         | C        |       | A 322          | 40.294           | 74.895            | 14.967           |        | 34.24          |   | С      |
| ATOM         | 4730         | ō        |       | A 322          | 40.621           | 73.979            | 14.237           |        | 33.49          |   | 0      |
| ATOM         | 4731         | N        | VAL   | A 323          | 39.051           | 75.381            | 15.015           |        | 35.07          |   | N      |
| ATOM         | 4733         | CA       | VAL . | A 323          | 37.973           | 74.839            | 14.181           |        | 32.36          |   | C      |
| ATOM         | 4735         | CB       |       | A 323          | 36.577           | 75.405            | 14.559           |        | 31.22<br>27.76 |   | C.     |
| ATOM         | 4737         |          | VAL . |                | 35.512           | 74.988            | 13.545<br>15.927 | 1 1 00 | 32.45          |   | C      |
| ATOM         | 4741         |          | VAL . |                | 36.168<br>38.267 | 74.928.<br>75.102 | 12.703           | 1.00   | 32.87          |   | c      |
| MOTA         | 4745         | C        |       | A 323          | 38.267           | 74.227            | 11.859           |        | 25.56          |   | ŏ      |
| ATOM         | 4746         | 0        | VAL . | A 323          | 30.047           |                   |                  |        |                |   | -      |

|              |              |           |       |                | •                | Figu             | ire 5            |                           |         |
|--------------|--------------|-----------|-------|----------------|------------------|------------------|------------------|---------------------------|---------|
| ATOM         | 4747         | N ·       | GLN A | 324            | 38.783           | 76.291           | 12.397           | 1.00 33.29                | N       |
| ATOM         | 4749         | CA        | GLN A |                | 39.142           | 76.632           | 11.018           | 1.00 35.05                | Ċ       |
| ATOM         | 4751         | CB        | GLN A |                | 39.378           | 78.135           | 10.851           | 1.00 33.36                | C       |
| MOTA         | 4754         | CG        | GLN A |                | 38.058           | 78.895           | 10.954           | 1.00 36.13<br>1.00 39.46  | C       |
| MOTA         | 4757         | CD        | GLN A |                | 38.211           | 80.394<br>81.117 | 11.048<br>10.225 | 1.00 45.13                | Ö       |
| MOTA         | 4758         |           | GLN A |                | · 37.653         | 80.871           | 12.055           | 1.00 37.61                | N       |
| ATOM<br>ATOM | 4759<br>4762 | C         | GLN A |                | 40.299           | 75.790           | 10.464           | 1.00 37.37                | С       |
| ATOM         | 4763         | ŏ         | GLN A |                | 40.287           | 75.500           | 9.284            | 1.00 36.64                | 0       |
| ATOM         | 4764         | N         | GLU A | 325            | 41.264           | 75.376           | 11.292           | 1.00 41.50                | И       |
| MOTA         | 4766         | CA        | GLU ? |                | 42.322           | 74.471           | 10.810           | 1.00 45.85                | C       |
| MOTA         | 4768         | CB        | GLU F |                | 43.389           | 74.147<br>75.311 | 11.876<br>12.443 | 1.00 49.45<br>1.00 55.86  | C       |
| ATOM         | 4771<br>4774 | CG        | GLU A | A 325          | 44.199<br>44.723 | 75.050           | 13.894           | 1.00 63.74                | Č       |
| ATOM<br>ATOM | 4775         |           | GLU A |                | 45.136           | 76.032           | 14.578           | 1.00 66.43                | 0       |
| ATOM         | 4776         |           | GLU A |                | 44.730           | 73.879           | 14.382           | 1.00 60.05                | 0       |
| ATOM         | 4777         | С         |       | A 325          | 41.702           | 73.145           | 10.340           | 1.00 41.29                | C       |
| ATOM         | 4778         | 0         |       | A 325          | 42.127           | 72.570<br>72.649 | 9.330<br>11.097  | 1.00 39.43<br>1.00 37.26  | N       |
| ATOM         | 4779         | N<br>CA   |       | A 326<br>A 326 | 40.727<br>40.058 | 71.387           | 10.759           | 1.00 36.36                |         |
| ATOM<br>ATOM | 4781<br>4783 |           | GLU 1 |                | 39.151           | 70.942           | 11.894           | 1.00 36.25                | С       |
| ATOM         | 4786         | CG        |       | A 326          | 39.680           | 69.760           | 12.666           | 1.00 44.16                | C       |
| ATOM         | 4789         | CD        | GLU A | A 326          | 38.692           | 69.235           | 13.699           | 1.00 45.43                | C       |
| ATOM         | 4790         |           | GLU 2 |                | 38.870           | 68.098           | 14.156           | 1.00 42.07                | 0       |
| MOTA         | 4791         |           | GLU I |                | 37.747           | 69.958<br>71.519 | 14.055<br>9.484  | 1.00 51.06<br>1.00 33.91  | č       |
| ATOM         | 4792         | C         |       | A 326<br>A 326 | 39.231<br>39.096 | 70.579           | 8.721            | 1.00 34.90                | ŏ       |
| MOTA<br>MOTA | 4793<br>4794 | O<br>N    |       | A 327          | 38.673           | 72.703           | 9.264            | 1.00 36.11                | N       |
| ATOM         | 4796         | CA        |       | A 327          | 37.868           | 72.959           | 8.088            | 1.00 35.38                | С       |
| ATOM         | 4798         | CB        |       | A 327          | 37.031           | 74.272           | 8.236            | 1.00 34.85                | C       |
| ATOM         | 4800         |           | ILE 2 |                | 35.808           | 74.072           | 9.161            | 1.00 32.43                | C.      |
| MOTA         | 4803         |           | ILE A |                | 35.255           | 75.406           | 9.769<br>6.910   | 1.00 27.91<br>1.00 36.52  | . c     |
| MOTA         | 4807         |           | ILE A |                | 36.528<br>38.794 | 74.727<br>72.978 | 6.858            | 1.00 36.05                | c ·     |
| ATOM<br>ATOM | 4811<br>4812 | C<br>O    |       | A 327<br>A 327 | 38.494           | 72.297           | 5.899            | 1.00 35.24                | oʻ.     |
| ATOM         | 4813         | N         |       | A 328          | 39.933           | 73.676           | 6.907            | 1.00 31.70                | N;      |
| ATOM         | 4815         | CA        |       | A 328          | 40.818           | 73.769           | 5.744            | 1.00 35.70                | Ç       |
| MOTA         | 4817         | CB        |       | A 328          | 41.978           | 74.733           | 5.974            | 1.00 42.58                | C<br>C. |
| MOTA         | 4820         | CG        |       | A 328          | 41.547           | 76.090           | 6.530<br>5.669   | 1.00 55.27<br>1.00 61.81  | , c     |
| ATOM         | 4823         | CD<br>OF1 |       | A 328          | 41.939<br>42.042 | 77.281<br>78.388 | 6.262            | 1.00 63.73                | Ò       |
| ATOM<br>ATOM | 4824<br>4825 |           |       | A 328<br>A 328 | 42.134           | 77.115           | 4.431            | 1.00 64.09                | Ö       |
| ATOM         | 4826         | C         |       | A 328          | 41.395           | 72.434           | 5.390            | 1.00 32.26                | С       |
| ATOM         | 4827         | 0         |       | A 328          | 41.567           | 72.111           | 4.232            | 1.00 39.89                | 0       |
| MOTA         | 4828         | N         |       | A 329          | 41.689           | 71.657           | 6.405            | 1.00 33.18                | N<br>C  |
| MOTA         | 4830         | CA        |       | A 329          | 42.295           | 70.367<br>69.914 | 6.247<br>7.594   | 1.00 32.33<br>1.00 37.29  | c       |
| ATOM         | 4832         | CB        |       | A 329<br>A 329 | 42.824<br>43.601 | 68.609           | 7.591            | 1.00 37.86                | Ċ       |
| ATOM<br>ATOM | 4835<br>4838 | CG<br>CD  |       | A 329          | 44.437           | 68.435           | 8.850            | 1.00 40.77                | С       |
| ATOM         | 4841         | NE        |       | A 329          | 43.617           | 68.429           | 10.059           | 1.00 43.88                | Й       |
| ATOM         | 4843         | CZ        | ARG   | A 329          | 42.789           | 67.444           | 10.390           | 1.00 48.37                | . C     |
| ATOM         | 4844         |           |       | A 329          | 42.073           | 67.528           | 11.507           | 1.00 53.84<br>1.00 48.46  | n<br>n  |
| MOTA         | 4847         |           |       | A 329          | 42.660<br>41.322 | 66.373<br>69.352 | 9.609<br>5.719   |                           | č       |
| ATOM         | 4850<br>4851 | 0         |       | A 329<br>A 329 | 41.640           |                  |                  | 1.00 36.99                | 0       |
| ATOM<br>ATOM | 4852         | N         |       | A 330          | 40.130           |                  | .6.289           | 1.00 35.10                | N       |
| ATOM         | 4854         | CA        |       | A 330          | 39.210           | 68.179           | 5.964            | 1.00 34.67                | C       |
| ATOM         | 4856         | CB        |       | A 330          | 38.355           | 67.883           | 7.163            | 1.00 29.56                | c<br>c  |
| ATOM         | 4858         |           |       | A 330          | 37.335           |                  | 6.841<br>8.312   | 1.00 27.52<br>1.00 33.13  |         |
| ATOM         | 4862         |           |       | A 330<br>A 330 | 39.265<br>38.307 |                  | 4.756            | 1.00 36.91                | č       |
| ATOM<br>ATOM | 4866<br>4867 | С<br>0    |       | A 330          | 38.000           |                  | 3.948            | 1.00 37.51                | 0       |
| ATOM         | 4868         | N         |       | A 331          | 37.866           |                  | 4.706            | 1.00 40.47                | N       |
| ATOM         | 4870         | CA        |       | A 331          | 37.004           |                  | 3.696            | 1.00 43.36                | C       |
| MOTA         | 4872         | CB        |       | A 331.         | 35.813           |                  | 4.436            | 1.00 44.90                | C       |
| MOTA         | 4874         |           |       | A 331          | 34.958           |                  | 5.177            | 1.00 40.90.<br>1.00 42.14 | c       |
| MOTA         | 4877         |           |       | A 331          | 34.104           |                  | 6.285<br>3.477   | 1.00 42.14                | č       |
| ATOM         | 4881         |           |       | A 331<br>A 331 | 34.991<br>37.882 |                  | 3.056            | 1.00 44.48                | č       |
| ATOM<br>ATOM | 4885<br>4886 | C<br>O    |       | A 331          | 38.740           |                  | 3.704            | 1.00 49.14                | 0       |
| ATOM         | 4887         | N         |       | A 332          | 37.731           |                  | 1.806            | 1.00 46.66                | И       |
| ATOM         | 4889         | CA        |       | A 332          | 38.594           | 72.657           | 1.341            | 1.00 52.01                | C       |
| ATOM         | 4892         | С         | GLY   | A 332          | 38.040           |                  | 1.710            | 1.00 56.70                | C<br>0  |
| ATOM         | 4893         | 0         |       | A 332          | 37.224           |                  | 2.624<br>0.974   | 1.00 52.62<br>1.00 61.43  | Ŋ       |
| MOTA         | 4894         | N         |       | A 333          | 38.503<br>37.792 |                  | 0.877            | 1.00 65.02                | Ċ       |
| atom         | 4896         | CA        | AKG   | A 333          | 51.132           | ,,,,,,,          |                  |                           |         |

|              |              |           |                    |     |                  | 773              | E                |      |                    |   |        |
|--------------|--------------|-----------|--------------------|-----|------------------|------------------|------------------|------|--------------------|---|--------|
|              |              |           | 3                  | 22  | 20 750           | 11gu             | re 5             | 1 00 | 69.20              |   | С      |
| MOTA         | 4898<br>4901 | CB<br>CG  | ARG A 3            |     | 38.759<br>38.386 | 78.673           | 1.477            |      | 76.16              |   | Č      |
| ATOM<br>ATOM | 4904         | CD        | ARG A 3            |     | 39.563           | 79.582           | 1.773            |      | 82.47              |   | С      |
| ATOM         | 4907         | NE        | ARG A 3            |     | 39.718           | 79.825           | 3.208            |      | 87.57              |   | N      |
| ATOM         | 4909         | CZ        | ARG A 3            |     | 40.822           | 80.304           | 3.785            |      | 89.41<br>87.42     |   | C      |
| ATOM         | 4910         |           | ARG A 3            |     | 41.905<br>40.841 | 80.596<br>80.494 | 3.062<br>5.105   |      | 91.93              |   | N      |
| ATOM         | 4913<br>4916 | NH2<br>C  | ARG A 3<br>ARG A 3 |     | 36.790           | 76.175           | -0.275           |      | 64.51              |   | С      |
| ATOM<br>ATOM | 4917         | Ö         | ARG A 3            |     | 35.810           | 76.914           | -0.314           | 1.00 | 66.27              |   | 0      |
| ATOM         | 4918         | N         | ASN A 3            |     | 37.026           | 75.258           | -1.207           |      | 63.43              |   | N      |
| ATOM         | 4920         | CA        | ASN A 3            |     | 36.159           | 75.118           | -2.373           |      | 62.62<br>62.79     |   | C      |
| MOTA         | 4922         | CB        | ASN A 3<br>ASN A 3 |     | 36.845<br>38.063 | 74.293<br>75.007 | -3.479<br>-4.069 |      | 62.48              |   | Č.     |
| MOTA<br>MOTA | 4925<br>4926 | CG<br>OD1 | ASN A 3            |     | 39.160           | 74.997           | -3.494           |      | 55.74              |   | 0      |
| MOTA         | 4927         |           | ASN A 3            |     | 37.867           | 75.638           | -5.220           |      | 64.99              |   | N      |
| ATOM .       | 4930         | С         | ASN A 3            |     | 34.781           | 74.564           | -1.979           |      | 60.85<br>68.90     |   | C      |
| MOTA         | 4931         | 0         | ASN A 3            |     | 33.877<br>34.614 | 75.356<br>73.241 | -1.681<br>-1.933 |      | 54.09              |   | N      |
| ATOM<br>ATOM | 4932<br>4934 | n<br>Ca   | ARG A 3            |     | 33.302           | 72.629           | -1.665           |      | 48.24              |   | С      |
| ATOM         | 4936         | CB        | ARG A 3            |     | 33.361           | 71.116           | -1.860           |      | 45.29              |   | C      |
| ATOM         | 4939         | CG        | ARG A 3            | 35  | 34.009           | 70.372           | -0.750           |      | 45.12              |   | C<br>C |
| MOTA         | 4942         | CD        | ARG A 3            |     | 33.907           | 68.877           | -0.902<br>0.396  |      | 48.01<br>53.18     |   | N      |
| MOTA         | 4945         | ne<br>Cz  | ARG A 3            |     | 33.777<br>34.784 | 68.230<br>67.900 | 1.183            |      | 56.61              |   | С      |
| ATOM<br>ATOM | 4947<br>4948 |           | ARG A 3            |     | 36.048           | 68.125           | 0.824            | 1.00 | 62.37              |   | N      |
| ATOM         | 4951         |           | ARG A 3            |     | 34.522           | 67.328           | 2.344            |      | 55.54              |   | N      |
| MOTA         | 4954         | С         | ARG A 3            |     | 32.648           | 72.935           | -0.308           |      | 47.83<br>46.26     |   | C      |
| MOTA         | 4955         | 0         | ARG A 3            |     | 33.186<br>31.442 | 73.619<br>72.434 | 0.562<br>-0.148  |      | 47.11              |   | N      |
| ATOM<br>ATOM | 4956<br>4958 | N CA      | SER A 3            |     | 30.660           | 72.794           | 0.999            |      | 47.48              |   | С      |
| ATOM         | 4960         | CB        | SER A 3            |     | 29.223           | 73.091           | 0.573            |      | 50.15              |   | С      |
| ATOM         | 4963         | OG        | _                  |     | 28.445           | 71.905           | 0.594            |      | 50.68              |   | o<br>C |
| ATOM         | 4965         | C         | SER A 3            |     | 30.751           | 71.606           | 1.943<br>1.505   |      | 42.70<br>42.29     |   | Ö      |
| ATOM         | 4966         | 0         | SER A 3            |     | 31.072<br>30.557 | 70.481<br>71.858 | 3.237            |      | 31.47              |   | N      |
| MOTA<br>MOTA | 4967<br>4968 | N<br>CA   |                    |     | 30.601           | 70.792           | 4.219            | 1.00 | 26.65              |   | C      |
| ATOM         | 4970         | CB        | PRO A              |     | 30.433           | 71.522           | 5.528            |      | 25.01              |   | C      |
| ATOM         | 4973         | CG        | PRO A              |     | 30.892           | 72.855           | 5.241            |      | 28.90<br>31.55     |   | C      |
| MOTA         | 4976         | CD        | PRO A              |     | 30.396<br>29.468 | 73.169<br>69.855 | 3.876<br>4.002   |      | 30.64              |   | č      |
| ATOM :       | 4979<br>4980 | C ·       | PRO A              |     | 28.549           | 70.205           | 3.285            |      | 35.50              |   | 0      |
| ATOM<br>ATOM | 4981         | N         | CYS A              |     | 29.546           | 68.694           | 4.628            |      | 31.91              |   | N      |
| ATOM         | 4983         | CA        | CYS A              | 338 | 28.492           | 67.721           | 4.617            |      | 34.56              |   | C      |
| ATOM         | 4985         | CB        | CYS A              |     | 28.586           | 66.931<br>65.816 | 3.332<br>3.386   |      | 39.53<br>48.28     |   | s      |
| MOTA         | 4988         | SG<br>C   | CYS A              |     | 30.004<br>28.700 | 66.801           | 5.823            |      | 34.88              |   | С      |
| ATOM<br>ATOM | 4989<br>4990 | Ö         | CYS A              |     | 29.690           | 66.912           | 6.538            |      | 33.84              |   | 0      |
| ATOM         | 4991         | N         | MET A              |     | 27.793           | 65.869           | 6.046            |      | 35.59              |   | N<br>C |
| ATOM         | 4993         | CA        | MET A              |     | 27.802           | 65.153           | 7.312<br>7.584   |      | 40.47              | • | Č      |
| ATOM         | 4995         | CB        | MET A              |     | 26.427<br>25.325 | 64.515<br>65.558 | 7.776            |      | 43.91              |   | C      |
| MOTA<br>MOTA | 4998<br>5001 | · SD      | MET A              |     | 25.677           | 66.827           | 9.074            |      | 44.24              |   | S      |
| ATOM         | 5002         | CE        | MET A              | 339 | 26.032           | 65.750           | 10.418           |      | 45.49              |   | C      |
| ATOM         | 5006         | C         | MET A              |     | 28.945           | 64.145           | 7.423<br>8.518   |      | 43.56<br>46.39     |   | ō      |
| ATOM         | 5007         | 0         | MET A<br>GLN A     |     | 29.474<br>29.339 | 63.902<br>63.569 | 6.297            | 1.00 | 47.33              |   | N      |
| ATOM<br>ATOM | 5008<br>5010 | N<br>CA   | GLN A              |     | 30.466           | 62.634           | 6.298            | 1.00 | 50.71              |   | С      |
| ATOM         | 5012         | CB        | GLN A              |     | 30.726           | 62.102           | 4.900            |      | 53.74              |   | C      |
| MOTA         | 5015         | CG        | GLN A              |     | 30.274           | 60.695           | 4.704<br>3.340   |      | 60.69              |   | c      |
| MOTA         | 5018         | CD        | GLN A<br>GLN A     |     | 30.684<br>31.827 | 60.197<br>60.418 | 2.911            |      | 71.59              |   | ō      |
| ATOM<br>ATOM | 5019<br>5020 | MES       | GLN A              | 340 | 29.758           | 59.546           | 2.639            | 1.00 | 70.63              |   | N      |
| ATOM         | 5023         | C         | GLN A              |     | 31.751           | 63.260           | 6.822            |      | 45.23              |   | C      |
| ATOM         | 5024         | ŏ         | GLN A              | 340 | 32.596           | 62.561           | 7.335            |      | 45.26              |   | Ŋ      |
| ATOM         | 5025         | N         | ASP A              |     | 31.893<br>33.072 | 64.571<br>65.254 | 6.694<br>7.204   |      | 41.29              |   | Č      |
| MOTA         | 5027         | CA<br>CB  | ASP A<br>ASP A     |     | 33.086           | 66.701           | 6.740            | 1.00 | 43.34              |   | С      |
| ATOM<br>ATOM | 5029<br>5032 | CG        | ASP A              |     | 33.111           | 66.834           | 5.253            |      | 42.57              |   | C      |
| ATOM         | 5033         | OD:       | ASP A              | 341 | 33.576           | 65.898           | 4.575            |      | .50.82             |   | 0      |
| MOTA         | 5034         |           | ASP A              | 341 | 32.677           | 67.843           | 4.676<br>8.712   |      | 42.69<br>41.93     |   | c      |
| MOTA         | 5035         | C         | ASP A<br>ASP A     |     | 33.195<br>34.258 | 65.300<br>65.674 | 9.235            |      | 38.54              |   | ŏ      |
| ATOM<br>ATOM | 5036<br>5037 | O<br>N    | ASP A              |     | 32.119           | 64.981           | 9.421            | 1.00 | 41.23              |   | N      |
| ATOM         | 5039         | CA        | ARG A              | 342 | 32.104           | 65.252           | 10.844           |      | 39.88              |   | C      |
| ATOM         | 5041         | СВ        | ARG A              | 342 | 30.684           | 65.312           |                  |      | ) 43.34<br>) 44.67 |   | C      |
| ATOM         | 5044         | CG        | ARG A              | 342 | 30.683           | 65.659           | 12.035           | 2.00 | ,                  |   | _      |
|              |              |           |                    |     |                  |                  |                  |      |                    |   |        |

|              |              |          |                |                |                  | Figu             | re 5             |        |                |   |        |
|--------------|--------------|----------|----------------|----------------|------------------|------------------|------------------|--------|----------------|---|--------|
| ATOM         | 5047         |          | ARG A          |                | 29.371           | 65.881           | 13.450           | 1.00   |                |   | C<br>N |
| ATOM         | 5050         |          | ARG A          |                | 28.512           | 64.753           | 13.200<br>13.555 | 1.00 4 |                |   | C      |
| MOTA         | 5052         |          | ARG A<br>ARG A |                | 27.247<br>26.683 | 64.706<br>65.728 | 14.208           | 1.00   |                |   | N      |
| ATOM         | 5053<br>5056 |          | ARG A          |                | 26.540           | 63.626           | 13.245           | 1.00   | 46.52          |   | N      |
| ATOM<br>ATOM | 5059         |          | ARG A          |                | 32.914           | 64.231           | 11.622           | 1.00   |                |   | C      |
| ATOM         | 5060         |          | ARG A          |                | 33.579           | 64.585           | 12.608           | 1.00   |                |   | N<br>O |
| MOTA         | 5061         |          | SER A          |                | 32.857           | 62.972           | 11.201<br>11.814 | 1.00   |                |   | Č      |
| MOTA '       | 5063         |          | SER A<br>SER A |                | 33.697<br>33.461 | 61.945<br>60.590 | 11.160           | 1.00   |                |   | C      |
| ATOM<br>ATOM | 5065<br>5068 |          | SER A          |                | 34.019           | 60.586           | 9.862            | 1.00   | 45.58          |   | 0      |
| ATOM         | 5070         | c        | SER A          |                | 35.202           | 62.282           | 11.747           | 1.00   |                |   | C      |
| ATOM         | 5071         | 0        | SER A          |                | 35.956           | 61.893           | 12.637           | 1.00   |                |   | N<br>O |
| ATOM         | -5072        | N        | HIS A          |                | 35.631<br>37.035 | 63.008<br>63.401 | 10.717<br>10.568 | 1.00   |                |   | C      |
| ATOM<br>ATOM | 5074<br>5076 | CA<br>CB | HIS A          |                | 37.487           | 63.342           | 9.071            | 1.00   | 42.68          |   | С      |
| ATOM         | 5079         | CG       | HIS A          |                | 37.088           | 62.069           | 8.368            | 1.00   |                |   | C<br>N |
| ATOM         | 5080         |          | HIS A          |                | . 37.186         | 60.822           | 8.962<br>8.130   | 1.00   |                |   | C      |
| ATOM         | 5082         |          | HIS A          |                | 36.735<br>36.341 | 59.898<br>60.498 | 7.020            |        | 56.05          |   | N      |
| MOTA<br>MOTA | 5084<br>5086 |          | HIS A          |                | 36.554           | 61.854           | 7.140            | 1.00   | 53.78          |   | С      |
| ATOM         | 5088         | C        | HIS A          |                | 37.324           | 64.781           | 11.169           |        | 36.62          |   | 0      |
| MOTA         | 5089         | 0        | HIS A          |                | 38.409           | 65.324           | 10.965           |        | 34.12<br>37.59 |   | N      |
| ATOM         | 5090         | N        | MET A          |                | 36.378<br>36.568 | 65.347<br>66.675 | 11.921<br>12.526 |        | 39.28          |   | C      |
| ATOM<br>ATOM | 5092<br>5094 | CA<br>CB | MET A          |                | 35.719           | 67.702           | 11.776           |        | 40.86          |   | С      |
| ATOM         | 5097         | CG       | MET A          |                | 36.162           | 67.967           | 10.377           |        | 38.41          |   | C      |
| ATOM         | 5100         | SD       | MET A          |                | 34.935           | 68.863           | 9.555            |        | 35.01<br>32.94 |   | S<br>C |
| ATOM         | 5101         | CE       | MET A          |                | 35.346           | 70.485           | 9.970<br>14.028  |        | 40.50          |   | Ċ      |
| ATOM         | 5105<br>5106 | C<br>O   | MET A          |                | 36.211<br>35.282 |                  | 14.423           |        | 33.64          |   | 0      |
| ATOM<br>ATOM | 5107         | N        |                | A 346          | 36.980           | 66.023           | 14.863           |        | 38.22          |   | N      |
| ATOM         | 5108         | CA       |                | A 346          | 36.623           | 65.825           | 16.270           |        | 36.95          |   | C      |
| ATOM         | 5110         | CB       |                | A 346          | 37.764<br>38.425 | 64.955<br>64.423 | 16.807<br>15.639 |        | 39.03<br>40.66 |   | č      |
| ATOM         | 5113<br>5116 | CG<br>CD |                | A 346<br>A 346 | 38.281           | 65.408           | 14.557           |        | 38.22          |   | С      |
| MOTA<br>MOTA | 5119         | C        |                | A 346          | 36.552           | 67.107           | 17.074           |        | 32.38          |   | C      |
| ATOM         | 5120         | 0        | PRO I          | A 346          | 35.610           | 67.264           | 17.833           |        | 35.28<br>29.23 |   | O<br>N |
| MOTA         | 5121         | N        |                | A 347          | 37.537<br>37.505 | 67.985<br>69.301 | 16.929<br>17.576 |        | 30.79          |   | Ċ      |
| ATOM         | 5123<br>5125 | CB       |                | A 347<br>A 347 | 38.687           | 70.172           | 17.152           |        | 26.79          |   | С      |
| ATOM<br>ATOM | 5128         | CG       |                | A 347          | 38.894           | 71.302           | 18.103           |        | 27.59          |   | C      |
| MOTA         | 5129         |          | TYR :          |                | 39.497           | 71.099           | 19.333           |        | 28.08<br>30.53 |   | C      |
| MOTA         | 5131         |          | TYR            |                | 39.677<br>39.236 | 72.139<br>73.413 | 20.214<br>19.877 |        | 32.26          |   | c      |
| ATOM<br>ATOM | 5133<br>5134 | CZ<br>OH |                | A 347<br>A 347 | 39.390           | 74.482           | 20.747           |        | 32.11          |   | 0      |
| ATOM         | 5136         | CE2      |                | A 347          | 38.627           | 73.622           | 18.669           |        | 30.41          |   | C      |
| ATOM         | 5138         | CD2      |                | A 347          | 38.458           | 72.571           | 17.794           |        | 29.80<br>30.63 |   | C      |
| ATOM         | 5140         | C        |                | A 347          | 36.207<br>35.684 | 70.090<br>70.696 | 17.332<br>18.254 |        | 33.45          |   | ō      |
| MOTA<br>MOTA | 5141<br>5142 | O<br>N   |                | A 347<br>A 348 | 35.702           | 70.065           | 16.106           | 1.00   | 28.69          |   | N      |
| ATOM         | 5144         | CA       |                | A 348          | 34.530           | 70.824           | 15.731           |        | 28.87          |   | C      |
| ATOM         | 5146         |          |                | A 348          | 34.445           | 70.917           | 14.198<br>13.678 |        | 29.32<br>30.03 |   | Ö      |
| ATOM         | 5148         |          |                | A 348<br>A 348 | 35.600<br>33.293 | 71.593<br>71.791 | 13.777           |        | 25.69          |   | ¢      |
| MOTA<br>MOTA | 5150<br>5154 |          |                | A 348          | 33.288           | 70.149           | 16.301           |        | 30.11          |   | C      |
| ATOM         | 5155         |          | THR            | A 348          | 32.350           | 70.805           | 16.755           |        | 29.96<br>30.40 |   | Ŋ      |
| MOTA         | 5156         |          |                | A 349          | 33.304           | 68.824           | 16.294<br>16.944 |        | 29.58          |   | c      |
| ATOM         | 5158         |          |                | A 349<br>A 349 | 32.268<br>32.496 | 68.039<br>66.558 | 16.662           | 1.00   | 27.72          |   | С      |
| MOTA<br>MOTA | 5160<br>5163 |          |                | A 349          | 31.218           | 65.759           | 16.657           |        | 31.62          |   | C      |
| ATOM         | 5164         | OD       | ASP            | A 349          | 30.124           | 66.341           | 16.852           |        | 37.09          |   | 0      |
| ATOM         | 5165         |          |                | A 349          | 31.213           | 64.522           |                  |        | 33.39          |   | c      |
| ATOM         | 5166         |          |                | A 349          | 32.248<br>31.211 | 68.306<br>68.252 |                  |        | 29.35          |   | 0      |
| MOTA         | 5167<br>5168 |          |                | A 349<br>A 350 | 33.402           | 68.613           |                  | 1.00   | 32.56          |   | N      |
| ATOM.        | 5170         |          |                | A 350          | 33.494           | 68.867           | 20.454           |        | 29.14          |   | C      |
| ATOM         | 5172         |          | ALA            | A 350          | 34.928           | 68.739           |                  |        | 27.84          |   | C      |
| ATOM         | 5176         | C        |                | A 350          | 32.954           | 70.250           |                  |        | 29.04          |   | ŏ      |
| ATOM         | 5177         |          |                | A 350<br>A 351 | 32.184<br>33.381 | 70.403           |                  |        | 24.90          | • | N      |
| MOTA<br>MOTA | 5178<br>5180 |          |                | A 351          | 32.851           | 72.598           | 20.125           | 1.00   | 23.26          |   | C      |
| ATOM         | 5182         | CB       | VAL            | A 351          | 33.371           | 73.502           |                  |        | 24.46          |   | C      |
| MOTA         | 5184         | CG:      |                | A 351          | 32.549           | 74.768           |                  |        | 27.54<br>29.26 |   | C      |
| ATOM         | 5188         |          |                | A 351<br>A 351 | 34.817<br>31.304 | 73.886           |                  |        | 26.71          | • | c      |
| ATOM         | 5192         | 2 C      | ۸Wn            | r AST          | 52.504           |                  |                  |        |                |   |        |

|              |              |          |                |                |                  | Figu             | re 5             |      |                    |   | _      |
|--------------|--------------|----------|----------------|----------------|------------------|------------------|------------------|------|--------------------|---|--------|
| MOTA         | 5193         | o v      | AL A           | 351            |                  | 73.227           | 20.902           | 1.00 |                    |   | N<br>N |
| MOTA         | 5194         | N V      | AL A           |                |                  | 71.907           | 19.079<br>18.928 | 1.00 |                    |   | C      |
| MOTA         | 5196         |          | AL A           |                | 29.265<br>28.854 | 71.895<br>71.151 | 17.652           | 1.00 |                    |   | С      |
| MOTA         | 5198<br>5200 | CB V     |                |                | 27.387           | 70.771           | 17.672           | 1.00 | 30.61              |   | C      |
| ATOM<br>ATOM | 5204         |          | AL A           |                | 29.132           | 72.020           | 16.468           |      | 28.06              |   | C<br>C |
| ATOM         | 5208         | C V      | AL A           | 352            | 28.611           | 71.271           | 20.170           |      | 21.66<br>20.83     |   | 0      |
| ATOM         | 5209         |          | AL A           |                | 27.647<br>29.159 | 71.784<br>70.139 | 20.764<br>20.547 |      | 23.41              |   | N      |
| ATOM         | 5210<br>5212 |          | HIS A          |                | 28.716           | 69.394           | 21.710           | 1.00 | 21.24              |   | С      |
| MOTA<br>MOTA | 5214         |          | IIS A          |                | 29.549           | 68.100           | 21.825           |      | 16.51              |   | C<br>C |
| ATOM         | 5217         | CG F     | HIS A          |                | 28.936           | 66.948           | 21.100<br>21.690 |      | 16.58<br>17.64     |   | N      |
| ATOM         | 5218         |          | HIS A          |                | 27.944<br>27.519 | 66.212<br>65.285 | 20.848           |      | 22.78              |   | С      |
| ATOM         | 5220<br>5222 |          | HIS A          |                | 28.250           | 65.354           | 19.750           | 1.00 | 20.64              |   | N      |
| ATOM<br>ATOM | 5224         |          | HIS A          |                | 29.176           | 66.363           | 19.891           |      | 19.51              |   | C<br>C |
| ATOM         | 5226         |          | HIS A          |                | 28.804           | 70.298           | 22.962<br>23.760 |      | 25.94<br>22.38     |   | Ö      |
| ATOM         | 5227         |          | HIS A<br>GLU A |                | 27.870<br>29.886 | 70.343<br>71.074 | 23.733           |      | 27.24              |   | N      |
| ATOM<br>ATOM | 5228<br>5230 |          | GLU A          |                | 30.156           | 71.840           | 24.280           |      | 30.89              |   | C      |
| ATOM         | 5232         |          | GLU A          |                | 31.660           | 72.110           | 24.438           |      | 31.53<br>27.07     |   | C<br>C |
| MOTA         | 5235         |          | GLU A          |                | 32.073           | 73.027<br>72.451 | 25.592<br>26.979 |      | 27.40              |   | Č      |
| MOTA         | 5238         |          | GLU A<br>GLU A |                | 31.830<br>31.411 | 71.277           | 27.113           | 1.00 | 32.29              |   | 0      |
| ATOM<br>ATOM | 5239<br>5240 |          | GLU A          |                | 32.091           | 73.178           | 27.960           |      | 26.04              |   | 0      |
| ATOM         | 5241         | C        | GLU A          | 354            | 29.371           | 73.145           | 24.343           |      | 33.73<br>39.55     |   | C<br>0 |
| ATOM         | 5242         |          | GLU A          |                | 29.126<br>28.996 | 73.650<br>73.707 | 25.437<br>23.200 |      | 32.77              |   | N      |
| MOTA         | 5243<br>5245 |          | VAL A<br>VAL A |                | 28.028           | 74.783           | 23.201           |      |                    |   | ¢      |
| ATOM<br>ATOM | 5247         |          | VAL A          |                | 27.743           | 75.322           | 21.791           | 1.00 | 31.89              |   | C<br>C |
| ATOM         | 5249         | CG1      | VAL A          | 355            | 26.503           | 76.251           | 21.817<br>21.254 |      |                    |   | C      |
| ATOM         | 5253         |          | VAL A          |                | 28.922<br>26.707 | 76.074<br>74.238 | 23.784           |      |                    | • | c      |
| ATOM<br>ATOM | 5257<br>5258 | -        | VAL A          |                | 26.129           | 74.839           | 24.662           |      |                    |   | 0      |
| ATOM         | 5259         |          | GLN A          |                | 26.219           | 73.106           | 20.00.           |      | 24.15              |   | N<br>C |
| ATOM         | 5261         | CA       | GLN A          |                | 24.900           | 72.707           | 23.724<br>22.939 |      | 25.64              |   | c      |
| MOTA         | 5263         |          | GLN A          | A 356<br>A 356 | 24.408<br>23.998 | 71.497<br>71.796 | 21.501           |      |                    |   | Ċ      |
| MOTA<br>MOTA | 5266<br>5269 | CG<br>CD |                | A 356          | 23.187           | 70.659           | 20.912           | 1.00 | 32,23              |   | C      |
| ATOM         | 5270         |          | GLN A          |                | 23.745           | 69.740           | 20.293           | 1.00 | 25.54              |   | N<br>N |
| ATOM .       |              |          | GLN A          |                | 21.867           | 70.689<br>72.435 | 21.143<br>25.229 |      | 27.20              |   | Ċ      |
| ATOM         | 5274         | С<br>0   |                | A 356<br>A 356 | 24.848<br>23.850 | 72.729           | 25.880           |      | 32.37              |   | 0      |
| ATOM<br>ATOM | 5275<br>5276 | N        |                | A 357          | 25.915           | 71.871           | 25.775           |      | 32.46              |   | N<br>C |
| MOTA         | 5278         | CA       |                | A 357          | 25.968           | 71.456           | 27.185           |      | 29.00<br>28.92     |   | c      |
| ATOM         | 5280         | CB       |                | A 357          | 27.155<br>27.389 | 70.517<br>70.013 | 27.393<br>28.834 |      | 27.34              |   | C      |
| ATOM<br>ATOM | 5283<br>5286 | CG<br>CD |                | A 357<br>A 357 | 28.850           | 69.761           | 29.183           | 1.00 | 21.76              | 5 | С      |
| MOTA         | 5289         | NE       |                | A 357          | 29.613           | 71.006           | 29.239           |      | 20.30              |   | N<br>C |
| ATOM         | 5291         | CZ       |                | A 357          | 29.607           | 71.832<br>72.966 | 30.275<br>30.246 |      | 26.65<br>28.28     |   | N      |
| MOTA         | 5292         |          |                | A 357<br>A 357 | 30.327<br>28.864 | 72.553           |                  |      | 29.58              |   | N      |
| MOTA<br>MOTA | 5295<br>5298 |          |                | A 357          | 26,123           | 72.690           | 28.081           |      | 30.68              |   | . C    |
| MOTA         | 5299         |          |                | A 357          | 25.471           | 72.813           |                  |      | 0 28.19<br>0 31.54 |   | O<br>N |
| MOTA         | 5300         |          |                | A 358          | 27.031<br>27.294 | 73.578<br>74.775 |                  |      | 0 33.57            |   | c      |
| ATOM         | 5302<br>5304 |          |                | A 358<br>A 358 | 28.390           |                  |                  | 1.0  | 0 33.3             | 5 | С      |
| MOTA<br>MOTA | 5307         |          |                | A 358          | 28.602           | 77.013           | 28.411           | _    | 0 35.89            |   | C      |
| MOTA         | 5308         | CD1      |                | A 358          | 28.162           |                  |                  |      | 0 37.80<br>0 38.90 |   | c      |
| MOTA         | 5310         |          |                | A 358          | 28.349<br>29.001 |                  |                  |      | 0 40.5             |   | С      |
| ATOM<br>ATOM | 5312<br>5313 |          |                | A 358<br>A 358 | 29.178           |                  |                  | 1.0  | 0 45.0             |   | 0      |
| ATOM         | 5315         |          |                | A 358          | 29.466           | 78.498           |                  |      | 0 39.6<br>0 38.2   |   | C      |
| ATOM         | 5317         | CD2      |                | A 358          | 29.267           |                  |                  |      | 0 35.2             |   | c      |
| ATOM         | 5319         |          |                | A 358          | 26.015<br>25.637 |                  |                  |      | 0 34.4             |   | 0      |
| MOTA<br>ATOM | 5320<br>5321 |          |                | A 358<br>A 359 | 25.359           |                  | 27.555           | 1.0  | 0 33.1             | 2 | N      |
| ATOM         | 5323         |          |                | A 359          | 24.249           | 76.890           | 27.513           |      | 0 31.8             |   | C      |
| MOTA         | 5325         | CB       | ILE            | A 359          | 23.972           |                  |                  |      | 0 25.9<br>0 27.1   |   | c      |
| ATOM         | 5327         |          |                | A 359<br>A 359 | 23.379<br>23.143 |                  |                  |      | 0 29.8             |   | С      |
| ATOM<br>ATOM | 5330<br>5334 |          |                | A 359          | 25.207           |                  | 25.473           | 1.0  | 0 26.6             |   | C      |
| ATOM         | 5338         |          | ILE            | A 359 ·        | 22.920           | 76.40            |                  |      | 10 33.2<br>10 35 0 |   | 0      |
| MOTA         | 533          | 9 0      |                | A 359          | 22.084           |                  |                  |      | 10 35.9<br>10 32.4 |   | N      |
| ATOM         | 5340         |          |                | A 360          | 22.725<br>21.60  |                  |                  |      | 0 36.3             |   | С      |
| MOTA         | 5343         | Z CA     | , ASP          | A 360          | 21.00            | . ,              |                  |      |                    |   |        |
|              |              |          |                |                |                  |                  |                  |      |                    |   |        |

AND AND LUMBER OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF

```
Figure 5
            CB ASP A 360
                                22.015
                                        74.340 30.399
                                                         1.00 35.84
                                                                               C
ATOM
      5344
               ASP A 360
                                20.963
                                         73.677
                                                31.266
                                                         1.00 38.31
ATOM
      5347
            CG
                                                         1.00 43.89
            OD1 ASP A 360
                                20.823
                                                 32,440
                                         74.124
MOTA
      5348
            OD2 ASP A 360
                                20,230
                                         72.745
                                                30.865
                                                         1.00 35.52
MOTA
      5349
                                                28.708
                                                         1.00 34.02
                ASP A 360
                                20.277
                                         75.225
MOTA
      5350
            C
                                19.709
                                                         1.00 39.31
                                                                               0
MOTA
      5351
            0
                ASP A 360
                                         75.792
                                                29.627
                                                27.466
                                                         1.00 37.37
                                                                               N
      5352
            N
                LEU A 361
                                19.822
                                         75.229
ATOM
                                                         1.00 37.08
                                                                               С
ATOM
       5354
            CA LEU A 361
                                18.712
                                         76.083
                                                26.969
                                                         1.00 34.27
            СВ
                LEU A 361
                                18.715
                                         76.073
                                                25.411
                                                                               С
ATOM
       5356
                                                                               С
            CG
                LEU A 361
                                19.147
                                         77.342
                                                24.658
                                                         1.00 36.22
ATOM
       5359
                                                                               C
            CD1 LEU A 361
                                20.318
                                         78.066
                                                25.291
                                                         1.00 38.73
ATOM
       5361
                                                                               С
            CD2 LEU A 361
                                19.454
                                         77.033
                                                23.212
                                                         1.00 37.36
ATOM
       5365
                                17.317
                                        75.647
                                                 27.484
                                                         1.00 34.38
                                                                               С
ATOM
       5369
            C LEU A 361
ATOM
       5370
            0
                LEU A 361
                                16.384
                                         76.437
                                                 27.550
                                                         1.00 33.64
                                                                               0
       5371
            N
                LEU A 362
                                17.198
                                         74.374
                                                 27.828
                                                         1.00 31.81
                                                                               N
ATOM
                                16.001
                                         73.816
                                                 28.405
                                                         1.00 29.27
                                                                               С
       5373
            CA
                LEU A 362
MOTA
       5375
            СВ
                LEU A 362
                                15.404
                                         72.839
                                                 27.425
                                                         1.00 31.20
                                                                               С
ATOM
                                15.114
                                                 26.091
                                                         1.00 37.57
                                                                               С
       5378
            CG
                LEU A 362
                                         73.511
ATOM
                                                 25.098
                                                         1.00 39.93
                                                                               С
       5380
            CD1 LEU A 362
                                14.665
                                         72.465
ATOM
                                                 26.270
                                                         1.00 40.59
                                                                               С
            CD2 LEU A 362
                                14.057
                                         74.604
ATOM
       5384
                                                 29,719
                                                         1.00 28.33
                                                                               С
MOTA
       5388
            C.
                LEU A 362
                                16.340
                                         .73.112
                                                                               0
                LEU A 362
                                16.373
                                         71.886
                                                 29.779
                                                         1.00 28.77
      5389
            ٥
ATOM
                                16.581
                                         73.897
                                                 30.768
                                                         1.00 30.06
                                                                               N
                PRO A 363
ATOM
      5390
            N
                                17.049
                                         73.387
                                                 32.069
                                                         1.00 30.46
                                                                               С
            CA PRO A 363
      5391
ATOM
                                16.998
                                                 32.940
                                                         1.00 32.09
                                                                               С
                                         74.628
                PRO A 363
ATOM
      5393
            CB
                                                 32.005
                                                         1.00 28.66
                PRO A 363
                                17,178
                                         75.751
ATOM
      5396
            CG
                                         75.365
                                                 30.788
                                                         1.00 28.38
                                                                               С
                                16.443
MOTA
       5399
            CD
                PRO A 363
                                                 32.707
                                                         1.00 32.68
                                                                               C
ATOM
      5402
            С
                PRO A 363
                                16.210
                                         72.286
                                         71.500
                                                 33.498
                                                         1.00 33.42
                                                                               o
ATOM
       5403
            0
                PRO A 363
                                16.772
                                14.908
                                         72.268
                                                 32.385
                                                         1.00 33.31
                                                                               N
MOTA
      5404
            N
                THR A 364
                                                         1.00 32.35
                                         71.282
                                                 32.870
                                                                               C.
                                13.951
ATOM
       5406
            CA
                THR A 364
                                                 33.894
                                                         1.00 35.89
                                                                               C.
                                12.981
       5408
             CB THR A 364
                                         71.920
MOTA
                                                         1.00 33.88
                                                                               0.
                                         72,909
                                                 33.269
       5410
             OG1 THR A 364
                                12.129
MOTA
                                                                              acn teat die
                                         72,683
                                                         1.00 36.02
ATOM
      5412
            CG2 THR A 364
                                13.764
                                                 34.963
                                                                               C<sub>2</sub> ... ... ...
                                                         1.00 35.43
                                                 31.705
ATOM
      5416
            \mathbf{C} .
                THR A 364
                                13.175
                                         70.693
                                                                              . .0..
                                                 31.780
                                                         1.00 45.83
                 THR A 364
                                11.974
                                         70.489
ATOM
      5417
            0
                                                                              SER A 365
                                13.908
                                         70.337
                                                 30.664
                                                         1.00 35.48
ATOM
       5418
            N
                                13.375
                                         70.111
                                                 29.337
                                                         1.00 35.40
       5420
            CA SER A 365
MOTA
                                13.524
                                         68.652
                                                 28.914
                                                         1.00 31.45
       5422
            СВ
                SER A 365
ATOM
                                         67.847
                                                 29.874
                                                         1.00 36.34
       5425
            OG
                SER A 365
                                12.951
ATOM
                                                 29,202
                                                         1.00 34.98
            С
                 SER A 365
                                11.943
                                         70.613
ATOM
       5427
                                                 29.304
                                                         1.00 28.74
                                                                               0
            0
                 SER A 365
                                11.719
                                         71.799
ATOM
       5428
            N
                LEU A 366
                                11.005
                                         69.707
                                                 28.936
                                                         1.00 35.98
                                                                               N
ATOM
       5429
                LEU A 366
                                 9.594
                                         70.009
                                                 28.897
                                                         1.00 36.81
                                                                               C
             CA
ATOM
       5431
             СВ
                                                         1.00 36.92
                                                                               C
                                 8.989
                                         69.683
                                                 27.519
                LEU A 366
ATOM
       5433
                                                         1.00 36.76
                                         70.863
                                                 26.596
                                 8.621
             CG
                LEU A 366
ATOM
       5436
                                                         1.00 33.00
                                                                               С
                                 9.655
                                         71.974
                                                 26.555
ATOM
       5438
             CD1 LEU A 366
                                 8.382
                                         70.360
                                                 25.188
                                                         1.00 38.11
MOTA
       5442
            CD2 LEU A 366
                                                                               С
                LEU A 366
                                 9.003
                                         69.108
                                                 29.946
                                                         1.00 37.67
MOTA
       5446
            С
                                         68.010
                                                 30.153
                                                         1.00 37.14
                LEU A 366
                                 9.525
ATOM
       5447
            0
                                                                               N
                                  7.895
                                         69.525
                                                 30.563
                                                         1.00 35.19
                PRO A 367
ATOM
       5448
            N
                                 7.395
                                         68.836
                                                 31.733
                                                         1.00 34.65
                                                                               С
                PRO A 367
ATOM
       5449
            CA
                                                         1.00 38.85
                                                                               С
                                         69.709
                                                 32.198
                PRO A 367
                                 6.244
MOTA
       5451
            CB
                                                                               С
                                         70.950
                                                 31.423
                                                         1.00 38.94
                PRO A 367
                                 6.330
ATOM
       5454
            -CG
                                                                               С
                                         70.602
                                                 30.155
                                                         1.00 36.89
                                 6.992
                PRO A 367
MOTA
       5457
            CD
                                         67.510
                                                                               С
                                                 31.290
                                                         1.00 33.99
ATOM
       5460
            С
                PRO A 367
                                 6.899
                                                         1.00 31.95
                                                                               0
                                         67.436
                                                 30,279
MOTA
       5461
            0
                 PRO A 367
                                 6.251
                                                         1.00 38.71
                                         66.476
                                                 32.019
MOTA
       5462
            N
                HIS A 368
                                 7.271
                                                         1.00 41.26
                                                                               С
                                                 31.796
       5464
             CA
                HIS A 368
                                 6.802
                                         65.127
MOTA
                                                         1.00 41.76
                                                                               С
                                                 32.077
             CB
                'HIS A 368
                                 7.954
                                         64.167
ATOM
       5466
                                                         1.00 38.54
                                                                               С
             CG HIS A 368
                                8.858
                                         63.966
                                                 30.910
ATOM
       5469
                                                         1.00 37.42
                                                                               N
            ND1 HIS A 368
                                 8.996
                                         62.746
                                                 30.285
MOTA
       5470
                                                         1.00 42.40
                                                                               С
                                         62.870
                                                 29.283
ATOM
       5472
            CE1 HIS A 368
                                 9.845
                                                         1.00 41.82
            NE2 HIS A 368
                                10.260
                                         64.125
                                                 29.239
                                                                               N
ATOM
       5474
                                                         1.00 37.83
            CD2 HIS A 368
                                 9.665
                                         64.829
                                                 30.251
                                                                               C
       5476
ATOM
                                                 32.729
                                                         1.00 44.94
                                                                               С
                 HIS A 368
                                 5.621
                                         64.840
MOTA
       5478
             С
                                 5.198
                                         65.708
                                                 33.501
                                                         1.00 44.24
                                                                               0
                 HIS A 368
       5479
             0
MOTA
                                                         1.00 49.31
                                                                               N
                                 5.094
                                         63.621
                                                 32.662
MOTA
       5480
            N
                 ALA A 369
                                                         1.00 50.92
                                                                               С
                                 3.971
                                         63.215
                                                 33.515
ATOM
       5482
             CA
                ALA A 369
                                                         1.00 54.32
                                                                               С
                                                 33.016
                ALA A 369
                                 2,681
                                         63.851
MOTA
       5484
             CB
                                                         1.00 46.31
                                                                               ¢
                 ALA A 369
                                 3.848
                                         61.717
                                                 33.483
ATOM
       5488
            С
                                                         1.00 45.35
                                                                               0
                                 3.971
                                         61.140
                                                 32.417
ATOM
       5489
             0
                 ALA A 369
                                                 34.632
                                                         1.00 49.70
ATOM
       5490
            N
                 VAL A 370
                                 3,613
                                         61.0B3
                                                 34.679
                                                         1.00 51.76
                                                                               С
                                         59.608
MOTA
       5492
             CA
                VAL A 370
                                 3.582
                                                         1,00 52.59
                                                36.090
MOTA
       5494
             CB
                VAL A 370
                                 3.823
                                         59.023
                                         59.233 36.516
                                                        1.00 54.88
ATOM
       5496
             CG1 VAL A 370
                                  5.258
```

1,00

18533

5974

.5:50

5558 . ...

270% Substill

170

THE

T. POST

1976

411.1.

187 M. 3574

220Mi. 3577.

Marky Carry C

```
Figure 5
                                           59.616 37.117
                                    2.879
                                                            1.00 56.00
              CG2 VAL A 370
 ATOM
        5500
                                    2.310
                                           59.009
                                                   34.088
 MOTA
        5504
              С
                  VAL A 370
                                                            1.00 53.45
              0
                  VAL A 370
                                    1.235
                                           59.610
                                                   34.119
                                                            1.00 51.53
 MOTA
        5505
                  THR A 371
                                    2.465
                                           57.801
                                                   33,570
                                                            1.00 58.06
 ATOM
        5506
              N
 MOTA
        5508
                  THR A 371
                                    1.426
                                           57.087
                                                   32.838
                                                            1.00 64.22
 MOTA
        5510
              CB
                  THR A 371
                                    2.120
                                           56.126
                                                   31.860
                                                            1.00 65.10
                                                                                  С
              OG1 THR A 371
                                    2.632
                                           56.887
                                                   30.755
                                                            1.00 64.52
                                                                                  0
 ATOM
        5512
              CG2 THR A 371
                                                                                  С
 ATOM
        5514
                                    1.140
                                           55.111
                                                   31.240
                                                            1.00 66.78
                   THR A 371
                                    0.451
                                           56.328
                                                   33.753
                                                            1.00 68.39
                                                                                  C
        5518
              С
 ATOM
                                   -0.672
                                           56.033
                                                   33.357
                                                            1.00 70.16
                                                                                  0
 ATOM
        5519
              0
                   THR A 371
                                           56.010
                                                   34.967
                                                            1.00 74.13
                                                                                  N
        5520
                   CYS A 372
                                    0.895
 ATOM
              N
                                           55.348
                                                   35.975
                                                            1.00 78.39
                                                                                  С
 ATOM
        5522
              CA
                  CYS A 372
                                    0.059
                                                   35.577
                                                            1.00 79.75
                                                                                  C
        5524
              CB
                  CYS A 372
                                   -0.203
                                           53.906
 ATOM
                  CYS A 372
                                    1.329
                                           53.138
                                                   35.073
                                                            1.00 86.75
                                                                                  S
        5527
              SG
 ATOM
                   CYS A 372
                                    0.737
                                           55.380
                                                   37.347
                                                            1.00 79.69
 ATOM
        5528
              С
                                                   37.471
                                                                                  0
                                    1.899
                                           55.787
                                                            1.00 78.39
                   CYS A 372
        5529
              0
 ATOM
                                    0.007
                                           54.947
                                                   38.374
                                                            1.00 81.71
                   ASP A 373
 ATOM
        5530
              N
                  ASP A 373
                                                                                  C
                                           54.946
                                                   39.737
                                                            1.00 83.09
                                   0.540
 ATOM
        5532
              CA
                                                                                  С
                                   -0.494
                                           54.433
                                                   40.746
                                                            1.00 84.64
 MOTA
        5534
              CB
                  ASP A 373
                                                                                  С
                                           55.261
                                                   40.750
                                                            1.00 85.86
                  ASP A 373
                                   -1.775
 ATOM
        5537
              CG
              OD1 ASP A 373
                                   -2.710
                                           54.928
                                                   39.991
                                                            1.00 86.72
 ATOM
        5538
                                                                                  0
                                   -1.943
                                           56.255
                                                   41.484
                                                            1.00 88.06
              OD2 ASP A 373
 ATOM
        5539
                                                   39.744
                                                            1.00 81.89
                                    1.785
                                           54.065
 ATOM
        5540
              C
                  ASP A 373
                                                   39.189
                                                            1.00 81.00
                                                                                  0
                                    1.768
                                           52.967
                  ASP A 373
 ATOM
        5541
              0
                                                   40.338
                                                            1.00 79.99
                  ILE A 374
                                           54.561
                                    2.868
 MOTA
        5542
              N
                                                   40.268
                                                            1.00 79.85
              CA ILE A 374
                                    4.151
                                           53.869
 MOTA
        5544
                                                            1.00 81.61
                                                   38.912
 MOTA
        5546
              CB
                  ILE A 374
                                    4.865
                                           54.166
                                                            1.00 84.85
                                                                                  С
 MOTA
        5548
              CG1 ILE A 374
                                    6.067
                                           53.225
                                                   38.712
                                                                                  С
                                           51.705
                                                   38.820
                                                            1.00 86.72
 MOTA
        5551
              CD1 ILE A 374
                                    5.746
                                                   38.817
                                                            1.00 80.05
                                                                                  С
        5555
              CG2 ILE A 374
                                    5.304
                                           55.647
 MOTA
                                                            1.00 77.53
                                                                                  C
                   ILE A 374
                                    5.067
                                           54.224
                                                   41.428
 MOTA
        5559
                                                   41.791
                                                            1.00 77.21
                                                                                  0
                   ILE A 374
                                    5.196
                                           55.387
MOTÁ ..
        5560
              0
                   LYS A 375
                                    5.709
                                           53.209
                                                   41.998
                                                            1.00 75.84
 ATOM
        5561
              N
                                  6.678
                                                                                  С
                  LYS A 375
 ATOM
        5563
              CA
                                           53.424
                                                   43.059
                                                            1.00 74.75
                                                                                  С
        5565
              CB
                   LYS A 375
                                    6.800
                                           52.181
                                                   43.937
                                                            1.00 78.00
 ATOM
                                                                                  c
                                    7.562
                                           52.434
                                                   45.237
                                                            1.00 81.14
        5568
             . CG
                  LYS A 375
 ATOM
                                    7.379
                                           51.303
                                                   46.251
                                                            1.00 83.19
        5571
                   LYS A 375
 ATOM
              CD
                                                                                  C
                                    8.342
                                           50.148
                                                   45.992
                                                            1.00 82.95
        5574
              CE
                   LYS A 375
 ATOM
                                           48.913
                                                    46.673
                                                            1.00 81.62
                                                                                  N
        5577
              NZ
                   LYS A 375
                                    7.879
 ATOM
                                                                                  С
                                           53.742
                                                    42.426
                                                            1.00 70.55
                   LYS A 375
                                    8.012
 ATOM
        5581
              С
                                           52.977
                                                            1.00 70.03
                   LYS A 375
                                    8.498
                                                    41.607
                                                                                  0
 ATOM
        5582
              :0
                                                    42.784
                                                            1.00 65.90
                                                                                  N
 ATOM
                   PHE A 376
                                    8.602
                                           54.872
        5583
              N
              CA
                   PHE A 376
                                    9.883
                                           55.242
                                                    42.208
                                                            1.00 63.55
                                                                                  C
 ATOM
        5585
                   PHE A 376
                                    9.735
                                           56.433
                                                    41.255
                                                            1.00 62.64
                                                                                  С
               CB
 ATOM
        5587
                                                            1.00 61.84
                                                                                  С
                   PHE A 376
                                   11.034
                                           56.860
                                                    40.630
 ATOM
        5590
               CG
                                                            1.00 63.22
                                                                                  С
                                   11.547
                                           56.184
                                                   39.525
              CD1 PHE A 376
 ATOM
        5591
                                                            1.00 62.75
                                                                                  С
               CE1 PHE A 376
                                   12,767
                                           56.562
                                                    38.958
 ATOM
        5593
                                                            1.00 61.36
                                                                                   С
                                           57.620
                                                   39.502
                   PHE A 376
                                   13.482
 ATOM
        5595
              CZ
                                                            1.00 59.67
                                                                                   С
                                   12.987
                                                    40.613
               CE2 PHE A 376
                                           58.284
 MOTA
        5597
                                           57.906
                                                   41.172
                                                            1.00 59.38
                                                                                   С
               CD2 PHE A 376
                                   11.772
 ATOM
        5599
                                                                                   C
                   PHE A 376
                                           55.571
                                                   43.319
                                                            1.00 63.42
                                   10.864
 ATOM
        5601
               С
                                                    44.096
                                                            1.00 59.92
                                                                                   0
                   PHE A 376
                                   10.607
                                           56.484
 MOTA
        5602
               0
                                                            1.00 63.55
                   ARG A 377
                                   11.988
                                           54.840
                                                    43.367
 MOTA
        5603
              N
                                                            1.00 64.90
                                           54.899
                                                    44.479
 MOTA
        5605
               CA
                  ARG A 377
                                   12.946
                                                    44.455
                                                            1.00 65.78
                                   13.787
                   ARG A 377
                                           56.190
 MOTA
        5607
               CB
                                                   43.159
                                                            1.00 66.64
 MOTA
        5610
               CG.
                   ARG A 377
                                   14.558
                                           56.448
                                                            1.00 65.06
               CD
                   ARG A 377
                                   16.023
                                           56.050
                                                   43.180
 ATOM
        5613
                                                            1.00 64.64
                   ARG A 377
                                                   43.243
 ATOM
        5616
              NE
                                   16.903
                                           57.221
                                                            1.00 65.04
                                                   42.427
                   ARG A 377
                                   17.932
                                           57.465
 ATOM
        5618
               CZ
                                                            1.00 65.46
                                                   41.448
               NH1 ARG A 377
                                   18.254
                                           56.633
 ATOM
        5619
                                                            1.00 68.71
                                                    42,593
              NH2 ARG A 377
                                   18.658
                                           58.563
 ATOM
        5622
                                                            1.00 67.20
                                                   45.807
                   ARG A 377
                                   12.193
                                           54.778
 ATOM
        5625
               С
                                                   46.764
                                                            1.00 63.23
                                                                                   0
                   ARG A 377
                                   12.446
                                           55.542
 ATOM
        5626
               ٥
                                                            1.00 68.64
        5627
               N
                   ASN A 378
                                   11.247
                                           53.833
                                                    45.835
 ATOM
                                                                                   С
                                                            1.00 71.70
                  ASN A 378
                                   10.378
                                           53.615
                                                    46.979
 ATOM
        5629
               CA
                                                            1.00 74.51
                                                                                   C
                                           53.079
                                                    48.130
                   ASN A 378
                                   11.249
               CB
 ATOM
        5631
                                                            1.00 79.16
                                                                                   C
                   ASN A 378
                                   10.442
                                           52.595
                                                    49.317
        5634
 ATOM
               CG
                                                    50.464
                                                            1.00 82.37
                                                                                   O
               OD1 ASN A 378
                                   10.807
                                           52.859
 ATOM
        5635
              ND2 ASN A 378
                                                    49,056
                                                            1.00 83.72
                                    9.342
                                           51.881
 ATOM
        5636
                                                            1.00 72.67
                                                                                  C
                   ASN A 378
                                           54.872
                                                    47.411
                                    9.563
 ATOM
        5639
               C
                                                            1.00 73.51
                   ASN A 378
                                    9.567
                                           55.203
                                                    48.599
 ATOM
        5640
               0
                                                            1.00 72.33
                                                    46.478
                                                                                  N
                   TYR A 379
                                    8.871
                                           55.561
 ATOM
        5641
              N
                                                    46.820
                                                            1.00 72.28
        5643
               ÇA
                   TYR A 379
                                    8.138
                                           56.813
 ATOM
                                                    46.265
                                                            1.00 70.80
                                                                                   C
                                           58,062
        5645
               CB
                   TYR A .379
                                    8.849
 ATOM
                                                   47.178
                                                            1.00 69.60
 ATOM
        5648
               CG
                  TYR A 379
                                    9.936
                                           58.580
                                                   46.740
                                                            1.00 68.26
 ATOM
               CD1 TYR A 379
                                 11.265
                                           58,682
```

|              |              |           |       | •              |                  | Figu             | re 5             |                          |        |
|--------------|--------------|-----------|-------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5651         | CE1       | TYR A | 379            | 12.268           | 59.136           | 47.592           | 1.00 68.17               | С      |
| ATOM         | 5653         | CZ        | TYR A | 379            | 11.941           | 59.482           | 48.897           | 1.00 68.52               | C      |
| MOTA         | 5654         | OH        | TYR A |                | 12.910           | 59.933           | 49.758<br>49.348 | 1.00 68.54<br>1.00 66.97 | O<br>C |
| ATOM         | 5656         |           | TYR A |                | 10.637<br>9.647  | 59.378<br>58.933 | 49.340           | 1.00 67.41               | č      |
| ATOM<br>ATOM | 5658<br>5660 | CDZ       | TYR A |                | 6.637            | 56.920           | 46.493           | 1.00 74.73               | Ċ      |
| ATOM         | 5661         | ŏ         | TYR A |                | 5.950            | 57.771           | 47.087           | 1.00 80.37               | 0      |
| ATOM         | 5662         | N         | LEU A |                | 6.128            | 56.074           | 45.599           | 1.00 73.85               | N      |
| MOTA         | 5664         | CA        | LEU A |                | 4.720            | 56.131           | 45.144           | 1.00 74.67<br>1.00 75.96 | . с    |
| MOTA         | 5666         | CB<br>CG  | LEU A |                | 3.705<br>2.211   | 55.770<br>56.098 | 46.259<br>45.998 | 1.00 76.68               | č      |
| MOTA<br>MOTA | 5669<br>5671 |           | LEU A |                | 1.678            | 55.405           | 44.721           | 1.00 74.64               | Ċ      |
| ATOM         | 5675         |           | LEU A |                | 1.324            | 55.775           | 47.237           | 1.00 77.75               | ·C     |
| ATOM         | 5679         | С         | LEU A |                | 4.361            | 57.485           | 44.525           | 1.00 72.92               | С<br>0 |
| ATOM         | 5680         | 0         | LEU A |                | 4.202<br>4.216   | 58.493<br>57.482 | 45.229<br>43.202 | 1.00 72.31<br>1.00 69.57 | Ŋ      |
| ATOM<br>ATOM | 5681<br>5683 | n<br>Ca   | ILE A |                | 3.912            | 58.682           | 42.440           | 1.00 65.88               | С      |
| ATOM         | 5685         | CB        | ILE A |                | 5.102            | 59.087           | 41.539           | 1.00 66.32               | С      |
| ATOM         | 5687         |           | ILE A | 381            | 6.291            | 59.528           | 42.400           | 1.00 67.08               | C<br>C |
| ATOM         | 5690         |           | ILE F |                | 7.615            | 59.611           | 41.649           | 1.00 67.61<br>1.00 65.68 | C      |
| ATOM<br>ATOM | 5694<br>5698 | CG2       | ILE A |                | 4.695<br>2.679   | 60.217<br>58.376 | 40.587<br>41.609 | 1.00 60.46               | Č      |
| MOTA         | 5699         | Ö         | ILE A |                | 2.724            | 57.554           | 40.702           | 1.00 57.61               | ·o     |
| ATOM         | 5700         | N         | PRO F |                | 1.577            | 59.044           | 41.919           | 1.00 59.04               | · N    |
| MOTA         | 5701         | CA        | PRO F |                | 0.291            | 58.728           | 41.280           | 1.00 59.48               | . c    |
| MOTA         | 5703         | CB        | PRO A |                | -0.740<br>0.018  | 59.454<br>60.513 | 42.165<br>42.894 | 1.00 57.06<br>1.00 57.04 | c      |
| ATOM<br>ATOM | 5706<br>5709 | CG<br>CD  | PRO P |                | 1.464            | 60.147           | 42.891           | 1.00 58.04               | Ċ      |
| ATOM         | 5712         | Č         |       | 382            | 0.183            | 59.178           | 39.819           | 1.00 57.50               | С      |
| MOTA         | 5713         | 0         | PRO F |                | 0.771            | 60.191           | 39.435           | 1.00 52.62               | 0      |
| MOTA         | 5714         | N         | LYS A |                | -0.576           | 58.407           | 39.044           | 1.00 57.01<br>1.00 58.31 | N<br>C |
| MOTA         | 5716<br>5718 | CA<br>CB  |       | A 383<br>A 383 | -0.850<br>-2.065 | 58.672<br>57.856 | 37.624<br>37.162 | 1.00 60.06               | č      |
| ATOM<br>ATOM | 5721         | CG        |       | 383            | -2.364           | 57.923           | 35.663           | 1.00 63.41               | С      |
| ATOM         | 5724         | CD        |       | 383            | -3.314           | 56.789           | 35.219           | 1.00 64.44               | C      |
| MOTA         | 5727         | CE        |       | 383            | -3.776           | 56.971           | 33.776           | 1.00 64.20<br>1.00 64.15 | C<br>N |
| ATOM         | 5730         | NZ        |       | A 383<br>A 383 | -5.063<br>-1.129 | 56.290<br>60.137 | 33.481<br>37.327 | 1.00 56.44               | Č      |
| ATOM<br>ATOM | 5734<br>5735 | C<br>O    |       | 383            | -1.916           | 60.774           | 38.014           | 1.00 59.04               | 0      |
| ATOM         | 5736         | N         |       | 384            | 0.475            | 60.658           | 36.296           | 1.00 53.71               | N      |
| ATOM         | 5738         | CA        |       | A 384          | -0.707           |                  | 35.829           | 1.00 50.94               | C<br>C |
| ATOM         | 5741         | C         | GLY A | 384            | -0.051<br>-0.271 | 63.083<br>64.266 | 36.657<br>36.394 | 1.00 49.27<br>1.00 48.92 | ŏ      |
| MOTA<br>MOTA | 5742<br>5743 | O<br>N    |       | 4 385          | 0.743            | 62.690           | 37.651           | 1.00 48.30               | N      |
| ATOM         | 5745         | CA        |       | A 385          | 1.552            | 63.644           | 38.405           | 1.00 47.88               | C      |
| ATOM         | 5747         | CB        |       | A 385          | 2.265            | 62.975           | 39.544           | 1.00 48.26<br>1.00 55.82 | . C    |
| ATOM         | 5749<br>5751 |           | THR A |                | 1.309<br>3.133   | 62.502<br>63.982 | 40.499           | 1.00 46.09               | · č    |
| MOTA<br>MOTA | 5755         | C         |       | A 385          | 2.619            | 64.199           | 37.510           | 1.00 46.80               | С      |
| ATOM         | 5756         | ō         |       | A 385          | 3.356            | 63.448           | 36.886           | 1.00 50.00               | 0      |
| ATOM         | 5757         | N         |       | A 386          | 2.714            | 65.512           | 37.469           | 1.00 44.57<br>1.00 44.39 | N<br>C |
| ATOM         | 5759         | CA        |       | A 386<br>A 386 | 3.714<br>3.381   | 66.173<br>67.653 | 36.656<br>36.597 | 1.00 44.49               | č      |
| MOTA<br>MOTA | 5761<br>5763 | CB<br>OG1 | THR   |                | 2.143            | 67.841           | 35.901           | 1.00 42.09               | . 0    |
| ATOM         | 5765         |           | THR I |                | 4.423            | 68.413           | 35.796           | 1.00 44.50               | C      |
| ATOM         | 5769         | C         |       | A 386          | 5.138            | 65.986           | 37.205           | 1.00 43.69<br>1.00 44.01 | C<br>O |
| ATOM         | 5770         | 0         |       | A 386<br>A 387 | 5.372<br>6.067   | 66.091<br>65.719 | 38.415<br>36.284 | 1.00 43.27               | N      |
| ATOM<br>ATOM | 5771<br>5773 | N<br>CA   |       | A 387          | 7.492            | 65.486           | 36.556           | 1.00 40.10               | С      |
| ATOM         | 5775         | CB        |       | A 38.7         | 7.954            | 64.107           | 35.995           | 1.00 39.64               | . с    |
| ATOM         | 5777         |           | ILE A |                | 6.922            | 62.994           | 36.241           | 1.00 39.36<br>1.00 38.81 | C      |
| ATOM         | 5780         |           | ILE A |                | 6.728<br>9.276   | 62.634<br>63.722 | 37.701<br>36.606 | 1.00 41.73               | Č      |
| ATOM<br>ATOM | 5784<br>5788 | C         | ILE A | A 387          | 8.344            | 66.554           | 35.872           | 1.00 36.22               | С      |
| ATOM         | 5789         | 0         |       | A 387          | 8.190            | 66.782           | 34.690           | 1.00 35.52               | 0      |
| ATOM         | 5790         | n         |       | A 388          | 9.237            | 67.210           | 36.608           | 1.00 35.06<br>1.00 34.37 | И      |
| ATOM         | 5792         | CA        |       | A 388          | 10.279           | 68.019           | 35.994<br>36.696 | 1.00 34.37               | C      |
| ATOM<br>ATOM | 5794<br>5797 | CB<br>CG  |       | A 388<br>A 388 | 10.406<br>9.242  | 69.341<br>70.277 | 36.433           | 1.00 38.78               | · c    |
| ATOM         | 5799         |           | LEU   |                | 9.480            | 71.551           | 37.200           | 1.00 41.85               | C      |
| ATOM         | 5803         |           | LEU   |                | 9.071            | 70.575           | 34.959           | 1.00 41.18               | C      |
| ATOM         | 5807         | С         |       | A 388          | 11.627           | 67.296           | 36.034<br>37.099 | 1.00 35.56<br>1.00 35.36 | C<br>0 |
| ATOM         | 5808         | O<br>N    |       | A 388<br>A 389 | 12.179<br>12.123 | 67.065<br>66.927 | 34.859           | 1.00 35.34               | N      |
| ATOM<br>ATOM | 5809<br>5811 | CA        |       | A 389          | 13.467           | 66.407           | 34.672           | 1.00 35.40               | С      |
| ATOM         | 5813         | СВ        |       | A 389          | 13.567           | 65.772           | 33.269           | 1.00 39.52               | С      |
|              |              |           |       |                |                  | •                |                  |                          |        |

```
Figure 5
                                12.494
                                         64.695 33.061
                                                         1.00 40.50
MOTA
             CG1 ILE A 389
       5815
                                         63.746
             CD1 ILE A 389
                                 12.329
                                                 34,200
                                                          1.00 41.56
ATOM
       5818
             CG2 ILE A 389
                                 14.966
                                         65.228
                                                 33.017
                                                          1.00 43.27
ATOM
       5822
                                                          1.00 34.32
                                 14.410
                                         67.598
                                                 34.708
                 TLE A 389
ATOM
       5826
             С
                                                          1.00 32.33
                                 14.215
                                         68.531
                                                 33.918
                 ILE A 389
ATOM
       5827
             0
                                                          1.00 30.58
                                                                                N
                 SER A 390
                                 15.415
                                         67.590
                                                 35.591
ATOM
       5828
             N
                                 16.431
17.064
                                                          1.00 31.32
                                                                                С
                                         68.639
                                                 35.564
                 SER A 390
MOTA
       5830
             CA
                                                                                C
                                         68.866
                                                 36.929
                                                          1.00 31.83
                 SER A 390
ATOM
       5832
             CB
                                         69.658
                                                 36.795
                                                          1.00 30.75
                                                                                ٥
                 SER A 390
                                 18.256
             OG
ATOM
       5835
                                                  34.590
                                                                                С
                                         68.273
                                                          1.00 32.00
                 SER A 390
                                 17.532
       5837
ATOM
             С
                                                  34.965
                                                          1.00 32.15
                                                                                0
                                 18.491
                                         67.635
                 SER A 390
MOTA
       5838
                                                  33.342
                                                          1.00 32.96
                                         68.690
             N
                 LEU A 391
                                 17.422
ATOM
       5839
                                                 32.423
31.009
                                                                                С
                                                          1.00 34.90
                                         68.500
                LEU A 391
                                 18.541
MOTA
       5841
             CA
                                                          1.00 32.49
                                         68.953
ATOM
       5843
             CB
                 LEU A 391
                                 18,177
                                                          1.00 27.67
                                         68.168
ATOM
       5846
             CG
                 LEU A 391
                                 17.068
                                                  30.316
                                                          1.00 25.20
                                                 28.849
             CD1 LEU A 391
                                 17.062
                                         68.477
ATOM
       5848
                                                          1.00 28.90
                                         66.705
                                                  30.545
             CD2 LEU A 391
                                 17.215
ATOM
       5852
                                                          1.00 34.94
                                         69.208
                                                  32.866
                                 19.836
ATOM
                 LEU A 391
       5856
             С
                                                          1.00 33.78
                                                  32.551
                                 20.904
                                         68.727
ATOM
       5857
                 LEU A 391
                                                 33.581
                                                          1.00 36.31
                                         70.333
                 THR A 392
                                 19.745
             N
MOTA
       5858
                                                          1.00 35.87
                                                 34.049
                                 20.956
                                         71.049
ATOM
       5860
             CA
                 THR A 392
                                                          1.00 31.25
                                                 34.929
                 THR A 392
                                 20.613
                                         72.255
       5862
             CB
ATOM
                                                          1.00 33.17
                                                 34.266
             OG1 THR A 392
                                 19.680
                                         73.093
       5864
ATOM
                                                          1.00 32.50
             CG2 THR A 392
                                 21.847
                                         73.133
                                                 35.119
ATOM
       5866
                                                                                С
                                                          1.00 36.28
                                         70.154
                                                 34.901
                 THR A 392
                                 21.849
       5870
ATOM
             С
                                                                                0
                                                          1.00 29.00
                 THR A 392
                              . 23.053
                                         70.234
                                                  34.850
       5871
ATOM
             0
                                                          1.00 36.45
                                                                                N
                                         69.343
                                                  35.726
                                 21.222
                 SER: A 393
ATOM
       5872
             N
                                                                                С
                                         68.582
                                                  36.705
                                                          1.00 36.95
             CA
                 SER A 393
                                 21.944
MOTA
       5874
                                                                                С
                                         67.910
                                                  37.635
                                                          1.00 37.07
                                 20.950
                 SER A 393
ATOM
       5876
             CB
                                                                                0
                                         67.032
                                                 36.885
                                                          1.00 34.34
                 SER A 393
                                 20.137
ATOM
       5879
             OG
                                         67.529 36.021 1.00 38.25
                                                                                С
                                 22.797
                 SER A 393
ATOM
       5881
             С
                                                         1.00 39.77
1.00 35.38
                                 23.839
                                         67.133 , 36.555
                                                                                0
       5882
             0
                 SER A 393
ATOM
                                 22.327
                                         67.059
                                                 34.868
                                                                                N
       5883
             N
                 VAL A 394
ATOM
                                                         1.00 35.66
                                                                                С
                                         66.099
                                                 34.048
                                 23.051
MOTA
       5885
             CA
                 VAL A 394
                                         65.354 33.139
                                                         1.00 35.63
                                                                                С
                                 22.085
ATOM
       5887
             CB
                 VAL A 394
                                          64.364 32.270 1.00 37.48
                                                                                С
                                 22.821
             CG1 VAL A 394
ATOM
       5889
                                                 33.974 1.00 35.81
                                         64.640
             CG2 VAL A 394
                                 21.042
ATOM
       5893
                                         66.781 33.185
66.338 33.166
                                                 33.185.
                                                          1.00 36.57
                 VAL A 394
                                 24.125
ATOM
       5897
                                                         1.00 34.26
                 VAL A 394
                                 25.278
ATOM
       5898
             ٥
                                                          1.00 34.00
                                          67.863 32.497
                 LEU A 395
                                 23.742
ATOM
       5899
                                                         1.00 30.95
                                                 31.608
                                          68.620
ATOM
       5901
             CA
                 LEU A 395
                                 24.644
                                                 30.777
                                                          1.00 30.78
1.00 33.56
                                          69.674
                 LEU A 395
                                 23.885
ATOM
       5903
             CB
                                                  29.450
                                         69.233
MOTA
       5906
             CG
                 LEU A 395
                                 23.238
                                                 29.592
28.903
                                         67.932
70.262
                                                          1.00 36.48
ATOM
       5908
             CD1 LEU A 395
                                 22.535
                                                          1.00 33.35
                                 22.234
             CD2 LEU A 395
ATOM
       5912
                                                  32.360
                                 25.754
                                          69.319
                                                          1.00 29.4B
                 LEU A 395
ATOM
       5916
             С
                                                  31.796
                                                          1.00 33.11.
                                 26.785
                                         69.613
                 LEU A 395
ATOM
             0
       5917
                                                  33.625
                                                          1.00 32.67
                                 25.550
                                         69.614
                 HIS A 396
       5918
ATOM
             N
                                                          1.00 33.53
                                 26.524
                                          70.388
                                                  34.398
                 HIS A 396
MOTA
       5920
             CA
                                                          1.00 33.63
                                 25.940 71.740
                 HIS A 396
                                                  34.818
       5922
             CB
ATOM
                                                          1.00 36.91
                                 25.898
                                          72.746
                                                  33.722
                 HIS A 396
       5925
             CG
ATOM
                                                          1.00 42.49
             ND1 HIS A 396
                                 25.908
                                          74.096
                                                  33.972
       5926
ATOM
                                                          1.00 46.52
                                                                                 C
             CE1 HIS A 396
                                 25.862
                                          74.749
                                                  32.827
MOTA
       5928
                                                          1.00 40.19
                                          73.868
                                                  31.843
             NE2 HIS A 396
                                 25.828
ATOM
       5930
                                          72.609
                                                  32.376
                                                          1.00 39.52
             CD2 HIS A 396
                                 25.857
ATOM
       5932
                                                          1.00 32.94
                                          69.609
                                                  35.629
                 HIS A 396
                                 26.955
ATOM
       5934
             С
                                                          1.00 30.47
                                          70.205
                                                  36.602
                 HIS A 396
                                 27.419
ATOM
        5935
             0
                                                          1.00 34.25
                                          68.284
                                                  35.557
                 ASP A 397
                                 26.801
ATOM
       5936
             N
                                                          1.00 36.99
                 ASP A 397
                                 27.365
                                          67.354
                                                  36.535
MOTA
        5938
             CA
                                                          1.00 38.31
                                          65.926
                                                  35.998
                 ASP A 397
                                 27.322
ATOM
        5940
             CB
                                                                                 С
                  ASP A 397
                                 27.641
                                         64.917
                                                  37.053
                                                          1.00 41.12
        5943
             CG
ATOM
                                                                                 0
                                  28.821
                                         64.526
                                                 37.188
                                                          1.00 46.09
             OD1 ASP A 397
ATOM
        5944
                                                  37.811
                                                          1.00 42.04
                                                                                 0
                                  26.773
                                          64.461
             OD2 ASP A 397
ATOM
        5945
                                                          1.00 40.31
                                         67.689
                                                  36.840
                                  28.800
MOTA
        5946
                 ASP A 397
                                                          1.00 42.34
                                                                                 0
                                         67.702
                                                  35.934
ATOM
        5947
                  ASP A 397
                                 29.635
                                                          1.00 44.91
                                                  38.117
                                         67.937
                  ASN A 398
                                 29.077
        5948
ATOM
                                                                                 С
                                                  38.580
                                                          1.00 46.66
                                         68.355
                 ASN A 398
                                  30.399
        5950
             CA
ATOM
                                                  40.096
                                                          1.00 49.60
                  ASN A 398
                                  30.393
                                         68.573
        5952
              CB
ATOM
                                                  40.458
                                                          1.00 57.55
                  ASN A 398
                                  31.017
                                          69.872
ATOM
        5955
             CG
                                                  41.089
                                                          1.00 68.60
                                  30.388
                                          70.729
             OD1 ASN A 398
        5956
ATOM
                                                  39.992
                                                          1.00 61.83
                                          70.076
                                  32.245
        5957
             ND2 ASN A 398
ATOM
                                                          1.00 45.61
                                                  38.259
                  ASN A 398
                                  31.523
                                          67.384
ATOM
        5960
              C
                                                           1.00 47.97
                                                  38.167
                  ASN A 398
                                  32.679
                                          67.770
ATOM
        5961
             0
                                                          1.00 42.34
                  LYS A 399
                                  31.189
                                          66.117
                                                  38.131
ATOM
        5962
             N
                                  32.204
                                          65.101
                                                  38.093
                                                          1.00 41.32
                 LYS A 399
ATOM
        5964
             CA
                                                          1.00 42.59
                                  31.724
                                          63.869
                                                  38.861
                 LYS A 399
MOTA
        5966
             CB
```

|              |              |           |            |   |            |                  | Figu             | ıre 5            |      |                 |           |         |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|-----------------|-----------|---------|
| MOTA         | 5969         | CG .      | LYS        |   |            | 32.682           | 62.722           | 38.871           |      | 48.12           |           | C       |
| MOTA         | 5972         | CD        | LYS        |   |            | 32.170           | 61.597           | 39.762           |      | 54.03<br>53.46  |           | c       |
| ATOM         | 5975         | CE        | LYS        |   |            | 33.121<br>33.238 | 60.404<br>59.831 | 39.770<br>41.126 |      | 57.21           |           | N       |
| MOTA<br>MOTA | 5978<br>5982 | NZ<br>C   | LYS        |   |            | 32.515           | 64.787           | 36.646           |      | 42.47           |           | С       |
| ATOM         | 5983         | ŏ         | LYS        |   |            | 33.685           | 64.748           | 36.274           |      | 46.52           |           | 0       |
| ATOM         | 5984         | N         | GLU        | A | 400        | 31.493           | 64.580           | 35.814           |      | 39.43           |           | Ŋ       |
| ATOM         | 5986         | CA        | GLU        |   |            | 31.749           | 64.293           | 34.404           | _    | 39.50           |           | C       |
| ATOM         | 5988         | CB        | GLU        |   |            | 30.490           | 63.847           | 33.676<br>32.233 |      | 40.82           |           | c       |
| ATOM         | 5991<br>5994 | CD        | GLU<br>GLU |   |            | 30.745<br>31.004 | 63.417<br>61.938 | 32.233           |      | 41.16           |           | Č       |
| ATOM<br>ATOM | 5995         | OE1       | GLU        |   |            | 30.936           | 61.419           | 30.933           |      | 38.87           |           | 0       |
| ATOM         | 5996         |           | GLU        |   |            | 31.274           | 61.282           | 33.093           |      | 49.13           |           | 0       |
| ATOM         | 5997         | С         | GLU        |   |            | 32.366           | 65.487           | 33.678           |      | 40.0B           |           | C       |
| ATOM         | 5998         | 0         | GLU        |   |            | 33.215<br>31.956 | 65.301<br>66.698 | 32.796<br>34.064 |      | 38.87<br>40.11  |           | N       |
| atom<br>Atom | 5999<br>6001 | N<br>CA   | PHE        |   |            | 32.443           | 67.933           | 33.447           |      | 38.76           |           | C       |
| ATOM         | 6003         |           | PHE        |   |            | 31.302           | 68.647           | 32.677           | 1.00 | 36.25           | •         | C       |
| ATOM         | 6006         | CG        | PHE        | A | 401        | 30.501           | 67.727           | 31.733           |      | 31.77           |           | C       |
| ATOM         | 6007         |           | PHE        |   |            | 29.250           | 67.281           | 32.076           |      | 29.79<br>30.24  |           | C<br>C  |
| ATOM         | 6009         |           | PHE        |   |            | 28.512<br>29.025 | 66.447<br>66.057 | 31.222<br>30.022 |      | 29.71           |           | Č       |
| ATOM<br>ATOM | 6011<br>6013 | CZ<br>CE2 | PHE        |   |            | 30.278           | 66.495           | 29.658           |      | 33.60           |           | Ċ       |
| ATOM         | 6015         |           | PHE        |   |            | 31.010           | 67.329           | 30.505           | 1.00 | 33.67           | •         | С       |
| ATOM         | ,6017        | С         | PHE        |   |            | 33.065           | 68.832           | 34.530           |      | 43.65           |           | C       |
| ATOM         | 6018         | 0         | PHE        |   |            | 32.404           | 69.688           | 35.071           |      | 47.18<br>51.87  |           | O<br>N  |
| ATOM         | 6019         | N         | PRO<br>PRO |   |            | 34.349<br>34.995 | 68.648<br>69.266 | 34.825<br>35.987 |      | 53.71           |           | C       |
| ATOM<br>ATOM | 6020<br>6022 | CA<br>CB  | PRO        |   |            | 36.457           | 68.961           | 35.754           |      | 53.08           | •         | c       |
| ATOM         | 6025         | CG        | PRO        |   |            | 36.410           | 67.687           | 35.090           |      | 54.91           |           | C:      |
| MOTA         | 6028         | CD        | PRO        |   |            | 35.303           | 67.802           | 34.094           |      | 54.31           |           | C       |
| ATOM         | 6031         | C         | PRO        |   |            | 34.808           | 70.755           | 36.219           |      | 56.08<br>64.24  |           | C.      |
| ATOM         | 6032<br>6033 | O<br>N    | PRO        |   | 402        | 34.720<br>34.771 | 71.122<br>71.604 | 37.399<br>35.204 | 1.00 | 51.48           | 1930      | N       |
| ATOM<br>ATOM | 6035         | CA        | ASN        |   |            | 34.413           | 72.997           | 35.483           |      | 51.00           |           | c.      |
| ATOM         | 6037         | CB ·      | ASN        |   |            | 35.524           | 73.933           | 35.076           |      | 54.92           |           | C       |
| MOTA         | 6040         | CG        |            |   | 403        | 36.816           | 73.609           | 35.764           | 1.00 | 59.63           |           | С       |
| ATOM         | 6041         |           | ASN        |   |            | 36.941           | 73.793<br>73.110 | 36.978<br>34.998 | 1.00 | 63.01°<br>57.27 |           | iO<br>N |
| ATOM         | 6042<br>6045 | C ND2     | ASN        |   | 403        | 37.791<br>33.159 | 73.110           | 34.733           | 1.00 | 47.49           | S         | C       |
| MOTA<br>MOTA | 6046         | ŏ         |            |   | 403        | 33.217           | 73.936           | 33.681           |      | 46.88           | 1 - A - 1 | - O.    |
| ATOM         | 6047         | N         |            |   | 404        | 32.023           | 72.866           | 35.255           |      | 44.74           | •         | N       |
| MOTA         | 6048         | CA        |            |   | 404        | 30.831           | 72.701           | 34.426           |      | 43.70           |           | C       |
| ATOM         | 6050         | CB        |            |   | 404        | 29.841<br>30.552 | 71.973<br>71.683 | 35.342<br>36.617 |      | 45.99<br>45.62  |           | č       |
| ATOM<br>ATOM | 6053<br>6056 | CD        | PRO        |   | 404<br>404 | 31.755           | 72.541           | 36.662           |      | 45.54           |           | Ċ       |
| ATOM         | 6059         | c         |            |   | 404        | 30.241           | 74.006           | 33.969           | 1.00 | 43.79           |           | С       |
| ATOM         | 6060         | 0         | PRO        |   |            | 29.505           | 73.970           | 32.998           |      | 41.17           |           | 0       |
| ATOM         | 6061         | N         |            |   | 405        | 30.535           | 75.110           | 34.657           |      | 46.07<br>49.59  |           | N<br>C  |
| ATOM<br>ATOM | 6063<br>6065 | CA<br>CB  | GLU        |   | 405<br>405 | 29.961<br>29.570 | 76.422<br>77.196 | 34.324<br>35.594 |      | 52.86           |           | č       |
| ATOM         | 6068         | CG        |            |   | 405        | 28.387           | 76.581           | 36.369           |      | 60.24           |           | С       |
| ATOM         | 6071         | CD        | GLU        | A | 405        | 27.416           | 77.611           | 36.977           |      | 67.52           |           | C       |
| ATOM         | 6072         |           | GLU        |   |            | 27.871           | 78.645           | 37.545           |      | 69.51<br>73.07  |           | 0       |
| ATOM         | 6073<br>6074 |           | GLU        |   | 405        | 26.179<br>30.928 | 77.379           | 36.889           |      | 46.84           |           | č       |
| ATOM<br>ATOM | 6075         | 0         |            |   | 405        | 30.767           | 78.422           | 33.244           |      | 43.37           |           | 0       |
| ATOM         | 6076         | N         |            |   | 406        | 31.923           | 76.490           | 32.955           | 1.00 | 46.95           |           | N       |
| MOTA         | 6078         | ÇA        |            |   | 406        | 32.969           | 77.002           | 32.084           |      | 46.84           |           | C       |
| ATOM         | 6080         | CB        |            |   | 406        | 34.319           | 76.692           | 32.693<br>33.896 |      | 50.57<br>56.54  |           | c       |
| ATOM<br>ATOM | 6083<br>6086 | CG<br>SD  |            |   | 406<br>406 | 34.640<br>35.958 | 77.537<br>78.673 | 33.461           |      | 66.87           |           | S       |
| ATOM         | 6087         | CE        |            |   | 406        | 37.453           | 77.430           | 33.180           |      | 61.78           |           | С       |
| MOTA         | 6091         | C         |            |   | 406        | 32.887           | 76.331           | 30.713           |      | 42.91           |           | C       |
| ATOM         | 6092         | 0         |            |   | 406        | 32.641           | 75.113           | 30.597           |      | 43.98           |           | Ŋ       |
| ATOM         | 6093         | N         |            |   | 407        | 33.092<br>33.052 | 77.141<br>76.679 | 29.685<br>28.299 |      | 36.95<br>38.01  |           | C       |
| ATOM<br>ATOM | 6095<br>6097 | CA<br>CB  |            |   | 407<br>407 | 32.722           | 77.844           | 27.360           |      | 36.42           |           | č       |
| ATOM         | 6100         | CG        |            |   | 407        | 32.740           | 77.467           | 25.914           | 1.00 | 33.00           |           | C       |
| ATOM         | 6101         |           | PHE        |   |            | 31.701           | 76.708           | 25.367           |      | 33.10           |           | C       |
| ATOM         | 6103         |           | PHE        |   |            | 31.711           | 76.355           | 24.034           |      | 29.50<br>33.31  |           | C       |
| ATOM         | 6105         | CZ        |            |   | 407        | 32.768<br>33.805 | 76.752<br>77.505 | 23.232<br>23.762 |      | 29.62           |           | Č       |
| ATOM<br>ATOM | 6107<br>6109 |           | PHE        |   |            | 33.791           | 77.844           | 25.105           | 1.00 | 29.09           |           | C       |
| ATOM         | 6111         | CDZ       |            |   | 407        | 34.391           | 76.078           | 27.893           | 1.00 | 37.04           |           | C       |
| ATOM         | 6112         | ŏ         |            |   | 407        | 35.406           | 76.773           | 27.821           | 1.00 | 38.51           |           | 0       |
|              |              |           |            |   |            |                  |                  |                  |      |                 |           |         |

|              |                |           |            |   |     |                  | Fig              | ure 5            |                          |        |
|--------------|----------------|-----------|------------|---|-----|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 6113           | N         | ASP        |   |     | 34.412           | 74.784           | 27.639           | 1.00 34.95               | N      |
| ATOM<br>ATOM | 6115<br>6117   | CA<br>CB  | ASP<br>ASP |   |     | 35.675<br>36.471 | 74.153<br>73.840 | 27.294<br>28.549 | 1.00 36.36<br>1.00 39.24 | C<br>C |
| ATOM         | 6120           | CG        | ASP        |   |     | 37.788           | 73.174           | 28.233           | 1.00 41.88               | č      |
| ATOM         | 6121           |           | ASP        |   |     | 38.231           | 72.363           | 29.069           | 1.00 48.44               | . 0    |
| ATOM<br>ATOM | 6122<br>6123   | OD2<br>C  | ASP<br>ASP |   |     | 38.437<br>35.497 | 73.390<br>72.893 | 27.181<br>26.466 | 1.00 40.96               | O<br>C |
| ATOM         | 6124           | .0        | ASP        |   |     | 35.082           | 71.858           | 26.986           | 1.00 30.05               | Ö      |
| ATOM         | 6125           | N         | PRO        | A | 409 | 35.817           | 72.976           | 25.182           | 1.00 24.57               | N      |
| ATOM<br>ATOM | 6126<br>6128   | CA<br>CB  | PRO<br>PRO |   |     | 35.654<br>36.260 | 71.834<br>72.327 | 24.276<br>22.965 | 1.00 27.47<br>1.00 29.98 | C      |
| ATOM         | 6131           | CG        | PRO        |   |     | 36.189           | 73.818           | 23.048           | 1.00 29.98               | c      |
| MOTA         | 6134           | CD        | PRO        | A | 409 | 36.330           | 74.165           | 24.488           | 1.00 27.49               | С      |
| ATOM<br>ATOM | 6137<br>6138   | С<br>0    | PRO        |   |     | 36.347<br>35.884 | 70.556<br>69.494 | 24.741<br>24.369 | 1.00 26.48               | C<br>O |
| ATOM         | 6139           | N         | HIS        |   |     | 37.412           | 70.647           | 25.543           | 1.00 30.38               | N      |
| MOTA         | 6141           | CA        | HIS        |   |     | 38.074           | 69.439           | 26.065           | 1.00 29.76               | , c    |
| MOTA<br>MOTA | 6143<br>6146   | CB<br>CG  | HIS        |   |     | 39.403<br>40.382 | 69.769<br>70.366 | 26.759<br>25.810 | 1.00 29.24<br>1.00 32.24 | C      |
| ATOM         | 6147           |           | HIS        |   |     | 40.821           | 69.684           | 24.693           | 1.00 32.24               | N      |
| ATOM         | 6149           |           | HIS        |   |     | 41.578           | 70.487           | 23.966           | 1.00 34.93               | C      |
| ATOM<br>ATOM | 6151<br>6153   |           | HIS<br>HIS |   |     | 41.627<br>40.884 | 71.670<br>71.620 | 24.558<br>25.714 | 1.00 33.83               | n<br>C |
| ATOM         | 6155           | .c        | HIS        |   |     | 37.177           | 68.568           | 26.903           | 1.00 28.79               | č      |
| ATOM .       | 6156           | 0         | HIS        |   |     | 37.487           | 67.401           | 27.112           | 1.00 33.28               | 0      |
| ATOM<br>ATOM | 6157<br>6159   | N<br>CA   | HIS        |   |     | 36.047<br>34.991 | 69.112<br>68.305 | 27.345<br>27.940 | 1.00 29.97<br>1.00 28.38 | N<br>C |
| ATOM         | 6161           | CB        | HIS        |   |     | 33.761           | 69.171           | 28.239           | 1.00 35.00               | č      |
| ATOM         | 6164           | CG        | HIS        |   |     | 33.890           | 70.024           | 29.470           | 1.00 36.98               | C      |
| ATOM .       | 6165<br>6167   |           | HIS        |   |     | 34.016<br>34.106 | 69.489<br>70.473 | 30.729<br>31.609 | 1.00 34.28<br>1.00 42.10 | N<br>C |
| ATOM         | 6169           |           | HIS        |   |     | 34.027           | 71.623           | 30.966           | 1.00 38.02               | N      |
| MOTA         | 6171           |           | HIS        |   |     | 33.881           | 71.371           | 29.628           | 1.00 36.49               | C      |
| ATOM         | 6173           | С<br>0    | HIS<br>HIS |   |     | 34.569<br>34.054 | 67.141<br>66.172 | 27.054<br>27.549 | 1.00 22.28<br>1.00 18.01 | C<br>0 |
| ATOM ,       | 6175           | N         | PHE        |   |     | 34.726           | 67.264           | 25.738           | 1.00 27.32               | N      |
| ATOM         | 6177           | CA        | PHE        |   |     | 34.381           | 66.189           | 24.810           | 1.00 29.86               | C      |
| ATOM         | 6179<br>6182   | CB<br>CG  | PHE        |   |     | 33.201<br>31.917 | 66.617<br>66.820 | 23.934<br>24.695 | 1.00 32.60<br>1.00 32.56 | · c    |
| ATOM         | 6183           | CD1       | PHE        | A | 412 | 31.584           | 68.064           | 25.210           | 1.00 35.09               | С      |
| ATOM         | 6185           |           | PHE        |   |     | 30.422           | 68.229           | 25.932           | 1.00 33.75               | C      |
| ATOM<br>ATOM | 6187<br>6189   | CZ<br>CE2 | PHE        |   |     | 29.567<br>29.886 | 67.154<br>65.931 | 26.115<br>25.601 | 1.00 32.37<br>1.00 29.38 | C<br>C |
| ATOM         | 6191           | CD2       | PHE        | A | 412 | 31.048           | 65.767           | 24.898           | 1.00 31.77               | С      |
| ATOM<br>ATOM | 6193<br>6194   | 0         | PHE        |   |     | 35.588<br>35.402 | 65.742<br>65.139 | 23.943           | 1.00 34.43               | C<br>O |
| ATOM         | 6195           | N         | LEU        |   |     | 36.815           | 66.020           | 22.879<br>24.407 | 1.00 32.85<br>1.00 34.91 | N      |
| MOTA         | 6197           | CA        | LEU        | A | 413 | . 38.041         | 65.468           | 23.800           | 1.00 35.09               | С      |
| ATOM<br>ATOM | 6199<br>6202   | CB<br>CG  | LEU        |   |     | 38.906<br>38.275 | 66.612<br>67.399 | 23.307<br>22.168 | 1.00 33.81               | C<br>C |
| ATOM         | 6204           |           | LEU        |   |     | 39.067           | 68.651           | 21.872           | 1.00 30.39               | Č      |
| ATOM         | 6208           |           | LEU        |   |     | 38.129           | 66.493           | 20.945           | 1.00 31.38               | C      |
| ATOM<br>ATOM | 6212<br>6213   | C         | LEU .      |   |     | 38.873<br>38.920 | 64.588<br>64.863 | 24.751<br>25.954 | 1.00 36.69<br>1.00 38.17 | C<br>O |
| ATOM         | 6214           | N         | ASP .      |   |     | 39.532           | 63.545           | 24.216           | 1.00 35.15               | n      |
| ATOM         | 6216           | CA        | ASP .      |   |     | 40.549           | 62.792           | 24.980           | 1.00 30.66               | C      |
| ATOM<br>ATOM | 6218<br>6221   | CB<br>CG  | ASP .      |   |     | 40.625<br>40.991 | 61.286<br>61.011 | 24.621<br>23.170 | 1.00 24.52<br>1.00 32.47 | C<br>C |
| ATOM         | 6222           |           | ASP .      |   |     | 40.670           | 59.890           | 22.676           | 1.00 31.72               | ō      |
| ATOM         | 6223           |           | ASP .      |   |     | 41.593           | 61.827           | 22.439           | 1.00 33.27               | 0      |
| ATOM<br>ATOM | 6224<br>6225 . | С<br>. О  | ASP ASP    |   |     | 41.891<br>41.937 | 63.530<br>64.671 | 24.863<br>24.345 | 1.00 33.27<br>1.00 29.65 | C<br>O |
| ATOM         | 6226           | N         | GLU :      |   |     | 42.946           | 62.933           | 25.419           | 1.00 34.72               | N      |
| ATOM         | 6228           | CA        | GLU        |   |     | 44.280           | 63.549           | 25.429           | 1.00 37.95               | C      |
| ATOM<br>ATOM | 6230<br>6233   | CB<br>CG  | GLU I      |   |     | 45.239<br>45.776 | 62.771           | 26.331<br>25.734 | 1.00 40.90<br>1.00 42.52 | C      |
| MOTA         | 6236           | CD        | GLU 2      | A | 415 | 44.719           | 60.414           | 25.559           | 1.00 44.47               | С      |
| ATOM         | 6237           |           | GLU A      |   |     | 44.860           | 59.634           | 24.593           | 1.00 45.71               | . 0    |
| ATOM<br>ATOM | 6238<br>6239   | OE2       | GLU Z      |   |     | 43.769<br>44.872 | 60.355<br>63.728 | 26.386<br>24.020 | 1.00 45.23<br>1.00 37.73 | , C    |
| ATOM         | 6240           | ō         | GLU Z      |   |     | 45.528           | 64.728           | 23.768           | 1.00 30.77               | 0      |
| ATOM         | 6241           | N         | GLY 2      |   |     | 44.629           | 62.782           | 23.107           | 1.00 37.92               | И      |
| ATOM<br>ATOM | 6243<br>6246   | CA<br>C   | GLY I      |   |     | 44.871<br>43.796 | 63.031<br>64.013 | 21.688<br>21.275 | 1.00 42.84<br>1.00 45.28 | C<br>C |
| MOTA         | 6247           | 0         | GLY A      | A | 416 | 43.005           | 64.467           | 22.100           | 1.00 54.88               | 0      |
| MOTA         | 6248           | N         | GLY 1      | A | 417 | 43.660           | 64.351           | 20.023           | 1.00 44.07               | N      |
|              |                |           |            |   |     |                  |                  |                  |                          |        |

```
Figure 5
                                          65.194 19.733
                                 42.496
                                                          1.00 43.80
ATOM
       6250
            CA
                 GLY A 417
ATOM
       6253
             C
                 GLY A 417
                                 41.151
                                          64.483
                                                  19.536
                                                          1.00 37.32
ATOM
       6254
             0
                 GLY A 417
                                 40.287
                                          65.054
                                                  18.943
                                                          1.00 38.95
ATOM
       6255
             N
                 ASN A 418
                                 40.970
                                          63.251
                                                  19.984
                                                          1.00 35.14
ATOM
       6257
             CA
                 ASN A 418
                                 39.800
                                          62.466
                                                  19.575
                                                          1.00 34.88
                                                                                 С
ATOM
       6259
             СВ
                 ASN A 418
                                 40.092
                                          60.966
                                                  19.670
                                                          1.00 38.57
                                                                                 С
                 ASN A 418
                                 41.423
                                          60.591
                                                  19.030
                                                          1.00 44.68
                                                                                 C
ATOM
       6262
             CG
ATOM
       6263
             OD1 ASN A 418
                                 42.342
                                          60.084
                                                  19.701
                                                          1.00 48.99
                                                                                 0
             ND2 ASN A 418
                                 41.537
                                          60.840
                                                  17.732
                                                          1.00 37.89
                                                                                 N
ATOM
       6264
                                                  20.322
                 ASN A 418
                                          62.774
                                                          1.00 32.24
                                                                                 С
ATOM
       6267
             С
                                 38.515
                                 38.533
                                          63.168
                                                          1.00 30.52
                                                                                 0
       6268
             0
                 ASN A 418
                                                  21.462
ATOM
             N
                 PHE A 419
                                                                                 N
ATOM
       6269
                                 37.382
                                          62.552
                                                  19.662
                                                          1.00 34.31
                                          62.918
ATOM
       6271
             CA
                 PHE A 419
                                 36.084
                                                  20.201
                                                          1.00 28.12
                                                                                 С
             СВ
                 PHE A 419
                                 34.994
                                          62.934
                                                  19.125
                                                          1.00 28.67
                                                                                 C
ATOM
       6273
                 PHE A 419
                                 33:634
                                          63.260
                                                  19.675
                                                          1.00 28.79
                                                                                 C
             CG
ATOM
       6276
                                                                                 c
             CD1 PHE A 419
                                                  19.892
                                                          1.00 29.67
                                 33.263
                                          64.582
ATOM
       6277
                                          64.890
                                                  20.446
                                                          1.00 28.46
                                                                                 С
             CE1 PHE A 419
                                 32.033
ATOM
       6279
                                                  20.795
                 PHE A 419
                                          63.886
                                                          1.00 30.30
                                                                                 C
ATOM
       6281
             CZ
                                 31.161
                                                  20.597
             CE2 PHE A 419
                                 31.507
                                          62.555
                                                          1.00 27.78
                                                                                 C
ATOM
       6283
             CD2 PHE A 419
                                          62.249
                                                  20.043
                                                          1.00 29.82
       6285
                                 32.747
MOTA
                                                  21.249
       6287
                 PHE A 419
                                 35.683
                                          61.944
                                                          1.00 27.84
ATOM
             С
                 PHE A 419
                                 35.758
                                          60.747
                                                  21.017
                                                          1.00 28.40
       6288
ATOM
             0
                 LYS A 420
                                                  22,368
                                                          1.00 29.77
                                          62,472
MOTA
       6289
             N
                                 35,177
                                                          1.00 31.11
                                                  23.560
       6291
             CA
                 LYS A 420
                                 34.848
                                          61.690
ATOM
                                                  24.720
                                                                                 С
                                                          1.00 29.46
                 LYS A 420
                                 35.742
                                          62.145
ATOM
       6293
             CB
                                                  26.028
27.177
                                 35.498
                                                          1.00 31.46
                                                                                 C
                 LYS A 420
                                          61.367
ATOM
       6296
             CG
                                                          1.00 35.20
                                                                                 C
ATOM
       6299
             CD
                 LYS A 420
                                 36.494
                                          61.729
                                                                                 С
ATOM
       6302
             CE
                 LYS A 420
                                 36.609
                                          63.241
                                                  27.404
                                                          1.00 31.92
                                                          1.00 30.13
                                                  28.422
                                                                                 N
ATOM
       6305
             NZ
                 LYS A 420
                                 37.603
                                          63.606
                                                          1.00 32.09
                                                                                 С
       6309
             С
                 LYS A 420
                                 33.359
                                          61.817
                                                  23.936
ATOM
                                                                                 ٥
ATOM
       6310
             0
                 LYS A 420
                                32.917
                                          62.816
                                                  24.484
                                                          1.00 34.76
             N
                 LYS A 421
                                32.581
                                          60.794
                                                  23.644
                                                          1.00 35.54
                                                                                 N
ATOM
       6311
             CA
                 LYS A 421
                              31.154
                                          60.841
                                                  23.915
                                                          1.00 37.83
                                                                                 C
ATOM
       6313
ATOM
       6315
             CB
                 LYS A 421
                                 30.432
                                          59.617
                                                  23.306
                                                          1.00 38.33
                                                                                 С
ATOM
       6318
             CG
                 LYS A 421
                                 30.841
                                          58.243
                                                  23.859
                                                          1.00 41.07
                                                                                 С
                 LYS A 421
                                 30.128
                                          57.101
                                                  23.111
                                                          1.00 42.68
                                                                                 С
ATOM
       6321
             CD
                                          55.751
                                                  23.366
                                                          1.00 44.81
                                                                                 С
       6324
             CE
                 LYS A 421
                                 30.794
ATOM
                 LYS A 421
                               29.907
                                                  22.951
                                                          1.00 49.26
                                                                                 N
       6327
             NZ
                                          54.635
ATOM
                               30.930
                                                  25.425
                                                          1.00 39.36
                                                                                 С
       6331
                 LYS A 421
                                          60.953
ATOM
             С
                              31.808
                                                          1.00 38.69
                                                  26.186
                                                                                 0
             0
                 LYS A 421
                                          60.613
ATOM
       6332
                              29.784
                                                          1.00 41.86
             N.
                 SER A 422
                                          61.497
                                                  25.843
                                                                                 N
ATOM
       6333
             CA
CB
                 SER A 422
                                 29.310
                                          61.339
                                                  27.219
                                                          1.00 35.58
       6335
ATOM
                 SER A 422
                                 29.507
                                          62.594
                                                  28.015
                                                          1.00 33.47
                                                                                 C
       6337
ATOM
                                 28.997
                                          62.366
                                                  29.302
                                                          1.00 25.94
                 SER A 422
             OG
ATOM
       6340
                                          60.957
                                                  27.323
                                                          1.00 36.61
       6342
                 SER A 422
                                 27.839
ATOM
             C
                                          61.517
                                                  26.641
                                                          1.00 31.10
                                 26.994
                 SER A 422
ATOM
       6343
             0
                 LYS A 423
                                                  28,201
                                                          1.00 37.65
                                 27.538
                                          60.008
ATOM
       6344
             N
                                          59.655
                                                  28.458
                                                          1.00 38.41
                 LYS A 423
                                 26,158
ATOM
       6346
             CA
                                                  29.143
                                                          1.00 40.86
                 LYS A 423
                                 26.076
                                          58.288
ATOM
       6348
             CB
                                 26.582
                                          58.247
                                                  30.585
                                                          1.00 49.09
                                                                                 С
                 LYS A 423
ATOM
       6351
             CG
                                                  31.028
                                          56.790
                                                          1.00 53.42
                                                                                 ¢
                 LYS A 423
                                 26.963
ATOM
       6354
             CD
                                                  32.490
                                                          1.00 50.63
                                                                                 C
                 LYS A 423
                                 27.462
                                          56.717
ATOM
       6357
             CE
                                                          1.00 49.54
                                 26.877
                                          55.580
                                                  33.249
ATOM
       6360
             NZ
                 LYS A 423
                                          60.780
                                                  29.245
                                                          1.00 34.49
ATOM
       6364
             С
                 LYS A 423
                                 25.457
                                                          1.00 39.44
                                                                                 0
                                                  29.381
ATOM
       6365
             0
                 LYS A 423
                                 24.269
                                          60.774
ATOM
       6366
             N
                 TYR A 424
                                 26.209
                                          61.764
                                                  29.713
                                                          1.00 35.19
                                                                                 N
                                                                                 C
                 TYR A 424
                                 25.676
                                          62.957
                                                  30.360
                                                          1.00 34.02
ATOM
       6368
             CA
                                                                                 C
ATOM
       6370
             СВ
                 TYR A 424
                                 26.689
                                          63.522
                                                  31.396
                                                          1.00 35.13
                                                                                 C
                 TYR A 424
                                 26.903
                                          62.690
                                                  32.657
                                                          1.00 39.36
ATOM
       6373
             CG
                                                                                 C
             CD1 TYR A 424
                                 26.475
                                          63.153
                                                  33.912
                                                          1.00 39.65
ATOM
       6374
             CE1 TYR A 424
                                 26.662
                                          62.403
                                                  35.047
                                                          1.00 37.04
                                                                                 C
       6376
ATOM
                 TYR A 424
                                 27.294
                                          61.183
                                                  34.949
                                                          1.00 36.54
                                                                                 C
ATOM
       6378
             CZ
                 TYR A 424
                                 27.504
                                          60.442
                                                  36.066
                                                          1.00 40.47
                                                                                 0
ATOM
       6379
             OH
             CE2 TYR A 424
                                 27.728
                                          60.697
                                                  33.743
                                                          1.00 33.69
                                                                                 С
ATOM
       6381
             CD2 TYR A 424
                                 27.550
                                          61.448
                                                  32.606
                                                          1.00 39.89
                                                                                 C
       6383
ATOM
                                                  29.349
                                                          1.00 33.72
                                                                                 C
                 TYR A 424
                                 25.390
                                          64.069
       6385
ATOM
             С
                                 25.141
                                          65.203
                                                  29.725
                                                          1.00 35.17
                                                                                 0
                 TYR A 424
ATOM
       6386
             0
                                                          1.00 37.14
                                                                                 N
                                          63.773
                                                  28.064
                 PHE A 425
                                 25.455
ATOM
       6387
             N
                                 25.080
                                          64.742
                                                  27.033
                                                          1.00 33.22
ATOM
       6389
             CA
                 PHE A 425
                                                          1.00 31.84
                                 25.962
                                          64.572
                                                  25.824
ATOM
       6391
             CB
                 PHE A 425
                                                  24.750
                                                          1.00 28.43
ATOM
       6394
             CG
                 PHE A 425
                                 25.710
                                          65.572
                                                  24.900
                                                          1.00 21.74
ATOM
       6395
             CD1 PHE A 425
                                 26.135
                                          66.879
                                                  23.892
                                                          1.00 23.69
ATOM
       6397
             CE1 PHE A 425
                                 25.905
                                          67.803
                                                  22.732
                                                          1.00 18.66
       6399
             CZ PHE A 425
                                 25.258
                                          67.426
ATOM
             CE2 PHE A 425
ATOM
       6401
                                 24.843
                                          66.140
                                                  22.575
                                                          1.00 20.26
                                                                                 С
                                                  23.588
                                                          1.00 20.98
             CD2 PHE A 425
                                 25.063
                                          65.207
```

... 13.:

420

¢23

191 191

|              |              |          |            |   |            |                  | Figu             | ıre 5            |      | -              |   |   |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|---|---|--------|
| MOTA         | 6405         | С        | PHE        | A | 425        | 23.635           | 64.513           | 26.635           |      | 32.15          |   |   | C      |
| ATOM         | 6406         | 0        | PHE        |   |            | 23.371           | 63.678           | 25.791           |      | 32.47          |   |   | 0      |
| ATOM         | 6407         | N        | MET        |   |            | 22.737           | 65.284           | 27.258           |      | 34.25<br>35.24 |   |   | Ċ      |
| ATOM         | 6409         |          | MET<br>MET |   |            | 21.280<br>20.722 | 65.167<br>64.683 | 27.158<br>28.510 |      | 36.55          |   |   | č      |
| MOTA<br>MOTA | 6411<br>6414 | CB<br>CG | MET        |   |            | 20.627           | 63,201           | 28.609           |      | 40.24          |   |   | С      |
| ATOM         | 6417         | SD       | MET        |   |            | 20.114           | 62.717           | 30.216           | 1.00 | 39.19          |   |   | S      |
| ATOM         | 6418         | CE       | MET        |   |            | 20.341           | 60.993           | 30.003           |      | 43.28          |   |   | С      |
| ATOM         | 6422         | С        | MET        | A | 426        | 20.561           | 66.488           | 26.863           |      | 33.80          | • |   | C      |
| MOTA         | 6423         | 0        | MET        |   |            | 19.505           | 66.724           | 27.412           |      | 33.82<br>31.10 |   |   | O<br>N |
| MOTA         | 6424         | N.       | PRO        |   |            | 21.077           | 67.354<br>68.627 | 26.012<br>25.787 |      | 29.75          |   |   | C      |
| ATOM         | 6425         | CA       | PRO<br>PRO |   |            | 20.392<br>21.415 | 69.427           | 24.991           |      | 29.66          |   |   | Č      |
| ATOM<br>ATOM | 6427<br>6430 | CB<br>CG | PRO        |   |            | 22.199           | 68.378           | 24.267           |      | 30.92          |   |   | С      |
| ATOM         | 6433         | CD       | PRO        |   |            | 22.271           | 67.199           | 25.161           |      | 30.58          |   |   | С      |
| ATOM         | 6436         | C        | PRO        |   |            | 19.074           | 68.436           | 25.009           |      | 31.10          |   |   | C      |
| ATOM         | 6437         | 0        | PRO        |   |            | 18.261           | 69.353           | 24.935           |      | 33.29          |   |   | o<br>N |
| ATOM         | 6438         | N        | PHE        |   |            | 18.902           | 67.246           | 24.440<br>23.709 |      | 31.39<br>32.83 |   |   | C      |
| ATOM         | 6440         | CA       | PHE        |   |            | 17.708<br>18.093 | 66.836<br>66.067 | 22.413           |      | 27.16          |   |   | c      |
| ATOM<br>ATOM | 6442<br>6445 | CB<br>CG | PHE        |   |            | 18.851           | 66.877           | 21.419           |      | 25.33          |   |   | С      |
| MOTA         | 6446         |          | PHE        |   |            | 20.218           | 66.723           | 21.275           | 1.00 | 23.87          |   |   | С      |
| ATOM         | 6448         |          | PHE        |   |            | 20.930           | 67.473           | 20.341           |      | 24.51          |   |   | C      |
| ATOM         | 6450         | CZ       | PHE        |   |            | 20.295           | 68.385           | 19.540           |      | 18.58          |   |   | C      |
| ATOM         | 6452         |          | PHE        |   |            | 18.934           | 68.554           | 19.659           |      | 27.53          |   |   | C      |
| MOTA         | 6454         |          | PHE        |   |            | 18.203           | 67.798<br>65.906 | 20.607<br>24.596 |      | 24.66<br>35.09 |   |   | Č      |
| MOTA         | 6456         | C        | PHE        |   |            | 16.871<br>15.941 | 65.222           | 24.114           |      | 29.81          |   |   | ō      |
| MOTA         | 6457<br>6458 | O<br>N   | SER        |   |            | 17.223           | 65.866           | 25.880           |      | 36.16          |   |   | N      |
| ATOM         | 6460         | CA       | SER        |   |            | 16.616           | 64.941           | 26.836           |      | 37.41          |   |   | С      |
| ATOM         | 6462         | СВ       | SER        |   |            | 15.108           | 65.187           | 26.902           |      | 37.00          |   |   | C      |
| ATOM         | 6465         | OG       | SER        |   |            | 14.503           | 64.468           | 27.940           |      | . 31.98        |   |   | 0      |
| MOTA         | 6467         | C        | SER        |   |            | 16.943           | 63.476           | 26.491           |      | 38.31          |   |   | 0      |
| ATOM         | 6468         | 0        | SER        |   |            | 17.994<br>16.050 | 63.193<br>62.554 | 25.908<br>26.843 |      | 38.13          |   |   | N      |
| MOTA         | 6469         | N        | ALA<br>ALA |   |            | 16.367           | 61.139           | 26.779           |      | 40.62          |   |   | С      |
| ATOM<br>ATOM | 6471<br>6473 | CA<br>CB | ALA        |   |            | 17.406           | 60.795           | 27.835           |      | 41:45          |   |   | С      |
| ATOM         | 6477         | c        | ALA        |   |            | 15.133           | 60.257           | 26.961           |      | 42.09          |   |   | С      |
| ATOM         | 6478         | 0        | ALA        | A | 430        | 14.131           | 60.655           | 27.565           |      | 46.80          |   |   | 0      |
| MOTA         | 6479         | N        |            |   | 431        | 15.209           | 59.052           | 26.431           |      | 38.35          |   |   | N<br>C |
| ATOM         | 6481         | CA       |            |   | 431        | 14.106           | 58.141           | 26.544<br>25.474 |      | 40.00<br>39.41 |   |   | c      |
| MOTA         | 6484         | C        |            |   | 431<br>431 | 13.077<br>13.366 | 58.364<br>58.924 | 24.430           |      | 36.19          |   |   | ō      |
| atom<br>atom | 6485<br>6486 | N<br>O   |            |   | 432        | 11.863           | 57.921           | 25.763           |      | 41.85          |   |   | N      |
| ATOM         | 6488         | CA       |            |   | 432        | 10.774           | 57.894           | 24.783           |      | 45.85          |   |   | C      |
| ATOM         | 6490         | CB       |            |   | 432        | 9.631            | 57.038           | 25.335           |      | 46.86          |   |   | C      |
| ATOM         | 6493         | CG       |            |   | 432        | 10.070           | 55.577           | 25.555           |      | 50.87          |   |   | C      |
| ATOM         | 6496         | CD       |            |   | 432        | 8.908            | 54.602           | 25.531<br>25.566 |      | 55.57<br>55.94 |   |   | c      |
| ATOM         | 6499         |          |            |   | 432<br>432 | 9.376<br>8.676   | 53.154<br>52.407 | 24.486           |      | 58.23          |   | · | N      |
| MOTA<br>MOTA | 6502<br>6506 | NZ<br>C  |            |   | 432        | 10.234           | 59.242           | 24.253           |      | 44.49          |   |   | С      |
| ATOM         | 6507         |          | · LYS      |   |            | 9.545            | 59.253           | 23.243           |      | 45.46          |   |   | 0      |
| ATOM         | 6508         | N        |            |   | 433        | 10.569           | 60.353           | 24.901           |      | 44.97          |   |   | N      |
| ATOM         | 6510         | CA       | ARG        | A | 433        | 10.121           | 61.683           | 24.481           |      | 45.26<br>48.71 |   |   | C      |
| ATOM         | 6512         | CB       |            |   | 433        | 9.511            | 62.436<br>62.144 | 25.670<br>25.932 |      | 51.05          |   |   | Č      |
| ATOM         | 6515         | CG<br>CD |            |   | 433<br>433 | 8.052<br>7.070   | 63.211           | 25.400           |      | 52.16          |   |   | C      |
| MOTA<br>MOTA | 6518<br>6521 | NE       |            |   | 433        | 5.714            | 62.712           | 25.557           |      | 48.84          |   |   | N      |
| ATOM         | 6523         | CZ       |            |   | 433        | 4.658            | 63.140           | 24.909           |      | 48.99          |   |   | С      |
| MOTA         | 6524         |          | ARG        |   |            | 4.722            | 64.155           | 24.053           |      | 47.24          |   |   | N      |
| MOTA         | 6527         | NH2      | ARG        | A | 433        | 3.503            | 62.546           | 25.159           |      | 54.96<br>45.61 |   |   | N<br>C |
| ATOM         | 6530         | С        |            |   | 433        | 11.279           | 62.509           | 23.959           |      | 47.89          |   |   | ō      |
| ATOM         | 6531         | 0        |            |   | 433<br>434 | 11.159<br>12.412 | 63.720<br>61.868 | 23.815<br>23.696 |      | 43.96          |   |   | N      |
| ATOM         | 6532         | N        |            |   | 434        | 13.587           | 62.579           | 23.211           |      | 41.08          | • |   | С      |
| ATOM<br>ATOM | 6534<br>6536 | CA<br>CB |            |   | 434        | 14.751           | 61.574           | 22.937           | 1.00 | 44.08          |   |   | C      |
| MOTA         | 6538         | CG1      | ILE        | A | 434        | 16.079           | 62.309           | 22.784           |      | 45.79          |   |   | C      |
| ATOM         | 6541         | CD1      | ILE        | A | 434        | 17.240           | 61.392           | 22.640           |      | 45.51          |   |   | C      |
| MOTA         | 6545         | CG2      | ILE        | A | 434        | 14.481           | 60.724           | 21.710           |      | 43.33          |   |   | C      |
| ATOM         | 6549         | С        |            |   | 434        | 13.244           | 63.421           | 21.974<br>21.143 |      | 37.04          |   |   | 0      |
| MOTA         | 6550         | 0        |            |   | 434<br>435 | 12.451<br>13.814 | 63.027<br>64.604 | 21.143           |      | 32.99          |   |   | N      |
| ATOM<br>ATOM | 6551<br>6553 | N<br>CA  |            |   | 435        | 13.814           | 65.469           | 20.732           | 1.00 | 33.44          |   |   | C      |
| ATOM         | 6555         | CB       |            |   | 435        | 14.727           | 66.446           | 20.598           |      | 33.70          |   |   | C      |
| ATOM         | 6558         | SG       | CYS        | A | 435        | 14.569           | 67.657           | 19.289           |      | 33.40          |   |   | S      |
| MOTA         | 6559         | С        | CYS        | A | 435        | 13.457           | 64.701           | 19.436           | 1.00 | 34.60          |   |   | С      |

\$ 100

. M 3

Service Services

```
Figure 5
                                   14.324 63.918 19.085 1.00 41.27
12.386 64.966 18.709 1.00 35.97
                                                                                      0 -
                 CYS A 435
ATOM
       6560 O
                                                              1.00 35.97
                  VAL A 436
ATOM
        6561 N
                                   12.113 64.313 17.440
10.628 64.596 17.053
                                                              1.00 35.15
                                                                                      С
             CA VAL A 436
ATOM
        6563
                                                              1.00 36.18
                 VAL A 436
        6565
             CB
ATOM
                                   10.348 64.444 15.608
9.729 63.668 17.817
                                                              1.00 37.68
        6567
             CG1 VAL A 436
ATOM
        6571
              CG2 VAL A 436
                                                              1.00 37.95
ATOM
                  VAL A 436
                                    13.139
                                            64.772 16.394
                                                              1.00 35.49
        6575
              С
ATOM
                  VAL A 436
                                    13.406
                                            64.071 15.403
                                                              1.00 37.18
        6576
              0
ATOM
                                                                                      N
                  GLY A 437
                                    13.739
                                             65.930 16.638
                                                              1.00 32.32
ATOM
        6577
             N
                                                                                      С
                 GLY A 437
                                    14.695
                                             66.493
                                                     15.714
                                                              1.00 32.02
             CA
ATOM
        6579
                                                                                      C
                                                     16.112
                                                              1.00 30.69
                  GLY A 437
                                    16.148
                                             66.447
              С
ATOM
        6582
                                             67.287
                                                     15.681
                                                              1.00 30.06
                                                                                       0
                  GLY A 437
                                    16.935
ATOM
        6583
              0
                                                     16.921
                                                              1.00 32.23
                                                                                      N
                  GLU A 438
                                    16.525
                                             65.474
ATOM
        6584
              N
                                                                                      С
                  GLU A 438
                                    17.906
                                             65.366
                                                     17.373
                                                              1.00 30.35
ATOM
        6586
             CA
                  GLU A 438
                                    18.086
                                            64.069
                                                     18.147
                                                              1.00 33.34
                                                                                      C
MOTA
        6588
              CB
                                             64.011 19.018
                                                              1.00 37.16
                                                                                      C
                                    19.327
                  GLU A 438
MOTA
        6591
              CG
                                    19.497
                                             62.667
                                                     19.724
                                                              1.00 41.67
                  GLU A 438
ATOM
        6594
              CD
                                             62.573
                                                     20.575
                                                              1.00 43.82
                                                                                       ٥
              OE1 GLU A 438
                                    20.432
ATOM
        6595
                                            61.715
                                                     19.452
                                                              1.00 40.54
              OE2 GLU A 438
                                    18.696
ATOM
        6596
                                            65.402 16.173
                                                              1.00 34.52
                                    18.849
                  GLU A 438
ATOM
        6597
              C
                                            66.271
                                                     16.068
                                                              1.00 34.74
                  GLU A 438
                                    19.738
ATOM
        6598
              ٥
        6599 N ALA A 439
6601 CA ALA A 439
                                                     15.244
                                                              1.00 33.78
                                                                                      N
                                    18.633
                                            64.475
ATOM
                                    19.488
                                            64.380
                                                     14.065
                                                              1.00 30.60
                                                                                      C
ATOM
                                    19.092
                                            63.202 13.227
                                                              1.00 29.59
                                                                                      С
        6603 CB ALA A 439
MOTA
                                            65.650
                                                     13.238
                                                              1.00 27.90
                                    19.459
ATOM
        6607
             С
                  ALA A 439
                                            66.119
                                                     12.771
                                                              1.00 33.40
                                                                                       0
                                    20.495
ATOM
        6608 O
                  ALA A 439
                                            66.218
                                                     13,060
                                                              1.00 28.70
        6609
             N
                  LEU A 440
                                    18.283
ATOM
                                   18.141 67.378 12.185 1.00 31.96
16.667 67.735 12.036 1.00 35.75
16.360 69.006 11.242 1.00 38.50
                                                                                      С...
                 LEU A 440
ATOM
        6611
              CA
              CB
                  LEU A 440
ATOM
        6613
              CG LEU A 440
        6616
ATOM
                                                                                 000
                                   17.056 68.978 9.927 1.00 39.16 C
14.857 69.129 11.039 1.00 41.40 C
18.918 68.563 12.735 1.00 29.39 C
19.672 69.213 12.039 1.00 29.69 C
18.714 68.822 14.006 1.00 28.50 N
19.480 69.806 14.737 1.00 29.61 C
19.004 69.807 16.192 1.00 31.64 C
21.001 69.578 14.683 1.00 29.34 C
21.773 70.518 14.579 1.00 27.63 C
21.444 68.336 14.792 1.00 30.20 N
22.963 68.049 14.654 1.00 30.81 C
                                                      9.927
                                                              1.00 39.16
                                            68.978
              CD1 LEU A 440
ATOM
        6618
              CD2 LEU A 440
        6622
ATOM
                   LEU A 440
MOTA
        6626
              С
ATOM
        6627
                   LEU A 440
        6628
              N
                   ALA A 441
ATOM
        6630 CA ALA A 441
ATOM
        6632 CB
                  ALA A 441
ATOM
                   ALA A 441
        6636
              С
MOTA
              0
                   ALA A 441
        6637
ATOM
                   GLY A 442
MOTA
        6638
             N
                                                             1.00 30.81
                  GLY A 442
                                    22.863
                                             68.049
                                                     14.654
        6640
             CA
ATOM
                                                                                       C
                                             68.466
                                                     13.281
                                                              1.00 31.14
                   GLY A 442
                                    23.336
        6643
              С
ATOM
                   GLY A 442
                                    24.367
                                             69.098
                                                     13.169
                                                              1.00 33.60
                                                                                       0
ATOM
        6644
              0
                                    22.569
                                             68.143 12.241
                                                              1.00 31.76
                   MET A 443
ATOM
        6645
             N
                                                              1.00 30.44
                                                                                      С
                                    22.917
                                             68.560 10.893
              CA MET A 443
ATOM
        6647
                                                              1.00 33.85
                                    21.922
                                             68.036
                                                       9.867
                  MET A 443
ATOM
        6649
              CB
                                                       9.703
                                                              1.00 34.09
                                             66.529
                  MET A 443
                                    21.915
MOTA
        6652
              CG
                                                              1.00 40.71
                                             66.052
                                                       8.180
                                    21.098
ATOM
        6655
              SD
                  MET A 443
                                                       8.773
                                                              1.00 46.61
              CE MET A 443
                                    20.344
                                             64.423
ATOM
        6656
                                             70.058
                                                     10.778
                                                              1.00 31.49
                                                                                       C
                                    22.953
        6660
              С
                   MET A 443
MOTA
                                             70.601 10.153
                                                                                       0
                                    23.846
                                                              1.00 31.80
              0
                   MET A 443
ATOM
        6661
                                                     11.368
                                                              1.00 31.77
                                             70.750
              N
                   GLU A 444
                                    21.993
ATOM
        6662
                                                     11.159
                                                              1.00 31.06
                                                                                       С
                                             72.189
                   GLU A 444
                                    21.927
ATOM
        6664
              CA
                                                              1.00 32.92
                                                                                       С
                                             72.768 11.665 1.00 32.92
72.292 10.901 1.00 37.84
73.031 11.338 1.00 42.20
                   GLU A 444
                                    20.628
ATOM
        6666
              СВ
ATOM
        6669
               CG
                   GLU A 444
                                    19.418
                                                                                     ·c
ATOM
        6672
               CD
                   GLU A 444
                                    18.180
                                                              1.00 48.38
                                             74.273 11.212
72.390 11.827
              OE1 GLU A 444
                                    18.178
ATOM
        6673
                                                              1.00 43.20
ATOM
        6674
              OE2 GLU A 444
                                    17.235
                                    23.078 72.878 11.841 1.00 28.05
23.698 73.795 11.273 1.00 24.94
                   GLU A 444
        6675
ATOM
                   GLU A 444
MOTA
        6676
                                                              1.00 23.88
                                             72.436 13.057
                   LEU A 445
                                    23.369
        6677
ATOM
               N
                                             73.082 13.851 1.00 23.07
                   LEU A 445
                                    24.407
ATOM
        6679
              CA
                                             72.502 15.251 1.00 21.11
                   LEU A 445
              CB
                                    24.433
        6681
ATOM
                                                              1.00 21.47
               CG LEU A 445
                                    23.211
                                             72.946 16.039
ATOM
        6684
                                             72.136 17.327 1.00 17.30
              CD1 LEU A 445
                                    23.075
ATOM
        6686
                                             74.482 16.304
                                                              1.00 19.21
              CD2 LEU A 445
                                    23.240
ATOM
        6690
                                             72.876 13.189
                                     25.749
                                                              1.00 27.27
                   LEU A 445
ATOM
        6694
               С
                                             73.839 12.946
                                                              1.00 28.54
                   LEU A 445
                                     26.493
 MOTA
        6695
              0
                                             71.614 12.873 1.00 27.35
                                     26.036
 ATOM
        6696
              N
                   PHE A 446
                                    27.298
27.399
                                                              1.00 32.64
                                                                                       C
                                             71,239
                                                     12.241
              CA PHE A 446
        6698
 ATOM
                                                              1.00 33.69
                                             69.713 12.098
                   PHE A 446
 ATOM
        6700
               CB
                                                              1.00 38.12
                                     28.665
                                              69.276
                                                      11.454
                   PHE A 446
 ATOM
        6703
                                                     10.132
                                                              1.00 42.68
                                              68.884
               CD1 PHE A 446
                                     28,689
 ATOM
        6704
                                    29.896
                                                              1.00 44.33
                                              68.497
                                                       9.534
               CE1 PHE A 446
 ATOM
        6706
                                                     10.257
                                                              1.00 41.55
               CZ PHE A 446
                                             68.519
 ATOM
        6708
                                     31.066
                                     31.041 68.906 11.570 1.00 42.78
               CE2 PHE A 446
 ATOM
        6710
```

|              |              |          |            |   |            |                  | Fia              | ıre 5            |      |                |        |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|
| АТОМ         | 6712         | CD2      | PHE 2      | A | 446        | 29.849           | 69.291           | 12.163           |      | 38.44          | 2      |
| ATOM         | 6714         | С        | PHE 2      |   |            | 27.516           | 71.934           | 10.869           |      | 28.85<br>26.64 | 5      |
| MOTA         | 6715         | 0        | PHE A      |   |            | 28.557<br>26.511 | 72.550<br>71.865 | 10.629<br>10.003 |      | 26.75          | N R    |
| ATOM<br>ATOM | 6716<br>6718 | n<br>Ca  | LEU :      |   |            | 26.618           | 72.404           | 8.646            |      | 25.60          | G .    |
| ATOM         | 6720         | CB       | LEU        |   |            | 25.588           | 71.750           | 7.718            | 1.00 | 24.02          | C      |
| ATOM         | 6723         | CG       | LEU        |   |            | 25.711           | 70.229           | 7.637            |      | 29.23          | 2      |
| MOTA         | 6725         |          | LEU :      |   |            | 24.538           | 69.622           | 6.884            |      | 30.23          | C<br>C |
| ATOM         | 6729         |          | LEU :      |   | _          | 27.040           | 69.836<br>73.933 | 6.977<br>8.572   |      | 32.39<br>24.66 | Ç      |
| MOTA         | 6733<br>6734 | C        | LEU .      |   |            | 26.524<br>27.193 | 74.520           | 7.743            |      | 25.52          | D      |
| MOTA<br>MOTA | 6735         | N        | PHE .      |   |            | 25.726           | 74.584           | 9.422            |      | 26.91          | N      |
| ATOM         | 6737         | CA       | PHE .      |   |            | 25.689           | 76.057           | 9.415            |      | 29.36          | C      |
| ATOM         | 6739         | CB       | PHE        |   |            | 24.458           | 76.637           | 10.128           |      | 30.61<br>26.90 | C      |
| ATOM         | 6742         | CG       | PHE        |   |            | 23.129<br>23.022 | 76.250<br>75.566 | 9.533<br>8.351   |      | 30.26          | c      |
| ATOM<br>ATOM | 6743<br>6745 |          | PHE .      |   |            | 21.769           | 75.223           | 7.843            |      | 35.27          | С      |
| ATOM         | 6747         | CZ       | PHE        |   |            | 20.625           | 75.582           | 8.517            | 1.00 | 32.60          | С      |
| ATOM         | 6749         |          | PHE        |   |            | 20.730           | 76.264           | 9.692            |      | 28.39          | C      |
| ATOM         | 6751         |          | PHE        |   |            | 21.971           | 76.602           | 10.189           |      | 24.92          | C<br>C |
| ATOM         | 6753         | C        | PHE        |   |            | 26.924<br>27.406 | 76.660<br>77.704 | 10.088<br>9.661  |      | 39.14          | ŏ      |
| ATOM<br>ATOM | 6754<br>6755 | N<br>O   | PHE .      |   |            | 27.426           | 76.040           | 11.151           |      | 30.79          | N      |
| ATOM         | 6757         | CA       | LEU        |   |            | 28.588           | 76.595           | 11.837           |      | 30.90          | С      |
| ATOM         | 6759         | CB       | LEU        | A | 449        | 28.768           | 75.961           | 13.229           |      | 31.56          | C      |
| MOTA         | 6762         | CG       | LEU        |   |            | 27.741           | 76.394           | 14.285           |      | 35.96<br>34.66 | C<br>C |
| MOTA         | 6764         |          | LEU        |   |            | 28.048<br>27.664 | 75.723<br>77.932 | 15.583<br>14.491 |      | 37.25          | č      |
| ATOM<br>ATOM | 6768<br>6772 | C        | LEU        |   |            | 29.855           | 76.444           | 10.969           |      | 29.88          | С      |
| ATOM         | 6773         | ŏ        | LEU        |   |            | 30.603           | 77.411           | 10.788           |      | 21.51          | 0      |
| ATOM         | 6774         | N        | THR        |   |            | 30.076           | 75.244           | 10.420           |      | 29.18          | N      |
| ATOM         | 6776         | CA       | THR        |   |            | 31.265           | 74.998           | 9.587            |      | 29.64<br>30.36 | c<br>c |
| ATOM         | 6778         | CB       | THR<br>THR |   |            | 31.421<br>30.180 | 73.519<br>72.986 | 9.186<br>8.699   |      | 34.16          | ŏ      |
|              | 6782         |          | THR        |   |            | 31.726           | 72.655           | 10.413           |      | 31.55          | С      |
| ATOM         | 6786         | c        | THR        |   |            | 31.195           | 75.850           | 8.355            |      | 28.81          | C      |
| ATOM         | 6787         | 0        | THR        | A | 450        | 32.200           | 76.429           | 7.964            |      | 32.21          | 0      |
|              | 6788         | N        | SER        |   |            | 29.999           | 75.959           | 7.771            |      | 28.40<br>27.47 | N<br>C |
| ATOM         | 6790         | CA       | SER        |   |            | 29.786<br>28.373 | 76.827<br>76.676 | 6.615<br>6.022   |      | 27.93          | č      |
| ATOM<br>ATOM | 6792<br>6795 | CB<br>OG | SER        |   |            | 28.189           | 75.381           | 5.421            |      | 23.37          | 0      |
| ATOM         | 6797         | c        | SER        |   |            | 30.124           | 78.281           | 6.937            |      | 29.16          | С      |
| MOTA         | 6798         | 0        | SER        |   |            | 30.802           | 78.935           | 6.157            |      | 32.94          | O<br>N |
| MOTA         | 6799         | N        | ILE        |   |            | 29.708<br>30.029 | 78.784<br>80.152 | 8.094<br>8.459   |      | 30.00<br>29.35 | C      |
| MOTA<br>MOTA | 6801<br>6803 | CA<br>CB | ILE        |   |            | 29.287           | 80.566           | 9.734            |      | 32.21          | Ċ      |
| ATOM         | 6805         |          | ILE        |   |            | 27.784           | 80.697           | 9.469            |      | 31.56          | С      |
| ATOM         | 6808         | CD1      | ILE        | A | 452        | 26.955           | 80.922           | 10.723           |      | 30.73          | C      |
| ATOM         | 6812         |          | ILE        |   |            | 29.883           | 81.897           | 10.326           |      | 28.30<br>33.41 | C      |
| ATOM         | 6816         | C        |            |   | 452<br>452 | 31.536<br>32.108 | 80.345<br>81.337 | 8.666<br>8.224   |      | 35.69          | ŏ      |
| MOTA ATOM    | 6817<br>6818 | O.       |            |   | 453        | 32.187           | 79.420           | 9.356            |      | 35.56          | N      |
| ATOM         | 6820         | CA       | LEU        |   |            | 33.603           | 79.614           |                  |      | 35.66          | С      |
| ATOM         | 6822         | CB       |            |   | 453        | 33.990           | 78.786           | 10.902           | 1.00 | 34.89<br>36.20 | C      |
| MOTA         | 6825         | CG       |            |   | 453        | 33.335<br>33.499 | 79.311<br>78.292 | 12.170<br>13.258 |      | 38.84          | c      |
| ATOM<br>ATOM | 6827<br>6831 |          | LEU        |   |            | 33.936           |                  | 12.578           |      | 36.79          | C      |
| MOTA         | 6835         | C        | FEO        |   |            | 34.517           | 79.312           | 8.508            |      | 33.89          | С      |
| MOTA         | 6836         | 0        |            |   | 453        | 35.628           |                  | 8.425            |      | 33.21          | 0      |
| MOTA         | 6837         | N        |            |   | 454        | 34.034           |                  | 7.581            |      | 32.49<br>35.68 | N<br>C |
| ATOM         | 6839         | CA       |            |   | 454        | 34.745<br>34.046 |                  | 6.326<br>5.501   |      | 35.01          | č      |
| ATOM<br>ATOM | 6841<br>6844 | CB       |            |   | 454<br>454 | 34.571           |                  | 4.103            |      | 33.32          | С      |
| ATOM         | 6847         | CD       |            |   | 454        | 33.744           |                  | 3.287            |      | 34.79          | С      |
| MOTA         | 6848         | 0E1      | GLN        |   |            | 34.281           |                  | 2.663            |      | 37.72          | 0      |
| ATOM         | 6849         | NE2      |            |   | 454        | 32.423           |                  | 3.285<br>5.501   |      | 37.41<br>36.08 | N<br>C |
| ATOM         | 6852<br>6853 | 0        |            |   | 454<br>454 | 34.808<br>35.740 |                  | 4.744            |      | 38.92          | ŏ      |
| ATOM<br>ATOM | 6853<br>6854 | N        |            |   | 455        | 33.799           |                  | 5.638            | 1.00 | 40.14          | N      |
| ATOM         | 6856         | CA       |            |   | 455        | 33.636           | 81.577           | 4.745            |      | 36.76          | C      |
| ATOM         | 6858         | ÇВ       | ASN        | A | 455        | 32.214           |                  | 4.193            |      | 36.92<br>32.82 | C      |
| ATOM         | 6861         | CG       |            |   | 455        | 32.004<br>32.269 |                  | 3.126<br>1.954   |      | 35.94          | 0      |
| ATOM<br>ATOM | 6862<br>6863 |          | ASN<br>ASN |   |            | 31.522           |                  | 3.537            |      | 31.89          | N      |
| ATOM         | 6866         | C        |            |   | 455        | 33.970           | 82.910           | 5.388            | 1.00 | 39.09          | C      |
| ATOM         | 6867         | ō        |            |   | 455        | 34.328           | 83.863           | 4.692            |      | 41.52          | 0      |
|              |              |          |            |   |            |                  |                  |                  |      |                |        |

Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore Core (
Amore

|              |              |          |            |   | ·            |                  |                  |                  |      |                |        |
|--------------|--------------|----------|------------|---|--------------|------------------|------------------|------------------|------|----------------|--------|
|              |              |          |            |   |              |                  | Figu             | ure 5            |      |                |        |
| ATOM         | 6868         | N        | PHE        | A | 456          | 33.891           | 82.977           | 6.716            | 1.00 | 39.63          | N      |
| ATOM         | 6870         | CA       |            |   | 456          | 34.128           | 84.224           | 7.439            |      | 38.25          | С      |
| ATOM         | 6872         | CB       |            |   | 456          | 32.800           | 84.868           | 7.899            |      | 40.01          | C      |
| ATOM<br>ATOM | 6875<br>6876 | CG       | PHE        |   | 456<br>456   | 31.754<br>31.796 | 84.956<br>85.985 | 6.829<br>5.882   |      | 42.03          | C      |
| ATOM         | 6878         |          | PHE        |   |              | 30.834           | 86.081           | 4.873            |      | 44.83          | č      |
| ATOM         | 6880         | CZ       |            |   | 456          | 29.821           | 85.151           | 4.796            |      | 44.21          | Č      |
| ATOM         | 6882         | CE2      | PHE        | A | 456          | 29.764           | 84.114           | 5.735            | 1.00 | 46.15          | С      |
| ATOM         | 6884         |          | PHE        |   |              | 30.734           | 84.024           | 6.753            |      | 40.54          | C      |
| ATOM         | 6886         | C        |            |   | 456<br>456   | 34.961           | 84.003           | 8.680            |      | 39.26          | c<br>o |
| ATOM<br>ATOM | 6887<br>6888 | O<br>N   |            |   | 456<br>457   | 34.983<br>35.618 | 82.906<br>85.078 | 9.263<br>9.088   |      | 40.35          | . и    |
| ATOM         | 6890         | CA       |            |   | 457          | 36.161           | 85.231           | 10.417           |      | 42.55          | Ċ      |
| ATOM         | 6892         | CB       |            |   | 457          | 37.598           | 85.768           | 10.346           |      | 42.31          | С      |
| MOTA         | 6895         | CG       |            |   | 457          | 38.534           | 84.836           | 9.581            |      | 43.03          | C      |
| ATOM         | 6896         |          | ASN        |   |              | 38.719           | 83.688           | 9.950            |      | 46.04          | 0      |
| ATOM<br>ATOM | 6897<br>6900 | ND2      | ASN        |   | 457<br>457   | 39.113<br>35.235 | 85.334<br>86.187 | 8.503<br>11.167  |      | 48.03<br>43.50 | N<br>C |
| ATOM         | 6901         | ŏ        |            |   | 457          | 34.740           | 87.148           | 10.604           |      | 48.36          | ŏ      |
| ATOM         | 6902         | N        |            |   | 458          | 34.992           | 85.918           | 12.437           |      | 44.29          | N      |
| ATOM         | 6904         | CA       |            |   | 458          | 34.040           | 86.692           | 13.210           |      | 45.69          | C      |
| ATOM         | 6906         | CB       |            |   | 458          | 33.314           | 85.778           | 14.205           |      | 45.14          | C      |
| MOTA         | 6909<br>6911 | CG       | PEO        |   | 458          | 32.880<br>32.189 | 84.427<br>83.592 | 13.622<br>14.664 |      | 45.29<br>46.58 | C<br>C |
| ATOM<br>ATOM | 6915         |          | LEU        |   |              | 31.997           | 84.626           | 12.393           |      | 43.66          | . č    |
| MOTA         | 6919         | C        |            |   | 458          | 34.801           | 87.775           | 13.933           |      | 46.09          | Ċ      |
| MOTA         | 6920         | 0        |            |   | 458          | 35.691           | 87.480           | 14.697           | 1.00 | 50.98          | 0      |
| ATOM         | 6921         | N        |            |   | 459          | 34.484           | 89.031           | 13.676           |      | 51.67          | N      |
| ATOM         | 6923         | CA       |            |   | 459          | 35.117           | 90.110           | 14.407           |      | 55.62          | C<br>C |
| ATOM<br>ATOM | 6925<br>6928 | CB '     |            |   | 459<br>459   | 35.668<br>36.506 | 91.178<br>92.218 | 13.477<br>14.223 |      | 60.15          | c      |
| MOTA         | 6931         | CD.      |            |   |              | 37.433           | 93.010           | 13.293           |      | 73.38          | č      |
| MOTA         | 6934         | CE       | LYS        | A | 459          | 37.681           | 94.449           | 13.797           | 1.00 | 74.99          | C      |
| MOTA         | 6937         |          |            |   | 459          | 36.459           | 95.308           | 13.719           |      | 74.17          | N      |
| MOTA         | 6941         | Ç ,      |            |   | 459          | 34.164           | 90.723           | 15.416           |      | 56.14          | C<br>0 |
| ATOM<br>ATOM | 6942<br>6943 | O<br>N   |            |   | 459<br>· 460 | 33.029<br>34.658 | 91.092<br>90.794 | 15.107<br>16.644 |      | 49.31<br>61.96 | N      |
| MOTA         | 6945         |          |            |   |              | 33.954           | 91.424           | 17.744           |      | 66.78          | č      |
| ATOM         | 6947         |          | SER        |   |              | 34.491           | 90.904           | 19.076           |      | 66.96          | С      |
| ATOM         | 6950         |          |            |   | 460          |                  | 91.677           | 20.162           |      | 68.53          | 0      |
| ATOM         | 6952         | С        |            |   | 460          |                  | 92.903           | 17.633           |      | 69.99          | C      |
| ATOM<br>ATOM | 6953<br>6954 | 0        |            |   | 460<br>461   | 35.223<br>33.291 | 93.317<br>93.699 | 17.059<br>18.163 |      | 69.84<br>76.52 | O<br>N |
| ATOM         | 6956         | N<br>CA  |            |   | 461          | 33.501           | 95.146           | 18.259           |      | 79.14          | Ċ      |
| ATOM         | 6958         | СВ       |            |   | 461          | 32.351           |                  | .17.612          |      | 79.38          | С      |
| MOTA         | 6961         | CG       |            |   | 461          | 30.937           | 95.377           | 17.443           |      | 78.91          | C      |
| ATOM         | 6963         |          | LEU        |   |              | 29.916           | 96.518           | 17.257           |      | 78.86          | C      |
| ATOM<br>ATOM | 6967<br>6971 | CD2      | LEU        |   | 461<br>461   | 30.861<br>33.763 | 94.400<br>95.588 | 16.272<br>19.707 |      | 77.63<br>80.78 | C<br>C |
| ATOM         | 6972         | ò        |            |   | 461          | 34.357           | 96.638           | 19.923           |      | 80.13          | ŏ      |
| MOTA         | 6973         | N        |            |   | 462          | 33.350           | 94.785           | 20.689           |      | 84.24          | N      |
| ATOM         | 6975         | CA       |            |   | 462          | 33.566           | 95.114           | 22.107           |      | 86.40          | Ç      |
| ATOM         | 6977         | CB       |            |   | 462          | 32.233           | 94.937           | 22.948           |      | 86.21          | C      |
| ATOM<br>ATOM | 6979<br>6983 | CG1      | VAL        |   |              | 32.137<br>32.075 | 93.562<br>96.046 | 23.597<br>24.00B |      | 86.36<br>86.59 | c      |
| ATOM         | 6987.        | C        |            |   | 462          | 34.760           | 94.370           | 22.751           |      | 86.45          | Ċ      |
| ATOM         | 6988         | 0        |            |   | 462          | 34.886           | 94.360           | 23.976           |      | 87.74          | 0      |
| MOTA         | 6989         | N        |            |   | 463          | 35.633           | 93.772           | 21.936           |      | 87.28          | N      |
| ATOM         | 6991         | CA       |            |   | 463          | 36.879           | 93.152           | 22.419<br>23.103 |      | 89.60<br>92.06 | . c    |
| ATOM<br>ATOM | 6993<br>6996 | CB<br>CG |            |   | 463<br>463   | 37.767<br>38.848 | 94.232<br>93.655 | 24.041           |      | 96.29          |        |
| ATOM         | 6997         |          | ASP        |   |              | 39.647           | 92.778           | 23.622           |      | 97.17          | ő      |
| ATOM         | 6998         |          | ASP        |   |              | 38.989           | 94.063           | 25.221           |      | 98.16          | O      |
| MOTA         | 6999         | С        |            |   | 463          | 36.623           | 91.904           | 23.315           |      | 89.34          | C      |
| ATOM         | 7000         | 0        |            |   | 463          | 36.071           | 92.032           | 24.413           |      | 85.97          | O<br>N |
| ATOM         | 7001         | N        |            |   | 464          | 37.027<br>36.751 | 90.709<br>89.443 | 22.850<br>23.562 |      | 90.54          | N<br>C |
| ATOM<br>ATOM | 7002<br>7004 | CA<br>CB |            |   | 464<br>464   | 37.867           | 88.492           | 23.362           |      | 91.07          | c      |
| ATOM         | 7007         | CG       |            |   | 464          | 38.455           | 89.130           | 21.815           |      | 90.77          | č      |
| ATOM         | 7010         | CD       | PRO        | A | 464          | 37.782           | 90.467           | 21.604           | 1.00 | 90.56          | C      |
| ATOM         | 7013         | С        | PRO        |   |              | 36.785           | 89.505           | 25.094           |      | 89.59          | C      |
| ATOM         | 7014         | 0        |            |   | 464          | 35.806           | 89.136           | 25.744           |      | 88.48<br>89.25 | N<br>O |
| ATOM<br>ATOM | 7015<br>7017 | n<br>Ca  | LYS<br>LYS |   |              | 37.905<br>38.188 | 89.974<br>89.929 | 25.638<br>27.077 |      | 89.25          | C      |
| ATOM         | 7019         | CB       | LYS        |   |              | 39.446           | 90.770           | 27.394           |      | 89.70          | č      |
| ATOM         | 7022         | CG       | LYS        |   |              | 40.711           | 89.939           | 27.622           |      | 90.21          | Ċ      |
|              |              |          |            |   |              |                  |                  |                  |      |                |        |

|              |              |          |            |   |                 |                  | Figu                 | ıre 5            |      |                |   |         |
|--------------|--------------|----------|------------|---|-----------------|------------------|----------------------|------------------|------|----------------|---|---------|
| ATOM         | 7025         | CD       | LYS        | A | 465             | 40.675           | 89.220               | 28.986           | 1.00 | 91.31          |   | С       |
| MOTA         | 7028         | CE       | LYS        |   |                 | 41.765           | 89.718               | 29.951           |      | 91.65          |   | C       |
| ATOM         | 7031         | NZ       | LYS        |   |                 | 41.218           | 90.050               | 31.299           |      | 90.47<br>87.10 |   | N       |
| ATOM<br>ATOM | 7035<br>7036 | С<br>О   | LYS        |   |                 | 37.011<br>36.650 | 90.375<br>89.682     | 27.958<br>28.914 |      | 86.20          |   | ŏ       |
| ATOM         | 7037         | N        | ASN        |   |                 | 36.431           | 91.527               | 27.624           |      | B5.29          |   | N       |
| ATOM         | 7039         | CA       | ASN        |   |                 | 35.319           | 92.108               | 28.389           |      | 85.85          |   | С       |
| MOTA         | 7041         | CB       | ASN        |   |                 | 34.956           | 93.508               | 27.859           |      | 85.58          |   | C       |
| ATOM         | 7044         | CG       | ASN        |   |                 | 35.709           | 94.619               | 28.569           |      | 86.77          |   | CO      |
| MOTA<br>MOTA | 7045<br>7046 |          | asn<br>asn |   | 466<br>466      | 35.317<br>36.794 | 95.062<br>95.081     | 29.650<br>27.959 |      | 85.97<br>84.71 |   | N       |
| ATOM         | 7049         | C        | ASN        |   |                 | 34.047           | 91.258               | 28.369           |      | 85.90          |   | C       |
| ATOM         | 7050         | ō        | ASN        |   |                 | 33.630           | 90.734               | 29.416           | 1.00 | 87.70          |   | 0       |
| ATOM         | 7051         | N        | LEU        |   |                 | 33.470           | 91.118               | 27.166           |      | 82.33          |   | N       |
| ATOM         | 7053         | CA       | LEU        |   |                 | 32.081           | 90.685               | 26.960           |      | 77.52<br>78.17 |   | C       |
| MOTA<br>MOTA | 7055<br>7058 | CB<br>CG | LEU        |   | 467<br>467      | 31.784<br>32.472 | 90.505<br>89.369     | 25.471<br>24.708 |      | 77.97          |   | Ċ       |
| ATÓM         | 7060         |          | LEU        |   |                 | 31.444           | 88.351               | 24.284           |      | 77.42          |   | č       |
| ATOM         | 7064         |          | LEU        |   | 467             | 33.240           | 89.867               | 23.484           | 1.00 | 78.39          |   | С       |
| ATOM         | 7068         | С        | LEU.       |   |                 | 31.679           | 89.433               | 27.715           |      | 74.81          |   | С       |
| MOTA         | 7069         | 0        | LEU        |   |                 | 32.443           | 88.476               | 27.806           |      | 72.16          | • | Ŋ       |
| ATOM<br>ATOM | 7070<br>7072 | N<br>CA  | ASP<br>ASP |   | 4 <sup>68</sup> | 30.461<br>29.962 | 89.470<br>88.464     | 28.251<br>29.191 |      | 73.68<br>71.69 | - | C       |
| ATOM         | 7074         | CB       | ASP        |   |                 | 29.144           | 89.167               | 30.303           |      | 74.84          |   | č       |
| MOTA         | 7077         | CG       | ASP        |   | 468             | 28.040           | 88.289               | 30.896           | 1.00 | 79.92          |   | С       |
| ATOM         | 7078         |          | ASP        |   |                 | 26.916           | 88.246               | 30.322           |      | 85.20          |   | 0       |
| MOTA         | 7079         |          | ASP        |   |                 | 28.198           | 87.623               |                  |      | 78.66          |   | C       |
| ATOM         | 7080<br>7081 | С<br>0   | ASP<br>ASP |   |                 | 29.139<br>28.405 | 87.441<br>87.815     | 28.403<br>27.489 |      | 66.07          |   | Ö       |
| ATOM<br>ATOM | 7082         | N        | THR        |   |                 | 29.286           | 86.156               | 28.723           |      | 60.15          |   | N       |
| ATOM         | 7084         | CA       | THR        |   |                 | 28.559           |                      | 27.999           |      | 57.23          |   | С       |
| MOTA         | 7086         | CB       | THR        |   |                 |                  | 84.160               |                  |      | 56.63          |   | C       |
| MOTA         | 7088         |          | THR        |   |                 | 30.201           |                      | 28.247           |      | 58.20          |   | 0       |
| ATOM         | 7090         |          | THR        |   |                 |                  | 84.932<br>84.349     |                  |      | 54.10<br>57.92 |   | C       |
| ATOM<br>ATOM | 7094<br>7095 | С<br>0   | THR        |   |                 |                  | 83.288               | 28.523           |      | 55.49          |   | ō       |
| ATOM         | 7096         | N        | THR        |   |                 |                  | 84.904               |                  |      | 61.06          |   | N       |
| ATOM         | 7098         | CA       | THR        |   |                 |                  | 84.224               |                  |      | 62.76          |   | C       |
| ATOM         | 7100         | СВ       | THR        |   |                 |                  | 84.864               |                  |      | 65.11          | - | .o<br>C |
| ATOM         | 7102         |          | THR<br>THR |   | 470             |                  | .85.178 4<br>.83.852 |                  | 1.00 | 64.29<br>65.42 |   | c       |
| ATOM<br>ATOM | 7104<br>7108 | CG2      | THR        |   |                 | 25.094           | 84.292               | 30.641           | 1.00 | 60.54          |   | č       |
| MOTA         | 7109         | ō        | THR        |   |                 | 24.593           | 85.367               | 30.317           | 1.00 | 58.76          |   | 0       |
| ATOM         | 7110         | N        | PRO        |   |                 | 24.439           | 83.138               | 30.587           |      | 60.80          |   | N       |
| MOTA         | 7111         | CA .     | PRO        |   |                 | 23.038           | 83.075<br>81.637     | 30.177<br>30.532 |      | 60.54          |   | C       |
| ATOM<br>ATOM | 7113<br>7116 | CB       | PRO<br>PRO |   | 471<br>471      | 22.638<br>23.917 | 80.839               | 30.480           |      | 61.03          | • | č       |
| ATOM         | 7119         | CD       | PRO        |   |                 | 25.006           | 81.798               | 30.845           |      | 60.75          |   | С       |
| ATOM ·       | 7122         | C.       | PRO        |   |                 | 22.162           | 84.072               | 30.919           |      | 63.07          |   | С       |
| ATOM         | 7123         | 0        | PRO        |   |                 | 22.372           | 84.273               | 32.104           |      | 65.31          |   | O<br>N  |
| MOTA         | 7124         | N<br>CA  | VAL        |   | 472             | 21.240 20.078    | 84.714<br>85.388     | 30.206<br>30.791 |      | 65.18<br>66.96 |   | C       |
| ATOM<br>ATOM | 7126<br>7128 | CB       | VAL        |   |                 | 19.671           | 86.626               | 29.922           |      | 67.05          |   | č       |
| ATOM         | 7130         |          | VAL        |   |                 | 18.260           | 87.128               | 30.248           |      | 66.24          |   | С       |
| ATOM         | 7134         | CG2      | VAL        |   |                 | 20.695           | 87.743               | 30.069           |      | 65.54          |   | C       |
| MOTA         | 7138         | C        | VAL        |   |                 | 18.906           | 84.367               | 30.923<br>29.926 |      | 69.45<br>67.70 |   | C       |
| ATOM<br>ATOM | 7139<br>7140 | O<br>N   |            |   | 472<br>473      | 18.329<br>18.565 | 83.934<br>84.008     | 32.161           |      | 73.44          |   | N       |
| ATOM         | 7142         | CA       |            |   | 473             | 17.591           | 82.949               | 32.451           | 1.00 | 76.49          |   | С       |
| ATOM         | 7144         | CB       | VAL        | A | 473             | 18.159           | 81.919               | 33.470           |      | 77.80          |   | C       |
| ATOM         | 7146         |          | VAL        |   |                 | 17.227           | 80.682               | 33.576           |      | 80.88          |   | C       |
| ATOM         | 7150         |          | VAL        |   | 473             | 19.581<br>16.324 | 81.511<br>83.507     | 33.105<br>33.077 |      | 74.90<br>77.30 | - | c       |
| ATOM<br>ATOM | 7154<br>7155 | C<br>O   |            |   | 473             | 16.324           | 84.281               | 34.030           |      | 79.82          |   | ō       |
| ATOM         | 7156         | N        | ASN        |   |                 | 15.170           | 83.085               |                  | 1.00 | 77.27          |   | N       |
| ATOM         | 7158         | CA       | ASN        | A | 474             | 13.875           | B3.483               | 33.126           |      | 75.32          |   | C       |
| ATOM         | 7160         | CB       | ASN        |   |                 | 13.293           | 84.693               | 32.368           |      | 76.46<br>77.44 |   | C       |
| ATOM         | 7163         | CG       | ASN        |   |                 | 14.032           | 86.015<br>86.507     | 32.677<br>31.864 |      | 80.54          |   | ö       |
| ATOM<br>ATOM | 7164<br>7165 |          | ASN<br>ASN |   |                 | 14.809<br>13.777 | 86.589               | 33.845           |      | 77.74          |   | N       |
| ATOM         | 7168         | C        | ASN        |   |                 | 12.923           | 82.277               | 33.090           | 1.00 | 72.50          |   | С       |
| ATOM         | 7169         | ŏ        | ASN        | A | 474             | 12.358           | 81.947               | 32.044           |      | 69.97          |   | 0       |
| MOTA         | 7170         | N        | GLY        |   |                 | 12.784           | B1.607               | 34.234           |      | 72.55          |   | N<br>C  |
| ATOM         | 7172         | CA       | GLY        |   |                 | 11.969           | 80.403<br>79.150     | 34.348<br>33.859 |      | 72.40<br>72.20 |   | c       |
| ATOM         | 7175<br>7176 | С<br>0   | GLY        |   |                 | 12.686<br>13.675 | 78.734               | 34.479           |      | 70.60          |   | ō       |
| ATOM         | 1110         | 0        | GD I       | n | 413             | 23.013           |                      | J                |      |                |   |         |

|              |              |          |            |   |              |                  | Figu              | re 5             |                          |        |
|--------------|--------------|----------|------------|---|--------------|------------------|-------------------|------------------|--------------------------|--------|
| ATOM         | 7177         | N        | PHE        |   |              | 12.184           | 78.559            | 32.763           |                          | N      |
| ATOM         | 7179         | CA       | PHE        |   |              | 12.829<br>11.850 | 77.423<br>76.258  | 32.084<br>31.865 |                          | C      |
| ATOM<br>ATOM | 7181<br>7184 | CB<br>CG | PHE        |   |              | 10.934           | 75.968            | 33.021           |                          | Č      |
| ATOM         | 7185         |          | PHE        |   |              | 9.585            | 75.695            | 32,777           |                          | С      |
| MOTA         | 7187         |          | PHE        |   |              | 8.723            | 75.402            | 33.813           |                          | C      |
| ATOM         | 7189         | CZ       | PHE        |   |              | 9.202<br>10.534  | 75.365<br>75.618  | 35.115<br>35.372 |                          | C      |
| MOTA<br>ATOM | 7191<br>7193 |          | PHE        |   |              | 11.405           | 75.909            | 34.329           |                          | Č      |
| ATOM         | 7195         | C        | PHE        |   |              | 13.387           | 77.799            | 30.700           |                          | С      |
| ATOM         | 7196         | 0        | PHE        |   |              | 13.352           | 76.982            | 29.769           |                          | 0      |
| MOTA<br>MOTA | 7197<br>7199 | N<br>CA  | ALA        |   |              | 13.883<br>14.383 | 79.023<br>79.489  | 30.552<br>29.260 |                          | N<br>C |
| ATOM         | 7201         | СВ       | ALA        |   |              | 13.284           | 80.229            | 28.508           | 1.00 69.69               | С      |
| MOTA         | 7205         | С        | ALA        |   |              | 15.614           | 80.384            | 29.441           |                          | C      |
| MOTA         | 7206         | 0        | ALA        |   |              | 15.528           | 81.479            | 30.034           |                          | O<br>N |
| MOTA<br>MOTA | 7207<br>7209 | N<br>CA  | SER<br>SER |   |              | 16.756<br>17.987 | 79.888<br>80.664  | 28.956<br>28.911 |                          | c      |
| MOTA         | 7211         | СВ       | SER        |   |              | 19.214           | 79.801            | 29.202           | 1.00 55.82               | С      |
| ATOM         | 7214         | OG       | SER        |   |              | 19.176           | 79.262            | 30.509           |                          | 0      |
| ATOM .       | 7216         | C        | SER        |   |              | 18.125<br>17.633 | 81.225<br>80.637  | 27.521<br>26.560 |                          | C      |
| MOTA<br>MOTA | 7217<br>7218 | O<br>N   | SER<br>VAL |   |              | 18.829           | 82.346            | 27.426           | =                        | N      |
| ATOM         | 7220         | CA       | VAL        |   |              | 19.137           | 82.988            | 26.153           |                          | C      |
| MOTA         | 7222         | CB       | VAL        |   |              | 18.004           | 83.978            | 25.673           |                          | C      |
| MOTA         | 7224         |          | VAL        |   |              | 16.799<br>17.577 | .83.227<br>84.936 | 25.163<br>26.777 |                          | c      |
| MOTA<br>MOTA | 7228<br>7232 | C        | VAL        |   |              | 20.432           | 83.773            | 26.326           |                          | Č      |
| ATOM         | 7233         | ō        | VAL        |   |              | 20.721           | 84.262            | 27.409           |                          | 0      |
| ATOM         | 7234         | N        | PRO        |   |              | 21.212           | 83.919            | 25.274           |                          | N<br>C |
| ATOM<br>ATOM | 7235<br>7237 | CA<br>CB | PRO        |   | 480<br>480 . | 22.431<br>23.145 | 84.715<br>84.478  | 25.383<br>24.050 |                          | c      |
| ATOM         | 7240         | CG       | PRO        |   |              | 22.089           | 84.013            | 23.128           | 1.00133700747 387        | С      |
| ATOM         | 7243         | CD       | PRO        |   |              | 21.010           | 83.370            | 23.930           |                          | C      |
| MOTA         | 7246         | C        |            |   | 480          | 22.092           | 86.186            | 25.537<br>25.193 |                          | 0      |
| ATOM<br>ATOM | 7247<br>7248 | O<br>N   | PRO        |   | 480<br>481   | 20.982           | 86.587<br>86.974  | 26.015           |                          | N      |
| ATOM         | 7249         | CA       |            |   | 481          | 22.892           | 88.413            | 26.050           | 1.00-39.33               | C.     |
| MOTA         | 7251         | СВ       | PRO        |   |              | 24.056           | 88.852            | 26.938           |                          | C      |
| MOTA         | 7254         | CG       |            |   | 481          | 25.109<br>24.366 | 87.886<br>86.568  | 26.628<br>26.513 |                          | C      |
| ATOM<br>ATOM | 7257<br>7260 | CD<br>Ċ  |            |   | 481<br>481   | 23.099           | 88.957            | 24.663           |                          | C      |
| ATOM         | 7261         | ŏ        | PRO        |   |              | 23.670           | 88.313            | 23.789           |                          | 0      |
| MOTA         | 7262         | N        |            |   | 482          | 22.685           | 90.188            | 24.477           |                          | N<br>C |
| ATOM<br>ATOM | 7264<br>7266 | CA<br>CB |            |   | 482<br>482   | 22.738<br>21.894 | 90.776<br>92.056  | 23.166<br>23.148 |                          | Ç      |
| ATOM         | 7269         | CG       |            |   | 482          | 22.201           | 92.946            | .21.989          | 1.00 44.01               | С      |
| ATOM         | 7270         |          | PHE        |   | 482          | 23.214           | 93.899            | 22.082           |                          | C<br>C |
| ATOM         | 7272<br>7274 | CE1      | PHE        |   | 482<br>482   | 23.515<br>22.808 | 94.702<br>94.555  | 21.006<br>19.817 |                          | c      |
| ATOM<br>ATOM | 7276         |          | PHE        |   | 482          | 21.802           | 93.604            | 19.719           |                          | С      |
| ATOM         | 7278         | CD2      | PHE        |   |              | 21.509           | 92.803            | 20.794           | 1.00 40.90               | C      |
| ATOM         | 7280         | C        |            |   | 482          | 24.178<br>24.917 | 91.087<br>91.582  | 22.806<br>23.620 | 1.00 36.80<br>1.00 41.70 | 0      |
| ATOM<br>ATOM | 7281<br>7282 | N<br>O   |            |   | 482<br>483   | 24.558           | 90.823            | 21.571           |                          | N      |
| ATOM         | 7284         | CA       | TYR        | A | 483          | 25.864           | 91.230            | 21.058           | 1.00 37.31               | C      |
| MOTA         | 7286         | СВ       |            |   | 483          | 26.912           | 90.126            | 21.266           | 1.00 34.16<br>1.00 33.32 | C      |
| ATOM<br>ATOM | 7289<br>7290 | CG       | TYR        |   | 483<br>483   | 26.655<br>27.371 | 88.890<br>88.673  | 20.412<br>19.232 | 1.00 36.10               | c      |
| ATOM         | 7292         |          | TYR        |   |              | 27.133           | 87.556            | 18.442           | 1.00 34.13               | С      |
| ATOM         | 7294         | CZ       | TYR        | A | 483          | 26.164           | 86.642            | 18.836           | 1.00 36.58               | C      |
| ATOM         | 7295         | OH       |            |   | 483          | 25.911           | 85.546            | 18.047           | 1.00 28.98<br>1.00 33.00 | O<br>C |
| MOTA<br>MOTA | 7297<br>7299 |          | TYR<br>TYR |   |              | 25.437<br>25.686 | 86.840<br>87.953  | 20.008           | 1.00 31.73               | č      |
| ATOM         | 7301         | C        |            |   | 483          | 25.778           | 91.526            | 19.573           | 1.00 38.12               | С      |
| ATOM         | 7302         | 0        | TYR        | A | 483          | 24.790           | 91.226            | 18.916           | 1.00 38.93               | 0      |
| MOTA         | 7303         | N        |            |   | 484          | 26.848<br>27.018 | 92.100<br>92.311  | 19.061<br>17.647 | 1.00 40.74<br>1.00 45.85 | N<br>C |
| ATOM<br>ATOM | 7305<br>7307 | CA<br>CB |            |   | 484<br>484   | 26.981           | 93.807            | 17.350           | 1.00 49.47               | č      |
| ATOM         | 7310         | CG       | GLN        | A | 484          | 25.690           | 94.536            | 17.778           | 1.00 54.98               | С      |
| ATOM         | 7313         | CD       |            |   | 484          | 25.597           | 95.938            | 17.166           | 1.00 54.65<br>1.00 57.68 | 0      |
| ATOM<br>ATOM | 7314         |          | GLN<br>GLN |   |              | 26.533<br>24.490 | 96.728<br>96.231  | 17.286<br>16.494 |                          | N      |
| ATOM         | 7315<br>7318 | C C      |            |   | 484          | 28.363           | 91.749            | 17.174           | 1.00 45.57               | С      |
| ATOM         | 7319         | Ö        | GLN        | A | 484          | 29.290           | 91.536            | 17.967           | 1.00 47.33               | 0      |
| MOTA         | 7320         | N        | LEU        | A | 485          | 28.466           | 91.533            | 15.867           | 1.00 43.46               | N      |

- 2000 His 1999 - 1991 - 1991

A Server of the 198

1.300

्राव्यक्तिक के स्वत्य के हैं। इ. विकास स्वत्य के दोन्त

11 Sept 18 18 10 1 1 2

```
Figure 5
                                                                              С
                                 29.708 91.082 15.249
                                                         1.00 45.53
        7322
            CA LEU A 485
 ATOM
                                                15.542
                                                         1.00 45.57
                                        89.590
                LEU A 485
                                 29.923
             CB
 ATOM
        7324
                                                         1.00 45.06
                                                14.767
             CG LEU A 485
                                 29.087
                                         88.564
 ATOM
        7327
                                                         1.00 46.91
                                 29.554
                                         87.153
                                                15.059
             CD1 LEU A 485
        7329
 ATOM
                                                 15.075
                                                         1.00 47.47
             CD2 LEU A 485
                                 27.618
                                         88.693
 ATOM
        7333
                                                         1.00 44.45
                LEU A 485
                                 29.723
                                         91.349
                                                 13.734
             С
 MOTA
        7337
                                                         1.00 44.75
                LEU A 485
                                 28.676
                                         91.553
                                                 13.126
 ATOM
        7338
             0
                                 30.910
                CYS A 486
                                         91.338
                                                 13.137
                                                         1.00 43.20
 ATOM
        7339
             N
                                 31.054
                                         91.508
                                                 11.701
                                                         1.00 44.90
                CYS A 486
 ATOM
        7341
             CA
                                         92.526
                                                 11.370
                                                         1.00 47.18
                 CYS A 486
                                 32.148
 ATOM
        7343
              CB
                                         94.053
                                                 12.323
                                                         1.00 52.37
                 CYS A 486
                                 32.067
 ATOM
        7346
             SG
                                         90.190
                                                 11.130
                                                         1.00 46.71
                  CYS A 486
                                 31.468
 ATOM
        7347
              С
                                         89.493
                                                11.719
                                                         1.00 48.17
                                                                               0
                  CYS A 486
                                 32.281
 ATOM
        7348
              0
                                 30.933
                                         89.855
                                                 9.968
                                                         1.00 47.17
                  PHE A 487
        7349
             N
 MOTA
                                 31.341
                                         88.652
                                                  9.273
                                                         1.00 45.68
                 PHE A 487
        7351
             CA
 MOTA
                                                  8.716
                                                         1.00 45.57
                                                                               С
                                 30.098
                                         87.931
                 PHE A 487
 ATOM
        7353
              CB
                                                9.790
                                 29.172
                                         87.413
                                                         1.00 43.37
                                                                               С
 ATOM
        7356
              CG
                 PHE A 487
                                         88.233
                                                         1.00 44.34
                                                                               C
                                                10.353
        7357
              CD1 PHE A 487
                                 28.211
 ATOM
                                                         1.00 43.66
                                                                               C
                                 27.363
                                         B7.757
                                                 11.376
        7359
              CE1 PHE A 487
 ATOM
                                                         1.00 38.60
                                                                               C
                                 27.486
                                         86.455
                                                 11.834
              CZ PHE A 487
        7361
 ATOM
                                                         1.00 41.83
                                                                               C
                                 28.439
                                         85.633
                                                 11.275
              CE2 PHE A 487
 ATOM
        7363
                                                         1.00 40.53
                                                                               С
                                 29.277
                                         86.107
                                                 10.252
              CD2 PHE A 487
        7365
 ATOM
                                         89.056
                                                 8.172
                                                         1.00 46.46
                                                                               C
                  PHE A 487
                                 32,328
 ATOM
        7367
                                         89.471
                                                  7.101
                                                         1.00 48.55
                                                                               0
                                 31.910
                  PHE A 487
 MOTA
        7368
                                         88.963
                                                         1.00 47.42
                                                  8.455
 ATOM
        7369
              N
                  ILE A 488
                                 33.630
                                         89.303
89.773
                                                  7.482
                                                         1.00 49.52
                                                                               С
                                 34.682
        7371
              CA ILE A 488
 ATOM
                                                         1.00 46.95
                                                                               С
                                                  8.184
                 ILE A 488
                                 35.985
 ATOM
        7373
              CB
                                                                               C
                                                  8.752
                                                         1.00 46.01
              CG1 ILE A 488
                                 35.822
                                         91.169
        7375
 ATOM
                                                                               С
                                                 10.042
                                                         1.00 52.03
             CD1 ILE A 488
                                         91.182
                                 35.125
        7378
 ATOM
                                                                               С
                                         89.793
                                                  7.199
                                                         1.00 46.20
             CG2 ILE A 488
                                 37.148
        7382
 ATOM
                                                  6.598
                                                                               c ·
                                                         1.00 51.52
                                                                              ILE A 488
                                 35.041
                                         88.115
 ATOM
        7386
             C
                                                         1.00 54.99
                                                  7.107
                                 35.512
                                         87.120
                  ILE A 488
        7387
              0
 ATOM
                                                         1.00 55.05
                                  34.895
                                         88.219
                                                  5.281
        7388
             N
                  PRO A 489
 MOTA
                                                         1.00 56.93
                                                  4.410
                 PRO A 489
                                 35.207 87.077
        7389
             CA
 ATOM
                                                         1.00 57.54
                  PRO A 489
                                 34.751
                                         87.552
                                                  3.025
        7391 CB
 ATOM
                 PRO A 489
                                         88.692
                                                  3.307
                                                         1.00 56.71
                                 33.824
 ATOM
        7394
             CG
                                         89.373
                                                  4.506
                                                         1.00 54.56
                 PRO A 489
                                  34.417
 ATOM
        7397
             CD
                                                         1.00 55.92
                                          86.728
                                                  4.419
                  PRO A 489
                                  36.685
 ATOM
        7400
             С
                                                         1.00 62.07
                                          87.616
                                                  4.589
                  PRO A 489
                                  37.503
 ATOM
        7401 0
                                                         1.00 55.87
                  VAL A 490
                                          85.457
                                                  4.230
                                  37.007
 ATOM
        7402
             N
                                  38.375
                                          84.956
                                                  4.378
                                                         1.00 57.14
        7404 CA VAL A 490
ATOM
                                          83.434
                                                  4.663
                                                         1.00 56.13
                                  38.364
                 VAL A 490
  ATOM
        7406
             CB
                                                                               С
              CG1 VAL A 490
                                  37.644
                                          83.142
                                                  5.959
                                                         1.00 55.78
        7408
  ATOM
                                                                               С
                                  37.730
                                         82.645
                                                  3.510
                                                         1.00 54.84
              CG2 VAL A 490
        7412
  ATOM
                                          85.243
                                                  3.154
                                                         1.00 61.04
                                                                               С
              C
0
                  VAL A 490
                                  39.286
        7416
  ATOM
                                         85.177
                                                         1.00 62.59
                                                                               0
                                  38.798
                                                  2.017
  MOTA
        7417
                  VAL A 490
                                                         1.00 57.05
                                                                               ٥
                                          85.528
                                                  3.240
  MOTA
         7418
             OXT VAL A 490
                                  40.514
                                                 20.011
                                                         1.00 36.38
                                                                              FE
                                         69.399
                                 13.254
         7419 FE1 HEM A 501
  ATOM
                                         68.813 19.774
                                                         1.00 36.51
                                                                               N
                                 11.888
  MOTA
         7420
             N5 HEM A 501
                                         68.232
                                                 20.687
                                                         1.00 31.85
                                                                               С
              C21 HEM A 501
                               - 11.030
         7421
  ATOM
                                         67.672 20.185
                                                         1.00 26.53
                                                                               C
                                   9.740
              C20 HEM A 501
  ATOM
         7422
                                                 20.910
                                                         1.00 28.65
                                                                               С
              C39 HEM A 501
                                         67.001
                                   8.574
         7423
  ATOM
                                                 21.310
                                                         1.00 31.21
                                                                               С
                                         65.558
              C40 HEM A 501
                                   8.714
  ATOM
         7426
                                                 21.926
                                                         1.00 35.18
                                         64.951
              C41 HEM A 501
                                   7.669
         7428
  ATOM
                                                 21.841
                                                                               0
                                                         1.00 32.41
                                         63.748
         7429
              042 HEM A 501
                                   7.475
  ATOM
                                                          1.00 38.17
                                                                               0
                                 6.885 65.584
11.129 68.655
         7430
              043 HEM A 501
  ATOM
                                                 18.628
18.791
                                                                               C
                                                          1.00 22.63
              C18 HEM A 501
         7431
  ATOM
                                                                               C
                                                         1.00 24.38
              C19 HEM A 501
                                   9.796 67.996
         7432
  ATOM
                                  8.687 67.608 17.826
11.472 69.106 17.284
                                                         1.00 27.11
                                                                               С
              C38 HEM A 501
  ATOM
         7433
                                                         1.00 27.70
                                                                               C
              C25 HEM A 501
                                  11.472
         7434
  ATOM
                                         69.776 16.908
                                                         1.00 25.59
                                                                               С
                                  12.704
              C17 HEM A 501
         7436
  ATOM
                                                         1.00 29.03
                                          70.189 15.554
         7437
              C16 HEM A 501
                                  13.036
  ATOM
                                                         1.00 35.39
1.00 34.96
                                                                              . C
                                          69.994 14.339
              C36 HEM A 501
                                  12.213
  ATOM
         7438
                                                 14.150
              C37 HEM A 501
                                  11.650
                                          68.599
  ATOM
         7440
                                                          1.00 28.61
              C15 HEM A 501
                                  14.356
                                          70.825 15.667
  ATOM
         7441
                                                         1.00 25.56
              C35 HEM A 501
                                  15.208 71.463
                                                 14.617
  ATOM
         7442
                                                         1.00 28.13
                                  14.608 70.696
                                                 17.136
              C14 HEM A 501
  ATOM
         7443
                                                         1.00 26.80
                                  13.635
                                                 17.810
              N4 HEM A 501
                                          70.089
         7444
  ATOM
                                                         1.00 18.28
                                          71.194 - 17.823
                                  15.813
         7446
              C24 HEM A 501
  ATOM
                                                         1.00 24.04
                                          71.071 19.268
                                  16.119
              C13 HEM A 501
  ATOM
         7448
                                                 19.787
                                  17.390 71.619
                                                         1.00 13.66
              C12 HEM A 501
         7449
  ATOM
                                  18.426 72.266
                                                         1.00 19.83
                                                                               С
                                                 18.975
              C33 HEM A 501
         7450
  ATOM
                                                 19.589
                                                         1.00 33.37
              C34 HEM A 501
                                  19.563
                                          73.052
  ATOM
         7452
                                                         1.00 17.56
                                                  21.212
                                                                               С
                                         71.301
              C11 HEM A 501
                                  17.374
         7453
  ATOM
                                                         1.00 22.78
                                                  22.231
              C32 HEM A 501
                                  18.416
                                         71.627
         7454
  ATOM
                                  16.040 70.621 21.369
                                                         1.00 19.40
              C10 HEM A 501
  ATOM
         7455
```

|               |              |            |            |     |          |                  | Fian             | re 5             |      |                |   |        |
|---------------|--------------|------------|------------|-----|----------|------------------|------------------|------------------|------|----------------|---|--------|
| ATOM          | 7456         | N3         | HEM A      | A 5 | 01       | 15.336           | 70.467           | 20.228           | 1.00 |                |   | N      |
| ATOM          | 7458         | C23        | HEM A      |     |          |                  | 70.137           |                  | 1.00 |                |   | C      |
| MOTA          | 7460         |            | HEM 2      |     |          |                  | 69.445           | 23.031<br>22.102 | 1.00 |                |   | N      |
| MOTA          | 7461         |            | HEM I      |     |          | 13.463<br>12.449 | 69.168<br>68.557 | 22.751           |      | 28.30          |   | C      |
| MOTA<br>MOTA  | 7463<br>7464 |            | HEM I      |     |          | 11.256           | 68.083           | 22.112           |      | 23.38          |   | C      |
| ATOM          | 7466         |            | HEM 2      |     |          | 13.968           | 68.988           | 24.403           |      | 25.34          |   | C<br>C |
| ATOM          | 7467         |            | HEM I      |     |          | 14.746           | 69.134           | 25.660           |      | 28.53<br>24.97 |   | C      |
| MOTA          | 7468         |            | HEM :      |     |          | 12.649<br>11.648 | 68.362<br>67.689 | 24.165<br>25.007 |      | 29.38          |   | Č      |
| MOTA          | 7469<br>7471 |            | HEM :      |     |          | 12.040           | 67.205           | 26.355           |      | 39.94          |   | С      |
| ATOM<br>ATOM  | 7474         |            | HEM .      |     |          | 11.299           | 65.972           | 26.776           |      | 39.12          |   | C      |
| MOTA          | 7475         | 030        | HEM .      | A S | 501      | 10.122           | 65.814           | 26,496           |      | 39.32          |   | 0      |
| MOTA          | 7476         |            | HEM .      |     |          | 11.905           | 65.153<br>70.240 | 27.430<br>57.617 |      | 38.31<br>54.43 |   | N      |
| MOTA          | 7477<br>7478 | N<br>CA    | PRO PRO    |     | 30<br>30 | 57.425<br>56.507 | 69.110           | 57.849           |      | 56.73          |   | С      |
| MOTA<br>MOTA  | 7480         | CB         | PRO        |     | 30       | 56.271           | 68.528           | 56.436           |      | 53.60          |   | C      |
| ATOM          | 7483         | CG         | PRO        |     | 30       | 56.624           | 69.568           | 55.503           |      | 50.78          |   | C<br>C |
| ATOM          | 7486         | CD,        | PRO        |     | 30       | 57.682           | 70.411           | 56.180<br>58.721 |      | 56.04<br>58.10 | • | c      |
| MOTA          | 7489         | C          | PRO        |     | 30<br>30 | 57.165<br>58.388 | 68.075<br>68.101 | 58.819           |      | 62.13          |   | ō      |
| ATOM<br>ATOM  | 7490<br>7493 | N<br>O     | PRO<br>PRO |     | 31       | 56.374           | 67.174           | 59.307           | 1.00 | 58.74          |   | N      |
| ATOM          | 7494         | CA         | PRO        |     | 31       | 56.878           | 66.171           | 60.250           |      | 59.47          |   | ·C     |
| MOTA          | 7496         | CB         | PRO        |     | 31       | 55.598           | 65.572           | 60.850           |      | 60.00<br>59.27 |   | C      |
| MOTA          | 7499         | CG         | PRO        |     | 31       | 54.565           | 65.744<br>67.034 | 59.789<br>59.084 |      | 59.30          |   | č      |
| MOTA          | 7502         | CD         | PRO<br>PRO |     | 31<br>31 | 54.922<br>57.637 | 65.126           | 59.486           |      | 61.31          |   | C      |
| ATOM<br>ATOM  | 7505<br>7506 | 0          | PRO        |     | 31       | 57.806           | 65.343           | 58.301           |      | 64.88          |   | 0      |
| ATOM          | 7507         | N          | GLY        |     | 32       | 58.064           | 64.040           | 60.131           |      | 64.11          |   | N      |
| ATOM          | 7509         | CA         | GLY        |     | 32       | 58.800           | 62.960           | 59.474           |      | 63.30<br>61.87 |   | C      |
| ATOM          | 7512         |            | GLY        |     | 32       | 59.794<br>60.103 | 62.275<br>62.805 | 60.400<br>61.465 |      | 61.56          |   | ŏ      |
| ATOM          | 7513<br>7514 | . И.<br>О  | GLY<br>PRO |     | 32<br>33 | 60.351           | 61.136           | 59.993           |      | 61.48          |   | N      |
| ATOM<br>ATOM  | 7515         |            | PRO        |     | 33       | 61.204           | 60.368           | 60.905           |      | 62.51          |   | C      |
| ATOM          | 7517         | CB         | PRO        |     | 33       | 61.495           | 59.058           | 60.154           |      | 58.71          |   | C      |
| MOTA          | 7520         | CG         | PRO        |     | 33       | 60.693           | 59.106           | 58.933<br>58.651 |      | 61.28<br>61.30 |   | င္ပင   |
| ATOM          | 7523         | CD         | PRO        |     | 33<br>33 | 60.324<br>62.485 | 60.542<br>61.129 | 61.194           |      | 63.89          |   | C      |
| ATOM.<br>ATOM | 7526<br>7527 | C          | PRO        |     | 33       | 62.873           | 62.013           | 60.415           |      | 65.39          |   | 0      |
| ATOM          | 7528         | N          | THR        |     | 34       | 63.101           | 60.801           | 62.324           |      | 64.96          |   | N<br>C |
| MOTA          | 7530         | CA         | THR        |     | 34       | 64.306           | 61.479           | 62.771<br>64.309 |      | 64.37<br>64.76 |   | c      |
| ATOM          | 7532         | CB         | THR        |     | 34<br>34 | 64.462<br>63.852 | 61.328<br>62.459 | 64.937           |      | 64.88          |   | ō      |
| ATOM<br>ATOM  | 7534<br>7536 | OG1<br>CG2 |            |     | 34       | 65.944           | 61.370           | 64.790           | 1.00 | 65.45          |   | С      |
| ATOM          | 7540         | c          | THR        |     | 34       | 65.479           | 60.896           | 61.992           |      | 62.59          | • | C<br>O |
| MOTA          | 7541         | 0          | THR        |     | 34       | 65.677           | 59.677           | 62.005           |      | 61.17<br>61.95 |   | N      |
| MOTA          | 7542         | N          | PRO<br>PRO |     | 35<br>35 | 66.207<br>67.376 | 61.753<br>61.313 | 61.273<br>60.515 |      | 62.44          |   | Ċ      |
| ATOM<br>ATOM  | 7543<br>7545 | CA<br>CB   | PRO        |     | 35       | 67.590           | 62.447           | 59.503           | 1.00 | 62.98          |   | С      |
| ATOM          | 7548         | CG         | PRO        |     | 35       | 67.081           | 63.668           | 60.188           |      | 62.89          |   | C      |
| MOTA          | 7551         | CD         | PRO        |     | 35       | 65.962           | 63.201           | 61.100<br>61.408 |      | 63.02<br>64.13 |   | c      |
| ATOM          | 7554         | C          | PRO<br>PRO |     | 35<br>35 | 68.598<br>68.954 | 61.154<br>62.068 | 62.153           |      | 59.59          |   | ō      |
| ATOM<br>ATOM  | 7555<br>7556 | O<br>N     | LEU        |     | 36       | 69.212           | 59.977           | 61.319           | 1.00 | 66.86          |   | N      |
| MOTA          | 7558         | CA         | LEU        |     | 36       | 70.513           | 59.706           | 61.908           |      | 68.73          |   | C      |
| ATOM          | 7560         | CB         | LEU        |     | 36       | 70.813           | 58.211           | 61.770           |      | 68.51          |   | c      |
| MOTA          | 7563         | CG         | LEU        |     | 36<br>36 | 69.980<br>70.343 | 57.289<br>55.858 | 62.688<br>62.373 |      | 66.02          |   | Č      |
| ATOM<br>ATOM  | 7565<br>7569 | _          | LEU<br>LEU |     | 36       | 70.343           | 57.552           | 64.205           | 1.00 | 66.36          |   | C      |
| ATOM          | 7573         |            | LEU        |     | 36       | 71.624           | 60.574           | 61.269           |      | 71.80          |   | . с    |
| ATOM          | 7574         | Ō          | LEU        |     | 36       | 71.449           | 61.086           | 60.156           |      | 72.79          |   | Ŋ      |
| ATOM          | 7575         |            | PRO        |     | 37       | 72.751           | 60.750<br>61.752 | 61.974<br>61.611 |      | 74.39          |   | c      |
| MOTA          | 7576         | CA         | PRO<br>PRO |     | 37<br>37 | 73.766<br>75.021 | 61.771           | 62.371           |      | 75.81          | r | С      |
| ATOM<br>ATOM  | 7578<br>7581 |            | PRO        |     | 37       | 74.509           | 60.548           | 63.587           |      | 75.55          |   | C      |
| ATOM          | 7584         |            | PRO        |     | 37       | 73.142           | 60.024           | 63.204           |      | 75.72          |   | C      |
| ATOM          | 7587         | С          | PRO        |     |          | 74.079           | 61.938           | 60.118<br>59 616 |      | 72.91          |   | 0      |
| MOTA          | 7588         |            | PRO        |     |          | 73.912           | 63.056<br>60.892 |                  |      | 70.18          |   | N      |
| MOTA<br>MOTA  | 7589<br>7591 |            | VAL<br>VAL |     |          | 74.979           | 61.022           |                  | 1.00 | 70.53          |   | C      |
| ATOM          | · 7593       | CB         | VAL        | , В | 38       | 76.506           | 60.779           | 57.906           |      | 72.77          |   | C      |
| MOTA          | 7595         | CG:        | l VAI      | , в | 38       | 76.860           | 59.290           |                  |      | 74.43          |   | · C    |
| MOTA          | 7599         |            | 2 VAI      |     |          | 77.024           | 61.268<br>60.113 |                  |      | 67.69          |   | c      |
| MOTA          | 7603         |            | VAI<br>VAI |     |          | 74.215<br>74.041 | 60.113           |                  | 1.0  | 66.86          |   | 0      |
| ATOM<br>ATOM  | 7604<br>7605 |            | ILE        |     |          | 73.774           | 58.958           |                  | 1.0  | 65.10          |   | N      |
| H100          | . 000        | •••        |            | _   | -        |                  |                  |                  |      |                |   |        |

|              |                       |          |            |   |          |                   | Figu             | ire 5            |      |                |        |
|--------------|-----------------------|----------|------------|---|----------|-------------------|------------------|------------------|------|----------------|--------|
| ATOM         | 7607                  | CA       | ILE        | В | 39       | 72.951            | 58.044           | 56.760           |      | 63.34          | С      |
| MOTA         | 7609                  | CB       | ILE        |   | 39       | 72.975            | 56.598           | 57.376           |      | 64.80          | C      |
| ATOM         | 7611<br>7614          |          | ILE        |   | 39<br>39 | 72.644<br>72.515  | 56.599<br>55.196 | 58.874<br>59.439 |      | 63.61          | C      |
| atom<br>atom | 7618                  |          | ILE        |   | 39       | 74.328            | 55.916           | 57.140           |      | 65.92          | Č      |
| ATOM         | 7622                  | c        | ILE        |   | 39       | 71.491            | 58.527           | 56.548           |      | 60.94          | C      |
| ATOM         | 7623                  | 0        | ILE        |   | 39       | 70.756            | 57.940           | 55.759           |      | 59.84          | 0      |
| ATOM         | 7624                  | N        | GLY        |   | 40       | 71.073            | 59.585           | 57.239           |      | 56.80          | N<br>C |
| atom<br>atom | 7626<br>7629          | CA<br>C  | GLY<br>GLY |   | 40<br>40 | 69.717<br>68.676  | 60.090<br>59.047 | 57.103<br>57.467 |      | 53.11          | č      |
| MOTA         | 7630                  | ō        | GLY        |   | 40       | 68.791            | 58.396           | 58.510           |      | 52.88          | ŏ      |
| ATOM         | 7631                  | N        | ASN        |   | 41       | 67.669            | 58.877           | 56.605           |      | 48.30          | N      |
| MOTA         | 7633                  | CA       | ASN        |   | 41       | 66.564            | 57.938           | 56.853           |      | 46.68          | C      |
| ATOM<br>ATOM | 7635<br>7638          | CB<br>CG | asn<br>asn |   | 41<br>41 | 65.214<br>64.778  | 58.567<br>59.627 | 56.490<br>57.472 |      | 45.30<br>46.24 | C      |
| ATOM         | 7639                  |          | ASN        |   | 41       | 64.641            | 59.370           | 58.680           |      | 46.21          | ō      |
| ATOM         | 7640                  |          | ASN        |   | 41       | 64.538            | 60.829           | 56.963           |      | 38.07          | N      |
| MOTA         | 7643                  | C        | ASN        |   | 41       | 66.720            | 56.624           | 56.106           |      | 45.74          | C<br>O |
| ATOM<br>ATOM | 7644<br>7645          | N<br>O   | ASN<br>ILE |   | 41<br>42 | 65.818<br>67.868  | 55.799<br>56.424 | 56.116<br>55.469 |      | 41.06<br>48.21 | Ŋ      |
| ATOM         | 7647                  | CA       | ILE        |   | 42       | 68.187            | 55.148           | 54.824           |      | 51.94          | Ċ      |
| ATOM         | 7649                  | CB       | ILE        |   | 42       | 69.678            | 55.104           | 54.399           | 1.00 | 50.69          | C      |
| MOTA         | 7651                  | CG1      |            | _ | 42       | 69.851            | 54.324           | 53.100           |      | 51.62          | C      |
| ATOM         | 7654                  |          | ILE        |   | 42       | 71.292            | 54.312<br>54.450 | 52.588<br>55.471 |      | 50.59<br>50.95 | C      |
| ATOM<br>ATOM | 7658<br>7662          | C        | ILE        |   | 42<br>42 | 70.537<br>67.859  | 53.905           | 55.676           |      | 52.96          | č      |
| ATOM         | 7663                  | ō        | ILE        |   | 42       | 67.677            | 52.823           | 55.134           |      | 56.00          | 0      |
| MOTA         | 7664                  | N        | LEU        | В | 43       | 67.797            | 54.043           | 56.994           |      | 55.68          | N      |
| ATOM         | 7666                  | CA       | LEU        |   | 43       | 67.536            | 52.877           | 57.834           |      | 60.16          | C      |
| ATOM         | 7668<br>7671          | CB<br>CG | LEU        |   | 43<br>43 | 67.896<br>69.086  | 53.179<br>52.368 | 59.281<br>59.814 |      | 60.52          | c      |
| MOTA<br>MOTA | 7673                  |          | LEU        |   | 43       | 70.076            | 51.811           | 58.755           |      | 64.31          | č      |
| ATOM         | 7677                  |          | LEU        |   | 43       | 69.834            | 53.210           | 60.815           | 1.00 | 66.13          | С      |
| MOTA         | 7681                  | Ç        | LEU        |   | 43       | 66.101            | 52,338           | 57.723           |      | 60.99          | C      |
| ATOM         | 7682                  | 0        | LEU        |   | 43       | 65.886<br>65.149- | 51.123           | 57.707<br>57.632 |      | 57.98<br>61.79 | O<br>N |
| MOTA<br>MOTA | 7683<br>7685          | N<br>CA  | GLN<br>GLN |   | 44<br>44 |                   | 52.940           | 57.457           |      | 64.99          | č      |
| ATOM         | 7687                  | CB       | GLN        |   | 44       | 62.834            | 53.943           | 58.234           |      | 68.02          | С      |
| ATOM         | 7690                  | CG       | GLN        |   | 44       | 63.256            | 55.441           | 58.215           |      | 72.27          | <br>C  |
| ATOM         | 7693                  | CD       | GLN        |   | 44       | 63.912            | 55.929           | 59.534           |      | 76.63<br>82.52 | C<br>O |
| MOTA<br>MOTA | 7694<br>7695          |          | GLN<br>GLN |   | 44<br>44 | 63.206,<br>65.245 | 56.252<br>55.998 | 60.490<br>59.570 |      | 72.60          | N      |
| ATOM         | 7.698                 | C        | GLN        |   | 44       | 63.293            | 52.799           | 55.971           |      | 63.93          | C      |
| MOTA         | 7699                  | 0        | GLN        |   | 44       | 62.682            | 51.775           | 55.609           |      | 62.76          | 0      |
| ATOM         | 7700                  | N        | ILE        |   | 45       | 63.581            | 53.785           | 55.116           |      | 60.42          | N<br>C |
| MOTA<br>MOTA | 7702<br>7704          | CA<br>CB | ILE        |   | 45<br>45 | 63.172<br>63.344  | 53.682<br>55.006 | 53.699<br>52.908 |      | 61.71          | Č      |
| MOTA         | 7706                  |          | ILE        |   | 45       | 64.814            | 55.325           | 52.670           |      | 62.20          | C      |
| MOTA         | 7709                  | CD1      |            |   | 45       | 65.086            | 56.757           | 52.240           |      | 63.33          | С      |
| ATOM         | 7713                  |          | ILE        |   | 45       | 62.636            | 56.143           | 53.624           |      | 65.65          | C      |
| ATOM<br>ATOM | 7717<br>7718          | С<br>0   | ILE        |   | 45<br>45 | 63.878<br>63.288  | 52.548<br>51.905 | 52.956<br>52.098 |      | 60.69<br>59.79 | Ö      |
| ATOM         | 7719                  | N        | GLY        |   | 46       | 65.132            | 52.302           | 53.298           |      | 61.09          | N      |
| ATOM         | 7721                  | CA       | GLY        | В | ·46      | 65.915            | 51.305           | 52.608           | 1.00 | 61.35          | C      |
| ATOM         | 7724                  | С.       | GLY        |   | 46       | 66.397            | 51.861           | 51.287           |      | 63.36<br>59.52 | 0      |
| ATOM<br>ATOM | 7725<br>7 <b>72</b> 6 | O<br>N   | GLY        |   | 46<br>47 | 66.672<br>66.430  | 53.047<br>50.998 | 51.163<br>50.279 |      | 68.04          | N      |
| ATOM         | 7728                  | CA       | ILE        |   | 47       | 67.234            | 51.221           | 49.077           |      | 68.43          | С      |
| ATOM         | 7730                  | CB       | ILE        |   | 47       | 68.689            | 50.833           | 49.415           |      | 68.91          | С      |
| MOTA         | 7732                  |          | ILE        |   | 47       | 69.619            | 50.994           | 48.207           |      | 69.77<br>68.99 | C      |
| MOTA         | 7735                  |          | ILE        |   | 47<br>47 | 71.000<br>68.729  | 50.340<br>49.401 | 48.379<br>50.013 |      | 70.92          | Č      |
| MOTA<br>MOTA | 7739<br>7743          | C        | ILE        |   | 47       | 66.689            | 50.414           | 47.882           |      | 70.85          | Č      |
| ATOM         | 7744                  | ō        | ILE        |   | 47       | 66.852            | 50.823           | 46.729           |      | 67.62          | 0      |
| ATOM         | 7745                  | N        | LYS        |   | 48       | 66.065            | 49.267           | 48.167           |      | 74.69          | N      |
| ATOM         | 7747                  | CA       | LYS        |   | 48<br>48 | 65.306            | 48.515<br>47.034 | 47.165<br>47.586 |      | 78.41<br>81.26 | C      |
| ATOM<br>ATOM | 7749<br>7752          | CB<br>CG | LYS        |   | 48<br>48 | 65.091<br>64.759  | 47.034           | 47.586           |      | 84.00          | č      |
| ATOM         | 7755                  | CD       | LYS        |   | 48       | 64.566            | 45.233           | 49.360           |      | 84.78          | С      |
| ATOM         | 7758                  | CE       | LYS        | В | 48       | 64.152            | 44.935           | 50.815           |      | 84.61          | C      |
| ATOM         | 7761                  | NZ       | LYS        |   | 48       | 65.308            | 44.899           | 51.759           |      | 80.92<br>78.58 | N<br>C |
| ATOM         | 7765<br>7766          | С<br>0   | LYS        |   | 48<br>48 | 63.979<br>64.008  | 49.244<br>50.164 | 46.801<br>45.984 |      | 77.76          | 0      |
| ATOM<br>ATOM | 7767                  | N        | ASP        |   | 49       | 62.849            | 48.855           | 47.406           |      | 78.47          | И      |
| ATOM         | 7769                  | CA       | ASP        | В | 49       | 61.511            | 49.396           | 47.071           |      | 80.27          | C      |
| ATOM         | 7771                  | CB       | ASP        | В | 49       | 60.424            | 48.284           | 47.234           | 1.00 | 84.46          | С      |

. 350/514

|              |              |           |            |   |            |                  | Figu             | ure 5              |      |                |   |         |
|--------------|--------------|-----------|------------|---|------------|------------------|------------------|--------------------|------|----------------|---|---------|
| ATOM         | 7774         | CG        | ASP        |   | 49         | 59.032           | 48.651           | 46.598             |      | 88.36          |   | С       |
| ATOM ATOM    | 7775<br>7776 |           | ASP        |   | 49<br>49   | 58.115<br>58.749 | 47.788<br>49.743 | 46.626             |      | 87.53<br>92.27 |   | 0       |
| ATOM         | 7777         | C         | ASP        |   | 49         | 61.161           | 50.597           | 46.052<br>47.953   |      | 76.85          |   | c       |
| ATOM         | 7778         | 0         | ASP        |   | 49         | 60.349           | 50.476           | 48.877             |      | 76.75          |   | 0       |
| ATOM         | 7779         | N         | ILE        |   | 50         | 61.748           | 51.759           | 47.669             |      | 73.15          |   | N       |
| MOTA<br>MOTA | 7781<br>7783 | CA<br>CB  | ILE        |   | 50<br>50   | 61.466<br>62.368 | 52.944<br>54.160 | 48.484<br>48.102   |      | 72.13<br>71.66 |   | C       |
| ATOM         | 7785         |           | ILE        |   | 50         | 61.953           | 54.768           | 46.761             |      | 76.38          |   | c       |
| MOTA         | 7788         |           | ILE        |   | 50         | 61.691           | 56.269           | 46.818             |      | 77.55          |   | С       |
| ATOM         | 7792         |           | ILE        |   | 50         | 63.851           | 53.767           | 48.064             |      | 71.11          |   | C       |
| ATOM<br>ATOM | 7796<br>7797 | С<br>О    | ILE        |   | 50<br>50   | 59.956<br>59.446 | 53.311<br>53.836 | 48.473<br>49.453   |      | 71.34<br>71.26 |   | C       |
| ATOM         | 7798         | N         | SER        |   | 51         | 59.246           | 52.995           | 47.390             |      | 69.88          |   | N       |
| ATOM         | 7800         | CA        | SER        |   | 51         | 57.794           | 53.237           | 47.301             |      | 70.37          |   | С       |
| ATOM         | 7802         | CB        | SER        |   | 51         | 57.245           | 52.939           | 45.874             |      | 73.12          |   | C       |
| ATOM<br>ATOM | 7805<br>7807 | OG<br>C   | SER<br>SER |   | 51<br>51   | 58.067<br>56.941 | 52.050<br>52.483 | 45.106<br>48.348   |      | 73.89<br>68.31 |   | 0       |
| ATOM         | 7808         | ŏ         | SER        |   | 51         | 55.968           | 53.037           | 48.870             |      | 58.23          |   | . 0     |
| MOTA         | 7809         | N         | LYS        |   | 52         | 57.291           | 51.227           | 48.643             |      | 70.45          |   | N       |
| ATOM         | 7811         | CA        | LYS        |   | 52<br>52   | 56.501           | 50.414           | 49.588             |      | 71.98<br>76.11 |   | C       |
| ATOM<br>ATOM | 7813<br>7816 | CB<br>CG  | LYS        |   | 52<br>52   | 56.950<br>55.805 | 48.945<br>47.958 | 49.616<br>49.974   |      | 81.92          |   | c       |
| ATOM         | 7819         | CD        | LYS        |   | 52         | 54.949           | 47.565           | 48.739             |      | 85.82          |   | Č       |
| ATOM         | 7822         | CE        | LYS        |   | 52         | 53.521           | 48.152           | 48.778             | 1.00 |                |   | C       |
| ATOM<br>ATOM | 7825<br>7829 | NZ<br>C   | LYS        |   | 52<br>52   | 52.931<br>56.554 | 48.286<br>50.991 | 47.403<br>50.995   | 1.00 | 87.07<br>67.60 |   | N<br>C  |
| ATOM         | 7830         | Ö         | LYS        |   | 52<br>52   | 55.539           | 51.006           | 51.709             | 1.00 |                |   | Ö       |
| ATOM         | 7831         | N         | SER        |   | 53         | 57.732           | 51.480           | 51.377             | 1.00 | 59.69          |   | N       |
| ATOM         | 7833         | CA        | SER        |   | 53         | 57.903           | 52.093           |                    |      | 55.82          |   | C       |
| ATOM<br>ATOM | 7835<br>7838 | CB<br>OG  | SER<br>SER |   | 53<br>53   | 59.369<br>60.181 | 52.033<br>52.734 | 53.114:<br>52.226: |      | 52.93          |   | C       |
| ATOM         | 7840         | C         | SER        |   | 53         | 57.347           | 53.522           | 52.801             |      |                |   | c       |
| ATOM         | 7841         | 0         | SER        |   | 53         | 57.180           | 54.020           | 53.906             | 1.00 | 54.81          |   | 0       |
| ATOM         | 7842         | N         | LEU        |   | 54         | 57.064           | 54.181           | 51.676             |      |                |   | N       |
| ATOM         | 7844<br>7846 | CA<br>CB  | LEU        |   | 54 °<br>54 | 56.466<br>56.617 | 55.520<br>56.173 | 51.679<br>50.317   |      |                |   | C       |
| ATOM         | 7849         | CG        | LEU        |   | 54         | 57.981           | 56.749           | 49.978             |      |                |   | č       |
| ATOM         | 7851         |           | LEU        | В | 54         | 57.983           | 57.236           | 48.533 %           |      |                |   | C       |
| ATOM ·       | 7855         |           | LEU        |   | 54         | 58.365           | 57.879           | 50.878             |      |                |   | C       |
| ATOM<br>ATOM | 7859<br>7860 | С<br>0    | LEU        |   | 54<br>54   | 54.975<br>54.453 | 55.465<br>56.358 | 52.035<br>52.711   |      | 51.60          |   | o       |
| ATOM         | 7861         | N         | THR        |   | 55         | 54.279           | 54.432           |                    |      | 47.22          |   | N       |
| ATOM         | 7863         | CA        | THR        |   | 55         | 52.901           | 54.239           |                    |      | 49.08          | • | C       |
| ATOM<br>ATOM | 7865<br>7867 | CB<br>CC1 | THR        |   | 55 .<br>55 | 52.213<br>52.004 | 53.204<br>53.778 |                    |      | 48.57<br>53.30 |   | 0       |
| ATOM         | 7869         |           | THR        |   | 55         | 50.806           | 52.882           |                    |      | 47.10          |   | c       |
| ATOM         | 7873         | C         | THR        |   | 55         | 52.820           | 53.829           |                    |      | 49.09          |   | С       |
| ATOM         | 7874         | 0         | THR        |   | 55         | 51.864           | 54.152           |                    |      | 50.67          |   | 0       |
| MOTA<br>MOTA | 7875<br>7877 | n<br>Ca   | ASN<br>ASN |   | 56<br>56   | 53.808<br>53.879 | 53.096 52.821    |                    |      | 50.90<br>48.33 |   | N<br>C. |
| ATOM         | 7879         | CB        | ASN.       |   | 56         | 54.956           | 51.795           |                    |      | 44.50          |   | C       |
| ATOM         | 7882         | ÇG        | ASN        |   | 56         | 54.505           | 50.392           |                    |      | 43.30          |   | С       |
|              | 7883         |           | ASN        | _ | 56<br>56   | 53.353           | 50.146           |                    |      | 39.24          |   | 0       |
| ATOM<br>ATOM | 7884<br>7887 | C.        | ASN        |   | 56<br>56   | 55.419<br>54.104 | 49.458<br>54.091 |                    |      | 46.07          |   | N<br>C. |
| MOTA         | 7888         | 0         | ASN        | В | 56         | 53.444           | 54.299           | 57.230             | 1.00 | 52.67          |   | 0       |
| MOTA         | 7889         | N         | LEU        |   | 57         | 54.984           | 54.965           |                    |      | 43.86          |   | N       |
| ATOM<br>ATOM | 7891<br>7893 | CA<br>CB  | LEU        |   | 57<br>57   | 55.243<br>56.520 | 56.197<br>56.894 |                    |      | 47.09<br>46.41 |   | C       |
| ATOM         | 7896         | CG        | LEU        |   | 57         | 57.828           | 56.132           |                    |      | 50.59          | • | Ċ       |
| MOTA         | 7898         |           | LEU        |   | 57         | 58.981           | 56.643           |                    |      | 51.68          |   | C       |
| ATOM         | 7902         |           | LEU        |   | 57<br>57   | 58.212           | 56.168           |                    |      | 53.01<br>49.03 |   | C       |
| ATOM<br>ATOM | 7906<br>7907 | С<br>0    | LEU        |   | 57         | 54.046<br>53.927 | 57.168<br>57.993 |                    |      | 51.53          |   | ŏ       |
| ATOM         | 7908         | N         | SER        |   | 58         | 53.156           | 57.075           | 55.489             | 1.00 | 49.86          |   | N       |
| MOTA         | 7910         | CA        | SER        |   | 58         | 52.042           | 58.021           |                    |      | 48.26          |   | C       |
| ATOM         | 7912<br>7915 | CB        | SER        |   | 58<br>58   | 51.368<br>50.574 | 58.009<br>56.843 |                    |      | 46.64<br>44.98 |   | 0       |
| ATOM<br>ATOM | 7915<br>7917 | OG<br>C   | SER<br>SER |   | 58         | 51.045           | 57.683           |                    |      | 46.79          |   | c       |
| ATOM         | 7918         | ō         | SER        |   | 58         | 50.378           | 58.564           | 57.035             | 1.00 | 48.29          |   | 0       |
| ATOM         | 7919         |           | LYS        |   | 59         | 50.970           | 56.398           |                    |      | 43.76          |   | N       |
| MOTA         | 7921<br>7923 | CA        | LYS        |   | 59<br>59   | 50.092<br>50.205 | 55.874<br>54.346 |                    |      | 44.17<br>46.56 |   | C       |
| MOTA<br>MOTA | 7925         |           | LYS<br>LYS |   | 59         | 49.086           | 53.591           |                    |      | 49.93          |   | c       |
| ATOM         | 7929         |           | LYS        |   | 59         | 48.767           | 54.084           |                    | 1.00 | 53.96          | • | С       |

```
Figure 5
                                                       1.00 54.10
                                47.701 53.200 55.116
      7932
           CE
               LYS B 59
ATOM
                                47.763
                                        51.792
                                              55.664
                                                       1.00 57.02
            NZ
                LYS B
                       59
      7935
MOTA
                                                                             C
                                50.439
                                        56.434
                                               59.230
                                                       1.00 46.11
            C
                LYS B
ATOM
      7939
                                        56.404
                                               60.135
                                                       1.00 45.35
                LYS B
                       ·59
                                49.602
ATOM
      7940
            0
                       60
                                51.666
                                       56.933
                                               59.396
                                                        1.00 45.72
                VAL B
ATOM
      7941
            N
            CA .
                      60
                                52.062
                                        57.538
                                               60.654
                                                        1.00 43.72
                                                                             C
                VAL B
MOTA
      7943
                                                       1.00 45.18
                                53.236
                                       56.763
                                               61.392
                VAL B
                       60
ATOM
      7945
            CB
                                                        1.00 43.71
                                        55.516
                                               60.632
                                53.701
            CG1 VAL B
                       60
ATOM
      7947
                                54.413
                                        57.678
                                               61.745
                                                        1.00 46.50
ATOM
      7951
            CG2 VAL B
                       60
                                52.328
                                               60.588
                       60
                                       59.026
                                                        1.00 44.24
      7955
            С
                VAL B
                                               61.578
                                                        1.00 47.49
                                52.103
                                        59.695
      7956
            0
                VAL B
                       60
ATOM
                                        59.592
                                               59.477
                                                        1.00 42.00
      7957
            N
                TYR B
                       61
                                52.774
ATOM
                                               59.505
                                        61.040
                                                        1.00 45.60
                                53.073
      7959
            CA
                TYR B
                       61
ATOM
                                               59.066
                                                        1.00 46.36
                                                                             С
                                        61.325
      7961
            CB
                TYR B 61
                                54.521
ATOM
                                        60.726
                                               59.980
                                                        1.00 52.77
            CG
                TYR B
                       61
                                55.591
ATOM
       7964
                                                        1.00 55.20
                                               61.154
                                56.005
                                        61.389
ATOM
      7965
            CD1 TYR B
                        61
                                                        1.00 52.62
                                               61.990
                                        60.835
      7967
            CE1 TYR B
                        61
                                56.982
ATOM
                                               61.648
                                                        1.00 53.46
            CZ TYR B
                        61
                                57.553
                                        59.622
ATOM
      7969
                                                        1.00 51.41
                        61
                                58.505
                                        59.051
                                               62.453
       7970
            OH
                TYR B
ATOM
                                               60.490
                                                       1.00 53.00
                                57.163 58.957
      7972
            CE2 TYR B
                        61
ATOM
                                               59.668
                                                        1.00 50.50
                                                                             С
                                56.198
                                       59.506
       7974
            CD2 TYR B
                        61
ATOM
                                                        1.00 47.89
                                                                             C
                                               58.704
                                52.068 61.895
      7976
                TYR B
                        61
MOTA
            С
                                                                             0
                                                        1.00 46.50
                                52.189
                                        63.130
                                               58.620
       7977
            0
                TYR B
                        61
MOTA
                                                        1.00 49.06
                                51.055
                                        61.244
                                               58.141
       7978
                GLY B
                       62
ATOM
            N
                                                        1.00 48.86
                                                                             С
       7980
            CA
                GLY B 62
                                50.054
                                        61.940
                                               57.354
ATOM
                                                                             С
                GLY B 62
                                50.388
                                        61.945
                                               55.877
                                                        1.00 50.05
       7983 · C
ATOM
                                        61.189
                                               55.423
                                                        1.00 50.41
                                                                             0
                GLY B 62
                                51.244
       7984
ATOM
            O
                                        62.789
                                                55.116
                                                        1.00 48.49
                                                                             N
                                49.694
                PRO B 63
MOTA
       7985
           N
                                        62.831
                                               53.666
                                                        1.00 45.87
                                                                             .C
            CA PRO B 63
                                49.854
ATOM
       7986
                                                53.212
                                                                             C_{\ell} = \ell
                                                        1.00 46.26
                                48.520
                                        63.415
                PRO B 63
ATOM
       7988
            CB
                                                                          64.352
                                                54.283
                                                        1.00 43.56
                                48.159
       7991
            CG
                PRO B 63
ATOM
                                                        1.00 45.22
                                        63.780
                                48.703
                                                55.565
                PRO B 63
       7994
            CD
ATOM
                                                                          53.238
                                                        1.00 43.35
                                50.986
                                       63.747
ATOM
       7997 C
                PRO B 63
                                                        1.00 46.42
                                51.274
                                        63.807
                                                52.066
       7998
            0
                PRO B 63
ATOM
                                        64.467
65.392
                                                54.159
                                                        1.00 43.05
                                51.604
       7999 N
                VAL B 64
ATOM
                                                        1.00 43.45
                                                                           53.802
       8001
            CA
                VAL B 64
                                52.666
ATOM
                                        66.842
67.792
                                                53.752
                                                        1.00 42.30
                                52.162
ATOM
       8003
            CB VAL B
                        64
                                                                          -0.0.19 m/3 0 0
Comp. 1147
13 0 m/314 /2
                                                53.416
                                                        1.00 37.68
ATOM
       8005
            CG1 VAL B
                        64
                                53.295
                                               52.727
54.798
                                                        1.00 46.81
            CG2 VAL B 64
                                51.055
                                        66.983
ATOM
       B009
                                                        1.00 45.21
                 VAL B
                        64
                               53.802
                                       65.301
ATOM
       B013
            С
                                                        1.00 44.95
                                               55.801
                 VAL B 64
                                53.799
                                        66.003
       B014
ATOM
                                                54.505
                                                        1.00 47.54
       8015
            N
                 PHE B 65
                                54.783
                                        64.452
ATOM
                                                        1.00 48.77
                                                55.412
                 PHE B 65
                                55.916
                                       64.266
            CA
ATOM
       8017
                                                        1.00 50.24
                                55.841
                                        62.890
                                                56.048
АТОМ
       8019
            ÇВ
                 PHE B 65
                                                        1.00 47.32
                                55.805
                                        61.745
                                                55.081
       8022
            CG
                 PHE B
                        65
ATOM
            CD1 PHE B
                        65
                                54.588
                                        61.166
                                                54.715
                                                        1.00 49.90
       8023
ATOM
                                                        1.00 45.43
            CE1 PHE B
                        65
                                54.544
                                        60.059
                                                53.857
ATOM
       8025
                                55.724
                                       59.532
                                                53.377
                                                        1.00 44.94
                                                                              C
                 PHE B
                        65
ATOM
       8027
            CZ
                                                                              С
            CE2
                PHE B
                        65
                                56.943
                                        60.104
                                                53.753
                                                       1.00 42.93
MOTA
       8029
                                                                              C
            CD2 PHE B
                                                54.605
                                                        1.00 43.60
                        65
                                56.975
                                        61.194
MOTA
       8031
                                                                              C
                                        64.461
                                                54.823
                                                        1.00 47.75
                 PHE B
                        65
                                57.305
ATOM
       8033
            C
                                                                              ٥
                                        64.238
                                                53.643
                                                        1.00 46.86
                 PHE B 65
                                57.505
ATOM
       8034
            0
                                                                              N
                                        64.866
                                                55.682
                                                        1.00 48.23
                 THR B 66
                                58.248
ATOM
       8035
            N
                                                                              C
                                                55.322
                                                        1.00 49.54
                 THR B
                        66
                                59.646
                                        65.121
            CA
ATOM
       8037
                                60.245
                                       66.246
                                                56.188
                                                        1.00 50.95
                 THR B 66
ATOM
       8039-
             CB
                                59.555
                                        67.489
                                                55.952
                                                        1.00 53.54
                                                                              0
             OG1 THR B
                        66
       8041
ATOM
                                        66.553
                                                55.772
                                                        1.00 51.12
             CG2 THR B
                                61.697
                        66
ATOM
       8043
                                                                              C
                                60.513
                                        63.860
                                                55.433
                                                        1.00 51.62
                 THR B
                        66
ATOM
       8047
             С
                                                56.278
                                                        1.00 53.03
                                                                              0
                                        62.992
       8048
             0
                 THR B 66
                                60.282
ATOM
                                        63.774
                                                54.558
                                                        1.00 53.01
                                                                              N
       8049
             N
                 LEU B 67
                                61.510
MOTA
                                                        1.00 53.33
                                                54.486
                                        62.622
                 LEU B
                        67
                                62.397
ATOM
       8051
             CA
                                                53.405
                                                        1.00 53.41
                                        61.667
                 LEU B
                        67
                                61.928
       8053
             CB
ATOM
                                                53.835
                                                        1.00 56.72
                 LEU B
                        67
                                61.969
                                        60.214
       8056
             CG
ATOM
                                               55.042
                                                        1.00 59.62
             CD1 LEU B
                        67
                                61.064
                                        60.010
       8058
ATOM
                                                52.684
                                                        1.00 59.51
                        67
                                61.548
                                        59.331
ATOM
       8062
             CD2 LEU B
                                               54.205
                                                        1.00 53.29
       8066
             С
                 LEU B
                        67
                                63.830
                                        63.016
ATOM
                                               53.701
                                                        1.00 48.63
                 LEU B
                        67
                                64.105
                                        64.097
             0
       8067
ATOM
                                               54.501
                                                        1.00 57.56
                                        62.105
                 TYR B
                        68
                                64.749
       8068
ATOM
             N
                                                        1.00 58.88
                                66.174
                                        62.406
                                                54.370
                 TYR B
                        68
       8070
             CA
ATOM
                                                        1.00 59.94
                                        62.619
                                               55.744
                                66.828
                 TYR B
                        68
ATOM
       8072
             CB
                                                        1.00 59.91
                                                56.293
                                 66.547
                                        64.004
ATOM
       8075
             CG
                 TYR B
                        68
                                                        1.00 57.34 4
                                                57.165
                                 65.481
                                        64.230
ATOM
       8076
             CD1
                 TYR B
                        68
                                                57.651
                                                        1.00 59.65
                                        65.512
                        68
                                 65,216
ATOM
       8078
             CE1 TYR B
                                                        1.00 57.40
                                                57.253
                                        66.571
                                 66.022
ATOM
       8080
             CZ
                 TYR B
                        68
                                 65.763
                                        67.828
                                                57.712
                                                        1.00 58.80
       8081
             OH
                 TYR B
                        68
ATOM
                                        66.372
                                               56.387
                                                        1.00 56.10
             CE2
                 TYR B
                        68
                                 67.077
ATOM
       8083
```

34550 FEEL STATE

476 W 1995

|              |              |           |            |     |            |                   | T2               | E                |      |                |   |        |
|--------------|--------------|-----------|------------|-----|------------|-------------------|------------------|------------------|------|----------------|---|--------|
|              | 2225         | 222       | mvn        |     | 68         | 67.331            | . Figu           | re 5<br>55.904   | 1.00 | 58.00          |   | С      |
| MOTA<br>MOTA | 8085<br>8087 | CDZ       | TYR<br>TYR |     | 68         | 66.919            | 61.372           | 53.554           | 1.00 |                |   | C      |
| ATOM         | 8088         | ŏ         | TYR        |     | 68         | 67.018            | 60.200           | 53.926           | 1.00 |                |   | O<br>N |
| MOTA         | 8089         | N         | PHE        |     | 69         | 67.386            | 61.828           | 52.399<br>51.620 | 1.00 |                |   | C      |
| MOTA         | 8091         | CA        | PHE<br>PHE |     | 69<br>69   | 68.369<br>68.054  | 61.104<br>61.199 | 50.127           | 1.00 |                |   | С      |
| MOTA<br>MOTA | 8093<br>8096 | CB<br>CG  | PHE        |     | 69         | 66.860            | 60.394           | 49.731           |      | 68.48          |   | С      |
| MOTA         | 8097         |           | PHE        |     | 69         | 66.962            | 59.027           | 49.575           |      | 72.74          |   | C      |
| ATOM         | 8099         |           | PHE        |     | 69         | 65.866            | 58.277           | 49.234<br>49.068 |      | 73.87<br>73.18 | • | C      |
| ATOM         | 8101         | CZ        | PHE        |     | 69<br>69   | 64.648<br>64.528  | 58.886<br>60.237 | 49.239           |      | 73.28          |   | Č      |
| ATOM<br>ATOM | 8103<br>8105 |           | PHE        |     | 69         | 65.631            | 60.988           | 49.574           | 1.00 | 71.75          |   | С      |
| MOTA         | 8107         | C         | PHE        |     | 69         | 69.700            | 61.728           | 51.985           |      | 60.37          | - | C      |
| MOTA         | 8108         | 0         | PHE        |     | 69         | 70.103            | 62.755<br>61.113 | 51.431<br>52.965 |      | 58.76<br>59.60 |   | Ŋ      |
| ATOM         | 8109<br>8111 | N<br>CA   | GLY        |     | 70<br>70   | 70.355<br>71.523  | 61.695           | 53.588           |      | 59.13          |   | C      |
| MOTA<br>MOTA | 8114         | C         | GLY        |     | 70         | 71.170            | 63.017           | 54.231           |      | 56.62          |   | C      |
| MOTA         | 8115         | 0         | GLY        | В   | 70         | 70.475            | 63.053           | 55.237           |      | 56.39          |   | O<br>N |
| MOTA         | 8116         | N         | LEU        |     | 71         | 71.643<br>71.464. | 64.099<br>65.450 | 53.627<br>54.158 |      | 58.18<br>60.50 |   | Ċ      |
| ATOM<br>ATOM | 8118<br>8120 | CA<br>CB  | LEU        |     | 71<br>71   | 72.803            | 66.211           | 54.126           | 1.00 | 60.58          |   | ¢      |
| MOTA         | 8123         | CG        | LEU        |     | 71         | 74.002            | 65.595           | 54.881           |      | 56.51          |   | C      |
| ATOM         | 8125         |           | LEU        |     | 71         | 75.258            | 66.400           | 54.640           |      | 53.41<br>52.28 |   | C      |
| ATOM         | 8129         |           | LEU        |     | 71         | 73.705<br>70.405  | 65.474<br>66.231 | 56.385<br>53.374 |      | 64.26          |   | č      |
| ATOM<br>ATOM | 8133<br>8134 | С<br>0    | LEU        |     | 71<br>71   | 70.039            | 67.349           | 53.765           |      | 64.74          |   | 0      |
| ATOM         | 8135         | N         | LYS        |     | 72         | 69.932            | 65.647           | 52.265           |      | 64.57          |   | · N    |
| MOTA         | 8137         | CA        | LYS        |     | 72         | 68.899            | 66.248           | 51.435           |      | 62.31<br>64.58 |   | C      |
| MOTA         | 8139         | CB        | LYS        |     | 72         | 68.945<br>68.407  | 65.659<br>66.591 | 50.018<br>48.898 |      | 65.46          |   | č      |
| MOTA         | 8142<br>8145 | CG<br>CD  | LYS<br>LYS |     | 72<br>72   | 69.138            | 66.381           | 47.553           |      | 66.10          |   | С      |
| ATOM         | 8148         | CE        | LYS        |     | 72         | 68.198            | 66.505           | 46.353           |      | 66.80          |   | C      |
| ATOM         | 8151         | NZ        | LYS        | В   | 72         | 67.453            | 67.793           | 46.361           |      | 67.18          |   | N<br>C |
| ATOM         | 8155         |           | LYS        |     | 72         | 67.520            | 66.018<br>64.874 | 52.081<br>52.328 |      | 61.67<br>55.55 |   | ŏ      |
| ATOM         | 8156<br>8157 | Ŋ         | LYS<br>PRO |     | 72<br>73   | 67.118<br>66.832  | 67.113           | 52.405           |      | 61.12          | • | N.     |
| MOTA<br>MOTA |              | ·CA       | PRO        |     | 73         | 65.439            | 67.063           | 52.867           |      | 60.60          |   | C      |
| ATOM         | 8160         | CB        | PRO        |     | 73         | 65.288            | 68.391           | 53.611           |      | 60.05<br>59.35 | • | C      |
| ATOM         | 8163         | CG        | PRO        |     | 73         | 66.207<br>67.353  | 69.319<br>68.494 | 52.903<br>52.416 |      | 60.56          |   | č      |
| ATOM<br>ATOM | 8166<br>8169 |           | PRO<br>PRO |     | 73<br>73   | 64.424            | 66.972           | 51.718           |      | 60.73          |   | С      |
| ATOM         | 8170         | ŏ         | PRO        |     | 73         | 64.461            | 67.815           | 50.811           |      | 62.12          |   | 0      |
| ATOM         | 8171         | N         | ILE        |     | 74         | 63.528            | 65.980           | 51.783           |      | 60.24<br>57.67 |   | N<br>C |
| ATOM         | 8173         | CA        | ILE        |     | 74<br>. 74 | 62.546<br>62.911  | 65.683<br>64.327 | 50.728<br>50.037 |      | 58.41          |   | č      |
| ATOM<br>ATOM | 8175<br>8177 | CB<br>CG1 | ILE<br>ILE |     | 74         | 63.731            | 64.574           | 48.779           |      | 61.62          |   | С      |
| ATOM         | 8180         |           | ILE        |     | 74         | 65.089            | 65.134           | 49.033           |      | 63.47          |   | C      |
| MOTA         | 8184         |           | ILE        |     | 74         | 61.684            | 63.524<br>65.620 | 49.619<br>51.303 |      | 56.66<br>54.66 |   | Ċ      |
| ATOM         | 8188         | 0         | ILE        |     | 74<br>74   | 61.123<br>60.806  | 64.736           | 52.105           |      | 51.14          | • | ō      |
| MOTA<br>MOTA | 8189<br>8190 | Ŋ         | VAL        |     | 75         | . 60.264          | 66.541           | 50.876           |      | 49.32          |   | N      |
| ATOM         | 8192         | CA        | VAL        | В   | 75         | 58.846            | 66.452           | 51.189           |      | 47.24          |   | C      |
| ATOM         | 8194         | CB        | VAL        | _   | 75         | 58.164            | 67.817<br>67.695 | 51.075<br>51.339 |      | 48.31<br>51.13 |   | Č      |
| ATOM         | 8196<br>8200 |           | VAL        |     | 75<br>75   | 56.670<br>58.784  | 68.815           | 52.037           |      | 47.75          |   | C      |
| ATOM<br>ATOM | 8204         | c         | VAL        |     | 75         | 58.171            | 65.468           | 50.238           |      | 45.28          |   | C      |
| ATOM         | 8205         | 0         | VAL        |     | 75         | 58.214            | 65.645           | 49.029           |      | 46.01<br>44.39 |   | O<br>N |
| ATOM         | 8206         | N         | VAL        |     | 76<br>76   | 57.567<br>56.705  |                  | 50.801<br>50.084 |      | 41.92          |   | Ċ      |
| MOTA<br>MOTA | 8208<br>8210 | CA<br>CB  | VAL<br>VAL |     | 76<br>76   | 56.867            |                  | 50.673           |      | 40.90          |   | C      |
| MOTA         | 8212         |           | L VAL      |     | 76         | 55.926            | 61.047           | 50.004           |      | 41.02          |   | C      |
| ATOM         | 8216         |           | 2 VAL      |     | 76         | 58.315            |                  | 50.548<br>50.196 |      | 40.28          |   | C      |
| ATOM         | 8220         | C         | VAI        |     | 76<br>76   | 55.225<br>54.803  |                  | 51.219           |      | 44.48          |   | ō      |
| ATOM<br>ATOM | 8221<br>8222 | O<br>N    | VAL        |     | 77         | 54.448            |                  | 49.145           |      | 41.22          |   | n      |
| ATOM         | 8224         | CA        | LEU        |     | לל         | 53.000            | 63.814           | 49.126           |      | 38.54          |   | C      |
| ATOM         | 8226         | . CB      | LEU        | JВ  | 77         | 52.661            |                  |                  |      | 37.52<br>39.76 |   | C      |
| MOTA         | 8229         |           | LEU        |     | 77         | 53.454<br>52.864  |                  |                  |      | 39.76          |   | Č      |
| ATOM         | 8231<br>8235 |           | LEU<br>LEU |     | 77<br>77   | 52.864<br>53.492  |                  |                  |      | 43.97          |   | С      |
| MOTA<br>MOTA | 8239         |           | LEU        |     | 77         | 52.278            |                  | 48.855           | 1.00 | 40.89          |   | C      |
| ATOM         | 8240         | 0         | LEU        | ј В | 77         | 52.599            | 61.810           |                  |      | 42.81<br>41.87 |   | O<br>N |
| ATOM         | 8241         |           | HIS        |     |            | 51.290            |                  |                  |      | 43.43          |   | C      |
| ATOM         | 8243<br>8245 |           | HIS        |     |            | 50.747<br>51.090  |                  |                  |      | 39.94          |   | С      |
| MOTA<br>MOTA | 8248         |           |            | 3 B |            | 50.870            |                  |                  |      | 34.21          |   | . с    |
| ATOM         | 32.0         |           |            | _   |            |                   |                  |                  |      |                |   |        |

|              |              |            |            |   |               |                    |                  | •                |      |                    |   |        |
|--------------|--------------|------------|------------|---|---------------|--------------------|------------------|------------------|------|--------------------|---|--------|
|              |              |            |            |   |               |                    | Figu             | re 5             |      |                    |   |        |
| ATOM         | 8249         | ND1        | HIS E      | 3 | 78            | 49.827             | 57.824           | 51.199           |      | 39.96              |   | N      |
| MOTA         | 8251         | CE1        | HIS E      | 3 | 78            | 49.857             | 56.550           | 50.840           |      | 37.49              |   | C<br>N |
| MOTA         | 8253         |            | HIS E      |   | 78            | 50.892             | 56.369           | 50.035<br>49.857 |      | 38.17 · 35.66      |   | Č      |
| ATOM         | 8255         |            | HIS E      |   | 78<br>78      | 51.536<br>49.239   | 57.573<br>60.698 | 49.179           |      | 49.50              |   | Ċ      |
| MOTA         | 8257         |            | HIS E      |   | 78<br>78      | 48.837             | 59.935           | 48.292           |      | 50.06              |   | 0      |
| ATOM<br>ATOM | 8258<br>8259 |            | GLY I      |   | 79            | 48.383             | 61.482           | 49.810           |      | 52.24              |   | N      |
| ATOM         | 8261         |            | GLY I      |   | 79            | 46.986             | 61.451           | 49.366           |      | 55.16              |   | C      |
| ATOM         | 8264         | С          | GLY I      | В | 79            | 46.750             | 61.780           | 47.874           |      | 51.62              |   | C<br>O |
| ATOM         | 8265         | 0          | GTA 1      |   | 79            | 47.556             | 62.494           | 47.265<br>47.282 |      | 52.73<br>45.31     |   | N      |
| MOTA         | 8266         | N          | TYR I      |   | 80<br>80      | 45.650<br>45.121   | 61.298<br>61.963 | 46.079           |      | 45.27              |   | c      |
| ATOM         | 8268<br>8270 | CA<br>. CB | TYR I      |   | 80            | 43.817             | 61.325           | 45.534           |      | 47.61              |   | С      |
| ATOM<br>ATOM | 8273         | CG         | TYR I      |   | 80            | 43.112             | 62.261           | 44.536           |      | 49.92              |   | С      |
| MOTA         | 8274         |            | TYR        |   | 80            | 43.477             | 62.278           | 43.186           |      | 50.04              |   | C      |
| MOTA         | 8276         | CEl        | TYR        | В | 80            | 42.870             | 63.155           | 42.270           |      | 43.21<br>44.61     |   | C      |
| ATOM         | 8278         | CZ         | TYR        |   | 80            | 41.916             | 64.043           | 42.708<br>41.801 |      | 39.29              |   | Ö      |
| ATOM         | 8279         | OH         | TYR :      |   | 80<br>80      | 41.337<br>41.540   | 64.897<br>64.065 | 44.049           |      | 46.47              |   | C      |
| MOTA<br>MOTA | 8281<br>8283 |            | TYR TYR    |   | 80            | 42.140             | 63.188           | 44.955           |      | 49.17              |   | С      |
| ATOM         | 8285         | C          | TYR        |   | 80            | 44.844             | 63.449           | 46.354           |      | 43.35              |   | C      |
| ATOM         | 8286         | ō          | TYR        |   | 80            | 45.136             | 64.297           | 45.519           |      | 36.53              |   | O<br>N |
| MOTA         | 8287         | N          | GLU        |   | 81            | 44.236             | 63.751           | 47.504           |      | 43.44<br>46.28     |   | C      |
|              | . 8289       | CA         | GLU        |   | 81            | 43.877             | 65.126           | 47.835<br>49.128 |      | 48.63              |   | č      |
| MOTA         | 8291         | CB         | GLU<br>GLU |   | 81<br>81      | 43.038<br>41.583   | 64.700           | 49.042           |      | 54.17              |   | С      |
| MOTA<br>MOTA | 8294<br>8297 | CG         | GLU        |   | 81            | 40.690             | 65.388           | 47.970           |      | 59.24              |   | С      |
| ATOM         | 8298         |            | GLU        |   | 81            | 39.750             | 64.723           | 47.448           |      | 54.16              |   | 0      |
| ATOM         | 8299         |            | GLU        |   | 81 ୍          | 40.906             | 66.590           | 47.637           |      | 59.01              |   | O<br>C |
| ATOM         | 8300         | C          | GLU        |   | 81            | 45.124             | 66.004           | 47.904<br>47.387 |      | 45.86<br>43.46     |   | Ö      |
| ATOM         | 8301         | 0          | GLU        |   | 81<br>82      | 45.123<br>. 46.199 | 67.112<br>65.490 | 48.496           |      | 49.51              |   | Ŋ      |
| ATOM         | 8302         | N<br>CA    | ALA<br>ALA |   | 82            | 47.467             | 66.244           | 48.606           |      | 48.70              | - | С      |
| ATOM<br>ATOM | 8304<br>8306 | CB         | ALA        |   | 82            | 48.371             | 65.588           | 49.638           | 1.00 | 48.45              |   | C      |
| ATOM         | 8310         | c          | ALA        |   | 82            | 48.210             | 66.392           | 47.257           |      | 48.64              |   | C      |
| MOTA         | 8311         | 0          | ALA        |   | 82            | 48.783             | 67.446           | 46.953           |      | 41.19              |   | O<br>N |
| MOTA         | 8312         | N          | VAL        |   | 83            | 48.184             | 65.341           | 46.446           |      | 47.33<br>48.02     |   | C      |
| ATOM         | 8314         | CA         | VAL        |   | 83            | 48.800<br>48.851   | 65.401<br>64.014 | 45.132<br>44.471 |      | 50.42              |   | č      |
| ATOM         | 8316<br>8318 | CB<br>CG1  | VAL        |   | 83 //<br>83 / | 49.353             | 64.113           | 43.057           |      | 50.55              |   | С      |
| MOTA<br>MOTA | 8322         |            | VAL        |   | 83            | 49.752             | 63.074           | 45.262           | 1.00 | 51.79              |   | C      |
| ATOM         | 8326         | C          | VAL        |   | 83            | 48.020             | 66.375           | 44.256           |      | 46.38              |   | C      |
| ATOM         | 8327         | 0          | VAL        |   | 83            | 48.621             | 67.175           | 43.559           |      | 46.10<br>46.25     |   | O<br>N |
| ATOM         | 8328         | N          | LYS        |   | 84            | 46,691             | 66.316<br>67.185 | 44.320<br>43.520 |      | 49.65              |   | Ċ      |
| ATOM         | 8330         | CA<br>CB   | LYS<br>LYS |   | 84<br>84      | 45.810<br>44.320   | 66.731           | 43.627           |      | 54.96              |   | С      |
| ATOM<br>ATOM | 8332<br>8335 | CG         | LYS        |   | 84            | 43.208             | 67.812           | 43.748           |      | 56.68              |   | С      |
| ATOM         | 8338         | CD         | LYS        |   | 84            | 42.840             | 68.424           | 42.404           |      | 61.56              |   | C      |
| MOTA         | 8341         | CE         | LYS        |   | 84            | 41.537             | 69.251           | 42.474           |      | 64.54              |   | C<br>N |
| MOTA         | 8344         | NZ         | LYS        |   | 84            | 41.552             | 70.262<br>68.628 | 43.577<br>43.921 |      | 47.57              |   | Č      |
| ATOM         | 8348<br>8349 | C<br>O     | LYS        |   | 84<br>84      | 45.980<br>46.148   | 69.499           | 43.085           |      | 54.13              |   | 0      |
| ATOM<br>ATOM | 8350         | N          | GLU        |   | 85            | 45.975             | 68.880           | 45.212           | 1.00 | 47.57              |   | N      |
| ATOM         | 8352         | CA         | GLU        | _ | 85            | 46.139             | 70.229           |                  |      | 48.70              |   | C      |
| MOTA         | 8354         | CB         | GLU        |   | 85            | 46.006             | 70.248           | 47.220           |      | 51.82              |   | C      |
| MOTA         | 8357         | CG         | GLU        |   | 85            | 45.873             | 71.641           | 47.813<br>49.297 |      | 58.25<br>64.65     |   | ç      |
| MOTA         | 8360         | CD         | GLU<br>GLU |   | 85<br>85      | 45.554<br>44.759   | 71.607<br>70.720 | 49.724           |      | 61.60              |   | o      |
| MOTA<br>MOTA | 8361<br>8362 |            | GLU        |   | 85            | 46.103             | 72.475           | 50.023           |      | 70.15              |   | 0      |
| ATOM         | 8363         |            | · GLU      |   | 85            | 47.478             | 70.813           | 45.299           |      | 48.76              |   | C      |
| ATOM         | 8364         | ō          | GLU        |   | 85            | 47.590             | 72.004           | 45.037           |      | 54.33              |   | 0      |
| ATOM         | 8365         | N          | ALA        | В | 86            | 48.512             | 69.993           | 45.254           |      | 48.14<br>49.19     |   | N<br>C |
| MOTA         | 8367         |            | ALA        |   | 86            | 49.834             | 70.527           | 44.971<br>45.527 |      | 50.74              |   | č      |
| ATOM         | 8369         |            | ALA        |   | 86            | 50.904             | 69.614<br>70.716 | 43.473           |      | 46.53              |   | Ċ      |
| ATOM         | 8373         |            | ALA<br>ALA |   | 86<br>86      | 50.022<br>50.439   | 71.768           | 43.034           | 1.00 | 44.32              |   | 0      |
| ATOM<br>ATOM | 8374<br>8375 |            | LEU        |   | 87            | 49.693             | 69.694           | 42.697           | 1.00 | 46.16              |   | N      |
| ATOM         | 8377         |            | LEU        |   | 87            | 50.053             | 69.655           | 41.281           |      | 46.76              |   | C      |
| ATOM         | 8379         |            | LEU        |   | 87            | 50.064             | 68.197           |                  |      | 44.90              |   | C      |
| MOTA         | 8382         | CG         | LEU        | В | 87            | 51.378             | 67.392           |                  |      | 0 45.66<br>0 46.69 |   | C      |
| MOTA         | 8384         |            | LEU        |   | 87            | 52.579             | 67.999           |                  |      | 0 42.65            |   | c      |
| MOTA         | 8388         |            | 2 LEU      |   | 87<br>97      | 51.174<br>49.097   | 66.000<br>70.511 |                  |      | 0 45.37            |   | Č      |
| ATOM         | 8392<br>8393 |            | LEU        |   | 87<br>87      | 49.460             | 71.035           |                  | 1.0  | 0 43.94            |   | 0      |
| ATOM<br>ATOM | 8394         |            | ILE        |   | 88            | 47.867             | 70.637           | 40.888           |      | 0 46.03            |   | N.     |
| ATOM         | 8396         |            | ILE        |   |               | 46.881             | 71.387           | 40.155           | 1.0  | 0 45.64            |   | С      |
|              |              |            |            |   |               |                    |                  |                  |      |                    |   |        |

|              |              |            |            |        |          |                   | Figu             | re 5             |                          |            |
|--------------|--------------|------------|------------|--------|----------|-------------------|------------------|------------------|--------------------------|------------|
| ATOM         | 8398         | СВ         | ILE        | В      | 88       | 45.617            | 70.530           | 39.945           | 1.00 42.78               | C          |
| MOTA         | 8400         |            | ILE        |        | 88       | 45.905            | 69.454           | 38.886           | 1.00 43.32               | C<br>C     |
| MOTA         | 8403         | CD1<br>CG2 | ILE        | B<br>B | 88<br>88 | 45.542<br>44.463  | 68.055<br>71.393 | 39.332<br>39.480 | 1.00 44.42               | č          |
| ATOM<br>ATOM | 8407<br>8411 | C          | ILE        |        | 88       | 46.637            | 72.731           | 40.854           | 1.00'47.91               | С          |
| ATOM         | 8412         | ō          |            | В      | 88       | 46.984            | 73.767           | 40.291           | 1.00 45.87               | 0          |
| ATOM         | 8413         | N          | ASP        |        | 89       | 46.107            | 72.714           | 42.082           | 1.00 51.20<br>1.00 53.92 | n<br>C     |
| MOTA         | 8415         | CA<br>CB   | ASP<br>ASP | B<br>B | 89<br>89 | 45.730<br>45.054  | 73.958<br>73.687 | 42.778<br>44.136 | 1.00 54.81               | č          |
| ATOM<br>ATOM | 8417<br>8420 | CG         | ASP        |        | 89       | 43.737            | 72.897           | 44.013           | 1.00 57.24               | С          |
| ATOM         | 8421         |            | ASP        |        | 89       | 43.052            | 72.753           | 45.054           | 1.00 57.05               | 0          |
| ATOM         | 8422         | OD2        |            | В      | 89       | 43.318            | 72.374<br>74.892 | 42.949<br>42.980 | 1.00 55.42<br>1.00 54.53 | 0<br>C     |
| MOTA<br>MOTA | 8423<br>8424 | С<br>0     | ASP<br>ASP |        | 89<br>89 | 46.920<br>46.800  | 76.104           | 42.776           | 1.00 55.68               | ō          |
| ATOM         | 8425         | N          | LEU        |        | 90       | 48.062            | 74.326           | 43.364           | 1.00 54.14               | N          |
| ATOM         | 8427         | CA         | LEU        |        | 90       | . 49.300          | 75.087           | 43.513           | 1.00 54.97               | C<br>C     |
| ATOM         | 8429         | CB         | LEU        | B<br>B | 90<br>90 | 49.951<br>49.509  | 74.772<br>75.514 | 44.869<br>46.150 | 1.00 58.33<br>1.00 59.62 | č          |
| ATOM<br>ATOM | 8432<br>8434 | CG<br>CD1  | LEU        |        | 90       | 49.262            | 76.994           | 45.894           | 1.00 61.01               | С          |
| ATOM         | 8438         |            | LEU        |        | 90       | 48.286            | 74.890           | 46.790           | 1.00 60.33               | C          |
| ATOM         | 8442         | С          | LEU        |        | 90       | 50.238            | 74.726           | 42.359           | 1.00 53.04<br>1.00 50.74 | С<br>0     |
| MOTA         | 8443         | N<br>O     | LEU        |        | 90<br>91 | 51·.432<br>49.684 | 74.578<br>74.623 | 42.541<br>41.158 | 1.00 53.90               | . N        |
| ATOM<br>ATOM | 8444<br>8446 | CA         | GLY        |        | 91       | 50.375            | 74.043           | 40.025           | 1.00 53.51               | С          |
| MOTA         | 8449         | С          | GLY        |        | 91       | 51.678            | 74.708           | 39.673           | 1.00 53.73               | C          |
| MOTA         | 8450         | 0          | GLY        |        | 91       | 52.683            | 74.033           | 39.512           | 1.00 52.79<br>1.00 56.50 | 0<br>N     |
| MOTA         | 8451<br>8453 | N<br>CA    | GT0<br>GT0 |        | 92<br>92 | 51.674<br>52.903  | 76.029<br>76.743 | 39.546<br>39.159 | 1.00 61.29               | Č          |
| ATOM<br>ATOM | 8455         | CB         | GLU        |        | 92       | 52.634            | 78.218           | 38.780           | 1.00 62.15               | С          |
| ATOM         | 8458         | CG         | GLU        | В      | 92       | 52.621            | 78.466           | 37.271           | 1.00 67.25               | C          |
| MOTA         | 8461         | CD         | GLU        |        | 92       | 54.011            | 78.389           | 36.647<br>37.094 | 1.00 70.58<br>1.00 65.54 | C<br>0     |
| ATOM<br>ATOM | 8462<br>8463 | OE1<br>OE2 | GLU<br>GLU |        | 92<br>92 | 54.879<br>54.244  | 79.159<br>77.560 | 35.722           | 1.00.74.60               | ō          |
| MOTA         | 8464         | C          | GTO        |        | 92       | 53.972            | 76.660           | 40.253           | 1.00 59.86               | С          |
| MOTA         | 8465         | Ò          | GLU        | В      | 92       | 55.180            | 76.646           | 39.970           | 1.00 60.66               | 0          |
| ATOM         | 8466         | N          | GLU        |        | 93       | 53.520<br>54.425  | 76.589<br>76.556 | 41.495<br>42.626 | 1.00 55.16<br>1.00 55.01 | N<br>C     |
| MOTA<br>MOTA | 8468<br>8470 | CA<br>CB   | GLU        |        | 93<br>93 | 53.646            | 76.840           | 43.925           | 1.00 58.26               | č          |
| ATOM         | 8473         | CG         | GLU        |        | 93       | 53.183            | 78.302           | 44:075           | 1.00 60.47               | . <b>c</b> |
| ATOM         | 8476         | CD         | GLU        |        | 93       | 51.903            | 78.682           | 43.296           | 1.00 64.17               | c<br>o     |
| ATOM         | 8477         | OE1        | GLU        |        | 93<br>93 | 50.967<br>51.825  | 77.855<br>79.857 | 43.094<br>42.884 | 1.00:64.16<br>1.00 66.30 | Ö          |
| MOTA<br>MOTA | 8478<br>8479 | C          | GLU        |        | 93       | 55.206            | 75.224           | 42.657           | 1.00 51.10               | С          |
| ATOM         | 8480         | . 0        | GLU        |        | 93       | 56.395            | 75.203           | 42.976           | 1.00 44.98               | 0          |
| MOTA         | 8481         | N          | PHE        |        | 94       | 54.542            | 74.137           | 42.261<br>42.197 | 1.00 46.92<br>1.00 47.80 | N<br>C     |
| ATOM<br>ATOM | 8483<br>8485 | CA<br>CB   |            | B<br>B | 94<br>94 | 55.160<br>54.178  | 72.809<br>71.765 | 42.715           | 1.00 47.70               | č          |
| ATOM         | 8488         | CG         | PHE        |        | 94       | 53.935            | 71.834           | 44.183           | 1.00 51.30               | С          |
| ATOM         | 8489         |            | PHE        |        | 94       | 54.666            | 71.047           | 45.050           | 1.00 53.19               | C<br>C     |
| MOTA         | 8491         |            | PHE        |        | 94       | 54.433<br>53.456  | 71.084<br>71.912 | 46.408<br>46.914 | 1.00 54.93<br>1.00 57.50 | C          |
| ATOM<br>ATOM | 8493<br>8495 | CZ<br>CE2  | PHE        | В      | 94<br>94 | 52.707            | 72.705           | 46.049           | 1.00 57.87               | Ċ          |
| ATOM         | 8497         |            | PHE        |        | 94       | 52.948            | 72.657           | 44.697           | 1.00 56.32               | C          |
| ATOM         | 8499         | C          | PHE        |        | 94       | 55.610            | 72.377           | 40.789           | 1.00 45.27               | C<br>0     |
| ATOM<br>ATOM | 8500<br>8501 | 0<br>N     | PHE<br>SER |        | 94<br>95 | 55.824<br>55.772  | 71.195<br>73.327 | 40.520<br>39.890 | 1.00 42.31               | . и        |
| MOTA         | 8503         | CA         | SER        |        | 95       | 56.136            | 72.998           | 38.517           | 1.00 48.16               | C          |
| ATOM         | 8505         | CB         | SER        |        | 95       | 55.608            | 74.071           | 37.556           | 1.00 46.93<br>1.00 46.97 | c<br>0     |
| MOTA         | 8508         | OG         | SER        |        | 95<br>95 | 56.395<br>57.648  | 75.235<br>72.811 | 37.621<br>38.351 | 1.00 46.91               | c          |
| MOTA<br>MOTA | 8510<br>8511 | С<br>0     | SER<br>SER |        | 95       | 58.125            | 72.590           | 37.250           | 1.00 48.84               | . 0        |
| ATOM         | 8512         | N          | GLY        |        | 96       | 58.402            | 72.892           | 39.437           | 1.00 46.94               | N          |
| ATOM         | 8514         | CA         | GLY        |        | 96       | 59.840            |                  | 39.336           | 1.00 45.76<br>1.00 45.62 | C<br>C     |
| ATOM         | 8517<br>8518 | С<br>0     | GLY<br>GLY |        | 96<br>96 | 60.233<br>59.479  | 71.317<br>70.400 | 39.149<br>39.510 | 1.00 43.64               | ŏ          |
| ATOM<br>ATOM | 8519         | N          | ARG        |        | 97       | 61.413            |                  | 38.557           | 1.00 44.75               | N          |
| ATOM         | 8521         | CA         | ARG        | В      | 97       | 62.025            | 69.814           | 38.399           | 1.00 41.03               | C          |
| ATOM         | 8523         | CB         | ARG        |        | 97       | 62.625            |                  | 37.007<br>36.760 | 1.00 38.25<br>1.00 37.54 | C<br>C     |
| ATOM         | 8526<br>8529 | CD         | ARG<br>ARG |        | 97<br>97 | 63.325<br>62.439  |                  | 36.760           | 1.00 37.54               | · C        |
| MOTA<br>MOTA | 8532         | NE         | ARG        |        | 97       | 61.468            |                  | 35.856           | 1.00 40.19               | N          |
| MOTA         | 8534         | CZ         | ARG        | В      | 97       | 60.263            | 66.256           |                  | 1.00 40.84               | C          |
| ATOM         | 8535         |            | ARG        |        | 97       | 59.487            |                  | 34.950<br>37.201 | 1.00 40.40<br>1.00 40.05 | N<br>N     |
| ATOM<br>ATOM | 8538<br>8541 | NH2<br>C   | ARG<br>ARG |        | 97<br>97 | 59.804<br>63.132  |                  |                  | 1.00 45.75               | Ċ          |
| ATOM         | 8542         | ŏ          | ARG        |        | 97       | 64.007            |                  | 39.464           | 1.00 45.52               | 0          |

|              |              |          |            |   |             |                  | Figu             | ıre 5            |                          |   |
|--------------|--------------|----------|------------|---|-------------|------------------|------------------|------------------|--------------------------|---|
| ATOM         | 8543         | N        | GLY        |   | 98          | 63.089           | 68.674           | 40.225           | 1.00 45.93               |   |
| ATOM         | 8545         | CA       | GLY        |   | 98          | 64.120           | 68.416           | 41.200           | 1.00 47.49               | _ |
| ATOM<br>ATOM | 8548<br>8549 | С<br>0   | GLY        |   | 98<br>98    | 65.141<br>64.787 | 67.443<br>66.450 | 40.657<br>40.006 | 1.00 50.68<br>1.00 52.96 |   |
| ATOM         | 8550         | N        | ILE        |   | 99          | 66.410           | 67.708           | 40.957           | 1.00 54.08               |   |
| MOTA         | 8552         | CA       | ILE        |   | 99          | 67.511           | 66.914           | 40.431           | 1.00 55.14               |   |
| ATOM         | 8554         | CB       | ILE        |   | 99          | 68.506           | 67.781           | 39.655           | 1.00 56.46               |   |
| ATOM<br>ATOM | 8556<br>8559 | CG1      | ILE        |   | 99<br>99    | 67.822<br>67.389 | 69.017<br>68.865 | 39.028<br>37.579 | 1.00 58.53<br>1.00 59.75 |   |
| ATOM         | 8563         | CG2      |            |   | 99          | 69.248           | 66.905           | 38.637           | 1.00 55.96               | C |
| MOTA         | 8567         | С        | ILE        |   | 99          | 68.255           | 66.282           | 41.562           | 1.00 54.19               |   |
| ATOM         | 8568         | 0        | ILE        |   | 99<br>100   | 68.785<br>68.306 | 66.971<br>64.965 | 42.408<br>41.571 | 1.00 53.97<br>1.00 56.69 |   |
| ATOM<br>ATOM | 8569<br>8571 | N<br>CA  | PHE        |   |             | 69.102           | 64.260           | 42.558           | 1.00 58.73               |   |
| ATOM         | 8573         | СВ       | PHE        |   |             | 68.574           | 62.839           | 42.734           | 1.00 62.63               | C |
| ATOM         | 8576         | CG       | PHE        |   |             | 67.387           | 62.758           | 43.633           | 1.00 61.73               |   |
| ATOM         | 8577<br>8579 |          | PHE        |   |             | 66.142<br>65.048 | 62.452<br>62.391 | 43.129<br>43.962 | 1.00 59.70<br>1.00 59.99 |   |
| ATOM<br>ATOM | 8581         | CZ       | PHE        |   |             | 65.183           | 62.631           | 45.306           | 1.00 60.44               |   |
| MOTA         | 8583         |          | PHE        |   |             | 66.425           | 62.932           | 45.827           | 1.00 64.94               |   |
| ATOM         | 8585         |          | PHE        |   |             | 67.522           | 62.997           | 44.989           | 1.00 63.59               |   |
| ATOM<br>ATOM | 8587<br>8588 | 0        | PHE        |   |             | 70.570<br>70.885 | 64.250<br>64.507 | 42.135<br>40.971 | 1.00 58.27<br>1.00 57.57 |   |
| ATOM         | 8589         | N        | PRO        |   |             | 71.470           | 63.969           | 43.075           | 1.00 58.08               | N |
| ATOM         | 8590         | CA       | PRO        |   |             | 72.906           | 64.042           | 42.797           | 1.00 57.74               |   |
| MOTA         | 8592         | CB       | PRO        |   |             | 73.523<br>72.547 | 63.403           | 44.039<br>45.124 | 1.00 58.55<br>1.00 58.42 |   |
| ATOM<br>ATOM | 8595<br>8598 | CD       | PRO<br>PRO |   |             | 71.210           | 63.694<br>63.589 | 44.478           | 1.00 58.62               |   |
| ATOM         | 8601         | c        | PRO        |   | -           | 73.357           | 63.313           | 41.529           | 1.00 56.41               | C |
| MOTA         | 8602         | 0        | PRO        |   |             | 74.055           | 63.916           | 40.729           | 1.00 57.23               |   |
| MOTA         | 8603         | N        | LEU        |   |             | 72.958<br>73.439 | 62.056<br>61.224 | 41.354<br>40.246 | 1.00 57.46<br>1.00 55.62 |   |
| ATOM<br>ATOM | 8605<br>8607 | CA<br>CB | LEU        |   | 102.<br>102 | 72.934           | 59.783           | 40.393           | 1.00 54.66               |   |
| ATOM         | 8610         | CG       | LEU        |   |             | 73.523           | 58.645           | 39.539           | 1.00 57.35               | C |
| ATOM         | 8612         |          | LEU        |   |             | 72.615           | 58.244           | 38.381           | 1.00 57.77               | C |
| MOTA         | 8616         |          | LEU        |   |             | 74.907<br>72.992 | 58.948<br>61.795 | 38.996<br>38.921 | 1.00 59.61<br>1.00 58.35 |   |
| ATOM<br>ATOM | 8620<br>8621 | С<br>О   | LEU        |   |             | 73.799           | 61.961           | 38.020           | 1.00 59.23               |   |
| ATOM         | 8622         | N        | ALA        |   |             | 71.699           | 62.091           | 38.803           |                          |   |
| MOTA         | 8624         | CA       | ALA        |   |             | 71.165           | 62.762           | 37.617           | 1.00 64.41               |   |
| ATOM<br>ATOM | 8626<br>8630 | CB<br>C  | ALA<br>ALA |   |             | 69.649<br>71.954 | 63.065<br>64.060 | 37.792<br>37.315 | 1.00 63.09<br>1.00 65.51 |   |
| ATOM         | 8631         | ŏ        | ALA        |   |             | 72.328           | 64.312           | 36.166           | 1.00 63.99               |   |
| ATOM         | 8632         | N        | GLU        | В | 104         | 72.233           | 64.848           | 38.357           | 1.00 65.17               |   |
| ATOM         | 8634         | CA       | GLU        |   |             | 72.877<br>72.939 | 66.157<br>66.864 | 38.212<br>39.566 | 1.00 65.86<br>1.00 67.87 |   |
| ATOM<br>ATOM | 8636<br>8639 | ÇB<br>CG | GLU        |   |             | 73.712           | 68.173           | 39.600           | 1.00 71.21               |   |
| ATOM         | 8642         | CD       | GLU        |   |             | 73.544           | 68.870           | 40.941           | 1.00 77.43               |   |
| ATOM         | 8643         |          | GLU        |   |             |                  | 68.468           | 41.930           | 1.00 79.71               |   |
| atom<br>atom | 8644<br>8645 | OE2<br>C | GLU<br>GLU |   |             | 72.723<br>74.270 | 69.809<br>66.066 | 41.017<br>37.624 | 1.00 82.66<br>1.00 63.94 |   |
| ATOM         | 8646         | ŏ        | GLU        |   | 104         | 74.684           | 66.955           | 36.893           | 1.00 62.72               |   |
| ATOM         | 8647         | N        | ARG        | В | 105         | 74.981           | 64.987           | 37.939           | 1.00 63.58               |   |
| ATOM         |              | . CA     | ARG        | _ |             | 76.357<br>77.146 | 64.785<br>64.067 | 37.481<br>38.576 | 1.00 62.76<br>1.00 64.17 |   |
| ATOM ATOM    | 8651<br>8654 | CB       | ARG        |   | 105         | 77.140           | 64.896           | 39.889           | 1.00 70.50               | - |
| ATOM         | 8657         | CD       | ARG        |   |             | 78.514           | 64.969           | 40.638           | 1.00 74.07               | С |
| ATOM         | 8660         | NE       | ARG        |   |             | 79.687           | 64.875           | 39.758           | 1.00 74.42               |   |
| ATOM         | 8662         | CZ       | ARG        |   |             | 80.899<br>81.879 | 64.480<br>64.427 | 40.144<br>39.249 | 1.00 73.12<br>1.00 75.69 |   |
| ATOM<br>ATOM | 8663<br>8666 |          | ARG<br>ARG |   |             | 81.146           | 64.139           | 41.404           | 1.00 71.98               |   |
| ATOM         | 8669         | С        |            |   | 105         | 76.451           | 64.049           | 36.144           | 1.00 58.19               |   |
| ATOM         | 8670         | 0        | ARG        |   |             | 77.475           | 64.107           | 35.471           | 1.00 54.97               |   |
| ATOM<br>ATOM | 8671<br>8673 | N<br>Ca  | ALA<br>ALA |   |             | 75.364<br>75.288 | 63.385<br>62.608 | 35.762<br>34.523 | 1.00 58.38<br>1.00 58.27 |   |
| ATOM         | 8675         | CB       | ALA        |   |             | 74.478           | 61.343           | 34.755           | 1.00 55.28               | C |
| ATOM         | 8679         | C        | ALA        | В | 106         | 74.693           | 63.405           | 33.358           | 1.00 59.71               |   |
| ATOM         | 8680         | 0        | ALA        |   |             | 74.612           | 62.899           | 32.245           | 1.00 57.15<br>1.00 63.18 |   |
| ATOM<br>ATOM | 8681<br>8683 | n<br>Ca  | ASN<br>ASN |   |             | 74.285<br>73.696 | 64.648<br>65.498 | 33.617<br>32.593 | 1.00 63.18               |   |
| ATOM         | 8685         | CB       | ASN        |   |             | 72.267           | 65.919           | 32.993           | 1.00 64.90               | C |
| ATOM         | 8688         | CG       | ASN        | В | 107         | 71.229           | 64.802           | 32.790           | 1.00 63.80               |   |
| ATOM         | 8689         |          | ASN        |   |             | 70.340           | 64.624           | 33.612           | 1.00 66.57<br>1.00 60.76 |   |
| MOTA<br>MOTA | 8690<br>8693 | ND2      | ASN<br>ASN |   |             | 71.345<br>74.565 | 64.058<br>66.734 | 31.700<br>32.329 | 1.00 65.58               |   |
| ATOM         | 8694         | ō        | ASN        |   |             | 74.914           | 67.473           | 33.250           | 1.00 61.76               |   |
|              |              |          |            |   |             |                  |                  |                  |                          |   |

|               |              |           |            |   |            |                  | Fi a             | ire 5            |      |                |        |   |
|---------------|--------------|-----------|------------|---|------------|------------------|------------------|------------------|------|----------------|--------|---|
| MOTA          | 8695         | N         | ARG        | R | 108        | 74.924           | 66.922           | 31.062           | 1.00 | 66.73          | N      | i |
| ATOM          | 8697         | CA        | ARG        |   |            | 75.513           | 68.169           | 30.583           |      | 67.03          | d      |   |
| ATOM          | 8699         | СВ        | ARG        | В | 108        | 76.836           | 67.913           | 29.849           |      | 69.19          | C      |   |
| ATOM          | 8702         | CG        | ARG        |   |            | 78.040           | 68.638           | 30.456           |      | 72.03          | C      |   |
| ATOM          | 8705         | CD        | ARG<br>ARG | _ |            | 78.524<br>79.923 | 68.012<br>67.553 | 31.772<br>31.828 |      | 74.54<br>72.76 | N      |   |
| MOTA<br>MOTA  | 8708<br>8710 | NE<br>CZ  | ARG        |   |            | 80.543           | 66.761           | 30.946           |      | 68.20          | C      |   |
| ATOM          | 8711         |           | ARG        |   |            | 79.951           | 66.320           | 29.841           |      | 67.27          | N      |   |
| MOTA          | 8714         |           | ARG        |   |            | 81.802           | 66.424           | 31.169           |      | 65.54          | · N    |   |
| MOTA          | 8717         |           | ARG        |   |            | 74.492           | 68.766<br>68.186 | 29.631           | 1.00 | 64.70          | 0      |   |
| ATOM<br>ATOM  | 8718<br>8719 | O<br>N    | ARG<br>GLY |   |            | 74.184<br>73.944 | 69.911           | 28.583           |      | 62.78          | N N    |   |
| ATOM          | 8721         | CA        | GLY        |   |            | 72.911           | 70.552           | 29.234           |      | 61.07          | C      | : |
| ATOM          | 8724         | С         | GLY        |   |            | 71.542           | 69.951           | 29.517           |      | 62.54          | C      |   |
| ATOM          | 8725         | 0         | GLY        |   |            | 71.376           | 68.736           | 29.609           |      | 61.64          | C<br>N |   |
| ATOM          | 8726<br>8728 | N         | PHE        |   |            | 70.555<br>69.193 | 70.829<br>70.441 | 29.643<br>29.928 |      | 61.97<br>60.68 | C      |   |
| ATOM<br>ATOM  | 8730         | CA<br>CB  | PHE        |   |            | 68.698           | 71.231           | 31.142           |      | 63.85          | Č      |   |
| ATOM          | 8733         | CG        | PHE        |   |            | 69.535           | 71.018           | 32.381           | 1.00 | 68.27          | C      |   |
| ATOM          | 8734         |           | PHE        |   |            | 69.763           | 69.727           | 32.868           |      | 70.46          | C      |   |
| MOTA          | 8736         |           | PHE        |   |            | 70.527           | 69.506           | 34.010<br>34.683 |      | 71.79<br>74.70 | C C    |   |
| -ATOM<br>ATOM | 8738<br>8740 | CE2       | PHE        |   |            | 71.084<br>70.878 | 70.588<br>71.891 | 34.197           |      | 74.45          | č      |   |
| MOTA          | 8742         |           | PHE        |   |            | 70.108           | 72.097           | 33.048           |      | 71.31          | C      | : |
| MOTA          | 8744         | C         | PHE        |   |            | 68.334           | 70.716           | 28.705           |      | 58.49          | C      |   |
| MOTA          | 8745         | 0         | PHE        |   |            | 68.559           | 71.692           | 27.999           |      | 57.85          |        |   |
| ATOM          | 8746         | N         | GLY        |   |            | 67.367<br>66.439 | 69.837<br>70.020 | 28.441<br>27.337 |      | 56.69<br>55.45 | N<br>C |   |
| ATOM<br>ATOM  | 8748<br>8751 | CA<br>C   | GLY        |   |            | 65.038           | 70.358           | 27.829           |      | 54.30          | Č      |   |
| MOTA          | 8752         | ŏ         | GLY        |   |            | 64.614           | 71.513           | 27.893           |      | 52.87          | C      |   |
| ATOM          | 8753         | N         | ILE        |   |            | 64.308           | 69.324           | 28.188           |      | 51.77          | N      |   |
| MOTA          | 8755         | CA        | ILE        |   |            | 62.982           | 69.500           | 28.715           |      | 51.52          | o<br>o |   |
| ATOM<br>ATOM  | 8757<br>8759 | CB<br>CC1 | ILE        |   |            | 61.965<br>60.541 | 69.007<br>69.295 | 27.668<br>28.082 |      | 55.24<br>54.56 | ò      |   |
| ATOM          | 8762         |           | ILE        |   |            | 59.607           | 69.195           | 26.874           |      | 58.31          | Ċ      |   |
| ATOM          | 8766         |           | ILE        |   |            | 62.116           | 67.524           | 27.364           |      | 60.06          |        |   |
| ATOM          | 8770         | С         | ILE        |   |            | 62.860           | 68.809           | 30.070           |      | 49.06          |        |   |
|               | 8771         | 0         | ILE        |   |            | 62.379<br>63.348 | 69.421<br>67.572 | 31.020<br>30.182 |      | 50.28<br>42.56 | N      |   |
| ATOM<br>ATOM  | 8772<br>8774 | n<br>Ca   | VAL<br>VAL |   |            | 63.112           | 66.770           | 31.375           |      | 40.55          | Č      |   |
| ATOM          | 8776         | СВ        |            |   | 113        | 63.647           | 65.324           | 31.226           |      | 42.39          | C      | 7 |
| MOTA          | 8778         |           | VAL        |   |            | 63.648           | 64.567           | 32.568           |      | 43.22          | c      |   |
| ATOM          | 8782         |           | VAL        |   |            | 62.823           | 64.555           | 30.220<br>32.597 |      | 42.30          | C      |   |
| ATOM<br>ATOM  | 8786<br>8787 | C .       | VAL<br>VAL |   |            | 63.718<br>63.111 | 67.411<br>67.405 | 33.656           |      | 45.64          | č      |   |
| ATOM          | 8788         | N         | PHE        |   |            | 64.903           | 67.982           | 32.450           |      | 42.92          | N      | ğ |
| ATOM          | 8790         | CA        | PHE        |   |            | 65.674           | 68.447           | 33.597           |      | 40.37          | C      |   |
| MOTA          | 8792         | CB        | PHE        |   |            | 67.042           | 67.764           | 33.569           |      | 40.85          |        |   |
| ATOM<br>ATOM  | 8795<br>8796 | CG        | PHE<br>PHE |   |            | 67.001<br>67.352 | 66.291<br>65.325 | 33.921<br>32.987 |      | 41.83<br>42.17 |        | : |
| ATOM          | 8798         |           | PHE        |   |            | 67.320           | 63.964           | 33.317           |      | 43.01          | C      | 2 |
| ATOM          | 8800         | CZ        | PHE        |   |            | 66.926           | 63.565           | 34.585           |      | 41.74          | C      |   |
| MOTA          | 8802         |           | PHE        |   |            | 66.559           | 64.517           | 35.517           |      | 42.95<br>41.61 | C      |   |
| ATOM          | 8804<br>8806 | CD2       | PHE<br>PHE |   |            | 66.611<br>65.810 | 65.872<br>69.966 | 35.192<br>33.616 |      | 41.28          | -      | _ |
| ATOM<br>ATOM  | 8807         |           | PHE        |   |            | 66.559           | 70.527           | 34.418           |      | 44.34          | C      |   |
| ATOM          | 8808         | N·        | SER        |   |            | 65.082           | 70.633           | 32.727           |      | 41.51          | Ŋ      |   |
| ATOM          | 8810         | CA        |            |   | 115        | 65.098           | 72.086           | 32.642           |      | 39.59<br>40.58 | (      |   |
| ATOM<br>ATOM  | 8812<br>8815 | CB<br>OG  | SER<br>SER |   |            | 64.607<br>65.690 | 72.546<br>72.568 | 31.283<br>30.391 |      | 48.52          | č      |   |
| ATOM          | 8817         | C         |            |   | 115        | 64.208           | 72.680           | 33.691           |      | 37.55          | C      |   |
| ATOM          | 8818         | 0         |            |   | 115        | 63.420           | 71.976           | 34.284           |      | 41.64          |        |   |
| ATOM          | 8819         | N         |            |   | 116        | 64.340           | 73.985           | 33.896           |      | 38.91          | ì      |   |
| MOTA          | 8821         | CA        |            |   | 116        | 63.526           | 74.750<br>74.718 | 34.839<br>36.205 |      | 40.50<br>39.49 | (      |   |
| ATOM<br>ATOM  | 8823<br>8826 | CB<br>CG  |            |   | 116<br>116 | 64.173<br>63.625 | 73.640           | 37.069           |      | 37.22          | č      |   |
| ATOM          | 8827         |           | ASN        |   |            | 62.490           | 73.730           | 37.529           | 1.00 | 45.10          | C      | 2 |
| ATOM          | 8828         |           | ASN        | В | 116        | 64.418           | 72.613           | 37.318           |      | 33.20          | N      |   |
| MOTA          | 8831         | С         |            |   | 116        | 63.388           | 76.205           | 34.365           |      | 46.53<br>52.32 | (      |   |
| ATOM          | 8832<br>8833 | O<br>N    |            |   | 116        | 64.140<br>62.427 | 76.645<br>76.946 | 33.487<br>34.917 |      | 49.45          | 1      |   |
| ATOM<br>ATOM  | 8835         | CA        | GLY<br>GLY |   |            | 62.234           | 78.349           | 34.544           |      | 51.32          | Č      |   |
| ATOM          | 8838         | C         | GLY        |   |            | 61.792           | 78.611           | 33.108           |      | 53.22          |        |   |
| ATOM          | 8839         | 0         | GLY        | В | 117        | 61.069           | 77.805           | 32.539           |      | 52.14          | . (    |   |
| ATOM          | 8840         | N         | LYS        |   |            | 62.217<br>61.888 | 79.748<br>80.128 | 32.537<br>31.144 |      | 57.12<br>59.62 |        |   |
| ATOM          | 8842         | CA        | LYS        | ಶ | 119        | 02.000           |                  |                  |      |                | `      |   |

7 (2 + CB) 7 (2 ) 7 (3 ) 7 (4 )

12 (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12 ) A (12

E.

TAN E 125

142 4/47

1/18/37/10

altimetria Altimetria

ATOM

9007

NH2 ARG B 125

```
Figure 5
                                                                                C
                                 62.366 B1.560 30.756
                                                          1.00 63.73
       8844
             CB
                LYS B 118
ATOM
                                         82.152
                                                 31,508
                                                          1.00 72.99
                 LYS B 118
                                 63.593
       8847
             CG
MOTA
                                                          1.00 78.11
                                                 31.342
                 LYS B 118
                                 64.932
                                         81.346
       8850
             CD
ATOM
                                                          1.00 77.59
                                 65.407
                                         80.560
                                                 32,627
             CE
                 LYS B 118
       8853
ATOM
                                                          1.00 72.75
                 LYS B 118
                                 65.130
                                         81.220
                                                 33.944
             NZ
ATOM
       8856
                 LYS B 118
                                 62.410
                                         79.142
                                                 30.094
                                                          1.00 56.60
             С
MOTA
       8860
                                                          1.00 56.26
                                 61.814
                                         79.004
                                                  29:021
                 LYS B 118
MOTA
       8861
             0
                 LYS B 119
                                 63.532
                                         78.489
                                                 30.378
                                                          1.00 52.76
MOTA
       8862
             N
                                 64.122
                                         77.569
                                                  29.417
                                                          1.00 52.42
                 LYS B 119
MOTA
       8864
             CA
                                         77.200
                                                 29.797
                                                          1.00 53.23
                 LYS B 119
                                 65.567
ATOM
       8866
             CB
                                                                                C
                                         75.948
                                                  29.087
                                                          1.00 54.28
                                 66.051
                 LYS B 119
ATOM
       8869
             ÇG
                                                                                C
                                         75.783
                                                  29.096
                                                          1.00 56.75
                 LYS B 119
                                 67.534
       8872
             CD
ATOM
                                                                                C
                                         74.765
                                                  28.029
                                                          1.00 59.92
                                 67.914
       8875
             CE
                 LYS B 119
ATOM
                                 69,264
                                         74.171
                                                  28.219
                                                          1.00 62.76
                                                                                N
                 LYS B 119
       8878
             NZ
ATOM
                                 63.242
                                         76.316
                                                  29.264
                                                          1.00 50.10
                                                                                С
       8882
             С
                 LYS B 119
ATOM
                                         75.779
                                                          1.00 48.06
                                                                                0
                                                  28.161
                                 63.103
ATOM
       8883
             0
                 LYS B 119
                                         75.862
                                                  30.375
                                                          1.00 46.72
                                                                                N
                                 62.665
ATOM
       8884
             N
                 TRP B 120
                                                          1.00 46.48
                                                                                С
                                 61.673
                                         74.790
                                                  30.357
             CA
                 TRP B 120
MOTA
                                                  31.777
                                                          1.00 47.22
                                                                                С
                                         74.254
             CB
                 TRP B 120
                                 61.460
ATOM
       8888
                                                          1.00 44.36
                                                                                C
                                 60.293
                                         73.360
                                                  31.920
                 TRP B 120
MOTA
             CG
                                                          1.00 43.28
                                                                                C
                                 60.155
                                         72.117
                                                  31.410
             CD1 TRP B 120
MOTA
       8892
                                                  31.745
                                                          1.00 40.45
                                                                                N
                                         71.600
                                 58.930
             NE1 TRP B 120
       8894
ATOM
                                         72.523
                                                  32.493
                                                          1.00 40.32
                                                                                С
             CE2 TRP B 120
                                 58,256
MOTA
       8896
                                                  32.616
                                                          1.00 41.85
                                                                                С
                                         73.646
                                 59.089
             CD2 TRP B 120
ATOM
       8897
                                         74.743
                                                  33.344
                                                          1.00 42.93
             CE3 TRP B 120
ATOM
       8898
                                 58.628
                                                          1.00 44.52
                                                  33.902
                                                                                С
                                         74.683
       8900
             C23 TRP B 120
                                 57.383
MOTA
                                                                                С
                                                  33.750
                                                          1.00 41.64
                                 56.568
                                         73.545
       8902
             CH2 TRP B 120
ATOM
                                                  33.049
                                                          1.00 43.44
                                                                                С
                                 56.990
                                          72.464
             CZ2 TRP B 120
       8904
ATOM
                                                          1.00 46.65
                                                  29.750
                                 60.343
                                          75.257
                  TRP B 120
       8906
             С
ATOM
                                                          1.00 47.47
                                                                                0
                                                  28.809
                                 59.860
                                          74.650
                  TRP B 120
ATOM
       8907
             0.
                                                          1.00 49.24
                                 59.763
                                          76.329
                                                  30.293
             N ~
                  LYS B 121
ATOM
       8908
                                                          1.00 52.35
                                                                                С
                                                  29.768
                                 58.526
                                          76.942.
                  LYS B 121
       8910
             CA
MOTA
                                                                                С
                                                          1.00 55.49
                                          78.377
                                                  30.318
       8912 CB
                  LYS B: 121
                                 58.348
ATOM
                                                                                С
                                                          1.00 62.55
                  T.YS B 121
                                 57.561
                                          78.483
                                                  31.646
ATOM
       8915
             CG
                                                                                C
                                 56.032
                                          78.588
                                                  31.409
                                                          1.00 70.98
                  LYS B: 121
ATOM
       8918
             CD
                                                                                C
                                                  32.644
                                                          1.00 75.31
                                 55.185
                                          78.145
       B921
             CE
                  LYS B 121
ATOM
                                                  32.288
                                                          1.00 74.75
                                                                                N
                                          77.253
                                 54.013
ATOM
       8924
             NZ
                  LYS B 121
                                                                                С
                                                  28.227
                                                          1.00 50.42
                                          76.964
                                 58.490
ATOM
       8928
              С
                  LYS B 121
                                                          1.00 45.74
                                                                                0
                                          76.415
                                                  27.588
        8929
              0 -
                  LYS B 121
                                 57.565
ATOM
                                                          1.00 48.10
                                                                                N
                                          77.575
                                                  27.643
        8930
              N·
                  GLU B 122
                                 59.517
ATOM
                                                                                С
                                          77.768
                                                  26.205
                                                          1.00 48.69
                                  59.577
                  GLU B 122
ATOM
        8932
              CA
                                                                                 С
                                                          1.00 50.68
                                          78.772
                                                  25.822
                                  60.670
MOTA
        8934
              CB
                  GLU B 122
                                                                                C
                                          80.233
                                                  25.985
                                                          1.00 56.86
                                  60.248
                  GLU B 122
MOTA
        8937
              CG
                                                                                 С
                                          81.221
                                                  25.639
                                                          1.00 60.05
                  GLU B 122
                                 61.359
MOTA
        8940
              CD
                                          81.659
81.564
                                                           1.00 65.69
                                                                                ٥
                                                  26.559
              OE1 GLU B 122
                                  62.083
ATOM
        8941
                                                                                 0
                                                  24.449
                                                           1.00 61.06
        8942
              OE2 GLU B 122
                                  61.514
ATOM
                                                  25.472
24.560
                                          76.450
                                                           1.00 46.75
                                                                                 С
        8943
              С
                  GLU B 122
                                  59.761
ATOM
                                                                                 0
                                          76.156
                                                           1.00 52.66
                  GLU B 122
                                  59.007
        8944
              0
ATOM
                                                                                 N
                                          75.640
74.438
                                                  25.866
                                                           1.00 43.11
        8945
              N
                  ILE B 123
                                  60.734
ATOM
                                                  25.089
25.506
                                                           1.00 41.56
                                                                                 С
                                  61.042
        8947
              CA
                  ILE B 123
ATOM
                                                                                 С
                                          73.809
                                                           1.00 41.11
                                  62.398
ATOM
        8949
              CB
                 ILE B 123
                                                           1.00 46.46
                                                                                . C
                                          74.673
                                                  24.992
                                  63:540
              CG1 ILE B 123
MOTA
        8951
                                                  25.706
                                                           1.00 53.40
                                                                                 C
                                          74.426
АТОМ
        8954
              CD1 ILE B 123
                                  64.865
                                                           1.00 40.76
                                          72.421
                                                  24.903
                                  62.577
              CG2 ILE B 123
        8958
 ATOM
                                                          1.00 39.63
                                                                                 С
                                                  25.179
                                  59.916
                                          73.422
                  ILE B 123
ATOM
        8962
              С
                                                           1.00 37.21
                                  59.692
                                          72.646
                                                  24.237
                  ILE B 123
        8963
 ATOM
              0
                                                                                 N
                                          73.422 26.306
                                                          1.00 38.83
                                  59.212
                  ARG B 124
        8964
ATOM
              N
                                                                                 С
                                                           1.00 40.70
                                  58.109
                                          72.494
                                                  26.501
                  ARG B 124
              CA
 ATOM
        8966
                                                                                 ¢
                                                          1.00 38.62
                                          72.461
                                                   27.953
                                  57.662
 MOTA
        8968
              CB
                  ARG B 124
                                          71.533
                                                  28.199
                                                          1.00 38.42
                                  56.449
 MOTA
        8971
              CG
                  ARG B 124
                                          71.586
                                                  29.606
                                                          1.00 38.68
                                  55.950
 ATOM
        8974
              CD
                  ARG B 124
                                                          1.00 39.77
                                          70.892
                                                   29.764
                                  54.680
 MOTA
        8977
              NE
                  ARG B 124
                                          69.633
                                                   30.170
                                                          1.00 38.95
                                  54.535
 ATOM
        8979
              cz
                  ARG B 124
                                  55.573
                                          68.855
                                                   30.442
                                                           1.00 44.62
        8980
              NH1 ARG B 124
 ATOM
                                          69.144
                                                   30.311
                                                          1.00 41.88
                                  53.326
        8983
              NH2 ARG B 124
 ATOM
                                          72.873
                                                   25.644
                                                           1.00 43.40
                                  56.922
 ATOM
        8986
                  ARG B 124
                                                           1.00 45.30
                                          71.998
                                                   25.131
                                  56.217
 ATOM
        8987
                  ARG B 124
                                                           1.00 46.57
                                          74.178
                                                   25.535
        8988
                                  56.697
 MOTA
                  ARG B 125
                                                  24.788, 1.00 50.71
                                          74.713
                                  55.582
 ATOM
        8990
                  ARG B 125
              CA
                                                           1.00 56.64
                                          76.227
                                                   24.926
                                  55.551
 ATOM
        8992
                  ARG B 125
              CB
                                          76.870
                                                   24.558
                                                           1.00 64.63
                                  54.250
                  ARG B 125
 MOTA
        8995
              CG
                                                   24.757
                                                           1.00 72.84
                                          78.366
                                  54.283
 ATOM
        8998
              CD
                  ARG B 125
                                                           1.00 82.96
                                                   23.475
                                  54.148
                                          79.052
 ATOM
        9001
                  ARG B 125
              NF.
                                                          1.00 92.12
                                                                                 С
                                                   23.241
                                  53.349
                                          80.094
                  ARG B 125
        9003
 ATOM
              CZ
                                                           1.00 95.40
                                  52.586
                                          80.624
                                                   24.206
 ATOM
        9004
              NH1 ARG B 125
                                          80.621 22.020 1.00 93.51
```

```
Figure 5
                                         74.324 23.356
                                                          1.00 48.44
                 ARG B 125
                                 55.802
ATOM
       9010
            C
                                                          1.00 50.75
                                          73.718
                                                22.727
                                 54.927
                 ARG B 125
       9011
             0
ATOM
                                                          1.00 44.24
                                                  22.866
                 PHE B 126
                                  57.002
                                         74.624
       9012
             N
MOTA
                                                  21.503
                                                          1.00 43.51
                                  57.382
                                         74.297
                 PHE B 126
ATOM
       9014
             CA
                                  58.837
                                          74.655
                                                  21.216
                                                          1.00 44.54
                 PHE B 126
ATOM
       9016
             CB
                                          74.192
                                                  19.876
                                                          1.00 47.90
                                  59,280
                  PHE B 126
ATOM
       9019
             CG
                                                                                 С
                                                  19.741
                                                          1.00 53.22
                                         73.024
                                 60.006
                 PHE B 126
ATOM
       9020
             CD1
                                                                                 C
                                          72.562
                                                  18.497
                                                          1.00 56.26
                                  60.377
       9022
             CE1 PHE B 126
ATOM
                                                                                 C
                                                  17.369
                                                          1.00 57.50
                                         73.264
                                  59.995
       9024
             CZ
                  PHE B 126
ATOM
                                         74.431
74.879
                                                  17.496
                                                          1.00 53.77
                                                                                 С
             CE2 PHE B 126
                                  59.242
MOTA
       9026
                                                  18.738
                                                                                 Ċ
                                                          1.00 49.75
             CD2 PHE B 126
                                  58.888
MOTA
       9028
                                                                                 Ċ
                                          72.831
                                                  21,187
                                                          1.00 41.69
                                  57.208
                  PHE B 126
       9030
ATOM
             С
                                                                                 0
                                                  20.116
                                                          1.00 44.77
                                          72.480
                                  56.738
                  PHE B 126
ATOM
       9031
             0
                                                          1.00 40.26
                                                                                 N
                                          71.979
                                  57.605
                                                  22.121
                  SER B 127
       9032
ATOM
             Ñ
                                                          1.00 38.43
                                                                                 C
                                                 21.920
                                  57.544
                                          70.550
                  SER B 127
ATOM
       9034
             CA
                                                                                 С
                                                  23.037
                                                          1.00 40.79
       9036
             СВ
                  SER B 127
                                  58.275
                                          69.829
MOTA
                                                          1.00 41.98
                                          70.095
                                                 22.961
                  SER B 127
                                  59.659
       9039
             OG
ATOM
                                                                                 С
                                                 21.867
                                                          1.00 36.47
                  SER B 127
                                  56.117
                                         70.078
       9041
ATOM
             С
                                                 20.994
22.782
                                                          1.00 38.41
                                  55.764
                                          69.282
                  SER B 127
ATOM
       9042
             0
                                                          1.00 35.63
                                  55.288
                                          70.568
                  LEU B 128
ATOM
       9043
             N
                                                 22.792
                                                          1.00 37.68
                                          70.179
                                  53.877
                  LEU B 128
ATOM
       9045
             CA
                                                          1.00 35.74
                                          70.797
                                                  23.961
                                  53.122
ATOM
       9047
             CB
                  LEU B 128
                                                          1.00 38.96
                                          70.052 25.294
                                  53.235
                  LEU B 128
ATOM
       9050
             CG
                                                          1.00 36.77
                                          70.837
                                                 26.404
             CD1 LEU B 128
                                  52.569
MOTA
       9052
                                  52.623
                                          68.626
                                                 25.218
                                                          1.00 40.42
             CD2 LEU B 128
MOTA
       9056
                                          70.587 21.472
                                  53.249
                                                          1.00 40.45
MOTA
       9060
             С
                  LEU B 128
                                          69.860 20.923
                                                          1.00 39.55
                                                                                 0
                                  52.429
                  LEU B 128
       9061
ATOM
              0
                                                          1.00 45.07
                                                                                 Ŋ
                                          71.721 20.935
                                  53.686
ATOM
       9062
             N
                  MET B 129
                                                                                 С
                                                 19.639
                                                          1.00 51.61
                                          72.188
                                  53.198
ATOM
       9064
              CA
                  MET B 129
                                                                                 С
                                                          1.00 59.46
                                          73.552
                                                 19.279
              CB
                  MET B 129
                                  53.807
ATOM
       9066
                                                                                 С
                                  52.770 74.606 18.892
                                                          1.00 65.11
                  MET B 129
ATOM
        9069
                                                          1.00 76.35
                                                                                 S
                                         75.240 20.362
                                  51.915
                  MET B 129
ATOM
        9072
              SD
                                  52.952 76.840 20.807
                                                           1.00 70.67
                                                                                 C
ATOM
        9073
              CE
                  MET B 129
                                  53.504 71.188 18.527
52.593 70.751 17.808
54.780 70.818 18.392
                                                          1.00 50.01
                                                                                 С
                  MET B 129
ATOM
        9077
              С
                                                           1.00 49.00
                                                                                 0
                  MET B 129
MOTA
        9078
                                                           1.00 46.61
ATOM
        9079
              N
                  THR B 130
                                                                                 С
                                                           1.00 43.27
                                  55.182 69.838 17.385
                  THR B 130
ATOM
        9081
              CA
                                                           1.00 46.01
                                  56.696 69.633 17.356
                  THR B 130
        9083
              CB
ATOM
                                                           1.00 49.65
                                  57.115 69.028
                                                  18.595
              OG1 THR B 130
ATOM
        9085
                                                           1.00 46.00
                                  57.430 70.965
                                                  17.254
              CG2 THR B 130
        9087
MOTA
                                                           1.00 37.32
                                  54.558 68.484
                                                  17.608
                  THR B 130
ATOM
        9091
              С
                                                           1.00 38.81
                                  54.405
                                          67.740
                                                  16.662
                  THR B 130
MOTA
        9092
              O
                                          68.138
                                                  18.843
                                                           1.00 36.65
                                  54.221
                  LEU B 131
ATOM
        9093
              N
                                          66.792
                                                   19.110
                                                           1.00 38.27
                  LEU B 131
                                  53.692
MOTA
        9095
              CA
                                          66.334
                                                   20.542
                                                           1.00 36.09
                                  54.035
ATOM
        9097
              СB
                  LEU B 131
                                  55.504
                                          65.921
                                                   20.744
                                                           1.00 41.85
        9100
              CG
                  LEU B 131
ATOM
                                  55.716
                                          65.331
                                                   22.115
                                                           1.00 43.81
        9102
              CD1 LEU B 131
 MOTA
                                                   19.675
                                                           1.00 42.73
                                          64.933
                                  56.000
        9106
              CD2 LEU B 131
 ATOM
                                                                                  С
                                          66.626
                                                   18.840
                                                           1.00 37.66
                                  52.187
 ATOM
        9110
              С
                  LEU B 131
                                                                                  0
                                                   19.020
                                                           1.00 36.27
                                  51.654
                                          65.538
 ATOM
        9111
              0
                  LEU B 131
                                                                                  N
                                                   18.432
                                                           1.00 36.65
                                  51.504
                                           67.696
 ATOM
        9112
              N
                  ARG B 132
                                                                                  C
                                                   18.101
                                                           1.00 37.82
                                  50.092
                                           67.598
        9114
                  ARG B 132
 ATOM
              CA
                                                                                  C
                                                   17.729
                                                           1.00 41.54
                                  49.513
                                           68.951
        9116
                  ARG B 132
 ATOM
              CB
                                                           1.00 43.31
                                                                                  С
                                           70.018
                                                   18.778
                                  49.523
        9119
                  ARG B 132
 ATOM
              CG
                                           71.367
                                                   18.199
                                                           1.00 48.60
                                                                                  С
                   ARG B 132
                                  49.158
 ATOM
        9122
              CD
                                           71.771
                                                   17.145
                                                           1.00 56.22
                                                                                  N
                  ARG B 132
                                  50.094
 ATOM
        9125
              NE
                                                                                  С
                                           72.960
                                                   16.546
                                                           1.00 61.15
                                  50.108
 ATOM
        9127
              CZ
                   ARG B 132
                                                            1.00 65.15
                                           73.881
                                                   16.869
                                                                                  N
        9128
              NH1 ARG B 132
                                   49.210
 ATOM
                                                                                  N
                                           73.226
                                                   15.611
                                                            1.00 59.62
                                   51.027
 MOTA
        9131
              NH2 ARG B 132
                                                                                  С
                                           66.732
                                                   16.873
                                                            1.00 36.75
                                   49.932
        9134
                   ARG B 132
 ATOM
              C
                                                                                  0
                                                            1.00 31.55
                                           66.721
                                                   15.994
                                   50.802
                   ARG B 132
 ATOM
        9135
              0
                                                                                  N
                                           66.057
                                                   16.766
                                                            1.00 35.11
                                   48.793
                   ASN B 133
 ATOM
        9136
              N
                                                   15.676
                                                            1.00 35.81
                                   48.615
                                           65.107
 ATOM
        9138
              CA
                   ASN B 133
                                                            1.00 33.41
                                   47.222
                                           64.496 15.691
                   ASN B 133
 ATOM
        9140
              CB
                                                                                  ¢
                                                            1.00 35.85
                                           63.251
                                                   14.864
                                   47.131
 MOTA
        9143
              CG
                  ASN B 133
                                                                                  0
                                                            1.00 44.99
                                   46.077
                                           62.921
                                                   14.325
 MOTA
        9144
              OD1 ASN B 133
                                                                                  N
                                           62.541
                                                   14.758
                                                            1.00 34.81
                                   48.223
        9145
              ND2 ASN B 133
 ATOM
                                                                                  C
                                           65.706
                                                   14.307
                                                            1.00 36.60
                                   48.972
        9148
                   ASN B 133
 ATOM
              ¢
                                                   13.550
                                                            1.00 40,28
                                           65.088
                                   49.702
 ATOM
        9149
                   ASN B 133
                                                            1.00 39.70
                                                   14.011
                                           66.920
 ATOM
         9150
              N
                   PHE B 134
                                   48.515
                                                   12.752
                                                            1.00 38.87
                                           67.599
                                   48.876
                   PHE B 134
 ATOM
         9152
              CA
                                                            1.00 36.18
                                                   12.007
                                           67.999
                                   47.604
 ATOM
         9154
               СВ
                   PHE B 134
                                                            1.00 32.78
                                           66.834
                                                   11.685
                                   46.716
 ATOM
         9157
               CG
                   PHE B 134
                                                            1.00 35.23
                                           66.143
                                                   10.482
 ATOM
         9158
               CDI PHE B 134
                                   46.B55
                                                            1.00 24.27
                                           65.035
                                                   10.172
                                                                                  C
                                   46.041
         9160
               CE1 PHE B 134
 ATOM
                                                            1.00 27.34
                                                   11.071
                                           64.613
                                   45.101
 ATOM
         9162
               CZ
                   PHE B 134
```

|              | •            |          |            |   |     |                  | Figu             | ıre 5            |                                |        |
|--------------|--------------|----------|------------|---|-----|------------------|------------------|------------------|--------------------------------|--------|
| ATOM         | 9164         |          | PHE        |   |     | 44.939           | 65.293           | 12.283           | 1.00 31.60                     | С      |
| MOTA         | 9166         |          | PHE        |   |     | 45.763           | 66.396           | 12.589           | 1.00 34.40                     | C      |
| ATOM<br>ATOM | 9168<br>9169 | С<br>О   | PHE<br>PHE |   |     | 49.826<br>49.881 | 68.792<br>69.745 | 12.994<br>12.238 | 1.00 39.63<br>1.00 37.42       | C<br>O |
| ATOM         | 9170         | N        | GLY        |   |     | 50.631           | 68.685           | 14.037           | 1.00 45.75                     | N      |
| ATOM         | 9172         | CA       | GLY        |   |     | 51.556           | 69.733           | 14.418           | 1.00 50.63                     | С      |
| ATOM         | 9175         | C        | GLY        |   |     | 52.778           | 69.939           | 13.527           | 1.00 56.02                     | C      |
| ATOM<br>ATOM | 9176<br>9177 | O<br>N   | GLY<br>MET |   |     | 53.551<br>52.974 | 70.868<br>69.120 | 13.806<br>12.482 | 1.00 57.17<br>1.00 58.49       | О<br>И |
| ATOM         | 9179         | CA       | MET        |   |     | 54.105           | 69.347           | 11.568           | 1.00 60.41                     | Ċ      |
| ATOM         | 9181         | CB       | MET        |   |     | 55.441           | 69.034           | 12.264           | 1.00 60.51                     | C      |
| ATOM         | 9184         | CG       | MET        |   |     | 55.650           | 67.600           | 12.605<br>13.979 | 1.00 59.61                     | C<br>S |
| ATOM<br>ATOM | 9187<br>9188 | SD<br>CE | MET        |   |     | 56.773<br>56.223 | 67.371<br>65.671 | 14.396           | 1.00 57.19<br>1.00 50.87       | C      |
| ATOM         | 9192         | c        | MET        |   |     | 54.053           | 68.648           | 10.196           | 1.00 61.95                     | c      |
| MOTA         | 9193         | 0        | MET        |   |     | 54.353           | 67.443           | 10.053           | 1.00 61.82                     | 0      |
| ATOM<br>ATOM | 9194<br>9196 | N<br>CA  | GLY        |   |     | 53.719<br>53.718 | 69.44B<br>68.997 | 9.186<br>7.815   | 1.00 60.97<br>1.00 62.18       | N<br>C |
| MOTA         | 9199         | C        | GLY        |   |     | 52.461           | 68.208           | 7.535            | 1.00 63.45                     | č      |
| ATOM         | 9200         | ō        | GLY        |   |     | 51.559           | 68.144           | 8.362            | 1.00 61.89                     | 0      |
| ATOM         | 9201         | N        | LYS        |   |     | 52.446           | 67.569           | 6.373            | 1.00 66.57                     | N      |
| ATOM<br>ATOM | 9203<br>9205 | CA<br>CB | LYS        |   |     | 51.267<br>51.313 | 66.885<br>66.867 | 5.849<br>4.302   | 1.00 68.31<br>1.00 71.90       | C      |
| ATOM         | 9208         | CG       | LYS        |   |     | 51.938           | 68.144           | 3.641            | 1.00 74.45                     | č      |
| MOTA         | 9211         | CD       | LYS        |   |     | 51.345           | 68.485           | 2.250            | 1.00 76.05                     | С      |
| ATOM         | 9214         | CE       | LYS        |   |     | 52.037           | 67.736           | 1.095            | 1.00 75.07                     | C      |
| ATOM<br>ATOM | 9217<br>9221 | NZ<br>C  | LYS        |   |     | 51.378<br>51.114 | 67.865<br>65.454 | -0.242<br>6.385  | 1.00 71.94<br>1.00 65.87       | N<br>C |
| ATOM         | 9222         | Ö        | LYS        |   |     | 50.130           | 64.784           | 6.064            | 1.00 65.95                     | ŏ      |
| ATOM         | 9223         | N        | ARG        |   |     | 52.091           | 64.986           | 7.171            | 1.00 61.46                     | N      |
| MOTA         | 9225         | CA       | ARG        |   |     | 52.019           | 63.676           | 7.834            | 1.00 56.16 5.49                | C      |
| ATOM<br>ATOM | 9227<br>9230 | CB<br>CG | ARG<br>ARG |   |     | 53.358<br>53.275 | 62.957<br>61.435 | 7.696<br>7.623   | 1.00 58.39 35<br>1.00 61.82    | C      |
| ATOM         | 9233         | CD       | ARG        |   |     | 54.441           | 60.800           | 6.841            | 1.00 65.46                     | č      |
| ATOM         | 9236         | NE       | ARG        | В | 139 | 54.924           | 59.555           | 7.450            | 1.00 66.19                     | . N    |
| MOTA         | 9238         | CZ       | ARG        |   |     | 54.296           | 58.380           | 7.386            | 1.00 64.84                     | C      |
| ATOM         | 9239<br>9242 |          | ARG        |   |     | 54.840<br>53.125 | 57.321<br>58.252 | 7.974<br>6.744   | 1.00 57.44<br>1.00 68.37       | N<br>N |
| ATOM         | 9245         | C        | ARG        |   |     | 51.644           | 63.809           | 9.319            | 1.00 48.50                     | · c    |
| ATOM         | 9246         | 0        | ARG        |   |     | 52.277           | 64.546           | 10.071           | 1.00 43.84                     |        |
| ATOM         | 9247         | N        | SER        |   |     | 50.603<br>50.152 | 63.093<br>63.127 | 9.733<br>11.126  | 1.00 43.76%% ask<br>1.00 37.92 | N<br>C |
| ATOM<br>ATOM | 9249<br>9251 | CA<br>CB | SER        |   |     | 48.636           | 62.777           | 11.120           | 1.00 37.92                     | c      |
| ATOM         | 9254         | OG       | SER        |   |     | 48.323           | 61.417           | 10.940           | 1.00 28.74                     | 0      |
| MOTA         | 9256         | С        | SER        |   |     | 51.008           | 62.214           | 12.026           | 1.00 36.30                     | c      |
| ATOM<br>ATOM | 9257<br>9258 | N<br>O   | SER        |   |     | 51.664<br>51.019 | 61.296<br>62.464 | 11.544<br>13.331 | 1.00 32.38<br>1.00 35.12       | O<br>N |
| ATOM         | 9260         | CA       | ILE        |   | 141 | 51.642           | 61.514           | 14.254           | 1.00 36.72                     | c      |
| MOTA         | 9262         | CB       | ILE        | В | 141 | 51.526           | 61.963           | 15.739           | 1.00 37.75                     | С      |
| ATOM         | 9264         |          | ILE        |   |     | 52.106           | 63.359           | 15.987           | 1.00 37.41                     | C      |
| ATOM<br>ATOM | 9267<br>9271 |          | ILE        |   |     | 53.544<br>52.159 | 63.477<br>60.906 | 15.678<br>16.662 | 1.00 40.53<br>1.00 36.17       | C      |
| ATOM         | 9275         | C        | ILE        |   |     | 50.929           | 60.155           | 14.110           | 1.00 35.13                     | č      |
| ATOM         | 9276         | 0        | ILE        |   |     | 51.550           | 59.111           | 14.160           | 1.00 40.71                     | 0      |
| ATOM         | 9277         | N        | GLU        |   |     | 49.624           | 60.169           | 13.924<br>13.922 | 1.00 32.27<br>1.00 34.57       | N<br>C |
| MOTA<br>MOTA | 9279<br>9281 | CA<br>CB | GLU        |   |     | 48.877<br>47.354 | 58.933<br>59.189 | 13.922           | 1.00 34.97                     | c      |
| ATOM         | 9284         | CG       | GLU        |   |     | 46.497           | 57.945           | 13.749           | 1.00 36.94                     | С      |
| MOTA         | 9287         | CD       | GLU        |   |     | 45.025           | 58.093           | 14.105           | 1.00 39.85                     | C      |
| ATOM         | 9288         |          | GLU        |   |     | 44.546<br>44.332 | 59.226<br>57.053 | 14.352<br>14.135 | 1.00 44.43<br>1.00 43.56       | 0      |
| ATOM<br>ATOM | 9289<br>9290 | C        | GLU        |   |     | 49.256           | 58.090           | 12.728           | 1.00 33.02                     | c      |
| ATOM         | 9291         | Õ        | GLU        |   |     | 49.160           | 56.878           | 12.799           | 1.00 34.43                     | 0      |
| ATOM         | 9292         | N        |            |   | 143 | 49.698           | 58.710           | 11.641           | 1.00 37.22                     | N      |
| ATOM         | 9294<br>9296 | CR       | ASP        |   |     | 50.132<br>50.384 | 57.948<br>58.845 | 10.468<br>9.250  | 1.00 42.00<br>1.00 46.83       | C      |
| MOTA<br>MOTA | 9290         | CB<br>CG | ASP<br>ASP |   |     | 49.094           | 59.207           | 8.509            | 1.00 57.73                     | Ç      |
| MOTA         | 9300         |          | ASP        |   |     | 48.346           | 58.277           | 8.101            | 1.00 60.37                     | 0      |
| ATOM         | 9301         | OD2      | ASP        | В | 143 | 48.749           | 60.400           | 8.282            | 1.00 67.82                     | 0      |
| MOTA<br>MOTA | 9302<br>9303 | С<br>О   | ASP<br>ASP |   |     | 51.407<br>51.504 | 57.235<br>56.013 | 10.817<br>10.673 | 1.00 38.42<br>1.00 40.11       | C<br>0 |
| ATOM         | 9304         | N        | ASP        |   |     | 52.376           | 58.023           | 11.285           | 1.00 33.53                     | N      |
| MOTA         | 9306         | CA       | ARG        |   |     | 53.658           | 57.525           | 11.778           | 1.00 28.97                     | С      |
| ATOM         | 9308         | CB       | ARG        | В | 144 | 54.382           | 58.627           | 12.510           | 1.00 28.17                     | C      |
| ATOM<br>ATOM | 9311<br>9314 | CC       | ARG        |   |     | 54.954           | 59.730<br>60.707 | 11.624<br>12.452 | 1.00 25.88<br>1.00 30.70       | C      |
| u i Oti      | 7014         | CD       | ARG        | Ħ | T44 | 55.770           | 50.707           |                  | 00 30.70                       | C      |

```
Figure 5
ATOM
       9317
             NE ARG B 144
                                55.701
                                        62.084 11.984 1.00 36.88
                 ARG B 144
                                56.326
                                        62.534 10.918
ATOM
                                                        1.00 39.36
       9319
             CZ
             NH1 ARG B 144
                                57.059
                                        61.703 10.192 1.00 42.29
ATOM
       9320
                                        63.805 10.567
ATOM
       9323
             NH2 ARG B 144
                                56.211
                                                       1.00 39.49
                                               12.701
ATOM
       9326
                 ARG B 144
                                53.485
                                        56.317
                                                       1.00 30.36
ATOM
       9327
             O
                 ARG B 144
                                54.121
                                        55.299
                                               12.505
                                                       1.00 29.10
ATOM
       9328
                 VAL B 145
                                52.574
                                        56.416
                                               13.665
                                                       1.00 28.03
ATOM
       9330
             CA
                 VAL B 145
                                52.345
                                       55.340
                                               14.593
                                                        1.00 24.69
                                                                              С
       9332
                 VAL B 145
                                51.604
                                        55.819
                                                15.837
                                                        1.00 23.14
ATOM
             CB
       9334
             CG1 VAL B 145
                                51.306
                                        54.676
                                               16.760
                                                        1.00 20.62
ATOM
                                                        1.00 24.00
                                52.429
                                        56.839
                                               16.559
ATOM
       9338
             CG2 VAL B 145
                 VAL B 145
                                51.618
                                        54.206
                                               13.936
                                                        1.00 29.04
ATOM
       9342
                                        53.043
                                               14.290
                                                        1.00 32.30
ATOM
       9343
                 VAL B 145
                                51.844
ATOM
       9344
             N
                 GLN B 146
                                50.744
                                       54.508
                                                12.982
                                                        1.00 33.11
ATOM
       9346
             CA
                 GLN B 146
                                50.059
                                        53.435
                                               12.230
                                                        1.00 32.04
                                       53.975
                                               11.384
ATOM
             CB
                 GLN B 146
                                48.923
                                                        1.00 31.48
       9348
             CG ·
                 GLN B 146
                                47.680
                                        54.253
                                               12,209
                                                        1.00 37.50
ATOM
       9351
                 GLN B 146
                                46.565
                                        54.834
                                                11.394
                                                        1.00 38.80
ATOM
             CD
       9354
                                                        1.00 43.89
             OE1 GLN B 146
                                45.550
                                        54.177
                                                11.201
ATOM
       9355
                                46.754
                                        56.049
                                                10.883
                                                        1.00 36.94
ATOM
       9356
             NE2 GLN B 146
ATOM
       9359
                 GLN B 146
                                51.023
                                        52.655
                                                11.357
                                                        1.00 32.36
                                                                             С
             C
                 GLN B 146
                                50.849
                                        51.452
                                                11.194
                                                        1.00 33.03
                                                                              0
ATOM
       9360
                                       53.325
                                                10.830
                                                        1.00 33.23
                                52.051
                                                                             N
ATOM
       9361
             N
                 GLU B 147
                                53.032
                                                        1.00 36.76
                                                                             С
                                        52.657
                                                 9.981
             CA
                 GLU B 147
ATOM
       9363
                                                 9.235
                                                        1.00 38.53
                                        53.654
                                                                             C
ATOM
       9365
             CB
                 GLU B 147
                                53.937
                                54.961 52.968
                                                        1.00 41.39
                                                                             C
                                                 8.318
ATOM
       9368
             CG
                 GLU B 147
                                                 7.797
ATOM
       9371
             CD
                 GLU B 147
                                56.071 53.895
                                                        1.00 45.64
                                                                             С
                                                        1.00 46.78
ATOM
       9372
             OE1 GLU B 147
                                56.244
                                        55.016
                                                 8.326
                                                                             0
ATOM
       9373
             OE2 GLU B 147
                                56.797
                                       53.491
                                                 6.851
                                                        1.00 48.95
                                                                             0
                                                                             9374
                 GLU B 147
                                53.870 51.704
                                               10.835
                                                        1.00 35.60
                                                                             С
MOTA
       9375
             0
                 GLU B 147
                                54.036
                                       50.527
                                                10.489
                                                        1.00 31.38
ATOM
                 GLU B 148
                                54.372
                                        52.222
                                                11.953
                                                       1.00 30.23
ATOM
       9376
                                55.138
                                       51.422
                                               12.894
                                                        1.00 31.41
ATOM
       9378
             CA
                 GLU B 148
                 GLU B 148
ATOM
       9380
            СВ
                                55.559
                                       52.268
                                               14.095
                                                       1.00 32.38
ATOM
       9383
            CG
                 GLU B 148
                                56.753
                                       51.699
                                                14.832
                                                        1.00 33.68
                                       51.495
                                               13.918
                                                        1.00 38.00
MOTA
       9386
            CD.
                 GLU B 148
                                57.947
                                       52.453
                                               13.156
                                                        1.00 37.51
MOTA
       9387
            OE1 GLU B 148
                                58.277
                                                       1.00 33.06
            OE2 GLU B 148
                                58.540
                                       50.388
                                               13.963
MOTA
       9388
                                       50.223
                                                        1.00 30.12
                 GLU B 148
                                54.339
                                                13.382
. ATOM
       9389
            С
                                       49.132
                                                13.544
                                                        1.00 28.18
ATOM
       9390
             0
                 GLU B 148
                                54.854
                                       50.434
49.372
                                                13.593
                                                        1.00 33.45
       9391
            N
                 ALA B 149
                                53.059
ATOM
                                                14.035
                ALA B 149
                                                        1.00 34.62
ATOM
       9393
            CA
                                52.183
                                                14.228
                                50.792
                                       49.919
                                                        1.00 34.50
                                                                             С
                ALA B 149
ATOM
       9395
            CB
                                                13.066
                                                        1.00 36.19
                                                                             С
                                       48.181
ATOM
       9399
             С
                 ALA B 149
                                52.168
                                                13.501
                                       47.028
                                                        1.00 30.78
                                                                             0
ATOM
       9400
             0
                 ALA B 149
                                52.093
                                                        1.00 39.61
                                       48.429
                                                11.759
MOTA
       9401
            N
                 ARG B 150
                                52.231
                                                        1.00 44.05
                                                10.843
                                                                             С
ATOM
       9403
            CA
                ARG B 150
                                52.189
                                       47.287
                                                        1.00 45.45
                                                                             С
ATOM
       9405
             CB
                ARG B 150
                                51.397
                                       47.558
                                                9.545
                                                 8.566
                                                        1.00 50.36
                                                                             С
ATOM
       9408
             CG
                ARG B 150
                                51.954 48.548
                                                 7:102
                                                        1.00 52.98
       9411
             CD
                ARG B 150
                                51.516
                                       48.303
ATOM
                                                 6.199
                                                        1.00 56.92
ATOM
       9414
             NE
                ARG B 150
                                52.660
                                       48.453
                                                        1.00 60.47
       9416
             CZ
                ARG B 150
                                53.187
                                       49.625
                                                 5.834
ATOM
                                                 5.023
                                                        1.00 62.22
       9417
             NH1 ARG B 150
                                54.241 49.656
ATOM
                                                        1.00 61.13
       9420
             NH2 ARG B 150
                                52.665
                                       50.775
                                                 6.267
                                                                             N
ATOM
                                                        1.00 44.70
ATOM
       9423
                 ARG B 150
                                53.569
                                       46.657
                                                10.624
                                                                             C
ATOM
       9424
                 ARG B 150
                                53.671
                                       45.455
                                                10.409
                                                        1.00 47.87
                                                                             0
                                       47.455
                                                10.755
                                                        1.00 41.78
ATOM
       9425
                 CYS B 151
                                54.623
                CYS B 151
MOTA
       9427
            CA
                                55.972
                                       46.934
                                                10.741
                                                        1.00 40.86
                                                                             С
                                       48.064
                                                10.770
                                                        1.00 41.98
       9429
            CB
                CYS B 151
                                56.976
ATOM
                                       49.090
                                                9.324
                                                        1.00 47.07
                                                                             s
MOTA
       9432
            SG
                CYS B 151
                                56.862
                                                        1.00 43.60
                                               11.943
                 CYS B 151
                                56.265
                                       46.083
ATOM
       9433
            С
                                                11.886
                                                        1.00 50.81
ATOM
       9434
            0
                 CYS B 151
                                57.156
                                       45.248
                                                                             0
                                                        1.00 43.76
                 LEU B 152
                                55.578
                                        46.353
                                                13.047
       9435
ATOM
            N
                LEU B 152
                                                14.285
                                                        1.00 44.36
                                55.758
                                       45.625
ATOM
       9437
            CA
                                        46.383
                                                15.422
                                                        1.00 46.67
                LEU B 152
                                55.073
ATOM
       9439
            CB
                                                16.857
17.825
                LEU B 152
                                                        1.00 50.64
                                                                             c
                                       45.957
ATOM
       9442
            CG
                                55.385
                                                        1.00 54.44
            CD1 LEU B 152
                                       46.954
ATOM
       9444
                                54.762
                                                17.166
                                                        1.00 50.97
ATOM
       9448
            CD2 LEU B 152
                                54.876
                                       44.576
                                                        1.00 43.27
       9452
            С
                LEU B 152
                                55.122
                                        44.255
                                                14.105
ATOM
                                                        1.00 35.31
                                                14.525
       9453
            0
                 LEU B 152
                                55.663
                                       43.246
ATOM
                                                        1.00 46.77
                 VAL B 153
                                53.957
                                        44.247
                                                13.467
ATOM
       9454
            N
                                                        1.00 48.40
            CA VAL B 153
                                53.224
                                        43.019
                                                13.182
ATOM
       9456
                                                        1.00 46.17
                VAL B 153
                                        43.329
                                                12.576
                                                                             С
ATOM
       9458
            CB
                                51.830
                                        42.074
                                                        1.00 43.13
            CG1 VAL B 153
                                                12.024
ATOM
       9460
                                51.182
ATOM
       9464
            CG2 VAL B 153
                                50,926
                                        43.969
                                                13.610
                                                        1.00 45.13
            С
                VAL B 153
                                54.010
                                       42.175
                                                12.189
                                                       1.00 51.42
       9468
ATOM
```

Take a law Value of the Franch of

चित्रपूर्वे एक् अवेत्रीम् राज्य १ विव ५३ विव १४ व्या १९८८ व्या

|              |               |           |            |     |              |   |                  | Fia               | ıre 5            |      |                |   |        |
|--------------|---------------|-----------|------------|-----|--------------|---|------------------|-------------------|------------------|------|----------------|---|--------|
| ATOM         | 9469          | 0         | VAL        | В   | 153          | : | 54.082           | 40.974            | 12.324           | 1.00 | 52.52          |   | 0      |
| ATOM         | 9470          | N         | GLU        |     |              |   | 54.589           | 42.823<br>42.148  | 11.184<br>10.202 |      | 57.00<br>58.60 |   | N<br>C |
| ATOM<br>ATOM | 9472<br>9474  | CA<br>CB  | GLU<br>GLU |     |              |   | 55.427<br>55.874 | 43.122            | 9.067            |      | 62.55          |   | Č      |
| ATOM         | 9477          | CG        | GLU        | В   | 154          |   | 54.859           | 43.259            | 7.906            |      | 66.72          |   | C      |
| MOTA         | 9480<br>9481  | CD<br>OE1 |            |     | 154<br>154   |   | 54.905<br>53.896 | 44.602<br>44.959  | 7.135<br>6.468   |      | 72.72<br>76.67 |   | 0      |
| ATOM<br>ATOM | 9482          | OE2       | GLU        |     |              |   | 55.935           | 45.315            | 7.166            |      | 71.91          |   | 0      |
| MOTA         | 9483          | C         |            |     | 154          |   | 56.607           | 41.481            | 10.929           |      | 55.96          |   | C      |
| ATOM<br>ATOM | 9484<br>9485  | O<br>N    |            |     | 154<br>155   |   | 56.989<br>57.133 | 40.379<br>42.108  | 10.578<br>11.978 |      | 60.56<br>53.69 |   | N      |
| ATOM         | 9487          | CA        | GLU        | В   | 155          |   | 58.260           | 41.543            | 12.732           |      | 53.73          |   | C      |
| ATOM         | 9489<br>9492  | CB<br>CG  |            |     | 155<br>155   |   | 59.065<br>60.148 | 42.645<br>43.155  | 13.420<br>12.486 |      | 51.29<br>58.97 |   | C      |
| ATOM<br>ATOM | 9495          | CD        |            |     | 155          |   | 61.487           | 42.407            | 12.597           |      | 62.29          |   | С      |
| ATOM         | 9496          | OE1       | GLU        |     |              |   | 62.014           | 42.030            | 11.534           |      | 63.39          |   | 0      |
| MOTA<br>MOTA | 9497<br>9498  | C<br>C    | GLU        |     | 155          |   | 62.029<br>57.901 | 42.212·<br>40.441 | 13.716<br>13.731 |      | 64.60<br>52.03 |   | C      |
| ATOM         | 9499          | ō         | GLU        | В   | 155          |   | 58.744           | 39.608            | 14.071           | 1.00 | 52.47          |   | 0      |
| ATOM         | 9500<br>9502  | n<br>Ca   |            |     | 156<br>156   |   | 56.665<br>56.225 | 40.430<br>39.358  | 14.203<br>15.072 |      | 50.66          |   | N<br>C |
| ATOM<br>ATOM | 9504          | СВ        |            |     | 156          |   | 54.974           | 39.756            | 15.874           |      | 49.09          |   | С      |
| ATOM         | 9507          | CG        |            |     | 156          |   | 55.118           | 40.984            | 16.785           |      | 48.78          |   | C      |
| ATOM<br>ATOM | 9509<br>9513  |           | LEU        |     |              |   | 53.795<br>56.196 | 41.305<br>40.839  | 17.454<br>17.846 |      | 49.37<br>49.61 |   | C      |
| ATOM         | 9517          | C         |            |     | 156          |   | 55.972           | 38.155            | 14.184           | 1.00 | 49.95          |   | С      |
| ATOM         | 9518          | 0         |            |     | 156          |   | 56.234           | 37.021            | 14.568           |      | 49.39          |   | 0      |
| ATOM<br>ATOM | 9519<br>9521  | N<br>CA   |            |     | 157<br>157   |   | 55.500<br>55.271 | 38.418<br>37.370  | 12.974<br>11.989 |      | 51.43<br>53.04 |   | N<br>C |
| ATOM         | 9523          | СВ        |            |     | 157          |   | 54.772           | 37.984            | 10.690           | 1.00 | 50.62          |   | С      |
| ATOM         | 9526          | CG ·      | ARG        |     |              |   | 53.512           | 37.371            | 10.166           |      | 50.34<br>54.97 | • | C      |
| ATOM<br>ATOM | 9529<br>9532  |           |            |     | 157 :<br>157 |   | 53.020<br>51.922 | 38.074<br>39.012  | 8.903<br>9.144   |      | 54.25          |   | N      |
| ATOM         | 9534          |           | ARG        |     |              |   | 50.688           | 38.642            | 9.503            | 1.00 | 53.55          |   | С      |
| MOTA         |               | NH1       |            |     |              |   | 50.381<br>49.763 | 37.356<br>39.567  | 9.707<br>9.700   |      | 53.02<br>50.07 |   | N<br>N |
| ATOM<br>ATOM | 9538<br>9541  | ·NH2      |            |     | 157          |   | 56.551           | 36.561            | 11.723           |      | 55.90          |   | Ċ      |
| ATOM         | 9542          | 0.        | ARG        | · B | 157          |   | 56.510           | 35.342            | 11.591           |      | 56.09          |   | 0      |
| ATOM         | 9543          | N CA      | LYS        |     |              |   | 57.681<br>58.986 | 37.259<br>36.653  | 11.670<br>11.411 |      | 59.26<br>60.18 |   | N<br>C |
| ATOM<br>ATOM | ·9545<br>9547 | CB        |            |     | 158          |   | 60.008           | 37.742            | 11.055           |      | 60.07          |   | С      |
| MOTA         | 9550          | CG        | LYS        | В   | 158          |   | 59.794           | 38.310            | 9.669            |      | 60.96          |   | C      |
| MOTA<br>MOTA | 9553<br>9556  | CD        |            |     | 158<br>158   |   | 60.481           | 39.648<br>40.267  | 9.470<br>8.121   |      | 64.67<br>67.18 |   | C      |
| ATOM         | 9559          | NZ        |            |     | 158          |   | 60.945           | 41.423            | 7.766            | 1.00 | 67.52          |   | N      |
| ATOM         | 9563          | C         |            |     | 158          |   | 59.532           | 35.797            | 12.558<br>12.366 |      | 61.17<br>65.39 |   | 0      |
| ATOM<br>ATOM | 9564<br>9565  | . M       |            |     | 158<br>159   |   | 60.516<br>58.924 | 35.094<br>35.845  | 13.741           |      | 59.80          |   | N      |
| ATOM         | 9567          | CA        |            |     | 159          |   | 59.310           | 34.917            | 14.807           |      | 57.38          |   | C      |
| ATOM         | 9569          | CB<br>CC1 |            |     | 159          |   | 58.875           | 35.409<br>35.516  | 16.206<br>16.276 |      | 57.65<br>56.26 |   | C      |
| MOTA<br>MOTA | 9571<br>9573  |           | THR        |     |              |   | 57.446<br>59.399 | 36.810            | 16.485           |      | 55.57          |   | Č      |
| MOTA         | 9577          | С         | THR        | В   | 159          |   | 58.718           | 33.548            | 14.547           |      | 57.78          |   | C      |
| ATOM         | 9578<br>9579  | N<br>N    |            |     | 159<br>160   |   | 58.907<br>57.976 | 32.640<br>33.423  | 15.346<br>13.449 |      | 56.78<br>58.54 |   | O<br>N |
| ATOM<br>ATOM | 9581          | CA        |            |     | 160          |   | 57.531           | 32.137            | 12.917           | 1.00 | 61.50          |   | С      |
| ATOM         | 9583          | СВ        |            |     | 160          |   | 58.751           | 31.333            | 12.433           |      | 65.46          |   | C      |
| ATOM<br>ATOM | 9586<br>9589  | CG<br>CD  |            |     | 160<br>160   |   | 59.220<br>60.637 | 31.689<br>31.145  | 11.014<br>10.710 |      | 69.73<br>72.41 |   | Ċ      |
| ATOM         | 9592          | CE        |            |     | 160          |   | 60.639           | 29.664            | 10.292           | 1.00 | 73.83          |   | C      |
| ATOM         | 9595          | NZ        |            |     | 160          |   | 62.017           | 29.122            | 9.981<br>13.896  |      | 74.41          | ٠ | N<br>C |
| ATOM<br>ATOM | 9599<br>9600  | С<br>0    |            |     | 160<br>160   |   | 56.663<br>56.540 | 31.318<br>30.105  | 13.766           |      | 61.44          |   | ŏ      |
| ATOM         | 9601          | N         | ALA        | ₿   | 161          |   | 56.039           | 32.000            | 14.858           |      | 60.02          |   | N      |
| ATOM         | 9603          | CA        |            |     | 161          |   | 55.159           | 31.374            | 15.854<br>15.190 |      | 55.48<br>53.11 |   | C      |
| ATOM<br>ATOM | 9605<br>9609  | CB<br>C   |            |     | 161<br>161   |   | 54.086<br>55.920 | 30.547<br>30.542  | 16.870           |      | 55.99          |   | Č      |
| ATOM         | 9610          | 0         | ALA        | В   | 161          |   | 55.332           | 29.741            | 17.575           |      | 58.27          |   | 0      |
| ATOM         | 9611          | N .       |            |     | 162<br>162   |   | 57.226<br>58.090 | 30.763<br>30.086  | 16.960<br>17.922 |      | 58.85<br>58.89 |   | N<br>C |
| MOTA<br>MOTA | 9613<br>9615  | CA<br>CB  |            |     | 162          |   | 59.477           | 29.840            | 17.309           |      | 60.03          |   | C      |
| MOTA         | 9618          | OG        | SER        | В   | 162          |   | 60.297           | 30.997            | 17.449           |      | 62.56          |   | 0      |
| ATOM         | 9620          | ,C<br>0   |            |     | 162<br>162   |   | 58.248<br>58.069 | 30.959<br>32.162  | 19.158<br>19.074 |      | 54.99<br>56.86 |   | C      |
| ATOM<br>ATOM | 9621<br>9622  | N         |            |     | 163          |   | 58.640           | 30.364            | 20.286           | 1.00 | 54.45          |   | N      |
| ATOM         | 9623          | CA        | PRO        | В   | 163          |   | 58.812           | 31.102            | 21.533           | 1.00 | 52.00          | • | С      |
|              |               |           |            |     |              |   |                  |                   |                  |      |                |   |        |

1981 (2017) 1990 (2018) (2018) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019)

1948 - 54. - 548 22 - 17 1988 - 114. - 1245 21 - 17 17 - 98 - 128 21 - 17

```
Figure 5
                                                          1.00 54.27
                                         30.079 22.456
             СВ
                 PRO B 163
                                 59.467
      9625
ATOM
                                                          1.00 53.17
                                 59.035
                                         28.786
                                                 21.952
                 PRO B 163
      9628
             CG
ATOM
                                 58.980
                                         28.941
                                                 20.464
                                                          1.00 54.83
      9631
             ĆD
                 PRO B 163
ATOM
                                                  21.335
                                                          1.00 51.37
             C
                 PRO B 163
                                 59.761
                                         32.235
ATOM
      9634
                                 60.692
                                         32.131
                                                  20.548
                                                          1.00 53.81
                 PRO B 163
ATOM
       9635
             0
                                 59.533
                                         33.314
                                                  22.060
                                                          1.00 53.15
                                                                                N
                 CYS B 164
ATOM
       9636
             N
                                                          1.00 50.95
                                                                                C
                                 60.316
                                         34.513
                                                  21.872
                 CYS B 164
ATOM
       9638
             CA
                                 59.871
                                         35.216
                                                  20.588
                                                          1.00 52.39
                                                                                C
                 CYS B 164
ATOM
       9640
             CB
                                                          1.00 44.47
                                                                                S
                                 58.919
                                         36.701
                                                  20.857
                 CYS B 164
ATOM
       9643
             SG
                                         35.421
                                                          1.00 47.26
                                                                                С
                                 60.211
                                                  23.090
       9644
             С
                 CYS B 164
ATOM
                                         35.366
                                                                                0
                                 59.233
                                                  23.818
                                                          1.00 43.94
       9645
             0
                 CYS B 164
ATOM
                                                          1.00 44.11
                                                                                N
                                 61.271
                                         36,192
                                                  23.313
             N
                 ASP B 165
ATOM
       9646
                                                          1.00 42.83
                                                                                С
                                         37,196
                                                  24.349
             CA
                 ASP B 165
                                 61.343
ATOM
       9648
                                                  24.996
                                                          1.00 40.07
                                                                                С
                                 62.719
                                         37.235
             СВ
                 ASP B 165
ATOM
       9650
                                                  25.988
                                                          1.00 44.60
                                         38.3B3
                 ASP B 165
                                 62.869
ATOM
       9653
             CG
                                                                                 0
                                                          1.00 38.75
                                                  26.541
                                         38.557
ATOM
       9654
             OD1 ASP B 165
                                 63.987
                                                  26.298
                                                          1.00 46.40
             OD2 ASP B 165
       9655
                                 61.921
                                         39.159
ATOM
                                                          1.00 47.24
                 ASP B 165
                                  61.056
                                         38.531
                                                  23.651
ATOM
       9656
             С
                                                          1.00 45.76
                                 61.902
                                         39.072
                                                  22.885
       9657
             0
                 ASP B 165
ATOM
                                                          1.00 45.75
                                                  23.924
                                 59.867
                                         39.074
             N
                 PRO B 166
ATOM
       9658
                                                          1.00 40.43
                                 59.384
                                          40.258
                                                  23.211
             CA
                 PRO B 166
       9659
ATOM
                                                          1.00 42.06
                                 57.945
                                          40.376
                                                  23.697
             СВ
                 PRO B 166
ATOM
       9661
                                                          1.00 42.71
                                                  25.037
                                 57.956
                                          39.791
             ÇG
                 PRO B 166
       9664
ATOM
                                                          1.00 44.55
                                 58.898
                                         38.622
                                                  24.944
             CD
                 PRO B 166
       9667
ATOM
                                                          1.00 32.47
                  PRO B 166
                                  60.161
                                          41.523
                                                  23.533
       9670
             С
ATOM
                                                          1.00 32.76
                 PRO B 166
                                  60.002
                                          42.504
                                                  22,837
       9671
             0
MOTA
                                          41.512
                                                  24.546
                                                          1.00 30.17
                  THR B 167
                                  61.006
             N
ATOM
       9672
                                          42.755
                                                  24.977
                                                          1.00 30.91
                                  61.677
                 THR B 167
ATOM
       9674
             CA
                                          42.448
                                                  25.902
                                                          1.00 27.98
                                  62.843
                 THR B 167
ATOM
       9676
             CB
                                                                                 0
                                                  27.003
                                                          1.00 31.52
                                  62.401
                                          41.644
             OG1 THR B 167
MOTA
       9678
                                                                                 С
                                         43.721
                                                  26.539
                                                          1.00 29.26
                                 63.372
ATOM
       9680
             CG2 THR B 167
                               62.233
                                                  23.867
                                                           1.00 32.69
                                                                                 С
                                         43.615
                 THR B 167
MOTA
       9684
             С
                                                  23.921
                                                          1.00 39.39
                                                                                 ٥
                                62.137
                                         44.828
ATOM
       9685
             0
                  THR B 167:
                                 62.851
                                         42.985
                                                  22.880
                                                          1.00 36.43
                                                                                 N
MOTA
       9686
             N
                  PHE B 168
                                  63.642 43.706
                                                  21.913
                                                           1.00 35.88
                                                                                 С
             CA
                  PHE B 168'
       9688
                                                          1.00 38.23
                                                                                 С
                                 64.681 42.785
                                                  21.253
       9690
             CB
                  PHE B 168
ATOM
                                                                                 С
                                          43.420
                                                  20.074
                                                           1.00 34.51
ATOM
       9693
             CG
                  PHE B 168
                                  65:364
                                                  18.780
                                                           1.00 37.06
                                          43.020
MOTA
       9694
             CD1 PHE B 168
                                  65:065
                                                  17.695
17.920
                                                                                 С
                                                           1.00 38.50
                                  65.674 43.643
             CE1 PHE B 168 ....
       9696
ATOM
                                                           1.00 37.97
                  PHE B 168 66.590 44.666
       9698
             CZ
ATOM
                                                           1.00 32.99
                                                  19.209
             CE2 PHE B 168-
                                  66.881 45.068
       9700
ATOM
                                                           1.00 31.85
                                                  20.271
       9702
             CD2 PHE B 168
                                  66.262 44.458
ATOM
                                                           1.00 34.83
                                                  20.840
                                  62.758
                                         44.323
                  PHE B 168
ATOM
       9704
             С
                                                           1.00 32.07
                                                  20.548
                                  62.877
                                          45.510
ATOM
       9705
             0
                  PHE B 168
                                                  20.230 - 1.00 32.19
                                  61.930
                                         43.476
       9706
                  ILE B 169
ATOM
             N
                                                          1.00 32.87
                  ILE B 169
                                  60.978, 43.876
                                                  19.205
       9708
             CA
ATOM
                                                           1.00 33.57
                  ILE B 169
                                  60.151
                                         42.6Š7
                                                  18.794
       9710
             CB
ATOM
                                                                                 С
                                  60.920
                                          41.786
                                                  17.799
                                                           1.00 37,06
             CG1 ILE B 169
ATOM
       9712
                                                           1.00 36.02
                                                                                 ¢
                                  60.219
             CD1 ILE B 169
                                          40.434
                                                  17.439
       9715
ATOM
                                                                                 С
                                                           1.00 37.91
                                         43.088
                                                  18.163
                                  58.866
             CG2 ILE B 169
ATOM
       9719
                                                                                 С
                                                          1.00 32.65
                                          44.979
                                                  19.716
                  ILE B 169
                                  60.034
ATOM
       9723
             C
                                                                                 0
                                          45.990
                                                  19.064
                                                           1.00 31.29
                                  59.821
       9724
                  ILE B 169
ATOM
             ٥
                                                                                 N
                                          44.754
                                                  20.885
                                                           1.00 33.03
       9725
                  LEU B 170
                                 .59.459
ATOM
             N
                                                                                 C
                                          45.749
                                                  21.553
                                                           1.00 32.36
                                  58.642
             CA
                  LEU B 170
MOTA
       9727
                                          45.126
                                                  22.777
                                                           1.00 33.67
                  LEU B 170
                                  57,998
       9729
             CB
ATOM
                                          44.747
                                                  22.712
                                                           1.00 36.61
                                                                                 C
                                  56.534
                  LEU B 170
       9732
             CG
MOTA
                                                  21.322
                                                           1.00 38.24
                                          44.385
                                  56.067
MOTA
       9734
             CD1
                 LEU B 170
                                  56.306
                                          43.599
                                                  23.663
                                                           1.00 38.59
MOTA
       9738
              CD2 LEU B 170
                                         46.991
                                                  21.985
                                                           1.00 31.49
        9742
              С
                  LEU B 170
                                  59.406
ATOM
                                                  22.276
                                                           1.00 39.89
                                  58.800
                                          47.984
        9743
              0
                  LEU B 170
ATOM
                                                           1.00 32.67
                                                  22.092
                                          46.944
                                  60.717
        9744
             N
                  GLY B 171
ATOM
                                                  22.353
                                                           1.00 32.89
                                                                                 C
                                  61.472
                                          48.155
        9746
                  GLY B 171
              CA
ATOM
                                          48.921
                                                  21.061
                                                           1.00 34.33
        9749
                  GLY B 171
                                  61.707
ATOM
              С
                                                  21.035
                                                           1.00 30.48
                                                                                 0
                                          50.148
                                  61.864
        9750
                  GLY B 171
ATOM
                                                  19.971
                                                           1.00 35.93
                                          48.177
                                  61.766
ATOM
        9751
             N
                  CYS B 172
                                          48.756
                                                                                 С
                                                  18.696
                                                           1.00 40.19
        9753
              CA
                  CYS B 172
                                  62.158
АТОМ
                                                           1.00 43.64
                                                  17.635
                                          47.654
                                  62.360
        9755
              CB
                  CYS B 172
ATOM
                                                  17.773
                                                           1.00 45.69
                                  63.928 - 46.762
        9758
              SG
                  CYS B 172
ATOM
                                                           1.00 38.35
                                          49.735
                                                  18.254
                                  61.084
        9759
              С
                  CYS B 172
 ATOM
                                                  17.796
                                                           1.00 33.84
                                          50.811
                                  61.396
        9760
 ATOM
              O
                  CYS B 172
                                                  18.456
                                                           1.00 34.64
                                          49.352
                                  59.820
 ATOM
        9761
              N
                  ALA B 173
                                                  17.926
                                                           1.00 31.50
                                          50.073
                                  58.686
 ATOM
        9763
              CA
                  ALA B 173
                                                           1.00 33.46
                                          49.263
                                                  18,133
                                  57.421
        9765
              CB
                  ALA B 173
 ATOM
                                                           1.00 31.08
                                          51.497
                                                   18.472
                                  58.530
 MOTA
        9769
              С
                  ALA B 173
                                          52.435
                                  58.388
                                                  17.695
                                                           1.00 27.21
        9770
              0
 ATOM
                  ALA B 173
                                  58.545
                                          51.673
                                                  19.788
                                                           1.00 28.92
```

- ÇŅ

160

9771 N PRO B 174

ATOM

|              |              |           |       |                |                  | _                | re 5             |                          | -          |
|--------------|--------------|-----------|-------|----------------|------------------|------------------|------------------|--------------------------|------------|
| ATOM         | 9772         | CA        | PRO B |                | 58.459           | 53.011           | 20.354           | 1.00 27.83               | C          |
| MOTA         | 9774         | CB        | PRO B |                | 58.371           | 52.755           | 21.864<br>22.043 | 1.00 28.29<br>1.00 28.37 | č          |
| MOTA         | 9777         | CG        | PRO B |                | 58.131<br>58.611 | 51.327<br>50.640 | 20.827           | 1.00 28.79               | Ċ          |
| ATOM<br>ATOM | 9780<br>9783 | CD<br>CD  | PRO B |                | 59.678           | 53.875           | 20.006           | 1.00 29.92               | ··c        |
| MOTA         | 9784         | ŏ         | PRO B |                | 59.578           | 55.081           | 19.797           | 1.00 30.02               | 0          |
| ATOM         | 9785         | N         | CYS P |                | 60.840           | 53.269           | 19.950           | 1.00 32.90               | N<br>C     |
| MOTA         | 9787         | CA        | CYS E |                | 62.029           | 54.030           | 19.602           | 1.00 38.05               | c          |
| ATOM         | 9789         | CB        | CYS E |                | 63.251<br>64.745 | 53.143<br>54.093 | 19.677<br>19.469 | 1.00 39.99               | Š          |
| ATOM         | 9792<br>9793 | SG<br>C   | CYS E |                | 61.949           | 54.611           | 18.191           | 1.00 37.12               | C          |
| ATOM<br>ATOM | 9794         | Ö         | CYS E |                | 62.344           | 55.769           | 17.936           | 1.00 36.00               | 0          |
| ATOM         | 9795         | N         | ASN E |                | 61.459           | 53.779           | 17.284           | 1.00 33.45               | n          |
| ATOM         | 9797         | CA        | ASN E |                | 61.269           | 54.146           | 15.888           | 1.00 34.90<br>1.00 37.22 | C<br>C     |
| MOTA         | 9799         | CB .      | ASN E |                | 60.894<br>61.768 | 52.893<br>52.685 | 15.077<br>13.845 | 1.00 37.22               | Č          |
| MOTA         | 9802<br>9803 | CG        | ASN E |                | 62,683           | 53.463           | 13.570           | 1.00 38.53               | 0          |
| ATOM<br>ATOM | 9804         |           | ASN E |                | 61.457           | 51.636           | 13.081           | 1.00 32.25               | N          |
| ATOM         | 9807         | С         | ASN E |                | 60.191           | 55.227           | 15.709           | 1.00 32.54               | C          |
| ATOM         | 9808         | 0         | ASN E |                | 60.283           | 56.061           | 14.802           | 1.00 30.28               | И<br>О.    |
| ATOM         | 9809         | N         | VAL   |                | 59.175           | 55.220<br>56.249 | 16.572<br>16.511 | 1.00 32.48               | C          |
| ATOM         | 9811         | CA<br>CB  | VAL I |                | 58.142<br>56.965 | 56.018           | 17.489           | 1.00 27.20               | č          |
| ATOM<br>ATOM | 9813<br>9815 |           | VAL I |                | 56.062           | 57.236           | 17.560           | 1.00 32.51               | С          |
| ATOM         | 9819         |           | VAL I |                | 56.128           | 54.862           | 17.046           |                          | c          |
| ATOM         | 9823         | С         | VAL E | 3 177          | 58.818           | 57.571           | 16.773           | 1.00 29.44               | C          |
| ATOM -       | 9824         | 0         | VAL I |                | 58.583           | 58.522           | 16.041           | 1.00 27.49               | O<br>N     |
| ATOM         | 9825         | N         |       | 3 178          | 59.683<br>60.422 | 57.625<br>58.858 | 17.789<br>18.080 | 1.00 33.14               | C          |
| ATOM .       | 9827<br>9829 | CA<br>CB  |       | B 178<br>B 178 | 61.193           | 58.805           | 19.431           | 1.00 33.73               | Ċ          |
| ATOM         | 9831         |           | ILE I |                | 60.278           | 59.113           | 20.603           | 1.00 37.05               | С          |
|              | 9834         |           | ILE I |                | 59.409           | 57.987           | 20.969           | 1.00 48.50               | C          |
| ATOM         | 9838         |           | ILE ! |                | 62.246           | 59.899           | 19.482           | 1.00 35.49               | C<br>C     |
| ATOM         |              | C         |       | B 178          | 61.335<br>61.436 | 59.228<br>60.388 | 16.905<br>16.557 | 1.00 29.84               | ŏ          |
| ATOM ATOM    |              | N         |       | B 178<br>B 179 | 61.955           | 58.241           | 16.266           | 1.00 34.56               | N          |
| ****         | 9846         | CA        |       | B 179          | 62.827           | 58.488           | 15.097           | 1.00 35.27               | С          |
| ATOM         | 9848         | CB        |       | в 179          | 63.419           | 57.180           | 14.555           | 1.00 36.73               | C          |
| ATOM         | 9851         | SG        |       | В 179          | 64.699           | 56.413           | 15.579           | 1.00 43.67               | S<br>C     |
| ATOM 1       |              | С         |       | B 179          | 62.082           | 59.177           | 13.963<br>13.341 | 1.00 31.48<br>1.00 29.79 | ŏ          |
| ATOM -       |              | 0         |       | B 179<br>B 180 | 62.599<br>60.864 | 60.115<br>58.707 | 13.708           | 1.00 30.22               | Ŋ          |
| ATOM<br>ATOM | 9854<br>9856 | n<br>Ca   |       | B 180          | 60.041           | 59.258           | 12.656           | 1.00 29.06               | С          |
| ATOM         | 9858         | CB        |       | B 180          | 58.774           | 58.457           | 12.486           | 1.00 30.56               | C          |
| MOTA         | 9861         | OG        |       | B 180          | 58.241           | 58.698           | 11.204           | 1.00 33.62               | 0<br>C     |
| MOTA         | 9863         | С         |       | B 180          | 59.729           | 60.692           | 12.993<br>12.190 | 1.00 34.26<br>1.00 38.73 | 0          |
| ATOM         | 9864         | 0         |       | B 180<br>B 181 | 59.990<br>59.239 | 61.588<br>60.930 | 14.210           | 1.00 35.30               | N          |
| ATOM<br>ATOM | 9865<br>9867 | N<br>CA   |       | B 181          | 58.930           | 62.287           | 14.663           | 1.00 32.27               | С          |
| ATOM         | 9869         | CB        |       | B 181          | 58.380           | 62.272           | 16.097           | 1.00 33.41               | . <u>C</u> |
| ATOM         | 9871         |           | ILE   |                | 56.951           | 61.724           | 16.123           | 1.00 35.78               | C<br>C     |
| MOTA         | 9874         |           | ILE   |                | 56.555           | 61.116           | 17.490<br>16.712 | 1.00 34.35               | c          |
| MOTA         | 9878<br>9882 |           | ILE   |                | 58.413<br>60.125 | 63.665<br>63.235 | 14.595           | 1.00 34.08               | č          |
| ATOM<br>ATOM | 9883         | C<br>O    |       | B 181<br>B 181 | 59.940           | 64.413           | 14.287           | 1.00 34.63               | 0          |
| ATOM         | 9884         | N         |       | B 182          | 61.336           |                  | 14.895           |                          | N          |
| ATOM         | 9886         | CA        |       | B 182          | 62.491           | 63.686           | 14.918           | 1.00 37.31               | C<br>C     |
| MOTA         | 9888         | CB        |       | B 182          | 63.571           | 63.282<br>62.906 | 15.949<br>17.321 | 1.00 38.28               | . č        |
| MOTA         | 9890<br>9893 |           |       | B 182<br>B 182 | 62.958<br>63.119 |                  | 18.383           | 1.00 38.80               | Ċ          |
| ATOM<br>ATOM | 9897         |           |       | B 182          | 64.614           | 64.386           | 16.022           | 1.00 34.11               | С          |
| ATOM         | 9901         | c         |       | B 182          | 63.148           | 63.822           | 13.542           | 1.00 3B.37               | C          |
| MOTA         | 9902         | 0         |       | B 182          | 63.472           | 64.938           | 13.138           | 1.00 37.64               | 0          |
| MOTA         | 9903         | N         |       | B 183          | 63.314           |                  | 12.839<br>11.556 | 1.00 38.93<br>1.00 42.19 | N<br>C     |
| ATOM         | 9905         | CA        |       | в 183          | 64.051           | 62.616<br>61.351 | 11.556           | 1.00 42.12               | č          |
| ATOM         | 9907<br>9910 | CB        |       | B 183<br>B 183 | 64.936<br>65.813 |                  |                  | 1.00 38.57               | С          |
| MOTA<br>MOTA | 9910         | CG<br>CD1 |       | B 183          | 66.123           |                  |                  | 1.00 37.36               | С          |
| ATOM         | 9913         |           |       | B 183          | 66.921           | 59.803           | 14.385           | 1.00 40.00               |            |
| ATOM         | 9915         | CZ        | PHE   | B 183          | 67.442           |                  |                  | 1.00 39.73               | . C        |
| MOTA         | 9917         |           |       | B 183          | 67.155           |                  | 14.532<br>13.411 | 1.00 40.54<br>1.00 38.17 |            |
| ATOM         | 9919         |           |       | B 183          | 66.339<br>63.219 |                  |                  | 1.00 43.73               |            |
| MOTA<br>MOTA | 9921<br>9922 | 0         |       | B 183<br>B 183 | 63.219           |                  |                  | 1.00 44.42               |            |
| ATOM         | 9923         | N         |       | B 184          | 61.898           |                  | 10.361           | 1.00 49.53               | N          |
| ATOM         | 9925         | CA        |       | в 184          | 60.893           |                  | 9.284            | 1.00 55.63               | С          |
|              |              |           |       |                |                  |                  |                  |                          |            |

|              |                |          |            |   |            |                  | Fig              | ure 5            |         |      |                                       |   |
|--------------|----------------|----------|------------|---|------------|------------------|------------------|------------------|---------|------|---------------------------------------|---|
| ATOM         | 9927           | СВ       | HIS        |   |            | 60.946           | 63.195           | 8.002            | 1.00 60 |      | C                                     |   |
| MOTA         | 9930           | CG       |            | В | 184        | 59.620           | 63.225           | 7.254<br>6.037   | 1.00 66 |      | C                                     |   |
| MOTA<br>MOTA | 9931<br>9933   |          | HIS        |   | 184<br>184 | 59.418<br>58.152 | 63.879<br>63.697 | 5.640            | 1.00 69 |      | N<br>C                                |   |
| ATOM         | 9935           |          | HIS        |   | 184        | 57.528           | 62.952           | 6.557            | 1.00 76 |      | N                                     |   |
| ATOM         | 9937           |          | HIS        |   | 184        | 58.417           | 62.658           | 7.575            | 1.00 72 |      | C                                     |   |
| MOTA         | 9939           | С        | HIS        |   | 184        | 60.727           | 60.856           | 8.853            | 1.00 57 |      | C                                     |   |
| MOTA         | 9940           | 0        | HIS        |   |            | 59.665           | 60.481           | 8.366            | 1.00 62 |      | C                                     |   |
| ATOM         | 9941           | N        | LYS        |   | 185        | 61.729           | 60.025           | 9.005            | 1.00 56 |      | , N                                   |   |
| ATOM         | 9943           | CA<br>CB | LYS        |   | 185        | 61.490<br>62.073 | 58.655<br>58.360 | 8.626<br>7.223   | 1.00 57 |      | . 0                                   |   |
| ATOM<br>ATOM | 9945<br>9948   | CG       | LYS        |   |            | 63.294           | 59.205           | 6.756            | 1.00 63 |      | Č                                     |   |
| ATOM         | 9951           | CD       | LYS        |   |            | 63.518           | 59.052           | 5.219            | 1.00 65 |      | C                                     |   |
| MOTA         | 9954           | CE       | LYS        |   |            | 64.924           | 58.577           | 4.826            | 1.00 67 |      | C                                     |   |
| MOTA         | 9957           | NZ       | LYS        |   |            | 65.374           | 57.359           | 5.570            | 1.00 69 |      | N                                     |   |
| ATOM         | 9961           | C        | LYS        |   |            | 61.963           | 57.668           | 9.683            | 1.00 50 |      | · c                                   |   |
| ATOM<br>ATOM | 9962<br>9963   | O<br>N   | LYS<br>ARG |   |            | 62.976<br>61.185 | 57.869<br>56.608 | 10.350<br>9.838  | 1.00 45 |      | N                                     |   |
| ATOM         | 9965           | CA       | ARG        |   | 186        | 61.606           | 55.445           | 10.612           | 1.00 42 |      | Ċ                                     |   |
| ATOM         | 9967           | СВ       | ARG        |   | 186        | 60.452           | 54.471           | 10.731           | 1.00 39 | 9.06 | C                                     |   |
| ATOM         | 9970           | CG       | ARG        |   |            | 60.016           | 53.898           | 9.420            | 1.00 33 |      | C                                     |   |
| MOTA         | 9973           | CD       | ARG        |   | 186        | 58.869           | 52.985           | 9.523            | 1.00 33 |      | C                                     |   |
| ATOM         | 9976<br>9978   | NE<br>CZ | ARG        |   | 186<br>186 | 59.086<br>59.765 | 51.916<br>50.788 | 10.488<br>10.248 | 1.00 39 |      | C                                     |   |
| ATOM<br>ATOM | 9979           |          | ARG        |   | 186        | 60.303           | 50.548           | 9.058            | 1.00 44 |      | N                                     |   |
| MOTA         | 9982           |          | ARG        |   | 186        | 59.888           | 49.873           | 11.213           | 1.00 47 |      | N                                     | ī |
| MOTA         | 9985           | С        | ARG        | В | 186        | 62.773           | 54.700           | 9.971            | 1.00 44 | 4.47 | C                                     |   |
| MOTA         | 9986           | 0        | ARG        |   |            | 63.054           | 54.871           | 8.798            | 1.00 46 |      | - C                                   | • |
| ATOM         | 9987           | N        | PHE        |   |            | 63.428           | 53.854           | 10.754           | 1.00 46 |      | , C                                   |   |
| ATOM         | 9989<br>9991   | CA<br>CB | PHE        |   | 187        | 64.520<br>65.669 | 53.012<br>52.993 | 10.285<br>11.296 | 1.00 46 |      |                                       |   |
| ATOM .       | 9994           | CG       | PHE        |   |            | 66.362           | 54.328           | 11.469           | 1.00 44 |      | ,                                     | • |
| MOTA         | 9995           |          | PHE        |   |            | 66.129           | 55.112           | 12.598           | 1.00 40 |      |                                       |   |
| ATOM         | 9997           | CE1      | PHE        | В | 187        | 66.771           | 56.341           | 12.776           | 1.00 43 |      |                                       |   |
| MOTA         | 9999           | CZ       | PHE        |   |            | 67.659           | 56.793           | 11.823           | 1.00 47 |      |                                       |   |
| MOTA         | 10001          |          | PHE        |   |            | 67.906           | 56.008<br>54.775 | 10.684<br>10.524 | 1.00 49 |      | C C                                   |   |
| ATOM<br>ATOM | 10003<br>10005 | CDZ      | PHE<br>PHE |   | 187        | 67.260<br>63.998 | 51.611           | 10.324           | 1.00 49 |      | * * * * * *                           |   |
| ATOM         | 10005          | ŏ.       |            |   | 187        | 62.934           | 51.299           | 10.624           | 1.00 54 |      | C                                     |   |
| ATOM         | 10007          | N        | ASP        |   | 188        | 64.749           | 50.765           | 9.454            | 1.00 52 | 2.94 | . N                                   |   |
| MOTA         | 10009          | CA       | ASP        |   | 188        | 64.465           | 49.338           | 9.417            | 1.00 53 |      | , , , , C                             |   |
| MOTA         | 10011          | CB       | ASP        |   | 188        | 65.182           | 48.691           | 8.220            | 1.00 55 |      | · · · · · · · · · · · · · · · · · · · |   |
| MOTA<br>MOTA | 10014<br>10015 | CG       | ASP<br>ASP |   | 188        | 64.720<br>65.232 | 47.273<br>46.365 | 7.958<br>8.636   | 1.00 57 |      | Ċ                                     |   |
| ATOM         | 10015          |          | ASP        |   | 188 .      | 63.851           | 46.965           | 7.106            | 1.00 60 |      | č                                     |   |
| ATOM         | 10017          | c        | ASP        |   | 188        | 64.988           | 48.775           | 10.727           | 1.00 52 |      | c                                     | ; |
| ATOM         | 10018          | 0        | ASP        |   | 188        | 66.010           | 49.250           | 11.222           | 1.00 51 |      | C                                     |   |
| ATOM         | 10019          | N        | TYR        |   | 189        | 64.318           | 47.768           | 11.289           | 1.00 52 |      | C<br>N                                |   |
| ATOM         | 10021<br>10023 | CA<br>CB | TYR<br>TYR |   | 189        | 64.717<br>63.734 | 47.228<br>46.133 | 12.599<br>13.093 | 1.00 53 |      |                                       |   |
| ATOM<br>ATOM | 10025          | CG       | TYR        |   | 189        | 62.330           | 46.584           | 13.551           | 1.00 55 |      | Č                                     |   |
| ATOM         | 10027          |          | TYR        |   | 189        | 61.404           | 45.662           | 14.015           | 1.00 57 |      | C                                     | : |
| ATOM         | 10029          | CE1      | TYR        | В | 189        | 60.122           | 46.054           | 14.425           | 1.00 54 |      | C                                     |   |
| ATOM         | 10031          | CZ       | TYR        |   |            | 59.771           | 47.383           | 14.386           | 1.00 52 |      |                                       |   |
| MOTA         | 10032<br>10034 | OH       | TYR<br>TYR |   |            | 58.512<br>60.679 | 47.810<br>48.303 | 14.784           | 1.00 48 |      | . 0                                   |   |
| ATOM<br>ATOM | 10034          |          | TYR        |   |            | 61.940           | 47.911           | 13.534           | 1.00 55 |      | · č                                   |   |
| ATOM         | 10038          | c        | TYR        |   |            | 66.159           | 46.681           | 12.625           | 1.00 5  |      | C                                     |   |
| MOTA         | 10039          | 0        | TYR        | В | 189        | 66.689           | 46.388           | 13.702           | 1.00 58 |      | C                                     |   |
| MOTA         | 10040          | N        | LYS        |   |            | 66.794           | 46.555           | 11.456           | 1.00 62 |      |                                       |   |
| ATOM         | 10042          | CA       | LYS        |   |            | 68.153           | 45.990           | 11.334           | 1.00 63 |      | Q<br>Q                                |   |
| ATOM         | 10044          | CB       | LYS        |   |            | 68.138<br>67.416 | 44.823<br>43.567 | 10.340<br>10.878 | 1.00 69 |      | Ċ                                     |   |
| ATOM<br>ATOM | 10047<br>10050 | CG<br>CD | LYS        |   |            | 67.528           | 42.369           | 9.925            | 1.00 73 |      | č                                     |   |
| ATOM         | 10053          | CE       | LYS        |   |            | 66.737           | 42.573           | 8.608            | 1.00 7  | 7.24 | C                                     | 3 |
| ATOM         | 10056          | NZ       | LYS        |   |            | 67.232           | 43.697           | 7.716            | 1.00 78 |      | N                                     |   |
| ATOM         | 10060          | С        | LYS        |   |            | 69.243           | 47.008           | 10.953           | 1.00 58 |      |                                       |   |
| ATOM         | 10061          | 0        | LYS        |   |            | 70.419           | 46.747           | 11.169<br>10.384 | 1.00 59 |      | C<br>N                                |   |
| ATOM         | 10062<br>10064 | n<br>Ca  | ASP<br>ASP | _ |            | 68.851<br>69.743 | 48.146<br>49.300 | 10.354           | 1.00 54 |      | C                                     |   |
| MOTA<br>MOTA | 10066          | CB       | ASP        |   |            | 68.904           | 50.544           | 9.965            | 1.00 55 |      | Č                                     |   |
| ATOM         | 10069          | CG       | ASP        |   |            | 69.604           | 51.589           | 9.167            | 1.00 59 | 9.30 | C                                     | 3 |
| ATOM         | 10070          |          | ASP        |   |            | 69.228           | 51.741           | 7.989            | 1.00 60 |      | Q                                     |   |
| ATOM         | 10071          |          | ASP        |   |            | 70.523           | 52.312           | 9.624            | 1.00 63 |      | . 0                                   |   |
| MOTA         | 10072          | C        | ASP        |   |            | 70.721           | 49.560           | 11.299<br>12.456 | 1.00 56 |      | C                                     |   |
| ATOM         | 10073          | 0        | ASP        | В | 191        | 70.339           | 49.539           | 12.430           | 1.00 0  |      | ·                                     | , |

|       |           |     |     |   |     |        | <b>77.</b> |        |      |       |   |   |
|-------|-----------|-----|-----|---|-----|--------|------------|--------|------|-------|---|---|
|       |           |     |     |   |     |        |            | ure 5  |      |       |   |   |
| MOTA  | 10074     | N   |     |   | 192 | 71.987 | 49.806     | 10.981 |      | 57.64 |   | N |
| MOTA  | 10076     | CA  | GLN |   | 192 | 73.036 | 49.808     | 12.009 | 1.00 | 53.38 |   | C |
| ATOM  | 10078     | CB  | GLN | В | 192 | 74.435 | 49.614     | 11.388 | 1.00 | 52.50 |   | С |
| ATOM  | 10081     | CG  | GLN | В | 192 | 75.549 | 49.314     | 12.399 | 1.00 | 51.83 |   | С |
| ATOM  | 10084     | CD  | GLN | В | 192 | 75.289 | 48.046     | 13.227 | 1.00 | 52.20 |   | С |
| ATOM  | 10085     | OE1 | GLN | В | 192 | 75.073 | 46.966     | 12.671 | 1.00 | 47.17 |   | 0 |
| ATOM  | 10086     | NE2 | GLN | В | 192 | 75.302 | 48.187     | 14.556 | 1.00 | 49.48 |   | N |
| ATOM  | 10089     | С   | GLN | В | 192 | 73.001 | 51.073     | 12.849 |      | 50.21 |   | С |
| ATOM  | 10090     | ō   |     |   | 192 | 73.327 | 51.026     | 14.028 |      | 48.50 |   | 0 |
| ATOM  | 10091     | N   |     |   | 193 | 72.635 | 52.195     | 12.230 |      | 48.66 |   | N |
| ATOM  | 10093     | CA  |     |   | 193 | 72.377 | 53.448     | 12.950 |      | 49.35 |   | C |
| ATOM  | 10095     | ÇB  |     |   | 193 | 71.736 | 54.484     | 12.031 |      | 51.02 |   | Č |
| ATOM  | 10098     | CG  |     |   | 193 | 72.527 | 54.981     | 10.860 |      | 55.29 |   | Č |
| ATOM  | 10101     | CD  |     |   | 193 | 71.647 | 55.868     | 9.985  |      | 58.72 |   | č |
| ATOM  | 10102     |     | GLN |   |     | 71.407 | 57.047     | 10.307 |      | 53.68 |   | ŏ |
| ATOM  | 10103     | NE2 |     |   | 193 | 71.114 | 55.286     | 8.912  |      | 61.93 |   | N |
| ATOM  | 10106     | C   |     |   | 193 | 71.363 | 53.239     | 14.080 |      | 47.76 |   | Ċ |
| ATOM  | 10107     | ŏ   |     |   | 193 | 71.487 | 53.811     | 15.172 |      | 46.05 |   | ō |
| ATOM  | 10108     | N   |     |   | 194 | 70.337 | 52.448     | 13.764 |      | 42.69 |   | N |
| ATOM  | 10110     | CA  |     |   | 194 | 69.189 | 52.250     | 14.615 |      | 40.17 |   | c |
| ATOM  | 10112     | CB  |     |   | 194 | 68.069 | 51.577     | 13.831 |      | 40.70 |   | č |
| MOTA  | 10115     | CG  |     |   | 194 | 66.850 | 51.315     | 14.635 |      | 38.62 |   | č |
| ATOM  | 10116     |     | PHE |   |     | 66.351 | 50.034     | 14.754 |      | 37.53 |   | Č |
|       | 10118     |     | PHE |   |     | 65.211 | 49.792     | 15.517 |      | 42.49 |   | Č |
| ATOM  |           |     |     |   |     | 64.580 |            | 16.181 |      |       |   | c |
| ATOM  | 10120     | CZ  | PHE |   | 194 |        | 50.841     |        |      | 38.94 |   | c |
| ATOM  | 10122     |     |     |   |     | 65.082 | 52.118     | 16.078 |      | 35.46 |   | c |
| ATOM  | 10124     |     | PHE |   |     | 66.209 | 52.355     | 15.302 |      | 37.41 |   |   |
| MOTA  |           | ·C  |     |   | 194 | 69.565 | 51.419     | 15.800 |      | 40.37 |   | C |
| ATOM  | 10127     | 0   |     |   | 194 | 69.329 | 51.822     | 16.935 |      | 43.30 |   | 0 |
| MOTA  | 10128     | N   | LEU |   | 195 | 70.161 | 50.265     | 15.531 |      | 46.26 |   | N |
|       | 10130     | CA  |     |   | 195 | 70.672 | 49.365     | 16.572 |      | 46.33 | • | C |
|       | ,10132,   | CB  |     |   | 195 | 71.290 | 48.111     | 15.955 |      | 47.65 |   | C |
|       | 10135     | CG  |     |   | 195 | 70.283 | 47.159     | 15.297 |      | 50.96 |   | C |
|       | 10137     |     | LEU |   |     | 70.909 | 46.347     | 14.183 |      | 50.06 |   | C |
|       | 10141     |     | LEU |   |     | 69.691 | 46.225     | 16.336 |      | 54.71 | • | C |
|       | · 10145 · | C   | LEU |   | 195 | 71.672 | 50.021     | 17.521 |      | 45.71 |   | С |
|       | 10146     | 0   |     |   | 195 | 71.667 | 49.688     | 18.704 |      | 42.41 |   | 0 |
|       | 10147     | N   | ASN |   | 196 | 72.505 | 50.955     | 17.037 |      | 43.68 | • | N |
|       | 10149     | CA  |     |   | 196 | 73.424 | 51.666     | 17.943 |      | 43.95 |   | С |
| ATOM- | .10151    | CB  |     |   | 196 | 74.460 | 52.542     | 17.226 |      | 43.81 |   | С |
| MOTA  | 10154     | CG  | ASN |   | 196 | 75.335 | 51.766     | 16.271 |      | 43.09 |   | С |
| MOTA  | 10155     |     | asn |   |     | 75.754 | 52.331     | 15.265 |      | 39.57 |   | 0 |
| MOTA  | 10156     |     | ASN |   |     | 75.596 | 50.465     | 16.555 |      | 35.53 |   | N |
| ATOM  | 10159     | С   |     |   | 196 | 72.658 | 52.537     | 18.915 |      | 42.72 |   | C |
| ATOM  | 10160     | 0   | asn | В | 196 | 72.872 | 52.447     | 20.101 |      | 47.81 |   | 0 |
| ATOM  | 10161     | N   | PEA |   |     | 71.772 | 53.385     | 18.406 |      | 44.70 | • | N |
| MOTA  | 10163     | CA  | LEU |   |     | 70.851 | 54.170     | 19.241 |      | 42.28 |   | С |
| MOTA  | 10165     | CB  | LEU |   |     | 69.856 | 54.874     | 18.333 |      | 44.60 |   | С |
| ATOM  | 10168     | CG  | LEU |   |     | 68.889 | 55.870     | 18.962 |      | 46.86 |   | С |
| ATOM  | 10170     | CD1 | LEU | В | 197 | 69.632 | 56.766     | 19.936 |      | 49.87 |   | C |
| MOTA  | 10174     |     | LEU |   |     | 68.175 | 56.690     | 17.855 |      | 47.16 |   | С |
| MOTA  | 10178     | С   | LEU |   |     | 70.082 | 53.304     | 20.252 |      | 42.14 |   | С |
| MOTA  | 10179     | 0   | LEU |   |     | 69.944 | 53.629     | 21.419 |      | 37.66 |   | 0 |
| MOTA  | 10180     | N   | MET |   |     | 69.586 | 52.183     | 19.783 |      | 43.62 |   | N |
| MOTA  | 10182     | CA  | MET |   |     | 68.851 | 51.249     | 20.617 |      | 46.98 |   | С |
| MOTA  | 10184     | CB  | MET |   |     | 68.424 | 50.097     | 19.720 |      | 50.65 |   | С |
| MOTA  | 10187     | CG  | MET |   |     | 67.266 | 49.325     | 20.175 |      | 55.77 |   | С |
| MOTA  | 10190     | SD  | MET | В | 198 | 65.834 | 50.289     | 19.990 | 1.00 | 57.78 |   | s |
| MOTA  | 10191     | CE  | MET | В | 198 | 65.287 | 50.356     | 21.797 |      | 59.60 |   | С |
| MOTA  | 10195     | С   | MET | В | 198 | 69.729 | 50.722     | 21.757 | 1.00 | 48.28 |   | С |
| MOTA  | 10196     | 0   | MET | В | 198 | 69.292 | 50.585     | 22.907 |      | 45.96 |   | 0 |
| MOTA  | 10197     | N   | GLU | В | 199 | 70.981 | 50.432     | 21.401 | 1.00 | 52.28 |   | N |
| ATOM  | 10199     | CA  | GLU | В | 199 | 72.011 | 49.906     | 22.302 | 1.00 | 51.61 |   | С |
| ATOM  | 10201     | CB  | GLU | В | 199 | 73.286 | 49.637     | 21.478 | 1.00 | 54.69 |   | С |
| ATOM  | 10204     | CG  | GLU |   |     | 74.449 | 48.933     | 22.167 | 1.00 | 58.54 |   | С |
| ATOM  | 10207     | CD  | GLU |   |     | 75.654 | 48.820     | 21.236 | 1.00 | 62.89 | • | С |
| MOTA  | 10208     |     | GLU |   |     | 75.563 | 48.093     | 20.208 | 1.00 | 61.77 |   | 0 |
| ATOM  | 10209     |     | GLU |   |     | 76.684 | 49.479     | 21.521 | 1.00 | 64.92 |   | 0 |
| ATOM  | 10210     | c   | GLU |   |     | 72.312 | 50.877     | 23.452 |      | 47.98 |   | С |
| ATOM  | 10211     | ō   | GLU |   |     | 72.321 | 50.481     | 24.613 | 1.00 | 49.86 |   | 0 |
| ATOM  | 10212     | N   | LYS |   |     | 72.538 | 52.143     | 23.120 |      | 40.25 |   | N |
| ATOM  | 10214     | CA  | LYS |   |     | 72.943 | 53.146     | 24.093 |      | 40.34 |   | C |
| ATOM  | 10216     |     | LYS |   |     | 73.470 | 54,390     | 23.360 |      | 40.87 |   | C |
| ATOM  | 10219     |     | LYS |   |     | 74.723 | 54.152     | 22.509 |      | 42.79 |   | С |
| ATOM  | 10222     |     | LYS |   |     | 76.033 | 54.168     | 23.349 |      | 47.37 |   | C |
| MOTA  | 10225     |     | LYS |   |     | 77.213 | 53.410     | 22.702 | 1.00 | 47.87 |   | С |
|       | 2020      |     |     | _ |     |        |            |        |      |       |   |   |

TON CONT.

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON COMMISSION

TON

## 1004 3035

|              |                |          |            |   |     |                  | Figu             | re 5             |      |                |        |
|--------------|----------------|----------|------------|---|-----|------------------|------------------|------------------|------|----------------|--------|
| MOTA         | 10228          | NZ       | LYS        | В | 200 | 76.789           | 52.543           | 21.552           | 1.00 | 52.55          | . N    |
| MOTA         | 10232          | С        | LYS        |   |     | 71.790           | 53.524           | 25.037           |      | 40.17          | Ç      |
| ATOM         | 10233          | 0        | LYS        |   |     | 72.007           | 53.836           | 26.212           |      | 38.41          | 0      |
| MOTA         | 10234          | N        | LEU        |   |     | 70.566<br>69.377 | 53.514           | 24.505<br>25.301 |      | 39.59<br>36.90 | N<br>C |
| ATOM .       | 10236<br>10238 | CA<br>CB | LEU        |   |     | 68.140           | 53.738<br>53.864 | 24.416           |      | 38.45          | c      |
| ATOM         | 10230          | CG       | LEU        |   |     | 68.016           | 55.155           | 23.595           |      | 42.57          | Č      |
| ATOM         | 10243          |          | LEU        |   |     | 66.815           | 55.081           | 22.692           |      | 41.52          | С      |
| MOTA         | 10247          | CD2      | LEU        |   |     | 67.896           | 56.412           | 24.451           |      | 45.63          | C      |
| MOTA         | 10251          | С        | LEU        |   |     | 69.190           | 52.590           | 26.282           |      | 36.70          | C      |
| MOTA<br>MOTA | 10252<br>10253 | O<br>N   | LEU<br>ASN |   |     | 68.923<br>69.343 | 52.830<br>51.345 | 27.438<br>25.826 |      | 29.07<br>40.44 | О<br>И |
| ATOM         | 10255          | CA       | ASN        |   |     | 69.159           | 50.179           | 26.703           |      | 41.25          | c<br>c |
| ATOM         | 10257          | СВ       | ASN        |   |     | 69.150           | 48.886           | 25.920           |      | 42,42          | С      |
| ATOM         | 10260          | CG       | ASN        |   |     | 67.922           | 48.706           | 25.108           |      | 43.17          | C      |
| ATOM         | 10261          |          | ASN        |   |     | 67.921           | 47.881           | 24.206           |      | 42.47          | 0<br>N |
| MOTA<br>MOTA | 10262<br>10265 | ND2      | ASN<br>ASN |   |     | 66.860<br>70.241 | 49.460<br>50.044 | 25.401<br>27.741 |      | 42.86<br>43.58 | · C    |
| ATOM         | 10266          | Ö        | ASN        |   |     | 69.984           | 49.579           | 28.842           |      | 47.35          | ō      |
| ATOM         | 10267          | N        | GLU        |   |     | 71.454           | 50.431           | 27.371           |      | 45.15          | , N    |
| ATOM         | 10269          | CA       | CLU        |   |     | 72.591           | 50.431           | 28.276           |      | 45.79          | C      |
| ATOM         | 10271          | CB       | GLU        |   |     | 73.864           | 50.765           | 27.488           |      | 47.53<br>54.03 | C      |
| ATOM<br>ATOM | 10274<br>10277 | CG<br>CD | GLU<br>GLU |   |     | 75.124<br>76.364 | 50.209<br>50.928 | 28.110<br>27.644 |      | 59.01          | c      |
| ATOM         | 10278          | OE1      | GLU        |   |     | 76.563           | 51.037           | 26.402           |      | 60.90          | ō      |
| ATOM         | 10279          | OE2      | GLU        |   |     | 77.122           | 51.386           | 28.534           | 1.00 | 63.18          | 0      |
| ATOM         | 10280          | С        | GLU        |   |     | 72.384           | 51.437           | 29.420           |      | 43.96          | · C    |
| ATOM         | 10281          | 0        | GLU        |   |     | 72.615           | 51.120           | 30.590           |      | 41.33          | о<br>и |
| ATOM         | 10282<br>10284 | n<br>Ca  | ASN<br>ASN |   |     | 71.967<br>71.531 | 52.650<br>53.647 | 29.064<br>30.032 |      | 43.40<br>45.38 | C      |
| ATOM<br>ATOM | 10286          | CB       |            |   |     | 71.043           | 54.892           | 29.300           |      | 46.44          | . c    |
| ATOM         | 10289          | CG       |            |   |     | 72.172           | 55.817           | 28.899           |      | 51.55          | С      |
| ATOM         | 10290          | OD1      | ASN        |   |     | 71.936           | 56.855           | 28.273           |      | 56.95          | 0      |
| MOTA         | 10291          | ND2      |            |   | 204 | 73.405           | 55.454           | 29.259           |      | 52.70          | и      |
| ATOM         | 10294<br>10295 | C        |            |   |     | 70.436<br>70.446 | 53.152<br>53.514 | 30.999<br>32.160 |      | 45.83<br>48.06 | C      |
| ATOM<br>ATOM | 10295          | Ŋ        |            |   |     | 69.514           | 52.316           | 30.536           |      | 46.24          | N      |
| ATOM         | 10298          | CA       | ILE        |   |     | 68.417           | 51.846           | 31.377           | 100  | 50.12          | С      |
| ATOM         | 10300          | CB       |            |   | 205 |                  | 51.182           | 30.515           |      | 51.81          | , C    |
| MOTA         | 10302          |          |            |   |     | 66.580           | 52.230           | 29.679           |      | 52.14          | c      |
| ATOM<br>ATOM | 10305<br>10309 |          | ILE        |   |     | 65.984<br>66.292 | 51.635<br>50.405 | 28.354<br>31.366 |      | 55.32<br>50.47 | c      |
| MOTA         | 10313          | C        |            |   |     | 68.939           | 50.852           | 32.378           |      | 51.01          | Ċ      |
| ATOM         | 10314          | 0        |            |   |     | 68.519           | 50.860           | 33.541           | 1.00 | 55.71          | 0      |
| MOTA         | 10315          | N        | GLU        |   |     | 69.822           | 49.975           | 31.900           |      | 53.47          | N      |
| ATOM         | 10317          | CA       | GLU<br>GLU |   |     | 70.490<br>71.381 | 48.955<br>48.074 | 32.716<br>31.833 |      | 52.39<br>53.14 | .c     |
| ATOM<br>ATOM | 10319<br>10322 | CB       | GLU        |   |     | 71.646           | 46.669           | 32.359           |      | 62.06          | č      |
| ATOM         | 10325          | CD       | GLU        |   |     | 73.115           | 46.240           | 32.249           |      | 69.80          | С      |
| MOTA         | 10326          | OE1      | GLU        | В | 206 | 73.636           | 45.570           | 33.186           |      | 74.82          | 0      |
| ATOM         | 10327          | OE2      | GLU        |   |     | 73.755           | 46.572           | 31.225           |      | 73.65          | 0      |
| ATOM         | 10328          | C<br>O   | GLU        |   |     | 71.301<br>71.132 | 49.636<br>49.319 | 33.832<br>35.010 |      | 51.22<br>50.97 | C      |
| ATOM<br>ATOM | 10329<br>10330 | Ŋ        |            |   |     | 72.149           | 50.596           | 33.471           |      | 47.59          | N      |
| ATOM         | 10332          | CA       | ILE        |   |     | 72.909           | 51.334           | 34.472           |      | 48.00          | С      |
| ATOM         | 10334          | CB       | ILE        |   |     | 73.736           | 52.475           | 33.818           |      | 49.34          | C      |
| ATOM         | 10336          |          | ILE        |   |     | 74.943           | 51.896           | 33.079<br>31.929 |      | 49.48<br>50.36 | , C    |
| ATOM<br>ATOM | 10339<br>10343 |          | ILE        |   |     | 75.423<br>74.209 | 52.774<br>53.505 | 34.864           |      | 49.11          | č      |
| ATOM         | 10347          | C        |            |   |     | 71.969           | 51.904           | 35.527           |      | 46.15          | С      |
| ATOM         | 10348          | 0        |            |   |     | 72.186           | 51.722           | 36.715           |      | 46.51          | 0      |
| MOTA         | 10349          | N        | LEU        |   |     | 70.914           | 52.574           | 35.079           |      | 44.85          | N      |
| ATOM         | 10351          | CA       | LEU        |   |     | 70.060           | 53.365<br>54.342 | 35.962<br>35.143 |      | 42.26<br>38.63 | C      |
| MOTA         | 10353<br>10356 | CB       | LEU        |   |     | 69.237<br>70.026 | 55.543           | 34.652           |      | 43.79          | c      |
| ATOM         | 10358          |          | LEU        |   |     | 69.201.          | 56.364           | 33.672           | 1.00 | 43.55          | С      |
| MOTA         | 10362          |          | LEU        | В | 208 | 70.521           | 56.404           | 35.828           |      | 46.49          | С      |
| MOTA         | 10366          | С        | TEO        |   |     | 69.123           | 52.532           | 36.836           |      | 45.78          | C      |
| MOTA         | 10367          | 0        | LEU<br>SER |   |     | 68.516           | 53.072           | 37.760<br>36.551 |      | 47.74<br>45.69 | O<br>N |
| MOTA MOTA    | 10368<br>10370 | n<br>Ca  | SER        |   |     | 69.018<br>68.174 | 51.232<br>50.323 | 37.313           |      | 47.63          | Č      |
| ATOM         | 10370          | CB       | SER        |   |     | 67.412           | 49.428           | 36.348           | 1.00 | 47.36          | С      |
| MOTA         | 10375          | OG       | SER        | В | 209 | 68.300           | 48.744           | 35.499           |      | 46.14          | 0      |
| MOTA         | 10377          | С        | SER        |   |     | 68.941           | 49.472           | 38.355           |      | 53.01          | C      |
| MOTA         | 10378          | 0        | SER        |   |     | 68.404           | 48.502           | 38.899<br>38.644 |      | 54.21<br>56.37 | О<br>И |
| MOTA         | 10379          | n        | SER        | ø | 210 | 70.182           | 49.850           | 20.077           |      | 5              | 44     |

|              | -                      |          |            |   |            |                  | Figu             | ıre 5             |      |                |   |        |
|--------------|------------------------|----------|------------|---|------------|------------------|------------------|-------------------|------|----------------|---|--------|
| ATOM         | 10381                  | CA       | SER        |   |            | 70.974           | 49.210           | 39.688            |      | 59.99          |   | C      |
| ATOM         | 10383                  | CB       | SER        |   |            | 72.461           | 49.531           | 39.527            |      | 61.68          |   | . O    |
| ATOM         | 10386                  | OG       | SER        |   |            | 72.973<br>70.543 | 48.897<br>49.769 | 38.368<br>41.006  |      | 69.94<br>58.76 |   | Č      |
| ATOM<br>ATOM | 10388<br>10389         | C<br>0   | SER        |   |            | 70.505           | 50.973           | 41.154            |      | 60.95          |   | 0      |
| ATOM         | 10390                  | N        | PRO        |   |            | 70.201           | 48.920           | 41.965            |      | 59.65          |   | N      |
| ATOM         | 10391                  | CA       | PRO        |   |            | 70.000           | 49.382           | 43.344            |      | 60.13          |   | C      |
| MOTA         | 10393                  | CB       | PRO        |   |            | 69.853           |                  | 44.105            |      | 61.60<br>60.26 |   | C      |
| ATOM         | 10396                  | CG       | PRO<br>PRO |   |            | 69.218<br>69.904 | 47.176<br>47.483 | 43.104<br>41.815  |      | 57.83          |   | c      |
| ATOM<br>ATOM | 10399<br>10402         | CD       | PRO        |   |            | 71.170           | 50.207           | 43.877            |      | 61.83          |   | C      |
| ATOM         | 10403                  | ŏ        | PRO        |   |            | 71.003           | 51.093           | 44.691            |      | 62.83          |   | 0      |
| ATOM         | 10404                  | N        | TRP        |   |            | 72.355           | 49.897           | 43.397            |      | 66.81          |   | N<br>C |
| ATOM         | 10406                  | CA       | TRP        |   |            | 73.558<br>74.625 | 50.694<br>50.110 | 43.617<br>42.645  |      | 70.92<br>77.32 |   | Ç      |
| ATOM<br>ATOM | 10408<br>10411         | CB<br>CG | TRP        |   |            | 76.090           | 50.481           | 42.755            |      | 84.41          |   | Č      |
| ATOM         | 10412                  |          | TRP        |   |            | 76.940           | 50.726           | 41.699            |      | 87.03          |   | С      |
| MOTA         | 10414                  | NE1      | TRP        |   |            | 78.205           | 51.007           | 42.158            |      | 90.55          |   | N      |
| MOTA         | 10416                  |          | TRP        |   | 212        | 78.215           | 50.922           | 43.527<br>43.942  |      | 93.47<br>90.85 |   | C      |
| ATOM         | 10417<br>10418         |          | TRP        |   | 212        | 76.896<br>76.642 | 50.581<br>50.436 | 45.320            |      | 92.62          |   | Č      |
| ATOM<br>ATOM | 10410                  |          | TRP        |   | 212        | 77.706           | 50.633           | 46.236            |      | 94.00          |   | C      |
| ATOM         | 10422                  | CH2      | TRP        |   |            | 79.004           | 50.969           | 45.785            |      | 93.78          |   | С      |
| MOTA         | 10424                  | CZ2      | TRP        |   |            | 79.278           | 51.115           | 44.443            |      | 95.21          |   | C      |
| ATOM         | 10426                  | C        | TRP<br>TRP |   |            | 73.293<br>73.817 | 52.229<br>53.025 | 43.449<br>44.209  |      | 67.83<br>69.50 |   | Ö      |
| ATOM<br>ATOM | 10427<br>10428         | .O       | ILE        |   |            | 72.450           | 52.641           | 42.501            |      | 65.11          |   | N      |
| ATOM         | 10430                  | CA       | ILE        |   | 213        | 72.208           | 54.077           | 42.209            |      | 63.23          |   | C      |
| MOTA         | 10432                  | CB       | ILE        |   |            | 71.216           | 54.238           | 40.998            |      | 62.76          |   | C      |
| ATOM         | 10434                  |          | ILE        |   |            | 71.853           | 53.796           | 39.685<br>39.292  |      | 62.26<br>61.63 |   | c      |
| MOTA         | 10437<br>10441         | CD1      | ILE        |   |            |                  | 54.570<br>55.694 |                   |      | 63.74          |   | č      |
| ATOM         | 10445                  | C        | ILE        |   |            |                  | 54.903           | 43.369            |      | 64.ÖO          |   | С      |
| ATOM         | 10446                  | 0        | ILE        | В | 213        |                  | 56.127           | -                 |      | 65.32          |   | 0      |
| MOTA         | 10447                  | N        | GLN        |   |            |                  | 54.246           | 44.269            |      | 63.90<br>61.39 |   | N<br>C |
| ATOM         | 10449                  | CA       | GLN<br>GLN |   |            | 70.255<br>69.078 | 54.931           | 45.353<br>45.830  |      | 64.68          |   | č      |
| ATOM<br>ATOM | 10451<br>10454         | CB<br>CG | GLN        |   |            |                  | 54.805           | 46.553            |      | 68.59          |   | С      |
| ATOM         | 10457                  | CD       | GLN        |   |            |                  | 56.083           | 45.849            |      | 72.73          |   | C      |
| ATOM         | 10458                  | OE1      | GLN        |   |            |                  | 56:099           | 44.620            |      | 73.27          |   | 0      |
| ATOM         | 10459                  | NE2      | GLN        |   |            |                  | 57.166<br>55.273 | .46.617<br>46.487 |      | 73.67<br>56.84 |   | N<br>C |
| ATOM<br>ATOM | 10462<br>10463         | С<br>0   | GLN<br>GLN |   |            | 71.242<br>71.066 | 56.247           | 47.227            |      | 52.38          |   | ŏ      |
| ATOM         | 10464                  | N        | VAL        |   |            | 72.291           | 54.475           | 46.608            |      | 52.81          |   | N      |
| ATOM         | 10466                  | CA       |            |   | 215        | 73.413           | 54.827           | 47.468            |      | 54.76          |   | C      |
| ATOM         | 10468                  | CB       | VAL        |   |            | 74.589           | 53.805<br>53.964 | 47.357<br>48.518  |      | 56.71<br>56.32 |   | C      |
| ATOM<br>ATOM | 10470<br>1047 <b>4</b> |          | VAL        |   |            | 75.540<br>74.084 | 52.347           | 47.303            |      | 59.54          | • | Č      |
| ATOM         | 10478                  | c        |            |   | 215        | 73.927           | 56.242           | 47.132            |      | 51.94          |   | С      |
| ATOM         | 10479                  | 0        |            |   | 215        | 74.163           | 57.045           |                   | 1.00 |                |   | 0      |
| ATOM         | 10480                  | N        |            |   | 216        | 74.073           | 56.548           | 45.850<br>45.420  |      | 51.81<br>50.46 |   | C<br>N |
| ATOM<br>ATOM | 10482<br>10484         | CA<br>CB |            |   | 216<br>216 | 74.582<br>74.699 | 57.847<br>57.895 | 43.905            |      | 50.98          |   | Ċ      |
| ATOM         | 10487                  | CG       |            |   | 216        | 75.822           | 57.077           | 43.279            |      | 54.98          |   | С      |
| ATOM         | 10488                  |          | TYR        |   |            | 77.147           | 57.255           | 43.662            |      | 57.50          |   | C      |
| ATOM         | 10490                  |          | TYR        |   |            | 78.170           |                  | 43.067<br>42.067  |      | 59.09<br>57.97 |   | C      |
| ATOM<br>ATOM | 10492<br>10493         | CZ<br>OH |            |   | 216<br>216 | 77.876<br>78.893 | 54.893           | 41.476            |      | 64.50          |   | ō      |
| MOTA         | 10495                  |          | TYR        |   |            | 76.576           | 55.428           | 41.663            |      | 55.37          |   | С      |
| ATOM         | 10497                  |          | TYR        | В | 216        | 75.558           | 56.162           | 42.262            |      | 55.22          |   | C      |
| ATOM         | 10499                  | С        |            |   | 216        | 73.701           | 59.010           | 45.873            |      | 53.08<br>54.12 | • | С<br>0 |
| ATOM         | 10500                  | 0        |            |   | 216<br>217 | 74.212<br>72.383 | 60.086<br>58.807 | 46.220<br>45.853  |      | 53.38          |   | N      |
| ATOM<br>ATOM | 10501<br>10503         | N<br>CA  |            |   | 217        | 72.363           |                  | 46.228            |      | 52.92          |   | C      |
| ATOM         | 10505                  | CB       | ASN        | В | 217        | 70.010           |                  | 45.829            |      | 54.95          |   | C      |
| ATOM         | 10508                  | CG       |            |   | 217        | 69.819           |                  | 44.310            |      | 53.08          |   | 0      |
| ATOM         | 10509                  |          | ASN        |   |            | 70.490           |                  | 43.503<br>43.926  |      | 44.58<br>52.79 |   | N      |
| ATOM         | 10510                  | ND2<br>C | ASN        |   | 217        | 68.877<br>71.504 |                  | 43.926            |      | 53.30          |   | Ċ      |
| MOTA<br>MOTA | 10513<br>10514         | 0        |            |   | 217        | 71.291           | 61.316           | 48.137            | 1.00 | 48.98          |   | 0      |
| ATOM         | 10515                  | N        | ASN        | В | 218        | 71.804           |                  | 48.535            |      | 54.69          |   | N      |
| MOTA         | 10517                  | CA       |            |   | 218        | 72.018           | 59.383           | 49.962            |      | 58.06<br>60.78 |   | C      |
| ATOM         | 10519                  | CB<br>CG |            |   | 218<br>218 | 71.865<br>70.424 |                  | 50.748<br>50.761  |      | 60.18          |   | Ċ      |
| ATOM<br>ATOM | 10522<br>10523         |          | ASN        |   |            | 69.562           |                  | 51.459            | 1.00 | 58.81          |   | 0      |
| ATOM         | 10524                  |          | ASN        |   |            | 70.172           |                  | 49.992            | 1.00 | 56.34          |   | N      |

|              |                |          |            |   |                |                  |                  | _                |      |                |         |        |
|--------------|----------------|----------|------------|---|----------------|------------------|------------------|------------------|------|----------------|---------|--------|
|              |                |          |            |   |                |                  |                  | re 5             |      |                |         | _      |
| MOTA         | 10527          |          | ASN        |   |                | 73.408           | 60.001           | 50.220           | 1.00 |                |         | 0      |
| ATOM         | 10528          |          | ASN        |   |                | 73.551           | 60.958           | 51.009           | 1.00 | 56.84          |         | N      |
| MOTA         | 10529          |          | PHE        |   |                | 74.424<br>75.806 | 59.455<br>59.846 | 49.544<br>49.767 |      | 55.69          |         | C      |
| MOTA         | 10531          |          | PHE<br>PHE |   |                | 76.601           | 58.638           | 50.267           |      | 59.63          |         | С      |
| ATOM<br>ATOM | 10533<br>10536 |          | PHE        |   |                | 75.905           | 57.820           | 51.337           |      | 63.47          |         | С      |
| ATOM         | 10537          | CD1      |            |   |                | 76.066           | 56.430           | 51.367           |      | 67.09          |         | C      |
| MOTA         | 10539          |          | PHE        | В | 219            | 75.458           | 55.655           | 52.342           |      | 67.91          |         | C<br>C |
| MOTA         | 10541          | CZ       | PHE        |   |                | 74.682           | 56.264           | 53.313           |      | 69.07<br>69.17 |         | c      |
| ATOM         | 10543          | CE2      |            |   |                | 74.515<br>75.134 | 57.651<br>58.420 | 53.299<br>52.320 |      | 65.65          |         | Č      |
| ATOM<br>ATOM | 10545<br>10547 | CD2<br>C | PHE        |   |                | 76.486           | 60.415           | 48.507           |      | 53.80          |         | C      |
| ATOM         | 10548          | Ö        | PHE        |   |                | 77.369           | 59.772           | 47.954           |      | 54.09          |         | 0      |
| ATOM         | 10549          | N        | PRO        |   |                | 76.125           | 61.624           | 48.074           |      | 51.90          |         | N      |
| MOTA         | 10550          | CA       | PRO        |   |                | 76.702           | 62.218           | 46.855           |      | 52.59<br>52.60 |         | C      |
| ATOM         | 10552          | CB       |            |   | 220            | 76.158<br>75.550 | 63.669<br>63.896 | 46.864<br>48.215 |      | 50.50          |         | Ċ      |
| MOTA         | 10555          | CG       |            |   | 220<br>220     | 75.163           | 62.538           | 48.717           |      | 52.92          |         | c      |
| ATOM<br>ATOM | 10558<br>10561 | C        |            |   | 220            | 78.241           | 62.242           | 46.782           | 1.00 | 55.14          |         | С      |
| ATOM         | 10562          | ō        |            |   | 220            | 78.791           | 62.381           | 45.694           |      | 59.99          |         | 0      |
| ATOM         | 10563          | N        |            |   | 221            | 78.924           | 62.146           | 47.916           |      | 54.63          |         | N<br>C |
| MOTA         | 10565          | CA       |            |   | 221            | 80.374           | 62.138           | 47.923<br>49.353 |      | 54.62<br>55.17 |         | c      |
| ATOM         | 10567          | CB       |            |   | 221<br>221     | 80.893<br>80.907 | 62.229<br>60.877 | 47.237           |      | 55.55          |         | Ċ      |
| ATOM TATOM   | 10571<br>10572 | С<br>0   |            |   | 221            | 81.995           | 60.887           | 46.683           |      | 60.34          |         | 0      |
| ATOM         | 10573          | N        |            |   | 222            | 80.137           | 59.796           | 47.264           |      | 53.48          |         | N      |
| ATOM         | 10575          | CA       |            |   | 222            | 80.545           | 58.548           | 46.640           |      | 52.48          |         | C      |
| MOTA         | 10577          | CB       |            |   | 222            | 79.595           | 57.416           | 47.042           |      | 54.77          |         | C      |
| MOTA         | 10580          | CG       |            |   | 222            | 79.582           | 56.957<br>55.636 | 48.504<br>48.595 |      | 57.01<br>55.16 | 25.50   | c      |
| MOTA         | 10582<br>10586 |          | LEU        |   |                | 78.834<br>80.999 | 56.829           | 49.119           |      | 57.95          |         | Č      |
| ATOM<br>ATOM | 10590          | C        |            |   | 222            | 80.604           | 58.623           | 45.120           |      | 53.37          | 1000    | С      |
| ATOM         | 10591          | ō        |            |   | 222            | 81.034           | 57.671           | 44.462           |      | 48.59          | 14 . *  | 0      |
| MOTA         | 10592          | N        |            |   | 223            | 80.146           | 59.732           | 44.553           |      | 56.15          |         |        |
| MOTA         | 10594          | CA       |            |   | 223            | 80.226           | 59.932<br>61.108 | 43.107<br>42.684 |      | 57.48<br>57.30 |         | C      |
| MOTA         | 10596          | CB       |            |   | 223<br>223     | 79.343<br>77.836 | 60.838           | 42.772           |      | 52.63          |         | Č      |
| ATOM<br>ATOM | 10599<br>10601 | CG       |            |   | 223            | 77.006           | 62.114           | 42.851           |      | 49.43          |         | С      |
| ATOM         | 10605          |          |            |   | 223            | 77.428           | 60.026           | 41.595           |      | 51.32:         | 1800    | С      |
| ATOM         | 10609          | С        |            |   | 223            | 81.673           | 60.175           | 42.704           | 1.00 | 60.66          | 85°; \$ | C      |
| ATOM         | 10610          | 0        |            |   | 223            | 82.135           | 59.638           | 41.689           |      | 57.55          | Ag.     | O<br>N |
| MOTA         | 10611          | N        |            |   | 224            | 82.367<br>83.822 | 60.980<br>61.172 | 43.521<br>43.432 |      | 65.61<br>69.52 |         | C      |
| MOTA         | 10613<br>10615 | ÇA<br>CB |            |   | 224<br>224     | 84.332           | 62.114           | 44.539           |      | 71.02          |         | C      |
| MOTA<br>MOTA | 10618          | CG       |            |   | 224            | 83.711           | 63.513           | 44.474           | 1.00 | 73.65          |         | C      |
| ATOM         | 10619          |          |            |   | 224            | 83.600           | 64.074           | 43.365           |      | 71.92          |         | 0      |
| MOTA         | 10620          | OD2      |            |   | 224            | 83.314           | 64.139           | 45.490           |      | 78.42<br>70.95 |         | 0      |
| MOTA         | 10621          | C        |            |   | 224            | 84.599           | 59.849<br>59.624 | 43.506<br>42.693 |      | 73.77          | •       | ŏ      |
| MOTA         | 10622          | O<br>N   |            |   | 224<br>225     | 85.487<br>84.246 | 58,979           |                  |      | 72.95          |         | N      |
| MOTA<br>MOTA | 10623<br>10625 | CA       |            |   | 225            | 85.016           | 57.750           |                  |      | 74.26          |         | С      |
| ATOM         | 10627          | СB       |            |   | 225            | 84.871           | 57.332           | 46.236           |      | 74.17          |         | C      |
| ATOM         | 10630          | CG       | TYP        | В | 225            | 85.550           | 58.278           | 47.224<br>47.533 |      | 76.24<br>78.93 |         | C      |
| MOTA         | 10631          |          |            |   | 225            | 84.986<br>85.593 | 59.518<br>60.397 | 48.427           |      | 80.70          |         | č      |
| MOTA<br>MOTA | 10633<br>10635 | CEI      |            |   | 225            | 86.786           | 60.046           |                  |      | 81.28          |         | С      |
| ATOM         | 10636          | OH       |            |   | 225            | 87.386           | 60.927           |                  |      | 78.71          |         | 0      |
| ATOM         | 10638          |          | TYF        | R | 225            | 87.368           | 58.816           |                  |      | 79.68          |         | C      |
| ATOM         | 10640          | CD2      |            |   | 225            | 86.748           | 57.941           |                  |      | 76.90<br>74:03 |         | C      |
| ATOM         | 10642          | C        |            |   | 225            | 84.656           | 56.569<br>55.538 |                  |      | 77.38          |         | ŏ      |
| ATOM         | 10643          | 0        |            |   | 225            | 85.327<br>83.601 | 56.718           |                  |      | 74.89          |         | N      |
| ATOM<br>ATOM | 10644<br>10646 | N<br>CA  |            |   | 226            | 83.112           |                  |                  |      | 74.78          |         | С      |
| ATOM         | 10648          |          | PHE        | E | 226            | 82.044           | 54.796           | 42.818           |      | 77.17          |         | C      |
| ATOM         | 10651          | CG       |            |   | 226            | 82.567           |                  |                  |      | 81.39          |         | C      |
| ATOM         | 10652          |          |            |   | 226            | 82.559           |                  |                  |      | 81.72<br>80.66 |         | C      |
| ATOM         | 10654          |          |            |   | 3 226<br>3 226 | 83.014<br>83.478 |                  |                  |      | 84.79          |         | Č      |
| ATOM         | 10656<br>10658 |          |            |   | 3 226          | 83.480           |                  |                  |      | 85.65          |         | С      |
| ATOM<br>ATOM | 10660          |          |            |   | 226            | 83.020           |                  | 43.554           |      | 85.56          |         | C      |
| ATOM         | 10662          | C        | PHI        | E | 3 226          | 82.468           | 56.354           | 40.948           |      | 71.46          |         | C      |
| ATOM         | 10663          |          |            |   | 226            | 81.242           |                  |                  |      | 72.22<br>66.83 |         | O<br>N |
| MOTA         | 10664          | N        |            |   | 3 227          | 83.276<br>82 740 |                  |                  |      | 62.98          |         | C      |
| ATOM         | 10665<br>10667 | CA<br>CB |            |   | 3 227<br>3 227 | 82.740<br>83.890 |                  |                  |      | 65.04          | •       | Č      |
| ATOM<br>ATOM | 10670          |          |            |   | 3 227          | 85.155           |                  | <b>-</b> -       |      | 68.03          |         | С      |
|              |                | _        |            |   |                |                  |                  |                  |      |                |         |        |

```
Figure 5
               ATOM 10673 CD
                                                84.734
                                                       56.710
                                                                        1.00 68.18
                               PRO B 227
                                                               39.927
                                                                                              С
               ATOM
                     10676
                            C
                                PRO B 227
                                                82.387
                                                        56.868
                                                                37.732
                                                                        1.00 57.33
                                                                                              C
               ATOM
                     10677
                            0
                                PRO B 227
                                                81.920
                                                       57.435
                                                                36.774
                                                                        1.00 49.96
                                                                                              0
               ATOM
                     10678
                            N
                                GLY B 228
                                                82.594
                                                        55.558
                                                                37.761
                                                                        1.00 55.62
                                                                                              N
               ATOM
                     10680
                            CA
                                GLY B 228
                                                82.304
                                                        54.724
                                                                36.611
                                                                        1.00 57.53
                                                                                              C
               ATOM
                     10683
                            С
                                GLY B 228
                                                80.885
                                                       54.887
                                                                36.087
                                                                        1.00 57.79
                                                                                              ¢
                                GLY B 228
                                                80.674
               ATOM
                     10684
                                                        54.984
                                                                34.883
                                                                        1.00 59.27
               ATOM
                     10685
                            N
                                THR B 229
                                                79.915
                                                        54.900
                                                                36,997
                                                                        1.00 57.34
                                                                                              N
                                THR B 229
                                                                36.672
                     10687
                            CA
                                                78.528
                                                        55.215
                                                                        1.00 53.88
                            CB
                                                77.620
                                                        54.770
               ATOM
                     10689
                                THR B 229
                                                                37.818
                                                                        1.00 52.45
               ATOM
                     10691
                            OG1 THR B 229
                                                77.559
                                                        53.343
                                                                37.858
                                                                        1.00 57.85
               ATOM
                     10693
                            CG2 THR B 229
                                                76.187
                                                        55.207
                                                                37.574
                                                                        1.00 52.09
               MOTA
                     10697
                            С
                                THR B 229
                                                78.439
                                                        56.711
                                                                36.574
                                                                        1.00 52.58
               MOTA
                            0
                                THR B 229
                                                78.776
                                                        57.390
                                                                37.542
                                                                        1.00 59.75
                     10698
                                                                                              0
                                                77.982
                                                        57.225
                                                                        1.00 47.74
               ATOM
                     10699
                                HIS B 230
                                                                35.445
                            N
                                                77.919
                                                                        1.00 51.53
               ATOM
                     10701
                            CA HIS B 230
                                                        58.672
                                                                35.195
                                                                                              C
                                                        59.564
                     10703
                                HIS B 230
                                                77.867
                                                                36,469
                                                                        1.00 52.04
                                                                                              C
               MOTA
                            CB
                                                                36.839
                     10706
                            CG
                                HIS B 230
                                                79.136
                                                        60.285
                                                                        1.00 57.17
                                                                                              C
               ATOM
                     10707
                            ND1 HIS B 230
                                                79,155
                                                        61.210
                                                                37,861
                                                                        1.00 63.61
               ATOM
                            CE1. HIS B 230
                                                                38.011
                                                                        1.00 63.23
               ATOM
                     10709
                                                80.379
                                                        61.688
                                                                                              С
               ATOM
                     10711
                            NE2 HTS B 230
                                                81.168
                                                        61.095
                                                                37,129
                                                                        1.00 62,17
                                                                                              N
                                                                        1.00 62.32
                           · CD2 HIS B 230
                                                80.417
                                                        60.210
                                                                36.387
                                                                                              С
               ATOM
                     10713
               ATOM
                     10715
                            С
                                HIS B 230
                                                78.962
                                                       59.100
                                                                34,196
                                                                        1.00 54.60
                                                                                              C
                                                78.782
                                                        60.086
                                                                        1.00 53.87
               MOTA
                     10716
                            0
                                HIS B 230
                                                                33.475
                                                                                              ٥
               ATOM
                     10717
                            N
                                ASN B 231
                                                80.054
                                                       58.350
                                                                34.148
                                                                        1.00 55.43
                                                                                              N
                                                                        1.00 52.75
               ATOM
                     10719
                            CA ASN B 231
                                                81.006
                                                        58.495
                                                                33.079
                                                                                              C
               ATOM
                     10721
                            CB
                               ASN B 231
                                               82,407
                                                       58.000
                                                               33.494
                                                                        1.00 53.15
                                                                                              С
               ATOM
                     10724
                            CG ASN B 231
                                                83.191
                                                       59.042
                                                                34.323
                                                                        1.00 53.79
                                                                                              C
               ATOM
                     10725
                            OD1 ASN B 231
                                                82.779
                                                        60.196
                                                                34.462
                                                                        1.00 53.39
                                                                                              0
                     10726
                            ND2 ASN B 231
                                                84.329
                                                        58.621
                                                                34.879
                                                                        1.00 52.99
                                                                                              N
               MOTA '
            · ATOM
                     10729
                                ASN B 231
                                                80.412
                                                       57.712
                                                                31.920
                                                                        1.00 51.00
                                                                                              С
                            С
                            0
                                ASN B 231
                                                80.431
                                                       58.185
                                                                30.796
                                                                        1.00 49.67
                                                                                              0
                     10730
ATOM ATOM ATOM
                            N
                                LYS B 232
                                                       56.543
                                                                32.207
                                                                        1.00 50.00
                                                                                              N
                     10731
                                                79.843
                                                                        1.00 53.42
                     10733
                            CA LYS B 232
                                                79.177
                                                       55.745
                                                                31.182
                                                                                              ¢
                     10735
                            CB
                               LYS B 232
                                                78.750
                                                       54.376
                                                                31.718
                                                                        1.00 55.32
ATOM
                     10738
                            CG
                               LYS B 232
                                               79.878
                                                       53.492
                                                                32.236
                                                                        1.00 61.72
               MOTA
                     10741
                            CD LYS B 232
                                                79.528
                                                       52.719
                                                                33.553
                                                                        1.00 63.99
                            CE LYS B 232
                                               79.036
                                                                33.302
                                                                        1.00 64.11
                                                                                              Ç
               ATOM
                     10744
                                                       51.277
                            NZ LYS B 232
                                                                34.559
                                                                        1.00 62.81
               ATOM
                                               78.534
                     10747
                                                       50.640
ATOM ATOM
                     10751
                            С
                                LYS B 232
                                               77.928
                                                       56.468
                                                                30.665
                                                                        1.00 52.95
                                                                                              С
                     10752
                            0
                                LYS B 232
                                               77.645
                                                       56.438
                                                                29.470
                                                                        1.00 57.08
                                                                                              ٥
                                                                31.568
                                LEU B 233
                                               77.175
                            N
                                                       57.095
                                                                        1.00 48.05
                                                                                              N
               ATOM
                     10753
                                                                31,177
                                                                        1.00 44.71
                            CA LEU B 233
                                               75.967
               MOTA
                     10755
                                                       57.795
                                                                                              c
                                                                32.402
                                                                        1.00 44.38
               ATOM
                     10757
                            CB
                               LEU B 233
                                               75.166
                                                       58.238
                            CG LEU B 233
                                                                33.211
                                                                        1.00 43.48
                                                                                              C
               ATOM
                     10760
                                               74.547
                                                       57.090
                                                                                              C
               ATOM
                     10762
                            CD1 LEU B 233
                                               74.098
                                                       57.553
                                                                34.594
                                                                        1.00 38.48
               ATOM
                     10766
                            CD2 LEU B 233
                                               73.384
                                                       56.443
                                                                32,432
                                                                        1.00 43.85
                                                                                              С
               MOTA
                     10770
                            C
                                LEU B 233
                                               76.313
                                                       58.989
                                                                30.309
                                                                        1.00 46.49
                                                                                              C
                                                               29.251
               ATOM
                     10771
                           0
                                LEU B 233
                                               75.709
                                                       59.177
                                                                        1.00 46.35
                                                                                              0
               MOTA
                     10772
                           ·N
                                LEU B 234
                                               77.291
                                                       59.782
                                                               30.756
                                                                        1.00 49.00
                                                                                              N
                                                                30.004
               MOTA
                     10774
                            CA LEU B 234
                                               77.803
                                                       60.951
                                                                        1.00 48.44
                                                                                              С
               MOTA
                     10776
                            CB
                               LEU B 234
                                               78.934
                                                       61.646
                                                               30.779
                                                                        1.00 48.74
                                                                                              C
                     10779
                            CG LEU B 234
                                               78.508
                                                       62.641
                                                               31.872
                                                                        1.00 49.33
                                                                                              С
               MOTA
                     10781
                            CD1 LEU B 234
                                               79.686
                                                       63.060
                                                               32.760
                                                                        1.00 50.34
                                                                                              ¢
               ATOM
               ATOM
                     10785
                            CD2 LEU B 234
                                               77.853
                                                       63.847
                                                               31.266
                                                                        1.00 48.52
               ATOM
                     10789
                            С
                                LEU B 234
                                               78.315
                                                       60.591
                                                               28.609
                                                                        1.00 46.44
                                                                                              ¢
                                                                27.634
                                                                        1.00 44.51
               MOTA
                    10790
                            0
                                LEU B 234
                                               78.085
                                                       61.317
                                                                                              0
               ATOM
                     10791
                           N
                                LYS B 235
                                               78.987
                                                       59.452
                                                               28.537
                                                                        1.00 45.08
                                                                                              N
                                                       59.010
                                                               27.329
                                                                        1.00 47.93
                    10793
                            CA
                               LYS B 235
                                               79.642
               MOTA
                                                               27.638
                                                                        1.00 49.94
               ATOM
                     10795
                            CB
                               LYS B 235
                                               80.528
                                                       57.796
                                                               26.521
                    10798
                               LYS B 235
                                               81.460
                                                       57.353
                                                                        1.00 55.96
               ATOM
                            CG
                                                               26.714
               MOTA
                    10801
                            CD
                                LYS B 235
                                               81.950
                                                       55.887
                                                                        1.00 61.01
                                                               26.537
                    10804
                            CE
                                                       55.732
                                                                        1.00 63.08
               ATOM
                                LYS B 235
                                               83.494
                                               84.292
                                                               27.813
                                                                        1.00 57.60
                                                                                              N
                    10807
                           NZ
                                                       55.931
               ATOM
                               LYS B 235
                                                               26.343
                                                                        1.00 46.41
                                                       58.648
                    10811
                            С
                                               78.565
               ATOM
                                LYS B 235
                                                       58.990
                                                               25.170
                                                                        1.00 49.22
                                                                                              0
                    10812
                            0
               ATOM
                                LYS B 235
                                               78.640
                                                               26.838
                                                                        1.00 47.47
                                                                                              N
                                                       57.964
               ATOM
                    10813
                           N
                                ASN B 236
                                               77.547
                                                               25.995
                                                       57.464
               ATOM
                    10815
                           CA ASN B 236
                                               76.474
                                                                        1.00 46.92
                                                                                             С
                                                               26.732
                                                                        1.00 47.62
               ATOM
                    10817
                            CB
                               ASN B 236
                                               75.694
                                                       56.385
                                                                                             С
                                                               26.831
               ATOM
                    10820
                            CG
                                               76.463
                                                       55.089
                                                                        1.00 47.51
                               ASN B 236
                    10821
                           OD1 ASN B 236
                                               75.960
                                                       54.098
                                                               27.338
                                                                        1.00 51.37
                                                                                              ٥
               ATOM
                    10822
                                               77.678
                                                       55.085
                                                               26.321
                                                                        1.00 50.41
               MOTA
                           ND2 ASN B 236
                                                       58.584
                                                               25.530
                                                                        1.00 46.06
                                                                                             C
               ATOM
                    10825
                           С
                                ASN B 236
                                               75.562
                                                       58.547
                                                               24.414
                                                                        1.00 42.49
                    10826
                           0
                               ASN B 236
                                               75.074
                                                       59.599
               MOTA
                    10827
                           N
                                VAL B 237
                                               75.381
                                                               26.373
                                                                        1.00 45.66
                                                                                             N
                    10829
                           CA
                                               74.584
                                                      60.765 26.015
                                                                       1.00 46.83
               MOTA
                               VAL B 237
```

14 14 C

સાર્જિક ન્યું જીવના કર

```
Figure 5
                                 74.164 61.583 27.274
ATOM 10831
             CB VAL B 237
                                                         1.00 44.74
      10833
             CG1 VAL B 237
                                 73.561
                                         62.933
                                                 26,904
                                                          1.00 45.68
ATOM
      10837
             CG2 VAL B 237
                                 73.156
                                         60.805
                                                 28.074
                                                          1.00 43.82
      10841
                  VAL B 237
                                 75.330
                                         61.638
                                                 25.005
                                                         1.00 48.98
ATOM
      10842
             0
                  VAL B 237
                                 74.711
                                         62.400
                                                 24.278
                                                          1.00 52.52
      10843 .N
                  ALA B 238
                                 76.654
                                         61.524
                                                 24.969
ATOM
                                                          1.00 50.88
      10845
                 ALA B 238
                                 77.484
                                         62.283
                                                 24.026
                                                          1.00 47.23
ATOM
             CA
      10847
                 ALA B 238
                                 78.930
                                         62.405
                                                         1.00 45.04
ATOM
             CB
                                                 24.546
                                                                               С
                  ALA B 238
                                                 22.660
ATOM
      10851
                                 77.444
                                         61.601
                                                         1.00 42.41
             C
                                                                               C
ATOM
      10852
                 ALA B 238
                                 77.338
                                         62.270
                                                 21.631
             0
                                                         1.00 43.67
                                                                               0
                 PHE B 239
ATOM
      10853
                                 77.524
                                                 22,661
             N
                                         60.274
                                                         1.00 37.92
                                                                               N
                                         59.470
ATOM
      10855
             CA
                 PHE B 239
                                 77.375
                                                 21.446
                                                         1.00 38.78
                                                                               С
ATOM
      10857
             CB
                 PHE B 239
                                 77.501
                                         57.977
                                                 21.784
                                                         1.00 36.59
                                                                               С
· ATOM
      10860
             CG
                 PHE B 239
                                 77.401
                                         57.070
                                                 20.590
                                                         1.00 38.09
                                                                               С
ATOM
      10861
             CD1 PHE B 239
                                 76.155
                                         56.757
                                                 20.038
                                                         1.00 40.54
MOTA
      10863
             CE1 PHE B 239
                                 76.055
                                         55.918
                                                 18.925
                                                         1.00 38.07
                                                                               С
ATOM
      10865
             CZ
                  PHE B 239
                                 77.221
                                         55.384
                                                 18.352
                                                         1.00 39.38
MOTA
      10867
             CE2
                 PHE B 239
                                 78.465
                                         55.690
                                                 18.891
                                                         1.00 34.70
                                                                               C
ATOM
      10869
             CD2 PHE B 239
                                 78.552
                                         56.531
                                                 20.006
                                                         1.00 37.52
ATOM
      10871
                 PHE B 239
                                 76.023
                                         59.758
                                                 20.786
                                                         1.00 40.38
                                                                               C
      10872
                  PHE B 239
                                 75.950
                                         60.034
                                                 19.602
                                                         1.00 42.64
ATOM
      10873
                 MET B 240
                                 74.960
                                         59.724
                                                 21.587
                                                         1.00 45.03
ATOM
             N
ATOM
      10875
             CA
                 MET B 240
                                 73.611
                                         60.038
                                                 21.128
                                                         1.00 44.91
ATOM
      10877
             CB
                 MET B 240
                                 72.587
                                         59.799
                                                 22.254
                                                         1.00 45.96
ATOM
      10880
             CG
                 MET B 240
                                 72.196
                                         58.327
                                                 22.362
                                                         1.00 44.94
MOTA
      10883
             SD
                 MET B 240
                                 71.003
                                         57.867
                                                 23.613
                                                         1.00 51.63
                                                                               S
      10884
                MET B 240
                                 71.548
                                         58.680
                                                 25.058
                                                         1.00 46.78
ATOM
             CE
                                                                               С
                                                 20.607
19.548
ATOM
      10888
             C.
                 MET B 240
                                 73.511
                                         61.468
                                                         1.00 44.94
                                                                               C
                                         61.699
                                                         1.00 45.53
ATOM
      10889
             0
                 MET B 240
                                 72.946
                                                                               0
ATOM
      10890
             N
                 LYS B 241
                                 74.088
                                         62.417
                                                 21.331
                                                         1.00 40.87
                                                                               N
             CA
                                                 20.940
                                                         1.00 40.76
ATOM
      10892
                LYS B 241
                                 73.992
                                         63.815
                                                                               С
                                                                               C
                                 74.631
                                                 21.977
                                                         1.00 37.19
ATOM:
      10894
             CB
                 LYS B 241
                                         64,725
ATOM
                                                         1.00 38.72
      10897
                                         65.221
             CG
                LYS B 241
                                 73.687
                                                 23.014
      10900
                                                         1.00 42.24
                                                                               С
ATOM
             CD
                LYS B 241
                                 74.260
                                         66.399
                                                 23.742
                                                                               С
ATOM
      10903
             CE
                LYS B 241
                                 73.877
                                         66.397
                                                 25.183
                                                         1.00 46.22
ATOM .
      10906
            NZ
                LYS B 241
                                 74.688
                                         67.392
                                                 25.946
                                                         1.00 50.91
                                                                               N
MOTA
      10910
             ·C
                 LYS B 241
                                 74.637
                                         64.094
                                                 19.594
                                                         1.00 44.44
                                                                               С
ATOM.
      10911
            O LYS B 241
                                 74.047
                                         64.749
                                                 18.753
                                                         1.00 46.88
                                                                               0
MOTA
      10912
             N - SER B 242
                                 75.858
                                         63.621
                                                 19.400
                                                         1.00 49.58
                                                                               N
                                                         1.00 48.08
      10914
                                         63.981
                                                 18.208
MOTA
             CA | SER B 242
                                 76.615
             CB SER B 242
MOTA
      10916
                                 78.129
                                         63.804
                                                 18.409
                                                         1.00 46.17
                                                                               С
                                                 17.964
ATOM
      10919
             OG
                SER B 242
                                 78.520
                                         62.526
                                                         1.00 42.60
ATOM
      10921
             С
                 SER B 242
                                 76.100
                                         63.161
                                                 17.029
                                                         1.00 45.38
ATOM
      10922
             0
                 SER B 242
                                 76.243
                                         63.576
                                                 15.894
                                                         1.00 48.48
MOTA
      10923
             N
                 TYR B 243
                                 75.486
                                         62.014
                                                 17.295
                                                         1.00 45.27
      10925
             CA
                 TYR B 243
                                 74.735
                                         61.291
                                                 16.248
                                                         1.00 45.03
MOTA
MOTA
      10927
             CB
                 TYR B 243
                                 74.261
                                        59.941
                                                 16.756
                                                         1.00 40.61
MOTA
      10930
                 TYR B 243
                                 73.250
                                        59.300
                                                 15.845
                                                         1.00 44.20
             CG
      10931
             CD1 TYR B 243
                                        58.851
                                                 14.584
                                                         1.00 43.44
ATOM
                                 73.609
MOTA
      10933
             CE1 TYR B 243
                                        58.263
                                                 13.733
                                                         1.00 47.55
                                 72.680
MOTA
      10935
             CZ
                 TYR B 243
                                 71.361
                                        58.115
                                                 14.146
                                                         1.00 52.95
MOTA
      10936
             OH
                                 70.418
                                                 13.315
                                                         1.00 57.39
                 TYR B 243
                                        57.525
                                                                               0
             CE2 TYR B 243
      10938
                                                         1.00 50.58
MOTA
                                 70.981
                                        58.555
                                                 15.405
                                                                               С
                                                 16.238
             CD2 TYR B 243
MOTA
      10940
                                 71.925
                                        59.159
                                                         1.00 49.74
                                                                               C
      10942
                                        62.071
                                                 15.739
                                                         1.00 46.40
MOTA
             С
                 TYR B 243
                                                                               С
                                 73.513
                                                         1.00 49.36
             0
ATOM
      10943
                 TYR B 243
                                 73,199
                                        62.038
                                                 14.567
                                                                               0
MOTA
      10944
             N
                 ILE B 244
                                 72.821
                                        62.755
                                                 16.643
                                                         1.00 47.66
                                                                               N
     10946
             CA ILE B 244
                                                 16,294
                                                         1.00 45.40
                                                                               С
ATOM
                                 71.690
                                        63.586
             CB ILE B 244
                                                 17.560
MOTA
      10948
                                 70.885
                                        63.964
                                                         1.00 45.87
                                                                               С
ATOM
     10950
             CG1 ILE B 244
                                 69.960
                                        62.808
                                                 17.942
                                                         1.00 45.67
                                                                               C
MOTA
      10953
             CD1 ILE B 244
                                 69.590
                                        62.782
                                                 19.371
                                                         1.00 46.75
                                                                               С
MOTA
      10957
             CG2 ILE B 244
                                 70.054
                                        .65,239
                                                 17.345
                                                         1.00 46.14
                                                                               С
      10961
                                                 15.562
                                                         1.00 46.76
                 ILE B 244
                                 72.160
                                        64.813
ATOM
     10962
                 ILE B 244
                                 71.508
                                        65.254
                                                 14.621
                                                         1.00 46.95
ATOM
     10963
             N
                 LEU B 245
                                 73.295
                                        65.356
                                                 16.003
                                                         1.00 51.05
     10965
             CA LEU B 245
                                73.949
                                        66.529
                                                 15.393
                                                         1.00 50.93
ATOM
     10967
             CB
                                                 16.182
                                                         1.00 52.92
                                 75.225
                                        66.851
ATOM
                LEU B 245
     10970
             CG
                                                 16.147
                                                         1.00 57.19
                                        68.202
ATOM
                 LEU B 245
                                 75.961
             CD1 LEU B 245
     10972
                                 77.349
                                                 15.520
                                                         1.00 60.36
ATOM
                                        68.042
                                                 15.461
                                                         1.00 55.37
     10976
             CD2 LEU B 245
                                 75.163
                                        69.304
ATOM
     10980
             С
                                        66,221
                                                13.932
                                                         1.00 51.61
MOTA
                LEU B 245
                                 74:289
     10981
                                                13.056
                                                         1.00 54.59
                                                                               0
             0
                                        67.056
MOTA
                 LEU B 245
                                 74.166
                                                         1.00 51.38
                                                13.677
ATOM
     10982
             N
                 GLU B 246
                                 74.692
                                        64.992
                                                                               N
                                                12.331
                                                         1.00 56.33
     10984
             CA
                                                                               С
MOTA
                 GLU B 246
                                74.941
                                        64.527
                                                12.399
                                                         1.00 61.49
ATOM
     10986
             CB
                GLU B 246
                                 75.380
                                        63.054
                                                                               С
                                        62.459 11.223
                                                         1.00 66.11
ATOM
     10989
             CG
                 GLU B 246
                                 76.137
```

4, 4000 CANA.

รษี คลิกรรม อิธิกับสาร เมื่อมีระบบ คลิก ระบ

Accelerated to be now

មិន វិទីទីទី២ មួនការជា

(M) 638,54 (A.A) (±5)

人名阿尔 医铁毛蛋蛋白 人名罗斯

|              |                |           |            |   |            |                  | Ei a             | .ro 5            |                          |        |
|--------------|----------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| 3004         | 10002          | ĊD        | GLU        | R | 246        | 76.296           | 60.946           | ure 5            | 1.00 72.90               | С      |
| atom<br>atom | 10992<br>10993 |           | GLU        |   |            | 76.616           |                  | 12.530           | 1.00 74.85               | ō      |
| ATOM         | 10994          |           | GLU        |   |            | 76.078           | 60.180           | 10.418           | 1.00 77.25               | 0      |
| MOTA         | 10995          | С         | GLU        |   |            | 73.641           | 64.688           | 11.561           | 1.00 53.48               | C      |
| ATOM         | 10996          | 0         | GLU        |   |            | 73.622           | 65.217           | 10.463           | 1.00 55.08               | O<br>N |
| ATOM         | 10997          | N         | LYS.       |   |            | 72.551<br>71.231 | 64.255<br>64.337 | 12.179<br>11.583 | 1.00 53.18<br>1.00 51.62 | Č      |
| MOTA<br>MOTA | 10999<br>11001 | CA<br>CB  | LYS        |   |            | 70.218           | 63.512           | 12.385           | 1.00 51.92               | C      |
| ATOM         | 11004          | CG        | LYS        |   |            | 69.711           | 62.308           | 11.652           | 1.00 50.90               | ,C     |
| ATOM         | 11007          | CD        | LYS        |   |            | 70.801           | 61.292           | 11.502           | 1.00 52.18               | C      |
| ATOM         | 11010          | CE        | LYS        |   |            | 70.245<br>69.655 | 59.952           | 11.079<br>9.723  | 1.00 50.30<br>1.00 48.12 | С<br>N |
| MOTA<br>MOTA | 11013<br>11017 | nz<br>C   | LYS        |   |            | 70.703           | 60.023<br>65.760 | 11.432           | 1.00 50.78               | c<br>c |
| ATOM         | 11018          | ō         | LYS        |   |            | 69.921           | 66.004           | 10.510           | 1.00 49.41               | 0      |
| ATOM         | 11019          | N         | VAL        |   |            | 71.092           | 66.695           | 12.304           | 1.00 48.26               | N '    |
| MOTA         | 11021          | CA        | VAL        |   |            | 70.560           | 68.055           | 12.177           | 1.00 49.18               | C<br>C |
| ATOM         | 11023          | CB<br>CC1 | VAL        |   |            | 70.583<br>70.173 | 68.874<br>68.049 | 13.471<br>14.664 | 1.00 48.03<br>1.00 46.43 | č      |
| MOTA<br>MOTA | 11025<br>11029 |           | VAL        |   |            | 71.922           | 69.498           | 13.673           | 1.00 54.13               | c      |
| ATOM         | 11033          | c         | VAL        |   |            | 71.300           |                  | 11.116           | 1.00 51.98               | С      |
| MOTA         | 11034          | 0         | VAL        |   |            | 70.845           | 69.902           | 10.697           | 1.00 52.01               | 0      |
| ATOM         | 11035          | N         | LYS        |   |            | 72.457           | 68.338           | 10.712           | 1.00 56.30<br>1.00 56.37 | N<br>C |
| ATOM<br>ATOM | 11037<br>11039 | CA<br>CB  | LYS<br>LYS |   |            | 73.248<br>74.724 | 68.957<br>68.598 | 9.856            | 1.00 57.72               | · č    |
| ATOM         | 11033          | CG        | LYS        |   |            | 75.430           | 69.404           | 10.946           | 1.00 56.55               | . с    |
| ATOM         | 11045          | CD        | LYS        |   |            | 76.919           | 69.033           | 11.014           | 1.00 59.50               | C      |
| MOTA         | 11048          | CE        |            |   | 249        | 77.676           | 69.835           | 12.069           | 1.00 61.67               | C<br>N |
| ATOM         | 11051          | NZ        |            |   | 249<br>249 | 77.740<br>72.710 | 71.301<br>68.506 | 11.748<br>8.312  | 1.00 65.84<br>1.00 57.32 | C      |
| ATOM<br>ATOM | 11055<br>11056 | С<br>0    |            |   | 249        | 72.604           | 69.321           | 7.401            | 1.00 62.53               | Ō      |
| ATOM         | 11057          | N         |            |   | 250        |                  | 67.217           | 8.185            | 1.00 55.49               | N      |
| ATOM         | 11059          | CA        | GLU        | В | 250        | 71.606           | 66.689           | 7.047            | 1.00 57.45               | C      |
| MOTA         | 11061          | CB        |            |   | 250        |                  | 65.210           | 7.266            | 1.00 58.54               | C      |
| ATOM         | 11064          | CG        |            |   | 250<br>250 |                  | 64.199<br>62.817 | 6.830            | 1.00 65.17               | c      |
| ATOM<br>ATOM | 11067<br>11068 | CD<br>OE1 | GLU        |   |            |                  | 62.180           | 7.725            | 1.00 70.77               | ō      |
| ATOM         | 11069          |           | GLU        |   |            |                  | 62.350           |                  | 1.00 65.36               | 0      |
| ATOM         | 11070          | С         |            |   | 250        |                  | 67.438           | 6.834            | 1.00 57.43               | C      |
| MOTA         | 11071          | 0         |            |   | 250        |                  | 67.523           | 5.717<br>7.917   | 1.00 62.37<br>1.00 55.15 | O<br>N |
| ATOM         | 11072<br>11074 | N<br>CA   |            |   | 251        | 69.698<br>68.476 | 67.930<br>68.711 | 7.827            | 1.00 52.42               | Ċ      |
| ATOM<br>ATOM | 11076          | CB        |            |   | 251        | 67.710           | 68.718           | 9.158            | 1.00 49.60               | · c    |
| ATOM         | 11079          | CG        |            |   | 251        | 66.877           | 67.495           | 9.419            | 1.00 43.65               | C      |
| ATOM         | 11080          |           | HIS        |   |            | 67.356           | 66.205           |                  | 1.00 42.43               | N<br>C |
| ATOM         | 11082<br>11084 |           | HIS<br>HIS |   |            | 66.401<br>65.318 | 65.348<br>66.035 | 9.624<br>9.946   | 1.00 39.77               | N      |
| ATOM<br>ATOM | 11084          |           | HIS        |   |            | 65.597           | 67.377           | 9.845            | 1.00 42.88               | С      |
| ATOM         | 11088          | С         |            |   | 251        | 68.831           | 70.139           | 7.430            | 1.00 53.18               | c      |
| ATOM         | 11089          | 0         |            |   | 251        | 68.176           | 70.702           | 6.587            | 1.00 55.41               | O<br>N |
| ATOM         | 11090          | N         |            |   | 252        | 69.871<br>70.232 | 70.719<br>72.127 | 8.031<br>7.800   | 1.00 56.89<br>1.00 58.75 | . C    |
| ATOM<br>ATOM | 11092<br>11094 | CA<br>CB  |            |   | 252<br>252 | 71.491           | 72.505           | 8.598            | 1.00 59.93               | Ċ      |
| ATOM         | 11097          | CG        |            |   | 252        | 71.222           | 73.202           | 9.941            | 1.00 60.55               | C      |
| ATOM         | 11100          | CD        |            |   | 252        | 72.475           | 73.384           | 10.798           |                          | С<br>0 |
| ATOM         | 11101          |           | GLN        |   |            | 72.668           | 74.434           | 11.407<br>10.846 | 1.00 58.33<br>1.00 63.96 | N      |
| MOTA<br>MOTA | 11102<br>11105 | C NEZ     | GLN<br>GLN |   | 252        | 73.319<br>70.453 | 72.361<br>72.409 | 6.309            | 1.00 63.10               | Ċ      |
| ATOM         | 11106          | ŏ         |            |   | 252        | 70.302           | 73.535           | 5.845            | 1.00 61.78               | 0      |
| MOTA         | 11107          | N         |            |   | 253        | 70.821           | 71.362           | 5.579            | 1.00 69.87               | . С    |
| ATOM         | 11109          | CA        |            |   | 253        | 70.967           | 71.383<br>70.230 | 4.127<br>3.712   | 1.00 75.34<br>1.00 79.57 | c      |
| ATOM<br>ATOM | 11111<br>11114 | CB<br>CG  |            |   | 253<br>253 |                  | 70.230           | 2.397            | 1.00 86.04               | č      |
| ATOM         | 11117          | CD        |            |   | 253        |                  | 69.873           | 1.192            | 1.00 92.12               | С      |
| ATOM         | 11118          |           | GLU        |   |            | 71.965           | 70.490           | 0.093            | 1.00 95.57               | 0      |
| ATOM         | 11119          |           | GLU        |   |            |                  | 68.829           | 1.341<br>3.440   | 1.00 95.41<br>1.00 75.91 | 0<br>C |
| ATOM         | 11120          | C         |            |   | 253        |                  | 71.263<br>72.188 | 2.738            | 1.00 74.54               | Ö      |
| ATOM<br>ATOM | 11121<br>11122 | 0<br>N    |            |   | 253<br>254 | 68.880           | 70.146           | 3.684            | 1.00 77.16               | N      |
| ATOM         | 11124          | ÇA        |            |   | 254        | 67.572           | 69.821           | 3.066            | 1.00 77.29               | C      |
| ATOM         | 11126          | CB        | SER        | В | 254        | 67.114           | 68.422           | 3.490            | 1.00 78.80               | C      |
| ATOM         | 11129          | OG        |            |   | 254        | 67.830           | 67.422           | 2.800<br>3.400   | 1.00 83.17<br>1.00 75.76 | o<br>c |
| MOTA         | 11131<br>11132 | C<br>O    |            |   | 254<br>254 | 66.452<br>66.054 | 70.792<br>71.578 | 2.561            | 1.00 75.78               | ŏ      |
| MOTA<br>MOTA | 11132          | Ŋ         |            |   | 255        | 65.918           | 70.680           | 4.615            | 1.00 78.79               | N      |
| MOTA         | 11135          | CA        |            |   | 255        | 64.967           | 71.636           | 5.187            | 1.00 80.03               | C      |
| MOTA         | 11137          | CB        | MET        | В | 255        | 65.576           | 72.276           | 6.448            | 1.00 82.08               | С      |
|              |                |           |            |   |            |                  |                  |                  |                          |        |

|              |                |           |            |   |                    |                  | Figu             | ıre 5            |                          |            |   |
|--------------|----------------|-----------|------------|---|--------------------|------------------|------------------|------------------|--------------------------|------------|---|
| ATOM         | 11140          | CG        |            |   | 255                | 64.562           | 72.863           | 7.435            | 1.00 84.03               | C          |   |
| ATOM         | 11143          | SD        | MET        |   |                    | 64.800           | 74.604           | 7.910            | 1.00 88.56               | S          |   |
| ATOM<br>ATOM | 11144<br>11148 | CE        | MET<br>MET |   |                    | 66.637<br>64.515 | 74.877<br>72.747 | 7.724<br>4.235   | 1.00 89.69               | Ö          |   |
| ATOM         | 11149          | o         | MET        |   |                    | 65.250           | 73.698           | 3.964            | 1.00 74.47               | ō          |   |
| MOTA         | 11150          | N         | ASP        |   |                    | 63.301           | 72.589           | 3.723            | 1.00 77.54               | N          |   |
| MOTA         | 11152          | CA        | ASP        |   |                    | 62.570           | 73.671           | 3.078            | 1.00 76.31               | C          |   |
| ATOM         | 11154          | CB        | ASP<br>ASP |   |                    | 61.432<br>60.928 | 73.092<br>74.051 | 2.228<br>1.171   | 1.00 78.24               |            |   |
| MOTA         | 11157<br>11158 | CG<br>OD1 | ASP        |   |                    | 60.573           | 75.194           | 1.515            | 1.00 77.36               | ·          |   |
| ATOM         | 11159          |           | ASP        |   |                    | 60.831           | 73.732           | -0.035           | 1.00 86.06               | C          |   |
| MOTA         | 11160          | С         | ASP        |   |                    | 62.001           | 74.529           | 4.202            | 1.00 74.07               | C          |   |
| ATOM         | 11161          | 0         | ASP        |   |                    | 61.292           | 74.017           | 5.069<br>4.191   | 1.00 72.65               | C<br>N     |   |
| ATOM<br>ATOM | 11162<br>11164 | n<br>Ca   | MET<br>MET |   |                    | 62.321<br>61.813 | 75.821<br>76.767 | 5.190            | 1.00 73.66               | Ċ          |   |
| ATOM         | 11166          | CB        | MET        |   |                    | 62.452           | 78.150           | 4.988            | 1.00 78.63               | C          |   |
| ATOM         | 11169          | CG        | MET        | В | 257                | 63.801           | 78.325           | 5.676            | 1.00 84.37               | C          |   |
| ATOM         | 11172          | SD        | MET        |   |                    | 63.690           | 78.296           | 7.500            | 1.00 92.67               | S          |   |
| ATOM         | 11173          | CE<br>C   | MET<br>MET |   | 25 <i>7</i><br>257 | 65.506<br>60.287 | 78.193<br>76.933 | 7.924<br>5.209   | 1.00 91.18               | Č          |   |
| ATOM<br>ATOM | 11177<br>11178 | Ö         | MET        |   |                    | 59.752           | 77.429           | 6.184            | 1.00 66.93               | Ċ          |   |
| ATOM         | 11179          | N         | ASN        |   |                    | 59.606           | 76.538           | 4.134            | 1.00 67.17               |            |   |
| ATOM         | 11181          | CA        | ASN        |   |                    | 58.143           | 76.619           | 4.019            | 1.00 65.69               | Ç          |   |
| ATOM         | 11183          | CB        | ASN        |   |                    | 57.763<br>58.645 | 77.151           | 2.634<br>2.187   | 1.00 66.01               | C C        |   |
| atom<br>atom | 11186<br>11187 | CG<br>OD1 | ASN<br>ASN |   |                    | 58.674           | 78.294<br>79.336 | 2.822            | 1.00 65.48               | č          |   |
| ATOM         | 11188          |           | ASN        |   |                    | 59.375           | 78.100           | 1.094            | 1.00 64.76               | N          |   |
| ATOM         | 11191          | С         |            |   | 258                | 57.415           | 75.289           | 4.218            | 1.00 65.51               | . 0        |   |
| ATOM         | 11192          | 0         |            |   | 258                | 56.186           | 75.264           | 4.301            | 1.00 64.96               | N C        |   |
| ATOM         | 11193          | N<br>C2   |            |   | 259<br>259         | 58.172<br>57.629 | 74.191<br>72.837 | 4.243<br>4.389   | 1.00 66.61               | C          |   |
| ATOM<br>ATOM | 11195<br>11197 | CA<br>CB  |            |   | 259                | 57.713           | 72.081           |                  | 1.00 69.16               | č          |   |
| ATOM         | 11200          | CG.       |            |   | 259                | 57.028           | 72.815           | 1.933            | 1.00 69.32               | C          |   |
| ATOM         | 11201          |           | ASN        |   |                    | 55.799           | 72.857           | 1.873            | 1.00 68.53               | Ç          |   |
| ATOM         | 11202          |           | ASN        |   |                    | 57.818           | 73.429           | 1.042<br>5.466   | 1.00 68.49<br>1.00 67.38 | . <u>N</u> |   |
| ATOM<br>ATOM | 11205<br>11206 | 0         |            |   | 259<br>259         | 58.361<br>59.122 | 72.038<br>71.119 | 5.152            | 1.00 71.60               | ·          |   |
| ATOM         | 11207          | N         |            |   | 260                | 58.131           | 72.382           | 6.733            | 1.00 64.03               |            | 1 |
| ATOM         | 11208          | CA        |            |   | 260                | 58.682           | 71.611           | 7.847            | 1.00 60.29               |            |   |
| MOTA         | 11210          | СВ        |            |   | 260                | 58.322           | 72.458           |                  |                          | C          |   |
| MOTA         | 11213          | CG        |            |   | 260                | 57.136<br>57.305 | 73.229<br>73.508 | 8.664<br>7.205   | 1.00 63.40               |            |   |
| MOTA<br>MOTA | 11216<br>11219 | CD        |            |   | 260<br>260         | 57.983           | 70.277           | 7.939            | 1.00 56.55               |            |   |
| ATOM         | 11220          | ŏ         |            |   | 260                | 56.752           | 70.264           | 7.829            | 1.00 55.21               | ·          |   |
| ATOM         | 11221          | N         |            |   | 261                | 58.737           | 69.194           | 8.147            | 1.00 54.18               | . N        |   |
| ATOM         | 11223          | CA        |            |   | 261                | 58.153           | 67.845<br>67.059 | 8.209<br>6.972   | 1.00 50.65<br>1.00 51.99 | 0          |   |
| ATOM<br>ATOM | 11225<br>11228 | CB<br>CG  |            |   | 261<br>261         | 58.567<br>58.358 | 67.807           | 5.646            | 1.00 56.17               | à          |   |
| ATOM         | 11231          | CD        |            |   | 261                | 58.504           |                  | 4.428            | 1.00 60.06               | c          |   |
| ATOM         | 11232          |           | GLN        |   |                    | 57.504           | 66.484           | 3.834            | 1.00 61.16               | Č          |   |
| ATOM         | 11233          | NE2       |            |   | 261                | 59.749           | 66.580           | 4.064<br>9.477   | 1.00 60.08               | Ŋ          |   |
| ATOM         | 11236<br>11237 | C<br>O    |            |   | 261<br>261         | 58.488<br>58.048 | 67.031<br>65.887 | 9.612            | 1.00 47.32               | č          |   |
| MOTA<br>MOTA | 11238          | N         |            |   | 262                | 59.264           | 67.596           | 10.400           | 1.00 43.22               | Ð          | 1 |
| ATOM         | 11240          | CA        | ASP        | В | 262                | 59.664           | 66.851           | 11.604           | 1.00 42.21               |            | 2 |
| MOTA         | 11242          | CB        |            |   | 262                | 60.687           | 65.719           | 11.282           | 1.00 41.05               | (          | 2 |
| ATOM         | 11245          | CG<br>OD1 | ASP        |   | 262                | 61.972<br>62.663 | 66.234<br>65.474 | 10.669<br>9.948  | 1.00 35.33               |            | 5 |
| MOTA<br>MOTA | 11246<br>11247 |           | ASP        |   |                    | 62.368           | 67.400           | 10.856           | 1.00 45.36               |            | ) |
| ATOM         | 11248          | c         |            |   | 262                | 60.181           | 67.779           | 12.682           | 1.00 36.98               | g          |   |
| MOTA         | 11249          | 0         |            |   | 262                | 60.236           | 68.981           | 12.484           | 1.00 39.94<br>1.00 34.72 |            | C |
| MOTA         | 11250          | N         |            |   | 263                | 60.544           | 67.218           | 13.825<br>15.018 | 1.00 34.72               |            |   |
| MOTA<br>MOTA | 11252<br>11254 | CA<br>CB  |            |   | 263<br>263         | 60.844<br>61.104 | 68.006<br>67.077 | 16.187           | 1.00 36.71               | č          |   |
| ATOM         | 11257          | CG        |            |   | 263                | 61.174           | 67.757           | 17.494           | 1.00 39.61               | . (        |   |
| ATOM         | 11258          | CD1       | PHE        | В | 263                | 60.031           | 67.940           | 18.255           | 1.00 43.44               |            | = |
| MOTA         | 11260          |           | PHE        |   |                    | 60.089           | 68.564           | 19.497<br>19.980 | 1.00 41.38<br>1.00 44.10 | 0          |   |
| ATOM<br>ATOM | 11262<br>11264 | CZ<br>CE2 | PHE        |   | 263                | 61.295<br>62.456 | 69.004<br>68.808 | 19.235           | 1.00 44.59               | č          |   |
| ATOM         | 11264          |           | PHE        |   |                    | 62.389           | 68.186           | 17.999           | 1.00 44.63               | C          | 3 |
| ATOM         | 11268          | С         | PHE        | В | 263                | 62.041           | 68.906           | 14.790           | 1.00 39.07               | C          |   |
| ATOM         | 11269          | 0         |            |   | 263                | 62.069           | 70.060           | 15.222           | 1.00 37.31<br>1.00 41.38 |            | C |
| ATOM         | 11270          | N<br>N    |            |   | 264<br>264         | 63.026<br>64.202 | 68.369<br>69.125 | 14.084<br>13.740 | 1.00 41.38               |            | 2 |
| ATOM<br>ATOM | 11272<br>11274 | CA<br>CB  |            |   | 264                | 65.255           | 68.210           | 13.091           | 1.00 45.68               | C          | 2 |
| ATOM         | 11276          |           | ILE        |   |                    | 65.754           | 67.154           | 14.092           | 1.00 46.61               | ď          | 3 |
|              |                |           |            |   |                    |                  |                  |                  |                          |            |   |

```
Figure 5
                                                        1.00 44.67
                                        66.004 13.442
                                66.604
            CD1 ILE B 264
     11279
MOTA
                                                        1.00 46.67
                                        69.040 12.548
                                66.438
            CG2 ILE B 264
     11283
MOTA
                                                        1.00 41.25
                                        70.301 12.828
                                63.863
                ILE B 264
     11287
            С
ATOM
                                                        1.00 46.56
                                                13.091
                                64.314
                                        71.414
                 ILE B 264
            0
MOTA
     11288
                                        70.075
                                                11.759
                                                        1.00 43.33
                                63.094
                 ASP B 265
            N
     11289
MOTA
                                        71.153
                                                10.793
                                                        1.00 41.64
                                62.776
            CA ASP B 265
MOTA
     11291
                                                        1.00 40.51
                                        70.687
                                                 9.623
                ASP B 265
                                61.892
            СВ
     11293
MOTA
                                        69.800
                                                 8.588
                                                        1.00 46.45
                                62.629
                ASP B 265
            CG
     11296
MOTA
                                                        1.00 44.40
                                        69.866
                                                 8.467
             OD1 ASP B 265
                                63.886
     11297
MOTA
                                         69.012
                                                .7.818
                                                        1.00 45.61
             OD2 ASP B 265
                                 61.995
     11298
ATOM
                                                        1.00 42.00
                                                11.563
                                        72.265
                                62.065
                 ASP B 265
ATOM
     11299
             C
                                        73.431
                                                        1.00 41.09
                                                11.419
                                 62.405
                 ASP B 265
ATOM
     11300
             0
                                                                              N
                                                        1.00 43.20
                                                12.424
                                        71.904
                                 61.118
                 CYS B 266
ATOM
     11301
             N
                                                        1.00 48.35
                                                13.195
                                                                              С
                                        72.915
                                 60.374
                CYS B 266
             CA
ATOM
     11303
                                                        1.00 47.26
                                                                               C
                                                13.951
                                 59.197
                                         72.293
             CB
                 CYS B 266
      11305
ATOM
                                                12.907
                                                        1.00 48.83
                                 57.968
                 CYS B 266
                                        71.492
ATOM
      11308
             SG
                                                         1.00 49.09
                                                                               C
                                                14.194
                 CYS B 266
                                 61.261
                                        73.674
MOTA
      11309
             С
                                                                               O
                                                         1.00 54.68
                                                 14.460
                                 61.049
                                        74.857
                 CYS B 266
MOTA
      11310
             ٥
                                                14.759
                                                         1.00 48.14
                                 62.234
                                        72.980
                 PHE B 267
ATOM
      11311
             N
                                                15.727
                                                                               С
                                                         1.00 47.35
                                 63.121
                                        73.579
                 PHE B 267
ATOM
      11313
            CA
                                                                               С
                                                 16.441
                                                         1.00 47.05
                                         72.487
                 PHE B 267
                                 63.922
      11315
             CB
ATOM
                                                                               С
                                                17.699
                                                         1.00 43.64
                                        72.946
                                 64.571
                 PHE B 267
      11318
             CG
MOTA
                                                         1.00 41.93
                                                                               C
                                         72.613
                                                 18.916
             CD1 PHE B 267
                                 64.036
      11319
MOTA
                                                 20.079
                                                         1.00 42.51
                                                                              С
                                 64.632
             CE1 PHE B 267
                                        73.037
ATOM
      11321
                                                                               C
                                                         1.00 44.32
                                                 20.037
                 PHE B 267
                                 65.782
                                         73.813
      11323
             CZ
ATOM
                                                         1.00 46.37
                                                                               Ç
                                                18.823
                                 66.326
                                        74.163
             CE2 PHE B 267
      11325
ATOM
                                                         1.00 48.19
                                                                               С
                                         73.725
                                                 17.660
                                 65.723
             CD2 PHE B 267
      11327
ATOM
                                                                               С
                                                         1.00 48.72
                                        74.532
                                                 14.986
                                 64.046
MOTA
      11329
             C
                 PHE B 267
                                                                     1.00 44.61
                                         75.661
                                                15.400
                                 64.254
      11330
             0
                 PHE B 267
ATOM
                                                         1.00 51.07
                                                13.879
                                        74.052
                                 64.600
                 LEU B 268
      11331
             N
ATOM
                                                         1.00 51.95 (2.5 × 1)
1.00 50.97 (2.5 × 3)
                                                                               C-1,
                                                13.067
                                 65.502
                                        74.843
                 LEU B 268
      11333
             CA
ATOM
                                                                               С
                                                        1.00 50.97
                                        74.035
                                                11.851
                                 65.943
                 LEU B 268
      11335
             CB
MOTA
                                                                      67.413 73.647
                                                 11.702
                                                         1.00 52.55
      11338
             CG
                 LEU B 268
ATOM
                                                                               c··
                                         73.721
                                                13.009
                                                         1.00 52.33
             CD1 LEU B 268
                                 68.243
MOTA
      11340
                                 67.492 72.255
                                                 11.072
                                                         1.00 51.41
                                                                            0
N
C
             CD2 LEU B 268
      11344
ATOM
                                                         1.00 54.96
1.00 56.67 5.1
1.00 56.11
                                                        1.00 54.96
                                                 12.621
                                         76.163
                  LEU B 268
                                 64.859
ATOM 11348
             С
                                                 12.619
                  LEU B 268
                                        77.199
                                 65.518
     11349
             ٥
ATOM
                                                 12.274
                  MET B 269
                                 63.577
                                        76.137
             N
ATOM 11350
                                                         1.00 60.71 177.186
1.00 63.23
                                                 11.789
                  MET B 269
                                 62.921 77.339
MOTA
     11352
             CA
                                                                              : C:*,
                                                 10.729
                                 61.867
                                         76.986
                  MET B 269
              CB
ATOM
     11354
                                                                              C.
                                                11.238
                                                         1.00 65.13
                                         76.643
                                 60.479
                  MET B 269
ATOM
      11357
              CG
                                                  9.864
                                                         1.00 70.07
                  MET B 269
                                 59.311
                                         76.301
 ATOM
      11360
              SD
                                                  8.744
                                                         1.00 68.18
                                                                               С
                                 60.319
                                         75.242
                  MET B 269
 MOTA
      11361
              CE
                                                12.934
                                                         1.00 60.72
                                                                               С
                                 62.364
                                         78.193
                  MET B 269
      11365
              С
 MOTA
                                                                               0
                                 62.023 79.364 12.742
                                                         1.00 61.36
                  MET B 269
 ATOM
       11366
              0
                                                         1.00 62.89
                  LYS B 270
                                 62.301
                                         77.615
                                                 14.130
       11367
              N
 ATOM
                                                         1.00 61.21
                                                                               С
                                                 15.345
                  LYS B 270
                                 62.028
                                         78.385
       11369
              CA
 MOTA
                                                         1.00 60.17
                                         77.469
                                                 16.506
                  LYS B 270
                                  61.617
       11371
              CB
 ATOM
                                        78.174
                                                 17.853
                                                         1.00 58.46
                                  61.382
                  LYS B 270
 MOTA
      11374
              CG
                                                         1.00 56.94
                                         79.072
                                                 17.844
                                  60.150
                  LYS B 270
 ATOM
       11377
              CD
                                                         1.00 54.35
                                         79.568
                                                 19.259
                                  59.830
              CE
                  LYS B 270
 ATOM
       11380
                                                          1.00 48.36
                                          80.173
                                                 19.379
                                  58.495
                  LYS B 270
 MOTA
       11383
              NZ
                                                          1.00 61.23
                                                 15.714
                                  63.256
                                          79.196
                  LYS B 270
 MOTA
       11387
              С
                                                          1.00 66.24
                                                  16.378
                                  63.142
                                          80.209
                  LYS B 270
       11388
 ATOM
                                                          1.00 62.80
                                          78.758
                                                  15.279
                                  64.427
                  MET B 271
       11389
              N
 ATOM
                                  65,650
66.862
                                          79.517
                                                  15.494
                                                          1.00 65.95
                  MET B 271
       11391
 ATOM
                                                  15.340
                                                          1.00 64.73
                                          78.614
       11393
              СВ
                  MET B 271
 ATOM
                                          77.549
                                                  16.395
                                                          1.00 63.31
                                  66.930
              CG
                  MET B 271
       11396
 ATOM
                                                  16.127
                                                          1.00 63.42
                                          76.423
                  MET B 271
                                  68.283
       11399
              SD
 АТОМ
                                                  16.392
                                                          1.00 58.05
                                          77.547
                  MET B 271
                                  69.752
              CE
       11400
 ATOM
                                                  14.527
                                                          1.00 71.84
                                          80.687
                   MET B 271
                                  65.779
              С
       11404
 MOTA
                                                 14.812
                                          81.634
                                                          1.00 77.37
                  MET B 271
                                  66.503
              0
 ATOM
       11405
                                                  13.387
                                                          1.00 77.37
                                         80.624
                                  65.093
                   GLU B 272
 MOTA
       11406
              N
                                         81.758
                                                  12.460
                                                          1.00 80.83
                                  65.033
              CA
                  GLU B 272
 MOTA
       11408
                                                  11.101
                                                          1.00 83.78
                                          81.332
                                  64.467
              CB
                  GLU B 272
 MOTA
       11410
                                                          1.00 86.43
                                                                                С
                                                   9.934
                                  65.030 82.131
                  GLU B 272
              CG
 MOTA
       11413
                                                          1.00 89.15
                                                   9.728
                                                                                С
                                  66.516 ·
                                          81.898
                  GLU B 272
       11416
              CD
 MOTA
                                                                                0
                                                  10.164
                                                          1.00 89.46
                                          80.841
              OE1 GLU B 272
                                  67.031
       11417
 ATOM
                                                   9.131
                                                          1.00 90.B0
                                          82.778
                                  67.171
 ATOM
       11418
               OE2 GLU B 272
                                                          1.00 81.58
                                                                                C
                                                  13.045
                                          82.913
                                  64.206
  ATOM
        11419
               С
                   GLU B 272
                                                          1.00 82.64
                                          84.045
                                                  13.122
                                  64.694
                   GLU B 272
       11420
               0
 ATOM
                                                  13.455
                                                          1.00 81.25
                                          82.638
              N
                   LYS B 273
                                  62,965
        11421
  ATOM
                                                          1.00 B2.15
                                                  14.399
                                          83.532
                                  62.296
                  LYS B 273
        11423
               CA
  MOTA
                                                          1.00 81.95
                                                  14.840
                                          83.000
                   LYS B 273
        11425
               CB
                                  60.924
  ATOM
                                                          1.00 82.03
                                  59.926
                                          82.659
                                                  13.709
                  LYS B 273
               CG
        11428
  ATOM
                                                          1.00 81.05
                                          82.203
                                                  14.264
                   LYS B 273
                                  58.550
 ATOM
        11431
               CD
```

12 44

```
Figure 5
                                              83.365 14.885
83.028 15.183
                                                                                    С
                     LYS B 273
                                      57.751
                                                              1.00 79.62
     ATOM 11434
                  CE
                                      56.329
                                                              1.00 75.20
                      LYS B 273
     MOTA
           11437
                  NZ
                                                              1.00 83.88
                                      63.257
                       LYS B 273
                                              83.571 15.588
     ATOM
           11441
                  C
                                              82.776
                                                     15.653
                                                              1.00 83.50
           11442
                  0
                       LYS B 273
                                      64.191
     ATOM
                                                              1.00 86.90
                                              84.488
                                                      16.522
     ATOM
           11443
                  N
                       GLU B 274
                                      63,067
                                                              1.00 89.06
     ATOM
           11445
                  CA
                       GLU B 274
                                      63.973
                                              84.585
                                                      17.683
                                                      18.452
                                                                                    C
                  CB
                      GLU B 274
                                      64.080
                                              83.249
                                                              1.00 88.86
     ATOM
           11447
                                                      18.710
                                                              1.00 88.48
                                                                                    С
     ATOM
           11450
                  CG
                       GLU B 274
                                      62.776
                                              82.510
                                                      20.067
                                                              1.00 88.40
                                                                                    С
                       GLU B 274
                                      62.182
                                              82.816
           11453
                  CD
     ATOM
                       GLU B 274
                                      62.936
                                              82.857
                                                      21.062
                                                              1.00 89.80
                                                                                    0
     MOTA
           11454
                  OE1
                       GLU B 274
                                      60.954
                                              83.007
                                                      20.137
                                                              1.00 88.12
                                                                                    ٥
           11455
                  OE2
     ATOM
                       GLU B 274
                                      65.407
                                              85.026
                                                      17.353
                                                              1.00 90.59
                                                                                    С
     ATOM
           11456
                  С
                                      66.214
                                              85.167
                                                      18.269
                                                              1.00 92.99
                                                                                    0
           11457
                       GLU B 274
     ATOM
                  0
                       LYS B 275
                                      65.748
                                              85.238
                                                      16.082
                                                              1.00 91.48
                                                                                    N
                  N
     ATOM
           11458
                       LYS B 275
                                      67.117
                                              85.627
                                                      15.744
                                                              1.00 92.44
                                                                                    C
           11460
                  CA
     MOTA
                                                      14.275
                                                              1.00 92.78
                                                                                    c .
                       LYS B 275
                                      67.416
                                              85.351
                  СВ
           11462
     ATOM
                                      68.907
                                              85.374
                                                      13.947
                                                              1.00 93.12
                                                                                    С
                       LYS B 275
           11465
                  CG
     ATOM
                                                              1.00 92.83
                                                                                    С
                                      69.202
                                              84.711
                                                      12.617
           11468
                       LYS B 275
     ATOM
                  CD
                                                              1.00 92.53
                       LYS B 275
                                      68.617
                                              85.503
                                                      11.462
                                                                                    C
     ATOM
           11471
                  CE
                                                              1.00 93.76
                                              84.758
                                                      10.197
                                                                                    N
                       LYS B 275
                                      68.766
     ATOM
           11474
                  NZ
                       LYS B 275
                                      67,400
                                              87.099
                                                      16.080
                                                              1.00 93.42
                                                                                    С
     ATOM
           11478
                  С
                                      68.558
                                              87.495
                                                      16.191
                                                              1.00 93.24
                                                                                    0
                       LYS B 275
     ATOM
           11479
                  O
                                              87.889
                                                      16.264
                                                              1.00 94.74
                                      66.339
     ATOM
           11480
                  N
                       HIS B 276
                                                      16.674
                                                              1.00 95.98
                                      66.460
                                              89.293
                       HIS B 276
     ATOM
           11482
                  CA
                                                      16.145
                                                              1.00 97.82
                                      65,256
                                              90.159
     MOTA
           11484
                  CB
                       HIS B 276
                                                      14.742
14.361
                                                              1.00101.34
                                      64.840
                                              89.772
     ATOM
           11487
                  CG
                      HIS B 276
                                                              1.00103.71
     ATOM
           11488
                  ND1 HIS B 276
                                      64.914
                                              88.429
                                                              1.00102.94
                  CE1 HIS B 276
                                      64.452
                                              88.304
                                                      13.117
           11490
                                                              1.00103.14
           11492
                  NE2 HIS B 276
                                      64.067
                                              89.531
                                                      12.680
     MOTA
                                                      13.686
                                                              1.00102.55
                  CD2 HIS B 276
                                      64.274
                                              90.468
    ATOM:
           11494
                                                              1.00 96.15
                                              89.307
                                                      18.209
                       HIS B 276
                                      66.643
   - ATOM
           11496
                  С
                                                              1.00 96.46
                                                      18.732
                       HIS B 276
                                      67.411
                                              90.122
           11497
                  0
   ATOM
                                                              1.00 96.29
                       ASN B 277
                                      66.002
                                              88.352
                                                      18.900
  ATOM
           11498
                  N
                                                                                    С
                                                              1.00 95.53
  ... ATOM
           11500
                  CA
                       ASN B 277
                                      66.101
                                              88.174
                                                      20.367
                                                                                    C
ATOM
                       ASN B 277
                                      64.771
                                              87.637
                                                      20.941
                                                              1.00 96.36
           11502
                  CB
                                              88.354
                                                      20.377
                                                              1.00 97.76
                                                                                    С
   - ATOM
                       ASN B 277
                                      63.540
           11505
                  CG
 ATOM
                                              88.264
                                                      19.181
                                                              1.00 97.88
                                                                                    0
                  OD1 ASN B 277
                                      63.239
           11506
  ATOM
                                                              1.00 98.03
                  ND2 ASN B 277
                                              89.062
                                                      21.243
                                      62.813
           11507
                                                              1.00 94.59
                                                                                    С
                                              87.213
                                                      20.741
                                      67.247
     MOTA
           11510
                  C
                       ASN B 277
                                                                                    0
                                              86.069
                                                      21.130
                                                              1.00 91.06
     MOTA
            11511
                  ٥
                       ASN B 277
                                      67.001
   ATOM
                                              87.705
                                                      20.665
                                                              1.00 94.94
                                                                                    N
                                      68.488
           11512
                       GLN B 278
                  N
                                              86.842
                                                      20.526
                                                              1.00 95.13
                                      69.675
     ATOM
           11514
                  CA
                       GLN B 278
                                              87.585
                                                      19.757
                                                               1.00 97.14
                                      70.790
           11516
                  CB
                       GLN B 278
     MOTA
                                              86.703
                                                      19.178
                                                               1.00 97.76
                                      71.948
      ATOM
           11519
                   CG
                       GLN B 278
                                                      18.479
                                                               1.00 98.09
                                      71.501
                                              85.392
           11522
                   CD
                       GLN B 278
                                              85.250
                                                      18.044
                                                               1.00 97.19
      MOTA
           11523
                   OE1 GLN B 278
                                      70.352
                                                      18.357
                                                               1.00 97.32
                                              84.450
           11524
                   NE2 GLN B 278
                                      72.431
                                                       21.784
                                                               1.00 92.71
            11527
                       GLN B 278
                                      70.257
                                              B6.167
      MOTA
                   Ç
                       GLN B 278
                                              85.327
                                                      21.664
22.980
                                                              1.00 94.45
      ATOM
            11528
                   0
                                      71.153
                                              86.519
                                                              1.00 88.02
                       PRO B 279
                                      69.802
      ATOM
           11529
                   N
                  CA
                                                      24.097
                                                               1.00 85.59
                                              85.562
            11530
                       PRO B 279
                                       69.864
     ATOM
                                                               1.00 86.43
                                                                                    C
                                              86.470
                                                      25.343
            11532
                       PRO B 279
                                      69.755
      MOTA
                   CB
                                                              1.00 86.87
                                                                                    С
                                                      24.813
                                       69.811
                                              87.907
     MOTA
            11535
                   CG
                       PRO B 279
                                                              1.00 87.02
                                                                                    C
                                       69.321
                                              87.844
                                                      23.404
      MOTA
           11538
                   CD
                       PRO B 279
                                                                                    С
            11541
                   С
                       PRO B 279
                                      68.724
                                              84.489
                                                      24.029
                                                               1.00 81.31
     ATOM
            11542
                   0
                       PRO B 279
                                       67.882
                                              84.464
                                                      24.927
                                                               1.00 82.10
                                                                                    0
     ATOM
                                              83.618
                                                      23.007
                                                              1.00 75.50
                                                                                    N
            11543
                  N
                       SER B 280
                                      68.716
     ATOM
            11545
                       SER B 280
                                       67.609
                                              82.656
                                                      22.765
                                                               1.00 70.81
                                                                                    С
                   CA
     ATOM
                                              82,485
                                                      21.263
                                                               1.00 70.14
                                                                                    C
                                       67.338
            11547
                       SER B 280
     ATOM
                   CB
                                              81.806
                                                      21.013
                                                               1.00 66.92
                                                                                    ٥
            11550
                       SER B 280
                                      66.106
      ATOM
                   OG
                                              81.249
                                                       23.362
                                                              1.00 69.19
                                                                                    C
                                      67.788
            11552
                       SER B 280
      ATOM
                   С
                                              80.708
                                                      23.431
                                                                                    ٥
            11553
                                       68.890
                                                              1.00 65.60
      ATOM
                   n
                       SER B 280
                                                      23.735
                                              80.667
                                                               1.00 68.59
                                       66.651
      ATOM
            11554
                   N
                       GLU B 281
                                       66.540
                                              79.318
                                                      24.300
                                                               1.00 65.52
                                                                                     С
      ATOM
            11556
                   CA
                       GLU B 281
                                              79.163
                                                      24.905
                                                               1.00 67.67
            11558
                   CB
                       GLU B 281
                                       65.150
      ATOM
                                              79.002
                                                      26.410
                                                               1.00 74.74
      ATOM
            11561
                   CG
                       GLU B 281
                                       65.121
                                              80.059
                                                       27.176
                                                               1.00 77.16
      ATOM
            11564
                   CD
                       GLU B 281
                                       65.902
                                                       27.430
                                              79.821
                                                               1.00 78.42
                                       67.104
      ATOM
            11565
                   OE1
                       GLU B 281
                                                      27.551
                                       65.304
                                              81.099
                                                               1.00 77.76
      ATOM
            11566
                   OE2
                       GLU B 281
                                              78.198
                                                       23.280
                                       66.720
                                                              1.00 60.69
            11567
                       GLU B 281
      ATOM
                   С
                                              77.071
                                                      23.633
                                                              1.00 57.09
            11568
                   o
                                       67.050
      ATOM
                       GLU B 281
                                              78.506
                                                      22.017
                                                               1.00 56.75
            11569
                                       66.467
     ATOM
                   N
                       PHE B 282
                                              77.510
                                                      20.973
                                                               1.00 52.96
                                                                                    C
            11571
                                       66.534
      ATOM
                   CA
                       PHE B 282
                                              77.726
                                                      19.993
                                                              1.00 50.22
                                                                                    С
            11573
                                       65.377
                   CB
                       PHE B 282
      A'TOM
            11576
                                       64.022
                                              77.597
                                                       20.623
                                                              1.00 44.28
                                                                                    С
      ATOM
                   CG
                       PHE B 282
                                              78.673
                                                       21.240 1.00 46.37
                                       63.425
```

3.194

。 1986年 产品集188

1515 WOZ!

in the term

15 00 EAGL

NOTE: 12 H

1:50

MOTA

11577

CD1 PHE B 282

```
Figure 5
ATOM
      11579
             CE1 PHE B 282
                                  62.172
                                          78.555
                                                 21.837
                                                           1.00 45.72
                  PHE B 282
                                  61.515
                                          77.350
                                                  21.802
                                                           1.00 47.36
ATOM
      11581
             CZ
                                                           1.00 43.71
                                          76.270
ATOM
             CE2 PHE B 282
                                  62.112
                                                  21.181
      115B3
             CD2 PHE B 282
                                          76.404
                                                  20.599
                                                           1.00 38.92
ATOM
      11585
                                  63.354
                                                           1.00 52.45
                                                  20.269
ATOM
      11587
              С
                  PHE B 282
                                  67.888
                                          77.600
MOTA
      11588
             0
                  PHE B 282
                                  68.103
                                          78.492
                                                  19.463
                                                          1.00 55.88
                                                                                 0
MOTA
      11589
                  THR B 283
                                  68.804
                                          76.698
                                                  20.616
                                                           1.00 49.98
                                                                                 N
             N
                                                                                 С
ATOM
      11591
             CA
                  THR B 283
                                  70.087
                                          76.515
                                                  19.913
                                                          1.00 47.66
ATOM
                  THR B 283
                                 71.265
                                          76.862
                                                  20.826
                                                           1.00 47.23
      11593
             CB
MOTA
             OG1 THR B 283
                                 71.364
                                          75.864
                                                  21.853
                                                          1.00 49.13
                                                                                 0
      11595
             CG2 THR B 283
                                  71.053
                                          78.200
                                                  21.581
                                                           1.00 45.37
                                                                                 С
ATOM
      11597
                  THR B 283
                                  70.300
                                          75.062
                                                  19.488
                                                          1.00 47.12
                                                                                 С
ATOM
      11601
             С
                  THR B 283
                                  69.602
                                          74.168
                                                  19.920
                                                          1.00 44.81
                                                                                 0
ATOM
      11602
             0
MOTA
      11603
             N
                  ILE B 284
                                 71.318
                                          74.818
                                                  18.682
                                                           1.00 47.29
                                                                                 N
ATOM
      11605
             CA
                  ILE B 284
                                 71.620
                                          73.454
                                                  18.288
                                                          1.00 46.14
                                          73.404
                                                  17.347
                                                           1.00 46.90
                                                                                 С
ATOM
      11607
             СВ
                  ILE B 284
                                . 72.835
ATOM
      11609
             CG1 ILE B 284
                                 72.602
                                          74.254
                                                  16.075
                                                           1.00 46.50
                                          73.857
                                                           1.00 46.93
ATOM
             CD1 ILE B 284
                                  71.411
                                                  15.228
                                                                                 C
      11612
                                                          1.00 47.41
ATOM
             CG2 ILE B 284
                                 73.176
                                          71.946
                                                  16.978
      11616
                  ILE B 284
                                 71.861
                                          72.601
                                                  19.536
                                                          1.00 47.76
MOTA
      11620
             С
ATOM
      11621
             O
                  TLE B 284
                                 71.511
                                          71.423
                                                  19.564
                                                          1.00 46.83
                  GLU B 285
                                 72.448
                                          73.200
                                                  20.571
                                                           1.00 51.41
                                                                                 N
      11622
ATOM
             N
                                          72.514
                                                          1.00 53.32
                                                                                 C
ATOM
      11624
             CA
                  GLU B 285
                                 72.642
                                                  21.859
                                                                                 c
                                                           1.00 55.94
                  GLU B 285
                                 73.461
                                          73.370
                                                  22.850
ATOM
      11626
             CB
                                                          1.00 61.21
                  GLU B 285
                                                                                 C
                                                  23.381
MOTA
      11629
             CG
                                 74.708
                                          72.675
                                                                                 C
                                                          1.00 65.63
                                 75.254
                                                  24.649
MOTA
      11632
             CD
                  GLU B 285
                                         73.318
                                                                                 0
                                                          1,00 70.21
MOTA
      11633
             OE1 GLU B 285
                                 75.609
                                          74.528
                                                  24.612
                                                          1.00 65.67
                                                                                 0
MOTA
      11634
             OE2 GLU B 285
                                 75.330
                                          72.613
                                                  25.683
                                                                                С
ATOM
             С
                  GLU B 285
                                 71.295
                                          72.088
                                                  22.479
                                                          1.00 48.82
      11635
                                                                                 0
                  GLU B 285
                                 71.104
                                          70.910
                                                  22.744
                                                          1.00 37.69
ATOM
      11636
                                                                                 N
             N
                  SER B 286
                                 70.384
                                          73.051
                                                  22.688
                                                          1.00 45.91
ATOM
      11637
                  SER B 286
                             69.017
                                          72.781
                                                  23.161
                                                          1.00 44.75
                                                                                 C
ATOM
      11639
             CA
                  SER B 286
                                 68.127
                                          74.005
                                                  22.983
                                                          1.00 44.92
                                                                                 C
ATOM
      11641
             CB
                                          75.143
ATOM
      11644
             OG
                  SER B 286
                                 68.652
                                                  23.622
                                                          1.00 50.05
                                                                                 0
                                         71.660
ATOM
      11646
             С
                  SER B 286
                                 68.352
                                                  22.381
                                                          1.00 44.42
                                                                                С
                              67.669
                                                          1.00 44.79
                                                                                 0
ATOM
      11647
             0
                  SER B 286
                                          70.832
                                                  22.943
                                                                                 N
                  LEU B 287
                                 68.537
                                          71.673
                                                  21.068
                                                          1.00 46.13
ATOM
      11648
             N
                             67.895
                                                                                 С
                  LEU B 287
                                          70.734
                                                  20.169
                                                          1.00 45.53
ATOM
      11650
             CA
                  LEU B 287
                             68.146
                                          71.147
                                                  18.708
                                                          1.00 46.81
             CB
ATOM
      11652
                  LEU B 287
                             67.771
                                          70.161
                                                  17.597
                                                          1.00 49.54
ATOM
      11655
             CG
                                          69.594
                                                  17.798
                                                          1.00 51.62
                                                                                 С
ATOM
      11657
             CD1 LEU B 287
                             66.356
                                                                                 С
             CD2 LEU B 287
                                          70.842
                                                  16.253
                                                          1.00 48.78
                                 67.911
ATOM
      11661
                  LEU B 287
                                 68.432
                                                  20.432
                                                          1.00 43.23
                                                                                С
                                          69.346
MOTA
      11665
             C
                                                          1.00 44.79
                                                                                 0
                                          68.412
                                                  20.536
ATOM
      11666
             0
                  LEU B 287
                                 67.674
                                                                                N
                                          69.221
                                                  20.521
                                                          1.00 44.08
ATOM
      11667
             N
                  GLU B 288
                                 69.745
                                                                                0000
                                                          1.00 45.36
ATOM
      11669
             CA
                  GLU B 288
                                 70.380
                                          67.951
                                                  20.843
ATOM
      11671
             СВ
                  GLU B 288
                                 71.890
                                          68.140
                                                  20.962
                                                          1.00 46.06
              CG
                  GLU B 288
                                 72.649
                                          68.211
                                                  19.659
                                                          1.00 47.63
ATOM
      11674
                                          68.470
                                                          1.00 55.24
1.00 55.65
ATOM
      11677
             CD
                  GLU B 288
                                 74.135
                                                  19.893
                                                                                 0
                 GLU B 288
                                 74.533
                                          68.781
                                                  21.056
ATOM
      11678
             OE1
                                                                                0
                 GLU B 288
                                 74.914
                                          68.350
                                                  18.920
                                                          1.00 53.00
ATOM
      11679
             OE2
                                                                                С
                  GLU B 288
                                 69.853
                                          67.399
                                                  22.172
                                                          1.00 42.79
ATOM
      11680
             С
                  GLU B 288
                                 69.509
                                          66.210
                                                  22.279
                                                          1.00 42.43
                                                                                 0
ATOM
      11681
             N
                                 69.811
                                          68.274
                                                  23.176
                                                          1.00 39.50
                                                                                N
ATOM
      11682
                  ASN B 289
                                                                                 C
ATOM
      11684
             CA
                 ASN B 289
                                 69.354
                                          67.922
                                                  24.514
                                                          1.00 39.66
ATOM
      11686
             CB
                 ASN B 289
                                 69.491
                                          69.104
                                                  25.458
                                                          1.00 41.74
                                                                                С
                                 70.928
                                          69.473
                                                  25.723
                                                          1.00 44.62
                                                                                 С
      11689
             CG
                 ASN B 289
ATOM
MOTA
      11690
             OD1 ASN B 289
                                 71.248
                                          70.649
                                                  25.959
                                                          1.00 46.06
                                                                                 0
                                          68.473
                                                  25.700
                                                          1.00 38.92
      11691
             ND2 ASN B 289
                                 71.807
ATOM
                                          67.476
                                                  24.531
                                                          1.00 38.63
                                                                                 С
MOTA
      11694
             C
                  ASN B 289
                                 67.919
                                          66.432
                                                  25.091
                                 67.607
                                                          1.00 36.57
MOTA
      11695
             0
                  ASN B 289
                                 67.061
ATOM
      11696
                  THR B 290
                                          68.277
                                                  23.908
                                                          1.00 35.13
             N
                                          68.012
                                                  23.841
                                                          1.00 37.99
                                                                                 С
                 THR B 290
                                 65.639
ATOM
      11698
             CA
                                          69.238
                                                  23.221
                                                          1.00 42.32
                                                                                С
                                 64.888
ATOM
      11700
             СВ
                 THR B 290
                                          70.426
                                                  24,027
                                                          1.00 40.59
                                                                                o
ATOM
      11702
             OG1
                 THR B 290
                                 65.090
                                          69.019
                                                  23,230
ATOM
      11704
             CG2 THR B 290
                                 63.367
                                                          1.00 42.28
                                          66.734
                                                  23.056
                                                                                C
ATOM
      11708
             C
                  THR B 290
                                 65.337
                                                          1.00 36.28
                                          66.051
      11709
                  THR B 290
                                 64.349
                                                  23.311
                                                          1.00 40.63
                                                                                0
                                 66.200
                                          66.383
                                                  22.126
                                                          1.00 34.55
                                                                                N
MOTA
      11710
             N
                  ALA B 291
                                 65.967
                                          65.215
                                                  21.304
                                                          1.00 34.26
      11712
             CA
                 ALA B 291
MOTA
                                          65.312
                                                  20.017
                                                          1.00 35.61
                                                                                С
      11714
             CB
                 ALA B 291
                                 66.757
ATOM
                                          63.942
                                                  22.043
                                                          1.00 35.81
ATOM
      11718
             С
                 ALA B 291
                                 66.323
                                          62.982
                                                  21.945
                                                          1.00 38.84
      11719
             0
                 ALA B 291
                                 65.584
ATOM
                                          63.915
                                                  22.765
                                                          1.00 37.82
      11720
                 VAL B 292
                                 67.449
ATOM
      11722
             CA
                 VAL B 292
                                 67.804
                                         62.729
                                                  23.566
                                                          1.00 39.60
ATOM
                                 69.249 62.741
                                                 24.163
                                                          1.00 42.13
```

- :1

268

286

286

385

336

1117

ATOM

11724

CB

VAL B 292

|               |                  |          |            |   |            |                  | •                |                  |      |                |          |
|---------------|------------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|----------|
|               |                  |          |            |   | •          |                  | Figu             | ure 5            |      |                |          |
| MOTA          | 11726            |          | VAL        |   |            | 70.281           | 62.701           | 23.054           |      | 44.63          | С        |
| MOTA          | 11730            |          | VAL        |   |            | 69.491           | 63.927           | 25.055           |      | 44.95          | C        |
|               | 11734            | C        |            |   | 292        | 66.812           | 62.494           | 24.687           |      | 36.96          | C<br>0   |
| MOTA<br>MOTA  | 11735<br>11736   | o<br>N   |            |   | 292<br>293 | 66.443<br>66.359 | 61.340<br>63.576 | 24.951<br>25.317 |      | 37.80<br>34.96 | N        |
| MOTA          | 11738            | CA       |            |   | 293        | 65.292           | 63.501           | 26.327           |      | 36.11          | Ċ        |
| MOTA          | 11740            | СВ       |            |   | 293        | 64.866           | 64.896           | 26,830           |      | 40.30          | С        |
| MOTA          | 11743            | CG       |            |   | 293        | 65.871           | 65.530           | 27.833           |      | 46.08          | С        |
| ATOM          | 11744            |          | ASP        |   |            | 65.622           | 66.687           | 28.247           |      | 51.67          | 0        |
| MOTA<br>MOTA  | 11745            |          | ASP        |   | 293<br>293 | 66.931<br>64.080 | 64.995<br>62.770 | 28.256<br>25.758 |      | 50.65<br>33.25 | 0        |
| ATOM          | 11746 ·<br>11747 | С<br>0   |            |   | 293        | 63.503           | 61.921           | 26.429           |      | 35.77          | ő        |
| ATOM          | 11748            | N        |            |   | 294        | 63.714           | 63.069           | 24.512           |      | 32.63          | N        |
| ATOM          | 11750            | CA       |            |   | 294        | 62.539           | 62.446           | 23.893           |      | 32.76          | . с      |
| ATOM          | 11752            | CB       |            |   | 294        | 62.115           | 63.106           | 22.578           |      | 32.03          | · c      |
| MOTA<br>MOTA  | 11755<br>11757   | CG       | TEA        |   | 294        | 61.636<br>61.312 | 64.550<br>65.047 | 22.704<br>21.340 |      | 32.83<br>35.84 | c        |
| ATOM          | 11761            |          | LEU        |   |            | 60.423           | 64.685           | 23.609           |      | 37.92          | č        |
| ATOM          | 11765            | c        |            |   | 294        | 62.787           | 61.004           | 23.650           |      | 33.41          | С        |
| ATOM          | 11766            | 0        | LEU        |   |            | 61.912           | 60.196           | 23.972           |      | 41.06          | 0        |
| ATOM          | 11767            | N        |            |   | 295        | 63.958           | 60.665           | 23.101           |      | 30.96          | N<br>C   |
| MOTA<br>MOTA  | 11769<br>11771   | CA<br>CB |            |   | 295<br>295 | 64.358<br>65.735 | 59.248<br>59.075 | 22.995<br>22.356 |      | 29.64<br>31.56 | č        |
| ATOM          | 11774            | CG       |            |   | 295        | 65.719           | 59.187           | 20.868           |      | 32.04          | Ċ        |
| ATOM          | 11775            | CD1      | PHE        |   |            | 65.210           | 58.157           | 20.093           |      | 35.06          | С        |
| ATOM          | 11777            |          | PHE        |   |            | 65.163           | 58.273           | 18.704           |      | 37.76          | C        |
| ATOM          | 11779            | CZ       |            |   | 295        | 65.620           | 59.440           | 18.094<br>18.877 |      | 38.09          | c<br>c   |
| MOTA<br>MOTA  | 11781<br>11783   |          | PHE        |   |            | 66.112<br>66.152 | 60.479<br>60.350 | 20.245           |      |                | č        |
| ATOM          | 11785            | C        |            |   | 295        | 64.337           | 58.545           | 24.334           |      |                | Ċ        |
| ATOM          | 11786            | 0        |            |   | 295        | 63.928           | 57.414           | 24.406           |      |                | 0        |
| MOTA          | 11787            | N        |            |   | 296        | 64.740           | 59.222           | 25.398           |      |                |          |
| ATOM          | 11789            | CA       |            |   | 296        |                  | 58.574           | 26.689           |      |                | , C      |
| MOTA<br>MOTA  | 11792<br>11793   | С<br>О   |            |   | 296<br>296 | 63.595<br>63.279 | 58.343<br>57.231 | 27.381<br>27.804 |      |                | o ·      |
| ATOM          | 11794            | N        |            |   | 297        | 62.822           | 59.412           | 27.484           |      |                | N        |
| ATOM          | 11796            | CA       |            |   | 297        | 61.443           | 59.350           | 27.982           |      |                | C        |
| MOTA          | 11798            | CB       |            |   | 297        | 60.931           | 60.767           | 28.192           |      |                | C        |
| ATOM          | 11802            | C        |            |   | 297        | 60.481<br>59.552 | 58.587<br>57.909 | 27.054<br>27.517 |      |                | C        |
| ATOM<br>ATOM  | 11803<br>11804   | o<br>N   |            |   | 297<br>298 | 60.700           | 58.707           | 25.750           |      |                | N        |
| ATOM          | 11806            | CA       |            |   | 298        | 59.826           | 58.084           | 24.764           |      | 38.35          | . с      |
| ATOM          | 11809            | С        |            |   | 298        | 59.868           | 56.559           | 24.683           |      | 40.65          | C        |
| ATOM          | 11810            | 0        |            |   | 298        | 58.929           | 55.921           | 24.213           |      | 44.58          | . 0<br>เ |
| ATOM<br>ATOM  | 11811            | N<br>CA  |            |   | 299<br>299 | 60.939<br>61.261 | 55.964<br>54.609 | 25.180<br>24.819 |      | 41.30<br>39.38 | . C      |
| ATOM          | 11813<br>11815   | CB       |            |   | 299        | 62.721           | 54.580           | 24.380           |      | 42.34          | · č      |
| ATOM          | 11817            |          | THR        |   |            | 62.832           | 55.317           | 23.156           | 1.00 | 39.13          | 0        |
| ATOM          | 11819            |          | THR        |   |            | 63.150           | 53.174           | 23.977           |      | 49.10          | C        |
| ATOM          | 11823            | C        |            |   | 299        | 60.983           | 53.596           | 25.907           |      | 36.34          | . C      |
| ATOM.<br>ATOM | 11824<br>11825   | O<br>N   |            |   | 299<br>300 | 60.170<br>61.641 | 52.707<br>53.730 | 25.712<br>27.050 |      | 34.64<br>35.94 | . 0      |
| ATOM          | 11827            | CA       |            |   | 300        | 61,613           | 52.681           | 28.083           |      | 37.68          | C        |
| ATOM          | 11829            | CB       | GLU        |   |            | 62.491           |                  |                  |      | 40.99          | С        |
| ATOM          | 11832            | CG       |            |   | 300        | 63.204           | 52.004           | 30.093           |      | 49.09          | C        |
| ATOM<br>ATOM  | 11835<br>11836   | CD       | GLU<br>GLU |   | 300        | 62.596<br>62.105 | 50.591<br>50.215 | 30.159<br>31.266 |      | 59.54<br>67.68 | C        |
| ATOM          | 11837            |          | GLU        |   |            | 62.689           | 49.812           | 29.160           |      | 62.82          | ő        |
| ATOM          | 11838            | C        |            |   | 300        | 60.206           | 52.399           | 28.595           |      | 37.09          | c        |
| MOTA          | 11839            | 0        |            |   | 300        | 59.773           | 51.250           | 28.609           |      | 31.01          | 0        |
| MOTA          | 11840            | N        |            |   | 301        | 59.513           | 53.460           | 29.033           |      | 39.14          | N        |
| MOTA<br>MOTA  | 11842<br>11844   | CA<br>CB | THR        |   | 301        | 58.242<br>57.775 | 53.341<br>54.719 | 29.754<br>30.265 |      | 34.02<br>38.10 | C        |
| ATOM          | 11846            |          | THR        |   |            | 58.874           | 55.474           | 30.790           |      | 37.56          | ō        |
| ATOM          | 11848            |          | THR        |   |            | 56.900           | 54.563           | 31.463           |      | 37.75          | С        |
| ATOM          | 11852            | C        | THR        | B | 301        | 57.196           | 52.785           | 28.829           |      | 32.36          | c        |
| MOTA          | 11853            | 0        | THR        |   |            | 56.371           | 51.956           | 29.209           |      | 29.01          | O<br>N   |
| ATOM<br>ATOM  | 11854<br>11856   | N        | THR        |   |            | 57.256<br>56.313 | 53.234<br>52.792 | 27.583<br>26.596 |      | 29.12<br>27.50 | N<br>C   |
| ATOM          | 11858            | CA<br>CB | THR        |   |            | 56.313<br>56.533 | 53.584           | 25.340           |      | 29.87          | . c      |
| ATOM          | 11860            |          | THR        |   |            | 56.649           | 54.990           | 25.649           | 1.00 | 29.74          | . 0      |
| ATOM          | 11862            | CG2      | THR        | В | 302        | 55.344           | 53.450           | 24.436           |      | 29.39          | C        |
| MOTA          | 11866            | С        |            |   | 302        | 56.545           | 51.317           | 26.321           |      | 29.80          | C        |
| ATOM<br>ATOM  | 11867<br>11868   | 0        | THR        |   |            | 55,609           | 50.512           | 26.189<br>26.238 |      | 25.37<br>32.48 | 0<br>N   |
| ATOM          | 11870            | N<br>CA  |            |   | 303<br>303 | 57.827<br>58.256 | 50.973<br>49.640 | 25.825           |      | 31.83          | Č        |
|               |                  |          | المتدن     | _ | 505        | 55.255           |                  |                  |      |                | •        |

 $C_{\alpha}(x) = -\epsilon$ 

100 E 514 J

adings Market Mark

```
Figure 5
                                 59.763 49.619 25.566
                                                          1.00 32.59
ATOM 11872 CB SER B 303
                 SER B 303
                                  60.190
                                         48.319 25.210
                                                          1.00 39.59
ATOM
      11875
             OG
                  SER B 303
                                  57.885
                                          48.686 26.933
                                                          1.00 28.96
ATOM
      11877
             С
                                  57.309
                                          47.627
                                                  26.713
                                                           1.00 26.94
MOTA
      11878
             0
                  SER B 303
                 THR B 304
                                  58.168
                                         49.120
                                                  28.144
                                                          1.00 31.19
ATOM
      11879
             N
             CA
                 THR B 304
                                  57.878
                                          48.351
                                                  29.338
                                                           1.00 33.09
                                                                                 C
      11881
ATOM
                                         49.102
                                                  30.527
                                                           1.00 30.24
                                                                                 C
                 THR B 304
                                  58.431
             CB
ATOM
      11883
             OG1 THR B 304
                                  59.851
                                          49.180
                                                  30.372
                                                           1.00 31.10
                                                                                 ٥
      11885
ATOM
                                                  31.795
                                                           1.00 29.39
                                                                                 С
             CG2 THR B 304
                                  58.231
                                          48.338
ATOM
      11887
                                                  29.493
                  THR B 304
                                  56.385
                                                           1.00 34.08
                                                                                 С
      11891
                                          48.114
ATOM
             C
                                                  29.718
                  THR B 304
                                 55.955
                                          46.989
                                                           1.00 30.20
ATOM
      11892
             0
                                          49.185
                  THR B 305
                                  55.609
                                                  29.335
                                                           1.00 34.68
                                                                                 N
ATOM
      11893
             N
                 THR B 305
                                  54.168
                                          49.103
                                                  29.417
                                                           1.00 31.71
MOTA
      11895
             CA
                 THR B 305
                                         50.476
                                                  29.099
                                                           1.00 35.82
                                                                                 С
                                  53.581
MOTA
      11897
             CB
                                         51.383
50.460
                                                  30.148
                                                           1.00 35.93
                                  53.943
ATOM
      11899
             OG1 THR B 305
                                  52.052
                                                  29.136
                                                           1.00 36.37
             CG2 THR B 305
MOTA
      11901
                                          48.040
                                                           1.00 30.11
                                  53.646
                                                  28.468
ATOM
      11905
             Ç
                 THR B 305
                                                  28.888
                                                           1.00 28.55
                                  52.867
      11906
             0
                  THR B 305
                                          47.184
ATOM
                                                  27.210
                                                           1.00 28.89
      11907
             N
                  LEU B 306
                                  54.107
                                          48.069
ATOM
                                                           1.00 30.27
                                  53.702
                                          47.077
                                                  26.212
                 LEU B 306
ATOM
      11909
             CA
                                                           1.00 29.29
                                                  24.904
             СВ
                 LEU B 306
                                  54.413
                                          47.294
ATOM
      11911
                                                           1.00 33.32
                                                  24.154
                 LEU B 306
                                  54.085
                                          48.565
ATOM
      11914
             CG
                                                           1.00 33.01
             CD1 LEU B 306
                                  55.001
                                          48.641
                                                  22.935
ATOM
      11916
                                                  23.749
                                                           1.00 36.01
             CD2 LEU B 306
                                  52.619
                                          48.591
MOTA
      11920
                                                           1.00 33.86
ATOM
      11924
             С
                  LEU B 306
                                  54.016
                                          45.665
                                                  26.643
                                                          1.00 32.27
      11925
                  LEU B 306
                                  53.185
                                          44.766
                                                  26.508
ATOM
                                  55.237
                                          45.479
                                                  27.137
                                                           1.00
                                                                35.00
      11926
             N
                  ARG B 307
ATOM
                                  55.727
                                          44.163
                                                  27.539
                                                           1.00 34.66
                                                                                 С
                 ARG B 307
      11928
             CA
ATOM
                                                           1.00 36.21
                                  57.199
                                          44.263
                                                  27.967
                                                                                : C
      11930
             СВ
                 ARG B 307
                                                          1.00 36.21 C
1.00 37.82 C
1.00 40.56:24 22 N
1.00 40.58 C
1.00 40.84 C
1.00 42.42 N
1.00 51.90 C
1.00 31.61 C
1.00 30.70
MOTA
                                          42.945
                                                  27.982
                 ARG B 307
                                  57.992
      11933
             CG
ATOM
                                          43.017
                                                  28.866
                 ARG B 307
                                  59.269
ATOM
      11936
             CD
                                                  28.667
                 ARG B 307
                                  59.920
                                          44.310
      11939
             NE
MOTA
             CZ ARG B 307
                                          44.938
                                                  29.534
                                  60.687
      11941
MOTA
             NH1 ARG B 307
                                  60.978
                                          44.415
                                                  30.706
ATOM
      11942
             NH2 ARG B 307
                                  61.169
                                          46.131
                                                  29.215
MOTA
      11945
                                  54.882
                                          43.659
                                                  28.687
                  ARG B 307
ATOM
      11948
             С
                                                                         . . . 0
                                                           1.00 30.70.
1.00 29.66
                                          42.486
                                                  28.757
                                  54.512
                  ARG B 307
                                                          1.00 29.66 1 10 10 N
1.00 28.76 1 10 C
1.00 25.72 1 10 10 C
1.00 26.21 1 10 C
1.00 28.70
ATOM
      11949
              0
                                  54.554
                                          44.568
                                                  29.585
ATOM
      11950
             N
                  TYR B 308
                                                   30.731
                                  53.749
      11952
             CA TYR B 308
                                          44.213
ATOM
                                                  31.784
      11954
              CB
                 TYR B 308
                                  53.806
                                          45.291
ATOM
                                                  33.181
              CG TYR B 308
                                  54.023
                                          44.774
ATOM
      11957
                                                           1.00 28.70
MOTA
      11958
              CD1 TYR B 308
                                  54.825
                                          45.476
                                                  34.081
                                                  35.373
                                                           1.00 29.67
              CE1 TYR B 308
                                  55.008
                                          45.015
      11960
ATOM
                                  54.384
                                          43.851
                                                  35.771
                                                           1.00 28.76
ATOM
      11962
              C2 TYR B 308
                                  54.544
                                          43.390
                                                  37.052
                                                           1.00 31.06
      11963
              OH
                  TYR B 308
MOTA
                                  53.583
              CE2 TYR B 308
                                          43.143
                                                  34.895
                                                           1.00 27.23
MOTA
      11965
              CD2 TYR B 308
                                  53.409
                                          43.602
                                                  33.619
                                                           1.00 24.46
      11967
MOTA
                  TYR B 308
                                          43.949
                                                  30.302
                                                           1.00 30.66
      11969
                                  52.318
              С
ATOM
                                          43.038
                                                                                 0
      11970
                  TYR B 308
                                  51.669
                                                  30.818
                                                          1.00 29.93
              0
ATOM
                                          44.690
                                                  29.307
                                                           1.00 29.89
                                                                                 N
      11971
                  ALA B 309
                                  51.847
MOTA
              N
                                                                                 С
                 ALA B 309
                                          44.434
                                                  28.780
                                                           1.00 29.36
ATOM
      11973
              CA
                                  50.514
                                                                                 C
                                          45.459
                                                  27.704
                                                           1.00 28.43
      11975
                 ALA B 309
                                  50.156
MOTA
              CB
                                                                                 C
                                          42.992
                                                  28.267
                                                           1.00 27.41
ATOM
      11979
              С
                  ALA B 309
                                  50.369
                                          42.324
                                                  28.581
                                                           1.00 31.07
                                                                                 ٥
      11980
                  ALA B 309
                                  49.407
              0
ATOM
                  LEU B 310
                                  51.336
                                          42.504
                                                   27.510
                                                          1.00 30.30
                                                                                 N
      11981
ATOM
             N
                  LEU B 310
                                  51.239
                                          41.177
                                                   26.910
                                                           1.00 34.64
              CA
      11983
ATOM
                                                           1.00 36.77
                                                                                 C
                                  52.322
                                          40.978
                                                   25.859
      11985
                 LEU B 310
ATOM
              ÇВ
                                                  24.682
                                  52.346
                                          41.950
                                                           1.00 41.03
                                                                                 С
                 LEU B 310
ATOM
      11988
              CG
                                                   23.758
                                                           1.00 45.14
                                                                                 С
                                          41.591
                                  53.507
ATOM
      11990
              CD1 LEU B 310
                                  51.043
                                                           1.00 43.92
                                                                                 С
                                          41.895
                                                   23.918
MOTA
      11994
              CD2 LEU B 310
                                                           1.00 35.87
                                          40.072
                                                   27.953
                                  51.373
ATOM
      11998
              С
                  LEU B 310
                                                                                 0
                                  50.812
                                          38.980
                                                  27.799
                                                           1.00 35.84
      11999
              0
                  LEU B 310
ATOM
                                          40.349
                                                  29.006
                                                          1.00 35.80
      12000
                  LEU B 311
                                  52.126
ATOM
              N
                                          39.399
                                                   30.094
                                                           1.00 36.94
      12002
                  LEU B 311
                                  52.242
ATOM
              CA
                                                  31.127
                                                           1.00 36.49
                                          39.893
                                  53.263
ATOM
      12004
              СВ
                  LEU B 311
                                          38.985
                                                   32.360
                                                          1.00 31.37
ATOM
      12007
              CG
                  LEU B 311
                                  53.419
                                          37.527
      12009
              CD1 LEU B 311
                                  53.669
                                                   31.963
                                                          1.00 27.26
ATOM
                                  54.530
                                          39.506
                                                   33.221
                                                          1.00 28.96
      12013
              CD2 LEU B 311
ATOM
                                          39.217
                                                  30.761
                                                          1.00 37.08
                                  50.881
      12017
                  LEU B 311
ATOM
              С
                                          38.113
                                                  31.090
                                                          1.00 34.60
                                  50.458
      12018
                  LEU B 311
ATOM
              Ω
                                          40.331
                                                  30.951 1.00 40.08
                                  50.197
      12019
ATOM
              N
                  LEU B 312
                                          40.336
                                                   31.622
                                                          1.00 37.31
                                  48.907
ATOM
      12021
              CA
                 LEU B 312
                                          41.773
                                                   31.969
                                                          1.00 31.54
                                  48.531
      12023
ATOM
              CB
                 LEU B 312
                                          42.307
                                                   33.110
                                                          1.00 29.55
                                  49.375
ATOM
      12026
              CG
                 LEU B 312
ATOM
                                  49.316
                                          43.825
                                                   33.214
                                                           1.00 32.48
      12028
              CD1 LEU B 312
                                  48.962
                                          41.682
                                                          1.00 31.10
ATOM
      12032
              CD2 LEU B 312
```

. . . . .

```
Figure 5
                                47.849 39.680 30.738
                                                        1.00 36.05
ATOM 12036 C
               LEU B 312
                                                        1.00 36.18
                                        39.065
                                                31.222
                 LEU B 312
                                46.928
     12037
            0
MOTA
                                                        1.00 39.14
                                        39.794
                                                29.435
                LEU B 313
                                48.019
     12038
           N
ATOM
                                                        1.00 42.67
                                                28.479
                              47.069
                                        39.238
     12040 CA LEU B 313
MOTA
                                                                              С
                                                        1.00 42.81
                                                27.145
                                        40.006
                LEU B 313
                                47.190
            CB
MOTA
     12042
                                                        1.00 40.03
                LEU B 313
                                46.751
                                        41.485
                                                27.133
             CG
MOTA
     12045
                                                        1.00 41.13
                                                                              С
                                47.175
                                        42.174
                                                25.866
            CD1 LEU B 313
ATOM
     12047
                                                                              C
                                                        1.00 44.82
                                                27,238
             CD2 LEU B 313
                                 45.268
                                        41.614
MOTA
     12051
                                                                              C
                                                        1.00 42.64
                                 47.299
                                        37.718
                                                28.321
                LEU B 313
MOTA
     12055
             C
                                                        1.00 42.54
                                                                              0
                                        36.958
                                                28.003
                 T.F.D B 313
                                 46.383
     12056
             ٥
ATOM
                                                        1.00 44.31
                                                                              N
                                        37.279
                                                28.575
                                48.526
                 LEU B 314
     12057
             N
ATOM
                                                        1.00 42.72
                                        35.851
                                                28.721
             CA LEU B 314
                                 48.806
      12059
ATOM
                                                        1.00 42.99
                                        35.588
                                                28.820
                                50.296
      12061
             СВ
                LEU B 314
MOTA
                                                        1.00 42.56
                                51.105
                                        35.540
                                                27.552
                LEU B 314
             CG
ATOM
      12064
                                                                              C
                                52.547
                                        35.323
                                                 27.968
                                                        ,1.00 45.60
             CD1 LEU B 314
MOTA
      12066
                                                 26.621
                                                        1.00 42.23
                                 50.623
                                        34.435
ATOM
      12070
             CD2 LEU B 314
                                                        1.00 38.88
                                 48.191
                                        35.301
                                                 29.982
ATOM
      12074
                 LEU B 314
                                                 29.942
                                                        1.00 42.25
                                 47.608
                                        34.251
      12075
                 LEU B 314
ATOM
                                        35.994
                                                 31.101
                                                        1.00 39.20
                                 48.360
      12076
                 LYS B 315
ATOM
             N
                                                 32.380
                                                        1.00 45.28
                                 47.841
                                        35.510
             CA
                 LYS B 315
MOTA
      12078
                                                33.576
                                        36.308
                                                        1.00 44.53
                                 48.381
                 LYS B 315
ATOM
      12080
             CB
                                        35.784
                                                 34.910
                                                         1.00 47.88
                                 47.820
                 LYS B 315
      12083
             CG
ATOM
                                        36.014
                                                 36.067
                                                         1.00 52.84
                                 48.754
                 LYS B. 315
      12086
             CD
ATOM
                                        35.219
33.783
                                                 37.306
                                                        1.00 56.01
                                 48.343
                 LYS B 315
      12089
             CE
ATOM
                                                37.264
                                                        1.00 57.08
                                 48.780
      12092
             NZ
                 LYS B 315
ATOM
                                        35.526
34.706
                                                32.433
                                                        1.00 46.86
                                 46.317
      12096
             С
                 LYS B 315
ATOM
                                                                              0
                                                33.127
                                                        1.00 48.68
                 LYS B 315
                                 45.714
ATOM
      12097
             0
                                                                              N
                                        36.457
                                                 31.704
                                                         1.00 48.03
                                 45.707
                 HIS B 316
      12098
             N
ATOM
                                                31.738
                                                                              C
                                                         1.00 47.77
                                        36.652
                                 44.263
             CA
                 HIS B 316
      12100
ATOM
                                                                              С
                                                32.287
                                                         1.00 44.95
                                 43.942
                                        38.042
                                                                              HIS B 316
             СВ
ATOM
      12102
                                                         1.00 43.68
                                                33.654
                                 44.509
                                         38.299
                 HIS B 316
ATOM
      12105
             CG
                                                         1.00 43.30
                                                34.810
                                 43.828
                                        38.000
             ND1 HIS B 316
ATOM
      12106
                                                         1.00 41.75
                                                35.858
                                 44.555
                                         38.355
             CE1 HIS B 316
ATOM
      12108
                                                        1.00 40.58
                                 45.692 38.866
             NE2 HIS B 316
                                                35.422
ATOM
      12110
                                                        1.00 44.83
                                 45.690
                                        38.839
                                                34.048
      12112 CD2 HIS B 316
MOTA
                                                        1.00 49.33
                               43.668
                                        36.396
                                                30.331
                 HIS B 316
      12114.
             С
ATOM
                                                        1.00 48.74
                                        37.316
                                                29.609
                                 43.322
                  HIS B 316
ATOM
      12115 O
                                                        1.00 54.10
                                 43.583 35.128
                                                29.928
ATOM
      12116
             N
                  PRO B 317
                                                28.603
                                                        1.00 54.52
                                 43.051 34.795
      12117
             CA
                  PRO B 317
ATOM
                                        33.267
                                                28.551
                                                        1.00 52.87
                                 43.166
      12119
                  PRO B 317
ATOM
             CB.
                                 43.252
                                         32.840
                                                 29.956
                                                         1.00 51.93
             CG
                  PRO B 317
ATOM
      12122
                                                                               С
                                        33.913
                                                         1.00 52.95
                                 43.999
                                                 30.664
 ATOM
       12125
             CD
                  PRO B 317
                                                                               С
                                        35.237
35.526
                                 41.611
                                                 28.405
                                                         1.00 56.08
                  PRO B 317
 ATOM
       12128
                                                                               0
                                                 27.283
                                                         1.00 54.33
                                 41.263
                  PRO B 317
 ATOM
       12129
                                                                               N
                                         35.274
                                                 29.455
                                                         1.00 59.96
                                 40.796
                  GLU B 318
 ATOM
       12130
             N
                                 39.414 35.761
38.701 35.644
38.151 34.262
                                                         1.00 62.84
                                                                               C
                                                 29.342
       12132
             CA
                  GLU B 318
 ATOM
                                                                               С
                                                         1.00 68.33
                                                 30.684
       12134
             CB
                  GLU.B 318
 ATOM
                                                         1.00 75.43
                                                                               C
                                                 30.985
                  GLU B 318
       12137
              CG
 ATOM
                                                                               C
                                 38.009 34.018
                                                 32.479
                                                         1.00 82.96
             CD
                  GLU B 318
       12140
 MOTA
                                                 32.859
                                                         1.00 87.35
                                                                               0
                                 37.444 32.967
              OE1 GLU B 318
 ATOM
       12141
                                 38.468 34.876
                                                                               0
                                                 33.278
                                                         1.00 88.63
              OE2
                  GLU B 318
 MOTA
       12142
                                                 28.916
                                                         1.00 57.99
                                 39.334 37.226
                  GLU B 318
 MOTA
       12143
              С
                                                         1.00 59.79
                                                                               0
                                 38.493 37.612 28.107
              O
                  GLU B 318
 MOTA
       12144
                                  40.190 38.041 29.509
                                                         1.00 51.89
                  VAL B 319
       12145
              N
 MOTA
                                                                               ¢
                                                 29.173
                                                         1.00 48.11
                  VAL B 319
                                  40.272 39.445
 ATOM
       12147
              CA
                                                         1.00 46.50
                                                 30.052
                                  41.300
                                         40.141
                  VAL B 319
 MOTA
       12149
              CB
                                                         1.00 44.79
                                         41.600 29.593
                                  41.499
              CG1 VAL B 319
 MOTA
       12151
                                                         1.00 45.81
                                                 31.526
                                  40.879
                                         40.055
              CG2 VAL B 319
 MOTA
       12155
                                                         1.00 47.51
1.00 48.97
                                  40.693 39.612 27.717
                  VAL B 319
 MOTA
       12159
              С
                                                 26.960
                                         40.395
                                  40.116
       12160
              0
                  VAL B 319
 MOTA
                                                 27.322
                                                         1.00 43.71
                                  41.704
                                         38.865
                  THR B 320
 MOTA
       12161
              N
                                                         1.00 43.54
                                         38.929
                                                 25.960
                  THR B 320
                                  42.178
       12163
              CA
 ATOM
                                                 25.839
                                                         1.00 42.83
                                         38.018
                                  43.376
       12165
              CB
                  THR B 320
 MOTA
                                  44.453
                                         38.628
                                                 26.557
                                                         1.00 45.66
              OG1 THR B 320
       12167
 ATOM
                                  43.879
                                         37.889
                                                  24.397
                                                          1.00 39.81
       12169
                  THR B 320
 MOTA
              CG2
                                         38.610
                                                  24.930
                                                         1.00 42.70
                                  41.099
 ATOM
       12173
              С
                  THR B 320
                                         39.275
                                                  23.909
                                                          1.00 44.80
       12174
              0
                  THR B 320
                                  40.999
 ATOM
                                  40.272 37.614
                                                  25.207
                                                          1.00 44.93
 ATOM
       12175
                  ALA B 321
              N
                                                          1.00 46.10
                                         37.196
                                                  24.249
                                  39.246
       12177
                  ALA B 321
 MOTA
              CA
                                         35.905
                                                  24.674
                                                          1.00 44.12
                                  38.593
                  ALA B 321
       12179
 ATOM
              CR
                                                          1.00 46.26
                                         38.279
                                                  24.066
                                  38.196
                  ALA B 321
 MOTA
       12183
              C
                                          38.527
                                                  22.933
                                                          1.00 48.24
                                  37.777
 ATOM
       12184
              O
                  ALA B 321
                                                          1.00 43.98
                                          38.925
                                                  25.160
                                  37.786
                  LYS B 322
  MOTA
       12185
              N
                                                  25.067
                                                          1.00 46.B1
                                                                               C
                                          40.016
                                  36.810
  ATOM
       12187
              CA
                  LYS B 322
                                                          1.00 46.38
                                  36.374
                                          40.502
                                                  26.451
       12189
              Св
                  LYS B 322
  ATOM
                                                         1.00 48.81
                                         39.603 27.114
                                  35.365
       12192
              CG
                  LYS B 322
  ATOM
```

|              |                 |            |       |     |                  | Fig              | ıre 5            |         |      |        |
|--------------|-----------------|------------|-------|-----|------------------|------------------|------------------|---------|------|--------|
| ATOM         | 12195           | CD         | LYS B | 322 | 34.779           | 40.262           | 28.355           | 1.00 52 | .57  | С      |
| ATOM         | 12198           | CE         | LYS B |     | 34.453           | 39.232           | 29.420           | 1.00 54 |      | С      |
| ATOM         | 12201           | NZ         | LYS B |     | 33.454           | 39.784           | 30.380           | 1.00 60 |      | N      |
| ATOM         | 12205<br>12206  | C          | LYS B |     | 37.344<br>36.594 | 41.189<br>41.794 | 24.227<br>23.442 | 1.00 44 |      | C      |
| ATOM<br>ATOM | 12207           | N<br>O     | VAL B |     | 38.633           | 41.488           | 24.396           | 1.00 41 |      | N      |
| MOTA         | 12209           | CA         | VAL B |     | 39.326           | 42.478           | 23.570           | 1.00 37 |      | C      |
| ATOM         | 12211           | CB         | VAL B |     | 40.786           | 42.689           | 24.034           | 1.00 32 |      | С      |
| MOTA         | 12213           |            | VAL B |     | 41.588           | 43.486           | 23.006           | 1.00 31 |      | C      |
| ATOM         | 12217           |            | VAL B |     | 40.806<br>39.325 | 43.381<br>42.062 | 25.366<br>22.096 | 1.00 31 |      | C      |
| atom<br>atom | 12221<br>12222  | 0          | VAL B |     | 39.181           |                  | 21.194           | 1.00 42 |      | ŏ      |
| ATOM         | 12223           | N          | GLN B |     | 39.499           | 40.780           | 21.833           | 1.00 40 |      | N      |
| ATOM         | 12225           | CA         | GLN B | 324 | 39.479           | 40.345           | 20.452           | 1.00 42 |      | С      |
| . ATOM       | 12227           | CB         | GLN B |     | 40.108           | 38.955           | 20.272           | 1.00 41 |      | C      |
| ATOM         | 12230           | CG<br>CD   | GLN B |     | 41.589<br>42.383 | 39.059<br>37.785 | 19.908<br>20.114 | 1.00 40 |      | c      |
| ATOM<br>ATOM | 12233<br>12234  |            | GLN B |     | 43.375           | 37.566           | 19.429           | 1.00 44 |      | ŏ      |
| ATOM         | 12235           | NE2        |       |     | 41.965           | 36.956           | 21.064           | 1.00 43 | .10  | N      |
| ATOM         | 12238           | C          | GLN B |     | 38.068           | 40.466           | 19.861           | 1.00 45 |      | C      |
| ATOM         | 12239           | 0          | GLN B |     | 37.965           | 40.738           | 18.664           | 1.00 45 |      | N<br>N |
| ATOM<br>ATOM | 12240<br>12242  | N<br>CA    | GLU B |     | 37.005<br>35.609 | 40.312<br>40.424 | 20.680<br>20.186 | 1.00 51 |      | c      |
| ATOM         | 12242           | CB         | GLU B |     | 34.546           | 40.171           | 21.272           | 1.00 57 |      | č      |
| ATOM         | 12247           | CG         | GLU B |     | 34.251           | 38.717           | 21.651           | 1.00 64 |      | С      |
| ATOM         | 12250           | CD         | GLU B |     | 33.438           | 38.589           | 22.967           | 1.00 71 |      | C      |
| MOTA         | 12251           |            | GLU B |     | 33.973           | 38.078           | 23.999           | 1.00 70 |      | 0      |
| MOTA<br>MOTA | 12252<br>12253  | COES       | GLU B |     | 32.249<br>35.401 | 38.999<br>41.835 | 22.981<br>19.672 | 1.00 74 |      | c      |
| ATOM         | 12254           | õ          | GLU B |     | 34.987           | 42.042           | 18.534           | 1.00 50 |      | ō      |
| ATOM         |                 |            | GLU B |     | 35.694           | 42.803           | 20.533           | 1.00 49 | .00  | N      |
| ATOM         | 12257           |            | GLU B |     | 35.717           | 44.202           | 20.150           | 1.00 49 |      | c      |
| MOTA         | 12259           |            | GLU B |     | 36.263           | 45.071           | 21.289<br>22.424 | 1.00 50 |      | C      |
| ATOM<br>ATOM | 12262<br>12265  | CG         | GLU B |     | 35.263<br>35.499 | 45.269<br>46.535 | 23.218           | 1.00 54 |      | c      |
|              | 12266           |            | GLU B |     | 34.564           | 46.972           | 23.918           | 1.00 55 |      | ō      |
| MOTA         | 12267           |            | GLU B |     | 36.613           | 47.088           | 23.153           | 1.00 57 | . 25 | 0      |
| MOTA         | 12268           | С          | GLU B |     | 36.516           | 44.455           | 18.875           | 1.00 49 |      | Ç      |
| ATOM'        | 12269           | 0          | GLU B |     | 36.063           | 45.207           | 18.010           | 1.00 53 |      | N      |
| ATOM ·       | 12270<br>12272  | N<br>CA    | ILE B |     | 37.686<br>38.459 | 43.840<br>44.071 | 18.729<br>17.515 | 1.00 49 |      | C      |
| ATOM         | 12274           | СВ         | ILE B |     | 39.927           | 43.628           | 17.657           | 1.00 48 |      | C      |
| ATOM         | 12276           |            | ILE B |     | 40.657           | 44.503           | 18.684           | 1.00 44 |      | С      |
| ATOM         | 12279           |            | ILE B |     | 41.939           | 43.879           | 19.216           | 1.00 41 |      | C      |
| ATOM         | 12283<br>12287  |            | ILE B |     | 40.660<br>37.765 | 43.736<br>43.466 | 16.319<br>16.276 | 1.00 45 |      | C      |
| MOTA<br>MOTA | 12288           | C          | ILE B |     | 37.618           | 44.162           | 15.284           | 1.00 53 |      | ō      |
| MOTA         | 12289           | N          | GLU B |     | 37.297           | 42.215           | 16.335           | 1.00 54 |      | N      |
| ATOM         | 12291           | CA         | GLU B |     | 36.585           | 41.605           | 15.193           | 1.00 56 |      | . C    |
| ATOM         | 12293           | CB         | GLU B |     | 36.124<br>37.166 | 40.177           | 15.508<br>15.244 | 1.00 60 |      | C      |
| ATOM<br>ATOM | 12296<br>12299  | CG         | GLU B |     | 37.258           | 39.098<br>38.695 | 13.777           | 1.00 75 |      | č      |
| ATOM         | 12300           |            | GLU B |     | 37.581           | 37.510           | 13.517           | 1.00 80 |      | 0      |
| ATOM         | 12301           |            | GLU B | 328 | 37.020           | 39.551           | 12.878           | 1.00 80 |      | 0      |
| MOTA         | 12302           | C          | GLU B |     | 35.366           | 42.411           | 14.730           | 1.00 56 |      | C      |
| ATOM         | 12303           | 0          | GLU B |     | 35.072<br>34.678 | 42.453<br>43.056 | 13.540<br>15.675 | 1.00 56 |      | N      |
| ATOM<br>ATOM | -12304<br>12306 | N<br>CA    | ARG B |     | 33.396           | 43.706           | 15.427           | 1.00 51 |      | C      |
| ATOM         | 12308           | CB         | ARG B |     | 32.563           | 43.649           | 16.698           | 1.00 53 |      | С      |
| MOTA         | 12311           | CG         | ARG B | 329 | 31.133           | 44.137           | 16.560           | 1.00 53 |      | С      |
| ATOM         | 12314           | CD         | ARG B |     | 30.235           | 43.641           | 17.673           | 1.00 53 |      | C<br>N |
| ATOM         | 12317           | NE         | ARG B |     | 30.943<br>31.198 | 43.662<br>44.760 | 18.948<br>19.666 | 1.00 55 |      | C      |
| ATOM<br>ATOM | 12319<br>12320  | CZ<br>NH1  | ARG B |     | 31.136           | 44.656           | 20.809           | 1.00 53 |      | N      |
| ATOM         | 12323           |            | ARG B |     | 30.786           | 45.958           | 19.256           | 1.00 53 |      | N      |
| ATOM         | 12326           | C          | ARG B | 329 | 33.532           | 45.161           | 14.974           | 1.00 50 |      | C      |
| ATOM         | 12327           | 0          | ARG B |     | 32.888           | 45.562           | 14.015           | 1.00 52 |      | Ŋ      |
| ATOM         | 12328           | N          | VAL B |     | 34.357<br>34.509 | 45.944<br>47.374 | 15.660<br>15.361 | 1.00 45 |      | C      |
| ATOM<br>ATOM | 12330<br>12332  | · CA<br>CB | VAL B |     | 35.063           | 48.148           | 16.584           | 1.00 42 |      | C      |
| ATOM         | 12334           |            | VAL B |     | 35.317           | 49.609           | 16.225           | 1.00 39 | . 33 | С      |
| MOTA         | 12338           |            | VAL B | 330 | 34.125           | 48.036           | 17.771           | 1.00 40 |      | C      |
| MOTA         | 12342           | C          | VAL B |     | 35.473           | 47.618<br>48.561 | 14.195<br>13.396 | 1.00 47 |      | C      |
| ATOM<br>ATOM | 12343           | 0          | VAL B |     | 35.306<br>36.517 | 46.795           | 14.165           | 1.00 45 |      | N      |
| ATOM         | 12344<br>12346  | N<br>CA    | ILE B |     | 37.516           | 46.769           | 13.097           | 1.00 52 |      | C      |
|              |                 | On.        | ם מעד |     |                  |                  |                  |         |      |        |

|   |              |                |          |                            | _           |                  |                  | rure 5                  |                          |          |
|---|--------------|----------------|----------|----------------------------|-------------|------------------|------------------|-------------------------|--------------------------|----------|
|   | ATOM<br>ATOM |                |          |                            |             | 38.943           |                  |                         |                          | Ċ        |
|   | ATOM         |                |          | 31 ILE B 33<br>31 ILE B 33 |             | 39.015<br>40.127 |                  |                         |                          | C        |
|   | ATOM         |                |          | 2 ILE B 33                 |             | 39.999           |                  |                         | 1.00 49.03<br>1.00 50.48 | C        |
|   | ATOM         |                |          | ILE B 33                   |             | 37.365           |                  |                         |                          | c        |
|   | MOTA         | 12362          | 0        | ILE B 33                   |             | 36.986           |                  |                         | 1.00 59.42               | ŏ        |
|   | ATOM         |                |          | GLY B 33                   |             | 37.639           | 45.434           |                         | 1.00 60.33               | N        |
|   | ATOM         |                |          |                            |             | 37.641           |                  |                         |                          | С        |
|   | ATOM<br>ATOM |                |          | GLY B 33                   |             | 38.836           |                  |                         | 1.00 63.78               | C        |
|   | ATOM         |                |          | ARG B 33                   |             | 39.479<br>39.122 |                  | 11.789<br>9.979         | 1.00 57.35<br>1.00 68.79 | O<br>N   |
|   | ATOM         |                |          |                            |             | 40.450           |                  |                         | 1.00 72.05               | C        |
|   | MOTA         | 12374          | CB       |                            |             | 40.386           | 40.178           | 9.658                   | 1.00 75.29               | , č      |
|   | ATOM         |                |          |                            |             | 40.587           | 39.275           | 10.878                  | 1.00 80.45               | Ċ        |
|   | ATOM         |                |          |                            |             | 41.294           |                  |                         |                          | С        |
|   | MOTA<br>MOTA |                |          |                            |             | 40.838           | 36.877           | 11.464                  | 1.00 90.01               | N        |
|   | ATOM         |                |          | ARG B 33<br>1 ARG B 33     |             | 39.666<br>38.771 | 36.235<br>36.541 | 11.364<br>10.418        | 1.00 94.47               | C        |
|   | ATOM         |                |          | 2 ARG B 33                 |             | 39.381           | 35.274           | 12.236                  | 1.00 96.99<br>1.00 95.05 | n<br>n   |
|   | ATOM         |                |          | ARG B 33                   |             | 41.287           |                  | 8.930                   | 1.00.72.07               | c        |
|   | ATOM         | 12393          |          | ARG B 33                   |             | 42.514           | 42.401           | 8.998                   | 1.00 72.21               | ō        |
|   | ATOM         |                |          | ASN B 33                   |             | 40.612           | 43.083           | 7.990                   | 1.00 71.97               | N        |
|   | ATOM<br>ATOM | 12396<br>12398 |          |                            |             | 41.276           |                  | 6.847                   | 1.00 72.04               | · c      |
|   | ATOM         | 12390          | CB<br>CG |                            |             | 40.281<br>39.644 | 43.978<br>42.699 | 5.701<br>5.168          | 1.00 73.89               | C        |
|   | ATOM         | 12402          |          | ASN B 33                   |             | 38.437           |                  | 4.911                   | 1.00 76.22               | C<br>0   |
|   | MOTA         | 12403          |          | 2 ASN B 33                 |             | 40.448           |                  | 5.017                   | 1.00 75.92               | N N      |
|   | ATOM         | 12406          | С        | ASN B 33                   |             | 42.011           |                  | 7.222                   | 1.00 67.53               | Ċ        |
| • | ATOM         | 12407          | 0        | ASN B 33                   | 1           | 43.239           | 45.000           | 7.253                   | 1.00 68.52               | . 0      |
|   | ATOM         | 12408          | N        | ARG B 33                   |             |                  | 46.070           | 7.515                   | 1.00 60.88               | N        |
|   | MOTA MOTA    | 12410<br>12412 | CA<br>CB | ARG B 33:                  |             |                  | 47.364           | 7.515<br>7.779<br>7.668 | 1.00 55.97<br>1.00 54.56 | . с      |
|   | ATOM         | 12415          | CG       | ARG B 33                   |             |                  | 48.529           | 8.684                   | 1.00 51.91               | C<br>C   |
|   | ATOM         | 12418          | CD       | ARG B 33                   |             |                  | 49.796           | 8.621                   | 1.00 54.15               | č        |
|   | ATOM         | 12421          | NE       | ARG B 33                   | <b>i</b>    |                  |                  | 9.892                   | 1.00 55.24               |          |
|   | ATOM         | 12423          | CZ       | ARG B 33                   | <b>i</b> 1. | 38.210           | 50.270           | 10.902                  | 1.00 52.39               | С        |
|   | ATOM         | 12424          | NH:      | L ARG B 33                 | 100         | 37.264           | 49.345           | 10.812                  | 1.00 60.64               | N        |
|   | MOTA<br>MOTA | 12427<br>12430 | C        | 2 ARG B 335                | )           |                  | 50.957           | 12.007                  | 1.00 47.19               | . И      |
|   | ATOM         | 12431          | ŏ        | ARG B 335                  |             | 42.030           | 46.741           | 9.129<br>10.104         | 1.00 54.90<br>1.00 52.17 | C        |
|   | ATOM         | 12432          | N        | SER B 33                   |             | 43.617           |                  | 9.175                   | 1.00 50.64               | . N      |
|   | ATOM         | 12434          | CA       | SER B 336                  | ; ···       | 44.401           |                  | 10.378                  | 1.00 49.64               | Ċ        |
|   | ATOM         | 12436          | CB       | SER B 336                  |             | 45.808           | 49.010           | 10.015                  | 1.00 51.18               | С        |
|   | MOTA         | 12439          | OG       | SER B 336                  |             | 45.860           |                  | 10.001                  | 1.00 52.19               | 0        |
|   | ATOM<br>ATOM | 12441<br>12442 | C        | SER B 336                  |             |                  | 49.419           | 11.374                  | 1.00 45.36               | · с      |
|   | ATOM         | 12442          | N<br>N   | SER B 336<br>PRO B 337     |             | 42.806<br>43.884 | 50.242<br>49.236 | 10.969<br>12.672        | 1.00 44.10<br>1.00 39.02 | 0        |
|   | ATOM         | 12444          | CA       | PRO B 337                  |             | 43.179           | 50.032           | 13.687                  | 1.00 36.79               | N<br>C   |
|   | ATOM         | 12446          | CB       | PRO B 337                  |             |                  | 49.419           | 15.004                  | 1.00 39.79               | č        |
|   | MOTA         | 12449          | CG       | PRO B 337                  |             | 44.065           | 48.018           | 14.604                  | 1.00 41.37               | С        |
|   | ATOM         | 12452          | CD       | PRO B 337<br>PRO B 337     |             | 44.760           | 48.232           | 13.286                  | 1.00 38.31               | С        |
|   | ATOM<br>ATOM | 12455<br>12456 | C<br>O   | PRO B 337                  |             | 43.581           | 51.467<br>51.757 | 13.611                  | 1.00 32.90               | C        |
|   | ATOM         | 12456          |          | PRO B 337<br>CYS B 338     |             | 44.591<br>42.765 |                  | 12.978<br>14.198        | 1.00 31.41               | . 0<br>ห |
|   | MOTA         | 12459          | CA       | CYS B 338                  |             | 43.050           | 53.767           | 14.302                  | 1.00 31.34               | C        |
|   | ATOM         | 12461          | СВ       | CYS B 338                  |             | 42.604           | 54.519           | 13.061                  | 1.00 33.40               | č        |
|   | MOTA         | 12464          | SG       | CYS B 338                  |             | 40.819           | 54.752           | 12.978                  | 1.00 41.64               | s        |
|   | ATOM         | 12465          | С        | CYS B 338                  |             | 42.376           | 54.321           | 15.540                  | 1.00 31.25               | C        |
|   | ATOM         | 12466          | 0        | CYS B 338                  |             | 41.558           | 53.650           | 16.156                  | 1.00 33.29               | 0        |
|   | ATOM<br>ATOM | 12467<br>12469 | N        | MET B 339                  |             | 42.748<br>42.302 | 55.531           | 15.923                  | 1.00 33.28               | N        |
|   | ATOM         | 12471          | CA<br>CB | MET B 339<br>MET B 339     |             | 42.302           | 56.097<br>57.445 | 17.192<br>17.419        | 1.00 33.94<br>1.00 34.41 | C        |
|   | ATOM         | 12474          | CG       | MET B 339                  |             | 44.480           | 57.338           | 17.716                  | 1.00 35.79               | č        |
|   | ATOM         | 12477          | SD       | MET B 339                  |             | 44.792           | 56.018           | 18.892                  | 1.00 36.24               | Š        |
|   | MOTA         | 12478          | CE       | MET B 339                  |             | 44.226           | 56.678           | 20.362                  | 1.00 39.22               | С        |
|   | ATOM         | 12482          | С        | MET B 339                  |             | 40.780           | 56.254           | 17.297                  | 1.00 36.78               | С        |
|   | ATOM         | 12483          | 0        | MET B 339                  |             | 40.210           | 56.151           | 18.381                  | 1.00 36.23               | 0        |
|   | ATOM<br>ATOM | 12484          | N<br>Ch  | GLN B 340                  |             | 40.120           | 56.498           | 16.170                  | 1.00 41.14               | N        |
|   | ATOM<br>ATOM | 12486<br>12488 | CA       | GLN B 340                  |             | 38.672           | 56.689<br>57.037 | 16.166                  | 1.00 41.45               | C        |
|   | ATOM         | 12491          | CB<br>CG | GLN B 340<br>GLN B 340     |             | 38.145<br>37.870 | 58.535           | 14.765<br>14.569        | 1.00 44.15<br>1.00 47.15 | C<br>C   |
|   | ATOM         | 12494          | CD       | GLN B 340                  |             | 37.539           | 58.884           | 13.123                  | 1.00 47.13               | c        |
|   | ATOM         | 12495          | OE1      | GLN B 340                  |             | 36.647           | 58.275           | 12.525                  | 1.00 51.07               | ŏ        |
|   | MOTA         | 12496          | NE2      | GLN B 340                  |             | 38.253           | 59.867           | 12.562                  | 1.00 46.81               | N        |
|   | ATOM         | 12499          | C        | GLN B 340                  |             | 37.947           | 55.467           | 16.698                  | 1.00 41.44               | C        |
|   | MOTA         | 12500          | 0        | GLN B 340                  |             | 36.864           | 55.612           | 17.256                  | 1.00 44.50               | 0        |
|   |              |                |          |                            |             |                  |                  |                         |                          |          |

```
Figure 5
                                 38.536
                                         54.281 16.538
                                                          1.00 36.37
ATOM 12501 N
                 ASP B 341
                                                 17.017
                                                          1.00 38.63
                                         53.042
MOTA
      12503
                 ASP B 341
                                 37.915
             CA
                                                          1.00 40.50
                 ASP B 341
                                 38.650
                                         51.816
                                                 16.474
ATOM
      12505
                                                 14.968
                                 38.762
                                         51.838
                                                          1.00 41.40
ATOM
      12508
             CG
                 ASP B 341
MOTA
      12509
             OD1 ASP B 341
                                 37.776
                                         52.263
                                                 14.320
                                                          1.00 42.18
MOTA
      12510
             OD2 ASP B 341
                                 39.784
                                         51.472
                                                 14.357
                                                          1.00 36.42
                                 37.806
                                         52.883
                                                 18.523
                                                          1.00 38.43
MOTA
      12511
                 ASP B 341
             С
ATOM
      12512
                 ASP B 341
                                 37.096
                                         51.992
                                                 19.001
                                                          1.00 33.70
                                                                                0
             0
                                 38.504
                                         53.725
                                                 19.272
                                                          1.00 37.87
                 ARG B 342
ATOM
      12513
             N
                                 38.649
                                         53.489
                                                 20.692
                                                          1.00 39.28
                                                                                C
ATOM
      12515
             CA
                 ARG B 342
                                         54.183
                                                 21.227
                                                          1.00 39.17
                                                                                C
             СВ
                 ARG B 342
                                 39,903
ATOM
      12517
                                         53.995
                                                .22.719
                                                          1.00 37.38
                                                                                C
MOTA
      12520
             CG
                 ARG B 342
                                 40.089
                                                 23.211
                                                          1.00 39.19
                                                                                C
             CD
                 ARG B 342
                                 41.400
                                         54.421
      12523
ATOM
                 ARG B 342
                                 41.615
                                         55.844
                                                  23.008
                                                          1.00 39.45
                                                                                N
MOTA
      12526
             NE
                 ARG B 342
                                 42.608
                                         56.528
                                                  23.544
                                                          1.00 38.41
                                                                                С
MOTA
      12528
             CZ
             NH1 ARG B 342
                                         55.922
                                                  24.326
                                                          1.00 39.77
                                                                                N
                                 43.496
MOTA
      12529
                                 42,715
                                         57.829
                                                  23.298
                                                          1.00 37.59
             NH2 ARG B 342
ATOM
      12532
                                         53.886
                                                 21.469
                                                          1.00 41.11
                                                                                ¢
                                 37.393
ATOM
      12535
             С
                 ARG B 342
                                 37.026
                                         53.219
                                                  22.437
                                                          1.00 41.10
MOTA
      12536
             0
                 ARG B 342
                                         54.956
                                                  21.034
                                                          1.00 44.29
                 SER B 343
                                 36.737
MOTA
      12537
             N
                                 35.395
                                         55.314
                                                  21.513
                                                          1.00 47.12
ATOM
      12539
             CA
                 SER B 343
                                         56.526
                                                  20.744
                                                          1.00 49.96
                                 34.868
ATOM
      12541
             ÇВ
                 SER B 343
                                         56.202
                                                  19.370
                                                          1.00 59.03
MOTA
      12544
             OG
                 SER B 343
                                 34.690
                                                          1.00 43.28
                                                  21.406
                                 34.382
                                         54.163
      12546
             С
                 SER B 343
MOTA
                                                  22.303
                                                          1.00 48.73
MOTA
      12547
             0
                 SER B 343
                                 33.567
                                         53.976
                                                          1.00 41.65
                                                  20.334
ATOM
      12548
             N
                 HIS B 344
                                 34.451
                                         53.385
                                                          1.00 45.79
                                                                                С
             CA
                 HIS B 344
                                 33.577
                                         52.205
                                                  20.163
MOTA
      12550
                                                                                С
                 HIS B 344
                                 33.254
                                         51.962
                                                  18.661
                                                          1.00 47.84
ATOM
      12552
             СВ
                                                          1.00 50.49
                                                 17.940
                                                                                С
                 HIS B 344
                                 32.834
                                         53.206
MOTA
      12555
             CG
                                                                                N
                                 32.015
                                         54.155
                                                  18.518 1.00 55.44
      12556
             ND1 HIS B 344
ATOM
                                                                                С
                                 31.852
                                         55.165
                                                  17.682 1.00 53.22
      12558
             CE1 HIS'B 344
MOTA
                                         54.907
                                                  16.583
                                                         1.00 52.02
                                                                                N
            NE2 HIS B 344
                                 .32,536
ATOM
      12560
                                         53.690
                                                 16.722 1.00 52.06
                                                                                С
      12562
             CD2 HIS B 344
                                 33.166
ATOM
                                                  20.797 1.00 44.26
                 HIS B 344
                                 34.143
                                         50.924
                                                                                C
      12564
             C
ATOM
                                 33.556
                                         49.852
                                                  20.656 1.00 43.11
                                                                                ٥
                  HIS B 344
      12565
ATOM
             0
                                                  21.506 1.00 42.99
                                                                                N
                                 35.266
                                         51.043
                 MET B 345
ATOM
      12566
             N
                                                 22.0697
                                                          1.00 42.46
                                                                                С
                                 35.953
                                         49.886
                 MET B 345
MOTA
      12568
             CA
                                                 21.292 1.00 40.38
                                                                                С
                                         49.623
                                 37.233
ATOM
      12570
             CB
                 MET B 345
                                                                                С
                                         49.006
                                                 19.963 1.00 36.72
ATOM
      12573
             CG
                 MET B 345
                                 37,006
                                                  19.010 1.00 34.57
                                         49.011
ATOM
      12576
             SD
                 MET B 345
                                 38.515
                                         47.310
                                                  19.258 1.00 36.27
                                                                                С
      12577
             CE
                 MET B 345
                                 38.974
MOTA
                                                  23.555
                                                         1.00 42.23
                                         50.092
ATOM
      12581
             C
                  MET B 345
                                 36.273
                                                          1.00 40.47
1.00 41.15
                                                  23.972
                                         50.057
      12582
                  MET B 345
                                 37.422
                                                  24.360
                                         50.258
      12583
             N
                  PRO B 346
                                 35.236
ATOM
                                         50.659
                                                  25.756
                                                         1.00 38.60
                  PRO B 346
                                 35.404
MOTA
      12584
             CA
                                                          1.00 38.43
                                         50.817
                                                  26.224
MOTA
      12586
             СВ
                  PRO B 346
                                 33.957
                                                 25.376
                                                         1.00 37.38
                                                                                C
                                         49.891
MOTA
      12589
             CG
                  PRO B 346
                                 33.198
                                                                                C
                                 33.819
                                         50.021
                                                 24.023
                                                          1.00 39.83
ATOM
      12592
             CD
                  PRO B 346
                                                          1.00 37.80
                                                                                C
      12595
                  PRO B 346
                                 36.115
                                         49.616
                                                 26.615
ATOM
                                                          1.00 36.60
                                                  27.546
                                                                                0
                                 36.835
                                         49.987
      12596
             0
                  PRO B 346
MOTA
                                                          1.00 35.54
                  TYR B 347
                                 35.882
                                         48.335
                                                 26.334
ATOM
      12597
             N
                                                                                С
                                         47.277
                                                 27.082
                                                          1.00 36.67
      12599
             CA
                  TYR B 347
                                 36.524
ATOM
                                                                                С
                                         45.922 26.676
                                                         1.00 37.35
ATOM
      12601
             CB
                 TYR B 347
                                 35.989
                                         44.838
                                                 27.577
                                                          1.00 38.56
                                                                                С
      12604
             CG
                 TYR B 347
                                 36.485
ATOM
                                 35.931
                                         44.659
                                                  28.834
                                                         1.00 43.04
                                                                                С
      12605
ATOM
             CD1 TYR B 347
                                 36.389
                                         43.660
                                                 29.697
                                                          1.00 44.67
                                                                                С
             CE1 TYR B 347
      12607
ATOM
                                                  29.294
                                                          1.00 45.05
                                                                                С
                                 37.410
                                         42.831
      12609
ATOM
             CZ TYR B 347
                                         41.856
                                                 30.143
                                                          1.00 46.80
                                                                                0
      12610
                                 37.852
ATOM
             OH TYR B 347
                                                  28.035
                                                                                С
                                         42.991
                                                          1.00 47.68
ATOM
      12612
             CE2 TYR B 347
                                 37.981
                                                  27.191
                                                          1.00 42.36
                                                                                С
                                 37.519
                                         44.003
ATOM
      12614
             CD2 TYR B 347
                                                  26.869
                                                                                C
                                          47.307
                                                          1.00 37.49
                                 38.041
MOTA
      12616
             С
                  TYR B 347
                                         47.263
                                                  27.822
                                                                                0
                                 38.792
                                                          1.00 35.90
MOTA
      12617
             0
                  TYR B 347
                                 38.471
                                         47.382
                                                 25.616
                                                          1.00 36.38
ATOM
      12618
             N
                  THR B 348
                                         47.531
                                                  25.295
                                                          1.00 39.58
                                                                                C
                                 39.880
MOTA
      12620
             CA
                  THR B 348
                                          47.545
                                                 23.760
                                                          1.00 38.43
      12622
                  THR B 348
                                 40.093
ATOM
             CB
                                                 23.206
                                                          1.00 36.76
                                          46.312
ATOM
      12624
             OG1
                 THR B 348
                                 39.642
                                                  23.413
                                                          1,00 39.15
                                          47.557
ATOM
      12626
             CG2
                  THR B 348
                                 41.572
                                                  25.961
26.600
                                          48.792
                                                          1.00 42.29
                                 40.490
ATOM
      12630
             C
                  THR B 348
                                 41.536
                                          48.697
                                                          1.00 49.54
ATOM
      12631
                  THR B 348
             0
                                                  25.807
                                                          1.00 39.16
                                 39.845
                                          49.950
      12632
MOTA
             N
                  ASP B 349
                                          51.179
                                                  26.504
                                                          1.00 36.76
                                 40.223
      12634
MOTA
             CA
                  ASP B 349
                                          52.248
                                                  26.308
                                                          1.00 41.53
                                 39.126
ATOM
      12636
             CB
                 ASP B 349
                                          53.695
                                                  26.290
                                                          1.00 41.38
                                 39.656
ATOM
      12639
             CG
                 ASP B 349
                                          53.926
                                                  26.612
                                                          1.00 45.66
                                 40.833
ATOM
      12640
             OD1 ASP B 349
                                 38.937
                                          54.672
                                                  25.978
                                                          1.00 40.43
                                                                                0
ATOM
      12641
             OD2 ASP B 349
                                 40.379
                                          50.875
                                                 27.989
                                                         1.00 35.92
                  ASP B 349
ATOM
      12642
             С
```

|              |                |           |            |   |            |                  |                  | -                |                          |        |
|--------------|----------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
|              |                |           |            |   |            |                  |                  | ire 5            | 1 00 37 77               | 0      |
| MOTA         | 12643          | 0         | ASP I      |   |            | 41.304<br>39.475 | 51.336<br>50.083 | 28.635<br>28.538 | 1.00 37.77<br>1.00 34.79 | n      |
| MOTA<br>MOTA | 12644<br>12646 | n<br>Ca   | ALA I      |   |            | 39.554           | 49.746           | 29.948           | 1.00 34.27               | Ċ      |
| ATOM         | 12648          | CB        | ALA I      |   |            | 38.289           | 49.090           | 30.377           | 1.00 36.78               | C      |
| MOTA         | 12652          | C         | ALA I      |   |            | 40.747           | 48.837           | 30.243           | 1.00 35.32               | C      |
| MOTA         | 12653          | 0         | ALA I      |   |            | 41.423           | 49.012           | 31.257           | 1.00 37.32               | O<br>N |
| MOTA         | 12654          | N         | VAL I      |   |            | 41.025<br>42.189 | 47.882<br>47.012 | 29.358<br>29.532 | 1.00 29.37               | Č      |
| ATOM<br>ATOM | 12656<br>12658 | CA<br>CB  | VAL        |   |            | 42.207           | 45.892           | 28.483           | 1.00 28.80               | C      |
| ATOM         | 12660          |           | VAL        |   |            | 43.512           | 45.169           | 28.487           | 1.00 30.95               | С      |
| ATOM         | 12664          |           | VAL I      |   |            | 41.084           | 44.898           | 28.764           | 1.00 30.97               | C      |
| ATOM         | 12668          | С         | VAL I      |   |            | 43.517           | 47.807           | 29.508           | 1.00 32.35<br>1.00 30.99 | C<br>O |
| ATOM         | 12669          | 0         | VAL I      |   |            | 44.425<br>43.621 | 47.532<br>48.788 | 30.291<br>28.617 | 1.00 33.65               | n      |
| MOTA<br>MOTA | 12670<br>12672 | n<br>Ca   | VAL        |   |            | 44.849           | 49.549           | 28.470           | 1.00 33.11               | С      |
| ATOM         | 12674          | CB        | VAL        |   |            | 44.848           | 50.396           |                  | 1.00 33.71               | c      |
| MOTA         | 12676          |           | VAL        |   |            | 46.065           | 51.300           | 27.185           | 1.00 36.03               | . C    |
| ATOM         | 12680          |           | VAL        |   |            | 44.867<br>45.042 | 49.498<br>50.415 | 25.955<br>29.700 | 1.00 32.35               | · c    |
| MOTA<br>MOTA | 12684<br>12685 | 0         | VAL :      |   |            | 46.122           | 50.452           | 30.272           | 1.00 32.66               | _      |
| ATOM         | 12686          | N         | HIS        |   |            | 43.968           | 51.071           | 30.122           | 1.00 35.06               | N      |
| ATOM         | 12688          | CA        | HIS        |   |            | 43.971           | 51.891           | 31.326           | 1.00 32.62               | C      |
| ATOM         | 12690          | CB        | HIS        |   |            | 42.596           | 52.530           | 31.534<br>30.743 | 1.00 30.92               | C      |
| ATOM         | 12693          | CG        | HIS        |   |            | 42.393<br>42.588 | 53.779<br>55.035 | 31.285           | 1.00 26.60               | n      |
| MOTA<br>MOTA | 12694<br>12696 |           | HIS        |   |            | 42.381           | 55.943           | 30.349           | 1.00 27.82               | С      |
| MOTA         | 12698          |           | HIS        |   |            | 42.060           | 55.322           | 29.225           | 1.00 28.55               | N      |
| MOTA         | 12700          | CD2       | HIS        |   |            | 42.067           | 53.968           | 29.440           | 1.00 21.13               | C      |
| MOTA         | 12702          | С         | HIS        |   |            | 44.334           | 51.071           | 32.550           | 1.00 33.48<br>1.00 35.13 | . c    |
| ATOM         | 12703<br>12704 | o<br>N    | HIS<br>GLU |   |            | 45.126<br>43.764 | 51.498<br>49.884 | 33.382<br>32.655 | 1.00 33.13               | N      |
| MOTA<br>MOTA | 12704          | CA        | GLU        |   |            | 44.067           | 49.015           | 33.787           | 1.00 36.17               | £C .   |
| MOTA         | 12708          | СВ        | GLU        |   |            | 43.075           | 47.848           | 33.863           | 1.00 34.98               |        |
| ATOM         | 12711          | CG        | GLU        |   |            | 43.353           | 46.872           | 35.004           | 1.00 37.28               | C      |
| MOTA         | 12714          | CD        | GLU        |   |            | 43.110<br>42.766 | 47.500<br>48.683 | 36.351<br>36.352 | 1.00 38.61<br>1.00 34.32 | o o    |
| ATOM<br>ATOM | 12715<br>12716 |           | GLU        |   |            | 43.231           | 46.829           | 37.392           | 1.00 38.85               |        |
| ATOM         | 12717          | c         | GLU        |   |            | 45.507           | 48.463           | 33.766           | 1.00 36.74               | C:     |
| ATOM         | 12718          | 0         | GLU        |   |            | 46.090           | 48.263           | 34.837           | 1.00 39.44               | 0      |
| MOTA         | 12719          |           | VAL        |   |            | 46.069           | 48.201           | 32.577           | 1.00 31.98               | N C    |
| ATOM         | 12721<br>12723 | CA<br>CB  | VAL<br>VAL |   |            | 47.454<br>47.920 | 47.792<br>47.533 | 32.499<br>31.044 | 1.00 32.39               | C      |
| MOTA<br>MOTA | 12725          |           | VAL        |   |            | 49.456           | 47.522           | 30.945           | 1.00 34.09               | С      |
| MOTA         | 12729          |           | VAL        |   |            | 47.363           | 46.220           | 30.515           | 1.00 34.62               | · c    |
| ATOM         | 12733          | C         | VAL        |   |            | 48.263           | 48.919           | 33.148           | 1.00 29.85<br>1.00 28.08 | C<br>0 |
| ATOM         | 12734          | 0         | VAL<br>GLN |   |            | 48.976<br>48.114 | 48.699<br>50.140 | 34.089<br>32.666 | 1.00 29.40               | N      |
| ATOM<br>ATOM | 12735<br>12737 | N<br>CA   | GLN        |   |            | 48.912           | 51.239           | 33.169           |                          | С      |
| ATOM         | 12739          | СB        | GLN        |   |            | 48.520           | 52.551           | 32.477           | 1.00 29.30               | C      |
| MOTA         | 12742          | CG        | GLN        |   |            | 48.798           | 52.591           | 31.002           | 1.00 29.08<br>1.00 32.59 | C      |
| MOTA         | 12745          | CD        | GLN<br>GLN |   |            | 49.120<br>48.228 | 53.999<br>54.696 | 30.517<br>30.047 | 1.00 32.59               | ő      |
| MOTA<br>MOTA | 12746<br>12747 |           | GLN        |   |            | 50.392           | 54.421           | 30.629           | 1.00 25.88               | N      |
| MOTA         | 12750          | C         | GLN        |   |            | 48.731           | 51.393           | 34.676           | 1.00 33.48               | ^ C    |
| ATOM         | 12751          | 0         | GLN        |   |            | 49.678           | 51.669           | 35.397           | 1.00 37.63<br>1.00 37.50 | N<br>N |
| ATOM         | 12752<br>12754 | N         | ARG        |   |            | 47.504<br>47.167 | 51.225<br>51.532 | 35.147<br>36.532 | 1.00 37.50               | Č      |
| MOTA<br>MOTA | 12756          | CA<br>CB  | ARG        |   |            | 45.649           | 51.458           | 36.764           | 1.00 35.67               | С      |
| MOTA         | 12759          | CG        | ARG        |   |            | 45.213           | 52.062           | 38.123           | 1.00 35.77               | C      |
| ATOM         | 12762          | CD        | ARG        |   |            | 44.046           |                  | 38.791           | 1.00 30.12<br>1.00 34.47 | C<br>N |
| ATOM         | 12765          | NE        |            |   | 357        | 44.164<br>44.564 |                  | 38.842<br>39.885 | 1.00 34.47               | Ċ      |
| ATOM<br>ATOM | 12767<br>12768 | CZ<br>NH1 | ARG        |   | 357<br>357 | 44.615           | 47.928           | 39.792           | 1.00 34.70               | N      |
| ATOM         | 12771          |           | ARG        |   |            | 44.935           | 49.826           | 41.010           | 1.00 38.45               | N      |
| ATOM         | 12774          | C         | ARG        | В | 357        | 47.834           |                  | 37.458           | 1.00 32.30               | C<br>0 |
| ATOM         | 12775          | 0         |            |   | 357        | 48.495           |                  | 38.413<br>37.161 | 1.00 33.13<br>1.00 32.82 | N N    |
| ATOM         | 12776          | N         |            |   | 358<br>358 | 47.626<br>48.107 |                  | 37.161           | 1.00 35.40               | č      |
| ATOM<br>ATOM | 12778<br>12780 | CA<br>CB  |            |   | 358<br>358 | 47.572           |                  | 37.410           | 1.00 37.07               | С      |
| ATOM         | 12783          | CG        |            |   | 358        | 48.150           | 45.604           | 37.971           | 1.00 42.58               | C      |
| ATOM         | 12784          | CD1       | TYR        | В | 358        | 49.348           |                  | 37.495           | 1.00 42.00               | c<br>c |
| ATOM         | 12786          |           | TYR        |   |            | 49.856<br>49.163 |                  | 37.984<br>38.937 | 1.00 42.25<br>1.00 40.87 | c      |
| ATOM<br>ATOM | 12788<br>12789 | CZ<br>OH  |            |   | 358<br>358 | 49.163           |                  | 39.420           | 1.00 42.65               | 0      |
| MOTA         | 12791          |           | TYR        |   |            | 47.973           | 43.668           | 39.416           | 1.00 41.08               | C      |
| MOTA         | 12793          |           | TYR        |   |            | 47.460           | 44.862           | 38.931           | 1.00 42.82               | С      |
|              |                |           |            |   |            |                  |                  |                  |                          |        |

|              |                |           |                            |                  | Ei au            | <b>20</b> 5      |                           |            |
|--------------|----------------|-----------|----------------------------|------------------|------------------|------------------|---------------------------|------------|
|              | 40705          | _         | TYR B 358                  | 49.627           | 48.188           | re 5             | 1.00 33.63                | С          |
| ATOM<br>ATOM | 12795<br>12796 | С<br>0    | TYR B 358                  | 50.157           | 48.057           | 39.152           | 1.00 38.26                | 0          |
| MOTA         | 12797          | N         | ILE B 359                  | 50.320           | 48.355           | 36.930           | 1.00 29.32                | · C        |
| MOTA         | 12799          | CA        | ILE B 359                  | 51.789           | 48.235<br>48.071 | 36.902<br>35.475 | 1.00 28.01<br>1.00 26.93  | č          |
| ATOM         | 12801          | CB<br>CC1 | ILE B 359<br>ILE B 359     | 52.380<br>52.198 | 49.336           |                  | 1.00 29.92                | С          |
| MOTA<br>MOTA | 12803<br>12806 |           | ILE B 359                  | 52.649           | 49.135           | 33.214           | 1.00 32.66                | C          |
| ATOM         | 12810          |           | ILE B 359                  | 51.829           | 46.820           | 34.774           | 1.00 30.95                | C<br>C     |
| ATOM         | 12814          | C         | ILE B 359                  | 52.539           | 49.353<br>49.146 | 37.597<br>38.086 | 1.00 28.17<br>1.00 25.82  | Ö          |
| ATOM         | 12815          | O<br>N    | ILE B 359<br>ASP B 360     | 53.642<br>51.965 | 50.539           | 37.620           | 1.00 30.58                | N          |
| MOTA<br>MOTA | 12816<br>12818 | CA        | ASP B 360                  | 52.526           | 51.632           | 38.405           | 1.00 35.05                | C          |
| ATOM         | 12820          | CB        | ASP B 360                  | 52.194           | 51.434           | 39.879           | 1.00 35.91                | C<br>C     |
| MOTA         | 12823          | CG        | ASP B 360                  | 52.812           | 52.501<br>52.149 | 40.758<br>41.883 | 1.00 43.84<br>1.00 48.45  | Ö          |
| ATOM         | 12824<br>12825 |           | ASP B 360<br>ASP B 360     | 53.281<br>52.865 | 53.710           | 40.396           | 1.00 49.25                | 0          |
| ATOM<br>ATOM | 12826          | C         | ASP B 360                  | 54.037           | 51.765           | 38.195           | 1.00 33.22                | С          |
| MOTA         | 12827          | 0         | ASP B 360                  | 54.840           | 51.473           | 39.072           | 1.00 38.25                | N<br>O     |
| ATOM         | 12828          | N         | LEU B 361                  | 54.387<br>55.719 | 52.265<br>52.146 | 37.025<br>36.469 | 1.00 35.85<br>1.00 36.03  | Ċ          |
| ATOM<br>ATOM | 12830<br>12832 | CA<br>CB  | LEU B 361<br>LEU B 361     | 55.642           | 52.264           | 34.941           | 1.00 35.29                | С          |
| ATOM         | 12835          | CG        | LEU B 361                  | 56.292           | 51.119           | 34.176           | 1.00 34.52                | c          |
| ATOM         | 12837          |           | LEU B 361                  | 55.660           | 49.783           |                  | 1.00 26.62.<br>1.00 37.25 | c<br>c     |
| ATOM         | 12841          |           | LEU B 361                  | 56.225<br>56.680 | 51.419<br>53.180 | 32.712<br>37.036 | 1.00 37.25                | č          |
| ATOM<br>ATOM | 12845<br>12846 | 0         | LEU B 361<br>LEU B 361     | 57.849           | 52.874           | 37.255           | 1.00 39.49                | 0          |
| MOTA         | 12847          | N .       | LEU B 362                  | 56.194           | 54.396           | 37.272           | 1.00 37.42                | И          |
| ATOM         | 12849          | CA        | LEU B 362                  | 56.976           | 55.409           | 37.949           | 1.00 33.09                | C<br>C     |
| MOTA         | 12851          | CB        | LEU B 362                  | 57.098<br>57.903 | 56.609<br>56.297 | 37.041<br>35.766 | 1.00 34.84<br>1.00 36.11  | č          |
| ATOM<br>ATOM | 12854<br>12856 | CG<br>CD1 | LEU B 362<br>LEU B 362     | 57.113           | 56.639           | 34.510           | 1.00 39.88                | С          |
| ATOM         | 12860          |           | LEU B 362                  | 59.174           | 57.062           | 35.739           | 1.00 32.15                | c          |
|              | 12864          | С         | LEU B 362                  | 56.280           | 55.769           | 39.254           | 1.00 35.40                | C<br>0     |
|              | 12865          | 0         | LEU B 362                  | 55.643<br>56.391 | 56.823<br>54.887 | 39.348<br>40.255 | 1.00 32.69<br>1.00 37.91  | n          |
| ATOM         | 12866<br>12867 | N<br>CA   | PRO B 363<br>PRO B 363     | 55.667           | 55.006           | 41.542           | 1.00 38.19                | C          |
| ATOM         |                | CB        | PRO B 363                  | 56.287           | 53.895           | 42.416           | 1.00 36.07                | C          |
| ATOM         | 12872          | CG        | PRO B 363                  | 56.968           | 52.974           | 41.527           | 1.00 38.54                | C          |
| ATOM         | 12875          | CD        | PRO B 363                  | 57.219           | 53.669<br>56.340 | 40.222<br>42.265 | 1.00 40.09<br>1.00 35.51  | Č          |
| ATOM         | 12878<br>12879 | C<br>O    | PRO B 363<br>PRO B 363     | 55.798<br>54.926 | 56.694           | 43.053           | 1.00 40.03                | 0          |
| MOTA         | 12880          | N         | THR B 364                  | 56.946           | 56.969           | 42.096           | 1.00 36.51                | . N        |
| MOTA         | 12882          | CA        | THR B 364                  | 57.148           | 58.376           | 42.356           | 1.00 39.26<br>1.00 39.57  | C          |
| ATOM         | 12884          | CB        | THR B 364                  | 58.307<br>59.567 | 58.623<br>58.166 | 43.353           | 1.00 42.80                | Ö          |
| ATOM<br>ATOM | 12886<br>12888 |           | THR B 364                  | 58.136           | 57.772           | 44.592           | 1.00 38.97                | ·c         |
| ATOM         | 12892          | c         | THR B 364                  | 57.456           | 58.914           | 40.972           | 1.00 42.69                | . с        |
| MOTA         | 12893          | 0         | THR B 364                  | 58.484           | 58.567           | 40.330           | 1.00 52.72<br>1.00 41.32  | . О<br>. И |
| MOTA         | 12894          | N         | SER B 365<br>SER B 365     | 56.501<br>56.735 | 59.635<br>60.287 | 40.426<br>39.172 | 1.00 41.54                | Ċ          |
| MOTA<br>MOTA | 12896<br>12898 | CA<br>CB  | SER B 365                  | 55.699           | 61.400           | 38.970           | 1.00 41.61                | С          |
| ATOM         | 12901          | OG        | SER B 365                  | 56.260           | 62.563           | 38.409           | 1.00 39.86                | 0<br>C     |
| ATOM         | 12903          | C         | SER B 365                  | 58.125           | 60.853           | 39.368<br>40.513 | 1.00 41.28<br>1.00 53.09  | 0          |
| ATOM         | 12904<br>12905 | N<br>N    | SER B 365<br>LEU B 366     | 58.606<br>58.763 | 60.902<br>61.273 | 38.293           | 1.00 32.84                | n          |
| ATOM<br>ATOM | 12907          | CA        | LEU B 366                  | 59.961           | 62.057           | 38.397           | 1.00 34.01                | C          |
| ATOM         | 12909          | СВ        | LEU B 366                  | 60.301           | 62.676           | 37.048           | 1.00 35.63                | C<br>C     |
| ATOM         |                | CG        | LEU B 366                  | 61.257<br>60.768 | 61.914<br>60.474 | 36.147<br>35.910 | 1.00 37.36<br>1.00 36.43  | č          |
| MOTA<br>MOTA | 12914<br>12918 |           | LEU B 366<br>LEU B 366     | 61.401           | 62.698           | 34.824           | 1.00 37.52                | С          |
| MOTA         |                |           | LEU B 366                  | 59.868           | 63.180           | 39.440           | 1.00 34.74                | C          |
| MOTA         | 12923          | 0         | LEU B 366                  | 58.846           |                  | 39.552           | 1.00 34.87<br>1.00 39.60  | O<br>N     |
| ATOM         |                |           | PRO B 367                  | 60.966<br>60.959 |                  | 40.134<br>41.258 | 1.00 41.51                | C          |
| ATOM<br>ATOM |                |           | PRO B 367<br>PRO B 367     | 62.387           |                  |                  | 1.00 43.82                | C          |
| ATOM         |                |           | PRO B 367                  | 62.959           | 63.110           | 41.196           | 1.00 44.53                | . с        |
| ATOM         | 12933          | CD        | PRO B 367                  | 62.323           |                  | 39.868           | 1.00 42.52                | . C        |
| ATOM         |                |           | PRO B 367                  | 60.701<br>61.340 |                  | 40.875<br>39.938 | 1.00 41.13                | ő          |
| MOTA<br>MOTA |                |           | PRO B 367<br>HIS B 368     | 59.810           |                  | 41.622           | 1.00 42.12                | N          |
| ATOM         |                |           |                            | 59.483           | 67.957           | 41.458           | 1.00 40.17                | C          |
| ATOM         | 12942          | СВ        | HIS B 368                  | 57.977           |                  | 41.685           | 1.00 41.90<br>1.00 40.31  | C          |
| ATOM         |                |           |                            | 57.120<br>56.560 |                  | 40.576<br>39.632 | 1.00 40.51                | N          |
| ATOM<br>ATOM |                |           | 1 HIS B 368<br>1 HIS B 368 | 55.880           |                  |                  | 1.00 41.94                | С          |
| ATOM         |                |           | 2 HIS B 368                | 55.970           |                  |                  | 1.00 34.31                | n          |
|              |                |           |                            |                  |                  |                  |                           |            |

|              |                |           |                          |                  | Fia              | ure 5            |                          |        |
|--------------|----------------|-----------|--------------------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 12952          | CD2       | HIS B 368                | 56.733           | 66.389           | 40.254           | 1.00 38.09               | С      |
| ATOM         | 12954          | С         | HIS B 368                | 60.271           | 68.828           | 42.454           | 1.00 42.29               | c      |
| ATOM         | 12955          | 0         | HIS B 360                | 61.063           | 68.333           | 43.243           | 1.00 42.66               | 0      |
| MOTA<br>MOTA | 12956<br>12958 | n<br>Ca   | ALA B 369<br>ALA B 369   | 60.048<br>60.652 | 70.131<br>71.036 | 42.422<br>43.401 | 1.00 44.85<br>1.00 47.14 | и<br>С |
| ATOM         | 12960          | CB        | ALA B 369                | 62.091           | 71.340           | 43.040           | 1.00 46.47               | č      |
| ATOM         | 12964          | Č         | ALA B 369                | 59.843           | 72.322           | 43.467           | 1.00 49.35               | С      |
| ATOM         | 12965          | 0         | ALA B 369                | 59.382           | 72.830           | 42.431           | 1.00 51.09               | 0      |
| ATOM         | 12966          | N         | VAL B 370                | 59.650           | 72.840           | 44.680           | 1.00 51.37               | N      |
| MOTA<br>MOTA | 12968<br>12970 | CA<br>CB  | VAL B 370 · VAL B 370    | 58.808<br>58.284 | 74.026<br>74.254 | 44.850<br>46.303 | 1.00 52.84<br>1.00 51.85 | C      |
| MOTA         | 12972          |           | VAL B 370                | 57.466           | 73.074           | 46.746           | 1.00 49.12               | Č      |
| MOTA         | 12976          |           | VAL B 370                | 59.408           | 74.527           | 47.287           | 1.00 57.14               | · C    |
| ATOM         | 12980          | С         | VAL B 370                | 59.561           | 75.225           | 44.322           | 1.00 52.55               | C      |
| MOTA<br>MOTA | 12981<br>12982 | O<br>N    | VAL B 370<br>THR B 371   | 60.744<br>58.845 | 75.392<br>76.059 | 44.543<br>43.610 | 1.00 50.33<br>1.00 56.00 | О<br>N |
| ATOM         | 12984          | CA        | THR B 371                | 59.465           | 77.052           | 42.774           | 1.00 59.50               | Ċ      |
| ATOM         | 12986          | CB        | THR B 371                | 58.608           | 77.171           | 41.511           | 1.00 58.20               | С      |
| ATOM         | 12988          |           | THR B 371                | 59.346           | 77.815           | 40.492           | 1.00 58.74               | 0      |
| ATOM         | 12990          |           | THR B 371                | 57.419<br>59.617 | 78.078<br>78.384 | 41.723<br>43.535 | 1.00 59.40<br>1.00 62.64 | C      |
| ATOM<br>ATOM | 12994<br>12995 | C<br>O    | THR B 371<br>THR B 371   | 60.103           | 79.374           | 42.993           | 1.00 63.95               | ő      |
| ATOM         | 12996          | N         | CYS B 372                | 59.203           | 78.380           | 44.801           | 1.00 65.51               | N      |
| ATOM         | 12998          | CA        | CYS B 372                | 59.212           | 79.564           | 45.667           | 1.00 67.07               | C      |
| ATOM         | 13000          | CB        | CYS B 372                | 58.220           | 80.618           | 45.160           | 1.00 65.47               | C<br>S |
| ATOM<br>ATOM | 13003<br>13004 | . SG<br>C | CYS B 372<br>CYS B 372   | 56.509<br>58.838 | 80.032<br>79.146 | 44.994<br>47.099 | 1.00 66.09<br>1.00 70.15 | c      |
| ATOM         | 13005          | ŏ         | CYS B 372 :              | 58.271           | 78.058           | 47.310           | 1.00 69.61               | ō      |
| ATOM         | 13006          | N         | ASP B 373                | 59,157           | 79.994           | 48.082           | 1.00 72.21               | N      |
| ATOM         | 13008          | CA        | ASP B 373                | 58.731           | 79.738           | 49.464           | 1.00 72.13               | C      |
| ATOM         | 13010<br>13013 | CB        | ASP B 373<br>ASP B 373   | 59.205<br>60.700 | 80.840<br>80.762 | 50.406<br>50.707 | 1.00 71.90<br>1.00 73.11 | C      |
| ATOM<br>ATOM | 13013          |           | ASP B 373                | 61.271           | 81.774           | 51.169           | 1.00 75.11               | ŏ      |
| ATOM         | 13015          |           | ASP B 373                | 61.391           | 79.744           | 50.521           | 1.00 67.37               | 0      |
| MOTA         | 13016          | С         | ASP B 373                | 57.214           | 79.661           | 49.498           | 1.00 71.53               | C      |
| ATOM         | 13017          | 0         | ASP B 373<br>ILE B 374   | 56.556<br>56.672 | 80.666<br>78.466 | 49.262<br>49.738 | 1.00 72.88<br>1.00 70.16 | O<br>N |
| ATOM<br>ATOM | 13018<br>13020 | N<br>CA   | ILE B 374                | 55.228           | 78.248           | 49.814           | 1.00 69.59               | č      |
| MOTA         | 13022          | CB        | ILE B 374                | 54.770           | 77.176           | 48.746           | 1.00 70.73               | С      |
| ATOM         | 13024          |           | ILE B 374                | 53.284           | 77.314           | 48.400           | 1.00 73.05               | C      |
| ATOM         | 13027          |           | ILE B 374 · .            | 52.904<br>54.999 | 78.606           | 47.696           | 1.00 75.68<br>1.00 68.83 | C<br>C |
| MOTA<br>MOTA | 13031<br>13035 | C         | ILE B 374                | 54.836           | 77.805           | 51.218           | 1.00 70.76               | č      |
| MOTA         | 13036          | 0         | ILE B 374                | 55.655           | 77.246           | 51.942           | 1.00 66.12               | 0      |
| ATOM         | 13037          | N         | LYS B 375                | 53.585           | 78.075           | 51.596           | 1.00 73.73               | N      |
| ATOM         | 13039          | CA        | LYS B 375<br>LYS B 375   | 52.951<br>52.240 | 77.434<br>78.461 | 52.756<br>53.659 | 1.00 75.87<br>1.00 80.37 | C      |
| ATOM<br>ATOM | 13041<br>13044 | CB<br>CG  | LYS B 375                | 51.490           | 77.862           | 54.885           | 1.00 83.93               | č      |
| ATOM         | 13047          | CD        | LYS B 375                | 50.855           | 78.949           | 55.790           | 1.00 85.88               | С      |
| ATOM         | 13050          | CE        | LYS B 375                | 51.900           | 79.708           | 56.633           | 1.00 86.80               | C      |
| ATOM         | 13053          | NZ<br>C   | LYS B 375<br>LYS B 375   | 51.751<br>51.946 | 79.451<br>76.438 | 58.099<br>52.208 | 1.00 87.29<br>1.00 71.26 | N<br>C |
| ATOM<br>ATOM | 13057<br>13058 | Ö         | LYS B 375                | 51.171           | 76.768           | 51.317           | 1.00 67.81               | ō      |
| ATOM         | 13059          | N         | PHE B 376                | 51.947           | 75.229           | 52.745           | 1.00 68.39               | N      |
| ATOM         | 13061          | CA        | PHE B 376                | 51.138           | 74.165           | 52.175           | 1.00 67.00               | c<br>c |
| MOTA<br>MOTA | 13063          | CB<br>CG  | PHE B 376<br>PHE B 376   | 51.996<br>51.278 | 73.343<br>72.168 | 51.194<br>50.579 | 1.00 66.49<br>1.00 62.44 | c      |
| ATOM         | 13066<br>13067 |           | PHE B 376                | 50.359           | 72.358           | 49.566           | 1.00 61.84               | č      |
| ATOM         | 13069          |           | PHE B 376                | 49.690           | 71.276           | 49.007           | 1.00 62.27               | С      |
| ATOM         | 13071          | CZ        | PHE B 376                | 49.946           | 69.991           | 49.464           | 1.00 62.16               | C      |
| MOTA<br>MOTA | 13073          |           | PHE B 376                | 50.858<br>51.521 | 69.791<br>70.873 | 50.476<br>51.026 | 1.00 59.48<br>1.00 60.76 | C<br>C |
| ATOM         | 13075<br>13077 | CDZ       | PHE B 376 .<br>PHE B 376 | 50.601           | 73.300           | 53.296           | 1.00 67.83               | č      |
| ATOM         | 13078          | ō         | PHE B 376                | 51.362           | 72.597           | 53.947           | 1.00 67.08               | 0      |
| ATOM         | 13079          | N         | ARG B 377                | 49.288           | 73.358           | 53.512           | 1.00 70.38               | N      |
| ATOM         | 13081          |           | ARG B 377                | 48.629<br>48.666 | 72.691<br>71.144 | 54.657<br>54.518 | 1.00 73.47<br>1.00 71.51 | . C    |
| MOTA<br>MOTA | 13083<br>13086 | CB<br>CG  | ARG B 377<br>ARG B 377   | 48.481           | 70.590           | 53.081           | 1.00 68.11               | č      |
| ATOM         | 13089          | CD        | ARG B 377                | 47.060           | 70.124           | 52.708           | 1.00 60.89               | C      |
| ATOM         | 13092          | NE        | ARG B 377                | 46.855           | 68.722           | 53.055           | 1.00 57.14               | N      |
| ATOM         | 13094          | CZ        | ARG B 377                | 46.158           | 67.838           | 52.349           | 1.00 56.98<br>1.00 58.96 | С<br>N |
| ATOM<br>ATOM | 13095<br>13098 |           | ARG B 377<br>ARG B 377   | 45.563<br>46.046 | 68.184<br>66.585 | 51.211<br>52.792 | 1.00 55.70               | N .    |
| ATOM         | 13101          | C         | ARG B 377                | 49.211           | 73.152           | 56.026           | 1.00 76.56               | C      |
| ATOM         | 13102          | ō         | ARG B 377                | 49.385           | 72.340           | 56.952           | 1.00 75.25               | 0      |
| MOTA         | 13103          | N         | ASN B 378                | 49.465           | 74.464           | 56.141           | 1.00 79.17               | N      |
|              |                |           |                          |                  |                  |                  |                          |        |

|              |                |           |            |   |            |   |                  | Figu             | are 5            |                          |         |
|--------------|----------------|-----------|------------|---|------------|---|------------------|------------------|------------------|--------------------------|---------|
| ATOM         | 13105          | CA        | ASN        | В | 378        |   | 50.223           | 75.041           | 57.256           | 1.00 82.59               | С       |
| ATOM         | 13107          | СВ        | ASN        |   |            |   | 49.350           | 75.213           | 58.520           | 1.00 84.25               | C       |
| ATOM         | 13110          | CG        | ASN<br>ASN |   |            |   | 50.145<br>50.061 | 75.766<br>75.223 | 59.734<br>60.842 | 1.00 87.52<br>1.00 87.49 | C<br>0  |
| ATOM<br>ATOM | 13111<br>13112 |           | ASN        |   |            |   | 50.924           | 76.830           | 59.514           | 1.00 86.98               | n       |
| ATOM         | 13115          | C         |            |   | 378        |   | 51.450           | 74.187           | 57.564           | 1.00 82.51               | С       |
| MOTA         | 13116          | 0         |            |   | 378        |   | 51.598           | 73.673           | 58:679           | 1.00 85.09               | 0       |
| ATOM         | 13117          | N         |            |   | 379        |   | 52.322           | 74.012           | 56.575           | 1.00 81.17               | N       |
| ATOM<br>ATOM | 13119<br>13121 | CA<br>CB  | TYR<br>TYR |   |            | • | 53.507<br>53.298 | 73.196<br>71.794 | 56.803<br>56.249 | 1.00 80.34               | C       |
| ATOM         | 13124          | CG        |            |   | 379        |   | 52.728           | 70.782           | 57.228           | 1.00 78.35               | č       |
| ATOM         | 13125          |           | TYR        |   |            |   | 51.724           | 69.909           | 56.832           | 1.00 79.04               | C       |
| ATOM         | 13127          |           | TYR        |   |            |   | 51.205           | 68.958           | 57.697           | 1.00 78.96               | C       |
| ATOM<br>ATOM | 13129<br>13130 | CZ<br>OH  |            |   | 379<br>379 | • | 51.696<br>51.176 | 68.867<br>67.917 | 58.974<br>59.816 | 1.00 79.13               | o       |
| ATOM         | 13132          |           | TYR        |   |            |   | 52.694           | 69.724           | 59.401           | 1.00 76.73               | Č       |
| MOTA         | 13134          |           | TYR        |   |            |   | 53.209           | 70.671           | 58.527           | 1.00 76.81               | C       |
| MOTA         | 13136          | C         |            |   | 379        |   | 54.829           | 73.763           | 56.311           | 1.00 81.87               | C<br>0  |
| ATOM<br>ATOM | 13137<br>13138 | N<br>O    |            |   | 379<br>380 |   | 55.854<br>54.830 | 73.102<br>74.966 | 56.497<br>55.725 | 1.00 87.12               | N       |
| ATOM         | 13140          | CA        |            |   | 380        |   | 56.067           | 75.764           | 55.579           | 1.00 80.24               | С       |
| ATOM         | 13142          | CB        |            |   | 380        |   | 56.563           | 76.274           | 56.982           | 1.00 80.96               | C       |
| ATOM         | 13145<br>13147 | CD        | LEU        |   | 380        |   | 57.091<br>58.126 | 75.419<br>76.214 | 58.190<br>59.019 | 1.00 82.33               | c<br>c  |
| ATOM<br>ATOM | 13151          |           | LEU        |   |            |   | 56.016           | 74.873           | 59.172           | 1.00 81.19               | č       |
| ATOM         | 13155          | c         |            |   | 380        |   | 57.196           | 75.062           | 54.757           | 1.00 77.97               | С       |
| ATOM         | 13156          | 0         |            |   | 380        |   | 58.114           | 74.473           | 55.326           | 1.00 78.30               | 0       |
| MOTA         | 13157          | N         |            |   | 381        |   | 57.104           | 75.112           | 53.421           | 1.00 75.08               | N<br>C  |
| ATOM<br>ATOM | 13159<br>13161 | CA<br>CB  | ILE<br>ILE |   |            |   | 58.097<br>57.432 | 74.486<br>73.613 | 52.526<br>51.425 | 1.00 70.31               | c       |
| MOTA         | 13163          |           | ILE        |   |            |   | 56.317           |                  | 51.980           | 1.00 67.61               | Ċ       |
| ATOM         | 13166          |           | ILE        |   |            |   | 55.531           | 72.023           | 50.898           | 1.00 66.53               | C       |
| ATOM         | 13170          |           | ILE        |   |            |   | 58.484           | 72.728           | 50.764           | 1.00 69.42               | C       |
| ATOM<br>ATOM | 13174<br>13175 | С<br>0    | ILE        |   |            |   | 58.979<br>58.492 | 75.519<br>76.311 | 51.824<br>51.011 | 1.00 69.06<br>1.00 68.65 | Ö       |
| ATOM         | 13176          | N         |            |   | 382        |   | 60.282           | 75.482           | 52.089           | 1.00 67.29               | N       |
| MOTA         | 13177          | CA        | PRO        | В | 382        |   | 61.205           | 76.464           | 51.495           | 1.00 65.55               | C       |
| ATOM         | 13179          | CB        | PRO        |   |            |   | 62.481           | 76.310           | 52.326           | 1.00 64.94               | C       |
| ATOM<br>ATOM | 13182<br>13185 | CG<br>CD  | PRO<br>PRO |   |            |   | 62.397<br>60.966 | 74.943           | 52.991<br>52.961 | 1.00 66.86               | c       |
| ATOM         | 13188          | c         | PRO        |   |            |   | 61.486           | 76.235           | 50.001           |                          | · c     |
| ATOM         | 13189          | 0         | PRO        |   |            |   | 61.467           | 75.093           | 49.553           | 1.00 63.06               | 0       |
| ATOM         | 13190          | N         | LYS        |   |            |   | 61.711           | 77.329           | 49.262<br>47.832 | 1.00 64.87               | · N     |
| ATOM<br>ATOM | 13192<br>13194 | CA<br>CB  | LYS        |   |            |   | 62.067<br>62.417 | 77.326<br>78.751 | 47.374           | 1.00 63.27               | č       |
| ATOM         | 13197          | CG        | LYS        |   |            |   | 63.014           | 78.818           | 45.975           | 1.00 66.75               | c       |
| ATOM         | 13200          | CD        | LYS        |   |            |   | 63.327           | 80.234           | 45.509           | 1.00 68.99               | c       |
| ATOM         | 13203          | CE        | LYS        |   |            |   | 63.961<br>64.624 | 80.200<br>81.482 | 44.103<br>43.721 | 1.00 70.03               | · N     |
| ATOM<br>ATOM | 13206<br>13210 | NZ<br>C   | LYS        |   |            |   | 63.248           | 76.401           | 47.495           | 1.00 60.10               | Č       |
| ATOM         | 13211          | ō         | LYS        |   |            |   | 64.262           | 76.396           | 48.188           | 1.00 61.13               | 0       |
| MOTA         | 13212          | N         | GLY        |   |            |   | 63.103           | 75.647           | 46.408           | 1.00 55.83               | N       |
| ATOM<br>ATOM | 13214<br>13217 | CA<br>C   | GLY        |   |            |   | 64.074<br>63.908 | 74.651<br>73.265 | 45.994<br>46.605 | 1.00 53.11               | C       |
| ATOM         | 13218          | ō         | GLY        | _ |            |   | 64.557           | 72.330           | 46.150           | 1.00 53.13               | ő       |
| ATOM         | 13219          | N         | THR        | В | 385        |   | 63.055           | 73.114           | 47.616           | 1.00 49,02               | N       |
| MOTA         | 13221          | CA        | THR        |   |            |   | 62.890           | 71.826           | 48.298           | 1.00 47.14               | C       |
| ATOM<br>ATOM | 13223<br>13225 | CB<br>OC1 | THR        |   |            |   | 61.843<br>62.271 | 71.913<br>72.824 | 49.449<br>50.466 | 1.00 45.25               | · 0     |
| ATOM         | 13227          |           | THR        |   |            |   | 61.753           | 70.580           | 50.183           | 1.00 45.28               | č       |
| ATOM         | 13231          | C         | THR        |   |            |   | 62.437           | 70.752           | 47.314           | 1.00 46.94               | С       |
| ATOM         | 13232          | 0         | THR        |   |            |   | 61.555           | 70.984           | 46.511           | 1.00 50.79               | 0       |
| ATOM<br>ATOM | 13233<br>13235 | n<br>Ca   | THR        |   |            |   | 63.025<br>62.625 | 69.568<br>68.479 | 47.390<br>46.510 | 1.00 45.95<br>1.00 42.71 | N.<br>C |
| ATOM         | 13237          | CB        | THR        |   |            |   | 63.725           | 67.420           | 46.442           | 1.00 42.35               | č       |
| ATOM         | 13239          |           | THR        |   |            |   | 64.892           | 67.982           | 45.819           | 1.00 39.32               | 0       |
| ATOM         | 13241          |           | THR        |   |            |   | 63.326           | 66.261           | 45.519           | 1.00 42.59               | C       |
| ATOM<br>ATOM | 13245<br>13246 | C         | THR        |   |            |   | 61.313<br>61.087 | 67.867<br>67.710 | 46.967<br>48.157 | 1.00 41.20               | C<br>0  |
| ATOM         | 13246          | o<br>N    | THR<br>ILE |   |            |   | 60.456           | 67.522           | 46.005           | 1.00 41.69               | . И     |
| ATOM         | 13249          | CA        | ILE        |   |            |   | 59.113           | 66.980           | 46.262           | 1.00 38.88               | c       |
| MOTA         | 13251          | СВ        | ILE        | В | 387        |   | 58.035           | 67.938           | 45.722           | 1.00 41.00               | C       |
| ATOM         | 13253<br>13256 |           | ILE        |   |            |   | 58.302<br>58.039 | 69.393<br>69.670 | 46.152<br>47.611 | 1.00 45.89               | C       |
| ATOM<br>ATOM | 13256          |           | ILE        |   |            |   | 56.652           | 67.482           | 46.150           | 1.00 47.77               |         |
| ATOM         | 13264          | C         | ILE        |   |            |   | 58.950           | 65.654           | 45.544           | 1.00 37.78               | č       |
|              |                |           |            |   |            |   |                  |                  |                  |                          |         |

|              |                |           |                          |                  | Fi en            |                  |                          |         |
|--------------|----------------|-----------|--------------------------|------------------|------------------|------------------|--------------------------|---------|
| ATOM         | 13265          | 0         | ILE B 387                | 59.176           | 65.579           | re 5             | 1.00 38.90               | o       |
| ATOM         | 13266          | N         | LEU B 388                | 58.562           | 64.617           | 46.260           | 1.00 33.81               | N       |
| ATOM         | 13268          | CA        | LEU B 388                | 58.258           | 63.364           | 45.630           | 1.00 40.13<br>1.00 45.81 | C       |
| ATOM<br>ATOM | 13270<br>13273 | CB<br>CG  | LEU B 388                | 58.960<br>60.474 | 62.220<br>62.064 | 46.36B<br>46.146 | 1.00 46.08               | Č       |
| ATOM         | 13275          |           | LEU B 388                | 60.900           | 60.676           | 46.550           | 1.00 48.04               | С       |
| ATOM         | 13279          |           | LEU B 388                | 60.886           | 62.327           | 44.710           | 1.00 43.46<br>1.00 42.79 | C       |
| ATOM<br>ATOM | 13283<br>13284 | C<br>O    | LEU B 388                | 56:755<br>56.147 | 63.147<br>63.163 | 45.637<br>46.692 | 1.00 42.79               | ō       |
| ATOM         | 13285          | N         | ILE B 389                | 56.168           | 62.945           | 44.454           | 1.00 44.22               | N       |
| ATOM         | 13287          | CA        | ILE B 389                | 54.737           | 62.716           | 44.299           | 1.00 37.54<br>1.00 40.94 | C       |
| ATOM<br>ATOM | 13289<br>13291 | CB<br>CG1 | ILE B 389<br>ILE B 389   | 54.279<br>54.633 | 63.274<br>64.756 | 42.954<br>42.847 | 1.00 40.34               | c       |
| ATOM         | 13294          | CD1       | ILE B 389                | 53.904           | 65.634           | 43.848           | 1.00 46.17               | С       |
| MOTA         | 13298          |           | ILE B 389                | 52.775           | 63.078<br>61.234 | 42.753<br>44.298 | 1.00 39.26<br>1.00 37.32 | C       |
| ATOM<br>ATOM | 13302<br>13303 | O .       | ILE B 389<br>ILE B 389   | 54.511<br>55.123 | 60.522           | 43.522           | 1.00 37.03               | ŏ       |
| ATOM         | 13304          | N         | SER B 390                | 53.615           | 60.747           | 45.137           | 1.00 33.93               | N       |
| ATOM         | 13306          | CA        | SER B 390                | 53.409<br>53.088 | 59.320<br>58.873 | 45.200<br>46.622 | 1.00 33.65<br>1.00 31.05 | C       |
| ATOM<br>ATOM | 13308<br>13311 | ĆB<br>OG  | SER B 390<br>SER B 390 · |                  | 57.477           | 46.659           | 1.00 30.51               | 0       |
| ATOM         | 13313          | С         | SER B 390                | 52.308           | 58.956           | 44.226           | 1.00 36.51               | C       |
| ATOM         | 13314          | O<br>N    | SER B 390<br>LEU B 391   | 51.134<br>52.674 | 59.058<br>58.559 | 44.546<br>43.010 | 1.00 40.69<br>1.00 40.31 | O<br>N  |
| ATOM<br>ATOM | 13315<br>13317 | CA        | LEU B 391                | 51.656           | 58.113           | 42.049           | 1.00 37.77               | С       |
| ATOM         | 13319          | CB        | LEU B 391                | 52.223           | 57.997           | 40.642           | 1.00 35.31               | C       |
| MOTA         | 13322<br>13324 | CG        | LEU B 391<br>LEU B 391   | 52.711<br>53.014 | 59.315<br>59.123 | 40.028<br>38.536 | 1.00 36.43<br>1.00 37.52 | C       |
| ATOM<br>ATOM | 13328          |           | LEU B 391                | 51.721           | 60.449           | 40.207           | 1.00 35.84               | С       |
| MOTA         | 13332          | С         | LEU B 391                | 50.970           | 56.820           | 42.470           | 1.00 37.25               | C       |
| ATOM<br>ATOM | 13333<br>13334 | O<br>N    | LEU B 391<br>THR B 392   | 49.811<br>51.673 | 56.633<br>55.945 | 42.174<br>43.182 | 1.00 38.85               | O<br>N  |
| ATOM         | 13334          | CA        | THR B 392                | 51.087           | 54.683           | 43.673           | 1.00 39.20               | С       |
| ATOM         | 13338          | CB        | THR B 392                | 52.079           | 53.903           | 44.544           | 1.00 34.66               | C       |
| MOTA<br>MOTA | 13340<br>13342 |           | THR B 392<br>THR B 392   | 53.338<br>51.646 | 53.826<br>52.452 | 44.666           | 1.00 39.97<br>1.00 36.18 | O<br>C  |
| ATOM         | 13342          | C         | THR B 392                | 49.884           | 54.930           | 44.543           | 1.00 39.72               | С       |
| ATOM         | 13347          | 0         | THR B 392                | 48.916           | 54.179           | 44.515           | 1.00 33.91               | O<br>N  |
| MOTA<br>MOTA | 13348<br>13350 | n<br>Ca   | SER B 393<br>SER B 393   | 49.984<br>48.954 | 55.965<br>56.224 | 45.367<br>46.351 | 1.00 39.73<br>1.00 37.67 | C       |
| ATOM         | 13352          | CB        | SER B 393                | 49.420           | 57.269           | 47.335           | 1.00 33.00               | C       |
| MOTA         | 13355          | OG        | SER B 393                | 49.668           | 58.470           | 46.664           | 1.00 32.02               | ·C<br>Q |
| MOTA<br>MOTA | 13357<br>13358 | С<br>О    | SER B 393<br>SER B 393   | 47.674<br>46.572 | 56.655<br>56.434 | 45.669<br>46.206 | 1.00 38.86<br>1.00 44.74 | ŏ       |
| ATOM         | 13359          | N         | VAL B 394                | 47.818           | 57.238           | 44.482           | 1.00 36.30               | N       |
| ATOM         | 13361          | CA        | VAL B 394                | 46.672<br>46.960 | 57.588<br>58.830 | 43.658<br>42.845 | 1.00 36.58<br>1.00 36.66 | C       |
| MOTA<br>MOTA | 13363<br>13365 | CB<br>CG1 | VAL B 394<br>VAL B 394   | 45.720           | 59.240           | 42.060           | 1.00 35.82               | C       |
| ATOM         | 13369          | CG2       | VAL B 394                | 47.435           | 59.948           | 43.780           | 1.00 37.92               | C       |
| MOTA<br>MOTA | 13373<br>13374 | C .       | VAL B 394<br>VAL B 394   | 46.234<br>45.055 | 56.449<br>56.136 | 42.737<br>42.650 | 1.00 35.99<br>1.00 38.91 | Ö       |
| ATOM         | 13375          | N         | LEU B 395                | 47.181           | 55.806           | 42.074           | 1.00 36.20               | N       |
| ATOM         | 13377          | CA        | LEU B 395                | 46.848           | 54.746           | 41.122           | 1.00 34.88<br>1.00 37.44 | C       |
| ATOM         | 13379<br>13382 | CB        | LEU B 395<br>LEU B 395   | 48.083<br>48.308 | 54.313<br>54.720 | 38.864           | 1.00 37.44               | č       |
| MOTA         | 13384          |           | LEU B 395                | 47.895           | 56.106           | 38.574           | 1.00 39.54               | C       |
| ATOM         | 13388          |           | LEU B 395                | 49.795           | 54.556<br>53.536 | 38.512<br>41.830 | 1.00 40.13<br>1.00 32.19 | C<br>C  |
| MOTA<br>MOTA | 13392<br>13393 | C<br>O    | LEU B 395<br>LEU B 395   | 46.293<br>45.687 | 52.685           | 41.201           | 1.00 27.95               | ö       |
| ATOM         | 13394          | N         | HIS B 396                | 46.523           | 53.443           | 43.137           | 1.00 35.00               | N       |
| MOTA         | 13396          | CA        | HIS B 396                | 46.139           | 52.260<br>51.493 | 43.907<br>44.387 | 1.00 35.55<br>1.00 35.98 | C       |
| ATOM<br>ATOM | 13398<br>13401 | CB<br>CG  | HIS B 396<br>HIS B 396   | 47.373<br>48.061 | 50.741           | 43.303           | 1.00 38.30               | č       |
| ATOM         | 13402          |           | HIS B 396                | 47.952           | 49.377           | 43.164           | 1.00 42.39               | N       |
| ATOM         | 13404          |           | HIS B 396                | 48.634<br>49.178 | 48.990<br>50.053 | 42.102<br>41.548 | 1.00 42.69<br>1.00 41.18 | N<br>C  |
| ATOM<br>ATOM | 13406<br>13408 |           | HIS B 396                | 48.835           | 51.162           | 42.281           | 1.00 39.80               | С       |
| ATOM         | 13410          | C         | HIS B 396                | 45.258           | 52.593           | 45.086           | 1.00 37.57               | C       |
| MOTA         | 13411          | 0         | HIS B 396                | 45.227           | 51.811<br>53.719 | 46.013<br>45.027 | 1.00 38.51<br>1.00 42.77 | O<br>N  |
| MOTA<br>MOTA | 13412<br>13414 | n<br>Ca   | ASP B 397<br>ASP B 397   | 44.525<br>43.501 | 54.090           | 46.028           | 1.00 44.20               | С       |
| ATOM         | 13416          | СВ        | ASP B 397                | 42.786           | 55.354           | 45.525           | 1.00 46.11               | C       |
| ATOM         | 13419          | CG        | ASP B 397                | 42.135<br>40.945 | 56.163<br>55.886 | 46.636<br>46.921 | 1.00 46.21<br>1.00 47.63 | C<br>O  |
| ATOM<br>ATOM | 13420<br>13421 |           | ASP B 397<br>ASP B 397   | 42.718           | 57.106           | 47.236           | 1.00 37.91               | 0       |
| ATOM         | 13422          | C         | ASP B 397                | 42.490           | 52.940           | 46.286           | 1.00 44.77               | С       |
|              |                |           |                          |                  |                  |                  |                          |         |

|              |                |           |            |   |            |                  | Fia              | ıre 5            |                          |        |
|--------------|----------------|-----------|------------|---|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 13423          | 0         | ASP        | В | 397        | 41.929           | 52.422           | 45.330           | 1.00 46.09               | 0      |
| MOTA         | 13424          | N         | ASN        |   |            | 42.307           | 52.523           | 47.549           | 1.00 45.51               | N      |
| ATOM<br>ATOM | 13426<br>13428 | CA<br>CB  | ASN<br>ASN |   |            | 41.303<br>41.224 | 51.511<br>51.360 | 47.967<br>49.491 | 1.00 50.02<br>1.00 53.98 | C      |
| ATOM         | 13421          | CG        | ASN        |   |            | 42.384           | 50.694           | 50.049           | 1.00 63.01               | č      |
| ATOM         | 13432          | OD1       | ASN        | В | 398        | 43.167           | 51.325           | 50.757           | 1.00 73.61               | 0      |
| ATOM         | 13433          |           | ASN        |   |            | 42.554           | 49.402           | 49.730           | 1.00 70.07               | N<br>C |
| MOTA<br>MOTA | 13436<br>13437 | С<br>0    | ASN<br>ASN |   |            | 39.882<br>39.097 | 51.856<br>50.971 | 47.657<br>47.394 | 1.00 48.23               | Ö      |
| ATOM         | 13438          | N         | LYS        |   |            | 39.525           | 53.125           | 47.831           | 1.00 49.07               | N      |
| ATOM         | 13440          | CA        | LYS        |   |            | 38.138           | 53.555           | 47.646           | 1.00 52.97               | C      |
| ATOM         | 13442          | CB        | LYS        |   |            | 37.874<br>38.290 | 54.968<br>55.184 | 48.215<br>49.685 | 1.00 55.28               | C<br>C |
| ATOM<br>ATOM | 13445<br>13448 | CG<br>CD  | LYS        |   |            | 37.129           | 55.001           | 50.680           | 1.00 66.26               | č      |
| ATOM         | 13451          | CE        | LYS        |   |            | 36.350           | 56.306           | 50.922           | 1.00 68.25               | С      |
| ATOM         | 13454          | NZ        | LYS        |   |            | 35.754           | 56.831           | 49.649           | 1.00 70.08               | n<br>C |
| atom<br>Atom | 13458<br>13459 | C         | LYS<br>LYS |   |            | 37.848<br>37.047 | 53.503<br>52.695 | 46.148<br>45.707 | 1.00 49.66<br>1.00 46.23 | ŏ      |
| ATOM         | 13460          | Ŋ         | GLU        |   |            | 38.571           | 54.315           | 45.375           | 1.00 48.18               | N      |
| ATOM         | 13462          | CA        | GLU        |   |            | 38.407           | 54.387           | 43.917           | 1.00 48.07               | C      |
| MOTA         | 13464          | CB        | GLU<br>GLU |   |            | 39.369<br>39.110 | 55.414<br>55.700 | 43.329<br>41.859 | 1.00 48.20<br>1.00 52.03 | C<br>C |
| ATOM<br>ATOM | 13467<br>13470 | CG        | GLU        |   |            | 37.903           | 56.583           | 41.627           | 1.00 51.09               | č      |
| ATOM         | 13471          |           | GLU        |   |            | 37.682           | 57.012           | 40.467           | 1.00 43.41               | 0      |
| ATOM         | 13472          |           | GLU        |   |            | 37.192           | 56.858           | 42.615           | 1.00 52.40               | 0<br>C |
| ATOM<br>ATOM | 13473<br>13474 | С<br>0    | GLU        |   | 400        | 38.575<br>37.865 | 53.062<br>52.825 | 43.151<br>42.172 | 1.00 46.13               |        |
| ATOM         | 13475          | N         | PHE        |   |            | 39.489           | 52.205           | 43.606           | 1.00 46.07               | N      |
| ATOM         | 13477          | CA        | PHE        | В | 401        | 39.783           | 50.924           | 42.934           | 1.00 45.41               | C      |
| ATOM         | 13479          | CB        | PHE        |   | 401<br>401 | 41.194<br>41.383 | 50.980<br>52.098 | 42.312<br>41.323 | 1.00 38.06               | C<br>C |
| ATOM<br>ATOM | 13482<br>13483 | CG<br>CD1 | PHE        |   |            | 42.309           | 53.110           | 41.578           | 1.00 28.10               | č      |
| ATOM         | 13485          |           | PHE        |   |            | 42.476           | 54.163           | 40.689           | 1.00 28.29               | . С    |
| ATOM         | 13487          | CZ        |            |   | 401        | 41.729           | 54.203           | 39.509           | 1.00 28.57               | C      |
| ATOM<br>ATOM | 13489<br>13491 |           | PHE        |   |            | 40.807<br>40.647 | 53.204<br>52.150 | 39.247<br>40.150 | 1.00 26.11               | c      |
| ATOM         | 13493          | C         |            |   | 401        | 39.643           | 49.736           | 43.911           | 1.00 48.62               | С      |
| ATOM         | 13494          | 0         | PHE        |   |            | 40.631           | 49.211           | 44.380           | 1.00 52.47               | 0      |
| ATOM         | 13495          | N         |            |   | 402        | 38.418<br>38.195 | 49.330<br>48.323 | 44.245<br>45.288 | 1.00 56.69<br>1.00 57.74 | N<br>C |
| ATOM<br>ATOM | 13496<br>13498 | CA<br>CB  |            |   | 402<br>402 | 37.015           | 47.539           | 44.739           | 1.00 58.69               | č      |
| ATOM         | 13501          | CG        |            |   | 402        | 36.170           | 48.646           | 44.083           | 1.00 58.35               | . c    |
| ATOM         | 13504          | CD        |            |   | 402        | 37.129           | 49.790           | 43.692           | 1.00 57.20               | C<br>C |
| MOTA<br>MOTA | 13507<br>13508 | С<br>0    |            |   | 402<br>402 | 39.401<br>39.966 | 47.440<br>47.660 | 45.632<br>46.712 | 1.00 59.86               | ō      |
| MOTA         | 13509          | N         |            |   | 403        | 39.812           | 46.503           | 44.792           | 1.00 56.84               | N      |
| ATOM         | 13511          | CA        |            |   | 403        | 40.953           | 45.663           | 45.157           | 1.00 58.12               | C      |
| ATOM         | 13513          | CB        | ASN        |   | 403<br>403 | 40.605<br>39.306 | 44.168<br>43.777 | 44.991<br>45.710 | 1.00 61.93<br>1.00 64.70 | C      |
| ATOM<br>ATOM | 13516<br>13517 | CG<br>OD1 | ASN        |   |            | 39.275           | 43.626           | 46.926           | 1.00 68.82               | ō      |
| ATOM         | 13518          |           | ASN        |   |            | 38.232           | 43.623           | 44.952           | 1.00 68.38               | N      |
| MOTA         | 13521          | C         | ASN        |   |            | 42.168<br>42.435 | 46.053           | 44.315<br>43.295 | 1.00 55.99<br>1.00 53.64 | C<br>0 |
| ATOM<br>ATOM | 13522<br>13523 | N<br>O    | ASN<br>PRO |   |            | 42.932           | 45.424<br>47.055 |                  |                          | N      |
| ATOM         | 13524          | CA        | PRO        |   |            | 43.845           | 47.755           | 43.843           | 1.00 51.93               | c      |
| ATOM         | 13526          | CB        |            |   | 404        | 44.259           | 48.999           | 44.650           | 1.00 49.92<br>1.00 51.28 | C      |
| ATOM<br>ATOM | 13529<br>13532 | CG<br>CD  | PRO        |   | 404        | 44.190<br>43.071 | 48.576<br>47.550 | 46.065<br>46.130 | 1.00 55.07               | č      |
| ATOM         | 13535          | C         |            |   | 404        | 45.062           | 46.910           | 43.402           | 1.00 52.95               | . с    |
| MOTA         | 13536          | 0         |            |   | 404        | 45.730           | 47.306           | 42.449           | 1.00 48.68               | N      |
| ATOM         | 13537          | N         |            |   | 405        | 45.322<br>46.463 | 45.768<br>44.924 | 44.040<br>43.667 | 1.00 54.48<br>1.00 55.71 | C      |
| ATOM<br>ATOM | 13539<br>13541 | CA<br>CB  |            |   | 405<br>405 | 47.097           | 44.273           | 44.892           | 1.00 60.17               | Ċ      |
| MOTA         | 13544          | CG        |            |   | 405        | 47.567           | 45.262           | 45.958           | 1.00 70.90               | C      |
| MOTA         | 13547          | CD        |            |   | 405        | 48.835           | 46.036           | 45.574           | 1.00 75.49               | C<br>0 |
| ATOM<br>ATOM | 13548<br>13549 |           | GT0<br>GT0 |   |            | 49.899<br>48.766 | 45.796<br>46.902 | 46.195<br>44.670 | 1.00 78.46               | ő      |
| ATOM         | 13550          | C         |            |   | 405        | 46.121           | 43.843           | 42.678           | 1.00 53.14               | С      |
| MOTA         | 13551          | 0         | GLU        | В | 405        | 46.995           | 43.085           | 42.296           | 1.00 57.00               | 0      |
| ATOM         | 13552          | N         | MET        |   |            | 44.862<br>44.443 | 43.762<br>42.839 | 42.269<br>41.216 | 1.00 53.26<br>1.00 54.32 | N<br>C |
| ATOM<br>ATOM | 13554<br>13556 | CA<br>CB  | MET        |   | 406<br>406 | 43.053           | 42.278           | 41.522           | 1.00 59.26               | С      |
| ATOM         | 13559          | CG        | MET        |   |            | 42.890           | 41.634           | 42.892           | 1.00 65.55               | c      |
| ATOM         | 13562          | SD        | MET        |   |            | 43.903           | 40.165           | 43.059<br>41.829 | 1.00 73.73<br>1.00 66.04 | s<br>C |
| ATOM<br>ATOM | 13563<br>13567 | CE        | MET<br>MET |   |            | 43.123<br>44.364 | 38.951<br>43.525 | 39.842           | 1.00 49.65               | Č      |
| W. Old       | 20001          | _         | raga I     | 0 | 400        |                  |                  |                  |                          |        |

|              |                             |           |       |                |                  | Fig              | re 5             |      |                |   |        |
|--------------|-----------------------------|-----------|-------|----------------|------------------|------------------|------------------|------|----------------|---|--------|
| ATOM         | 13568                       | 0         | MET B | 406            | 43.923           | 44.666           | 39.737           | 1.00 | 44.17          |   | 0      |
| ATOM         | 13569                       | N         | PHE B | 407            | 44.761           | 42.810           | 38.792           |      | 42.34          |   | N      |
| ATOM         | 13571                       | CA        | PHE B |                | 44.406           | 43.211           | 37.443<br>36.409 |      | 37.77<br>34.49 |   | C      |
| ATOM         | 13573                       | CB        | PHE B |                | 45.224<br>45.042 | 42.448<br>42.953 | 35.020           |      | 32.24          |   | č      |
| ATOM<br>ATOM | 13576<br>13577              | CG<br>CD1 | PHE B |                | 45.583           | 44.172           | 34.638           |      | 33.05          |   | С      |
| ATOM         | 13579                       |           | PHE B |                | 45.417           | 44.644           | 33.368           |      | 29.24          |   | С      |
| MOTA         | 13581                       | CZ        | PHE B |                | 44.689           | 43.913           | 32.456           |      | 33.40<br>33.15 |   | C      |
| MOTA         | 13583                       |           | PHE B |                | 44.143<br>44.322 | 42.720<br>42.239 | 32.811<br>34.100 |      | 34.76          |   | č      |
| MOTA.        | 13585<br>13587              | CDZ       | PHE B |                | 42.911           | 42.954           | 37.205           |      | 42.85          |   | С      |
| ATOM         | 13588                       | ō         | PHE B | 407            | 42.474           | 41.796           | 37.073           |      | 39.75          |   | . 0    |
| MOTA         | 13589                       | N         | ASP B |                | 42.137           | 44.03B<br>43.966 | 37.158<br>36.802 |      | 42.94<br>44.24 |   | N<br>C |
| MOTA         | 13591<br>13593              | CA<br>CB  | ASP B |                | 40.726<br>39.864 | 43.916           | 38.058           |      | 48.45          |   | č      |
| MOTA<br>MOTA | 13596                       | CG        | ASP B |                | 38.393           | 43.694           | 37.751           |      | 51.42          |   | С      |
| MOTA         | 13597                       | OD1       | ASP B |                | 37.585           | 43.673           | 38.705           |      | 61.18          |   | 0      |
| MOTA         | 13598                       |           | ASP B |                | 37.953<br>40.306 | 43.503<br>45.159 | 36.600<br>35.947 |      | 55.69<br>41.54 |   | Ċ      |
| MOTA<br>MOTA | 13599<br>13600              | С<br>0    | ASP B |                | 40.192           | 46.287           | 36.458           |      | 31.52          |   | ō      |
| ATOM         | 13601                       | N         | PRO B |                | 40.052           | 44.919           | 34.657           |      | 39.01          |   | N      |
| ATOM         | 13602                       | CA        | PRO B |                | 39.650           | 46.007           | 33.759           |      | 40.67          |   | C      |
| ATOM         | 13604                       | CB        | PRO B |                | 39.506<br>40.161 | 45.322<br>43.971 | 32.387<br>32.516 |      | 41.75<br>40.78 |   | C      |
| ATOM<br>ATOM | 13607<br>13610              | CG        | PRO B |                | 40.113           | 43.621           | 33.961           |      | 41.74          |   | Ċ      |
| MOTA         | 13613                       | c         | PRO B |                | 38.347           | 46.719           | 34.189           |      | 41.38          |   | . C    |
| MOTA         | 13614                       | 0         | PRO B |                | 38.154           | 47.876           | 33.794           |      | 35.27          |   | O<br>N |
| MOTA         | 13615                       | N         | HIS E |                | 37.497<br>36.230 | 46.066<br>46.677 | 34.993<br>35.441 |      | 44.48          |   | C      |
| ATOM<br>ATOM | 13617<br>13619              | CA<br>CB  | HIS E |                | 35.285           | 45.625           | 36.063           |      | 48.18          |   | č      |
| ATOM         | 13622                       | CG        | HIS B |                | 34.637           | 44.740           | 35.043           |      | 51.72          |   | C      |
| ATOM         | 13623                       |           | HIS B |                | 33.476.          |                  | 34.382           |      | 51.63          |   | N      |
| ATOM         | 13625                       |           | HIS E |                | 33.176           | 44.155           | 33.501<br>33.558 | -    | 56.83<br>55.65 |   | C<br>N |
| ATOM<br>ATOM | 13627<br>13629              |           | HIS E |                | 34.104<br>35.032 | 43.555           | 34.511           |      | 53.25          |   | Ċ      |
| ATOM         | 13631                       | C         | HIS E |                | 36.436           | 47.871           | 36.362           |      | 44.02          |   | С      |
| ATOM         | 13632                       | O         | HIS E | 410            | 35.506           | 48.614           | 36.631           |      | 45.97          |   | 0      |
| MOTA         | 13633                       | N         | HIS E |                | 37.666           | 48.047<br>49.246 | 36.837<br>37.554 |      | 47.01<br>45.91 |   | N<br>C |
| MOTA<br>MOTA | 13635<br>13637              | CB.       | HIS E |                | 38.092<br>39.588 | 49.132           | 37.932           |      | 46.82          |   | č      |
| ATOM         | 13640                       | CG        | HIS E |                | 39.904           | 48.333           | 39.168           |      | 47.89          |   | С      |
| ATOM         | 13641                       |           | HIS E |                | 40.402           | 48.962           | 40.283           |      | 57.14          |   | N<br>C |
| ATOM         | 13643                       |           | HIS E |                | 40.702<br>40.456 | 48.052<br>46.843 | 41.205<br>40.710 |      | 58.22<br>52.28 |   | N      |
| ATOM<br>ATOM | 13645<br>13647              |           | HIS E |                | 39.974           | 46.989           | 39.431           |      | 50.06          |   | C      |
| ATOM         | 13649 -                     |           | HIS E |                | 37.871           | 50.489           | 36.642           |      | 43.05          |   | C      |
| ATOM         | 13650                       | 0         | HIS E |                | 37.872           | 51.625           | 37.105           |      | 41.89          |   | O<br>N |
| MOTA         | 13651                       | N         | PHE E |                | 37.705<br>37.428 | 50.261<br>51.326 | 35.339<br>34.361 |      | 44.22<br>43.55 |   | Č      |
| ATOM<br>ATOM | 13653<br>13655              | CA<br>CB  | PHE I |                | 38.663           | 51.520           | 33.464           |      | 41.08          |   | С      |
| ATOM         | 13658                       | CG        | PHE I |                | 39.847           | 52.157           | 34.212           |      | 35.75          |   | . с    |
| ATOM         | 13659                       |           | PHE I |                | 40.781           | 51.307           | 34.782           |      | 30.99          |   | C<br>C |
| MOTA         | 13661                       |           | PHE I |                | 41.857<br>42.030 | 51.804<br>53.171 | 35.484<br>35.618 |      | 33.70<br>34.69 | • | c      |
| MOTA<br>MOTA | 13663 <sub>.</sub><br>13665 |           | PHE I |                | 41.102           | 54.036           | 35.049           |      | 37.32          |   | С      |
| ATOM         | 13667                       |           | PHE I |                | 40.017           | 53.527           | 34.348           |      | 32.97          |   | C      |
| MOTA         | 13669                       | С         |       | 3 412          | 36.212           | 50.987           | 33.491           |      | 44.26<br>44.30 |   | C<br>O |
| MOTA         | 13670                       | 0         |       | B 412<br>B 413 | 36.196<br>35.194 | 51.294<br>50.384 | 32.300<br>34.105 |      | 47.09          |   | N      |
| MOTA<br>MOTA | 13671<br>13673              | N<br>CA   |       | B 413          | 33.927           | 50.058           | 33.444           |      | 48.12          |   | С      |
| ATOM         | 13675                       | СВ        |       | B 413          | 33.972           | 48.636           | 32.898           |      | 45.27          |   | C      |
| ATOM         | 13678                       | CG        |       | B 413          | 34.900           | 48.303           | 31.743           |      | 40.01<br>42.30 | • | C<br>C |
| MOTA         | 13680                       |           | LEU I |                | 34.821<br>34.539 | 46.814<br>49.027 | 31.517<br>30.468 |      | 37.59          |   | č      |
| ATOM<br>ATOM | 13684<br>13688              | CD2       | LEU I | B 413          | 32.703           | 50.188           | 34.384           |      | 52.07          |   | C      |
| ATOM         | 13689                       | ŏ         |       | B 413          | 32.705           | 49.684           | 35.526           | 1.00 | 51.79          |   | 0      |
| ATOM         | 13690                       | N         | ASP ! | B 414          | 31.649           | 50.819           | 33.861           |      | 54.94          |   | N<br>C |
| ATOM         | 13692                       | CA        |       | B 414          | 30.425<br>29.784 | 51.102<br>52.429 | 34.613<br>34.136 |      | 56.14<br>55.19 |   | c      |
| ATOM<br>ATOM | 13694<br>13697              | CB<br>CG  |       | B 414<br>B 414 | 29.136           | 52.329           | 32.746           |      | 55.31          |   | С      |
| ATOM         | 13698                       |           | ASP   |                | 28.803           | 53.385           | 32.153           | 1.00 | 58.16          |   | 0      |
| MOTA         | 13699                       |           | ASP : | B 414          | 28.913           | 51.252           | 32.158           |      | 59.46          |   | O<br>C |
| ATOM         | 13700                       | С         |       | B 414          | 29.457           | 49.932<br>48.876 | 34.505<br>34.006 |      | 59.66<br>58.36 |   | 0      |
| ATOM<br>ATOM | 13701<br>13702              | И<br>О    |       | B 414<br>B 415 | 29.833<br>28.244 |                  | 35.025           |      | 67.04          |   | N      |
| ATOM         | 13704                       | CA        |       | B 415          | 27.063           |                  |                  |      | 71.76          |   | С      |
|              | -                           |           |       |                |                  |                  |                  |      |                |   |        |

Figure 5

```
25.774
                                         50.120 35.004 1:00 78.38
ATOM 13706
             CB
                 GLU B 415
                 GLU B 415
                                 25.727
                                          51.452
                                                  34.216
                                                          1.00 84.92
MOTA
     13709
             CG
                 GLU B 415
                                 25.231
                                          52.670
                                                  35.025
                                                          1.00 90.18
MOTA
     13712
             CD
                                 25.543
                                          52.769
                                                  36.239
                                                          1.00 93.04
MOTA
      13713
             OE1 GLU B 415
             OE2 GLU B 415
                                 24.539
                                         53.554
                                                  34.438
                                                          1.00 93.54
ATOM
     13714
                  GLU B 415
                                 26.992
                                          48.411
                                                  33.561
                                                          1.00 70.54
                                                                                 C
MOTA
      13715
             С
                                 27.021
                                          47.177
                                                          1.00 66.03
                  GLU B 415
                                                 33.644
ATOM
     13716
             0
                  GLY B 416
                                 26.886
                                          49.054
                                                  32.389
                                                          1.00 70.90
                                                                                 N
      13717
MOTA
             N
                                                          1.00 73:04
                 GLY B 416
                                 26.936
                                          48.359
                                                  31.101
             CA
ATOM
     13719
                                                          1.00 75.08
                  GLY B 416
                                 28.365
                                          47.964
                                                  30.733
ATOM
      13722
             C
                                 29.120
                                          47.485
                                                  31.585
                                                          1.00 81.29
                  GLY B 416
ATOM
      13723
             ٥
             N
                  GLY B 417
                                 28.756
                                          48.128
                                                  29.473
                                                          1.00 72.70
ATOM
      13724
                                                  29.134
                                 30.180
                                          48.127
                                                          1.00 69.51
                  GLY B 417
MOTA
     13726
             CA
                                                  29.541
                                                          1.00 64.77
                  GLY B 417
                                          49.502
ATOM
      13729
             C
                                 30.680
                                                  30.715
                                                          1.00 67.45
                                          49.778
                                 30.852
MOTA
      13730
             0
                  GLY B 417
                                                  28.567
                                                          1.00 60.66
                                                                                 N
                                 30.853
                                          50.381
ATOM
      13731
             N
                  ASN B 418
                                                  28.798
                                                          1.00 58.32
                                                                                 C
                                         51.833
ATOM
      13733
             CA
                 ASN B 418
                                 30.988
                                                          1.00 59.79
                                                                                 C
      13735
             CB
                  ASN B 418
                                 29.667
                                          52.483
                                                  29.278
ATOM
                                                  28.775
                                                          1.00 65.54
                                                                                 С
      13738
             CG
                  ASN B 418
                                 28.415
                                          51.742
ATOM
                                                  29.556
                                                          1.00 71.46
                                                                                 0
      13739
             OD1 ASN B 418
                                 27.708
                                          51.080
                                                  27.469
                                                          1.00 62.12
                                                                                 N
      13740
             ND2 ASN B 418
                                 28.151
                                          51.826
ATOM
                                                                                 C
                                                          1.00 52.88
                  ASN B 418
                                 32.177
                                          52.228
                                                  29.684
ATOM
      13743
                  ASN B 418
                                 32.330
                                         51.802
                                                  30.828
                                                          1.00 43.58
                                                                                 0
MOTA
      13744
                                                          1.00 50.18
                                                                                 N
                  PHE B 419
                                 33.050
                                          53.041
                                                  29.122
ATOM
      13745
ATOM
      13747
             CA
                  PHE B 419
                                 34.307
                                          53.302
                                                  29.778
                                                          1.00 47.92
                                                                                 С
      13749
             СВ
                  PHE B 419
                                 35.324
                                          53.889
                                                  28.791
                                                          1.00 46.10
                                                                                 C
ATOM
                                          54.305
                                                  29.431
                                                          1.00 48.82
                                                                                 С
ATOM
      13752
             CG
                  PHE B 419
                                 36.619
                                          53.369
                                                  29.690
                                                          1.00 48.54
                                                                                 С
             CD1 PHE B 419
                                 37.615
      13753
ATOM
                                          53.746
                                                  30.291
                                                          1.00 47.18
                                                                                 С
             CE1 PHE B 419
                                 38.803
АТОМ
      13755
                                          55.070
                                                  30.629
                                                          1.00 48.70
                 PHE B 419
                                 39.017
ATOM
      13757
             CZ
                                                  30.376
                                                          1.00 47.42
             CE2 PHE B 419
                               - 38.030
                                         56.021
MOTA
      13759
                                                  29.778
                                                          1.00 46.92
             CD2 PHE B 419
                               36.842
                                         55.634
      13761
ATOM
                                                          1.00 45.88
                  PHE B 419
                              34.002
                                         54.227
                                                  30.944
      13763
MOTA
             С
                               33.315
34.477
      13764
                                         55.231
                                                  30.776
                                                          1.00 45.25
                  PHE B 419
ATOM
             O
                                         53.846
                                                  32.128
                                                          1.00 46.97
      13765
                  LYS B 420
ATOM
             N
                                34.353
                                          54.650
                                                  33.357
                                                          1.00 43.93
ATOM
      13767
             CA
                  LYS B 420
                                          53.759
                                                  34.547
                                                          1.00 43.06
                                33.944
ATOM
      13769
             CB
                  LYS B 420
                                                          1.00 43.99
                                         54.533
                                                  35.807
ATOM
      13772
             CG
                  LYS B 420
                                 33:539
                                                  37.128
                                                          1.00 48.52
                                33.715
      13775
             αD
                  LYS B 420
                                         53.735
MOTA
      13778
                  LYS B 420
                                33.486
                                         52.231
                                                  36.998
                                                          1.00 49.39
             CE
                                                          1.00 52.83
                  LYS B 420
                                 33:530
                                         51:583
                                                  38.349
ATOM
      13781
             NZ
                                                                                 C
ATOM
      13785
             C
                  LYS B 420
                                 35.672
                                         55.345
                                                  33.676
                                                          1.00 39.84
                                                                                 0
                  LYS B 420
                                 36.562
                                          54.728
                                                  34.237
                                                          1.00 40.13
      13786
ATOM
                                 35.779
                                          56.631
                                                  33.349
                                                          1.00 37.34
ATOM
      13787
             N
                  LYS B 421
                                                                                 C
                                 37.002
                                          57.407
                                                  33.577
                                                          1.00 38.71
ATOM
      13789
             CA
                  LYS B 421
      13791
             СВ
                  LYS B 421
                                 36.958
                                          58.751
                                                  32.821
                                                          1.00 39.76
                                                                                 С
MOTA
      13794
             CG
                  LYS B 421
                                 36.041
                                          59.820
                                                  33.375
                                                          1.00 40.83
                                                                                 С
ATOM
                                          60.968
                                                  32.387
                                                          1.00 41.52
                                                                                 ¢
      13797
             CD
                  LYS B 421
                                 35.922
ATOM
                                                                                 ¢
      13800
             CE
                  LYS B 421
                                 34.976
                                          62.051
                                                  32.900
                                                          1.00 41.77
ATOM
                                          63.246
                                                  32.038
                                                          1.00 41.71
                                                                                 N
      13803
                  LYS B 421
                                 35.055
ATOM
             NZ
                                 37.279
                                          57.610
                                                  35.062
                                                          1.00 38.57
ATOM
      13807
                  LYS B 421
             С
                                          57.155
                                                  35.893
                                                          1.00 43.57
                                                                                 O
      13808
                  LYS B 421
                                 36.532
ATOM
             0
                                          58.261
                                                  35.398
                                                          1.00 40.86
ATOM
      13809
             N
                  SER B 422
                                 38.380
                                          58.383
                                                  36.800
                                                          1.00 38.91
                                                                                 C
ATOM
      13811
             CA
                  SER B 422
                                 38.773
                                 39.284
                                          57.047
                                                  37.335
                                                          1.00 36.21
ATOM
      13813
                  SER B 422
             CB
                  SER B 422
                                 39.717
                                          57.198
                                                  38.665
                                                          1.00 36.89
                                                                                 0
      13816
ATOM
             ÓG
                                                                                 C
                                 39.838
                                          59.441
                                                  36.947
                                                          1.00 38.13
ATOM
      13818
                  SER B 422
             С
                                 40.744
                                          59.531
                                                  36.141
                                                          1.00 41.75
                                                                                 0
      13819
                  SER B 422
ATOM
             0
                                                 . 37.962
                                 39.708
                                          60.270
                                                          1.00 41.81
MOTA
      13820
             N
                  LYS B 423
                                                                                 C
                                 40.656
                                          61.357
                                                  38.162
                                                          1.00 44.22
ATOM
      13822
             CA
                  LYS B 423
                                                                                 С
                                          62.515
                                                  38.990
                                                          1.00 46.38
MOTA
      13824
             CB
                  LYS B 423
                                 40.050
                                 39.094
                                          62.107
                                                  40.128
                                                          1.00 50.12
MOTA
      13827
                  LYS B 423
             CG
                                                          1.00 54.96
                                                  40.796
MOTA
      13830
                  LYS B 423
                                 38.448
                                          63.331
             CD
                                                          1.00 56.74
                                                  42.203
                                 37.880
                                          63.022
      13833
             CE
                  LYS B 423
                                                           1.00 55.00
                  LYS B 423
                                 38.055
                                          64.188
                                                  43.138
ATOM
      13836
             NZ
MOTA
      13840
             С
                  LYS B 423
                                 41.882
                                          60.758
                                                  38.831
                                                          1.00 44.12
ATOM
      13841
                  LYS B 423
                                 42.941
                                          61.386
                                                  38.869
                                                          1.00 40.95
             0
                                 41.717
                                          59.532
                                                  39.339
                                                          1.00 42.99
ATOM
      13842
                  TYR B 424
                                          58.795
                                                  40.014
                                                          1.00 47.27
                                 42.783
ATOM
      13844
                  TYR B 424
             CA
                                          57.780
                                                  41.022
                                                          1.00 48.62
                                 42.185
ATOM
      13846
                  TYR B 424
             CB
                                                  42.275
                                                           1.00 52.47
                                 41.593
                                          58.404
ATOM
      13849
             CG
                  TYR B 424
                                                  43.482
                                                          1.00 55.93
                                 42.290
                                          58.402
ATOM
      13850
             CD1 TYR B 424
                                                           1.00 58.11
                                                                                 C
                                 41.745
                                          58.970
                                                  44.626
ATOM
      13852
             CE1 TYR B 424
                                                                                 C
                                 40.491
                                          59.556
                                                  44.564
                                                          1.00 57.57
ATOM
      13854
             CZ
                 TYR B 424
                                 39.919
                                          60.133
                                                  45.673
                                                          1.00 51.80
                                                                                 0
ATOM
      13855
             OH
                 TYR B 424
                                          59.562
                                                  43.380
                                                          1.00 55.47
                                 39.790
ATOM
      13857
             CE2 TYR B 424
```

|              |                |          |            |   |            |           | Fiα              | ure 5            |      |                |   |        |
|--------------|----------------|----------|------------|---|------------|-----------|------------------|------------------|------|----------------|---|--------|
| ATOM         | 13859          | CD2      | TYR        | В | 424        | 40.333    | 58.983           | 42.252           | 1.00 | 53.81          |   | С      |
| ATOM         | 13861          | C        |            |   | 424        |           | 58.076           | 39.018           |      | 43.68          |   | С      |
| MOTA<br>MOTA | 13862<br>13863 | N<br>N   |            |   | 424        |           | 57.303           | 39.419<br>37.731 |      | 39.65          |   | 0      |
| ATOM         | 13865          | CA       |            |   | 425        |           | 58.334<br>57.760 | 36.670           |      | 38.81<br>35.42 |   | N      |
| ATOM         | 13867          | СВ       |            |   | 425        |           | 57.423           | 35.488           |      | 28.73          |   | č      |
| ATOM         | 13870          | CG       |            |   | 425        |           | 56.830           | 34.352           | 1.00 | 30.69          |   | С      |
| ATOM<br>ATOM | 13871<br>13873 |          | PHE<br>PHE |   |            |           | 55.486           | 34.383           |      | 31.21          |   | C      |
| ATOM         | 13875          | CZ       |            |   | 425        |           | 54.916<br>55.709 | 33.302<br>32.180 |      | 30.40<br>30.46 |   | C      |
| ATOM         | 13877          |          | PHE        |   |            |           | 57.063           | 32.148           |      | 28.72          |   | c      |
| MOTA         | 13879          |          | PHE        |   |            |           | 57.609           | 33.229           | 1.00 | 27.28          |   | C      |
| ATOM<br>ATOM | 13881<br>13882 | C        |            |   | 425        |           | 58.767           | 36.290           |      | 37.78          |   | C      |
| ATOM         | 13883          | N        |            |   | 425<br>426 |           | 59.583<br>58.706 | 35.386<br>37.015 |      | 40.34<br>34.73 |   | N<br>N |
| MOTA         | 13885          | CA       |            |   | 426        |           | 59.609           | 36.832           |      | 36.72          |   | Ċ      |
| MOTA         | 13887          | CB       |            |   | 426        |           | 60.394           | 38.108           |      | 36.97          | • | С      |
| ATOM<br>ATOM | 13890<br>13893 | CG<br>SD |            |   | 426        |           | 61.055           | 38.603           |      | 41.59          |   | C      |
| ATOM         | 13894          | CE       |            |   | .426       |           | 61.851<br>63.184 | 40.107<br>39.532 |      | 43.25<br>45.49 |   | S      |
| ATOM         | 13898          | С        |            |   | 426        |           | 58.933           | 36.537           |      | 34.33          |   | č      |
| ATOM         | 13899          | O .      |            |   | 426        |           | 59.351           | 37.104           |      | 33.11          |   | 0      |
| ATOM<br>ATOM | 13900<br>13901 | N<br>CA  |            |   | 427<br>427 |           | 57.924           | 35.670           |      | 29.68          |   | N      |
| ATOM         | 13903          | СВ       |            |   | 427        |           | 57.238<br>56.087 | 35.377<br>34.489 |      | 27.28<br>27.83 |   | C      |
| ATOM         | 13906          | CG       |            |   | 427        |           | 6.546            | 33.890           |      | 30.49          | • | č      |
| ATOM         | 13909          | CD       |            |   | 427        |           | 57.389           | 34.879           |      | 28.87          | • | •      |
| ATOM         | 13912          | C        |            |   | 427        |           | 8.129            | 34.632           |      | 29.41          |   | C      |
| ATOM<br>ATOM | 13913<br>13914 | N<br>N   |            |   | 427<br>428 |           | 57.893<br>59.144 | 34.675<br>33.975 |      | 29.15<br>30.52 |   | N      |
| ATOM         | 13916          | CA       |            |   | 428        |           | 50.173           | 33.296           |      |                |   | c      |
| MOTA         | 13918          | CB       |            |   | 428        |           | 50.622           | 32.048           |      |                |   | С      |
| ATOM         | 13921          | CG       |            |   | 428        |           |                  | .31.018.         |      |                |   | C      |
| ATOM<br>ATOM | 13922<br>13924 |          | PHE        |   |            |           | 58.860<br>57.847 | 30.899<br>29.948 |      | 21.30<br>23.26 |   | C      |
| ATOM         | 13926          | CZ       |            |   | 428        |           | 7.510            | 29.114           |      | 25.02          |   | Č      |
| MOTA         | 13928          |          | PHE        |   |            |           | 8.181            | 29.226           | 1.00 | 32.81          |   | С      |
| MOTA<br>MOTA | 13930<br>13932 |          | PHE        |   |            |           | 9.200            | 30.179           |      | 33.48          | • | C      |
| ATOM         | 13932          | С<br>0   | PHE        |   | 428<br>428 |           | 51.381<br>52.401 | 34.165<br>33.669 |      |                |   | C      |
| ATOM         | 13934          | N        |            |   | 429        |           | 1.279            | 35.446           |      | 31.88          |   | N      |
| ATOM         | 13936          | CA       |            |   | 429        |           | 2.429            | 36.376           | 1.00 | 32.94          |   | С      |
| ATOM         | 13938          | CB       |            |   | 429        |           | 3.134            | 36.352           |      | 32.09          |   | С      |
| ATOM<br>ATOM | 13941<br>13943 | OG<br>C  | SER<br>SER |   |            |           | 3.920<br>3.460   | 37.511<br>36.135 |      | 32.46<br>34.60 |   | O<br>C |
| MOTA         | 13944          | ŏ        | SER        |   |            |           | 3.135            | 35.505           |      | 35.01          |   | ŏ      |
| MOTA         | 13945          | N        | ALA        |   |            |           | 4.695            | 36.631           |      | 35.64          |   | N      |
| ATOM<br>ATOM | 13947<br>13949 | CA<br>CB | ALA        |   |            |           | 5.739            | 36.493           |      | 33.65          |   | C      |
| ATOM         | 13953          | C        | ALA<br>ALA |   |            |           | 5.569<br>7.158   | 37.528<br>36.575 |      | 32.06<br>35.90 |   | C      |
| ATOM         | 13954          | ō        | ALA        |   |            |           | 7.394            | 37.126           |      | 38.64          |   | ō      |
| ATOM         | 13955          | N        | GLY        |   |            |           | 8.105            | 36.029           |      | 33.84          |   | N      |
| ATOM<br>ATOM | 13957<br>13960 | CA<br>C  | GLY        |   |            |           | 9.503<br>9.987   | 36.133<br>35.138 |      | 32.80          |   | C      |
| ATOM         | 13961          | ŏ        | GLY        |   |            |           | 9.443            | 34.054           |      | 31.13<br>28.96 |   | Ö      |
| MOTA         | 13962          | N        | LYS        | В | 432        |           | 1.033            | 35.526           |      | 32.78          |   | N      |
| ATOM         | 13964          | CA       | LYS        |   |            |           | 1.743            | 34.622           |      | 39.69          |   | C      |
| ATOM<br>ATOM | 13966<br>13969 | CB<br>CG | LYS<br>LYS |   |            |           | 2.984<br>4.163   | 35.321<br>35.477 | 1.00 | 49.83          |   | C      |
| ATOM         | 13972          | CD       | LYS        |   |            |           | 5.042            | 34.208           |      | 57.11          |   | č      |
| ATOM         | 13975          | ,CE      | LYS        |   |            |           | 6.415            | 34.415           |      | 59.68          |   | С      |
| ATOM         | 13978          | NZ       | LYS        |   |            |           | 6.508            | 35.673           |      | 54.74          |   | N      |
| MOTA<br>MOTA | 13982<br>13983 | 0        | LYS<br>LYS |   |            |           | 0.886<br>1.249   | 34.035<br>32.988 |      | 38.47<br>37.30 |   | C      |
| ATOM         | 13984          | N        | ARG        |   |            |           | 9.769            | 34.701           |      | 37.13          |   | N      |
| ATOM         | 13986          | CA       | ARG        | В | 433        | 54.715 6  | 8.860            | 34.288           |      | 35.10          |   | C      |
| MOTA         | 13988          | CB       | ARG        |   |            |           | 8.556            | 35.459           |      | 35.77          | • | C      |
| MOTA<br>MOTA | 13991<br>13994 | CG<br>CD | ARG<br>ARG |   |            |           | 9.607<br>9.481   | 35.718<br>34.891 |      | 34.67<br>36.31 |   | C      |
| ATOM         | 13997          |          | ARG        |   |            |           | 0.543            | 35.269           |      | 33.46          |   | N      |
| atom         | 13999          | CZ       | ARG        | В | 433        | 60.049 70 | 0.717            | 34.760           | 1.00 | 33.91          |   | С      |
| ATOM         | 14000          |          | ARG        |   |            |           | 9.895            | 33.841           | 1.00 |                |   | N      |
| ATOM<br>ATOM | 14003<br>14006 |          | ARG<br>ARG |   |            |           | 1.738<br>7.534   | 35.184<br>33,770 | 1.00 |                |   | N<br>C |
| ATOM         | 14007          |          | ARG        |   |            |           | 6.640            | 33.541           |      | 40.46          |   | o      |
| ATOM         | 14008          |          | ILE        |   |            |           | 7.385            | 33.579           | 1.00 |                |   | N      |

```
Figure 5
ATOM 14010
             CA ILE B 434
                                 52.369
                                         66.122 33.111
                                                         1.00 30.98
             CB ILE B 434
ATOM
      14012
                                 50.851
                                         66.323 32.824
                                                         1.00 33.97
ATOM
      14014
             CG1 ILE B 434
                                 50.158
                                         64.995 32.552
                                                         1.00 37.82
             CD1 ILE B 434
                                 48.715
                                         65.150 32.210
ATOM
      14017
                                                         1.00 37.71
ATOM
      14021
             CG2 ILE B 434
                                 50,621
                                         67.264 31.638
                                                         1.00 29.10
                                 53.137
ATOM
      14025
                 ILE B 434
                                         65.625
                                                 31.870
                                                         1.00 28.89
             C
                                         66.415
64.317
                                                 31.049
ATOM
      14026
                 ILE B 434
                                 53.617
             0.
                                                         1.00 24.65 .
      14027
                 CYS B 435
                                 53.284
ATOM
             N
                                                 31.742
                                                         1.00 29.01
                                         63.738
62.250
                                                 30.605
30.490
ATOM
      14029
                 CYS B 435
                                 54.013
             CA
                                                         1.00 32.38
ATOM
      14031
                 CYS B 435
                                 53.716
                                                         1.00 35.24
             CB
ATOM
      14034
                 CYS B 435
                                54.402
                                                 28.992
                                                         1.00 40.22
             SG
                                         61.523
                 CYS B 435
ATOM
      14035
             С
                                 53.683
                                         64.392 29.255
                                                         1.00 32.75
                                                                              С
                                52.552
                                                28.783
АТОМ
      14036
                 CYS B 435
                                         64.329
                                                         1.00 33.03
             0
                                                        1.00 34.51
                                        64.984
                                                28.635
ATOM
      14037
             N
                 VAL B 436
                                54.696
                                                                              N
                                                        1.00 33.47
                                54.588
ATOM
      14039
             CA
                 VAL B 436
                                        65.631 27.329
                                                                              C
ATOM
      14041
             CB
                 VAL B 436
                                55.970
                                        66.177 26.898
                                                        1.00 36.40
                                                                              С
                                56.076 66.372 25.382 1.00 37.83
56.271 67.472 27.618 1.00 36.90
ATOM
      14043
             CG1 VAL B 436
                                                                              C
ATOM
      14047
             CG2 VAL B 436
                                                                              C
                                54.126 64.667 26.255 1.00 34.30
53.621 65.092 25.217 1.00 34.32
ATOM
      14051
                 VAL B 436
                                                                              С
ATOM
      14052
                 VAL B 436
                                                                              0
             0
MOTA
      14053
                 GLY B 437
                                54.347
                                        63.374
                                                26.481 1.00 34.06
ATOM
      14055
                 GLY B 437
                                54.048
                                        62.364
                                                25.492 1.00 32.38
                                                                              С
             CA
ATOM
      14058
                 GLY B 437
                                52.836
                                        61.542
                                                25.811 1.00 31.69
                                                                              С
ATOM
      14059
                 GLY B 437
                                52.709 60.414 25.350
                                                        1.00 32.98
                                                                              0
                                        62.118
                                                26.568
                                                        1.00 32.48
ATOM
      14060
                 GLU B 438
                                51.918
                                50.712 61.407
ATOM
      14062
                 GLU B 438
                                                26.990
                                                        1.00 34.87
                                        62.335
                                                27.877
                                                        1.00 39.60
ATOM
      14064
                 GLU B 438
                                49.891
                                        61.652
MOTA
      14067
             CG
                 GLU B 438
                                48.772
                                                28.638
                                                        1.00 42.64
                                        62.627
ATOM
      14070
             ĊD
                 GLU B 438
                                47.861
                                                29.368
                                                        1.00 45.69
                                                                            0
ATOM
     14071
             OE1 GLU B 438
                                46.970
                                        62.099
                                                30.086
                                                        1.00 47.35
                                                29.232 1.00 40.97
ATOM
     14072
             OE2 GLU B 438
                                48.036 63.888
                                                                           GLU B 438
                                49.853 60.945
                                                25.815
                                                        1.00 32.97
ATOM
     14073
             С
                                                        1.00 33.53
                 GLU B 438
                                49.327 59.833 25.809
     14074
ATOM
                                                        1.00 34.53
                                                24.829
     -14075
                 ALA B 439
                                49.706 61.825
ATOM
             N
                                                        1.00 31.79
                                        61.538
                                                23.646
MOTA
     14077
                 ALA B 439
                                48.920
             CA
                                48.662 62.818 22.860 1.00 32.69
49.628 60.502 22.809 1.00 28.56
ATOM
     14079
             CB
                 ALA B 439
ATOM
     14083
             С
                 ALA B 439
ATOM 14084
             ٥
                 ALA B 439
                                49.043 59.482 22.475 1.00 35.49
ATOM
     14085
                 LEU B 440
                                50.900 60.734 22.518
                                                        1.00 31.48
             N
MOTA
     14087
                 LEU B 440 '
                                51.722 59.764 21.787
                                                        1.00 29.25
ATOM
      14089
                 LEU B 440
                                53.156
                                        60.275
                                                21.637
                                                        1.00 31.94
      14092
                 LEU B 440
                                54.095 59.363 20.846
                                                        1.00 32.31
ATOM
ATOM
      14094
             CD1
                 LEU B 440
                                53.470
                                        58.965
                                                19.540
                                                        1.00 31.94
                                                                              С
                                                        1.00 32.78
ATOM
      14098
             CD2 LEU B 440
                                55.442
                                        60.018 20.603
                 LEU B 440
                                51.729
                                        58.417
                                               22.493
                                                        1.00 26.20
ATOM
      14102
                 LEU B 440
                                        57.383 21.907
                                                        1.00 26.10
ATOM
      14103
                                51.444
                                51.987
                                        58.415 23.775
                                                        1.00 21.31
ATOM
      14104
                 ALA B 441
                                        57.156
                                                        1.00 23.54
ATOM
      14106
             CA
                 ALA B 441
                                51,999
                                                24.463
                                        57.369
                                                25.908
                                                        1.00 25.96
ATOM
      14108
             ÇВ
                 ALA B 441
                                52.284
ATOM
      14112
             С
                 ALA B 441
                                50.710
                                       56.355
                                                24.273
                                                        1.00 27.86
                                        55.161
                                                23.955
ATOM
      14113
             0 -
                 ALA B 441
                                50.762
                                                        1.00 29.47
ATOM
      14114
                 GLY B 442
                                49.557
                                        56.987
                                                24.473
                                                        1.00 29.74
             N
                                                        1.00 30.14
1.00 29.94
      14116
                                48.308
                                       56.248
                                                24.516
ATOM
             CA
                 GLY B 442
                                       55.788
MOTA
                                47.949
                                                23.125
      14119
             С
                 GLY B 442
                                               22.909 1.00 34.52
22.161 1.00 28.36
                                47.376 54.717
ATOM
      14120
             0
                 GLY B 442
                                       56.615
                                48.296
ATOM
                 MET B 443
      14121
             N
                                48.218
                                        56.221
                                                20.759
                                                        1.00 29.93
ATOM
      14123
             CA
                 MET B 443
                                       57.432
                                                        1.00 32.31
ATOM
                                48.620
                                                19.917
      14125
             CB
                 MET B 443
                                                        1.00 38.23
ATOM
                                48.415
                                       57.317
                                                18.423
      14128
             CG
                 MET B 443
                                48.720
                                        58.889
                                                17.510
                                                        1.00 44.25
ATOM
      14131
             SD
                 MET B 443
                                48.573
ATOM
      14132
                 MET B 443
                                       60.154 18.697
                                                        1.00 41.47
             CE
                                49.084 54.972
ATOM
      14136
             С
                 MET B 443
                                               20.422
                                                        1.00 28.36
ATOM
      14137
                 MET B 443
                                48.623 54.087
                                                19.743 1.00 29.12
MOTA
      14138
                 GLU B 444
                                50.333 54.910
                                               20.887
                                                        1.00 29.24
ATOM
      14140
             CA
                 GLU B 444
                                51.187 53.717
                                                20.720
                                                        1.00 28.50
      14142
                                52,623 53,965
                                               21.248
                                                        1.00 31.85
ATOM
             CB
                 GLU B 444
ATOM
      14145
                 GLU B 444
                                53.419
                                       55.006 20.465
                                                        1.00 31.73
             CG
                                       55.096
                                               20.852
                                                        1.00 37.45
ATOM
      14148
             CD
                 GLU B 444
                                54.884
                                                        1.00 47.19
                                       54.100
ATOM
     14149
             OE1
                 GLU B 444
                                55.615
                                               20.688
                                       56.170
                                                21.272
                                                        1.00 43.24
ATOM
     14150
             OE2 GLU B 444
                                55.344
                                                        1.00 26.86
                                       52.506
ATOM
      14151
             С
                 GLU B 444
                                50.588
                                                21.427
ATOM
      14152
                 GLU B 444
                                50.471
                                        51.448
                                                20.829
                                                        1.00 30.18
             0
      14153
                                50.172
                                        52.649
                                                22.680
                                                        1.00 22.53
ATOM
             N
                 LEU B 445
                                49.597
                                        51.505
                                                23.404
                                                        1.00 24.31
MOTA
      14155
                 LEU B 445
             CA
                                        51.872
                                                        1.00 23.96
      14157
                                                24.827
ATOM
                                49.231
             CB
                 LEU B 445
                                                                              С
                                        52.423
                                                25.690
                                                        1.00 24.61
ATOM
     14160
                                50.359
             CG
                 LEU B 445
```

```
Figure 5
              CD1 LEU B 445
                                  49.838 52.783 27.098 1.00 25.78
  ATOM 14162
               CD2 LEU B 445
                                  51.503 51.408 25.757
                                                          1.00 24.67
  MOTA
       14166
                  LEU B 445
                                  48.350 50.914 22.762
  ATOM
       14170
               С
                                                          1.00 30.91
                   LEU B 445
                                  48.216
                                                          1.00 32.61
  ATOM
       14171
               0
                                          49.665
                                                  22.642
  ATOM
       14172
               N
                   PHE B 446
                                  47.417 51.789
                                                  22.378
                                                          1.00 30.26
                                                                                N
  ATOM
       14174
               CA
                  PHE B 446
                                  46.136 51.327
                                                  21.854
                                                          1.00 27.67
                                                                                С
  ATOM
       14176
               CB
                  PHE B 446
                                  45.129 52.485
                                                  21.714
                                                          1.00 32.47
                                                                                C
  MOTA
       14179
               CG
                  PHE B 446
                                  43.833 52.067
                                                  21.079
                                                          1.00 32.31
                                                                                Ç
  ATOM
       14180
               CD1 PHE B 446
                                  43.607 52.268
                                                  19.726
                                                          1:00 34.56
                                                                                C
  MOTA
        14182
               CE1 PHE B 446
                                  42.449 51.839
                                                  19.140
                                                          1.00 31.54
  MOTA
       14184
               CZ PHE B 446
                                  41.488
                                         51.209
                                                  19.896
                                                          1.00 31.06
                                                                                C
  MOTA
       14186
               CE2 PHE B 446
                                  41.697
                                          51.004
                                                  21.223
                                                          1.00 31.82
       14188
               CD2 PHE B 446
                                  42.870
                                          51.421
                                                  21.815
                                                          1.00 30.95
  MOTA
                   PHE B 446
                                  46.359
                                          50.646
                                                  20,508
                                                          1.00 26.31
  ATOM
       14190
               C
                                          49.518
                                                  20.290
  MOTA
        14191
               0
                   PHE B 446
                                  45.887
                                                          1.00 21.96
                                          51.331 19.622
  MOTA
        14192
                   LEU B 447
                                  47.087
                                                          1.00 23.21
       14194
               CA
                  LEU B 447
                                  47.286
                                          50.871
                                                  18.243
                                                          1.00 25.15
  ATOM
  MOTA
               СВ
                  LEU B 447
                                  47.752
                                          52.013
                                                  17.346
                                                          1.00 24.66
       14196
  ATOM
        14199
               CG
                  LEU B 447
                                  46.864
                                          53.249
                                                  17.182
                                                          1.00 27.82
  MOTA
       14201
               CD1 LEU B 447
                                  47.613
                                         54.334
                                                  16.443
                                                          1.00 26.52
               CD2 LEU B 447
                                  45.613 52.911
                                                  16.424
                                                          1.00 28.48
  ATOM
       14205
                                  48.288
                                         49.705
                                                  18.124
                                                          1.00 28.23
  MOTA
       14209
               С
                  LEU B 447
                                                  17.255
                                                          1.00 24.09
  ATOM
                   LEU B 447
                                  48.149
                                          48.848
       14210
               0
                                  49.297
                                                  18.979
                                                          1.00 29.30
                                          49.657
  ATOM
       14211
               N
                   PHE B 448
                                                  18.925
                  PHE B 448
                                  50.202 48.511
                                                          1.00 32.24
                                                                                C
  MOTA
       14213
               CA
                  PHE B 448
                                  51,507
                                          48.735
                                                  19.697
                                                          1.00 30.95
                                                                                С
 ATOM:
       14215
               CB
                  PHE B 448
                                  52.456 49.687
                                                  19.049
                                                          1.00 26.44
                                                                                C
 ATOM
       14218
               CG
                                                 17.712
                                                          1.00 29.10
                                                                                С
 ATOM
       14219
              CD1 PHE B 448
                                  52.393
                                         49.979
                                                          1.00 32.04
 ATOM
       14221
               CE1 PHE B 448
                                  53.301 50.874
                                                 17.136
                                                                               C
  ATOM
       14223
               CZ PHE B 448
                                  54.257
                                          51.478
                                                  17.897
                                                          1.00 28.55
                                                                               С
 ATOM
       14225
               CE2 PHE B 448
                                  54.328
                                         51.189
                                                  19.232 1.00 30.25
                                                                               С
 ATOM
       14227
               CD2 PHE B 448
                                  53.433
                                          50.290
                                                  19.799
                                                          1.00 28.44
                                                                               С
 ATOM
       14229
                  PHE B 448
                                  49.502 47.276
                                                  19.472
                                                          1.00 33.10
                   PHE B 448
                                  49.677
                                          46.185
                                                  18.928
                                                          1.00 35.96
                                                                               0
MOTA
       :14230
       14231
                  LEU B 449
                                  48.724
                                          47.435
                                                  20.534
                                                          1.00 29.14
: ATOM
                                  48.137
                                                  21.175
                                                          1.00 33.26
 ATOM
       14233
               CA
                  LEU B 449
                                          46.269
                                                          1.00 34.61
 ATOM
       14235
               СВ
                  LEU B 449
                                  47.697
                                          46.569
                                                  22.612
ATOM
       14238
               CG
                  LEU B 449
                                  48.858
                                         46.765
                                                  23.570
                                                          1.00 40.31
 ATOM
       14240
               CD1 LEU B 449
                                  48.358 47.256
                                                  24.913
                                                          1.00 41.87
 ATOM 14244
               CD2 LEU B 449
                                  49.624
                                          45.451
                                                  23.731
                                                          1.00 44.34
                                  46.971 45.750
                                                  20.370
                                                          1.00 32.56
                  LEU B 449
 ATOM
       14248
               С
                                  46.783
                                          44.547
                                                  20.249
                                                          1.00 38.27
                  LEU B 449
 ATOM
       14249
               ٥
                                  46.172
                                                          1.00 36.85
                                          46.647
                                                  19.816
 ATOM
       14250
                  THR B 450
              N
                                  45.076 46.194
                                                          1.00 36.42
                                                                               С
 ATOM
       14252
                  THR B 450
                                                  18:967
              CA
                                  44.054
                                                 18.630
                                                                               ٠c
 ATOM
       14254
               CB
                  THR B 450
                                          47.316
                                                          1.00 35.30
                                  44.716
 ATOM
       14256
               OG1 THR B 450
                                          48.456 18.053
                                                          1.00 36.21
                                                                               ٥
 ATOM
       14258
               CG2 THR B 450
                                  43.367
                                          47.818 19.896
                                                          1.00 32.98
 ATOM
       14262
                  THR B 450
                                  45.647
                                          45.566
                                                  17.703
                                                          1.00 34.14
 ATOM
       14263
               0
                  THR B 450
                                  45.146 44.549
                                                  17.256
                                                          1.00 35.23
 MOTA
       14264
                  SER B 451
                                  46.702 46.149
                                                  17.137
                                                          1.00 34.82
 ATOM
       14266
                  SER B 451
                                  47.322
                                          45.559
                                                  15.943
                                                          1.00 34.92
                                                                               C
               CA
 MOTA
       14268
              CB
                  SER B 451
                                  48.419 46.455 15.393
                                                          1.00 35.63
 ATOM
       14271
                  SER B 451
                                  47.862
                                          47.661
                                                  14.897
                                                          1.00 32.42
 MOTA
       14273
                   SER B 451
                                  47.862 44.152 16.207
                                                          1.00 35.55
                                                                               C
 MOTA
       14274
                  SER B 451
                                  47.775
                                          43.288
                                                  15.349
                                                          1.00 36.73
 MOTA
       14275
                                  48.383
                                          43.919
                                                  17.404
                                                          1.00 35.86
                  ILE B 452
 MOTA
       14277
                                  48.900
                                          42.607
                                                  17.766
                                                          1.00 36.18
                                                                               С
               CA
                  ILE B 452
                                  49.729
                                          42.691
                                                  19.068
                                                          1.00 34.03
 MOTA
       14279
              СВ
                  ILE B 452
                                          43.414
 ATOM
       14281
              CG1 ILE B 452
                                  51.053
                                                  18.781
                                                          1.00 37.15
                                                                               C
                                                 20.019
19.598
                                  51.761
                                          43.930
                                                                               С
 ATOM
       14284
              CD1 ILE B 452
                                                          1.00 36.26
 MOTA
       14288
              CG2 ILE B 452
                                  50.034 41.336
                                                          1.00 33.84
                                                                               С
                                  47.775 41.581 17.880
                                                          1.00 36.81
 MOTA
       14292
              С
                  ILE B 452
                                  47.864 40.509
                                                 17.318
                                                          1.00 36.09
 MOTA
       14293
                  ILE B 452
              0
                                  46.710
                                                          1.00 37.53
 MOTA
                                                  18.589
       14294
                                          41.913
              N
                  LEU B 453
                                  45.697
                                                          1.00.38.81
 ATOM
       14296
              CA
                  LEU B 453
                                          40.922 18.903
                                  44.970
 MOTA
       14298
              CB
                  LEU B 453
                                         41.333 20.161
                                                          1.00 41.94
                  LEU B 453
 ATOM
       14301
              CG
                                  45.786 41.492
                                                  21.430
                                                          1.00 41.74
 ATOM
       14303
                                  44.904
                                          42.137
                                                  22.481
                                                          1.00 41.29
              CD1
                  LEU B 453
 ATOM
       14307
                                  46.296
                                         40.141
                                                  21.903
                                                          1.00 42.27
              CD2 LEU B 453
 MOTA
                                  44.693
                                          40.739
                                                  17.776
                                                          1.00 40.51
       14311
              C
                  LEU B 453
                                  43.886
                                                  17.776
                                                          1.00 41.15
 MOTA
       14312
                  LEU B 453
                                          39.816
                                  44.734
                                                          1.00 45.30
 ATOM
       14313
              N
                  GLN B 454
                                          41.667
                                                  16,836
 ATOM
       14315
                                  44.021
                                          41.555
                                                  15.573
                                                          1.00 45.13
              CA
                  GLN B 454
 ATOM
       14317
                                  44.062
                                          42.900
                                                  14.810
                                                          1.00 42.80
                  GLN B 454
              CB
                                                          1.00 42.59
       14320
                                  43.790
                                         42.793
                                                 13.319
 ATOM
                  GLN B 454
              CG
                                                 12.619
                                                         1.00 40.89
 MOTA
       14323
                                  43.665
                                         44.139
                  GLN B 454
              CD
```

Months of the second

, अपूर्व । ४६० -

1100 1200 8000 1200 8000 1200

: : 194

ार्ड्स जन्म

A 30 - 3 - 5

1134 1.

120 80458

21/2 6,350

175 aka13 150 aka13

180 2 300

11. 0 618 11. 0 618 14. 0 61.

```
Figure 5
                                          44.504 12.167
             OE1 GLN B 454
                                  42.583
                                                           1.00 39.19
ATOM 14324
      14325
             NE2 GLN B 454
                                  44.777
                                          44.858 12.499
                                                           1.00 37.63
                                                                                 N
MOTA
                  GLN B 454
                                  44.665
                                          40.447
                                                  14.741
                                                           1.00 44.80
                                                                                 C
      14328
             С
ATOM
                                          39.668 14.115
                                                           1.00 43.25
                                                                                 0
                  GLN B 454
                                  43.933
ATOM
      14329
             0
                                                           1.00 43.45
                                                                                 N
                                  46.014
                                          40.393
                                                  14.751
                 ASN B 455
ATOM
      14330
             N
                                                           1.00 44.89
                                  46.814
                                          39.480
                                                  13.902
                 ASN B 455
ATOM
      14332
             CA
                                                                                 C
                                          40.253
                                                  13.247
                                                           1.00 43.42
                                  47.982
ATOM
      14334
             CB
                 ASN B 455
                                          41.397
                                                   12.300
                                                           1.00 42.65
                 ASN B 455
                                  47.515
ATOM
      14337
             CG
                                                   11.157
                                                           1.00 44.79
             OD1 ASN B 455
                                  47.123
                                          41.169
ATOM
      14338
                                                   12.776
                                  47.602
                                          42.623
                                                           1.00 38.29
ATOM
      14339
             ND2 ASN B 455
                                                  14.572
                                                           1.00 46.72
                                                                                 C
                                  47.365
                                          38.174
      14342
                  ASN B 455
ATOM
                                  47.703
                                                   13.874
                                                           1.00 43.56
                                                                                 0
                                          37.198
ATOM
      14343
              0
                  ASN B 455
                                                                                 N
                                  47.422
                                          38.151
                                                  15.908
                                                           1.00 48.50
      14344
                  PHE B 456
ATOM
             N
                                                           1.00 46.70
                                                  16.679
                                                                                 С
                                          37.017
ATOM
      14346
              CA
                 PHE B 456
                                  47.967
                                                                                 C
                                                           1.00 45.7B
MOTA
      14348
             СВ
                  PHE B 456
                                  49.403
                                          37.312
                                                  17.149
                                                                                 С
                 PHE B 456
                                  50.326
                                          37.756
                                                  16.039
                                                           1.00 44.56
ATOM
      14351
              CG
                                                           1.00 41.63
                                                                                 С
ATOM
      14352
              CD1 PHE B 456
                                  50.807
                                          36.846
                                                  15,117
                                                                                 C
              CE1 PHE B 456
                                  51.618
                                          37.253
                                                  14.100
                                                           1.00 45.45
MOTA
      14354
                                                                                 С
              CZ PHE B 456
                                  51.984
                                          38.590
                                                  13.989
                                                           1.00 45.16
ATOM
      14356
                                                                                 С
                                  51.525
                                          39.497
                                                  14.897
                                                           1.00 43.66
ATOM
      14358
              CE2 PHE B 456
                                                                                 C
             CD2 PHE B 456
                                  50.691
                                          39.081
                                                   15.915
                                                           1.00 .43.31
ATOM
      14360
                                                                                 С
                                  47.138
                                          36.677
                                                   17.915
                                                           1.00 48.54
ATOM
      14362
              C
                  PHE B 456
                  PHE B 456
                                  46.601
                                          37.564
                                                   18.565
                                                           1.00 44.83
                                                                                 0
ATOM
      14363
              0
      14364
                  ASN B 457
                                  47.038
                                          35.382
                                                   18.227
                                                           1.00 50.59
                                                                                 N
ATOM
             N
                                  46.747
                                          34.926
                                                   19.593
                                                           1.00 49.53
                                                                                 С
                  ASN B 457
ATOM
      14366
             CA
      14368
                  ASN B 457
                                  45.964
                                          33.639
                                                   19.560
                                                           1.00 47.87
                                                                                 C
              CB
ATOM
                                          33.745
                                                   18.698
                                                           1.00 49.67
                                                                                 C
                  ASN B 457
                                  44.751
      14371
              CG
ATOM
                                          34.676
                                                   18.843
                                                           1.00 53.28
                                                                                 0
      14372
              OD1 ASN B 457
                                  43.952
АТОМ
                                          32.804
                                                   17.777
                                                           1.00 48.52
                                                                                 N
                                  44.600
              ND2 ASN B 457
ATOM
      14373
                                                                                 С
      14376
                  ASN B 457
                                  48.041
                                          34.733
                                                   20.377
                                                           1.00 48.33
ATOM
              С
                                                                                 0
                                  49.099
                                          34.586
                                                   19.794
                                                           1.00 51.94
                  ASN B 457
ATOM
      14377
              O
                                          34.754
                                                   21.693
                                                           1.00 48.38
                                                                                 N
                                  47.965
ATOM
      14378
             N
                  LEU B: 458
                                          34.603
                                                   22.501
                                                           1.00 51.94
                                  49.162
ATOM
      14380
              CA
                 LEU B 458
                                                                                 С
                                          35.744
37.157
                                                   23.520
                                                           1.00 52.08
                                  49.245
ATOM
      14382
              CB
                  LEU B 458
                                                           1.00 49.79
                                                   23,058
                                                                                 С
                                  48.887
MOTA
      14385
              CG
                  LEU B 458
                                                                                 С
                                                   24.281
                                                           1.00 48.48
      14387
              CD1 LEU By 458
                                  48.823
                                          38.056
MOTA
                                                                                 C
      14391
              CD2 LEU B 458
                                  49.880
                                          37.707
                                                   22,028
                                                           1.00 51.18
ATOM
                                                                                 C
                                                   23,220
                                                           1.00 53.50
                  LEU B 458
                                  49.172
                                          33.251
MOTA
      14395
                                                                                 0
                                  48.324
                                          33.002
                                                   24.073
                                                           1.00 55.13
ATOM
      14396
                  LEU B 458
                                                                                 N
                                  50.118
                                          32.381
                                                   22.884
                                                           1.00 56.79
MOTA
      14397
                  LYS B-459
                                                                                 С
ATOM
      14399
              CA
                  LYS B 459
                                  50.225
                                          31.085
                                                   23.547
                                                           1.00 62.31
                                                                                 С
                                  50.581
                                          29.977
                                                   22.555
                                                           1.00 65.32
ATOM
      14401
              CB
                  LYS B 459
                                  50.675
ATOM
      14404
              CG
                  LYS B 459
                                          28.574
                                                   23.165
                                                           1.00 68.73
                                                                                 С
                                                           1.00 72.79
                                                                                 С
                  LYS B 459
                                  50.832
                                          27.487
                                                   22.078
MOTA
      14407
              CD
                                  50.131
                                          26.174
                                                   22.461
                                                           1.00 73.74
                                                                                 С
                  LYS B 459
ATOM
      14410
              CE
                                  50.789
                                          25.496
                                                   23.608
                                                           1.00 73.66
                                                                                 N
              NZ
                  LYS B 459
ATOM
      14413
                                          31.186
                                                   24.600
                                                           1.00 64.98
                                                                                 С
                  LYS B 459
                                  51.294
      14417
ATOM
              С
                                                           1.00 62.96
                                  52.408
                                                   24.310
                                                                                 Ω
                                          31.610
                  LYS B 459
ATOM
      14418
              0
                                                   25.829
                                                           1.00 70.46
                                                                                  N
                                  50.949
                                          30.812
      14419
              N
                  SER B 460
ATOM
                                                           1.00 72.59
                                  51.917
                                          30.794
                                                   26.924
                                                                                 С
                  SER B 460
ATOM
      14421
              CA
                                                           1.00 73.16
                                                                                  C
                                  51.209
                                          30.746
                                                   28.288
                  SER B 460
ATOM
      14423
              CB
                                  52.120
                                          30.907
                                                   29.370
                                                           1.00 71.85
                                                                                  0
                  SER B 460
ATOM
      14426
              OG
                                  52.792
                                          29.575
                                                   26.750
                                                           1.00 74.55
                                                                                  C
ATOM
      14428
              С
                  SER B 460
                                                   26.137
                                                           1.00 73.15
                                  52.376
                                          28.586
ATOM
      14429
              ٥
                  SER B 460
                                  54.008
                                                                                  N
                                                   27.277
                                                           1.00 79.27
                                          29.655
MOTA
      14430
              N
                  LEU B 461
                                                   27.268
                                                           1.00 82.90
                                  54.916
ATOM
      14432
              CA
                  LEU B 461
                                          28.512
                                                           1.00 84.22
                                  56.387
                                          28.963
                                                   27.359
      14434
                  LEU B 461
MOTA
              CB
                                                           1.00 85.47
                                          28.731
                                                   26.090
MOTA
      14437
              CG
                  LEU B 461
                                  57.221
                                                           1.00 85.07
                                          29.938
                                                   25.169
              CD1 LEU B 461
                                  57.130
MOTA
      14439
                                                           1.00 86.44
                                                   26.409
              CD2 LEU B 461
                                  58.686
                                          28.377
ATOM
      14443
                                                           1.00 83.87
                                                   28.431
                                  54.558
                                          27.594
ATOM
      14447
              C
                  LEU B 461
                                                           1.00 82.91
                                  54.062
                                          26.488
                                                   28.221
MOTA
      14448
              0
                  LEU B 461
                                                           1.00 86.59
                                                                                  N
                                  54.778
                                          28.093
                                                   29.650
ATOM
      14449
              N
                  VAL B 462
                                                           1.00 88.56
ATOM
      14451
                  VAL B 462
                                  54.629
                                          27.316
                                                   30.886
              CA
                                                           1.00 89.56
                  VAL B 462
                                  55.729
                                          27.725
                                                   31.933
ATOM
      14453
              СВ
                                  55.418
                                          29.092
                                                   32.587
                                                           1.00 88.82
                                                                                  C
              CG1 VAL B 462
ATOM
      14455
                                                           1.00 90.60
              CG2 VAL B 462
                                  55.954
                                          26.612
                                                   32.991
ATOM
      14459
                                  53.222
                                          27.424
                                                   31.500
                                                           1.00 88.48
                                                                                  C
                  VAL B 462
ATOM
      14463
              C
                                  53.030
                                                           1.00 87.72
                                          27.135
                                                   32.677
ATOM
      14464
              0
                  VAL B 462
                                                           1.00 88.81
                                                                                  N
                                  52.246
                                          27.824
                                                   30.690
                  ASP B 463
ATOM
      14465
              N
                                                           1.00 90.17
                                  50.838
                                          27.869
                                                   31.094
ATOM
      14467
              CA
                  ASP B 463
                                                           1.00 91.94
                                                                                  С
                                  50.356
                                          26.513
                                                   31.636
ATOM
      14469
                  ASP B 463
              CB
                                                           1.00 94.60
                                  50.016
                                          26.559
                                                   33.123
      14472
                  ASP B 463
ATOM
              CG
                                          26.768
                                                   33.482
                                                           1.00 93.96
                                                                                  0
                                  48.824
      14473
              OD1 ASP B 463
ATOM
                                                           1.00 94.33
              OD2 ASP B 463
                                          26.404
                                                   33,999
ATOM
      14474
                                  50.896
                                                   32.086
                                                          1.00 89.77
                                  50.508
                                          28.997
ATOM
      14475
                  ASP B 463
```

С

|               |                |           |        |       |                  | Fia              | ure 5            |                          |          |
|---------------|----------------|-----------|--------|-------|------------------|------------------|------------------|--------------------------|----------|
| ATOM          | 14476          | 0         | ASP E  | 3 463 | 51.241           | _                | 33.050           | 1.00 87.64               | 0        |
| ATOM          | 14477          | N         | PRO I  |       | 49.366           |                  | 31.857           | 1.00 90.47               | N        |
| ATOM'<br>ATOM | 14478<br>14480 | CA<br>CB  | PRO E  |       | 49.041<br>47.656 |                  | 32.475<br>31.891 | 1.00 89.98               | C        |
| ATOM          | 14483          | CG        | PRO I  |       | 47.101           |                  | 31.403           | 1.00 91.39               | c        |
| ATOM          | 14486          | CD        | PRO E  |       | 48.284           |                  | 30.970           | 1.00 91.42               | č        |
| ATOM          | 14489          | C         | PRO E  |       | 48.971           |                  | 33.993           | 1.00 88.81               | С        |
| ATOM          | 14490          |           | PRO E  |       | 49.513           |                  | 34.583           | 1.00 86.91               | 0        |
| ATOM<br>ATOM  | 14491<br>14493 | n<br>Ca   | LYS E  |       | 48.299<br>48.081 |                  | 34.615<br>36.062 | 1.00 89.19               | N<br>C   |
| ATOM          | 14495          | СВ        | LYS E  |       | 47.213           |                  | 36.537           | 1.00 90.51               | č        |
| MOTA          | 14498          | CG        | LYS E  |       | 46.954           |                  | 38.047           | 1.00 91.19               | С        |
| ATOM          | 14501          | CD        | LYS E  |       | 45.653           |                  | 38.437           | 1.00 90.99               | C        |
| ATOM<br>ATOM  | 14504<br>14507 | CE<br>NZ  | LYS E  |       | 44.937<br>44.070 |                  | 39.610<br>40.401 | 1.00 89.64<br>1.00 84.78 | C<br>N   |
| MOTA          | 14511          | C         | LYS E  |       | 49.406           |                  | 36.850           | 1.00 89.65               | č        |
| MOTA          | 14512          | 0         | LYS E  |       | 49.500           |                  | 37.870           | 1.00 86.98               | 0        |
| ATOM          | 14513          | N         | ASN E  |       | 50.426           |                  | 36.353           | 1.00 89.41               | N        |
| ATOM<br>ATOM  | 14515<br>14517 | CA<br>CB  | ASN E  |       | 51.726<br>52.527 |                  | 37.023<br>36.522 | 1.00 89.80<br>1.00 91.85 | C        |
| ATOM          | 14520          | CG        | ASN E  |       | 53.311           |                  | 37.640           | 1.00 93.86               | č        |
| MOTA          | 14521          |           | ASN E  |       | 54.420           |                  | 37.988           | 1.00 95.16               | 0        |
| ATOM          | 14522          |           | ASN E  |       | 52.731           |                  | 38.205           | 1.00 93.33               | N        |
| ATOM<br>ATOM  | 14525<br>14526 | .C        | ASN E  |       | 52.579<br>53.573 |                  | 36.866<br>37.576 | 1.00 88.39               | - c      |
| ATOM          | 14527          | N.        | LEU E  |       | 52.211           |                  | 35.927           | 1.00 87.02               | . N      |
| ATOM          | 14529          | CA        | LEU E  |       | 52.955           | 32.742           | 35.681           | 1.00 83.16               | С        |
| ATOM          | 14531          | CB        | LEU E  |       | 52.554           | 33.392           | 34.351           |                          | C        |
| ATOM<br>ATOM  | 14534<br>14536 | CG        | LEU E  |       | 53.023<br>52.295 |                  | 33.049           | 1.00 83.44               | C<br>C   |
| ATOM          | 14540          |           | LEU B  |       | 54.532           | 32.876           | 32.880           | 1.00 84.80               | č        |
| MOTA          | 14544          | С         | LEU B  |       | 52.732           | 33.752           | 36.787           |                          | С        |
| MOTA          | 14545          | 0         | LEU B  |       | 51.630           | 33.898           |                  | 1.00 78.60               | 0        |
| ATOM<br>ATOM  | 14546<br>14548 | N<br>CA   | ASP B  |       | 53.791<br>53.759 | 34.476<br>35.456 | 37:101<br>38:155 | 1.00 78.52<br>1.00 78.88 | N<br>C   |
| ATOM          | 14550          | CB        | ASP B  |       | 54.910           |                  | 39.105           | 1.00 82.16               | č        |
| ATOM          | 14553          |           | ASP B  |       | 54.902           | 36.093           | 40.293           | 1.00 86.23               | · c      |
| ATOM          | 14554          |           | ASP B  |       | 55.766           | 36.992           | 40.348           | 1.00 89.73               | 0        |
| ATOM<br>ATOM  | 14555<br>14556 | OD2       | ASP B  |       | 54.059<br>53.896 | 35.997<br>36.847 | 41.210<br>37.550 | 1.00 88.09               | 0<br>C   |
| ATOM          | 14557          | ŏ         | ASP B  |       | 54.754           | 37.068           | 36.702           | 1.00 75.67               | ŏ        |
| ATOM          | 14558          | N         | THR B  |       | 53.053           | 37.778           | 37.984           | 1.00 73.67               | N        |
| ATOM          | 14560          | CA        | THR B  |       | 53.057           | 39.139           | 37.449           | 1.00 72.62               | C        |
| MOTA<br>MOTA  | 14562<br>14564 | CB<br>OG1 | THR B  |       | 51.706<br>50.710 | 39.461<br>39.709 | 36.795<br>37.796 | 1.00 70.88<br>1.00 68.76 | . c      |
| ATOM          | 14566          |           | THR B  |       | 51.179           | 38.261           | 36.027           | 1.00 69.44               | · č      |
| ATOM          | 14570          | С         | THR B  |       | 53.395           | 40.172           | 38.523           | 1.00 75.78               | С        |
| ATOM          | 14571          | 0.        | THR B  |       | 52.973           | 41.328           | 38.446           | 1.00 75.09               | 0        |
| MOTA<br>MOTA  | 14572<br>14574 | N<br>CA   | THR B  |       | 54.170<br>54.718 | 39.732<br>40.588 | 39.512<br>40.558 | 1.00 78.39<br>1.00 80.89 | . N<br>C |
| ATOM          | 14576          | СВ        | THR. B |       | 55.472           | 39.699           | 41.612           | 1.00 84.63               | č        |
| ATOM          | 14578          |           | THR B  |       | 54.549           | 38.799           | 42.240           | 1.00 87.74               | 0        |
| ATOM          | 14580          |           | THR B  |       | 56.079           | 40.518           | 42.785           | 1.00 85.74               | C        |
| ATOM<br>ATOM  | 14584<br>14585 | С<br>0    | THR B  |       | 55.700<br>56.792 | 41.601<br>41.214 | 39.952<br>39.489 | 1.00 78.04               | o        |
| ATOM          | 14586          | N         | PRO B  |       | 55.331           | 42.882           |                  | 1.00 75.11               | N        |
|               | 14587          | CA        | PRO B  |       | 56.292           | 43.916           | 39.548           | 1.00 75.77               | C        |
| ATOM<br>ATOM  | 14589<br>14592 | CB        | PRO B  |       | 55.534<br>54.068 | 45.240<br>44.881 | 39.810<br>39.808 | 1.00 76.60<br>1.00 75.36 | C        |
| ATOM          | 14595          | CG<br>CD  | PRO B  |       | 54.011           | 43.450           | 40.284           | 1.00 75.37               | č        |
| ATOM          | 14598          | C         | PRO B  |       | 57.573           | 43.817           | 40.387           | 1.00 74.36               | С        |
| MOTA          | 14599          | 0         | PRO B  |       | 57.499           | 43.825           | 41.609           | 1.00 74.67               | 0        |
| ATOM          | 14600          | N         | VAL B  |       | 58.714           | 43.657           | 39.725           | 1.00 73.58               | N<br>C   |
| ATOM<br>ATOM  | 14602<br>14604 | CA<br>CB  | VAL B  |       | 60.026<br>61.104 | 43.794<br>43.046 | 40.355<br>39.528 | 1.00 73.16<br>1.00 72.34 | Č        |
| ATOM          | 14606          |           | VAL B  |       | 62.507           | 43.255           | 40.114           | 1.00 71.83               | С        |
| ATOM          | 14610          |           | VAL B  |       | 60.758           | 41.552           | 39.414           | 1.00 71.41               | C        |
| ATOM          | 14614          | C         | VAL B  |       | 60.381           | 45.296           | 40.453           | 1.00 75.90               | C<br>O   |
| ATOM<br>ATOM  | 14615<br>14616 | O<br>N    | VAL B  |       | 60.546<br>60.489 | 45.970<br>45.817 | 39.432<br>41.672 | 1.00 73.44<br>1.00 78.70 | И        |
| ATOM          | 14618          | CA        | VAL B  |       | 60.766           | 47.244           | 41.876           | 1.00 83.22               | С        |
| ATOM          | 14620          | СВ        | VAL B  | 473   | 59.852           | 47.847           | 42.978           | 1.00 84.51               | · c      |
| atom<br>Atom  | 14622<br>14626 |           | VAL B  |       | 59.914<br>58.407 | 49.380<br>47.368 | 42.954<br>42.813 | 1.00 86.13<br>1.00 84.75 | C.       |
| ATOM          | 14630          | CG2       | VAL B  |       | 62.234           | 47.518           | 42.813           | 1.00 84.75               | · c      |
| ATOM          | 14631          | ō         | VAL B  |       | 62.836           | 46.774           | 43.038           | 1.00 84.37               | . 0      |
|               |                |           |        |       | •                |                  |                  |                          |          |

|   |              |                |                                  |                  |                  | _                |                          |                       |
|---|--------------|----------------|----------------------------------|------------------|------------------|------------------|--------------------------|-----------------------|
|   | 3000         | 1 4 6 3 0      |                                  | 60.000           |                  | ure 5            |                          |                       |
|   | MOTA<br>MOTA |                |                                  | 62.802<br>64.121 |                  |                  | 1.00 87.54               | N                     |
|   | ATOM         |                |                                  | 65.214           |                  |                  | 1.00 89.57<br>1.00 91.42 | · c                   |
|   | ATOM         |                |                                  | 65.423           |                  |                  | 1.00 94.19               |                       |
|   | ATOM         |                | OD1 ASN B 474                    | 64.608           |                  |                  | 1.00 94.88               | ō                     |
|   | ATOM         |                |                                  | 66.502           |                  |                  | 1.00 95.18               | n                     |
|   | ATOM         |                |                                  | 64.127           |                  |                  | 1.00 88.47               | C                     |
|   | ATOM<br>ATOM |                | •                                | 64.435<br>63.737 |                  |                  | 1.00 83.30               | 0                     |
|   | ATOM         |                |                                  | 63.748           |                  |                  | 1.00 89.74<br>1.00 90.50 | N<br>C                |
|   | ATOM         |                |                                  | 62.663           |                  |                  | 1.00 91.74               | č                     |
|   | ATOM         |                | O GLY B 475                      | 61.482           | 53.205           |                  | 1.00 90.64               | ō                     |
|   | MOTA         |                |                                  | 63.080           |                  |                  | 1.00 91.94               | N                     |
|   | ATOM<br>ATOM | 14655          |                                  | 62.236           |                  |                  | 1.00 89.81               | C                     |
|   | ATOM         | 14657<br>14660 |                                  | 63.088<br>63.626 | 56.196<br>57.090 | 40.822<br>41.950 | 1.00 91.80<br>1.00 94.77 | C                     |
|   | ATOM         | 14661          | CD1 PHE B 476                    | 64.499           |                  |                  | 1.00 95.71               | Č                     |
|   | ATOM         | 14663          |                                  | 65.008           | 58.989           |                  | 1.00 94.74               | č                     |
|   | ATOM         | 14665          |                                  | 64.645           | 58.784           | 43, 958          | 1.00 94.68               | С                     |
|   | MOTA         | 14667          |                                  | 63.777           |                  | 44.297           | 1.00 92.90               | С                     |
|   | ATOM<br>ATOM | 14669<br>14671 | CD2 PHE B 476<br>C PHE B 476     | 63.270           | 56.900           | 43.299           | 1.00 94.20               | C                     |
|   | MOTA         | 14672          | O PHE B 476                      | 61.539<br>60.744 | 54.385<br>55.072 | 40.040<br>39.386 | 1.00 84.51               | C<br>0                |
|   | ATOM         | 14673          | N ALA B 477                      | 61.860           | 53.137           | 39.694           | 1.00 77.54               | n                     |
|   | ATOM         | 14675          | CA ALA B 477                     | 61.253           | 52.459           | 38.539           | 1.00 72.44               | Č                     |
|   | ATOM         | 14677          | CB ALA B 477                     | 62.228           | 52.436           | 37.341           | 1.00 70.79               | . с                   |
|   | ATOM         | 14681          | C ALA B 477                      | 60.800           | 51.037           | 38.907           | 1.00 68.26               | C                     |
|   | MOTA<br>MOTA | 14682<br>14683 | O ALA B 477<br>N SER B 478       | 60.968<br>60.193 | 50.593<br>50.353 | 40.054<br>37.939 | 1.00 67.52<br>1.00 60.70 | 0                     |
|   | ATOM         | 14685          | CA SER B 478                     | 59.719           | 48.978           | 38.126           | 1.00 57.04               | N<br>C                |
|   | ATOM         | 14687          | CB SER B 478                     | 58.501           | 48.894           | 39.048           |                          | THE PERCENT           |
|   | MOTA         | 14690          | OG SER B 478                     | 57.432           | 49.705           | 38.605           | 1.00 60.97               | 15% ALL 0             |
|   | ATOM         | 14692          | C SER B 478                      | 59.391           | 48.352           | 36.790           | 1.00 52.88               |                       |
|   | ATOM         | 14693          | O SER B 478                      | 59.073           | 49.062           | 35.834           | 1.00 49.59               |                       |
|   | ATOM<br>ATOM | 14694<br>14696 | N VAL B 479<br>CA VAL B 479      | 59.477<br>59.535 | 47.020<br>46.285 | 36.737<br>35.471 | 1.00 46.89<br>1.00 44.49 | 145 % 10 N N N 17 N C |
|   | ATOM         | 14698          | CB VAL B 479                     | 60.991           | 46.170           | 34.954           | 1.00 40.35               | 1 1 1 1 C             |
|   | ATOM         | 14700          | CG1 VAL B 479                    | 61.607           | 47.544           | 34.681           | 1.00 39.58               | . 100 km C            |
|   | ATOM         | 14704          | CG2 VAL B 479                    | 61.826           | 45.424           | 35.935           | 1.00 39.08:              | . 734 day C2          |
|   | MOTA         | 14708          | C VAL B 479                      | 58.980           | 44.876           | 35.657           | 1.00 44.38               | .344 (                |
|   | ATOM<br>ATOM | 14709          | O VAL B 479                      | 58.990           | 44.366           | 36.766           |                          | 265 Te 20             |
|   | ATOM         | 14710<br>14711 | N PRO B 480<br>CA PRO B 480      | 58.489<br>57.885 | 44.239<br>42.912 | 34.597<br>34.751 | 1.00 41.57<br>1.00 42.61 | N<br>C                |
|   | ATOM         | 14713          | CB PRO B 480                     | 57.074           | 42.744           | 33.463           | 1.00 39.62               | č                     |
|   | ATOM         | 14716          | CG PRO B 480                     | 57.833           | 43.543           | 32.453           | 1.00 39.43               | c                     |
|   | ATOM         | 14719          | CD PRO B 480                     | 58.470           | 44.695           | 33.197           | 1.00 38.63               | С                     |
|   | ATOM         | 14722          | C PRO B 480                      | 58.970           | 41.841           | 34.831           | 1.00 45.77               | C                     |
|   | ATOM<br>ATOM | 14723<br>14724 | O PROB480<br>N PROB481           | 60.110<br>58.625 | 42.120<br>40.632 | 34.488<br>35.245 | 1.00 50.02<br>1.00 46.34 | N<br>O                |
|   | ATOM         | 14725          | CA PRO B 481                     | 59.593           | 39.542           | 35.225           | 1.00 47.12               | C                     |
|   | ATOM         | 14727          | CB PRO B 481                     | 58.925           | 38.453           | 36.099           | 1.00 45.16               | Č                     |
| • | ATOM         | 14730          | CG PRO B 481                     | 57.480           | 38.684           | 35.941           | 1.00 46.23               | . с                   |
|   | MOTA         | 14733          | CD PRO B 481                     | 57.311           | 40.188           | 35.746           | 1.00 47.53               | C                     |
|   | ATOM<br>ATOM | 14736<br>14737 | C PRO B 481<br>O PRO B 481       | 59.808<br>58.971 | 39.041           | 33.803           | 1.00 45.57<br>1.00 45.15 | C<br>0                |
|   | ATOM         | 14738          | N PHE B 482                      | 60.920           | 38.332           | 33.602           | 1.00 42.27               | n                     |
|   | ATOM         | 14740          | CA PHE B 482                     | 61.213           | 37.693           | 32.341           | 1.00 39.00               | C                     |
|   | ATOM         | 14742          | CB PHE B 482                     | 62.532           | 36.924           | 32.427           | 1.00 39.89               | С                     |
|   | ATOM         | 14745          | CG PHE B 482                     | 62.852           | 36.160           | 31.177           | 1.00 40.74               | C                     |
|   | ATOM<br>ATOM | 14746<br>14748 | CD1 PHE B 482<br>CE1 PHE B 482   | 62.617<br>62.875 | 34.797<br>34.111 | 31.101           | 1.00 37.74<br>1.00 41.00 | C                     |
|   | ATOM         | 14750          | CZ PHE B 482                     | 63.382           | 34.782           | 29.942<br>28.825 | 1.00 41.00               | c                     |
|   | ATOM         | 14752          | CE2 PHE B 482                    | 63.615           | 36.132           | 28.884           | 1.00 40.63               | č                     |
|   | MOTA         | 14754          | CD2 PHE B 482                    | 63.347           | 36.822           | 30.054           | 1.00 40.80               | č                     |
|   | ATOM         | 14756          | C PHE B 482                      | 60.085           | 36.739           | 31.962           | 1.00 39.47               | С                     |
|   | ATOM         | 14757          | O PHE B 482                      | 59.512           | 36.062           | 32.817           | 1.00 44.71               | 0                     |
|   | ATOM         | 14758          | N TYR B 483                      | 59.751           | 36.695           | 30.681           | 1.00 37.43               | и                     |
|   | MOTA<br>MOTA | 14760<br>14762 | CA TYR B 483<br>CB TYR B 483     | 58.804<br>57.359 | 35.698<br>36.052 | 30.195<br>30.576 | 1.00 38.26<br>1.00 37.96 | C                     |
|   | ATOM         | 14765          | CG TYR B 483                     | 56.801           | 37.161           | 29.723           | 1.00 37.96               | c                     |
|   | MOTA         | 14766          | CD1 TYR B 483                    | 56.024           | 36.878           | 28.601           | 1.00 33.64               | č                     |
|   | ATOM         | 14768          | CE1 TYR B 483                    | 55.522           | 37.901           | 27.809           | 1.00 32.12               | С                     |
|   | MOTA         | 14770          | CZ TYR B 483                     |                  | 39.212           | 28.124           | 1.00 32.43               | c                     |
|   | ATOM<br>ATOM | 14771          | OH TYR B 483                     | 55.353           | 40.242           | 27.327           | 1.00 35.93               | 0                     |
|   | ATOM         | 14773<br>14775 | CE2 TYR B 483 .<br>CD2 TYR B 483 | 56.619<br>57.092 | 39.502<br>38.494 | 29.228<br>30.012 | 1.00 28.64<br>1.00 26.13 | c<br>C                |
|   |              |                | IIN B 403                        | 31.032           | JU. 434          | 50.012           | 2.00 20.13               | C                     |
|   |              |                |                                  |                  |                  |                  |                          |                       |

200 d

707 107 107 107

706 9405 -108 108 108 108

5.5

. 4 . 8

```
Figure 5
   ATOM 14777
                 C
                      TYR B 483
                                       58.921 35.589 28.691 1.00 38.77
                                                                                          С
   ATOM
         14778
                  0
                      TYR B 483
                                       59.486
                                                36.473 28.044
                                                                  1.00 43.13
   ATOM
          14779
                  N
                      GLN B 484
                                       58.368
                                                34.503 28.162
                                                                  1.00 39.23
   ATOM
          14781
                      GLN B 484
                                                34.232 26.733
                  CA
                                       58.339
                                                                  1.00 42.80
   ATOM
          14783
                                                33.060 26.360
33.221 26.678
                  CB
                      GLN B 484
                                       59.247
                                                                 1.00 45.49
                                       60.728
   ATOM
          14786
                      GLN B 484
                                                                 1.00 51.47
                                                                                          C
                                       61.505 . 31.901
61.058 30.842
   MOTA
          14789
                  CD
                      GLN B 484
                                                         26.506
                                                                 1.00 54.57
   ATOM
          14790
                  OE1 GLN B 484
                                                        26.988
                                                                 1.00 54.51
   ATOM
          14791
                  NE2
                      GLN B 484
                                                         25.828
                                       62.651
                                                31.967
                                                                 1.00 47.10
                                                33.850
   ATOM
          14794
                      GLN B 484
                                       56.938
                                                         26.311
                                                                 1.00 41.81
   ATOM
          14795
                  0
                      GLN B 484
                                       56,116
                                                33.456
                                                         27.138
                                                                 1.00 43.85
   ATOM
          14796
                      LEU B 485
                                       56.692 33.945 25.007
                                                                 1.00 44.20
   MOTA
          14798
                 CA
                      LEU B 485
                                                33.586 24.409
                                       55.407
                                                                 1.00 43.57
   ATOM
          14800
                      LEU B 485
                 CB
                                                34.691 24.675
                                                34.691 24.675 1.00 42.60
35.931 23.771 1.00 40.44
                                       54.394
   ATOM
          14803
                 CG
                      LEU B 485
                                       54,405
   ATOM
          14805
                 CD1 LEU B 485
                                       53.079
                                                36.694 23.878
                                                                 1.00 41.53
   MOTA
          14809
                  CD2 LEU B 485
                                       55.585
                                                36.839 24.127
                                                                 1.00 40.96
   ATOM
          14813
                      LEU B 485
                 С
                                       55.515
                                                33.378
                                                        22.903
                                                                 1.00 46.37
                                                                                          C
   ATOM
          14814
                 0
                      LEU B 485
                                       56.564
                                                33.639 22.293
                                                                 1.00 50.60
                                                                                          0
   ATOM
          14815
                 N
                      CYS B 486
                                       54.402
                                                32.965 22.305
                                                                 1.00 46.20
                                                                                          N
   ATOM
         14817
                 CA
                      CYS B 486
                                       54.303
                                                32.803 20.861
                                                                 1.00 46.00
                                                                                          C
   MOTA
         14819
                 CB
                      CYS B 486
                                       54.036
                                                31.354
                                                        20.524
                                                                 1.00 48.22
   ATOM
         14822
                 SG
                      CYS B 486
                                       55.149
                                                30.221
                                                        21.337
                                                                 1.00 55.68
                                                                                          S
   ATOM
         14823
                 С
                      CYS B 486
                                       53.177
                                                33.636
                                                        20.269
                                                                 1.00 44.86
   ATOM
         14824
                 0
                      CYS B 486
                                                33.669
                                                        20.777
                                       52.058
                                                                 1.00 41.38
                                                                                          0
   ATOM
         14825.
                 N
                      PHE B 487
                                       53.493
                                                34.281 .19.161
                                                                 1.00 43.43
                                                                                          N
   MOTA
         14827
                 CA
                      PHE B 487
                                       52.539
                                                35.018
                                                        18.393
                                                                 1.00 40.56
                                                                                         С
                                              38.894 21.031 1.00 42.12

20.460 1.00 41.04

38.894 21.031 1.00 38.31

38.938 20.583 1.00 39.02

38.092 19.563 1.00 37.87

34.100 17.295 1.00 40.89

34.033 16.201 1.00 44.99

32.413 16.690 1.00 44.99

32.413 16.690 1.00 48.17

31.286 17.454 1.00 49.83

0.267 18.009 1.00 52.13

0.719 19.256 1.00 56.47

1.561 16.563 1.00 50.33

1.95 15.825 1.00 49.33

7.59 16.353 1.00 49.41

239 14.511 1.00
   ATOM
         14829
                 CB
                      PHE B 487
                                       53.233
                                                36.267
                                                         17.873
                                                                 1.00 39.13
   ATOM
         14832
                      PHE B 487
                 CG
                                       53.699
                                                                                         С
   ATOM
         14833
                 CD1 PHE B 487
                                       55.004
  ATOM
         14835
                 CE1 PHE B 487
                                       55.430
                                                                                         С
.. ATOM
         14837
                 CZ
                     PHE B 487
                                       54.543
         14839
                 CE2 PHE B 487
                                       53.239
  ATOM
         14841
                 CD2 PHE B 487
                                       52.823
  ATOM
         14843
                 С
                      PHE B 487
                                      52,006
                                                                                         С
  ATOM
         14844
                 0
                      PHE B 487
                                      52.546
  ATOM
         14845
                N
                     ILE B 488
                                      50,968
  ATOM
         14847
                CA ILE B 488
                                      50.336
                                                                                         С
                CB ILE B 488
  ATOM
         14849
                                      49.576
                                                                                         C
  ATOM
         14851
                CG1 ILE B 488
                                      50.560
                                                                                         С
                CD1 ILE B 488
  ATOM
         14854
                                      51.187
                                                                                         С
  ATOM
         14858
                CG2 ILE B 488
                                       48.561
                                                                                         С
  ATOM
         14862
                 С
                     ILE B 488
                                       49.362
                                                                                         C
  ATOM
         14863
                     ILE B 488
                                      48.398
                                                                                         0
  ATOM
         14864
                N
                     PRO B 489
                                       49.588
                                                                                         N
  ATOM
         14865
                CA
                     PRO B 489
                                      48.637
                                                                                         С
  MOTA
         14867
                CB
                     PRO B 489
                                      49.207
                                               33.526
                                                        12.223
                                                                 1.00 45.70
                                                                                         С
  ATOM
         14870
                CG
                     PRO B 489
                                      50.650
                                               33.421
                                                                 1.00 46.66
                                                        12.468
                                                                                         С
  MOTA
         14873
                CD
                                                        13.792
                     PRO B 489
                                      50.765
                                               32.726
                                                                 1.00 47.29
                                                                                         С
  ATOM
         14876
                 С
                     PRO B 489
                                      47.190
                                               33.383
                                                        13.723
                                                                 1.00 49.60
                                                                                         C
  ATOM
         14877
                     PRO B 489
                                      46.932
                                               32.269
                                                        14.193
                                                                 1.00 53.68
                                                                                         ٥
  MOTA
         14878
                N
                    .VAL B 490
                                      46.253
                                               34.220
                                                        13.311
                                                                 1.00 50.54
                                                                                         N
  ATOM
         14880
                CA
                     VAL B 490
                                    44.839
                                                        13.460
13.822
                                               33.910
                                                                 1.00 53.88
                                                                                         С
  MOTA
                CB VAL B 490
                                               35.189
         14882
                                      44.021
                                                                 1.00 56.65
                                                                                         С
  ATOM
         14884
                CG1 VAL B 490
                                      44.602
                                                        15.071
                                               35.889
                                                                 1.00 56.58
                                                                                         С
                CG2 VAL B 490
  MOTA
         14888
                                      43.943
                                               36.172
                                                        12.639
                                                                 1.00 55.77
                                                                                         C
  ATOM
         14892
                С
                     VAL B 490
                                      44.294
                                               33.243
                                                        12.183
                                                                 1.00 56.50
                                                                                         C
  ATOM
         14893
                    VAL B 490
                0
                                      44.745
                                               33.574
                                                        11.080
                                                                 1.00 55.59
                                                                                         0
  ATOM
         14894
                OXT VAL B 490
                                      43.413
                                               32.361
                                                        12.217
                                                                 1.00 58.51
                                                                                         ٥
  ATOM
         14895 FE1 HEM B 501
                                      56.685
                                               60.810
                                                        29.745
                                                                 1.00 32.88
                                                                                        FE
  ATOM
         14896
                N5 HEM B 501
                                      57.469
                                               62.064
                                                        29.648
                                                                1.00 29.60
  ATOM
         14897
                C21 HEM B 501
                                      57.844
                                               62.983
                                                        30.635
                                                                 1.00 19.44
  ATOM
         14898
                C20 HEM B 501
                                      58.574
                                                                 1.00 19.96
                                               64.187
                                                        30.139
  MOTA
         14899
                C39 HEM B 501
                                      59.127
                                               65.395
                                                        30.839
                                                                 1.00 29.43
  ATOM
         14902
                C40 HEM B 501
                                      58.129
                                               66.515
                                                        31.050
                                                                 1.00 40.72
                                                                                         c
  MOTA
        14904
                C41 HEM B 501
                                      58.553
                                               .67.622
                                                        31.716
                                                                 1.00 45.47
                                                                                         С
  MOTA
         14905
                O42 HEM B 501
                                      58.025
                                               68.709
                                                                 1.00 42.97
                                                        31.535
                                                                                         0
  MOTA
        14906
                O43 HEM B 501
                                      59.495
                                               67.550
                                                        32.494
                                                                 1.00 42.16
                                                                                         0
  MOTA
         14907
                C18 HEM B 501
                                      57.978
                                                        28.502
                                                                 1.00 19.94
                                               62.643
                                                                                         C
  MOTA
         14908
                C19 HEM B 501
                                      58.700
                                               63.932
                                                        28.711
                                                                 1.00 21.83
  ATOM
         14909
                C38 HEM B 501
                                      59.349
                                               64.823
                                                                 1.00 22.05
                                                                                         C
                                                       27.697
  MOTA
        14910
                C25 HEM B 501
                                      57.943
                                                                 1.00 10.30
                                               62.140
                                                       27.138
  ATOM
        14912
                C17 REM B 501
                                      57.338
                                                                 1.00 15.54
                                               60.904
                                                       26.740
                                                                                         C
  ATOM
        14913
                C16 HEM B 501
                                      57.266
                                               60.421 25.348
                                                                1.00 15.15
  ATOM
        14914
                C36 HEM B 501
                                      57.822
                                               60.986
                                                       24.097
                                                                1.00 19.75
                                                                                         C
  ATOM
        14916
                                      57,685
                C37 HEM B 501
                                               62.447 23.830 1.00 21.61
```

|              |                |           |     |                  |    |                  | Fia              | ure 5            |              |                |   |        |
|--------------|----------------|-----------|-----|------------------|----|------------------|------------------|------------------|--------------|----------------|---|--------|
| MOTA         | 14917          |           |     | 1 B 501          | •  | 56.549           | 59.148           | 25.455           | 1.00         | 13.87          |   | С      |
| ATOM         | 14918          |           |     | B 501            |    | 56.229           | 58.175           | 24.374           |              | 20.80          |   | C      |
| ATOM<br>ATOM | 14919<br>14920 | N4        |     | 8 501<br>8 501   |    | 56.317<br>56.781 | 59.059<br>60.073 | 26.935<br>27.663 |              | 20.60<br>16.80 |   | C<br>N |
| ATOM         | 14922          |           |     | B 501            |    | 55.594           | 57.974           | 27.581           |              | 21.69          |   | C      |
| ATOM         |                |           |     | B 501            |    | 55.303           | 57.824           | 29.010           |              | 16.63          |   | С      |
| ATOM         | 14925          |           |     | B 501            |    | 54.559           | 56.637           | 29.485           | 1.00         |                |   | C      |
| ATOM<br>ATOM | 14926<br>14928 |           |     | IB 501<br>IB 501 |    | 54.083<br>53.726 | 55.524<br>54.224 | 28.638<br>29.268 | 1.00<br>1.00 |                |   | C      |
| ATOM         | 14929          |           |     | В 501            |    | 54.367           | 56.811           | 30.922           |              |                |   | c      |
| ATOM         | 14930          |           |     | B 501            |    | 53.684           | 55.894           | 31.906           |              |                |   | Č      |
| MOTA         | 14931          |           |     | B 501            |    | 55.053           | 58.124           | 31.105           | 1.00         |                |   | С      |
| ATOM<br>ATOM | 14932<br>14934 | N3<br>C23 |     | B 501<br>B 501   |    | 55.591<br>55.120 | 58.704<br>58.709 | 29.980<br>32.455 | 1.00         |                |   | С<br>И |
| ATOM         | 14936          | C9        |     | B 501            |    | 55.750           | 59.978           | 32.838           | 1.00         |                |   | ¢      |
| ATOM         | 14937          | N2        |     | B 501            |    | 56.374           | 60.791           | 31.957           |              |                | • | N      |
| ATOM         | 14939          | C6        |     | B 501            |    | 56.836           | 61.829           | 32.676           | 1.00         |                |   | C      |
| MOTA<br>MOTA | 14940<br>14942 | C8        |     | B 501<br>B 501   |    | 57.536<br>55.758 | 62.926<br>60.477 | 32.056<br>34.234 | 1.00         |                |   | C      |
| ATOM         | 14943          |           |     | B 501            |    | 55.231           | 59.858           | 35.465           | 1.00         |                |   | č      |
| ATOM         | 14944          | C7        |     | B 501            |    | 56.512           | 61.736           | 34.106           | 1.00         |                |   | С      |
| ATOM<br>ATOM | 14945<br>14947 |           |     | B 501<br>B 501   |    | 56.796           | 62.672           | 35.206           | 1.00         |                | • | C      |
| ATOM         | 14950          |           |     | B 501            |    | 56.286<br>56.282 | 64.081<br>64.848 | 34.968<br>36.282 | 1.00         |                |   | C      |
| ATOM         | 14951          |           |     | B 501            |    | 57.200           | 65.605           | 36.553           | 1.00         |                |   | ō      |
| ATOM         | 14952          |           |     | B 501            |    | 55.376           | 64.722           | 37.095           | 1.00         |                |   | 0      |
| ATOM<br>ATOM | 14953          | 0         |     | W2001            |    | 22.332           | 66.101           | 17.605           | 1.00 3       |                |   | 0      |
| ATOM         | 14956<br>14959 | 0         |     | W2002<br>W2003   |    | 39.184<br>22.056 | 67.864<br>87.604 | 0.001<br>21.635  | 1.00         |                |   | 0      |
| ATOM         | 14962          | ŏ         |     | W2004            |    | 27.500           | 67.000           | -0.128           | 1.00         |                |   | ŏ      |
| ATOM         | 14965          | 0         |     | W2005            |    | 1.104            | 69.686           | 20.708           | 1.00         |                |   | 0      |
| ATOM<br>ATOM | 14968          | 0.        |     | W2006            |    | 8.566            | 57.157           | 21.230           | 1.00         |                |   | 0      |
| MOTA         | 14971<br>14974 | 0.        |     | W2007<br>W2008   |    | 40.398<br>37.456 | 83.015<br>61.356 | 15.513<br>17.014 | 1.00 3       |                |   | 0      |
| ATOM         | 14977          | Ō.        |     | W2009            |    | 24.050           | 64.615           | 37.173           | 1.00 3       |                |   | ŏ      |
| ATOM         | 14980          | 0         |     | W2010            |    |                  | 87.344           | -2.599           | 1.00 4       |                |   | 0      |
| ATOM<br>ATOM | 14983<br>14986 | 0.        |     | W2011: W2012     | ٠, | 37.168           | 87.666           | 18.527           | 1.00 3       |                |   | 0      |
| ATOM         | 14989          |           |     | W2013            |    | 19.193           | 74.553<br>83.690 | -1.456<br>16.494 | 1.00 3       |                |   | 0      |
| ATOM         | 14992          | 0,        |     | W2014            |    | 27.712           | 76.184           | 2.633            | 1.00 3       |                |   | ō      |
| ATOM         | 14995          | 0         |     | W2015            |    | 43.102           | 78.613           | 11.891           | 1.00 4       |                |   | 0      |
| ATOM<br>ATOM | 14998<br>15001 | 0         |     | W2016<br>W2017   |    | 3.853<br>-5.059  | 72.508<br>76.270 | 29.609<br>32.784 | 1.00 4       |                |   | 0      |
| ATOM         | 15004          | ŏ         |     | W2018            |    | -5.363           | 57.919           | 31.417           | 1.00 5       |                |   | ŏ      |
| MOTA         | 15007          | 0         |     | W2019            |    | 10.301           | 91.578           |                  | 1.00 4       |                |   | 0      |
| ATOM         | 15010          | 0         |     | W2020            |    | 28.270           | 65.046           | 40.231           | 1.00 5       |                |   | 0      |
| ATOM<br>ATOM | 15013<br>15016 | 0         |     | W2021<br>W2022   |    | 7.163<br>14.287  | 85.912<br>61.919 | -3.043<br>1.304  | 1.00 4       |                |   | 0      |
| ATOM         | 15019          | ō         |     | W2023            |    | 9.027            | 50.947           | 31.814           | 1.00 4       |                |   | ō      |
| ATOM         | 15022          | 0         |     | W2024            |    | 12.374           | 75.274           | 19.679           | 1.00 2       |                |   | 0      |
| MOTA<br>MOTA | 15025<br>15028 | 0         |     | W2025<br>W2026   |    | 5.893            | 79.717           | 49.307           | 1.00 4       |                |   | 0      |
| ATOM         | 15031          | ŏ         |     | W2027            |    | 18.461<br>24.404 | 71.665<br>67.509 | 38.701<br>39.056 | 1.00 5       |                |   | 0      |
| ATOM         | 15034          | 0         | HOH | W2028            |    | 44.677           | 79.411           | 24.432           | 1.00 6       | 1.22           |   | ō      |
| ATOM         | 15037          | 0         |     | W2029            |    | 33.788           | 63.777           | 15.135           | 1.00 3       |                |   | 0      |
| ATOM<br>ATOM | 15040<br>15043 |           |     | W2030<br>W2031   |    | -3.551<br>33.399 | 63.803<br>80.082 | 23.749<br>29.766 | 1.00 4       |                |   | 0      |
| ATOM         | 15046          |           |     | W2032            |    | 15.610           | 83.594           | 21.904           | 1.00 4       |                |   | ŏ      |
| MOTA         | 15049          | 0         | нон | W2033            |    | 27.914           | 57.685           | 35.536           | 1.00 5       | 0.29           |   | Ô,     |
| ATOM         | 15052          |           |     | W2034            |    | 46.028           | 66.475           | 18.676           | 1.00 3       |                |   | 0      |
| ATOM<br>ATOM | 15055<br>15058 |           |     | W2035<br>W2036   |    | 40.340<br>31.072 | 81.794<br>61.378 | 8.593<br>36.156  | 1.00 3       |                |   | 0      |
| ATOM         | 15061          |           |     | W2037            |    | 27.037           | 71.946           | 38.741           | 1.00 3       |                |   | ō      |
| ATOM         | 15064          |           |     | W2038            |    | 20.274           | 60.935           | 25.175           | 1.00 4       |                | • | 0      |
| ATOM         | 15067          |           |     | W2039            |    | 19.089           | 94.703           | 16.262           | 1.00 5       |                |   | 0      |
| ATOM<br>ATOM | 15070<br>15073 |           |     | W2040<br>W2041   |    | 4.851<br>13.188  | 79.290<br>63.252 | 18.114<br>4.505  | 1.00 3       |                |   | 0      |
| ATOM         | 15076          |           |     | W2041<br>W2042   |    | 35.356           | 61.598           | 15.307           | 1.00 2       |                |   | 0      |
| ATOM         | 15079          |           |     | W2043            |    | 37.145           | 84.259           | 13.711           | 1.00 4       | 3.51           |   | ō      |
| MOTA         | 15082          |           |     | W2044            |    | 24.256           | 75.099           | 36.311           | 1.00 5       |                |   | 0 .    |
| ATOM<br>ATOM | 15085<br>15088 |           |     | W2045<br>W2046   |    | 15.474<br>13.422 | 61.460<br>73.606 | 18.010<br>30.124 | 1.00 4       |                |   | 0      |
| ATOM         | 15091          |           |     | W2046<br>W2047   |    | 21.317           | 73.327           | 25.139           | 1.00 2       |                |   | 0      |
| ATOM         | 15094          |           |     | W2048            |    | 21.423           | 73.465           | 22.667           | 1.00 2       | 7.99           |   | ō.     |
| ATOM         | 15097          |           |     | W2049            |    | 12.463           | 72.061           | 21.045           | 1.00 4       |                |   | 0      |
| MOTA         | 15100          | 0         | HOH | W2050            |    | 41.339           | 74.411           | 22.961           | 1.00 4       | J.8U           |   | 0      |
|              |                |           |     |                  |    |                  |                  |                  |              |                |   |        |

|              |                  |    |                          |                  | Fig              | ıre 5            |                          |    |            |
|--------------|------------------|----|--------------------------|------------------|------------------|------------------|--------------------------|----|------------|
| ATOM         | 15103            | 0  | HOH W2051                | 20.333           | 64.581           | 24.405           | 1.00 29.67               |    | 0          |
| ATOM         | 15106            | 0  | HOH W2052                | 18.922           | 71.640           | 28.786           | 1.00 29.70               |    | 0          |
| ATOM         | 15109            | 0  | HOH W2053                | 41.100           | 67.380           | 17.930           | 1.00 46.94<br>1.00 36.47 |    | O .        |
| ATOM<br>ATOM | 15112<br>15115   | 0  | HOH W2054<br>HOH W2055   | 37.010<br>48.382 | 72.349<br>64.875 | -0.985<br>19.930 | 1.00 36.47               |    | Ö          |
| MOTA         | 15118            | ŏ  | HOH W2056                | 20.142           | 61.268           | 40.826           | 1.00 34.58               |    | Ō          |
| ATOM         | 15121            | 0  | HOH W2057                | 41.389           | 67.726           | 14.578           | 1.00 33.80               |    | 0          |
| ATOM         | 15124            | 0  | HOH W2058                | 22.803           | 89.331           | 19.487           | 1.00 40.93               |    | 0          |
| ATOM         | 15127            | 0  | HOH W2059                | 10.815           | 57.707           | 28.756           | 1.00 46.80               |    | 0          |
| MOTA         | 15130            | 0  | HOH W2060<br>HOH W2061   | 23.042<br>34.488 | 61.007<br>65.660 | 39.872<br>30.544 | 1.00 35.23               |    | 0          |
| MOTA<br>MOTA | 15133<br>15136   | 0  | HOH W2062                | 23.207           | 64.875           | 15.270           | 1.00 45.85               | •  | ŏ          |
| ATOM         | 15139            | ō  | HOH W2063                | -4.909           | 80.429           | 41.453           | 1.00 34.91               |    | 0          |
| ATOM         | 15142            | 0  | HOH W2064                | 18.845           | 88.815           | 20.249           | 1.00 30.91               | •  | 0          |
| MOTA         | 15145            | 0  | HOH W2065                | 40.746           | 73.315           | -0.984           | 1.00 42.65               |    | 0          |
| ATOM         | 15148            | 0  | HOH W2066                | 32.566           | 60.101           | 16.354           | 1.00 47.53               |    | 0          |
| MOTA         | 15151            | 0  | HOH W2067<br>HOH W2068   | 6.791<br>16.173  | 88.586<br>62.268 | -1.220<br>15.557 | 1.00 45.57<br>1.00 43.22 |    | Ö          |
| ATOM<br>ATOM | 15154 ·<br>15157 | 0  | HOH W2069                | 29.985           | 90.236           | 5.363            | 1.00 46.25               |    | ŏ          |
| ATOM         | 15160            | ō  | HOH W2070                | 32.972           | 63.966           | 27.350           | 1.00 43.89               |    | Ō          |
| ATOM         | 15163            | 0  | HOH W2071                | 40.246           | 81.211           | 23.013           | 1.00 44.68               |    | 0          |
| MOTA         | 15166            | 0  | HOH W2072                | 43.323           | 71.275           | 20.342           | 1.00 48.66               |    | 0          |
| MOTA         |                  | .0 | HOH W2073                | 22.509           | 64.354           | 19.629           | 1.00 29.76               |    | 0          |
| MOTA         | 15172            | 0  | HOH W2074<br>HOH W2075   | 19.026<br>3.211  | 90.549<br>82.866 | 14.385<br>6.576  | 1.00 35.87<br>1.00 45.41 |    | 0          |
| ATOM<br>ATOM | 15175<br>15178   | 0  | HOH W2075                | 38.313           | 79.194           | 7.522            | 1.00 42.45               |    | . 0        |
| ATOM         | 15181            | ō  | HOH W2077                | 32.604           | 82.082           | 28.159           | 1.00 48.32               |    | ō          |
| ATOM         | 15184            | o  | HOH W2078                | 46.352           | 68.326           | 16.051           | 1.00 48.79               |    | 0          |
| ATOM         | , 15187          | 0  | HOH W2079                | 42.043           | 66.017           | 3.726            | 1.00 48.82               |    | 0          |
| ATOM         | 15190            | 0  | HOH W2080                | -5.040           | 76.592           | -1.104           | 1.00 47.04               |    | 0          |
| ATOM         | 15193            | 0  | HOH W2081                | 0.340            |                  | -2.819<br>18.953 | 1.00 48.54<br>1.00 45.66 |    | 0          |
| MOTA<br>MOTA | 15196<br>15199   | 0  | HOH W2082<br>HOH W2083   | 18.285<br>21.062 | 65.582           | 42.101           | 1.00 45.14               |    | . 0        |
| ATOM         | 15202            | ō  | HOH W2084                | 36.153           | 63.328           | 36.972           | 1.00 55.25               | •  | ŏ          |
| ATOM         | 15205            | ō  | HOH W2085                | 57.810           | 72.353           | 58.736           | 1.00 39.48               |    | . 0        |
| ATOM         | 15208            | 0  | HOH W2086                | 53.060           | 55.100           | 35.460           | 1.00 24.11               |    | <b>o</b> . |
| MOTA         | 15211            | 0  | HOH W2087                | 60.174           | 59.468           | 31.827           | 1.00 30.97               |    | 0          |
| ATOM         | 15214            | 0  | HOH W2088                | 52.449           | 52.777           | 32.088           | 1.00 33.67               |    | · 0        |
| ATOM<br>ATOM | 15217<br>15220   | 0  | нон w2089<br>нон w2090   | 38.732           | 58.096<br>60.129 | 26.834           | 1.00 40.92<br>1.00 57.45 |    | 0          |
| ATOM         | 15223            | Ö  | HOH W2091                | 46.578           | 67.109           | 34.965           | 1.00 34.20               |    | ŏ          |
| ATOM         | 15226            | ō  | HOH W2092                | 44.346           | 44.119           | 46.365           | 1.00 36.97               |    | Ō          |
| ATOM         | 15229            | 0  | HOH W2093                | 39.038           | 57.746           | 22.032           | 1.00 35.60               |    | 0          |
| MOTA         | 15232            | 0  | HOH W2094                | 77.146           | 70.278           | 21.222           | 1.00 47.23               |    | 0          |
| ATOM         | 15235            | 0  | HOH W2095                | 35.084           | 47.566           | 10.023           | 1.00 49.92<br>1.00 52.23 |    | 0          |
| ATOM<br>ATOM | 15238<br>15241   | 0  | нон W2096<br>нон W2097 . | 69.829<br>51.862 | 66.355<br>41.653 | 27.368<br>8.303  | 1.00 48.32               |    | . 0        |
| ATOM         | 15244            | ŏ  | HOH W2098                | 53.346           | 73.731           | 31.643           | 1.00 36.70               | •  | 0 .        |
| ATOM         | 15247            | ō  | HOH W2099                | 78.009           | 62.329           | 50.788           | 1.00 42.03               |    | 0          |
| ATOM         | 15250            | 0  | HOH W2100                | 37.648           | 57.703           | 45.503           | 1.00 44.52               |    | 0          |
| ATOM         | 15253            | 0  | HOH W2101                | 43.050           | 63.744           | 37.293           | 1.00 31.66               |    | 0          |
| ATOM         | 15256            | 0  | HOH W2102                | 46.289           | 59.623           | 22.260           | 1.00 31.71<br>1.00 51.70 |    | 0          |
| MOTA<br>MOTA | 15259<br>15262   | 0  | HOH W2103<br>HOH W2104   | 51.306<br>35.382 | 65.283<br>53.095 | 57.193<br>14.452 | 1.00 49.66               |    | 0          |
| ATOM         | 15265            | Ö  | HOH W2105                | 59.860           | 45.727           | 25.893           | 1.00 37.84               |    | Ö          |
| ATOM         | 15268            | ō  | HOH W2106                | 75.339           | 65.933           | 42.709           | 1.00 48.86               | •  | 0          |
| MOTA         | 15271            | 0  | HOH W2107                | 64.260           | 35.932           | 22.077           | 1.00 46.02               |    | 0          |
| MOTA         | 15274            | 0  | HOH W2108                | 45.806           | 64.411           | 30.466           | 1.00 36.58               |    | 0          |
| ATOM         | 15277            | 0  | HOH W2109                | 47.258           | 55.781           | 8.498<br>9.399   | 1.00 43.88<br>1.00 48.17 |    | 0          |
| ATOM<br>ATOM | 15280<br>15283   | 0  | HOH W2110<br>HOH W2111   | 43.704<br>50.180 | 55.027<br>51.852 | 7.951            | 1.00 49.89               |    | Ö          |
| ATOM         | 15286            | ő  | HOH W2112                | 53.383           | 75.850           | 2.941            | 1.00 45.69               |    | Ö          |
| MOTA         | 15289            | ō  | HOH W2113                | 58.163           | 78.128           | 22.903           | 1.00 40.57               |    | 0          |
| ATOM         | 15292            | 0  | HOH W2114                | 41.755           | 56.513           | 49.754           | 1.00 38.72               |    | 0          |
| ATOM         | 15295            | 0  | HOH W2115                | 50.371           | 65.017           | .25.354          | 1.00 31.31<br>1.00 35.00 |    | 0<br>0     |
| MOTA         | 15298            | 0  | HOH W2116                | 37.104<br>73.513 | 54.141<br>64.709 | 37.044<br>51.194 | 1.00 35.00               |    | 0          |
| ATOM<br>ATOM | 15301<br>15304   | 0  | HOH W2117.<br>HOH W2118  | 46.151           | 55.467           | 48.645           | 1.00 38.98               | ٠. | Ö          |
| ATOM         | 15304            | 0  | HOH W2119                | 71.185           | 50.063           | 6.674            | 1.00 40.06               |    | ō          |
| ATOM         | 15310            | ō  | HOH W2120                | 33.768           | 57.756           | 31.272           | 1.00 30.61               |    | 0          |
| MOTA         | 15313            | 0  | HOH W2121                | 66.548           | 62.932           | 39.588           | 1.00 46.10               |    | 0          |
| ATOM         | 15316            | 0  | HOH W2122                | 67.555           | 55.467           | 27.913           | 1.00 38.67               |    | 0          |
| ATOM         | 15319            | 0  | HOH W2123<br>HOH W2124   | 43.974<br>53.199 | 53.957<br>55.077 | 49.363<br>37.993 | 1.00 29.29<br>1.00 39.19 |    | 0          |
| ATOM<br>ATOM | 15322<br>15325   | 0  | HOH W2124                | 52.026           | 52.759           | 34.670           | 1.00 30.35               |    | ŏ          |
| ATOM         | 15328            | 0  | HOH W2126                | 43.912           | 61.853           | 49.587           | 1.00 29.39               |    | <b>o</b>   |
|              |                  | -  |                          |                  | _                |                  |                          |    |            |

| wo   | 03/0356 | 593 |     |       |        |        |        |         |      | P | CT/GB02/0487: | 2 |
|------|---------|-----|-----|-------|--------|--------|--------|---------|------|---|---------------|---|
|      |         |     |     |       |        | 399/51 | 14     |         |      |   |               |   |
|      |         |     |     |       |        | mJ     |        |         |      |   |               |   |
|      |         | •   |     |       |        | rigi   | ure 5  |         |      |   |               |   |
| ATOM | 15331   | 0   |     | W2127 | 48.276 | 60.966 | 34.185 | 1.00 4  | 0.69 |   | 0             |   |
| ATOM | 15334   | 0   |     | W2128 | 68.555 | 63.944 | 8.402  | 1.00 4  | 0.91 |   | 0 .           |   |
| ATOM | 15337   | 0   |     | W2129 | 31.906 | 53.732 | 26.215 | 1.00 4  | 3.51 |   | . 0           |   |
| ATOM | 15340   | 0   | нон | W2130 | 44.914 | 60.927 | 12.475 | 1.00 3  | 3.55 |   | 0             |   |
| MOTA | 15343   | 0   | HOH | W2131 | 73.105 | 55.966 | 15.979 | 1.00 3  | 2.51 |   | Ō             |   |
| ATOM | 15346   | 0   | HOH | W2132 | 67.010 | 44.372 | 14.800 | 1.00 4  | 7.78 |   | Ō             |   |
| ATOM | 15349   | 0   | HOH | W2133 | 56.325 | 34.032 | 17.981 | 1.00 3  | 8.49 |   | ō             |   |
| ATOM | 15352   | 0   | HOH | W2134 | 53.080 | 68.858 | 37.482 | 1.00 3  |      |   | ō             |   |
| ATOM | 15355   | 0   | нон | W2135 | 64.278 | 40.124 | 23.122 | 1.00 3  |      |   | ō             |   |
| ATOM | 15358   | 0   | HOH | W2136 | 57.487 | 54.923 | 12:576 | 1.00 50 |      |   | ŏ             |   |
| MOTA | 15361   | 0   | нон | W2137 | 70.632 | 47.533 | 19.435 | 1.00 39 |      |   | ŏ ·           |   |
| ATOM | 15364   | 0   | HOH | W2138 | 65.707 | 40.223 | 27.196 | 1,00 4  |      |   | ŏ             |   |
| ATOM | 15367   | 0   | нон | W2139 | 54.513 | 66.538 | 0.742  | 1.00 43 |      |   | Ö             |   |
| ATOM | 15370   | 0   |     | W2140 | 42.270 | 34.506 | 24.787 | 1.00 50 | -    |   | Ö             |   |
| ATOM | 15373   | 0   |     | W2141 | 37.570 | 62.837 | 45.268 | 1.00 58 |      |   | 0             |   |
| ATOM | 15376   | 0   |     | W2142 | 46.199 | 64.053 | 35.617 | 1.00 52 |      |   | 0             |   |
| ATOM | 15379   | 0   |     | W2143 | 51.487 | 63.405 | 20.558 | 1.00 50 |      |   | Ö             |   |
| ATOM | 15382   | ō   |     | W2144 | 69.630 | 67.238 | 30.880 | 1.00 44 |      |   | 0             |   |
| ATOM | 15385   | ō   |     | W2145 | 59.208 | 44.926 | 9.970  | 1.00 39 |      |   | 0             |   |
| ATOM | 15388   | ō   |     | W2146 | 43.290 | 34.923 | 22.085 | 1.00 49 |      |   |               |   |
| ATOM | 15391   | ŏ   |     | W2147 | 37.940 | 57.210 | 19.756 | 1.00 45 |      |   | 0             |   |
|      |         | _   |     |       | 57.540 | 37.210 | 19.730 | 1.00 37 | .00  |   | 0             |   |

11

Figure 6

| lone Buffer<br>D (M) |                   | Buffer                             | Hď      | Salt (M)    | Salt                                  | Ppt (M)    | Pot               | Ppt 2 (M) Ppt 2 |             | Add MAdditive | itive                      |
|----------------------|-------------------|------------------------------------|---------|-------------|---------------------------------------|------------|-------------------|-----------------|-------------|---------------|----------------------------|
| 1015.1               |                   | Citrate-HCl                        | 5.6     |             |                                       | 5-10%      | PEG 4000          | ,               | 10%         |               | Iso-<br>propanol           |
| 1015.                | 1.                | нерез                              | 7.5     | .15.2       | Sodium Chloride                       | 15-20%     | 000E 93a          |                 |             | $\frac{1}{1}$ |                            |
| 1015.                | 1.                | MES                                | 6.5     | .2          | Armonium Sulphate                     | 308        | PEGMME<br>5000    |                 |             |               |                            |
| 1015.1               | ,                 | MES                                | 6.5     | .05         | Cesium Chloride                       | 30%        | Jeffamine<br>M600 |                 |             |               |                            |
| 1015.1               | н                 | Na HEPES                           | 7.5     | .2          | Magnesium Chloride 30%<br>Hexahydrate | 308⊘       | PEG 400           |                 |             |               |                            |
| 10150                | 10150.1-0.2       | Sodium<br>Cacodylate               | 9.9     | (           |                                       | 17.5-20%   | PEG 3350          |                 |             |               |                            |
| 1015.                | 1                 | Tris                               | 8.5     |             |                                       | 20%        | PEG 300           |                 | 85          |               | EM<br>Glycerol<br>PEG 8000 |
| 1015                 | 1.                | Tris-HCl                           | 7.0-7.6 | 60.1-0.2    | Calcium Acetate                       | 15-20%     | PEG 3000          |                 |             |               |                            |
| 10150.05-            | 0.05-             | Tris-HCl                           | 7       |             |                                       | 10-20%     | Ethanol           |                 |             |               |                            |
| 1015                 | .1                | Tris-HC1                           | 7       |             |                                       |            | мрес 2000         |                 |             | -             |                            |
| 1015                 | 1.                | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6     | .1          | Ferric Chloride                       | 10%        | Jeffamine<br>M600 |                 |             |               |                            |
| 1015                 | 10150.025-<br>0.1 | Tri-Sodium<br>Citrate<br>Dihydrate | 5.0-5.8 | 0.005-0.010 | 5.0-5.80.005-0.010 Iron Chloride      | 1.25-10%   | Jeffamine<br>M600 |                 |             |               |                            |
| 1015                 |                   |                                    |         | .1.2        | Chloride                              | 20-25%     | PEG 3350          |                 |             |               |                            |
| 1015                 |                   |                                    |         | 0.05 -      | к2нРО4                                | 3.75-22.5% | PEG 3350          |                 |             |               |                            |
| 1015                 |                   |                                    |         | 0.1-0.2     | к2нРо4                                | 10-20%     | PEG 3350          | 0~10%           | glycerol 0- | 0-158 PEG     | 400                        |
|                      |                   |                                    |         |             |                                       |            |                   |                 |             |               |                            |

|        |                       |                                    | n. S    | (M) + Lab      | Qa.1+                                 | Pot (M)    | Fic              | Figure 6 | Pot 2 | Add M | Add MAdditive |
|--------|-----------------------|------------------------------------|---------|----------------|---------------------------------------|------------|------------------|----------|-------|-------|---------------|
| Tone   | Clone Burrer<br>D (M) | Burrer                             | PH      |                |                                       | (22)       | ב<br>ב           |          |       |       |               |
| 1015   |                       |                                    |         | 0.03-0.28      | К2НРО4                                |            |                  |          |       |       |               |
| 1015   |                       |                                    |         |                |                                       | 5-30%      | PEG 3350         |          |       |       |               |
| 1072   | 10720.05-<br>0.2      | HEPES                              | 7.5     | 0.1-0.35       | Sodium Chloride                       | 20-35%     | PEG 400          |          |       |       |               |
| 1072   | ۲.                    | HEPES                              | 7.5     | 0.15-0.2       | Sodium Chloride                       | 158 208    | PEG 3000         |          |       |       |               |
| 1072   | .1                    | Sodium<br>Cacodylate               | 9       |                |                                       | 85         | PEG 4000         |          |       |       |               |
| 1072   | .1                    | Tris                               | 7       | 0.1-0.25       | Calcium Acetate                       |            | 000Є Эза         |          |       |       |               |
| 1072   | .1                    | Tris                               | æ       |                |                                       | 108 158 58 | PEG 4000         |          |       |       |               |
| 1072.1 | .1                    | Tris-HCl                           | 7-7.6   | .1.2           | Calcium Acetate                       |            | PEG 3000         |          |       |       |               |
| 1072.1 | 1                     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6     |                | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 10-20%     | Iso-<br>Propanol |          | _     | 10%   | PEG 4000      |
| 1072   |                       |                                    |         | .2             | Na2HPO4                               | 208        | PEG 3350         |          |       |       |               |
| 1072   |                       |                                    |         | 0.1-0.3        | tri-Potassium<br>citrate              | 15-25%     | PEG 3350         |          |       |       |               |
| 1078   | .1                    | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6     |                |                                       | 10-208     | Iso-<br>Propanol |          |       | 10%   | PEG 4000      |
| 1081   | ۲.                    | Acetate                            | 4.5     | .2             | Calcium Acetate                       | 308        | PEG 400          |          |       |       |               |
| 1081   | .1                    | CHES                               | 9.5     |                |                                       | 10% 30%    | PEG 3000         |          |       |       |               |
| 1081   | 10810.05-<br>0.15     | HEPES                              | 3.6-0-6 | 7.0-7.80.1-0.3 | Sodium Chloride                       | 5-158      | Isopropanol      |          |       |       |               |
| 1081   | ۲.                    | Imidazole                          | 8       | .2             | Magnesium<br>Chloride                 | 35\$       | MPD              |          |       |       |               |
| 1081   | .1                    | Imidazole                          | 8       |                |                                       | 10%        | 2-propanol       |          |       |       |               |
| 1081   | ٦.                    | Phosphate-<br>Citrate              | 4.2     | .05 .2         | Lithium Sulphate                      | 208        | PEG_1000         |          |       |       |               |
| 1081   | 1.1                   | Sodium<br>Cacodylate               | 6.5     | .2             | Magnesium Acetate                     | 10-20+G64% | PEG 8000         |          |       |       |               |
| 1081   | 10810.05-<br>0.2      | Tris                               | 7.4     | . 2            | Calcium Acetate                       | 158        | PEG 3000         |          |       |       |               |

|                   |                   |                      |         |          |                       |               | Fig                  | Figure 6  |       |       |               |
|-------------------|-------------------|----------------------|---------|----------|-----------------------|---------------|----------------------|-----------|-------|-------|---------------|
| ne Bi             | lone Buffer       | Buffer               | Hd      | Salt (M) | Salt                  | Ppt (M) F     | Ppt                  | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 2                 | •                 |                      |         |          |                       |               |                      |           |       |       |               |
| 0810              | 10810.1-0.2       | Tris                 | 7.2     | .2       | Calcium Acetate 1     | 15 <b>8</b>   | PEG 3000             |           |       |       |               |
| 1081              | .1                | Tris                 | 7       | 0.1-0.25 | Calcium Acetate 1     | 10-25% E      | PEG 3000             |           |       |       |               |
| 1081              | ۲.                | Tris                 | 5.8     | .2       | Magnesium<br>Chloride | 15-30%        | PEG 4000             |           | -     |       |               |
| 1081              | 0.05-0.2          | Tris                 | 7       |          | 7                     | 7.5-20%       | Ethanol              |           |       |       |               |
| 1081              | .1                | Tris                 | 8.5     |          |                       | 108           | 2-propanol           |           |       |       |               |
| 1081              | 1                 | Tris-HC1             | 7       | .1.2     | Calcium Acetate       | 15-20%        | PEG 3000             |           |       |       |               |
| 1081              | . 1               |                      | 7.2     | .1.2     | Calcium Acetate       |               | PEG 3000             |           |       |       |               |
| 1081              | 1.                | Tris-HCl             | 7.4     | .1 .2    | Calcium Acetate 1     |               | PEG 3000             |           |       |       |               |
| 1081              | -1.               |                      | 7.6     | .1.2     | Calcium Acetate       | 15-20%        | PEG 3000             |           |       |       |               |
| 1081              |                   |                      |         |          |                       | 0.1-0.2 M     | Magnesium<br>Formate |           | ·     |       |               |
| 1082              | 1.                | CAPS                 | 10.5    |          |                       |               | PEG 400              |           |       |       |               |
| 1082.1            | .1                | Citrate              | 5.5     | .2       | Lithlum Sulphate      | 158           | Ethanol              |           |       |       |               |
| 10820.05-<br>0.15 | 0.05-<br>0.15     | Citrate-citric       | 5.2-6.0 | 0.1-0.25 | Lithium Sulphate      | 5-15%         | Ethanol              | ·         |       |       |               |
| 10820             | 10820.05-<br>0.15 | HEPES                | 7.2-    | 0.1-0.25 | Sodium Chloride       | 5-158<br>Art. | 2-propanol           |           |       |       |               |
| 1082              | 10820.05-         | HEPES                | 7.5     | 0.1-0.35 | Sodium Chloride       | 20-358        | PEG 400              |           |       |       |               |
| 1082.1            | .1                | HEPES                | 7.2     | .2       | Sodium Chloride       | 108           | Iso<br>Propanol      |           |       |       |               |
| 1082              | .1                | Imidazole            | 8       |          |                       | 10%           | 2-propanol           |           |       |       |               |
| 1082              | 10820.05-<br>0.15 | K Na Phosphate       | 6.2     | .1 .2    | Sodium Chloride       | 10-20%        | PEG 8000             |           |       |       |               |
| 1082              | 1.                | K Na Phosphate       | 6.2     | .2       | Sodium Chloride       | 208           | PEG 1000             | •         |       |       |               |
| 1082              | r.                | Sodium<br>Cacodylate | 6.5     | .2       | Magnesium Acetate     | 10-20%        | PEG 8000             |           |       |       |               |
| 1                 |                   |                      |         |          |                       |               |                      |           |       | ٠     |               |

| •       |           |                                    |     |           | •                        |         | Fig              | Figure 6  |       |             |               |
|---------|-----------|------------------------------------|-----|-----------|--------------------------|---------|------------------|-----------|-------|-------------|---------------|
| Lone    | fer       | Buffer                             | Hď  | Salt (M)  | Salt                     | Ppt (M) | ı pag            | Ppt 2 (M) | Ppt 2 | Add M2      | Add MAdditive |
| 1082    | (R)       | Tris                               | 8.5 | 2.        | Magnesium<br>Chloride    | 15-30%  | PEG 4000         |           |       |             |               |
| 10820   |           | Tris                               | 7   |           |                          | 7.5-20% | Ethanol          |           |       |             |               |
| 1082    | 0.20      | Tris                               | 8.5 |           |                          | 108     | 2-propanol       |           |       |             |               |
| 1082    |           | Tris                               | ·   |           |                          | 7.5-208 | Ethanol          |           |       |             |               |
| 1082    |           |                                    | 8.5 |           |                          | 20%     | PEG 1000         |           |       |             |               |
|         |           |                                    |     | .2        | Ammonium Acetate         | 20%     | PEG 3350         |           |       |             |               |
| 1082    |           |                                    |     | .1.2      | ø                        | 15-25%  | PEG 3350         |           |       |             | ,             |
| 1082    |           |                                    |     | 1.2       | Calcium Chloride         | 20-25%  | PEG 3350         |           |       |             |               |
|         |           |                                    |     | ,         | At Dumon tim             | 20%     | PEG 3350         |           |       |             |               |
| 1082    |           |                                    |     | ν.        | trate                    | 0<br>N  |                  |           |       |             | •             |
| 300     |           |                                    |     | 2         | Na2HPO4                  | 20%     | PEG 3350         |           |       |             |               |
| 1082    |           |                                    |     | .05 .1 .2 | Magnesium formate        | 5-20%   | PEG 3350         |           |       |             |               |
| 1082    |           |                                    |     | .05       | Mono-potassium           | 108     | PEG 8000         |           |       |             |               |
|         |           |                                    |     |           | Dihydrogen<br>Phosphate  |         |                  |           |       |             |               |
| 1082    |           |                                    |     | .1 .2 .25 | tri-Potassium<br>citrate | 15-25%  | PEG 3350         |           |       |             |               |
| 10850.1 | 0.1       | Sodium Acetate                     | 4.6 | 0.02      | Calcium Chloride         | 158     | 2 Methyl<br>2,4  |           |       | <del></del> |               |
|         |           | Trinydrate                         |     |           |                          |         | Pentanediol      |           |       |             |               |
| 1085    | 1.        | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6 |           |                          | 10% 20% | Iso-<br>Propanol |           |       | 10%         | PEG 4000      |
| 1097    | 1.1       | Citrate                            | 5.5 | .2        | Lithium Sulphate         | 15%     | Ethanol          |           |       |             |               |
| 1097    | 10970.05- | HEPES                              | 7.5 | .1 .2     | Sodium Chloride          | 5-15%   | 2-propanol       |           |       |             |               |
|         |           |                                    |     |           |                          |         |                  |           |       |             |               |

404/514

| ſ        | Т                      | П    |                     |                |          |                 |                   |                       |                       |         |                                       |                 | _                                  |                  |                                     |                   | 1                |                  |
|----------|------------------------|------|---------------------|----------------|----------|-----------------|-------------------|-----------------------|-----------------------|---------|---------------------------------------|-----------------|------------------------------------|------------------|-------------------------------------|-------------------|------------------|------------------|
|          | Add MAdditive          |      |                     | PEG 4000       |          |                 |                   |                       |                       |         |                                       |                 | PEG 4000                           |                  |                                     |                   |                  |                  |
|          | M bb                   |      |                     | 10             |          |                 |                   |                       |                       |         |                                       |                 | 10%                                |                  |                                     |                   |                  |                  |
|          | Ppt 2                  |      |                     |                |          |                 |                   |                       |                       |         |                                       |                 |                                    |                  |                                     |                   |                  |                  |
| rigure 6 | Ppt 2 (M)              | ·    |                     |                |          |                 |                   |                       |                       |         |                                       |                 |                                    |                  |                                     |                   |                  |                  |
| F.T      | Ppt                    |      | PEG 400             | Iso-<br>Iso-   | DEG 8000 | PEG 8000        | PEG 8000          | PEG 1000              | PEG 3000              | Ethanol | MPEG 2000                             | 000E Saa        | Iso-<br>Propanol                   | 05EE 53A         | PEG 3350                            | PEG 3350          | PEG 3350         | PEG 3350         |
|          | <b>Рр</b> t (М)        |      | 40                  | <b>&amp;</b> C | 20%      | 10-20%          |                   | 20%                   | 10-15%                | 7.5-158 | 15-30%                                | 15-20%          | 10% 20%                            | 20%              | 20%                                 | 15-25%            | 15-25%           | 20% 25.000       |
|          | Salt                   |      | Sodium Chloride 2   | u              | 2        | Sodium Chloride | Calcium Acetate 2 | Lithium Sulphate 2    | Sodium Chloride       |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Calcium Acetate |                                    | Ammonium Acetate | Ammonium<br>dihydrogen<br>phosphate | Ammonium Sulphate | Calcium Acetate  | Calcium Chloride |
|          | Salt (M)               |      | .1 .2 .25<br>.3 .35 |                |          | .1 .2           | .2                | .05.2                 | .1 .2 .3              |         |                                       | .1 .2           |                                    | .2               | 2.                                  | .1 .2             | .1 .15 .2<br>.25 | .1 .2            |
| •        | нd                     |      | 7.5                 | 75             | 7.5      | 6.2             | 9                 | 4.2                   | 4.2                   | 7       |                                       | 7-7.6           | 5.6                                |                  |                                     |                   |                  |                  |
|          | Buffer                 |      | нереѕ               | кадан          | HEPES    | K Na Phosphate  | MES               | Phosphate-<br>Citrate | Phosphate-<br>Citrate | Tris    | Tris                                  | Tris-HC1        | Tri-Sodium<br>Citrate<br>Dihydrate |                  |                                     |                   |                  |                  |
|          | Clone Buffer<br>ID (M) | 0.15 | 10970.05-<br>0.2    | .1             | 1.       | 10970.05-       | 1.                | г.                    | 10970.1-0.15          | 0.05-   | 10970.05-<br>0.2                      | 1.1             | 1.                                 |                  |                                     |                   |                  | -                |
|          | Clone<br>ID            |      | 1097                | 1097           | 1097     | 1097            | 1097              | 1097                  | 1097                  | 1097    | 1097                                  | 1097            | 1097                               | 1097             | 1097                                | 1097              | 1097             | 1097             |

|       |                        |                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Fig        | Figure 6  |       |       |               |
|-------|------------------------|-----------------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-----------|-------|-------|---------------|
| Clone | Clone Buffer<br>ID (M) | Buffer                | Hď    | Salt (M)         | Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ppt (M)             | †đđ        | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1097  |                        |                       |       | .2               | di-Ammonium<br>hydrogen citrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                 | PEG 3350   |           |       |       |               |
| 1097  |                        | 1                     |       | 0.05 -0.35       | К2НРО4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 - 258             | PEG 3350   |           |       |       |               |
| 1097  |                        |                       |       |                  | ium<br>te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                   | PEG 3350   |           | •     |       |               |
| 1097  |                        |                       |       | . 2              | Lithium Sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25%                 | PEG 3350   | -         |       |       |               |
| 1097  |                        |                       |       | .2               | Magnesium<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208                 | PEG 3350   |           |       |       |               |
| 1097  |                        |                       |       | .2               | Magnesium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20%                 | PEG 3350   |           |       | ·     |               |
| 1097  |                        |                       |       | .1 .2 .3         | Potassium sodium<br>tartrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15-258              | PEG 3350   |           |       |       |               |
| 1097  |                        |                       |       | .2               | Sodium iodide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | PEG 3350   |           |       |       |               |
| 1097  |                        |                       |       | .1 .2 .25<br>.3  | tri-Potassium<br>citrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20%                 | PEG 3350   |           |       |       |               |
| 1100  | .1                     | CHES                  | 9.5   |                  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                     | Ethanol    |           |       |       |               |
| 1100  | .1                     | REPES                 | 7.5   | .15 .2           | Sodium Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-20%              | PEG 3000   |           |       |       |               |
| 1100  | .1                     | HEPES                 | 7.5   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 208∙ ∵              | PEG 8000   |           |       |       |               |
| 1100  | .1                     | Imidazole             | 8     |                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | (126                | 2-propanol |           |       |       |               |
| 1100  | 1                      | K Na Phosphate        | 6.2   | . 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 208                 | PEG 1000   |           |       |       |               |
| 1100  | н.                     | Phosphate-<br>Citrate | 4.2   | .05.2            | Lithium Sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20%                 | PEG 1000   |           |       |       |               |
| 1100  | г.                     | Sodium Citrate        | 5.5   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | PEG 3000   |           |       |       |               |
| 1100  | г.                     | Tris                  |       | .1 .15 .2<br>.25 | Calcium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15%                 | PEG 3000   |           |       |       |               |
| 1100  | 11000.05-<br>0.2       | Tris                  | 7     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% 15% 20%<br>7.5% | Ethanol    |           |       |       |               |
| 1100  | .1                     | Tris-HCl              | 9-7-6 | .1 .2            | Calcium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15% 20%             | PEG 3000   |           |       |       |               |

| 104174  |
|---------|
| 406/514 |

|                      |             |                                    |     |           |                              |                 | P.T.C            | ام        |       |       |               |
|----------------------|-------------|------------------------------------|-----|-----------|------------------------------|-----------------|------------------|-----------|-------|-------|---------------|
| lone Buffer<br>D (M) | ıffer<br>1) | Buffer                             | нđ  | Salt (M)  | Salt                         | Ppt (M)         | Ppt              | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1100.1               |             | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6 |           |                              | 10% 20%         | Iso-<br>Propanol |           |       | 10%   | PEG 4000      |
| 1100                 |             | ٠                                  |     | .2        | Ammonium chloride 2          | 20%             | PEG 3350         |           |       | ·     |               |
| 1100                 |             |                                    |     |           | Ammonium fluoride 2          | 20%             | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Ammonium formate 2           | 20%             |                  |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Ammonium Iodide              | 20%             | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .1 .2     | um Sulphate                  | 15-258.         | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | 0.05-0.35 | К2нро4                       | 5-25%           | PEG 3350         | •         |       |       |               |
| 1100                 |             |                                    |     | .2        | Di-Sodium<br>Tartrate        | 208             | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Lithium nitrate              | 208             | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Lithium Sulphate             | 208 258         | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .1 .2 .3  | Magnesium Acetate            | 10 15 20%<br>25 | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .1 .2 .3  | Potassium sodium<br>tartrate | 158 208 258     | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Potassium<br>sulphate        | 208             | PEG 3350         |           |       |       |               |
| 1100                 |             | ٠                                  |     | .1 .2 .3  | 77.7                         | 158 208         | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | . 2.      | Sodium fluoride              | 208             |                  |           |       |       |               |
| 1100                 |             |                                    |     | .2        | Sodium formate               | 208             | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .1 .2 .3  | nate                         | 158-208 258     | PEG 3350         |           |       |       |               |
| 1100                 |             |                                    |     | .2        | tri-Lithium<br>citrate       | 208             | PEG 3350         |           |       |       |               |
| 1                    |             |                                    |     |           |                              |                 |                  |           |       |       |               |

|        | ditive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | PEG 4000                           |                    |                        |                  |                   | PEG 4000         |                 |                  |          | PEG 4000                           |                  |                   |                  |                 |           | _      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|--------------------|------------------------|------------------|-------------------|------------------|-----------------|------------------|----------|------------------------------------|------------------|-------------------|------------------|-----------------|-----------|--------|
|        | Add MAdditive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 108<br>108                         |                    |                        |                  |                   | 10               |                 |                  |          | #0.T                               |                  |                   |                  |                 |           |        |
|        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                    |                    |                        |                  |                   | -                |                 |                  |          | <del></del>                        |                  |                   |                  |                 |           |        |
| re 6   | Ppt 2 (M) Ppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                    |                    |                        |                  |                   |                  |                 |                  |          |                                    |                  |                   |                  |                 |           |        |
| Figure |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEG 3350                 | Iso-<br>Propanol                   | PEG 3350           | PEG 3350               | PEG 3350         | PEG 1000          | Iso-<br>Propanol | PEG 3000        | PEG 4000         | DEG 8000 | Iso-<br>Propanol                   | PEG 3350         | PEG 3350          | PEG 3350         | PEG 3350        | PEG 3350  |        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-258.                  |                                    | 208                | 15% 20% 25% E          |                  |                   | 108 58           | 15-20%          | 158              |          | 10% 20%                            | 20%              | 208               | 20%              | 15-25%          | 10-25%    |        |
| **     | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | tri-Potassium<br>citrate |                                    | Ammonium formate 2 | Sodium Acetate 3       | Sodium formate 2 | Calcium Acetate 2 | <u> </u>         | Calcium Acetate | Sodium Acetate 1 | 4        |                                    | Armonium Acetate | Ammonium chloride | Ammonium formate | Calcium Acetate | к2нво4    | PODDOA |
|        | Salt (M) Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1 .2 .25 tri            |                                    | .2 Am              | .1 .15 .2 Soc<br>.3 .5 | .2 Soc           | .2 Ca             |                  | .1 .2 Ca        | .2 So            |          |                                    | .2 Am            | .2 An             | . 2 An           | 0.1-0.25 Ca     | 0.05 - KZ |        |
|        | Bd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 5.6                                | -                  |                        |                  |                   | 7.5              | 7.2-            | 8.5              | 8.5      | 5.6                                |                  |                   |                  |                 |           |        |
|        | Buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | Tri-Sodium<br>Citrate<br>Dihydrate |                    |                        |                  | Imidazole         | ьерез            | Tris-HCl        | Tris-HC1         | Tris-HCl | Tri-Sodium<br>Citrate<br>Dihydrate |                  |                   |                  |                 |           |        |
|        | Clone Buffer I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1100                     | 1101.1                             | 1101               | 1101                   | 1101             | 1102.1            | 1115.1           | 1115.1          | 1115.1           | 1115.1   | 1115.1                             | 1115             | 1115              | 1115             | 1115            | 1115      |        |

|        |                      | ,                     |      |                  |                       |         | Fig        | Figure 6  |       |        |                |
|--------|----------------------|-----------------------|------|------------------|-----------------------|---------|------------|-----------|-------|--------|----------------|
| lone   | lone Buffer<br>D (M) | Buffer                | на   | Salt (M)         | Salt                  | (M) 크đa | Ppt        | Ppt 2 (M) | Ppt 2 | Add MJ | Add MAdditive  |
| 1115   |                      |                       |      | .1 .2 .3         | Magnesium Acetate 1   | 10-25%  | PEG 3350   |           |       |        |                |
| 1115   |                      |                       |      | .05 .1 .2<br>.25 | Magnesium formate     | 5-15%   | PEG 3350   |           |       |        |                |
| 1115   |                      |                       |      | .2               | Magnesium nitrate     | 20\$    | PEG 3350   |           |       |        |                |
| 1115   |                      |                       |      | .2 .25           | Potassium acetate     | 20-258  |            | -         | ·     |        |                |
| 1115   |                      |                       |      | .2               | Potassium<br>sulphate | 20%     | PEG 3350   |           |       |        |                |
| 1115   |                      |                       |      | .2               | Sodium fluoride       | 20%     | PEG 3350   |           |       |        |                |
| 1115   |                      |                       |      |                  |                       | 5-308   | PEG 3350   |           |       |        |                |
| 1116   | 1.1                  | Acetate               | 4.5  | .2               | Zinc Acetate          | 20%     | PEG 1000   |           |       |        |                |
| 1116   | 1.1                  | CAPS                  | 10.5 |                  |                       | 308     | PEG 400    |           |       |        |                |
| 1116   | 11160.075-<br>0.2    | CHES                  | 9.5  |                  |                       | 20-258  | PEG 400    |           |       |        |                |
| 1116   | r:                   | нерез                 | 7.5  | .2               | Magnesium<br>Chloride | 158     | Ethanol    |           |       |        |                |
| 1116   | 11160.05-<br>0.2     | HEPES                 | 7.5  | .1-0.35          | Sodium Chloride       | 5-158 . | 2-propanol |           |       | 0-10%  | 0-10% PEG 4000 |
| 1116   | 11160.05-            | HEPES                 | 7.5  | .1 .2 .25        | Sodium Chloride       | 20-35%  | PEG 400    |           |       |        |                |
| 1116   | 6.1                  | Imidazole             | 8    | .2               | Calcium Acetate       | 108     | PEG 8000   |           |       |        |                |
| 1116   | 6.1                  | Imidazole             | 8    | .2               | Magnesium<br>Chloride | 15%     | PEG 4000   |           | ,     |        |                |
| 111    | 11160.05-<br>0.15    | K Na Phosphate        | 6.2  | .1 .2            | Sodium Chloride       | 10-20%  | PEG 8000   |           |       |        |                |
| 1116   | 6.1                  | MES                   | و    | .2               | Calcium Acetate       | 20%     | PEG 8000   |           |       |        |                |
| 1116.1 | 6.1                  | Phosphate-<br>Citrate | 4.2  | .2               | Lithium Sulphate      | 10%     | 2-propanol |           |       |        |                |
|        |                      |                       |      |                  |                       |         |            |           |       |        |                |

|        |                      |                                    |             |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Fig              | Figure 6  |       |       |               |             |
|--------|----------------------|------------------------------------|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------|-------|-------|---------------|-------------|
| Lone   | lone Buffer<br>D (M) | Buffer                             | яď          | Salt (M)         | Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>Р</u> рт (м) | Ppt              | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |             |
| 1116   | .1                   | Phosphate-<br>Citrate              | 4.2         | .05 .2           | Lithium Sulphate 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | PEG 1000         |           |       |       |               |             |
| 1116   | 11160.1-0.15         | Phosphate-<br>Citrate              | 4.2         | .1 .2 .3         | Sodium Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 000E 534         |           |       |       |               |             |
| 1116   | ٦.                   | Sodium<br>Cacodylate               | 6.5         | .2               | Magnesium Acetate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | PEG 8000         |           | ·     |       |               | r           |
| 1116   | 1                    | Tris                               | 7           | .1 .15 .2<br>.25 | Calcium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | PEG 3000         |           |       |       |               | <del></del> |
| 1116   | r:                   | Tris                               | 8.5         | .2               | Magnesium<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | PEG 4000         |           |       |       |               |             |
| 1116   | 11160.05-<br>0.2     | Tris                               | 7           |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do              | Ethanol          |           |       |       |               |             |
| 1116   | 11160.05-<br>0.2     | Tris                               | 7           |                  | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 308             | MPEG 2000        |           |       |       |               |             |
| 1116   | .1                   | Tris                               | 8.5         |                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | PEG 1000         |           |       |       |               | _           |
| 1116.1 | .1                   | Tris-HCl                           | 7.0-<br>7.6 | .1.2             | Calcium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%             | PEG 3000         |           |       |       | -             |             |
| 1116   | .1                   | Tris-HC1                           | 8.5         | .2               | Sodium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8               | PEG 4000         |           |       |       |               |             |
| 1116.1 | .1                   | Tris-HCl                           | 8.5         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | PEG 8000         |           |       |       |               |             |
| 1116.1 | т                    | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6         |                  | Ammonium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15-30%          | PEG 4000         |           |       |       |               |             |
| 1116   | ī                    | Tri-Sodium<br>Citrate<br>Dihydrate | 9.6         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% 20%         | Iso-<br>Propanol |           |       | 10%   | PEG 4000      |             |
| 1116   |                      |                                    | _           | .2               | Ammonium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20%             | PEG 3350         |           |       |       |               |             |
| 1116   |                      |                                    |             | .2               | Ammonium<br>dihydrogen<br>phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20%             | PEG 3350         |           |       |       |               |             |
| 1116   |                      |                                    |             | .2               | Ammonium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 208             | PEG 3350         |           |       |       | -             |             |
| 1116   |                      |                                    |             | .1 .15 .2        | Calcium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-25%          | PEG 3350         |           |       |       |               | _           |
|        |                      |                                    |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |           |       |       |               |             |

|                        |                   |        |     |           |                              | -         | Fic                                          | Figure 6  |       |       |               |
|------------------------|-------------------|--------|-----|-----------|------------------------------|-----------|----------------------------------------------|-----------|-------|-------|---------------|
| Clone Buffer<br>ID (M) |                   | Buffer | нď  | Salt (M)  | Salt                         | Ррт (м)   | Ppt                                          | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| -                      |                   |        |     | . 25      |                              |           |                                              |           |       |       |               |
| 1116                   |                   |        |     | .1 .2     | Calcium Chloride 2           | 20-258    | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | . 2       | nium<br>e                    | 208       | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .2        |                              |           |                                              |           |       |       |               |
| 1116                   |                   |        |     | .2        | un<br>e                      | 208       | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .2        | Lithium nitrate              |           | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | . 2       | Magnesium<br>Chloride        | 208       |                                              |           |       |       |               |
| 1116                   |                   |        |     | .2        | Potassium iodide             |           | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .1 .2 .3  | Potassium sodium<br>tartrate | 15-25%    | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .2        |                              |           | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .1 .2 .3  | Sodium sulphate              | 58        | PEG 3350                                     |           |       |       |               |
| 1116                   |                   | •.     |     | .2        | Sodium<br>thiocyanate        | 208       | PEG 3350                                     |           |       |       |               |
| 1116                   |                   |        |     | .1 .2 .25 | tri-Potassium<br>citrate     | 15-258    | PEG 3350                                     |           |       |       | -             |
| 1116                   |                   |        |     |           |                              | 0.1-0.2 M | Magnesium<br>Formate                         |           |       |       |               |
| 1116                   |                   |        |     | ·         |                              | 0.2       | Potassium<br>Sodium<br>Tartrate<br>Dihydrate |           |       |       |               |
| 1117.                  | 1.                | нерез  | 7.5 | .2        |                              | 158       | Ethanol                                      |           |       |       |               |
| 1117                   | 11170.05-<br>0.15 | HEPES  | 7.5 | .1 .2     | Sodium Chloride              | 5-15%     | 2-propanol                                   |           |       |       |               |

|          |                        |                   |                  |            |                   | -,-               |                    |                       |                |                   |                       | _                |                  | _                |                  |                   | _          |          | _        |                   |                |            |
|----------|------------------------|-------------------|------------------|------------|-------------------|-------------------|--------------------|-----------------------|----------------|-------------------|-----------------------|------------------|------------------|------------------|------------------|-------------------|------------|----------|----------|-------------------|----------------|------------|
|          | Add MAdditive          |                   | PEG 4000         |            |                   |                   |                    |                       |                |                   |                       |                  |                  |                  |                  |                   | _          |          |          |                   |                |            |
|          | Add M                  |                   | 91               |            |                   |                   |                    |                       |                |                   |                       |                  |                  |                  |                  |                   |            |          |          |                   | <u> </u>       |            |
|          | Ppt 2                  | -                 |                  |            |                   |                   |                    |                       |                |                   |                       |                  |                  |                  |                  |                   |            |          |          |                   |                |            |
| Figure 6 | Ppt 2 (M)              |                   |                  |            |                   |                   |                    |                       |                |                   | ,                     |                  |                  |                  |                  |                   | ,          |          |          |                   |                |            |
| Fi       | Ppt                    | PEG 3000          | Iso-<br>Propanol | 2-propanol | PEG 1000          | PEG 8000          | 2-propanol         | PEG 1000              | PEG 3000       | PEG 3000          | PEG 4000              | PEG 4000         | PEG 4000         | PEG 4000         | Ethanol          | <b>МРЕ</b> С 2000 | 2-propanol | PEG 1000 | PEG 4000 | ээс ээс           | PEG 4000       | PEG 8000   |
|          | Ppt (M)                |                   | 10% 5%           | 10%        | 20%               | 208               | 10%                | 208                   | 20%            | 10-25%            | 15-30%                | 158              | 58               |                  | 7.5-20%          |                   | 108        | 208      |          | 15-208            | 158            | 48         |
| •        | salt                   | Sodium Chloride 1 | ·                | 7          | Sodium Chloride 2 | Calcium Acetate 2 | Lithium Sulphate 1 | Lithium Sulphate 2    | 2              | Calcium Acetate 1 | Magnesium<br>Chloride | Sodium Acetate 1 | Sodium Acetate 5 | Sodium Acetate 1 |                  |                   |            | 2        | -        | Calcium Acetate 1 | Sodium Acetate | 4          |
|          | Salt (M) s             | .15 .2            |                  |            | 2                 | .2                | .2                 | .05.2                 |                | .1 .15 .2 (       |                       | .1               | .05 .1 .15       | .1               |                  |                   |            |          |          | .60.1-0.2         | .2             |            |
|          | Нq                     | 7.5               | 7.5              | 8          | 6.2               | 9                 | 4.2                | 4.2                   | 5.5            | 7                 | 8.5                   | 8.2              | 8.4              | 6_               | 7                | L                 | 8.5        | 5.8      | 8.4      | 7.0-7.6           | 8.5            | 8.5        |
| •        | Buffer                 | HEPES             | HEPES            | Imidazole  | K Na Phosphate (  | MES               |                    | Phosphate-<br>Citrate | Sodium Citrate | Tris              | Tris                  | Tris             | Tris             | Tris             | Tris             | Tris              | Tris       | Tris     |          | Tris-HCl          | Tris-HC1       | Tris-HCl . |
|          | Clone Buffer<br>ID (M) | .1                | .1               | .1         | .1                | .1                | 1.                 | ;                     | г.             | 1.1               | 1.1                   | 1.1              | 1.1              | 7.1              | 11170.05-<br>0.2 | 11170.05-<br>0.2  | 7.1        | 1.1      | 7.1      | 7.1               | 7.1            | 7.1        |
|          | C10ne<br>1D            | 1117              | 1117             | 1117       | 1117              | 1117              | 1117               | 1117.1                | 1117           | 1117              | 1117                  | 1117             | 1117             | 1117             | 111              | 111               | 111        | 1117     | 1117     | 1117.1            | 1117           | 1117.1     |

|  |  | 41  |
|--|--|-----|
|  |  | 41. |

|        |                |                                    |          |           |                                      | · i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E E              | Figure 6 |       |       |               |  |
|--------|----------------|------------------------------------|----------|-----------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------|-------|---------------|--|
| lone D | one Buffer (M) | Buffer                             | Hď       | Salt (M)  | Salt                                 | Ppt (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ppt              | (FE)     | Ppt 2 | Add M | Add MAdditive |  |
| 1117   | r.             | rri-Sodium<br>Citrate<br>Dihydrate | 5.6      |           |                                      | 10-208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iso-<br>Propanol |          |       | 10%   | PEG 4000      |  |
| 1117   |                |                                    |          | .2        | Ammonium Acetate                     | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .2        | Ammonium fluoride                    | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    | <u> </u> | .2        | Ammonium formate                     | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .2        | Ammonium nitrate                     | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .1 .2     | Calcium Chloride                     | 20-25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .2        | di-Ammonium<br>hydrogen citrate      | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | . 2       | di-Ammonium<br>hydrogen<br>phosphate | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | 2         | Di-Ammonium<br>Tartrate              | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       | ·     |               |  |
| 1117   |                |                                    | _        | 0.05 -    | к2нро4                               | 2.5-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | . 2.      | Di-Sodium<br>Tartrate                | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         | •        |       |       |               |  |
| 1117   |                |                                    |          | .1.2.3    | Lithium acetate                      | 15-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .2        | Lithium Chloride                     | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .1 .2 .3  | Magnesium Acetate                    | 10-25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | . 2.      | Magnesium<br>Chloride                | 20\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PEG 3350         |          |       |       |               |  |
| 1117   |                |                                    |          | .05 .1 .2 | Magnesium formate                    | 5-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | ·        |       |       |               |  |
| 1117   |                |                                    | ,        | .2        | Magnesium nitrate 20%                | 208 J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |          |       | -     |               |  |
| 1117   |                | •                                  |          | .2        | Potassium<br>Chloride                | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |          |       |       |               |  |
|        |                |                                    |          |           |                                      | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                  |          |       |       |               |  |

|      |            |                                    |     |           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fi               | Figure 6  |       |       |               |
|------|------------|------------------------------------|-----|-----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-------|-------|---------------|
| lone | one Buffer | Buffer                             | нd  | Salt (M)  | Salt                         | Ppt (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ppt              | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| _    | Œ          |                                    |     |           |                              | the company of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co |                  |           |       |       | ŀ             |
| 1117 |            |                                    |     | .2        | Potassium<br>fluoride        | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Potassium formate            | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Potassium iodide             | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Potassium nitrate            | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .1 .2 .3  | Potassium sodium<br>tartrate | 15-258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | 0.1 - 0.5 | Sodium Acetate               | 15-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .1 .2 .3  |                              | 15-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Sodium fluoride              | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Sodium formate               | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 0586 ЭЗЗ       |           |       |       |               |
| 1117 |            |                                    |     | .2        | Sodium iodide                | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | re<br>Le                     | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | Sodium<br>thiocyanate        | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |           |       |       |               |
| 1117 |            |                                    |     | .2        | tri-Lithium<br>citrate       | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .1 .2 .25 | tri-Potassium<br>citrate     | 15-25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350         |           |       |       |               |
| 1117 |            |                                    |     | .2        | tri-Sodium<br>citrate        | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
| 1118 | г.         | HEPES                              | 7.5 |           |                              | 5-10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Iso-<br>Propanol |           |       | 10    | PEG 4000      |
| 1118 | 1.         | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6 |           |                              | 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iso-<br>Propanol |           |       | 108   | PEG 4000      |
| 1118 |            |                                    |     | .2        | Ammonium chloride            | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |           |       |       |               |
|      |            |                                    |     |           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |       |       |               |

|                    |             |                      |     |                  |                                     |         | Fic       | Figure 6  |       |       |               |
|--------------------|-------------|----------------------|-----|------------------|-------------------------------------|---------|-----------|-----------|-------|-------|---------------|
| lone Buffer<br>(M) |             | Buffer               | нđ  | Salt (M)         | Salt                                | (M)     |           | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1118               |             |                      |     | 2.               | Ammonium<br>dihydrogen<br>phosphate | 208     | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .2               | Ammonium fluoride                   | 20\$    | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .2               | Ammonium formate                    | 20%     | )<br>3350 |           | ·     |       |               |
| 1118               |             |                      |     | .2               | Ammonium nitrate                    | 208     | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .1 .2            | Calcium Chloride                    | 20-258  | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .1 .2 .3         | Lithium acetate                     | 15-20%  | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | . 2              | Lithium Chloride                    | 208     | PEG 3350  | •         |       |       |               |
| 1118               |             |                      | ,   | .2               | Magnesium<br>Chloride               | 20%     | PEG 3350  |           |       |       |               |
| 1118               | :           |                      |     | .05 .1 .2<br>.25 | Magnesium formate                   | 5-20%   |           |           |       |       |               |
| 1118               |             |                      |     | .2               | Potassium<br>Chloride               | 20%     | PEG 3350. |           |       |       |               |
| 1118               |             |                      |     | .2               | Potassium formate                   | 20%     | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .1 .2 .3         | Sodium Chloride                     | 15% 20% | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | . 2              | Sodium fluoride                     | 20%     | PEG 3350  |           |       |       |               |
| 1118               |             |                      |     | .2               | Sodium formate                      | 20%     | PEG 3350  |           |       |       |               |
| 1121               | 1           | Phosphate<br>Citrate | 4.2 | . 05 .2          | Lithium Sulphate                    | 208     | PEG 1000  |           | ,     |       |               |
| 11210              | 11210.1-0.3 | NaH2PO4              |     |                  |                                     | 20-25%  | PEG 3350  |           |       |       |               |
| 1121               | 1           | Tris                 | 7   | 0.1-0.25         | Calcium Acetate                     | 10-25%  | PEG 3000  |           |       |       |               |

PCT/GB02/04872

|          | Add MAdditive          |                       |          |                  |          |                        |                       |                       |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iso-<br>propanol                   | Magnesium<br>Sulphate              | Manganese<br>(II)<br>Chloride      | calcium<br>chloride                |
|----------|------------------------|-----------------------|----------|------------------|----------|------------------------|-----------------------|-----------------------|-----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|          | и рру                  |                       |          |                  |          |                        |                       |                       |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-<br>20%                         | 4mM                                | 4mM                                | 4 mM                               |
|          | Ppt 2                  | PEG<br>4000           |          |                  |          |                        |                       |                       |                 |                                    | Iso-<br>Propanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Iso<br>Propanol                    | Iso-<br>Propanol                   | Iso-<br>Propanol                   |
| Figure 6 | Ppt 2 (M)              | 0-12.5%               |          |                  |          |                        |                       |                       |                 |                                    | 5-158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | 108                                | 108                                | 10%                                |
| Fig      | ĭ ⊋ŭa                  | Iso-<br>Propanol      |          | PEG 3350         | PEG 3350 | PEG 3350               | PEG 3350              | PEG 1000              | PEG 3000        | PEG 4000                           | PEG 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PEG 4000                           | PEG 4000                           | PEG 4000                           | PEG 4000                           |
|          | вр <b>с (м)</b>        | 5-208                 |          | 30 <b>8</b>      | 20%      | 208                    | 208                   | 20%                   | 10-25%          | 15-30%                             | 5-158<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108                                | 85                                 | 88<br>8                            | 5.8                                |
|          | Salt                   |                       |          | Potassium iodide | NaH2PO4  | tri-Lithium<br>citrate | tri-Sodium<br>citrate | Lithium Sulphate      | Calcium Acetate | Ammonium Acetate                   | American State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of |                                    |                                    |                                    | -                                  |
|          | Salt (M)               |                       |          | .2               | .2       | .2                     | .2                    | .05 .2                | .60.1-0.25      | 7.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | ,                                  |                                    |                                    |
|          | Hot                    | 5.6                   |          |                  |          |                        |                       | 4.2                   | 7.0-7.6         | 5.6                                | 5.6-5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0-                               | 5.6                                | 5.6                                | 5.6                                |
|          | Buffer                 | Tri-Sodium<br>Citrate | unyarate |                  |          |                        |                       | Phosphate-<br>Citrate | Tris            | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodiwn<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate |
|          | Clone Buffer<br>ID (M) | .05 .1<br>.15         |          |                  |          |                        |                       | .1                    | .1              | ₽.                                 | .03-<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05-                              | <b>-</b>                           | .1                                 | . 1                                |
|          | Clone I                | 1121                  |          | 1121             | 1121     | 1121                   | 1121                  | 1122                  | 1122            | 1122.1                             | 1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,122                              | 1122                               | 1122                               | 1122                               |

| I        | ^                      |                                    |                                    | m                                  |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|----------|------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------|-----------------|------------------|---------------------------------|-------------------------|-----------------------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-----------------|------------------------|
|          | Add Madditive          | iron<br>chloride                   | sodium<br>acetate                  | zinc<br>chloride                   |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | AAdd                   | iro<br>chl                         | sod                                | zinc<br>chlo                       |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | Add 1                  | 2тМ                                | 4mM                                | 4mM                                |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | 2                      | Iso-<br>Propanol                   | Iso-<br>Propanol                   | Iso-<br>Propanol                   |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | (M) Ppt                | Iso-<br>Prop                       | Iso-<br>Prop                       | Iso-<br>Propa                      |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
| ٥        | (M)                    |                                    |                                    |                                    |                   |                 |                  |                                 |                         | ,                     |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
| rigure o | Ppt 2                  | 10%                                | 10%                                | 10%                                |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
| 170      |                        | 0                                  | 0                                  | 0                                  | 0                 | 0               | 0                | 0                               | 0                       | 0                     | 0               | o.                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0                             | 0               | 0                      |
|          | 11                     | PEG 4000                           | 4000                               | 4000                               | 3350              | 3 3350          | 3 3350           | PEG 3350                        | 3 3350                  | 3 3350                | 3 3350          | PEG 3350          | g 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 3350          | G 3350                        | PEG 3350        | PEG 3350               |
|          | Ppt                    | PEC                                | 9EG                                | 9BG                                | PEG               | PEG             | Sea              | E E                             | PEG                     | PEG                   | 934             | PE                | PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EE                | <b>Э</b> аа .                 | BE.             | <u>.</u>               |
|          |                        |                                    |                                    |                                    |                   |                 |                  |                                 |                         |                       |                 |                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                 |                               |                 |                        |
|          | (M)                    |                                    |                                    | -                                  | dР                | 15-25%          | 20-258           | ф                               | qio                     | dP.                   | de.             | 10-25%            | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-20\$            | 15-258                        | 15-25%          | 20%                    |
|          | Ppt                    | 58                                 | &<br>&                             | aρ<br>ιΩ                           |                   | 15              |                  | 208                             | 20%                     | 20\$                  | 20%             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te 5-             | ,                             |                 | <u> </u>               |
|          |                        |                                    |                                    |                                    | loric             | tate            | oride            | trate                           | _                       |                       | rate            | ceta              | e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l | Corma             | sodiw                         | ohate           | <b>u</b>               |
|          |                        |                                    |                                    |                                    | do<br>H           | m Ace           | n<br>Chl         | onium<br>en ci                  | onium<br>te             | ium<br>te             | m nit           | 1 mm 1            | ium<br>de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i um i            | ium k<br>te                   | l sul           | thiu<br>e              |
| ,        | Salt                   |                                    |                                    |                                    | Ammonium chloride | Calcium Acetate | Calcium Chloride | di-Ammonium<br>hydrogen citrate | Di-Ammonium<br>Tartrate | Di-Sodium<br>Tartrate | Lithium nitrate | Magnesium Acetate | Magnesium - Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Magnesium-formate | Potassium 'sodium<br>tartrate | Sodium sulphate | tri-Lithium<br>citrate |
|          | 80                     |                                    |                                    |                                    | Æ                 |                 | Ö                | ਚੋੜ                             | ÄË                      | ΩË                    | نز              | ž                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.                |                               |                 | υu                     |
|          | (X)                    |                                    |                                    |                                    |                   | .15 .2          | .2               |                                 |                         |                       |                 | 0.1-0.4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r.                | 2 .3                          | .2 .3           |                        |
|          | Salt                   |                                    | ļ                                  |                                    | 2.                | .25             | <u>-:</u>        | 2.                              | .2                      | .2                    | -2              | 0.1               | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .05               | н.                            |                 | .2                     |
|          | <b>*</b>               | 5.6                                | 5.6                                | 5.6                                |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | HC.                    | ις.                                | ហ                                  | ν.                                 |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          |                        | e                                  | e                                  | l e                                |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | l <sub>u</sub>         | odiw<br>te<br>rate                 | odiu<br>te<br>Irate                | odiw<br>te<br>Irate                |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | Buffer                 | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               | L               |                        |
|          |                        |                                    |                                    |                                    |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | Clone Buffer<br>ID (M) | r:                                 | r                                  | T:                                 |                   |                 |                  |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |
|          | Clone<br>ID            | 1122                               | 1122                               | 1122                               | 1122              | 1122            | 1122             | 1122                            | 1122                    | 1122                  | 1122            | 1122              | 1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1122              | 1122                          | 1122            | 1122                   |
|          | IO H                   | · ·                                | I                                  | ı                                  | L                 | L               | 1                |                                 |                         |                       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                        |

|        |                |                                    |     |           |                          |         | Fig              | Figure 6  | **    |       |               |
|--------|----------------|------------------------------------|-----|-----------|--------------------------|---------|------------------|-----------|-------|-------|---------------|
| one    | one Buffer (M) | Buffer                             | нđ  | Salt (M)  | Salt                     | Ppt (M) |                  | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1122   |                |                                    |     | .3 .2 .25 | tri-Potassium<br>citrate | 15-25%  | PEG 3350         |           |       |       |               |
| 1122   |                |                                    |     | . 2       | tri-Sodium 2<br>citrate  | 208     | PEG 3350         |           |       |       |               |
| 1123   | г.             | HEPES                              | 7.5 | -         | u)                       | 5~10%   | Iso-<br>Propanol |           |       | 10    | PEG 4000      |
| 1123   |                |                                    |     | .2        | Ammonium fluoride 2      | 20%     | PEG 3350         |           |       |       | ·             |
| 1123   |                |                                    |     | .2        | Ammonium formate 2       | 20%     | PEG 3350         |           |       |       |               |
| 1123   |                |                                    |     | .2        | Lithium Chloride 2       | 20%     | PEG 3350         |           |       |       |               |
| 1123   |                |                                    |     | .2        | Potassium<br>fluoride    | 20%     | 05EE 534         | •         |       |       |               |
| 1123   |                |                                    |     | .2        | Potassium formate 2      | 20%     | PEG 3350         |           |       |       |               |
| 1123   |                |                                    |     | .2        | Sodium fluoride          | 20%     | . 05EE 93a       |           |       |       |               |
| 1123   |                |                                    |     | .2        | Sodium formate           | 208     | PEG 3350         |           |       |       |               |
| 1165   | <b>-!</b>      | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6 |           |                          | 10% 20% | Iso-<br>Propanol | :         |       | 10%   | PEG 4000      |
| 1319   | 1.             | Cacodylate                         | 6.5 | . 2       | Magnesium<br>Chloride    |         | PEG 3000         |           |       |       |               |
| 1319   | .05 .1         | HEPES                              | 7.5 | .1 .2     |                          | 5-15%   | 2-propanol       |           |       |       |               |
| 1319   |                | нерез                              | 7.5 | .15 .2    |                          | 15-20%  | PEG 3000         |           |       |       |               |
| 1319   | .05 .1<br>.15  | K Na Phosphate                     | 6.2 | .1 .2     |                          | 10% 20% | PEG 8000         |           |       |       |               |
| 1319   | 1.             | K Na Phosphate                     | 6.2 | . 2       | Sodium Chloride          | 208     | PEG 1000         |           |       |       |               |
| 1319.1 | 1.             | MES                                | 9   | .2        | Calcium Acetate          | 208     | PEG 8000         |           |       |       |               |
| 1319   | 13190.05-0.2   | Tris                               | 7   | l 1       |                          | 7.5-20% | Ethanol          |           |       |       |               |
| 1319   |                | ·                                  |     | .1 .2 .3  | Sodium sulphate          | 15-258  | PEG 3350         |           |       | _     |               |

| 4 | 1 | 8 | ì |
|---|---|---|---|
|   |   |   |   |

|      |                   |                                    |         |                    |                         |                    | Fig              | Figure 6    |             |       |               |
|------|-------------------|------------------------------------|---------|--------------------|-------------------------|--------------------|------------------|-------------|-------------|-------|---------------|
| lone | one Buffer<br>(M) | Buffer                             | нđ      | Salt (M)           | Salt                    |                    | Pot              | Ppt 2 (M) E | Ppt 2       | Add M | Add MAdditive |
| 1339 | .1                | CAPS                               | 10.5    |                    | 1.15                    |                    | PEG 400          |             |             |       |               |
| 1339 | 1                 | HEPES                              | 7.5     | .2                 | Magnesium<br>Chloride   |                    | Ethanol          |             |             |       |               |
| 1339 | 0.05-0.2          | HEPES                              | 7.5     | .1 .2 .25          | Sodium Chloride         |                    | PEG 400          |             |             |       |               |
| 1339 | г.                | HEPES                              | 7.5     |                    |                         | 10% 5%             | Iso-<br>Propanol |             |             | 10    | PEG 4000      |
| 1339 | F.                | Tris                               | 7       | .1 .15 .2<br>.25   | Calcium Acetate         |                    | 900E 33a         |             |             |       |               |
| 1339 | 0.05-0.2          | Tris                               | 7       |                    |                         | 5-20%              | Ethanol          |             |             |       |               |
| 1339 |                   | Tris-HCl                           | 8.5     |                    |                         |                    | PEG 8000         |             |             |       |               |
| 1339 | .15               | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6     |                    |                         | 5-208              | Iso-<br>Propanol | 0-12.5%     | PEG<br>4000 |       |               |
| 1339 |                   | Tri-Sodium<br>Citrate<br>Dihydrate | 5.0-5.8 |                    |                         | 10-20%             | Iso-<br>Propanol | 0-10%       | PEG<br>4000 |       |               |
| 1339 | 6                 |                                    |         | .2                 | Ammonium Iodide         | 20%                | PEG 3350         |             |             |       |               |
| 1339 | 6                 |                                    |         | .2                 | Di-Ammonium<br>Tartrate | 20%                | PEG 3350         |             |             |       |               |
| 1339 | 6                 |                                    |         | .2                 | Na2HPO4                 | 208                | PEG 3350         |             |             |       |               |
| 1339 |                   |                                    |         | . 2                | Di-Sodium<br>Tartrate   | 20%                | PEG 3350         |             |             |       | ·             |
| 1339 | ,                 |                                    |         | .1 .2 .3           | Lithium acetate         | 15% 20%            | PEG 3350         |             |             |       |               |
| 1339 | 5                 |                                    |         | . 2                | Magnesium<br>Chloride   | 20%                | PEG 3350         |             |             |       |               |
| 1339 | 6                 |                                    |         |                    | Potassium<br>Chloride   | 20%                | PEG 3350         |             |             |       |               |
| 1339 | 6                 |                                    |         | .2                 | Potassium<br>sulphate   |                    | PEG 3350         |             |             |       |               |
| 1339 | 6                 |                                    |         | .1 .15 .2<br>.3 .5 | Sodium Acetate          | 15% 20% 25%<br>30% | PEG 3350         |             |             |       |               |
|      |                   |                                    |         |                    |                         |                    |                  |             |             |       |               |

|         |                        |                                    |      |                     |                              |                            | 5T.4             | Figure 6                |             |     |               |
|---------|------------------------|------------------------------------|------|---------------------|------------------------------|----------------------------|------------------|-------------------------|-------------|-----|---------------|
| Clone   | Clone Buffer<br>ID (M) | Buffer                             |      | Salt (M)            | Salt                         | Ppt (M)                    | Ppt              | Ppt 2 (M)               | Ppt 2 A     | M M | Add MAdditive |
| 1339    |                        |                                    |      | .1.2.3              | Sodium Chloride              | 158 208                    | PEG 3350         |                         |             |     |               |
| 1339    |                        |                                    |      | .2                  | NaH2PO4                      | 20%                        | PEG 3350         |                         |             |     |               |
| 1339    |                        |                                    |      | .1 .2 .3            | Sodium sulphate              |                            | PEG 3350         |                         |             |     |               |
| 1340    | .05 .1<br>.15          | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6  |                     |                              | 20%                        | Iso-<br>Propanol | 10%<br>12.5% 5%<br>7.5% | 4000        |     | ,             |
| 1340    | г.                     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.0- |                     |                              | ,                          | Iso-<br>Propanol | 10%                     | PEG<br>4000 |     |               |
| 1340    |                        |                                    |      | .1 .2               | Ammonium Sulphate            | 15-25%                     | PEG 3350         |                         |             |     |               |
| 1340    |                        |                                    |      | .1 .2 .3            | Potassium sodium<br>tartrate | 15-25%                     | PEG 3350         |                         |             |     |               |
| 1340    |                        |                                    |      | .2                  | Sodium fluoride              | 20%                        | PEG 3350         |                         |             |     |               |
| 1361    | 1.                     | MES                                | 9    | .2                  | Calcium Acetate              | 208                        | 0008 934         |                         |             |     |               |
| 1362.05 | .05 .1<br>.15          | K Na Phosphate                     | 6.2  | .1 .2               | Sodium Chloride              | 10% 20%                    | 0008 Saa         |                         |             |     |               |
| 1362    | r.                     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6  |                     |                              | 10% 20%                    | Iso-<br>Propanol |                         |             | 10% | PEG 4000      |
| 1363    | .1                     | CAPS                               | 10.5 |                     |                              | 308                        | PEG 400          |                         |             |     |               |
| 1363    | .05 .1<br>.15          | HEPES                              | 7.5  | .1.2                | Sodium Chloride              | 10% 15.000<br>5.000        | 2-propanol       |                         |             |     |               |
| 1363    | 0.05-0.2               | HEPES                              | 7.5  | .1 .2 .25<br>.3 .35 |                              | 20% 25 25%<br>27.5 30% 35% | PEG 400          |                         |             |     |               |
| 1363    | -1                     | HEPES                              | 7.5  | .15 .2              | Sodium Chloride              | 15-20%                     | PEG 3000         |                         |             |     |               |
| 1363.1  | .1                     | Saaah                              | 7.5  |                     |                              | 10% 5%                     | Iso-<br>Propanol | -                       |             | 10  | PEG 4000      |
| 1363    | .1                     | Imidazole                          | 8    | .2                  | Calcium Acetate              | 108                        | PEG 8000         |                         |             |     |               |
| 1363    | .05 .1                 | K Na Phosphate                     | 6.2  | .1 .2               | Sodium Chloride              | 10% 20%                    | PEG 8000         |                         | •           |     |               |
|         |                        |                                    |      |                     |                              |                            |                  |                         |             |     |               |

|          |                        | ·               |                      |                      | <del></del>                        | ·                                  | ,                | <del>,</del>      |          |                       |                  | <del> </del>      |          |                          | _             | _              | <del></del>           |                       |
|----------|------------------------|-----------------|----------------------|----------------------|------------------------------------|------------------------------------|------------------|-------------------|----------|-----------------------|------------------|-------------------|----------|--------------------------|---------------|----------------|-----------------------|-----------------------|
|          | Add Madditive          |                 |                      |                      |                                    |                                    |                  |                   |          | ,                     |                  |                   |          |                          |               |                |                       |                       |
|          | Add M                  |                 |                      |                      |                                    |                                    |                  |                   |          |                       |                  |                   | ,        |                          |               |                |                       |                       |
|          | Ppt 2                  |                 |                      |                      |                                    | PEG<br>4000                        |                  |                   |          |                       |                  |                   |          |                          |               |                |                       |                       |
| Figure 6 | Ppt 2 (M)              |                 |                      |                      |                                    | 5-12.5%                            |                  |                   |          |                       |                  |                   |          |                          |               |                |                       |                       |
| Fig      | Ppt                    | PEG 1000        | PEG 8000             | PEG 8000             | PEG 4000                           | Iso-<br>Propanol                   | PEG 3350         | PEG 3350          | PEG 3350 | PEG 3350              | PEG 3350         | PEG 3350          | PEG 3350 | PEG 3350                 | PEG 3350      | PEG 3350 -     | PEG 3350              | PEG 3350              |
|          | (M) aga                | 208             | 10% 20%              | 15% 30%              | 15% 30%                            | 10-20%                             | 208              | 20%               | 20%      | 20%                   | 20%              | 20%               | 15-25%   | 20%                      | 208           | 208            | 20%                   | 20%                   |
|          | Salt                   | Sodium Chloride | Magnesium Acetate    | Sodium Acetate       | Ammonium Acetate                   |                                    | Ammonium Acetate | Ammonium fluoride | Na2HPO4  | Magnesium<br>sulphate | Potassium iodide | Potassium nitrate | dium     | Potassium<br>thiocyanate | Sodium iodide | Sodium Nitrate | Sodium<br>thiocyanate | tri-Sodium<br>citrate |
|          | Salt (M)               | .2              | .2                   | .2                   | 2.                                 |                                    | .2               | 2.                | .2       | .2                    | .2               | .2                | .1 .2 .3 | .2                       | .2            | .2             | 7.                    | . 2                   |
|          | He                     | 6.2             | 6.5                  | 6.5                  | 5.6                                | 5.4 -<br>5.8                       |                  |                   |          |                       |                  |                   |          |                          |               |                |                       |                       |
|          | Buffer                 | K Na Phosphate  | Sodium<br>Cacodylate | Sodium<br>Cacodylate | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate |                  |                   |          |                       |                  |                   |          |                          |               |                |                       |                       |
|          | Clone Buffer<br>ID (M) | .1              | .1                   | .1                   | 1.                                 | .05 .1<br>.15                      |                  |                   |          |                       |                  |                   |          |                          |               |                |                       |                       |
|          | Clone                  | 1363            | 1363                 | 1363                 | 1363                               | 1363                               | 1363             | 1363              | 1363     | 1363                  | 1363             | 1363              | 1363     | 1363                     | 1363          | 1363           | 1363                  | 1363                  |

|                        |        |                                    |      |                    |                                     |                    | Fic              | Figure 6  |             |        |               |
|------------------------|--------|------------------------------------|------|--------------------|-------------------------------------|--------------------|------------------|-----------|-------------|--------|---------------|
| Clone Buffer<br>ID (M) |        | Buffer                             | нđ   | Salt (M)           | Salt                                | Брt (м)            | Ppt              | Ppt 2 (M) | Ppt 2       | Add MA | Add MAdditive |
| 1364                   | 1.     | CAPS                               | 10.5 |                    |                                     |                    | PEG 400          |           |             |        |               |
| 1364.                  | ٠.     | Citrate                            | 5.5  | .2                 | Lithium Sulphate                    | 15%                | Ethanol          |           |             |        |               |
| 1364                   | 1.     | Imidazole                          | 8    | .2                 | Calcium Acetate                     |                    | PEG 8000         |           |             |        |               |
| 1364.                  | 1.     | Sodium Citrate                     | 5.5  |                    |                                     | 20%                | PEG 3000         |           |             |        |               |
| 1364.                  | г.     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6  | <b>2</b> .         | Ammonium Acetate                    | 15% 30%            | PEG 4000         |           |             |        |               |
| 1364.                  | .05 .1 | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6- |                    |                                     | 80                 | Iso~<br>Propanol | 5-12.5    | PEG<br>4000 |        |               |
| 1364                   |        |                                    |      | . 2                | Ammonium<br>dihydrogen<br>phosphate | 20%                | PEG 3350         |           |             | • .    |               |
| 1364                   |        |                                    |      | .1 .2              | Ammonium Sulphate                   | 25%                | PEG 3350         |           |             |        |               |
| 1364                   |        |                                    |      | .2                 | Di-Sodium<br>Tartrate               | 208                | PEG 3350         |           |             |        |               |
| 1364                   |        |                                    |      | .2                 |                                     |                    |                  |           |             |        |               |
| 1364                   |        |                                    |      | .2 .25             | Potassium acetate                   |                    |                  |           |             |        |               |
| 1364                   |        |                                    |      | .1 .2 .3           | Potassium sodium<br>tartrate        | 58                 | PEG 3350         |           |             |        |               |
| 1364                   |        |                                    |      | .1 .15 .2<br>.3 .5 | Sodium Acetate                      | 158 208 258<br>308 | PEG 3350         | •         |             |        |               |
| 1364                   |        |                                    |      | .2                 | Sodium iodide                       |                    | PEG 3350         |           |             |        |               |
| 1364                   |        |                                    |      | .2                 |                                     |                    | PEG 3350         |           |             |        |               |
| 1364                   | •      |                                    |      | .1 .2 .25          | tri-Potassium<br>citrate            | 258                | PEG 3350         |           |             |        |               |
| 1366                   | .1     | Citrate                            | 5.5  | .2                 | Lithium Sulphate                    | 158                | Ethanol          |           |             |        |               |

|         |                        |                                      |             |                     | のはないできたのではない。 しょうしょう はんしゅう いっちょう かんしょう かんしょう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう かんしゅう かんしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Fic              | Figure 6 .           | 1           | 1     |               |
|---------|------------------------|--------------------------------------|-------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------|-------|---------------|
| Clone   | Clone Buffer<br>ID (M) | Buffer                               | нd          | Salt (M)            | Salt                                                                                                                                  | Ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>⊋</b> da      | (D40)                | Ppt 2       | Add M | Add MAdditive |
| 1366.05 | .05 .1<br>.15          | Tri-Sodium<br>Citrate<br>Dihydrate   | 5.6         |                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iso-<br>Propanol | 12.5\$<br>7.5\$      | PEG<br>4000 |       |               |
| 1366.1  | 1                      | Tri-Sodium<br>Citrate<br>Dihydrate   | 5.0-5.8     |                     |                                                                                                                                       | 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iso-<br>Propanol | 108                  | 4000        |       |               |
| 1367    | .05 .1<br>.2 .4        | Potassium<br>Dihydrogen<br>Phosphate |             |                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | •           |       |               |
| 1368    | 1368.075.1<br>.15.2    | CHES                                 | 9.5         |                     |                                                                                                                                       | 20-358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 400          |                      |             |       |               |
| 1368.1  |                        | Citrate                              | 5.5         | .2                  | Lithlum Sulphate                                                                                                                      | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethanol          |                      |             |       |               |
| 1368    | 0.05-0.2               | нерез                                | 7.5         | .1 .2 .25<br>.3 .35 | Sodium Chloride                                                                                                                       | 20-35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 400          |                      |             |       |               |
| 1368    | T.                     | нерез                                | 7.5         |                     |                                                                                                                                       | 5–108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Iso-<br>Propanol |                      |             | 10    | PEG 4000      |
| 1368    | 1368.05 .1<br>.15      | K Na Phosphate                       | 6.2         | .1 .2               | Sodium Chloride                                                                                                                       | 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEG 8000         | ·                    |             |       |               |
| 1368    | 3.1                    | K Na Phosphate                       | 6.2         |                     |                                                                                                                                       | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3000         |                      |             |       |               |
| 1368    | 3.1                    | MES                                  | 9           | .2                  | Calcium Acetate                                                                                                                       | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 8000         |                      |             |       |               |
| 1368.1  | 1                      | Sodium Citrate                       | 5.5         | -                   |                                                                                                                                       | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3000         |                      |             |       |               |
| 136     | 1368.05 .1<br>.15      | Tri-Sodium<br>Citrate<br>Dihydrate   | 9.5         |                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iso-<br>Propanol | 10% 12.5%<br>5% 7.5% | PEG<br>4000 |       |               |
| 1368.1  |                        | Tri-Sodium<br>Citrate<br>Dihydrate   | 5.2-<br>5.8 |                     |                                                                                                                                       | 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iso-<br>Propanol | 108                  | PEG .       |       |               |
| 1368    |                        |                                      |             | .2                  | Ammonium chloride                                                                                                                     | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEG 3350         |                      |             |       |               |
|         |                        |                                      |             |                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |             |       |               |

| 423/514 |
|---------|

|      |                   |                                    |      |                  |                              |         |                  | - 1       |             |       |               | _             |
|------|-------------------|------------------------------------|------|------------------|------------------------------|---------|------------------|-----------|-------------|-------|---------------|---------------|
| 90   | one Buffer (M)    | Buffer                             | нđ   | Salt (M)         | Salt                         | Ppt (M) | Ppt              | Ppt 2 (M) | Ppt 2       | Add M | Add MAdditive |               |
| 368  |                   |                                    |      | .1 .2            | Ammonium Sulphate            | 15-25%  | PEG 3350         |           |             |       |               |               |
| 368  |                   |                                    | ŧ    | .1 .15 .2        | Calcium Acetate              | 15-25%  | PEG 3350         |           |             |       |               | , <del></del> |
| 368  |                   |                                    |      | .2               | Di-Sodium<br>Tartrate        | 20%     | PEG 3350         |           |             |       |               |               |
| 368  |                   |                                    |      | .2               | Lithium Chloride             | 20%     | PEG 3350         |           |             |       |               |               |
| 368  |                   |                                    |      | .1 .2 .3         | Potassium sodium<br>tartrate | 15-25%  | PEG 3350         |           |             |       |               | r             |
| 368  |                   |                                    |      | .2               | Potassium<br>sulphate        | 20%     | PEG 3350         | ·         |             |       |               |               |
| 368  |                   |                                    |      | .2               | Sodium formate               | 20%     | PEG 3350         |           |             |       |               | _             |
| 1368 |                   |                                    |      | .1 .2 .3         | Sodium sulphate              | 15-25%  | PEG 3350         |           |             |       |               |               |
| 1368 |                   |                                    |      | .2               | tri-Lithium<br>citrate       | 20%     | PEG 3350         |           |             |       |               |               |
| 1368 |                   | -                                  |      | .3 .2 .25        | tri-Potassium<br>citrate     | 15-25%  | PEG 3350         |           |             |       |               |               |
| 1369 | ۲.                | HEPES                              | 7.5  | .15 .2           | Sodium Chloride              | 15-20%  | PEG 3000         |           |             |       |               |               |
| 369  | H.                | Phosphate-<br>Citrate              | 4.2  | . 05 .2          | Lithium Sulphate             | 20%     | PEG 1000         |           |             |       |               | т             |
| 1369 | 7.                | Sodium Citrate                     | 5.5  |                  |                              | 20%     | PEG 3000         |           |             |       |               |               |
| 1369 | 1                 | Tris                               | 7    | .1 .15 .2        | Calcium Acetate              | 10-25%  | PEG 3000         |           |             |       |               |               |
| 1369 | 13690.05-<br>0.15 | Tri-Sodium<br>Citrate<br>Dihydrate | 5.0- |                  |                              | 5-20%   | Iso-<br>Propanol | 0-12.5%   | PEG<br>4000 |       |               |               |
| 1369 |                   |                                    |      | .2               | Ammonium fluoride            | 208     | PEG 3350         |           |             |       |               |               |
| 1369 |                   |                                    |      | .2               | Ammonium formate             | 20%     | PEG 3350         |           |             |       |               |               |
| 1369 |                   |                                    |      | .1 .2            | Ammonium Sulphate            |         | PEG 3350         |           |             | _     |               |               |
| 1369 |                   |                                    |      | .1 .15 .2<br>.25 | Calcium Acetate              | 15-25%  | PEG 3350         |           |             |       |               |               |
|      |                   |                                    |      |                  |                              |         |                  |           |             |       |               |               |

|                        |        |    |                    |                                 |         | Fic      | Figure 6  |       |       |               |
|------------------------|--------|----|--------------------|---------------------------------|---------|----------|-----------|-------|-------|---------------|
| Clone Buffer<br>ID (M) | Buffer | нс | Salt (M)           | Salt                            | Ppt (M) | Ppt      | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1369                   |        |    | . 2                | di-Ammonium<br>hydrogen citrate | 20%     | PEG 3350 | •         |       |       |               |
| 1369                   |        |    | .2                 |                                 | 20%     | 9350     |           |       |       |               |
| 1369                   |        | ·  | .2                 | Lithium Chloride                | 20%     | PEG 3350 |           | ,     |       |               |
| 1369                   |        |    | .2                 | Lithium nitrate                 | 208     | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 |                                 | 20-25%  | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .05 .1 .2<br>.25   | Magnesium formate               | 5-20%   | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2 .25             | acetate                         | 20-258  | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 | Potassium<br>Chloride           | 208     | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 | Potassium<br>fluoride           | 20\$    | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 | Potassium formate               | 20%     | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .1 .2 .3           | Potassium sodium<br>tartrate    | 15-25%  | PEG 3350 |           |       |       | ٠             |
| 1369                   |        |    | .2                 | Potassium<br>sulphate           | 20%     | PEG 3350 |           |       |       |               |
| 1369                   | ,      |    | . 2                | Potassium<br>thiocyanate        | 208     | PEG 3350 |           |       |       |               |
| 1369                   | ·      |    | .1 .15 .2<br>.3 .5 | Sodium Acetate                  | 15-30%  | PEG 3350 |           | •     |       |               |
| 1369                   |        |    | .1.2.3             | Sodium Chloride                 | 15-20%  | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 | Sodium fluoride                 | 20%     | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .2                 | Sodium formate                  | 20%     | PEG 3350 |           |       |       |               |
| 1369                   | -      | _  |                    | Sodium Nitrate                  | 20%     | PEG 3350 |           |       |       |               |
| 1369                   |        |    | .1 .2 .3           | Sodium sulphate                 | 15-25%  | PEG 3350 |           |       |       |               |

|             |                        |                                    |      |           |                              |        | Fic              | Figure 6  |             |       |               |
|-------------|------------------------|------------------------------------|------|-----------|------------------------------|--------|------------------|-----------|-------------|-------|---------------|
| Clone<br>ID | Clone Buffer<br>ID (M) | Buffer                             | Вď   | Salt (M)  | Salt                         | (M)    | Ppt              | Ppt 2 (M) | Ppt 2       | Add M | Add MAdditive |
| 1369        |                        |                                    |      | .2        | tri-Lithium<br>citrate       | 802    | 0SEE 93a         |           |             |       |               |
| 1369        |                        | ·                                  |      | .1 .2 .25 | tri-Potassium<br>citrate     | 15-25% | PEG 3350         |           | •           |       |               |
| 1369        |                        |                                    |      | .2        | tri-Sodium<br>citrate        | 20%    | PEG 3350         |           |             |       |               |
| 1370        | .1                     | K Na Phosphate                     | 6.2  |           |                              | 108    | 000६ ५३४         |           |             |       |               |
| 1370        | .05 .1<br>.15          | Tri-Sodium<br>Citrate<br>Dihydrate | 5.4- |           |                              | 5-20%  | Iso-<br>Propanol | 0-12.5%   | PEG<br>4000 |       |               |
| 1370        |                        |                                    |      | .2        | Ammonium chloride            | 208    | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        |                              | 208    |                  |           |             |       |               |
| 1370        |                        |                                    |      | .2        | Potassium<br>Chloride        | 20%    | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        | Potassium<br>fluoride        | 20%    | PEG 3350         |           | ,           |       |               |
| 1370        |                        |                                    |      | .1 .2 .3  | Potassium sodium<br>tartrate | 15-25% | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        | Potassium<br>thiocyanate     | 20%    | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        | NaH2PO4                      | 20%    | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        | formate                      | 20%    | PEG 3350         |           |             |       |               |
| 1370        |                        |                                    |      | .2        | tri-Sodium<br>citrate        | 208    | PEG 3350         |           |             |       |               |
| 1371        | 1.1                    | K Na Phosphate                     | 6.2  | .2        | Sodium Chloride              | 20%    | PEG 1000         |           |             |       |               |
| 1371        | 1.1                    | MES                                | 9    | .2        | Calcium Acetate              | 20%    | PEG 8000         |           |             |       |               |
| 1371        | 1-1                    | Phosphate-<br>Citrate              | 4.2  | .05 .2    | Lithium Sulphate             | 208    | PEG 1000         |           |             |       |               |
| 1371        | 1.1                    | Sodium Citrate                     | 5.5  |           |                              | 208    | 0008 Эза         |           |             |       |               |

|        |                        |                                    |      |                  |                                  |          | Fic               | Figure 6  |       |       |                |
|--------|------------------------|------------------------------------|------|------------------|----------------------------------|----------|-------------------|-----------|-------|-------|----------------|
| ED CI  | Clone Burrer<br>ID (M) | Burrer                             | H Cd | Salt (M)         | Salt                             | Ppt (M)  | Ppt               | Ppt 2 (M) | Ppt 2 | Add M | Add M Additive |
| 1371   | .1                     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6  |                  |                                  | 10-20%   | Iso-<br>Propanol  |           |       | 108   | PEG 4000       |
| 1371   |                        |                                    |      | .2               | Di-Sodium<br>Tartrate            | 208      | PEG 3350          |           |       |       |                |
| 1371   |                        |                                    |      | .2               | Lithium Sulphate                 | 20-25%   | PEG 3350          |           |       |       |                |
| 1371   |                        |                                    |      | .2               | Magnesium<br>Chloride            | 20%      | PEG 3350          |           |       |       |                |
| 1371   |                        |                                    |      | .2               | Ì                                | 20%      | PEG 3350          |           |       |       |                |
| 1371   |                        |                                    |      | .1 .2 .25<br>.3  | tri-Potassium<br>citrate         |          | PEG 3350          |           |       |       |                |
| 1372.1 | .1                     | Sodium Acetate<br>Trihydrate       | 4.6  | 2.               | Ammonium Acetate                 | 15-30%   | PEG 4000          |           |       |       |                |
| 1372   | .1                     | Sodium Acetate<br>Trihydrate       | 4.6  |                  |                                  | 1.0-2.0М | Sodium<br>Formate |           |       |       |                |
| 1372   | т.                     | Sodium<br>Cacodylate               | 6.5  | .2               | Ammonium Sulphate                | 15-30%   | PEG 8000          |           |       |       |                |
| 1372   |                        |                                    |      | .2               | NaH <sub>2</sub> PO <sub>4</sub> | 208      | PEG 3350          |           |       |       |                |
| 1391   | .1                     | K Na Phosphate                     | 6.2  | .2               | Sodium Chloride                  | 208      | PEG 1000          |           |       |       |                |
| 1391   | .1                     | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6  |                  | 10-20                            |          | Iso-<br>Propanol  |           |       | 10%   | PEG 4000       |
| 1391   |                        |                                    |      | .1 .15 .2<br>.25 | Calcium Acetate                  | 15-25%   | PEG 3350          |           | -     |       |                |
| 1391   |                        |                                    |      | .2               |                                  | 20%      | PEG 3350          |           |       |       |                |
| 1391   |                        |                                    |      | .2               | Sodium formate                   | 20%      | PEG 3350          |           |       |       |                |
| 1391   |                        |                                    |      | .2               | tri-Lithium<br>citrate           | 20%      | PEG 3350          |           |       |       |                |
|        |                        |                                    |      |                  |                                  |          |                   |           |       |       |                |

|        |                      |                                    |     |                     |                       |                     | Fig              | Figure 6    |       |     |               | ı   |
|--------|----------------------|------------------------------------|-----|---------------------|-----------------------|---------------------|------------------|-------------|-------|-----|---------------|-----|
| lone l | lone Buffer<br>D (M) | Buffer                             | нđ  | Salt (M)            | Salt                  | Ppt (M)             | Ppt              | Ppt 2 (M) 1 | Ppt 2 | M M | Add MAdditive |     |
| 1391   |                      |                                    |     | .2                  | tri-Sodium<br>citrate | 20%                 | PEG 3350         |             |       |     |               |     |
| 1392   | .05 .1<br>.15        | нерез                              | 7.5 | .1.2                | Sodium Chloride       | 5-15%               | 2-propanol       |             |       |     |               | 7   |
| 1392   |                      | HEPES                              | 7.5 | .1 .2 .25<br>.3 .35 | Sodium Chloride       | 20-35\$             | PEG 400          |             |       |     |               |     |
| 1392   |                      | HEPES                              | 7.5 | .15 .2              | Sodium Chloride       | 15-20%              | PEG 3000         |             |       |     |               |     |
| 1392.1 | 1.                   | HEPES                              | 7.5 |                     |                       | 5-10%               | Iso-<br>Propanol |             |       | 10  | PEG 4000      | Γ   |
| 1392   | .1                   | Imidazole                          | 8   | .2                  | Calcium Acetate       | 10%                 | 0008 SIG         |             |       |     |               |     |
| 1392   | ٠                    | Sodium<br>Cacodylate               | 6.5 | .2                  | Sodium Acetate        | 15-30%              | DEG 8000         |             |       |     | ٠             |     |
| 1392   | r                    | Tris                               | 8.5 | .2                  | Magnesium<br>Chloride | 15-30%              | PEG 4000         |             | ,     |     |               |     |
| 1392   | 0.05-0.2             | Tris                               | 7   |                     |                       | 108 158 208<br>7.58 | Ethanol          |             |       |     |               | r   |
| 1392   | 0.05-0.2             | Tris                               | 7   |                     |                       | 15% 20% 25%<br>30%  | MPEG 2000        |             |       |     |               |     |
| 1392   | 1.                   | Tris-HCl                           | 8.5 | .2                  | Sodium Acetate        | 158                 | PEG 4000         |             |       |     |               |     |
| 1392   | r!                   | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6 |                     |                       | 10-20%              | Iso-<br>Propanol |             |       | 108 | PEG 4000      |     |
| 1392   |                      |                                    |     | .1 .2 .3            | Lithium acetate       | 15-20%              | PEG 3350         |             |       |     |               |     |
| 1392   |                      |                                    |     | .2                  | Lithium Chloride      | 208                 | PEG 3350         |             |       |     |               |     |
| 1392   |                      |                                    |     | .2                  | Lithlum nitrate       | 208                 | PEG 3350         |             |       |     | ,             | , , |
| 1392   |                      |                                    | ,   | .2                  | Potassium             | 20%                 | PEG: 3350        |             |       |     |               |     |
| 1392   |                      |                                    |     | .2                  | Potassium formate     |                     | PEG 3350         |             |       |     |               |     |
| 1392   |                      |                                    |     | .2                  | Potassium iodide      | 208                 | 0 <b>988</b> 934 |             |       |     |               |     |
| 1392   |                      |                                    |     | .2                  | Potassium nitrate     | 20%                 | PEG 3350         |             |       |     |               |     |
| 1392   |                      |                                    |     | .1 .2 .3            | Sodium Chloride       | 15-20%              | PEG 3350         |             |       |     |               | · · |
|        |                      |                                    |     |                     |                       |                     |                  |             |       |     |               | Ì   |

|        |               |                       |           |          |                       |            | Fig              | Figure 6      |   |      |               |
|--------|---------------|-----------------------|-----------|----------|-----------------------|------------|------------------|---------------|---|------|---------------|
| lone E | lone Buffer D | Buffer                | PH.       | Salt (M) |                       | (M)        |                  | Ppt 2 (M) Ppt | 2 | dd M | Add MAdditive |
| 1392   |               |                       |           |          | fluoride              |            | PEG 3350         |               |   |      |               |
| 1392   |               |                       |           | .2       | Sodium formate . 2    |            | PEG 3350         |               |   |      |               |
| 1392   |               |                       |           | .2       | Sodium Nitrate 2      | 208 TE     | PEG 3350         |               |   |      |               |
| 1394   | 1.            | CHES                  | 9.5       | .2       | Sodium Chloride       | 108        | PEG 8000         |               |   |      |               |
| 1394   | .075 .1       | СНЕЅ                  | 9.5       |          |                       | 20-35% E   | PEG 400          |               |   |      |               |
| 1394   | F.            | Citrate               | 5.5       | .2       | Lithium Sulphate      |            | Ethanol          |               |   |      |               |
| 1394   | 1.            | нерез                 | 7.5       | .2       | Magnesium<br>Chloride |            | Ethanol          |               |   |      |               |
| 1394   | н.            | HEPES                 | 7.5       | .2       | Magnesium<br>Chloride |            | Iso-<br>Propanol |               |   |      |               |
| 1394   | ī.            | HEPES                 | 7.5       | . 2      | Magnesium<br>Chloride |            | PEG 400          |               |   |      |               |
| 1394   | .05 .1        | HEPES                 | 7.5       | .1 .2    | Sodium Chloride       | 000        | 2-propanol       |               |   |      |               |
| 1394.1 | .1            | HEPES                 | 7.5       | .15 .2   | Sodium Chloride       | 15-20%     | PEG 3000         |               |   |      |               |
| 1394   | .1            | нерез                 | 7.5       |          |                       | 5%         | Iso-<br>Propanol |               |   | 10   | PEG 4000      |
| 1394   | .1            | Imidazole             | 8         | .2       | Calcium Acetate       |            | PEG 8000         |               |   |      |               |
| 1394   | .1            | Imidazole             | 8         | .2       | Lithium Sulphate      | 108        | PEG 3000         |               |   |      |               |
| 1394   | ۲.            | Imidazole             | <u> </u>  | .2       | Magnesium<br>Chloride |            | PEG 4000         |               |   |      |               |
| 1394   | .1            | Imidazole             | 8         |          |                       | ,          | 2-propanol       | ·             |   |      |               |
| 1394   | .1            | MES                   | <u> ب</u> | .2       | Calcium Acetate       |            | PEG 8000         |               |   |      |               |
| 1394   | .1 .15        | Phosphate-<br>Citrate | 4.2       | .1 .2 .3 |                       | 10% 15.000 | PEG 3000         | •             |   |      |               |
| 1394   | r.            | Sodium<br>Cacodylate  | 6.5       | .2       | Ammonium Sulphate     | 308        | PEG 8000         |               |   |      |               |
| 1394   | ī.            | Sodium<br>Cacodylate  | 6.5       | .2       | tri-Sodium<br>citrate | 158        | Iso-<br>Propanol |               |   |      |               |
|        |               |                       |           |          |                       |            |                  |               |   |      |               |

|            |                      |                      |     |                  |                          | ا<br>المانية<br>المانية | Fic                  | Figure 6    |       |       |               |
|------------|----------------------|----------------------|-----|------------------|--------------------------|-------------------------|----------------------|-------------|-------|-------|---------------|
| Clone<br>D | lone Buffer<br>D (M) | Buffer               | нd  | Salt (M)         |                          |                         | Ppt                  | Ppt 2 (M) P | Ppt 2 | Add M | Add MAdditive |
| 1394       | . 1                  | Tris                 | 8.5 | 2.               | Magnesium<br>Chloride    | 12-30 <del>8</del>      | PEG 4000             |             |       |       |               |
| 1394       | 1                    | Tris                 | 7   | .2               | Magnesium<br>Chloride    |                         | PEG 8000             |             |       |       |               |
| 1394       | 0.05-0.2             | Tris                 | 7   | •                |                          | 15% 20%<br>%            | Ethanol              |             |       |       |               |
| 1394       |                      | Tris-HCl             | 8.5 | .2               | Sodium Acetate           | 15\$                    | PEG 4000             |             |       |       |               |
| 1394       | ۲.                   | Tris-HCl             | 8.5 |                  |                          | 48                      | PEG 8000             |             |       |       |               |
| 1394       | .1                   | Tri-Sodium           | 5.6 |                  |                          | 108 208                 | Iso-                 | •           |       | 108   | PEG 4000      |
|            | - ا                  | Citrate<br>Dihydrate |     |                  | ·                        |                         | Fropanot             |             |       |       |               |
| 1394       |                      |                      |     | .2               |                          | 20%                     | PEG 3350             |             |       |       |               |
|            |                      |                      |     |                  | dihydrogen<br>phosphate  | ·                       | •                    |             |       |       |               |
| 1394       |                      |                      |     | .2               | Na2HPO4                  | 208                     | 05EE 93A             |             |       |       |               |
| 1394       | -                    |                      |     | .2               | Di-Sodium<br>Tartrate    | 20%                     | PEG 3350             |             |       |       |               |
| 1394       | Ti Ti                |                      |     | .2.              | Magnesium<br>Chloride    | 20%                     | PEG 3350             |             |       |       |               |
| 1394       | 50                   |                      |     | .05 .1 .2<br>.25 | Magnesium formate        | 15% 20% 5%              | PEG 3350             |             |       |       |               |
| 1394       | 1                    |                      | _   | .2               | ate                      | 20%                     | DEG 3320             |             |       |       |               |
| 1394       | ===                  |                      |     | .2               | tri-Lithium<br>citrate   | 20%                     | PEG 3350             |             |       |       |               |
| 1394       | G!                   |                      |     | .1 .2 .25        | tri-Potassium<br>citrate | 15,000 20%<br>25%       | PEG 3350             |             |       |       |               |
| 1394       | ·                    |                      |     | .2               | tr1-Sodium<br>citrate    | 20%                     | PEG 3350             |             |       |       |               |
| 1394       | ·                    |                      |     |                  |                          | 0.1 0.2 M               | Magnesium<br>Formate |             |       | · ·   |               |
|            |                      |                      |     |                  |                          |                         |                      |             |       |       |               |

| ;                      |             |                       |      |                     |                       |                         | Fic                    | Figure 6  |       |       |               |
|------------------------|-------------|-----------------------|------|---------------------|-----------------------|-------------------------|------------------------|-----------|-------|-------|---------------|
| Clone Buffer<br>ID (M) |             | Buffer                | нđ   | Salt (M)            | salt                  | Ppt (M)                 | Ppt                    | Ppt 2 (M) | Ppt 2 | Add M | Add MAdditive |
| 1394                   |             |                       |      |                     |                       | 0.2                     | Mono-                  |           |       |       |               |
|                        |             |                       |      |                     |                       |                         | ammonium<br>Dihydrogen |           |       |       |               |
|                        |             |                       |      |                     |                       |                         | Phosphate              |           |       |       |               |
| 1394                   |             |                       |      |                     |                       | 0.2                     | Potassium<br>Sodium    |           |       |       |               |
|                        |             |                       |      |                     |                       |                         | Tartrate<br>Dihydrate  |           |       |       |               |
| 1396.1                 |             | CAPS                  | 10.5 |                     | The second seconds of | 308                     | PEG 400                |           |       |       |               |
| 1396.0                 | .075 .1     | снез                  | 9.5  |                     |                       | 20.0 25% 30%<br>35%     | PEG 400                |           |       |       |               |
| 1396.1                 |             | Citrate               | 5.5  | .2                  | Lithium Sulphate      | 15%                     | Етћапод                | -         |       |       |               |
| 1396.05                | 5 .1        | HEPES                 | 7.5  | .1 .2               | Sodium Chloride       | 15% 5%                  | 2-propanol             |           |       |       |               |
| 1396.05                | .1          | HEPES                 | 7.5  | .1 .2 .25<br>.3 .35 | Sodium Chloride       | 20% 25% 27.5<br>30% 35% | PEG 400                |           |       |       |               |
| 1396.1                 |             | HEPES                 | 7.5  | .15 .2              | Sodium Chloride       | 158 208                 | рес 3000               |           |       |       |               |
| 1396.1                 |             | нерез                 | 7.5  |                     |                       | 58                      | Iso<br>Propanol        |           |       | 10    | PEG 4000      |
| 1396.1                 |             | Imidazole             | 8    | .2                  | Calcium Acetate       | 108                     | DEG 8000               |           |       |       |               |
| 1396.05                | )5 .1<br>15 | K Na Phosphate        | 6.2  | .1 .2               | Sodium Chloride       | 10% 20%                 | 0008 SBA               |           |       |       |               |
| 1396.1                 | _1          | K Na Phosphate        | 6.2  | .2                  | Sodium Chloride       | 20%                     | PEG 1000               |           |       |       |               |
| 1396.1                 | _           | Phosphate-<br>Citrate | 4.2  | l'Al                | Lithium Sulphate      | 20%                     | PEG 1000               |           |       |       |               |
| 1396.1                 | 1.15        | Phosphate-<br>Citrate | 4.2  | .1 .2 .3            | Sodium Chloride       | 10% 10.000<br>15.000    | PEG 3000               |           |       |       |               |
| 1396.1                 | _           | Tris                  | 7    | .1 .15 .2           | Calcium Acetate       | 15-25%                  | PEG 3000               |           |       |       |               |
| 1396.1                 | -1          | Tris                  | 8.5  | .2                  | Magnesium<br>Chloride | 30%                     | PEG 400                |           |       |       |               |

|          | Add MAdditive          |                       |              |                  |                                    | PEG 4000                           |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                | _ |
|----------|------------------------|-----------------------|--------------|------------------|------------------------------------|------------------------------------|--------------------|--------------------|-----------------|--------------------|-------------------|---------------------|-----------------------|-------------------|--------------------------|-----------------|-----------------|----------------|---|
|          | dd MAc                 |                       |              |                  |                                    | 108<br>108                         |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                |   |
|          | Ppt 2                  |                       |              |                  |                                    |                                    |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                |   |
| Figure 6 | Ppt 2 (M)              |                       |              |                  |                                    |                                    |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                |   |
| Fic      | · .                    | PEG 4000              | MPEG 2000    | PEG 4000         | PEG 4000                           | Iso-<br>Propanol                   | PEG 3350           | PEG 3350           | PEG 3350        | 05EE 934           | PEG 3350          | PEG 3350            | PEG 3350              | PEG 3350          | 9350<br>9350             | PEG 3350        | PEG 3350        | 0SEE 534       |   |
|          | Ppt (M)                | 15-30%                | 15-30%       | 158              | 15% 30%                            | 10% 20%                            | 208                | 208 25.000         | 15% 20%         | 20.8               | 20%               | 15% 20% 5%          | 20%                   | 208               | 208                      | 15% 20%         | 20%             | 208            |   |
|          | Salt                   | Magnesium<br>Chloride |              | Sodium Acetate 1 | Ammonium Acetate 1                 | <u></u>                            | Ammonium formate 2 | Calcium Chloride 2 | Lithium acetate | Lithium Chloride 2 | Lithlum nitrate 2 | Magnesium formate 1 | Potassium<br>Chloride | Potassium nitrate | Potassium<br>thiocyanate | Sodium Chloride | Sodium fluoride | Sodium formate |   |
|          | Salt (M) S             | 2.0                   |              | .2               | .2                                 |                                    | .2                 | .1 .2              | 1.2.3           | .2                 | .2                | .05 .1 .2 h         | .2                    | .2                | .2                       | .1 .2 .3        |                 | .2             |   |
|          | HQ.                    | 8.5                   | 7            | 8.5              | 5.6                                | 5.6                                |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                |   |
|          | Buffer                 | Tris                  | Tris         | Tris-HCl         | Tri-Sodium<br>Citrate<br>Dihydrate | Tri-Sodium<br>Citrate<br>Dihydrate |                    |                    |                 |                    |                   |                     |                       |                   |                          |                 |                 |                |   |
|          | Clone Buffer<br>ID (M) | 9.1                   | 13960.05-0.2 | .1               | н.                                 | .1                                 |                    | 16                 |                 |                    | 100               | 6                   | Vo.                   |                   | 6                        | 9               | 9               | 9              |   |
|          | Clone                  | 13961.                | 1396         | 1396.1           | 1396.1                             | 1396                               | 1396               | 1396               | 1396            | 1396               | 1396              | 1396                | 1396                  | 1396              | 1396                     | 1396            | 1396            | 1396           |   |

|       |                        |                |     |                  |                                      |             | Fig              | Figure 6    |       |       |               |
|-------|------------------------|----------------|-----|------------------|--------------------------------------|-------------|------------------|-------------|-------|-------|---------------|
| Clone | Clone Buffer<br>ID (M) | Buffer         | нď  | Salt (M)         | Salt                                 | (M)         |                  | Ppt 2 (M) 1 | Ppt 2 | Add M | Add MAdditive |
| 1396  |                        |                |     | .2               | Sodium<br>thiocyanate                | 208         |                  |             |       |       |               |
| 1397  | .1                     | Cacodylate     | 6.5 | .2               | Magnesium<br>Chloride                | 10%         | PEG 3000         |             |       |       |               |
| 1397  | .1                     | HEPES          | 7.5 | .2               | Calcium Chloride 1                   | 28\$        | PEG 400          |             |       |       |               |
| 1397  | .1                     | HEPES          | 7.5 | .2               | Magnesium<br>Chloride                | 158         | Ethanol          |             |       |       |               |
| 1397  | T.                     | HEPES          | 7.5 | . 2              | Magnesium<br>Chloride                |             | PEG 400          |             |       |       |               |
| 1397  | .05 .1<br>.15          | нерез          | 7.5 | .1.2             | Sodium Chloride                      | 15.000<br>0 | 2-propanol       |             |       |       |               |
| 1397  | ۲.                     | Saaaн          | 7.5 |                  |                                      | 5\$         | Iso-<br>Propanol |             |       | 10    | PEG 4000      |
| 1397  | -1.                    | Imidazole      | ω_  | .2               | Lithium Sulphate                     | 108         | PEG 3000         |             |       |       |               |
| 1397  | 1.                     | Imidazole      | 8   |                  |                                      | 10%         | 2-propanol       |             |       |       |               |
| 1397  | .05 .1                 | K Na Phosphate | 6.2 | .1 .2            |                                      |             | PEG 8000         |             |       |       |               |
| 1397  | ٦                      | K Na Phosphate | 6.2 | .2               | Sodium Chloride                      |             |                  |             |       |       |               |
| 1397  |                        | Tris           | 8.5 | .2               | Magnesium<br>Chloride                | 30%         |                  |             |       |       |               |
| 1397  | 1.1                    | Tris-HC1       | 8.5 | .2               | Sodium Acetate                       | 15%         | PEG 4000         |             |       |       |               |
| 1397  | 1.1                    | Tris-HCl       | 8.5 |                  |                                      | 48          | PEG 8000         |             |       |       |               |
| 1397  |                        |                |     | .2               | Ammonium formate                     | 20%         | PEG 3350         |             | ·     |       |               |
| 1397  |                        |                |     | .1 .15 .2<br>.25 | tate                                 | 15-25%      | PEG 3350         |             |       |       |               |
| 1397  |                        |                |     | .2               | di-Ammonium<br>hydrogen<br>phosphate | 208         |                  |             |       |       |               |
| 1397  |                        |                |     | .2               | Lithium Chloride                     | 20%         | PEG 3350         |             |       |       |               |
|       |                        |                |     |                  |                                      |             |                  |             |       |       | •             |

| 1      |                        | _                |                       | <del></del>                               |                       | ,                    |          |               | r                      | T                        | T                     |                      | <del></del>                                  |                                              |                    |
|--------|------------------------|------------------|-----------------------|-------------------------------------------|-----------------------|----------------------|----------|---------------|------------------------|--------------------------|-----------------------|----------------------|----------------------------------------------|----------------------------------------------|--------------------|
|        | Add MAdditive          |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              |                    |
|        | Add M                  |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              |                    |
|        | Ppt 2                  |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              |                    |
| ure 6  | Æ                      |                  |                       | •                                         |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              |                    |
| Figure | E Total                | PEG 3350         | 05EE 934              | DEG 8000                                  | PEG 3350              | PEG 3350             | PEG 3350 | 9350 BEG 3350 | PEG 3350               | PEG 3350                 | PEG 3350              | Magnesium<br>Formate | Mono-<br>ammonium<br>Dihydrogen<br>Phosphate | Potassium<br>Sodium<br>Tartrate<br>Dihydrate | PEG 400            |
|        | Ppt (M)                | 208 258          |                       | 10%                                       | 20%                   | 15-30%               |          | 808           | 20%                    | 15.000 20%<br>25%        | 20%                   | 0.1 0.2 M            | 0.2                                          |                                              | 20% 25% 30%<br>35% |
|        | Salt                   | Lithium Sulphate | Magnesium<br>sulphate | Mono-potassium<br>Dihydrogen<br>Phosphate | Potassium<br>Chloride | Acetate              | ci.      |               | tri-Lithium<br>citrate | tri-Potassium<br>citrate | tri-Sodium<br>citrate |                      |                                              |                                              |                    |
|        | Salt (M) S             | 2                |                       | . 05<br>T                                 | 2.                    | .1 .15 .2 s<br>.3 .5 | .2       | .2            | .2                     | .1 .2 .25 t              | .2                    |                      |                                              |                                              |                    |
|        | нđ                     |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              | 9.5                |
|        | Buffer                 |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      | ·                                            |                                              | CHES               |
|        | Clone Buffer<br>ID (M) |                  |                       |                                           |                       |                      |          |               |                        |                          |                       |                      |                                              |                                              | .075 .1<br>.15 .2  |
|        | Clone                  | 1397             | 1397                  | 1397                                      | 1397                  | 1397                 | 1397     | 1397          | 1397                   | 1397                     | 1397                  | 1397                 | 1397                                         | 1397                                         | 1424               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               | •                                  |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Fic              | Figure 6 |             |       |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------------------------------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------|-------------|-------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clone | Buffer<br>(M) | Buffer                             | ън    | ( <sub>M</sub> ) | A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp | (M) add                    |                  | 2 (M)    |             | Add M | Add MAdditive |
| Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris   Tris                                                   | 1424  |               | HEPES                              | 7.5   | ٠                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                          | Iso-<br>Propanol |          |             | 100   | PEG 4000      |
| Titl-Sodium Citrate   S.6   Na2HPO4   20%   PEG 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1424  | 0.05-0.2      | Tris                               | 7     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% 15% 20%<br>7.5%        | Ethanol          | ·        |             |       |               |
| 1   Sodium Citrate   5.5   Na2HP04   20%   PEG 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1424  | <b>-</b> -    | Tri-Sodium<br>Citrate<br>Dihydrate | 5.6   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% 20%                    | Iso-<br>Propanol |          |             | 10%   | PEG 4000      |
| 1   Sodium Citrate   5.5   1.15.2   Calcium Acetate   10% 15% 2000   PEG 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1424  |               |                                    |       | .2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                        | PEG 3350         |          |             |       |               |
| 1.1 Tris 7 1.15.2 Calcium Acetate 10% 15% 20% EEG 3000 5.05.1 Tri-Sodium 5.0- 5.6 5.6 E.2 5.8 EEG 3000 F.05.1 F.05.8 FEG 5.6 E.2 1.2.5 Sodium Chloride 2.0% 25.25% FEG 400 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.05.0.2 F.0                                              | 1443  | . 1           |                                    | 5.5   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | PEG 3000         |          |             |       |               |
| 15   Tri-Sodium   5.0-   5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1443  | ٠1            | Tris                               | 7     | .15              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15% 20%                    | PEG 3000         |          |             |       |               |
| HEPES   1.2.25   Sodium Chloride   20% 25 25%   PEG 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1443  | .05           | Tri-Sodium<br>Citrate              | 5.0-  |                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Iso-<br>Propanol |          | PEG<br>4000 |       |               |
| HEPES   1.2.25   Sodium Chloride   20% 25 25   PEG 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               | unyarare                           |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                  |          |             |       | ,             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1444  |               | HEPES                              | 7.5   | .35              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20% 25 25%<br>27.5 30% 35% | PEG 400          |          |             |       |               |
| 1. K Na Phosphate 6.2 Calcium Acetate 10-25\$ PEG 3000 Co.5. 1. Tris 7 Calcium Acetate 10-25\$ PEG 3000 Co.2. 1. Tri-Sodium 5.6 Ethanol Citrate Dihydrate Citrate Citrate Citrate Citrate Dihydrate Co.1-0.25 Calcium Acetate 15-25\$ PEG 3350 Co.1-0.25 Calcium Acetate 15-25\$ PEG 3350 Co.1-0.25 Calcium Acetate 15-25\$ PEG 3350 Co.1-0.25 Calcium Acetate 15-25\$ PEG 3350 Co.1-0.4 Magnesium Acetate 10-25\$ PEG 3350 Co.1-0. | 1444  | .1            | K Na Phosphate                     | 6.2   | .2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 208                        | PEG 1000         |          |             |       |               |
| 1. Tris 7 0.1-0.25 Calcium Acetate 10-25\$ PEG 3000 0.05- Tris 7 1 1.50dium 5.6 Ethanol 10\$ 2.0\$ Ethanol 10\$.  1. Tri-Sodium 5.6 Ethanol 10\$ 2.0\$ Ethanol 10\$.  1. Citrate Dihydrate 2.2 Ammonium Iodide 2.0\$ PEG 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1444  | .1            | K Na Phosphate                     | 6.2   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108                        | DEG 3000         |          |             |       |               |
| 0.05- Tris  1.1 Tri-Sodium 5.6  1.2 Ammonium Iodide 20% PEG 3350  1.2 Ammonium Acetate 15-25% PEG 3350  1.3 Ammonium Acetate 15-25% PEG 3350  1.4 Ammonium 20% PEG 3350  1.5 Ammonium 20% PEG 3350  1.6 Ammonium 20% PEG 3350  1.7 Ammonium 20% PEG 3350  1.8 Ammonium 20% PEG 3350  1.9 Ammonium 20% PEG 3350  1.1 Ammonium 20% PEG 3350  1.2 Di-Ammonium 20% PEG 3350  1.3 Ammonium Acetate 10-25% PEG 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1444  | .1            | Tris                               | 7     | 0.1-0.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-25%                     | 000E 93a         | ·        |             |       |               |
| Tri-Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1444  | 0.05-<br>0.2  | Tris                               | 7     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5-20%                    | Ethanol          |          |             |       |               |
| 1.2   Ammonium Iodide   20%   PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1444  | ۲.            | Tri-Sodium<br>Citrate<br>Dihydrate | . 9.5 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% 20%                    | Iso-<br>Propanol |          |             | 108.  | PEG 4000      |
| 0.1-0.25   Calcium Acetate   15-25\$   PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1444  |               |                                    |       | .2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                        | PEG 3350         |          |             |       |               |
| .2 di-Ammonium 20% PEG hydrogen hydrogen phosphate 20% PEG Tartrate PEG Tartrate PEG PEG PEG PEG PEG PEG PEG PEG PEG PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1444  |               |                                    |       | 0.1-0.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-25%                     | PEG 3350         |          |             |       |               |
| .2 Di-Ammonium 20% PEG Tartrate Tartrate 0.1-0.4 Magnesium Acetate 10-25% PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1444  |               |                                    |       | . 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                        | PEG 3350         |          |             |       |               |
| 0.1-0.4 Magnesium Acetate 10-25% PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1444  |               |                                    |       | .2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                        | PEG 3350         |          |             |       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1444  |               |                                    |       | 0.1-0.4          | Magnesium Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-25%                     | PEG 3350         |          |             |       |               |

| ## Salt (M) Salt   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M)   Pet (M) |    |            |      |          |          |          | Fic                             | Figure 6  |       |       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|------|----------|----------|----------|---------------------------------|-----------|-------|-------|----------|
| Cacodylate   0.05-0.25   Magnesium formate 5-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er | Buffer     | Hơ.  | Salt (M) | ;<br>:   | <b>3</b> |                                 | Ppt 2 (M) | Ppt 2 | Add M | Additive |
| 1.2   Magnesium intrate 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |      | Т        | • •      |          |                                 |           |       |       |          |
| 1.2   Potassium formate 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |      |          |          |          | PEG 3350                        |           |       |       |          |
| 1.2   Potassium nitrate   20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |            |      |          | formate  |          | PEG 3350                        |           |       |       |          |
| 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    |    |            |      |          | nitrate  |          | PEG 3350                        |           |       |       |          |
| 1.2   NaH2PO4   20%     1.2   Sodium formate   20%     1.2   Sodium formate   20%     1.2   Citrate   1.5     2   CHES   1.2   Lithium Sulphate   30%     3   CHES   1.2   Lithium Sulphate   30%     4   5   1.2   Lithium Sulphate   30%     5   1.2   Chioride   10%     6   1.5   1.2   Sodium Chloride   10%     6   1.5   1.2   Calcium Chloride   15%     6   1.5   1.2   Calcium Chloride   15%     7   1.2   Calcium Chloride   14% 28%     8   1.5   1.2   Magnesium     8   1.5   1.2   Magnesium     8   1.5   1.2   Magnesium     9   1.5   1.2   Magnesium     1   1.5   1.5   1.5   1.5   Magnesium     1   1.5   1.5   1.5   Magnesium     8   1.5   1.5   1.5   Magnesium     1   1.5   1.5   1.5   Magnesium     1   1.5   1.5   1.5   Magnesium     1   1.5   1.5   1.5   1.5   1.5   1.5   1.5     5   5   5   5   5   5   5     5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |            |      | [ · .    |          | 15-25\$  | PEG 3350                        |           |       |       |          |
| Sodium formate   20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |      |          |          |          | PEG 3350                        |           |       |       |          |
| 0.1-0.3   tri-Potassium   15-25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |      |          |          |          | PEG 3350                        |           |       |       |          |
| Acetate 4.5 .2 Lithium Sulphate 30% cltrate 0.1-0.2  Acetate 4.5 .2 Lithium Sulphate 30% closedylate 6.5 .2 Magnesium 10% closedylate 9.5 .2 Sodium Chloride 10% cltrate 5.5 .2 Lithium Sulphate 15% cltrate 5.5 .2 Lithium Sulphate 15% cltrate 5.5 .2 CHES 9.5 Calcium Chloride 14% 28% HEPES 7.5 .2 Calcium Chloride 14% 28% Magnesium 15% chloride 15.30% chloride 15.5 .2 Magnesium 15.5 .2 Chloride 15.5 .2 Magnesium 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15.5 .2 Chloride 15 |    |            |      | 0.1-0.3  | assium   | 15-258   | PEG 3350                        |           |       |       |          |
| Acetate 4.5 .2 Lithium Sulphate 30% Cacodylate 6.5 .2 Magnesium 10% ChES 9.5 .2 Sodium Chloride 10% 20-35% 2.2 Calcium Chloride 15% 20-35% 2.2 Lithium Sulphate 15% 2.2 Calcium Chloride 14% 28% HEPES 7.5 .2 Calcium Chloride 14% 28% HEPES 7.5 .2 Magnesium 15% Chloride 15.30% Chloride 15.30% Chloride 15.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |            |      | .2       |          | 20%      | PEG 3350                        |           |       |       |          |
| Acetate 4.5 .2 Lithium Sulphate 30%  Cacodylate 6.5 .2 Magnesium 10%  CHES 9.5 .2 Sodium Chloride 10%  .1 CHES 9.5 .2 Sodium Chloride 10%  CHES 9.5 .2 Lithium Sulphate 15%  CHES 9.5 .2 Lithium Sulphate 15%  HEPES 7.5 .2 Calcium Chloride 14% 28%  HEPES 7.5 .2 Magnesium 15%  HEPES 7.5 .2 Magnesium 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%  Chloride 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |            |      |          |          | -0.2     | Magnesium<br>Formate            |           |       |       |          |
| Acetate         4.5         .2         Lithium Sulphate         30%           Cacodylate         6.5         .2         Magnesium         10%           CHES         9.5         .2         Sodium Chloride         10%           .1         CHES         9.5         .2         Sodium Chloride         10%           .2         CHES         9.5         .2         Lithium Sulphate         15%           ChES         7.5         .2         Lithium Sulphate         15%           HEPES         7.5         .2         Calcium Chloride         14% 28%           HEPES         7.5         .2         Chloride         15%           HEPES         7.5         .2         Chloride         15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |            |      |          |          | ·        | Potassium<br>Sodium<br>Tartrate |           |       |       |          |
| Cacodylate   4.5 .2   Magnesium   10%   PEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |      | ·        |          |          | 2227                            |           |       |       |          |
| Cacodylate         6.5         .2         Magnesium<br>Chloride         10%         PEG           .1         CHES         9.5         .2         Sodium Chloride         10%         PEG           .2         CHES         9.5         .2         Activity         PEG         PEG           .2         CHES         9.5         .2         Lithium Sulphate         15%         Eth           Citrate         5.5         .2         Lithium Sulphate         15%         Eth           HEPES         7.5         .2         Calcium Chloride         14% 28%         PEG           HEPES         7.5         .2         Magnesium         15%         Eth           HEPES         7.5         .2         Chloride         Eth           HEPES         7.5         .2         Chloride         Eth           HEPES         7.5         .2         Chloride         Eth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Acetate    | 4· ۍ | .2       |          | 30%      | PEG BUUU                        |           |       |       |          |
| CHES 9.5 .2 Sodium Chloride 10% .1 CHES 9.5 .2 Column Chloride 10% .2 CHES 9.5 .2 Lithium Sulphate 15% Citrate 5.5 .2 Lithium Sulphate 15% HEPES 7.5 .2 Calcium Chloride 14% 28% HEPES 7.5 .2 Magnesium 15% HEPES 7.5 .2 Magnesium 15% Chloride 15.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Cacodylate | 6.5  | .2       | <b>a</b> | 10%      | PEG 3000                        | •         |       |       |          |
| .1 CHES 9.5 20-35%  CHES 9.5 15%  Citrate 5.5 .2 Lithium Sulphate 15%  HEPES 7.5 .2 Calcium Chloride 14% 28%  HEPES 7.5 .2 Magnesium 15%  Chloride 15%  Chloride 15%  Chloride 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | CHES       | 9.5  | .2       |          | 108      | PEG 8000                        |           |       |       |          |
| 158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158    |    | СНЕЅ       | 9.5  |          |          | 20-35%   | PEG 400                         |           |       |       |          |
| 1.5 .2 Lithium Sulphate   158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | CHES       | 9.5  |          |          | 15%      | Ethanol                         |           |       |       |          |
| 7.5 .2 Calcium Chloride 14% 28% 7.5 .2 Magnesium 15% Chloride 7.5 .2 Magnesium 15-30% Chloride 15-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | Citrate    | 5.5  | .2       |          | 158      | Ethanol                         |           |       |       |          |
| 7.5 .2 Magnesium 15% Chloride 7.5 .2 Magnesium 15-30% Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | HEPES      | 7.5  | .2       |          |          | PEG 400                         |           |       |       |          |
| 7.5 .2 Magnesium 15-30%<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | HEPES      | 7.5  |          |          | 15%      | Ethanol                         |           |       |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | HEPES      | 7.5  | .2       |          | 15-308   | 00F 534                         |           |       |       |          |

|        |                        |                 | _               |                 |                  |                       |            |                 |                       |                   |                 |                       |                       |          |                       |              |            | _        |                | _        |                                    | _ |
|--------|------------------------|-----------------|-----------------|-----------------|------------------|-----------------------|------------|-----------------|-----------------------|-------------------|-----------------|-----------------------|-----------------------|----------|-----------------------|--------------|------------|----------|----------------|----------|------------------------------------|---|
|        | Add MAdditive          |                 |                 |                 |                  |                       |            |                 |                       |                   |                 |                       |                       |          |                       |              |            |          |                |          |                                    |   |
|        | M bb                   |                 |                 |                 |                  |                       |            |                 |                       |                   |                 |                       |                       |          |                       |              |            |          |                |          |                                    |   |
|        | Ppt 2                  |                 |                 |                 |                  |                       |            |                 |                       | 4                 | Pentaned<br>iol |                       |                       |          |                       |              |            |          |                |          | 4<br>Pentaned<br>iol               |   |
| 9      |                        |                 |                 |                 |                  |                       |            |                 |                       |                   |                 |                       |                       |          |                       |              |            |          |                |          |                                    |   |
| Figure | Ppt 2 (M)              |                 |                 |                 |                  |                       |            |                 |                       |                   |                 |                       |                       |          |                       |              |            |          |                |          |                                    |   |
| Fic    | Ppt                    | 2-propanol      | PEG 3000        | 0008 SE         | PEG 3000         | PEG 4000              | 2-propanol | 2-propanol      | 2-propanol            | 2 Methyl·2        |                 | PEG 1000              | PEG 400               | PEG 4000 | PEG 8000              | Ethanol      | 2-propanol | DEG 1000 | PEG 4000       | 0008 Saa | 2 Methyl 2                         |   |
|        | Ppt (M)                | 5-158           | 208             | 10%             |                  | 15%                   | 10%        |                 | 10%                   |                   |                 | 208                   | 308                   | 15-30%   | 10%                   | 7.5-20%      | 10%        | 20%      | 158            | 85       |                                    |   |
|        | Salt                   | Sodium Chloride | Sodium Chloride | Calcium Acetate | Lithium Sulphate | Magnesium<br>Chloride |            | Calcium Acetate | Lithium Sulphate      | Magnesium Acetate |                 | Magnesium<br>Chloride | Magnesium<br>Chloride |          | Magnesium<br>Chloride |              |            |          | Sodium Acetate |          | Ammonium Acetate                   |   |
|        | Salt (M)               | 0.1-0.2         | 0.15-0.2        | .2              | .2               | . 2                   |            | 2.              | .2                    |                   |                 | .2                    | .2                    | .2       | .2                    |              |            |          | .2             |          |                                    |   |
|        | нd                     | 7.5             | 7.5             | 8               | 8_               | . 8                   | 8          | 9               | 4.2                   | 6.5               |                 | 6.5                   | 8.5                   | 8.5      | 7                     | 4            | 8.5        | 8.5      | 8.5            | 8.5      | 5.6                                |   |
|        | Buffer                 | нерез           | HEPES           | Imidazole       | Imidazole        | Imidazole             | Imidazole  | MES             | Phosphate-<br>Citrate | Sodium            | Cacodylate      | Sodium<br>Cacodylate  | Tris                  | Tris     | Tris                  | Tris         | Tris       | Tris     | Tris-HC1       | Tris-HCl | Tri-Sodium<br>Citrate<br>Dihydrate |   |
|        | Clone Buffer<br>ID (M) | .05 .1<br>.15   | .1              | .1              | .1               | ۲.                    | .1         | .1              | :1                    |                   |                 | τ.                    | т.                    | .1       | . 1                   | 14750.05-0.2 | . 1        | τ.       | 1.             | τ.       |                                    |   |
|        | Clone<br>ID            | 1475            | 1475            | 1475            | 1475.1           | 1475                  | 1475       | 1475            | 1475:1                | 1475              |                 | 1475                  | 1475                  | 1475     | 1475                  | 1475         | 1475       | 1475     | 1475           | 1475     | 1475                               |   |

|          |                        |                                    |                         |          |          |          |                          |                      |       |          |            |           |                     | _           |           |                 | ,               | -          | _       | _                |                       |                       | _               |
|----------|------------------------|------------------------------------|-------------------------|----------|----------|----------|--------------------------|----------------------|-------|----------|------------|-----------|---------------------|-------------|-----------|-----------------|-----------------|------------|---------|------------------|-----------------------|-----------------------|-----------------|
|          | Add M Additive         | PEG 4000                           |                         |          |          |          |                          |                      |       |          |            |           |                     |             |           |                 |                 |            |         |                  |                       |                       |                 |
|          | Add M                  | 108                                |                         |          |          |          |                          |                      |       |          |            |           |                     |             |           |                 |                 |            |         |                  |                       |                       |                 |
|          | Ppt 2                  |                                    |                         |          |          |          |                          |                      |       |          |            |           |                     | -           |           |                 |                 |            |         |                  |                       |                       |                 |
| Figure 6 | Œ                      |                                    |                         |          |          | •        |                          |                      |       | •        |            |           |                     |             |           |                 |                 |            |         |                  | ,                     |                       |                 |
| Fig      | Ppt.                   | Iso-<br>Propanol                   | PEG 3350                | PEG 3350 | PEG 3350 | PEG 3330 | PEG 3350                 | Magnesium<br>Formate | Mono- | ammonium | Dihydrogen | Phosphate | Potassium<br>Sodium | Tartrate    | Dihydrate | PEG 8000        | PEG 8000        | PEG 400    | Ethanol | Етћапод          | Iso-<br>Propanol      | PEG 400               | 2-propanol      |
|          | Ppt (M)                | 10-208                             | 208                     | 20%      | 20-25\$  |          |                          | 0.1-0.2 M            | 0.2   |          |            |           | 0.2                 |             |           | 20%             | 108             | 20-358     | 158     | 158              | 15~30\$               | 15-30%                | 5-158           |
|          | Salt                   | 1                                  | Di-Ammonium<br>Tartrate | Na2HPO4  | cetate   |          | tri-Potassium<br>citrate |                      |       |          |            |           |                     |             |           | Sodium Chloride | Sodium Chloride |            |         | Lithium Sulphate | Magnesium<br>Chloride | Magnesium<br>Chloride | Sodium Chloride |
|          | Salt (M)               |                                    | .2                      | .2       | 0.2-0.25 | . 2 .    | 0.1-0.3                  |                      |       |          |            |           |                     |             | •         | .2              | .2              |            |         | .2               | . 2                   | .2                    | .1 .2           |
|          | яđ                     | 5.6                                |                         |          |          |          |                          |                      |       |          |            |           |                     |             |           | 10.5            | 9.5             | 5.5        | 9.5     | 5.5              | 7.5                   | 7.5                   | 7.5             |
|          | Buffer                 | Tri-Sodium<br>Citrate<br>Dihydrate |                         |          |          |          |                          |                      |       |          |            |           |                     |             |           | CAPS            | CHES            | CHES       | CHES    | Citrate          | нерес                 | нерез                 | квек            |
|          | Clone Buffer<br>ID (M) | 1475.1                             | .5                      | 5        | 5        | <u> </u> | 7.5                      | 7.5                  | 75    |          |            |           | 75                  | <del></del> |           | 77.1            | 77.1            | 14770.075- | 77.1.   | 77.1             | 77.1                  | 17.1                  | 14770.05-       |
|          | 13 El                  | 147                                | 1475                    | 1475     | 1475     | 1475     | 1475                     | 1475                 | 1475  |          |            |           | 1475                |             |           | 1477            | 1477            | 14         | 1477    | 1477             | 1477                  | 1477                  | 14              |

|      |              | •                     | ٠   |          | •                                    | -       | Fic              | ای          |                      |       |               |
|------|--------------|-----------------------|-----|----------|--------------------------------------|---------|------------------|-------------|----------------------|-------|---------------|
| euo  | Clone Buffer | Buffer                | Hď  | Salt (M) | Salt                                 | Ppt (M) | Ppt              | Ppt 2 (M) 1 | Ppt 2                | Add M | Add MAdditive |
| a    | (M)          |                       |     |          |                                      | a u     | - 00             |             |                      | 10    | PEG 4000      |
| 1477 | .1           | нерез                 | 7.5 |          | ,                                    |         | ropanol          |             |                      |       |               |
| 1477 | .1           | Imidazole             |     | .2       | Calcium Acetate                      | 108     |                  |             |                      |       |               |
| 1477 |              | Imidazole             |     | .2       | Lithium Sulphate                     |         | PEG 3000         |             |                      |       |               |
|      |              | Imidazole             |     | .2       | Magnesium<br>Chloride                | 15%     |                  |             |                      |       |               |
| 1477 |              | Sodium<br>Cacodylate  | 6.5 |          | Magnesium Acetate                    |         | 2 Methyl 2       | ·           | 4<br>Pentaned<br>iol |       |               |
| 1477 | ı.           | Sodium<br>Cacodylate  | 6.5 | .2       | tri-Sodium                           |         | Iso-<br>Propanol |             |                      |       |               |
| 1477 | 1            | Tris                  | 8.5 | .2       | Magnesium<br>Chloride                | 808     | PEG 400          |             | :                    |       |               |
| 1477 | 1.           | Tris                  | 7   | .2       | Magnesium<br>Chloride                | 108     | 0008 SEG         |             |                      |       |               |
| 1477 | 1.           | Tris                  | 8.5 | .2       | Magnesium<br>Chloride                | 20%     | PEG 8000         |             |                      |       |               |
| 1477 | 14770.05-    | Tris                  | 7   | ,        | Control of Control                   | 7.5–158 | <b>Ethanol</b>   |             |                      |       |               |
| 1477 | 1.           | Tris                  | 8.5 |          |                                      | 10%     | 2-propanol       |             |                      |       |               |
| 1477 | <br>         | Tris                  | 8.5 |          |                                      | 20%     | PEG 1000         |             |                      |       |               |
| 1477 | 7.1          | Tris-HC1              | 8.5 | .2       | Sodium Acetate                       | 158     | PEG 4000         |             |                      |       |               |
| 1477 | 7.1          | Tris-HC1              | 8.5 |          |                                      | 48      | PEG 8000         |             |                      |       |               |
| 1477 |              | Tri-Sodium<br>Citrate | 5.6 |          | Ammonium Acetate                     |         | 2 Methyl 2       |             | 4<br>Pentaned<br>iol |       |               |
| 1477 | 7.1          | Tri-Sodium<br>Citrate | 5.6 |          |                                      | 10-20%  | Iso-<br>Propanol |             |                      | 108   | PEG 4000      |
| 1477 |              |                       |     | .2       | di-Ammonium<br>hydrogen<br>phosphate | 20%     | PEG 3350         |             |                      |       |               |
| 1477 | 7            |                       |     | .2       | Di-Ammonium<br>Tartrate              | 20%     | PEG 3350         |             |                      |       |               |
|      |              |                       |     |          |                                      |         |                  |             |                      |       |               |

| -      |                      |                   |          |                  |                        | , '       | Fig                                          | Figure 6  |            |           |               |
|--------|----------------------|-------------------|----------|------------------|------------------------|-----------|----------------------------------------------|-----------|------------|-----------|---------------|
| lone i | lone Buffer<br>D (M) | Buffer            | нd       | Salt (M)         | Salt                   | (ਸ਼) aga  | Ppt                                          | Ppt 2 (M) | Ppt 2      | Add M     | Add MAdditive |
| 1477   |                      |                   |          | .2               |                        | 20%       | PEG 3350                                     |           |            |           |               |
| 1477   |                      |                   |          | .2               | Sodium<br>thiocyanate  | 20%       | PEG 3350                                     |           |            |           |               |
| 1477   |                      |                   |          |                  |                        | 0.1-0.2 M | Magnesium<br>Formate                         |           |            |           |               |
| 1477   | -                    |                   |          |                  |                        | 0.2       | Mono-<br>ammonium<br>Dihydrogen<br>Phosphate |           |            |           |               |
| 1477   |                      |                   |          |                  |                        | 0.2       | Potassium<br>Sodium<br>Tartrate<br>Dihydrate |           |            |           |               |
| 1595   |                      | í                 |          | .1 .2            | Ammonium Sulphate      | 15-25%    | PEG 3350                                     |           |            |           |               |
| 1595   |                      |                   |          | .1.2             | Calcium Chloride       | 20-25\$   | PEG 3350                                     |           |            |           |               |
| 1595   |                      |                   |          | .2               | Lithium Chloride       | 20%       | PEG 3350                                     |           |            |           |               |
| 1595   | ·                    |                   | ,        | .2               | Magnesium<br>Chloride  | 20%       | PEG 3350                                     |           |            | \ <u></u> |               |
| 1595   |                      |                   |          | .05 .1 .2<br>.25 | Magnesium formate      | 5-15%     | PEG 3350                                     |           |            |           |               |
| 1595   |                      |                   |          | .2               | Magnesium nitrate      |           | PEG 3350                                     |           |            |           |               |
| 1595   |                      |                   |          | .2               | Potassium-formate      | \$02°     | PEG 3350                                     |           |            |           |               |
| 1595   |                      |                   |          | .1 .2 .3         | Sodium Chloride        | 15-208    | PEG 3350                                     |           | ·          |           |               |
| 1595   |                      |                   |          | .2               | Sodium formate         | 20%       | PEG 3350                                     |           |            |           |               |
| 1600   | 0                    |                   |          | 0.2              | Calcium Chloride       | 20%       | PEG 3350                                     |           |            |           |               |
| 1600   | 0.1                  | Phosphate-Citrate | 4.2      | 0.2              | Sodium Chloride        | 10%       | PEG 3000                                     |           |            |           |               |
| 1600   | 0.1                  | Tris              | 8.5      | 0.2              | Magnesium Chloride 20% | 208       | PEG 8000                                     |           |            |           |               |
| _      | 0.1                  | Tris              | 8.0-8.80 | 0                |                        | 15-25%    | PEG 400                                      | 10%       | Glycerol ( | 58        | PEG 8000      |
| 1664   | .1                   | Tris-HC1          | 7        | 0.1-0.2          | Calcium Acetate        | 15-20%    | PEG 3000                                     |           |            |           |               |

## Figure 7

#### Table 18

| MOTA | 1          | L N |   | PRO  | A | 30   | -4.901  | 4.285   | 37.646 | 1.00 | 0.00 | 1 | 4        | N  |
|------|------------|-----|---|------|---|------|---------|---------|--------|------|------|---|----------|----|
| ATOM | 2          | 2 C | A | PRO  | A | 30   | -5.854  | 4.575   | 36.540 | 1.00 | 0.00 | 7 | 4        | С  |
| ATOM |            | 3 C | D | PRO  | A | 30   | -3.551  | 3.964   | 37.069 | 1.00 | 0.00 | 7 | 4        | Ç  |
| ATOM |            | ı c | В | PRO  | A | 30   | -5.130  | 4,227   | 35.243 | 1.00 | 0.00 | 1 | 4        | C  |
| ATOM |            |     |   | PRO  |   | 30   | -3.640  | 4.346   | 35.585 | 1.00 | 0.00 | 1 | 4        | С  |
| ATOM |            | 5 C |   | PRO  |   | 30   | -7.062  | 3.728   | 36.779 | 1.00 | 0.00 |   | 4        | C  |
| ATOM | ì          |     |   | PRO  |   | 30   | -6.914  | 2.566   | 37.155 | 1.00 | 0.00 |   | 4        | 0  |
|      |            |     |   | PRO  |   | 31   | -8.228  | 4.270   | 36.539 | 1.00 | 0.00 |   | Ă        | N  |
| ATOM | Š          |     |   | PRO  |   | 31   | -9.485  | 3.592   | 36.740 | 1.00 | 0.00 |   | Ā        | Ċ  |
| ATOM |            |     |   |      |   | 31   | -8.392  | 5.706   | 36.412 | 1.00 | 0.00 |   | `        | č  |
| ATOM | 10         |     |   | PRO  |   |      |         |         |        |      | 0.00 |   | •        | č  |
| ATOM | 13         |     |   | PRO  |   | 31   | -10.555 | 4.687   | 36.750 | 1.00 |      |   |          | č  |
| ATOM | 12         |     |   | PRO  |   | 31   | -9.879  | 5.892   | 36.076 | 1.00 | 0.00 |   | ١.       |    |
| ATOM | 13         |     |   | PRO  |   | 31   | -9.716  | 2.573   | 35.677 | 1.00 | 0.00 |   | 4        | C  |
| MOTA | 14         |     |   | PRO  |   | 31   | -8.948  | 2.523   | 34.727 | 1.00 | 0.00 |   | 4        | 0  |
| ATOM | 15         | 5 N |   | GLY  |   | 32   | -10.742 | 1.720   | 35.814 | 1.00 | 0.00 |   | ١.       | N  |
| MOTA | 10         | 5 C | A | GLY  | A | 32   | -10.995 | 0.727   | 34.809 | 1.00 | 0.00 |   | 4        | C  |
| ATOM | 11         | 7 C |   | GLY  | A | 32   | -11.908 | -0.262  | 35.443 | 1.00 | 0.00 |   | ł        | С  |
| ATOM | 18         | 3 0 | 1 | GLY  | A | 32   | -12.117 | -0.212  | 36.655 | 1.00 | 0.00 |   | ł.       | 0  |
| ATOM | 19         | и е |   | PRO  | A | 33   | -12.448 | -1.146  | 34.635 | 1.00 | 0.00 | 1 | <b>.</b> | Ŋ  |
| ATOM | 20         | ) C | A | PRO  | A | 33   | -13.365 | -2.176  | 35.053 | 1.00 | 0.00 | 7 | 4        | С  |
| ATOM | 2:         |     |   | PRO  | A | 33   | -11.935 | -1.377  | 33.293 | 1.00 | 0.00 | 1 | 4        | С  |
| ATOM | 22         |     | В | PRO  | A | 33   | -13.756 | -2.907  | 33.770 | 1.00 | 0.00 | 1 | A.       | С  |
| ATOM | 2:         |     |   | PRO  |   | 33   | -12.512 | -2.741  | 32.874 | 1.00 | 0.00 | 1 | A        | С  |
| ATOM | 2          |     |   | PRO  |   | 33   | -12.703 | -3.103  | 36.026 | 1.00 | 0.00 | 1 | A        | С  |
| ATOM | 2          |     |   | PRO  |   | 33   | -11.497 | -3.320  | 35.906 | 1.00 | 0.00 |   | Ā        | 0  |
|      |            |     |   | THR  |   | 34   | -13.471 | -3.607  | 37.015 | 1.00 | 0.00 |   | Ā        | N  |
| ATOM | 2          | 5 N |   |      |   |      | -12.921 | -4.500  | 37.993 | 1.00 | 0.00 |   | Ā        | Ċ  |
| ATOM |            |     |   | THR  |   | . 34 |         |         |        | 1.00 | 0.00 |   | À        | Č  |
| ATOM | - 21       |     |   | THR  |   | 34   | -13.691 | -4.534  | 39.291 |      |      |   | A.       | ŏ  |
| ATOM |            |     |   | THR  |   | 34   | -13.037 | -5.386  | 40.219 | 1.00 | 0.00 |   |          |    |
| ATOM | ;; 30      |     |   | THR  |   | 34   | -15.143 | -4.993  | 39.060 | 1.00 | 0.00 |   | A.       | C  |
| ATOM | <i>}</i> } |     |   | THR  |   | 34   | -12.857 | -5.866  | 37.382 | 1.00 | 0.00 |   | A        | C  |
| ATOM | 32         |     | 1 | THR  | A | 34   | -13.773 | -6.325  | 36.698 | 1.00 | 0.00 |   | A        | 0. |
| ATOM | ં ;3:      | 3 N |   | PRO  | A | 35   | -11.731 | -6.488  | 37.584 | 1.00 | 0.00 |   | A        | N  |
| ATOM | . 34       |     | Α | PRO  | A | 35   | -11.457 | -7.799  | 37.054 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 3          | 5 C | D | PRO  | A | 35   | -10.515 | -5.753  | 37.884 | 1.00 | 0.00 | 7 | A.       | C  |
| ATOM |            | 5 C | В | PRO  | A | 35   | -9.937  | -7.887  | 36.921 | 1.00 | 0.00 | 1 | A.       | С  |
| MOTA | 3.         |     |   | PRO  | A | 35   | -9.415  | -6.823  | 37.899 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 38         |     |   | PRO  |   | 35   | -11.993 | -8.908  | 37.903 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 3          |     |   | PRO  |   | 35   | -12.094 | -8.743  | 39.115 | 1.00 | 0.00 | 1 | A.       | 0  |
| ATOM | 40         |     |   | LEU  |   | 36   |         | -10.065 | 37.279 | 1.00 | 0.00 |   | A.       | N  |
| ATOM | 4:         |     | Α | PEA  |   | 36   |         | -11.252 | 37.979 | 1.00 | 0.00 |   | A        | С  |
| MOTA | 42         |     | В | LEU  |   | 36   |         | -12.261 | 37.097 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 4:         |     | G | LEU  |   | 36   |         | -11.851 | 36.646 | 1.00 | 0.00 |   | Ā        | Č  |
|      | 4          |     |   | LEU  |   | 36   |         | -10.639 | 35.698 | 1.00 | 0.00 |   | A        | Č  |
| MOTA |            |     |   |      |   | 36   |         | -11.687 | 37.845 | 1.00 | 0.00 |   | A.       | Ċ  |
| MOTA | 4:         |     |   | LEU  |   |      |         | -11.884 | 38.437 | 1.00 | 0.00 |   | Ā        | č  |
| ATOM | 41         |     |   | LEU  |   | 36   |         |         | 37.943 | 1.00 | 0.00 |   | Ā        | ·ŏ |
| ATOM | 4          |     |   | LEU  |   | 36   |         | -11.487 |        | 1.00 | 0.00 |   | A        | N  |
| ATOM | 41         |     |   | PRO  |   | 37   |         | -12.818 | 39.375 |      |      |   |          |    |
| MOTA | 4          |     | Α | PRO  |   | 37   |         | -13.411 | 39.958 | 1.00 | 0.00 |   | A        | C  |
| ATOM | 5          |     | D | PRO  |   | 37   |         | -12.908 | 40.281 | 1.00 | 0.00 |   | A.       | C  |
| MOTA | 5          |     | В | PRO  |   | 37   |         | -14.324 | 41.075 | 1.00 | 0.00 |   | A        | C  |
| ATOM | 5          |     | G | PRO  |   | 37   |         | -13.637 | 41.532 | 1.00 | 0.00 |   | A        | c  |
| ATOM | 5          | 3 C | : | PRO  | Α | 37   |         | -14.025 | 39.075 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 5          | 4 0 | • | PRO  | Α | 37   | -8.087  | -13.644 | 39.239 | 1.00 | 0.00 |   | A,       | 0  |
| MOTA | 5          | 5 พ |   | VAL  | A | 38   | -9.561  | -15.016 | 38.218 | 1.00 | 0.00 |   | Ą        | N  |
| MOTA | 5          | 6 C | Α | VAL  | A | 38   | -8.583  | ~15.529 | 37.290 | 1.00 | 0.00 | i | A        | С  |
| MOTA | 5          |     | В | VAL  |   | 38   | -8.636  | -17.032 | 37.156 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 5          |     |   | VAL  |   | 38   | -8.145  | -17.627 | 38.484 | 1.00 | 0.00 |   | A        | С  |
| ATOM | 5          |     |   | VAL  |   | 38   |         | ~17.495 | 36.811 | 1.00 | 0.00 |   | A.       | С  |
| ATOM | 6          |     |   | VAL  |   | 38   |         | -14.898 | 35.921 | 1.00 | 0.00 |   | A.       | C  |
| ATOM | 6:         |     |   | VAL  |   | 38   |         | -14.611 | 35.314 | 1.00 | 0.00 |   | A        | 0  |
| ATOM | 6:         |     |   | ILE  |   | 39   |         | -14.703 | 35.416 | 1.00 | 0.00 |   | A        | N  |
| ATOM |            |     |   | ILE. |   | 39   |         | -14.326 | 34.075 | 1.00 | 0.00 |   | A.       | c  |
|      | 6:         |     | A |      |   |      |         | -14.723 | 33.663 | 1.00 | 0.00 |   | A.       | č  |
| ATOM | 6          |     | В | ILE  |   | 39   |         | -16.259 | 33.748 | 1.00 | 0.00 |   | n.<br>A  | c  |
| ATOM | 6:         |     |   | ILE  |   | 39   |         |         |        |      |      |   | A.       | c  |
| MOTA | 6          |     |   | ILE  |   | 39   |         | -14.024 | 34.444 | 1.00 | 0.00 |   |          | c  |
| ATOM | 6          |     |   | ILE  |   | 39   |         | -12.667 | 33.870 | 1.00 | 0.00 |   | A.       |    |
| ATOM | 61         |     |   | ILE  |   | 39   |         | -12.913 | 33.720 | 1.00 | 0.00 |   | A.       | C  |
| ATOM | 6          | 9 0 | ) | ILE  | Α | 39   |         | -12.582 | 32.535 | 1.00 | 0.00 |   | A.       | 0  |
| MOTA | 70         | ) N | i | GLY  | Α | 40   |         | -12.014 | 34.710 | 1.00 | 0.00 |   | Α.,      | N  |
| ATOM | 7:         |     | Α | GLY  |   | 40   | -9.319  | -10.657 | 34.424 | 1.00 | 0.00 |   | A        | С  |
|      |            |     |   |      |   |      |         |         |        |      |      |   |          |    |

| ATOM | 72   | С   | GLY  | Α  | 40   | -10.499  | -9.933  | 33.849 | 1.00 | 0.00 | A | С  |
|------|------|-----|------|----|------|----------|---------|--------|------|------|---|----|
| ATOM | 73   | ō   | GLY  |    | 40   |          | -10.065 | 34.352 | 1.00 | 0.00 | A | 0  |
|      | 74   | N   | ASN  |    | 41   | -10.277  | -9.134  | 32.779 | 1.00 | 0.00 | A | N  |
| MOTA |      |     |      |    |      |          |         | 32.190 |      | 0.00 | A | Ċ  |
| ATOM | 75   | CA  | ASN  |    | 41   | -11.376  | -8.427  |        | 1.00 |      |   |    |
| ATOM | 76   | CB  | ASN  |    | 41   | -11.052  | -6.965  | 31.818 | 1.00 | 0.00 | A | C  |
| MOTA | 77   | CG  | ASN  | A  | 41   | -10.938  | -6.106  | 33.067 | 1.00 | 0.00 | A | C  |
| ATOM | 78   | OD1 | ASN  | Α  | 41   | -10.034  | -5.284  | 33.188 | 1.00 | 0.00 | A | 0  |
| ATOM | 79   |     | ASN  |    | 41   | -11.891  | -6.274  | 34.018 | 1.00 | 0.00 | A | N  |
| ATOM | 80   | C   | ASN  |    | 41   | -11.724  | -9.061  | 30.883 | 1.00 | 0.00 | A | С  |
|      |      |     |      |    |      |          |         | 29.995 | 1.00 | 0.00 | A | ŏ  |
| ATOM | 81   | 0   | ASN  |    | 41   | -12.203  | -8.361  |        |      |      |   |    |
| MOTA | 82   | N   | ILE  | A  | 42   |          | -10.396 | 30.762 | 1.00 | 0.00 | A | N  |
| MOTA | 83   | CA  | ILE  | A  | 42   | -11.816  | -11.153 | 29.564 | 1.00 | 0.00 | A |    |
| MOTA | 84   | CB  | ILE  | A  | 42   | -11.354  | -12.595 | 29.667 | 1.00 | 0.00 | A | C  |
| ATOM | 85   |     | ILE  |    | 42   | -12,169  | -13.365 | 30.720 | 1.00 | 0.00 | A | C  |
| ATOM | 86   |     | ILE  |    | 42   |          | -13.272 | 28.290 | 1.00 | 0.00 | A | С  |
|      |      |     |      |    |      |          | -14.611 | 28.305 | 1.00 | 0.00 | A | č  |
| ATOM | . 87 |     | ILE  |    | 42   |          |         |        |      |      |   |    |
| MOTA | 88   | C   | ILE  |    | 42   |          | -11.074 | 29.223 | 1.00 | 0.00 | A | C  |
| ATOM | 89   | 0   | ILE  | A  | 42   |          | -11.101 | 28.051 | 1.00 | 0.00 | A | 0  |
| ATOM | 90   | N   | LEU  | A  | 43   | -14.131  | -10.983 | 30.260 | 1.00 | 0.00 | A | N  |
| ATOM | 91   | CA  | LEU  | A  | 43   | -15.552  | -10.890 | 30.119 | 1.00 | 0.00 | A | С  |
| ATOM | 92   | CB  | LEU  |    | 43   |          | -10.912 | 31.498 | 1.00 | 0.00 | A | С  |
|      |      |     |      |    | 43   |          | -10.916 | 31.468 | 1.00 | 0.00 | A | c  |
| ATOM | 93   | CG  | LEU  |    |      |          |         |        |      |      |   | Č. |
| ATOM | 94   |     | LEU  |    | 43   |          | -10.779 | 32.889 | 1.00 | 0.00 | A |    |
| MOTA | 95   | CD1 | LEU  | A  | 43   |          | -12.158 | 30.737 | 1.00 | 0.00 | A | С  |
| ATOM | 96   | С   | LEU  | A  | 43   | -15.889  | -9.598  | 29.425 | 1.00 | 0.00 | A | С  |
| ATOM | 97   | 0   | LEU  | A. | 43   | -16.779  | -9.564  | 28.577 | 1.00 | 0.00 | A | 0  |
| ATOM | 98   | N   | GLN  |    | 44   | -15.219  | -8.488  | 29.803 | 1.00 | 0.00 | A | N  |
|      |      |     |      |    |      |          | -7,225  | 29.173 | 1.00 | 0.00 | A | Ċ  |
| ATOM | 99   | CA  | GLN  |    | 44   | -15.497  |         |        |      |      |   |    |
| MOTA | 100  | CB  | GLN  |    | 44   | -14.894  | -6.053  | 29.965 | 1.00 | 0.00 | A | C  |
| ATOM | 101  | CG  | GLN  | А٠ | 44 ; | -15.476  | -5.898  | 31.370 | 1.00 | 0.00 | A |    |
| ATOM | 102  | CD  | GLN  | A. | 44   | -16.838  | -5.234  | 31.239 | 1.00 | 0.00 | A | С  |
| ATOM | 103  | OE1 | GLN  | Α  | 44   | -16.931  | -4.024  | 31.036 | 1.00 | 0.00 | A | 0  |
| ATOM | 104  | NE2 | GT-N | Δ, | 44 - | -17:925  | -6.043  | 31.355 | 1.00 | 0.00 | A | N  |
|      |      |     | GLN  |    | 44   |          | -7.127  | 27.785 | 1.00 | 0.00 | A | С  |
| ATOM | 105  | C   |      |    |      |          |         |        |      | 0.00 | A |    |
| ATOM | 106  | 0   | GLN  |    |      | -15.662  | -7.009  | 26.807 | 1.00 |      |   |    |
| ATOM | 107  | N   | ILE  | A: | 45 ' | -13.589  | -7.264  | 27.681 | 1.00 | 0.00 | A |    |
| MOTA | 108  | CA  | ILE  | Α  | 45 · | - 12.808 | -7.019  | 26.492 | 1.00 | 0.00 | A | С  |
| ATOM | 109  | CB  | ILE  | A  | 45   | -11.349  | -7.235  | 26.737 | 1.00 | 0.00 | A | С  |
| ATOM | 110  |     | ILE  | i  | 45   | -10.614  | -6.792  | 25.472 | 1.00 | 0.00 | A | ¢  |
|      |      |     | ILE  |    | 45   | -10.863  | -6.484  | 27.972 | 1.00 | 0.00 | A | С  |
| ATOM | 111  |     |      |    |      |          |         |        | 1.00 | 0.00 | A |    |
| ATOM | 112  |     | ILE  |    | 45   | -9.480   | -6.952  | 28.424 |      |      |   |    |
| ATOM | 113  | С   | ILE  | A  | 45   | -13.135  | -8.002  | 25.422 | 1.00 | 0.00 | A | C  |
| MOTA | 114  | 0   | ILE  | Α  | 45   | -13.303  | -7.622  | 24.266 | 1.00 | 0.00 | A | 0  |
| ATOM | 115  | N   | ASP  | Α  | 46   | -13.207  | -9.291  | 25.811 | 1.00 | 0.00 | A | N  |
| ATOM | 116  | CA  | ASP  |    | 46   | -13.447  | -10.422 | 24.956 | 1.00 | 0.00 | A | С  |
| ATOM | 117  | СВ  | ASP  |    | 46   |          | -10.319 | 23.955 | 1.00 | 0.00 | A | С  |
|      |      |     |      |    | _    |          |         | 24.755 | 1.00 | 0.00 | A | č  |
| MOTA | 118  | CG  | ASP  |    | 46   |          | -10.318 |        |      |      |   |    |
| MOTA | 119  | OD1 | ASP  | A  | 46   |          | -10.574 | 25.986 | 1.00 | 0.00 | A | 0  |
| ATOM | 120  | OD2 | ASP  | A  | 46   | -16.988  | -10.055 | 24.148 | 1.00 | 0.00 | A | 0  |
| ATOM | 121  | С   | ASP  | Α  | 46   | -12.193  | -10.821 | 24.230 | 1.00 | 0.00 | A | С  |
| ATOM | 122  | 0   | ASP  |    | 46   | -11.087  | -10.372 | 24.534 | 1.00 | 0.00 | A | 0  |
| ATOM | 123  | N   | ILE  |    | 47   |          | -11.886 | 23.427 | 1.00 | 0.00 | A | N  |
|      |      |     | ILE  |    | 47   |          | -12.553 | 22.527 | 1.00 | 0.00 | A | С  |
| MOTA | 124  | CA  |      |    |      |          |         | 22.460 | 1.00 | 0.00 | A | č  |
| ATOM | 125  | CB  | ILE  |    | 47   |          | -14.033 |        |      |      |   |    |
| ATOM | 126  | CG2 | ILE  | Α  | 47   | -13.254  |         | 21.946 | 1.00 | 0.00 | A |    |
| ATOM | 127  | CG1 | ILE  | A  | 47   |          | -14.921 | 21.694 | 1.00 | 0.00 | A |    |
| ATOM | 128  | CD1 | ILE  | Α  | 47   | -10.987  | -14.998 | 20.174 | 1.00 | 0.00 | A |    |
| ATOM | 129  | С   | ILE  |    | 47   | -11.368  | -11.924 | 21.158 | 1.00 | 0.00 | A | С  |
| ATOM | 130  | ō   | ILE  |    | 47   |          | -11.998 | 20.506 | 1.00 | 0.00 | A |    |
|      |      |     |      |    |      |          | -11.369 | 20.684 | 1.00 | 0.00 | A |    |
| ATOM | 131  | N   | LYS  |    | 48   |          | -10.930 |        | 1.00 | 0.00 | A |    |
| ATOM | 132  | CA  | LYS  |    | 48   |          | -       | 19.342 |      |      |   |    |
| ATOM | 133  | CB  | LYS  |    | 48   |          | -10.725 | 19.181 | 1.00 | 0.00 | A |    |
| ATOM | 134  | CG  | LYS  | Α  | 48   | -15.071  | -12.003 | 19.547 | 1.00 | 0.00 | A | С  |
| ATOM | 135  | CD  | LY\$ |    | 48   | -16.520  | -11.784 | 19.972 | 1.00 | 0.00 | A |    |
| ATOM | 136  | CE  | LYS  |    | 48   |          | -13.012 | 20.662 | 1.00 | 0.00 | A |    |
| ATOM | 137  | NZ  | LYS  |    | 48   |          | -12.617 | 21.500 | 1.00 | 0.00 | A |    |
|      |      |     |      |    |      |          |         | 19.000 | 1.00 | 0.00 | A |    |
| ATOM | 138  | C   | LYS  |    | 48   | -12.123  | -9.644  |        |      |      |   |    |
| ATOM | 139  | 0   | LYS  |    | 48   | -10.894  | -9.565  | 18.968 | 1.00 | 0.00 | A |    |
| ATOM | 140  | N   | ASP  | A  | 49   | -12.934  | -8.623  | 18.633 | 1.00 | 0.00 | A | N  |
| MOTA | 141  | CA  | ASP  | Α  | 49   | -12.414  | -7.335  | 18.284 | 1.00 | 0.00 | A | С  |
| ATOM | 142  | СВ  | ASP  |    | 49   | -13.407  | -6.497  | 17.452 | 1.00 | 0.00 | A | С  |
| ATOM | 143  | CG  | ASP  |    | 49   | -12.744  | -5.227  | 16.921 | 1.00 | 0.00 | A | С  |
| ATOM |      |     |      |    | 49   | -11.498  | -5.085  | 17.049 | 1.00 | 0.00 | A | 0  |
|      | 144  |     | ASP  |    |      |          |         | 16.361 | 1.00 | 0.00 | A | ŏ  |
| ATOM | 145  |     | ASP  |    | 49   | -13.489  | -4.380  |        |      |      |   | č  |
| ATOM | 146  | С   | ASP  | Α  | 49   | -12.207  | -6.631  | 19.579 | 1.00 | 0.00 | A | C  |

| ATOM | 147 | 0   | ASP | A  | 49 | • | -13.068 | -5.879 | 20.032              | 1.00  | 0.00  |   | A   | 0 |
|------|-----|-----|-----|----|----|---|---------|--------|---------------------|-------|-------|---|-----|---|
| MOTA | 148 | N   | VAL | Δ  | 50 |   | -11.012 | -6.849 | 20.167              | 1.00  | 0.00  |   | A   | N |
|      |     |     |     |    | 50 |   | -10.564 | -6.323 | 21.429              | 1.00  | 0.00  |   | A   | С |
| MOTA | 149 | CA  | VAL |    |    |   |         |        |                     |       |       |   |     |   |
| ATOM | 150 | CB  | VAL | A  | 50 |   | -9.169  | -6.796 | 21.745              | 1.00  | 0.00  |   | A   | С |
| ATOM | 151 | CG1 | VAL | A  | 50 |   | -8.621  | -6.060 | 22.978              | 1.00  | 0.00  |   | A   | С |
| ATOM | 152 | CG2 | VAL | Δ  | 50 |   | -9.215  | -8.325 | 21.901              | 1.00  | 0.00  |   | A   | C |
|      |     |     |     |    |    |   |         | -4.832 | 21.305              | 1.00  | 0.00. |   | A   | C |
| ATOM | 153 | С   | VAL |    | 50 |   | -10.527 |        |                     |       |       |   |     |   |
| ATOM | 154 | 0   | VAL | A  | 50 |   | -10.856 | -4.120 | 22.250              | 1.00  | 0.00  |   | A   | 0 |
| ATOM | 155 | N   | SER | A  | 51 |   | -10.140 | -4.341 | 20.110              | 1.00  | 0.00  |   | Α   | N |
|      |     |     |     |    |    |   | -10.013 | -2.945 | 19.819              | 1.00  | 0.00  |   | Α   | С |
| MOTA | 156 | CA  | SER |    | 51 |   |         |        |                     |       |       |   |     |   |
| ATOM | 157 | CB  | SER | A  | 51 |   | -9.484  | -2.684 | 18.399              | 1.00  | 0.00  |   | A   | C |
| ATOM | 158 | OG  | SER | Α  | 51 |   | -9.377  | -1.286 | 18.176              | 1.00  | 0.00  |   | Α   | 0 |
| ATOM | 159 | C   | SER |    | 51 |   | -11.329 | -2.228 | 19.935              | 1.00  | 0.00  | • | A   | С |
|      |     |     |     |    |    |   | -11.374 | -1.090 | 20.395              | 1.00  | 0.00  |   | A   | Ö |
| MOTA | 160 | 0   | SER |    | 51 |   |         |        |                     |       |       |   |     |   |
| ATOM | 161 | N   | LYS | A  | 52 |   | -12.432 | -2.865 | 19.523              | 1.00  | 0.00  |   | A   | N |
| ATOM | 162 | CA  | LYS | A  | 52 |   | -13.720 | -2,235 | 19.558              | 1.00  | 0.00  |   | A   | С |
| MOTA | 163 | CB  | LYS | A  | 52 |   | -14.791 | -2.975 | 18.741              | 1.00  | 0.00  |   | Α   | Ç |
|      |     |     |     |    | 52 |   | -15.927 | -2.051 | 18.305              | 1.00  | 0.00  |   | A   | С |
| MOTA | 164 | CG  | LYS |    |    |   |         |        |                     |       |       |   |     |   |
| ATOM | 165 | CD  | LYS | A  | 52 |   | -15.456 | -0.976 | 17.318              | 1.00  | 0.00  |   | A   | С |
| MOTA | 166 | CE  | LYS | Α  | 52 |   | -16.570 | -0.068 | 16.789              | 1.00  | 0.00  |   | A   | С |
| ATOM | 167 | NZ  | LYS |    | 52 |   | -16.005 | 0.922  | 15.841              | 1.00  | 0.00  |   | A   | N |
|      |     |     |     |    |    |   |         | -2.095 | 20.967              | 1.00  | 0.00  |   | A   | С |
| ATOM | 168 | С   | LYS |    | 52 |   | -14.200 |        |                     |       |       |   |     |   |
| ATOM | 169 | 0   | LYS | A  | 52 |   | -15.107 | -1.321 | 21.240              | 1.00  | 0.00  |   | A   | 0 |
| ATOM | 170 | N   | SER | A  | 53 |   | -13.692 | -2.936 | 21.877              | 1.00  | 0.00  |   | A   | N |
| ATOM | 171 | CA  | SER |    | 53 |   | -14.077 | -2.912 | 23.262              | 1.00  | 0.00  |   | Α   | C |
|      |     |     |     |    |    |   |         |        | 23.999              | 1.00  | 0.00  |   | A   | C |
| MOTA | 172 | CB  | SER |    | 53 |   | -13.649 | -4.187 |                     |       |       |   |     |   |
| ATOM | 173 | OG  | SER | A  | 53 |   | -14.047 | -4.113 | 25.356              | 1.00  | 0,00  |   | A   | 0 |
| ATOM | 174 | C   | SER | A  | 53 |   | -13.448 | -1.762 | 23.979              | 1.00  | 0.00  | • | Α   | Ç |
| ATOM | 175 | ō   | SER |    | 53 |   | -14.053 | -1.185 | 24.880              | 1.00. | 0.00  |   | A   | 0 |
|      |     |     |     |    |    |   |         |        | ,                   | 1.00  | 0.00  |   | A   | N |
| ATOM | 176 | N   | LEU | A  | 54 |   | -12.197 | -1.429 | 23.603              |       | 2 .   | • |     |   |
| ATOM | 177 | CA  | LEU | Α  | 54 |   | -11.429 | -0.395 | 24.233              | 1.00  | 0.00  |   | A   | С |
| ATOM | 178 | CB  | LEU | A  | 54 |   | -9.967  | -0.335 | 23.748              | 1.00  | .0.00 |   | A   | С |
|      |     |     |     |    |    |   | -8.991  | -1.282 | 24.481              | 1.00  | 0.00  |   | A   | С |
| MOTA | 179 | CG  | LEU |    | 54 |   |         |        |                     |       |       |   |     | č |
| ATOM | 180 | CD2 | LEU | Α  | 54 |   | -9.508  | -2.719 | 24.592              |       |       |   | , A |   |
| ATOM | 181 | CD1 | LEU | Α  | 54 |   | -8.656  | -0.743 | 25.873              | 1.00  | 0.00  |   | A   | C |
| ATOM | 182 | C   | LEU |    | 54 |   | -12.056 | 0.940  | 24.008              | 1:00  | 0.00  |   | Α   | С |
|      |     |     |     |    |    |   |         |        | 24.882              | 1:00  | •     |   | A   | 0 |
| ATOM | 183 | 0   | LEU |    | 54 |   | -11.980 |        |                     | ,     | •     | • |     |   |
| ATOM | 184 | N   | THR | A  | 55 |   | -12.652 | 1.158  |                     | 1.00  | 0.00  |   | A   | N |
| ATOM | 185 | CA  | THR | A  | 55 |   | -13.305 | 2.402  | 22.511              | 1.00  | 0.00  |   | A   | С |
| ATOM | 186 | СВ  | THR |    | 55 |   | -13.783 | 2.481  | 21.089              | 1.00  | 0.00  |   | A   | С |
|      |     |     |     |    |    |   |         |        |                     |       | 0.00  |   | A   | 0 |
| ATOM | 187 |     | THR |    | 55 |   | -12.684 | 2.354  | 20.200              | 1.00  |       |   |     |   |
| ATOM | 188 | CG2 | THR | Α  | 55 |   | -14.489 | 3.830  | 20.870              | 1.00  | 0.00  |   | A   | С |
| ATOM | 189 | C   | THR | A  | 55 |   | -14.499 | 2.593  | 23.403              | 1.00  | 0.00  |   | A   | С |
| ATOM | 190 | ŏ   | THR |    | 55 |   | -14.723 | 3.692  | 23.909              | 1.00  | 0.00  |   | A   | 0 |
|      |     |     |     |    |    | • |         |        |                     | 1.00  | 0.00  |   | A   | N |
| MOTA | 191 | N   | ASN |    | 56 |   | -15.280 | 1.515  | 23.624              |       |       |   |     |   |
| ATOM | 192 | CA  | ASN | A  | 56 |   | -16.460 | 1.555  | 24.446              | 1.00  | 0.00  |   | A·  | C |
| ATOM | 193 | CB  | ASN | A  | 56 |   | -17.250 | 0.236  | 24.431              | 1.00  | 0.00  |   | Α   | C |
| ATOM | 194 | CG  | ASN |    | 56 |   | -17.925 | 0.101  | 23.072              | 1.00  | 0.00  |   | A   | Ċ |
|      |     |     |     |    |    |   | -17.956 |        |                     | 1.00  | 0.00  |   | A   | Ó |
| MOTA | 195 |     | ASN |    | 56 |   |         | 1.038  | 22,277              |       |       |   |     |   |
| MOTA | 196 | ND2 | ASN | A  | 56 |   | -18.501 | -1.101 | 22.803              | 1.00  | 0.00  |   | A   | N |
| ATOM | 197 | С   | ASN | Α  | 56 |   | -16.070 | 1.819  | 25.867              | 1.00  | 0.00  |   | Α   | С |
| MOTA | 198 | ō   | ASN |    | 56 |   | -16.704 | 2.614  | 26.559              | 1.00  | 0.00  |   | A   | 0 |
|      |     |     |     |    |    |   |         |        |                     | 1.00  | 0.00  |   | A   | N |
| MOTA | 199 | N   | LEU |    | 57 |   | -14.977 | 1.168  | 26.306              |       |       |   |     | Č |
| MOTA | 200 | CA  | LEU | A  | 57 |   | -14.454 | 1.248  | 27.634              | 1.00  | 0.00  |   | A   |   |
| ATOM | 201 | CB  | LEU | A  | 57 |   | -13.271 | 0.295  | 27.869              | 1.00  | 0.00  |   | A   | С |
| ATOM | 202 | CG  | LEU |    | 57 |   | -13.689 | -1.190 | 27.907              | 1.00  | 0.00  |   | A   | C |
|      |     |     |     |    |    |   |         | -1.416 | 28.940              | 1.00  | 0.00  |   | A   | С |
| ATOM | 203 |     | LEU |    | 57 |   | -14.806 |        |                     |       |       |   |     |   |
| ATOM | 204 | CD1 | LEU | A  | 57 |   | -12.482 | -2.112 | 28.147              | 1.00  | 0.00  |   | A   | C |
| ATOM | 205 | С   | LEU | Α  | 57 |   | -13.989 | 2.640  | 27. <del>9</del> 03 | 1.00  | 0.00  |   | A   | С |
| ATOM | 206 | 0   | LEU |    | 57 |   | -14.155 | 3.125  | 29.014              | 1.00  | 0.00  |   | A   | 0 |
|      |     |     |     |    | 58 |   | -13.424 | 3.334  | 26.892              | 1.00  | 0.00  |   | Α   | N |
| ATOM | 207 | N   | SER |    |    |   |         |        |                     |       |       |   |     |   |
| MOTA | 208 | CA  | SER | A  | 58 |   | -12.902 | 4.658  | 27.104              | 1.00  | 0.00  |   | A   | C |
| ATOM | 209 | CB  | SER | A  | 58 |   | -12.038 | 5.194  | 25.951              | 1.00  | 0.00  |   | Α   | С |
| ATOM | 210 | OG  | SER |    | 58 |   | -12.860 | 5.631  | 24.881              | 1.00  | 0.00  |   | Α   | 0 |
|      |     |     |     |    |    |   |         | 5.646  | 27.315              | 1.00  | 0.00  |   | A   | Ċ |
| MOTA | 211 | C   | SER |    | 58 |   | -14.008 |        |                     |       |       |   |     |   |
| ATOM | 212 | 0   | SER | A  | 58 |   | -13.755 | 6.726  | 27.846              | 1.00  | 0.00  |   | A   | 0 |
| ATOM | 213 | N   | LYS | A  | 59 |   | -15.241 | 5.313  | 26.873              | 1.00  | 0.00  |   | Α   | N |
| ATOM | 214 | CA  | LYS |    | 59 |   | -16.381 | 6.171  | 27.034              | 1.00  | 0.00  |   | A   | С |
|      |     |     |     |    |    |   |         |        |                     | 1.00  | 0.00  |   | A   | č |
| MOTA | 215 | CB  | LYS |    | 59 |   | -17.643 | 5.599  | 26.372              |       |       |   |     |   |
| ATOM | 216 | CG  | LYS | A  | 59 |   | -18.754 | 6.636  | 26.207              | 1.00  | 0.00  |   | A   | C |
| MOTA | 217 | CD  | LYS |    | 59 |   | -18.403 | 7.722  | 25.188              | 1.00  | 0.00  |   | A   | С |
|      |     |     |     |    | 59 |   | -18.824 | 7.384  | 23.756              | 1.00  | 0.00  |   | Α   | С |
| ATOM | 218 | CE  | LYS |    |    |   |         |        |                     |       | 0.00  |   | A   | N |
| ATOM | 219 | NZ  | LYS |    | 59 |   | -18.002 | 6.274  | 23.228              | 1.00  |       |   |     |   |
| ATOM | 220 | C   | LYS | A  | 59 |   | -16.666 | 6.323  | 28.501              | 1.00  | 0.00  |   | A   | С |
| ATOM | 221 | ō   | LYS |    | 59 |   | -16.991 | 7.416  | 28.962              | 1.00  | 0.00  |   | A   | 0 |
| 017  |     | •   | 413 | •• |    |   |         |        |                     |       |       |   |     |   |
|      |     |     |     |    |    |   |         |        |                     |       |       |   |     |   |

Figure 7

| MOTA         | 222        | N        | IL         | e a | 60       | -16.625            | 5.204            | 29.251           | 1.00 | 0.00         | A          | N      |
|--------------|------------|----------|------------|-----|----------|--------------------|------------------|------------------|------|--------------|------------|--------|
| MOTA         | 223        | CA       | ĪЫ         | e a | 60       | -16.809            | 5.274            | 30.674           | 1.00 | 0.00         | A          |        |
| ATOM         | 224        |          |            | E A |          | -17.464            | 4.043            |                  | 1.00 |              | A          |        |
| ATOM         | 225        |          | 2 IL       |     |          | -16.654            | 2.804            | 30.842           | 1.00 |              | · A        |        |
| MOTA         | 226<br>227 |          | LIL        |     |          | -17.721            | 4.214            | 32.747           | 1.00 | 0.00         | A          |        |
| ATOM<br>ATOM | 228        |          | ILI<br>ILI |     |          | -18.681<br>-15.576 | 3.173<br>5.645   | 33.324<br>31.471 | 1.00 | 0.00         | A<br>A     |        |
| ATOM         | 229        |          | IL         |     |          | -15.631            | 6.476            | 32.374           | 1.00 | 0.00         | A          |        |
| ATOM         | 230        |          | TY         |     |          | -14.431            | 4.997            | 31.194           | 1.00 | 0.00         | A          |        |
| ATOM         | 231        |          | TY         |     |          | -13.210            | 5.137            | 31.949           | 1.00 | 0.00         | A          |        |
| ATOM         | 232        |          | TY         | RA  |          | -12.307            | 3.902            | 31.866           | 1.00 | 0.00         | A          |        |
| ATOM         | 233        |          | TY         |     |          | -13.149            | 2.855            | 32.504           | 1.00 | 0.00         | A          |        |
| MOTA         | 234        |          | TY         |     |          | -13.410            | 2.904            | 33.854           | 1.00 | 0.00         | A          | C      |
| ATOM<br>ATOM | 235<br>236 |          | TYE<br>TYE |     |          | -13.671            | 1.827            | 31.759           | 1.00 | 0.00         | A          |        |
| ATOM         | 237        |          | TYF        |     | 61       | -14.201<br>-14.462 | 1.951<br>0.871   | 34.449<br>32.348 | 1.00 | 0.00         | A<br>A     | C      |
| ATOM         | 238        | CZ       | TYF        |     | 61       | -14.730            | 0.932            | 33.693           | 1.00 | 0.00         | A          | c      |
| ATOM         | 239        | OH       | TYF        |     | 61       | -15.544            | -0.047           | 34.298           | 1.00 | 0.00         | A          | ŏ      |
| ATOM         | 240        | С        | TYF        |     | 61       | -12.424            | 6.382            | 31.678           | 1.00 | 0.00         | A          | C      |
| ATOM         | 241        | 0        | TYF        |     | 61       | -11.688            | 6.848            | 32.547           | 1.00 | 0.00         | A          | 0      |
| ATOM         | 242        | N        | GLY        |     | 62       | -12.488            | 6.916            | 30.449           | 1.00 | 0.00         | A          | N      |
| atom<br>atom | 243<br>244 | CA<br>C  | GLY        |     | 62       | -11.700            | 8.073            | 30.152           | 1.00 | 0.00         | A          | C      |
| ATOM         | 245        | Ö        | GLY<br>GLY |     | 62<br>62 | -10.620<br>-10.564 | 7.652<br>6.512   | 29.208<br>28.750 | 1.00 | 0.00         | A          | C      |
| MOTA         | 246        | N.       | PRC        |     | 63       | -9.801             | 8.607            | 28.874           | 1.00 | 0.00         | A<br>A     | О<br>И |
| ATOM         | 247        | CA       | PRC        |     | 63       | -8.710             | 8.433            | 27.958           | 1.00 | 0.00         | A          | C      |
| ATOM         | 248        | CD       | PRC        |     | 63       | -10.121            | 10.001           | 29.114           | 1.00 | 0.00         | A.         | č      |
| MOTA         | 249        | CB       | PRC        | A   | 63       | -8.284             | 9.845            | 27.568           | 1.00 | 0.00         | A.         |        |
| ATOM         | 250        | CG       | PRO        |     | 63       | -8.865             | 10.754           | 28.663           | 1.00 | 0.00         | A          | C      |
| ATOM         | 251        | C        | PRO        |     | 63       | -7.605             | 7.578            | 28.495           | 1.00 | 0.00         | Α          | C.     |
| ATOM .       | 252        | 0        | PRO        |     | 63       | -6.788             | 7.125            | 27.698           | 1.00 | 0.00         | , <b>A</b> |        |
| ATOM<br>ATOM | 253<br>254 | N<br>CA  | VAL<br>VAL |     | 64<br>64 | -7.490<br>-6.444   | 7.383<br>6.488   | 29.822           | 1.00 | 0.00         |            | N      |
| ATOM         | 255        | CB       | VAL        |     | 64       | -5.182             | 7.210            | 30.222<br>30.659 | 1.00 | 0.00         | · A<br>A   | . C    |
| MOTA         | 256        |          | VAL        |     | 64       | -5.454             | 8.218            | 31.784           | 1.00 | 0.00         | A          | c      |
| ATOM         | 257        | CG2      | VAL        | A   | 64       | -4.115             | 6.165            | 30.994           | 1.00 | 0.00         |            | Eoc    |
| ATOM         | 258        | С        | VAL        | A   | 64       | -6.977             | 5.522            | 31.253           | 1.00 | 0.00         | A          | - (C   |
| ATOM         | 259        | 0        | VAL        |     | 64       | -7.252             | 5.869            | 32.399           | 1.00 | 0.00         | - A        | ٠,0    |
| ATOM         | 260        | N        | PHE        |     | 65       | -7.135             | 4.238            | 30.871           | 1.00 | 0.00         | A          | N      |
| ATOM         | 261        | CA       | PHE        |     | 65       | -7.674             | 3.322            | 31.838           | 1.00 | 0.00         | A          | C      |
| ATOM<br>ATOM | 262<br>263 | CB<br>CG | PHE        |     | 65<br>65 | -9.168<br>-9.481   | 2.984            | 31.659           | 1.00 | 0.00         | A          | C      |
| ATOM         | 264        |          | PHE        |     | 65       | -9.653             | 2.444<br>3.303   | 30.302<br>29.239 | 1.00 | 0.00         | A<br>A     | C      |
| ATOM         | 265        |          | PHE        |     | 65       | -9.639             | 1.094            | 30.095           | 1.00 | 0.00         | A          | Ċ      |
| ATOM         | 266        | CE1      | PHE        | Α   | 65       | -9.963             | 2.825            | 27.987           | 1.00 | 0.00         | A          | č      |
| MOTA         | 267        | CE2      | PHE        | A   | 65       | -9.949             | 0.608            | 28.845           | 1.00 | 0.00         | A          | c      |
| ATOM         | 268        | CZ       | PHE        |     | 65       | -10.106            | 1.475            | 27.790           | 1.00 | 0.00         | A          | C      |
| MOTA         | 269        | C        | PHE        |     | 65       | -6.866             | 2.067            | 31.914           | 1.00 | 0.00         | A          | С      |
| atom<br>atom | 270<br>271 | O<br>N   | PHE        |     | 65<br>66 | -5.972             | 1.845            | 31.111           | 1.00 | 0.00         | A          | 0      |
| ATOM         | 272        | CA       | THR        |     | 66       | -7.141<br>-6.422   | 1.223<br>0.006   | 32.927<br>33.167 | 1.00 | 0.00         | A,         | N<br>C |
| ATOM         | 273        | СВ       | THR        |     | 66       | -5.995             | -0.138           | 34.603           | 1.00 | 0.00         | A          | c      |
| MOTA         | 274        |          | THR        |     | 66       | -5.183             | 0.964            | 34.982           | 1.00 | 0.00         | A          | . 0    |
| MOTA         | 275        | CG2      | THR        | A   | 66       | -5.208             | -1.448           | 34.777           | 1.00 | 0.00         | A          | Ċ      |
| ATOM         | 276        | C        | THR        | A   | 66       | -7.324             | -1.150           | 32.845           | 1.00 | 0.00         | A          | С      |
| ATOM         | 277        | 0        | THR        |     | 66       | -8.509             | -1.157           | 33.178           | 1.00 | 0.00         | . <b>A</b> | 0      |
| ATOM<br>ATOM | 278<br>279 | N<br>C2  | LEU<br>LEU |     | 67<br>67 | -6.762             | 2.151            | 32.146           | 1.00 | 0.00         | A          | N      |
| MOTA         | 280        | CA<br>CB | LEU        |     | 67       | -7.427<br>-7.656   | -3.375<br>-3.587 | 31.786<br>30.283 | 1.00 | 0.00<br>0.00 | A          | C      |
| MOTA         | 281        | CG       | LEU        |     | 67       | -8.919             | -2.905           | 29.743           | 1.00 | 0.00         | A<br>A     | C<br>C |
| ATOM         | 282        |          | LEU        |     | 67       | -10.157            | -3.372           | 30.513           | 1.00 | 0.00         | A          | Ċ.     |
| MOTA         | 283        |          | LEU        |     | 67       | -9.090             | -3.160           | 28.243           | 1.00 | 0.00         | A          | č      |
| MOTA         | 284        | С        | LEU        | A   | 67       | -6.606             | -4.528           | 32.243           | 1.00 | 0.00         | A          | , c    |
| MOTA         | 285        | 0        | Leu        | A   | 67       | -5.397             | -4.424           | 32.415           | 1.00 | 0.00         | A          | o      |
| MOTA         | 286        | N        | TYR        |     | 68       | -7.245             | ~5.690           | 32.450           | 1.00 | 0.00         | A          | N      |
| MOTA         | 287        | CA       | TYR        |     | 68       | -6.503.            | -6.817           | 32.949           | 1.00 | 0.00         | A          | С      |
| ATOM<br>ATOM | 288        | CB       | TYR        |     | 68<br>68 | -7.075             | -7.378           | 34.265           | 1.00 | 0.00         | A          | C      |
| MOTA<br>MOTA | 289<br>290 | CG       | TYR<br>TYR |     | 68<br>68 | -6.806<br>-7.560   | -6.423           | 35.378           | 1.00 | 0.00         | A          | C      |
| ATOM         | 291        |          | TYR        |     | 68       | -7.560<br>-5.792   | -5.285<br>-6.686 | 35.548<br>36.271 | 1.00 | 0.00         | A          | C      |
| MOTA         | 292        |          | TYR        |     | 68       | -7.305             | -4.422           | 36.587           | 1.00 | 0.00         | A<br>A     | C<br>C |
| MOTA         | 293        |          | TYR        |     |          | -5.532             | -5.826           | 37.312           | 1.00 | 0.00         | A          | C      |
| MOTA         | 294        | CZ       | TYR        |     | 68       | -6.286             | -4.687           | 37.470           | 1.00 | 0.00         | A          | č      |
| MOTA         | 295        | OH       | TYR        |     | 68       | -6.022             | -3.804           | 38.538           | 1.00 | 0.00         | A          | ŏ      |
| MOTA         | 296        | С        | TYR        | A   | 68       | -6.524             | -7.953           | 31.974           | 1.00 | 0.00         | A          | С      |

Figure 7

| ATOM   | 297  | 0   | TYR | Δ | 68       | -7.580 | -8.479  | 31.623 | 1.00 | 0.00 |   | A  | 0   |
|--------|------|-----|-----|---|----------|--------|---------|--------|------|------|---|----|-----|
| ATOM   | 298  | N   | PHE |   | 69       | -5.325 | -8.357  | 31.506 | 1.00 | 0.00 |   | A  | N   |
|        |      |     |     |   | 69       | -5.207 | -9.559  | 30.742 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 299  | CA  | PHE |   |          | -4.226 | -9.461  | 29.556 | 1.00 | 0.00 |   | A  | č   |
| ATOM   | 300  | СВ  | PHE |   | 69       |        |         |        |      | 0.00 |   | A  | č   |
| MOTA   | 301  | CG  | PHE |   | 69       | -4.964 | -8.705  | 28.502 | 1.00 |      |   | A  | Ċ   |
| ATOM   | 302  |     | PHE |   | 69       | -5.786 | -9.380  | 27.627 | 1.00 | 0.00 |   |    |     |
| ATOM   | 303  |     | PHE |   | 69       | -4.857 | -7.336  | 28.395 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 304  | CE1 | PHE | Α | 69       | -6.483 | -8.705  | 26.653 | 1.00 | 0.00 |   | Α. | Ç   |
| ATOM   | 305  | CE2 | PHE | A | 69       | -5.551 | -6.655  | 27.422 | 1.00 | 0.00 |   | A  | C . |
| ATOM   | 306  | CZ  | PHE | A | 69       | -6.364 | -7.339  | 26.548 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 307  | С   | PHE |   | 69       | -4.730 | -10.557 | 31.736 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 308  | ŏ   | PHE |   | 69       |        | -10.711 | 31.970 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 309  | N   | GLY |   | 70       |        | -11.274 | 32.339 | 1.00 | 0.00 |   | Α. | N   |
|        | 310  | CA  | GLY |   | 70       |        | -12.180 | 33.398 | 1.00 | 0.00 |   | A  | C   |
| MOTA   |      |     | GLY |   | 70       |        | -11.328 | 34.564 | 1.00 | 0.00 |   | A  | Č   |
| ATOM   | 311  | C   |     |   |          |        | -10.453 | 34.990 | 1.00 | 0.00 |   | A  | ŏ   |
| ATOM   | 312  | 0   | GLY |   | 70       |        |         |        | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 313  | N   | LEU |   | 71       |        | -11.642 | 35.152 |      |      |   | A  | Č   |
| ATOM   | 314  | ÇA  | LEU |   | 71       |        | -10.918 | 36.231 | 1.00 | 0.00 |   |    |     |
| ATOM   | 315  | CB  | LEU |   | 71       |        | -11.749 | 36.988 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 316  | CG  | LEU | A | 71       |        | -12.962 | 37.702 | 1.00 | 0.00 |   | A  | C   |
| MOTA   | 317  | ÇD2 | LEU | A | 71       | -4.074 | -12.557 | 38.483 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 318  | CD1 | LEU | Α | 71       | -1.781 | -13.696 | 38.573 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 319  | С   | LEU | A | 71       | -2.581 | -9.661  | 35.745 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 320  | Ó   | LEU |   | 71       | -2.369 | -8.734  | 36.526 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 321  | N . | GLU |   | 72       | -2.178 | -9.632  | 34.456 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 322  | CA  | GLU |   | 72       | -1.424 | -8.537  | 33.912 | 1.00 | 0.00 |   | A  | С   |
|        | 323  |     | GLU |   | 72       | -0.861 | -8.824  | 32.509 | 1.00 | 0.00 |   | A  | С   |
| ATOM   |      | CB  |     |   |          | 0.202  | -9.925  | 32.511 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 324  | ÇG  | GLU |   | 72       |        |         |        | 1.00 | 0.00 |   | A  | č   |
| ATOM   | 325  | CD  | GLU |   | 72       | 1.411  | -9.409  |        |      |      |   |    | ŏ   |
| ATOM   | 326  |     | GLU |   | 72       | 1.560  | -8.163  | 33.382 | 1.00 | 0.00 |   | A  |     |
| MOTA   | 327  | OE2 | GLU | A | 72       | 2.201  |         | 33.776 | 1.00 | 0.00 |   | A  | 0 - |
| MOTA   | 328  | С   | GLU | A | 72       | -2.249 | -7.289  | 33.847 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 329  | 0   | GLU | A | 72       | -3.391 | -7.293  | 33.394 | 1.00 | 0.00 |   | A  | 0   |
| MOTA   | 330  | N   | ARG | A | 73       | -1.658 | -6.170  | 34.318 | 1.00 | 0.00 | • | Α  | N   |
| ATOM   | 331  | CA  | ARG | А | 73       | -2.316 | -4.899  | 34.276 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 332  | СВ  | ARG |   | 73       | -2.040 | -3.993  | 35.491 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 333  | CG  | ARG |   | 73       | -2.563 |         | 36.827 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 334  | CD  | ARG |   | 73       | -1.723 |         | 37.416 | 1.00 | 0.00 | • | A  | С   |
|        |      | NE  | ARG |   | 73       | -0.351 | -5.123  | 37.653 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 335  |     |     |   |          | 0.585  |         | 38.266 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 336  | CZ  | ARG |   | 73<br>73 |        |         | 38.670 | 1.00 | 0.00 |   | A  | N   |
| MOTA   | 337  |     | ARG |   | 73       | 0.262  |         |        |      | 0.00 | • | A  | N   |
| · MOTA | 338  | NH2 | ARG |   | 73       | 1.845  | -5.423  | 38.476 | 1.00 |      |   |    | C   |
| ATOM   | 339  | С   | ARG |   | 73       | -1.749 |         | 33.088 | 1.00 | 0.00 |   | A  |     |
| MOTA   | 340  | 0   | ARG | A | 73       | -0.536 |         | 32.896 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 341  | N . | MET | A | 74       | -2.643 | -3.634  | 32.260 | 1.00 | 0.00 |   | A  | N   |
| MOTA   | 342  | CA  | MET | A | 74       | -2.319 | -3.016  | 31.015 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 343  | CB  | MET | Α | 74       | -3.022 | -3.749  | 29.865 | 1.00 | 0.00 |   | A  | С   |
| MOTA   | 344. | CG  | MET | Α | 74       | -2.447 | -3.466  | 28.489 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 345  | SD  | MET | A | 74       | -0.911 | -4.370  | 28.175 | 1.00 | 0.00 |   | Α  | · S |
| ATOM   | 346  |     | MET | A | 74       | -0.454 | -3.226  | 26.854 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 347  | c   |     | A | 74       | -2.907 | -1.635  | 31.031 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 348  | ŏ   | MET | A | 74       | -4.099 |         | 31.274 | 1.00 | 0.00 |   | Α  | 0   |
| ATOM   |      |     | VAL | A | 75       | -2.110 |         | 30.767 | 1.00 | 0.00 |   | Α  | N   |
|        | 349  | N   | VAL |   | 75       | -2.745 |         | 30.722 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 350  | ÇA  |     |   |          |        |         |        | 1.00 | 0.00 |   | Α  | č   |
| ATOM   | 351  | CB  | VAL |   | 75.      | -2.033 |         | 31.502 |      |      |   | _  | _   |
| MOTA   | 352  |     | VAL |   | 75       | -0.675 |         | 30.887 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 353  | CG2 | VAL |   | 75       | -2.978 |         | 31.618 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 354  | С   | VAL |   | 75       | -2.944 |         | 29.270 | 1.00 | 0.00 |   | A  | C   |
| MOTA   | 355  | 0   | VAL | Α | 75       | -2.042 |         | 28.439 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 356  | N   | VAL | A | 76       | -4.182 | 1.462   | 28.905 | 1.00 | 0.00 |   | A  | N   |
| MOTA   | 357  | CA  | VAL | Α | 76       | -4.526 | 1.817   | 27.552 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 358  | CB  | VAL | A | 76       | -5.801 | 1.205   | 27,075 | 1.00 | 0.00 |   | Α  | C   |
| ATOM   | 359  |     | VAL |   | 76       | -5.554 | -0.280  | 26.812 | 1.00 | 0.00 |   | A  | C   |
| MOTA   | 360  |     | VAL |   | 76       | -6.849 |         | 28.165 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 361  | C   | VAL |   | 76       | -4.662 |         | 27.410 | 1.00 | 0.00 |   | A  | С   |
|        |      |     | VAL |   | 76       | -5.079 |         | 28.337 | 1.00 | 0.00 |   | A  | 0   |
| MOTA   | 362  | 0   |     |   |          |        |         | 26.224 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 363  | N   | LEU |   | 77<br>77 | -4.275 |         |        | 1.00 | 0.00 |   | A  | Ċ   |
| MOTA   | 364  | CA  | LEU |   | 77       | -4.382 |         | 25.949 |      |      |   |    | Č   |
| MOTA   | 365  | CB  | LEU |   | 77       | -3.036 |         | 25.564 | 1.00 | 0.00 |   | A  |     |
| ATOM   | 366  | CG  | LEU |   | 77       | -1.962 |         | 26.653 | 1.00 | 0.00 |   | A  | C   |
| MOTA   | 367  |     | LEU |   | 77.      | ~2.497 |         | 28.039 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 368  | CD1 | LEU | Α | 77       | -0.661 | 6.448   | 26.279 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 369  | С   | LEU |   | 77       | -5.314 | 5.446   | 24.774 | 1.00 | 0.00 |   | A  | C   |
| MOTA   | 370  | ŏ   | LEU |   | 77       | -5.101 | 4.866   | 23.712 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 371  | N   | HIS |   | 78       | -6.446 |         | 24.979 | 1.00 | 0.00 |   | A  | N   |
|        |      | ••  |     | - |          |        |         |        |      |      |   |    |     |

|              |            |          |            |   |          |                    |                  |                  | _            |      |   |        |        |
|--------------|------------|----------|------------|---|----------|--------------------|------------------|------------------|--------------|------|---|--------|--------|
| ATOM         | 372        | CA       | HIS        | A | 78       | -7.440             | 6.341            | 23.951           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 373        | ND1      | HIS        | A | 78       | -10.654            | 7.040            | 22.868           | 1.00         | 0.00 |   | A      | N      |
| ATOM         | 374        | CG       | HIS        |   | 78       | -9.928             | 6.075            | 23.530           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 375        | CB       | HIS        |   | 78       | -8.858             | 6.347            | 24.545           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 376        |          | HIS        |   | 78       | -11.404            | 5.075            | 22.146 23.074    | 1.00<br>1.00 | 0.00 |   | A<br>A | N<br>C |
| ATOM         | 377<br>378 | CD2      | HIS        | A | 78<br>78 | -10.397<br>-11.522 | 4.880<br>6.387   | 22.054           | 1.00         | 0.00 |   | A      | č      |
| ATOM<br>ATOM | 379        | CPI      | HIS        |   | 78 .     | -7.336             | 7.522            | 23.010           | 1.00         | 0.00 |   | A      | č      |
| ATOM         | 380        | ŏ.       | HIS        |   | 78       | -7.356             | 7.359            | 21.799           | 1.00         | 0.00 |   | A      | 0      |
| MOTA         | 381        | N        | GLY        |   | 79       | -7.199             | 8.771            | 23.487           | 1.00         | 0.00 |   | A      | N      |
| MOTA         | 382        | CA       | GLY        | A | 79       | -7.415             | 9.817            | 22.511           |              | 0.00 |   | A      | C      |
| MOTA         | 383        | ¢ :      | GLY        |   | 79       | ~6.165             | 10.200           | 21.799           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 384        | 0        | GLY        |   | 79       | -5.089             | 9.682            | 22.081           | 1.00         | 0.00 |   | A<br>N | 0      |
| ATOM         | 385        | N        | TYR        |   | 80       | -6.318<br>-5.232   | 11.142<br>11.723 | 20.838           | 1.00<br>1.00 | 0.00 |   | A<br>A | N<br>C |
| ATOM<br>ATOM | 386<br>387 | CA<br>CB | TYR<br>TYR |   | 80<br>80 | -5.702             | 12.729           | 19.017           | 1.00         | 0.00 |   | A      | Ċ      |
| ATOM         | 388        | CG       | TYR        |   | 80       | -4.528             | 13.514           | 18.511           | 1.00         | 0.00 |   | A      | Č      |
| ATOM         | 389        |          | TYR        |   | 80       | -3.592             | 12.935           | 17.682           | 1.00         | 0.00 |   | A      | С      |
| ATOM         | 390        | CD2      | TYR        | Α | 80       | -4.370             | 14.843           | 18.854           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 391        | CEl      | TYR        | Α | 80       | -2.511             | 13.659           | 17.231           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 392        |          | TYR        |   | 80       | -3.293             | 15.571           | 18.406           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 393        | CZ       | TYR        |   | 80       | -2.363             | 14.979           | 17.588           | 1.00         | 0.00 |   | A<br>A | C<br>O |
| ATOM         | 394        | OH       | TYR        |   | 80       | -1.256<br>-4.394   | 15.722<br>12.466 | 17.126<br>21.090 | 1.00<br>1.00 | 0.00 |   | A      | Č      |
| ATOM<br>ATOM | 395<br>396 | С<br>0   | TYR<br>TYR |   | 80<br>80 | -3.171             | 12.436           | 21.005           | 1.00         | 0.00 |   | A      | ŏ      |
| ATOM         | 397        | N        | GLU        |   | 81       | -5.040             | 13.165           | 22.043           |              | 0.00 |   | A      | N      |
| ATOM         | 398        | CA       | GLU        |   | 81       | -4.335             | 13.948           | 23.021           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 399        | СВ       | GLU        |   | 81       | -5.272             | 14.800           | 23:894           | 1.00         | 0:00 |   | A      | С      |
| ATOM         | 400        | CG       | GLU        |   | 81       | -5.946             | 15.928           | 23.113           | 1.00,        | 0.00 |   | A      | C      |
| ATOM         | 401        | CD       | GLU        | A | 81       | -4.858             | 16.889           | 22,652           | 1.002        |      |   | A      | С      |
| ATOM         | 402        | OE1      | GLU        | A | 81       | -3.837             | 17.019           | 23:378           | 1.005        |      |   | A      | 0      |
| ATOM         | 403        |          | GLU        |   | 81       | -5.036             |                  | 21.568           | -            |      |   | A      | 0      |
| ATOM         | 404        | С        | GLU        |   | 81       | -3.525             | 13.079           |                  | 1.00         |      |   | A      | C      |
| ATOM         | 405        | 0        | GLU        |   | 81       | -2.369             | 13.394           |                  | 1.00g        |      |   | A<br>A | O<br>N |
| ATOM         | 406        | N        | VAL        |   | 82<br>82 | -4.104<br>-3.402   | 11.965<br>11.096 |                  | 1.00         | 0:00 |   | A      | č      |
| ATOM<br>ATOM | 407<br>408 | CA<br>CB | VAL        |   | 82       | -4.313             | 10.121           | 26.009           | 1.007        |      |   | A      | .¢     |
| ATOM         | 409        |          | VAL        |   | 82       | -3.501             | 9.067            | 26.781           | 1.005        | •    |   | A      | C      |
| ATOM         | 410        |          | VAL        |   | 82       | -5.192             | 10.974           | 26.932           |              |      |   | A      | С      |
| ATOM         | 411        | C        | VAL        |   | 82       | -2.271             | 10.382           | 24.638           | 1.00         | 0.00 |   | A      | С      |
| ATOM         | 412        | 0        | VAL        | A | 82       | -1.186             | 10.268           | 25.209           | 1.00         | 0.00 |   | A      | 0      |
| ATOM         | 413        | N        | VAL        | A | 83       | -2.499             | 9.901            | 23.394           | 1.00         | 0.00 |   | A.     | N      |
| ATOM         | 414        | CA       | VAL        |   | 83       | -1.509             | 9.189            | 22.622           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 415        | CB       | VAL        |   | 83       | -2.066             | 8.617            | 21.339           | 1.00         | 0.00 |   | A<br>A | C      |
| ATOM         | 416        |          | VAL        |   | 83<br>83 | -0.923<br>-3.029   | 8.119<br>7.474   | 20.435           | 1.00<br>1.00 | 0.00 |   | A      | č      |
| ATOM<br>ATOM | 417<br>418 | CG2<br>C | VAL        |   | 83       | -0.371             | 10.112           | 22.299           | 1.00         | 0.00 | • | A      | č      |
| ATOM         | 419        | Ö        | VAL        |   | 83       | 0.788              | 9.722            | 22.368           | 1.00         | 0.00 |   | A      | ō      |
| ATOM         | 420        | N        | LYS        |   | 84       | -0.675             | 11.371           | 21.953           | 1.00         | 0.00 |   | A      | N      |
| ATOM         | 421        | CA       | LYS        |   | 84       | 0.293              | 12.370           | 21.601           | 1.00         | 0.00 |   | A      | С      |
| MOTA         | 422        | CB       | LYS        | A | 84       | -0.340             | 13.687           | 21.098           | 1.00         | 0.00 |   | A      | С      |
| ATOM         | 423        | CG       | LYS        |   | 84       | 0.693              | 14.814           | 20.998           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 424        | CD       | LYS        |   | 84       | 0.274              | 16.079           | 20.263           | 1.00         | 0.00 |   | A<br>A | C      |
| MOTA         | 425        | CE       | LYS        |   | 84       | 1.244              | 17.236           | 20.518           | 1.00<br>1.00 | 0.00 |   | A      | N      |
| MOTA         | 426        | NZ       | LYS        |   | 84<br>84 | 2.627<br>1.130     | 16.720<br>12.728 | 20.633           | 1.00         | 0.00 |   | A      | C      |
| MOTA         | 427<br>428 | С<br>0   | LYS        |   | 84       | 2.342              | 12.728           | 22.663           | 1.00         | 0.00 |   | A      | ŏ      |
| ATOM<br>ATOM | 429        | N        | GLU        |   | 85       | 0.485              | 12.884           | 23.956           | 1.00         | 0.00 |   | A      | N      |
| ATOM         | 430        | CA       | GLU        |   | 85       | 1.148              | 13.293           | 25.162           | 1.00         | 0.00 |   | A      | С      |
| ATOM         | 431        | CB       | GLU        |   | 85       | 0.151              | 13.538           | 26.308           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 432        | CG       | GLU        |   | 85       | 0.775              | 14.127           | 27.573           | 1.00         | 0.00 | • | A      | С      |
| MOTA         | 433        | CD       | GLU        | A | 85       | -0.348             | 14.339           | 28.579           | 1.00         | 0.00 |   | A      | С      |
| MOTA         | 434        |          | GLU        |   | 85       | -1.529             | 14.096           | 28.208           | 1.00         | 0.00 |   | A      | 0      |
| MOTA         | 435        |          | GLU        |   | 85       | -0.042             | 14.746           | 29.730           | 1.00         | 0.00 |   | A      | 0      |
| MOTA         | 436        | C        | GLU        |   | 85<br>es | 2.114              | 12.230           | 25.597           | 1.00<br>1.00 | 0.00 |   | A<br>A | C<br>O |
| MOTA         | 437        | 0        | GLU        |   | 85<br>86 | 3.236<br>1.691     | 12.531<br>10.955 | 26.002<br>25.553 | 1.00         | 0.00 |   | A      | N      |
| MOTA         | 438        | N<br>CA  | ALA<br>ALA |   | 86<br>86 | 2.575              |                  | 25.957           | 1.00         | 0.00 |   | A      | C      |
| MOTA<br>MOTA | 439<br>440 | CA<br>CB | ALA        |   | 86       | 1.840              | 8.567            | 26.158           | 1.00         | 0.00 |   | A      | č      |
| ATOM         | 441        | C        | ALA        |   | 86       | 3.680              | 9.650            | 24.968           | 1.00         | 0.00 |   | A      | č      |
| ATOM         | 442        | ŏ        | ALA        |   | 86       | 4.860              | 9.672            | 25.310           | 1.00         | 0.00 |   | A      | 0      |
| ATOM         | 443        | N        | LEU        |   | 87       | 3.315              | 9.433            | 23.693           | 1.00         | 0.00 |   | A      | N      |
| MOTA         | 444        | CA       | LEU        |   | 87       | 4.232              | 9.049            | 22.654           | 1.00         | 0.00 |   | A      | C      |
| ATOM         | 445        | CB       | LEU        |   | 87       | 3.547              | 8.577            | 21.353           | 1.00         | 0.00 |   | A      | C      |
| MOTA         | 446        | CG       | ΓEÛ        | A | 87       | 3.033              | 7.117            | 21.383           | 1.00         | 0.00 |   | A      | С      |
|              |            |          |            |   | •        |                    |                  |                  |              |      |   |        |        |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

446/514

| ATOM             | 447   | CD2 | LEU   | A 87 | 2.558  | 6.675   | 19.989 | 1.00 | 0.00  | A   | С   |
|------------------|-------|-----|-------|------|--------|---------|--------|------|-------|-----|-----|
| ATOM             | 448   | CD1 | LEU   | A 87 | 1.974  | 6.874   | 22.469 | 1.00 | 0.00  | A   | С   |
| ATOM             | 449   | С   | LEU   | A 87 | 5.214  | 10.129  | 22.312 | 1.00 | 0.00  | A   | С   |
| ATOM             | 450   | ō   | LEU   |      |        | 9.839   | 22.069 | 1.00 |       | A   | ō   |
| ATOM             | 451   | N   | ILE   |      | 4.746  | 11.380  | 22.133 | 1.00 |       | A   | N   |
|                  |       |     |       |      |        |         |        |      |       |     |     |
| ATOM             | 452   | CA  | ILE   |      | 5.621  | 12.486  | 21.837 | 1.00 |       | A   | C   |
| ATOM             | 453   | CB  | ILE   |      | 4.940  | 13.597  | 21.070 | 1.00 |       | A   | C   |
| MOTA             | 454   |     | ILE   |      | 5.910  | 14.791  | 21.050 | 1.00 |       | A   | C   |
| MOTA             | 455   | CG1 | ILE   | A 88 | 4.503  | 13.162  | 19.653 | 1.00 | 0.00  | A   | С   |
| ATOM             | 456   | CD1 | ILE   | A 88 | 3.221  | 12.330  | 19.569 | 1.00 | 0.00  | A   | С   |
| ATOM             | 457   | С   | ILE   | A 88 | 6.281  | 13.143  | 23.029 | 1.00 | 0.00  | A   | С   |
| MOTA             | 458   | 0   | ILE   | A 88 | 7.506  | 13.135  | 23.141 | 1.00 | 0.00  | A   | 0   |
| MOTA             | 459   | N   | ASP   | A 89 | 5.465  | 13.700  | 23.965 | 1.00 | 0.00  | A   | N   |
| ATOM             | 460   | CA  | ASP   |      | 5.939  | 14.538, | 25.050 | 1.00 | 0.00  | A   | Ç   |
| ATOM             | 461   | СВ  | ASP   |      | 4.776  | 15.168  | 25,838 | 1.00 |       | A   | č   |
| MOTA             | 462   | CG  | ASP   |      | 4.025  | 16.122  | 24.912 | 1.00 |       | A   | č   |
| MOTA             | 463   |     | ASP   |      | 4.579  | 16.475  | 23.837 | 1.00 |       | A   | ō   |
| MOTA             | 464   |     | ASP   |      | 2.878  | 16.505  | 25.269 | 1.00 | 0.00  | A   | ŏ   |
|                  |       |     |       |      |        |         | 26.019 | 1.00 | 0.00  | A   | Č.  |
| MOTA             | 465   | C   | ASP   |      | 6.762  | 13.745  |        |      |       |     |     |
| MOTA             | 466   | 0   | ASP   |      | 7.883  | 14.108  | 26.372 | 1.00 |       | A   | 0   |
| ATOM             | 467   | N   | LEU   |      | 6.169  | 12.633  | 26.460 | 1.00 | 0.00  | . A | и . |
| MOTA             | 468   | CA  | LEU   |      | 6.653  | 11.607  | 27.333 | 1.00 |       | A   | С   |
| ATOM             | 469   | CB  | LEU   |      | 5.572  | 10.852  | 28.126 | 1.00 |       | A   | С   |
| ATOM             | 470   | CG  | LEU   | A 90 | 5.007  | 11.655  | 29.316 | 1.00 |       | A   | С   |
| ATOM             | 471   | CD2 | LEU   | A 90 | 4.181  | 12.873  | 28.880 | 1.00 | 0.00  | A   | С   |
| ATOM             | 472   | CD1 | LEU   | A 90 | 6.129  | 12.015  | 30.300 | 1.00 | 0.00  | A   | С   |
| ATOM             | 473   | C   | LEU   |      | 7.473  | 10.607  | 26.595 | 1.00 |       | A   | С   |
| ATOM             | 474   | ō   | LEU   |      | 7.681  | 9.535   | 27.152 | 1.00 | 0.00  | A   | Ō   |
| ATOM             | 475   | N   | GLY   |      | 7.864  | 10.894  | 25.327 | 1.00 | 0.00  | A   | N   |
| ATOM             | 476   | CA  | GLY . |      | 8.408  | 9.990   | 24.339 | 1.00 | 0.00  | A   | Ĉ   |
| MOTA COLATOM     |       |     |       |      |        |         |        |      |       |     | Č   |
|                  | 477   | C   | GLY . |      | 9.508  | 9.081   | 24.819 | 1.00 | 0.00  | A   |     |
| ATOM             | 478   | 0   | GLY . |      | 9.469  | 7.905   | 24.465 | 1.00 | 0.00  | A   | 0   |
| ATOM             | - 479 | N   | GLU . |      | 10.486 | 9.560   | 25.615 | 1.00 | 0.00  | A   | N   |
| ATOM             | 480   | CA  | GLU . |      | 11.532 | 8.689   | 26.097 | 1.00 | 0.00  | A   | C   |
| ATOM             | 481   | CB  | GLU . |      | 12.683 | 9.443   | 26.780 | 1.00 | 0.00  | A   | С   |
| ATOM             | 482   | CG  | GLU . | A 92 | 13.791 | 8.513   | 27.279 | 1.00 | 0.00  | A   | С   |
| ATOM             | 483   | CD  | GLU : | A 92 | 14.459 | 7.869   | 26.071 | 1.00 | 0.00  | A   | С   |
| September 1 ATOM | 484   | OE1 | GLU : | A 92 | 14.761 | 8.603   | 25.095 | 1.00 | 0.00  | A   | 0   |
| ATOM             | 485   |     | GLU   |      | 14.678 | 6.630   | 26,117 | 1.00 | 0.00  | A   | 0   |
| ATOM             | 486   | c   | GLU : |      | 10.984 | 7.689   | 27.081 | 1.00 | 0.00  | A   | C   |
| ATOM             | 487   | ŏ   | GLU   |      | 11.342 | 6.513   | 27.043 | 1.00 | 0.00  | A   | ō   |
| ATOM             | 488   | N   | GLU   |      | 10.079 | 8.145   | 27.970 | 1.00 | 0.00  | A   | n   |
|                  |       |     |       |      | 9.457  | 7.327   | 28.976 | 1.00 | 0.00  | A   | Ċ   |
| ATOM             | 489   | CA  | GLU : |      |        |         |        |      |       |     |     |
| ATOM             | 490   | CB  | GLU : |      | 8.568  | 8.109   | 29.958 | 1.00 | 0.00  | A   | C   |
| ATOM             | 491   | CG  | GLU . |      | 9.350  | 8.868   | 31.032 | 1.00 | 0.00  | A   | C   |
| ATOM             | 492   | CD  | GLU   |      | 9.948  | 10.119  | 30.413 | 1.00 | 0.00  | A   | C   |
| ATOM             | 493   | OE1 | GLU   |      | 9.313  | 10.685  | 29.483 | 1.00 | 0.00  | A   | 0   |
| ATOM             | 494   | OE2 | GLU : | A 93 | 11.054 | 10.527  | 30.863 | 1.00 | 0.00  | ,A  | 0   |
| ATOM             | 495   | С   | GLU : | A 93 | 8.609  | 6.264   | 28.337 | 1.00 | 0.00  | A   | C   |
| ATOM             | 496   | 0   | GLU : | A 93 | 8.472  | 5.175   | 28.869 | 1.00 | 0.00  | A   | 0   |
| ATOM             | 497   | N   | PHE : | A 94 | 7.946  | 6.563   | 27.218 | 1.00 | 0.00  | A   | N   |
| ATOM             | 498   | CA  | PHE 2 | A 94 | 7.115  | 5.645   | 26.481 | 1.00 | 0.00  | A   | С   |
| ATOM             | 499   | СВ  | PHE   |      | 5.918  | 6.310   | 25.784 | 1.00 | 0.00  | A   | С   |
| ATOM             | 500   | CG  | PHE   |      | 4.907  | 6.497   | 26.866 | 1.00 | 0.00  | A   | C   |
| ATOM             | 501   |     | PHE   |      | 4.018  | 5.487   | 27.158 | 1.00 | 0.00  | A   | c   |
| ATOM             | 502   |     | PHE   |      | 4.857  | 7.658   | 27.603 | 1.00 | 0.00  | A   | č   |
| ATOM             | 503   |     | PHE   |      | 3.082  | 5.634   | 28.154 | 1.00 | 0.00  | A   | č   |
| ATOM             | 504   |     | PHE   |      | 3.921  | 7.812   | 28.601 | 1.00 | 0.00  | A   | č   |
| ATOM             |       |     |       |      | 3.032  | 6.801   | 28.879 | 1.00 | 0.00  | A   | Ċ   |
|                  | 505   | CZ  | PHE I |      |        |         |        |      |       | A   | C   |
| ATOM             | 506   | C   | PHE I |      | 7.864  | 4.777   | 25.504 | 1.00 | 0.00  |     |     |
| ATOM             | 507   | 0   | PHE 2 |      | 7.247  | 3.986   | 24.792 | 1.00 | 0.00  | A   | 0   |
| ATOM             | 508   | N   | SER   |      | 9.183  | 4.987   | 25.332 | 1.00 | 0.00  | A   | N   |
| MOTA             | 509   | CA  | SER A |      | 9.995  | 4.331   | 24.333 | 1.00 | 0.00  | A   | Ċ.  |
| MOTA             | 510   | CB  | SER I | A 95 | 11.481 | 4.731   | 24.390 | 1.00 | 0.00  | A   | С   |
| MOTA             | 511   | OG  | SER I | A 95 | 11.667 | 6.110   | 24.140 | 1.00 | 0.00  | A   | 0   |
| MOTA             | 512   | C   | SER I |      | 10.094 | 2.840   | 24.494 | 1.00 | 0.00  | A   | С   |
| MOTA             | 513   | ō   | SER I |      | 10.570 | 2.179   | 23.577 | 1.00 | 0.00  | A   | 0   |
| MOTA             | 514   | N   | GLY A |      | 9.721  | 2.258   | 25.646 | 1.00 | 0.00  | A   | N   |
| ATOM             | 515   | CA  | GLY I |      | 9.954  | 0.848   | 25.822 | 1.00 | 0.00  | A   | ċ   |
| ATOM             | 516   |     |       |      | 9.002  | 0.003   | 25.026 | 1.00 | 0.00  | A   | č   |
|                  |       | C   | GTA 1 |      | 7.893  |         |        | 1.00 | 0.00  | A   | Ö   |
| MOTA             | 517   | 0   | GLY A |      |        | 0.418   | 24.694 |      |       |     |     |
| ATOM             | 518   | N   | ARG 2 |      | 9.533  | -1.205  | 24.696 |      | 40.78 | A   | И   |
| ATOM             | 519   | CA  | ARG A |      | 8.697  | -2.186  | 24.002 |      | 39.50 | A   | C   |
| ATOM             | 520   | С   | ARG I |      | 8.108  | -3.142  | 25.025 |      | 40.44 | A   | C   |
| MOTA             | 521   | 0   | ARG A | A 97 | 8.811  | -3.605  | 25.924 | 1.00 | 42.20 | A   | 0   |
|                  |       |     |       |      |        |         |        |      |       |     |     |

| ATOM         | 522        | CB       | ARG        | A | 97         |     | 9.519          | -2.976             | 22.977           |      | 38.53 | A      |        |
|--------------|------------|----------|------------|---|------------|-----|----------------|--------------------|------------------|------|-------|--------|--------|
| ATOM         | 523        | CG       | ARG        |   | 97         |     | 8.826          | -4.220             | 22.412           |      | 37.38 | A      |        |
| ATOM         | 524        | CD       | ARG        |   | 97         |     | 7.663          | -3.882             | 21.499           |      | 38.78 | A      | -      |
| ATOM         | 525        | NE       | ARG        |   | 97         |     | 8.070          | -3.133             | 20.307           |      | 39.65 | A<br>A |        |
| ATOM         | 526        | CZ       | ARG        |   | 97<br>97   |     | 7.351          | -2.147             | 19.778<br>18.696 |      | 38.34 | A      | _      |
| ATOM         | 527<br>528 |          | ARG<br>ARG |   | 97         |     | 7.774<br>6.203 | -1.508<br>-1.796   | 20.345           |      | 36.49 | A      |        |
| ATOM<br>ATOM | 529        | N        | GLY        |   | 98         |     | 6.795          | -3.485             | 24.915           | 1.00 | 0.00  | A      |        |
| ATOM         | 530        | CA       | GLY        |   | 98         |     | 6,203          | -4.361             | 25.885           | 1.00 | 0.00  | A      | _      |
| ATOM         | 531        | c        | GLY        |   | 98         |     | 5.959          | -5.684             | 25.234           | 1.00 | 0.00  | A      |        |
| ATOM         | 532        | 0        | ĢĻY        |   | 98         |     | 5.614          | -5.754             | 24.056           | 1.00 | 0.00  | A      | 0      |
| ATOM         | 533        | N        | HIS        | A | 99         |     | 6.116          | -6.782             | 25.998           | 1.00 | 0.00  | A      |        |
| MOTA         | 534        | CA       | HIS        |   | 99         |     | 5.924          | -8.070             | 25.408           | 1.00 | 0.00  | A      | •      |
| ATOM         | 535        |          | HIS        |   | 99         |     | 7.672          | -9.674             | 27.778           | 1.00 | 0.00  | A      |        |
| ATOM         | 536        | CG       | HIS        |   | 99         |     | 7.955          | -8.869             | 26.692<br>25.389 | 1.00 | 0.00  | A<br>A |        |
| ATOM<br>ATOM | 537<br>538 | CB       | HIS<br>HIS |   | 99<br>99   |     | 7.213<br>9.372 | -8.911<br>-8.371   | 28.377           | 1.00 | 0.00  | A      |        |
| ATOM         | 539        |          | HIS        |   | 99         |     | 8.993          | ~8.082             | 27.077           | 1.00 | 0.00  | A      |        |
| ATOM         | 540        |          | HIS        |   | 99         |     | 8.549          | -9.334             | 28.754           | 1.00 | 0.00  | A      |        |
| ATOM         | 541        | c        | HIS        |   | 99         |     | 4.866          | -8.835             | 26.152           | 1.00 | 0.00  | A      |        |
|              | 542        | 0        | HIS        |   | 99         |     | 4.830          | -8.846             | 27.382           | 1.00 | 0.00  | A      | 0      |
| MOTA         | 543        | N        | ' PHE      | A | 100        | _   | 3.965          | -9.492             | 25.386           | 1.00 | 0.00  | Α      |        |
| MOTA         | 544        | CA       |            |   | 100        |     |                | -10.315            | 25.896           | 1.00 | 0.00  | A      |        |
| ATOM         | 545        | CB       |            |   | 100        |     |                | -10.481            | 24.926           | 1.00 | 0.00  | A      |        |
| ATOM         | 546        | CG       |            |   | 100        |     | 0.800          | -9.284             | 24.926           | 1.00 | 0.00  | A<br>A |        |
| ATOM         | 547<br>548 |          | PHE        |   |            |     | 0.048<br>0.665 | -8.960<br>-8.514   | 26.034<br>23.799 | 1.00 | 0.00  | A      |        |
| ATOM<br>ATOM | 549        |          | PHE        |   |            |     | -0.792         | -7.870             | 26.038           | 1.00 | 0.00  | . A    |        |
| ATOM         | 550        |          | PHE        |   |            |     | -0.176         | -7.424             | 23.801           | 1.00 | 0.00  | A      |        |
| ATOM         | 551        |          | PHE        |   |            |     | -0.904         | -7.092             | 24.915           | 1.00 | 0.00  | A      |        |
| ATOM         | 552        |          | PHE        |   |            |     |                | -11.698            | 26.106           | 1.00 | 0.00  | A      | С      |
| ATOM         | 553        | 0.       | PHE        | Α | 100        |     | 4.566          | -11.971            | 25.660           | 1.00 | 0.00  | A      | 0      |
| ATOM         | 554        | N        | PRO        | Α | 101        |     | 2.741          | -12.567            | 26.799           | 1.00 | 0.00  | A      |        |
| MOTA         | 555        |          | PRO        |   |            |     |                | -13.909            | 27.070           | 1.00 | 0.00  | A      |        |
| ATOM         | 556        |          | PRO        |   |            |     |                | -12.114            | 27.847           | 1.00 | 0.00  |        | C      |
| ATOM         | 557        |          |            |   | 101        |     |                | -14.512            | 28.047           | 1.00 | 0.00  | A<br>A |        |
| ATOM<br>ATOM | 558<br>559 | C.       | PRO        |   | 101        |     |                | -13.288<br>-14.818 | 28.830<br>25.920 | 1.00 | 0.00  | A      | c      |
| ATOM         | 560        | 0        |            |   |            | -13 |                | -15.444            | 26.011           | 1.00 | 0.00  | A      | ŏ      |
| ATOM         | 561        | N        |            |   | 102        |     |                | -14.907            | 24.850           | 1.00 | 0.00  | A      |        |
| ATOM         | 562        | CA       | LEU        |   |            |     |                | -15.782            | 23.742           | 1.00 | 0.00  | A      | С      |
| ATOM         | 563        | CB       | LEU        | A | 102        |     | 1.996          | -15.846            | 22.641           | 1.00 | 0.00  | A      |        |
| ATOM         | 564        | CG       | LEU        |   |            |     |                | -16.808            | 21.508           | 1.00 | 0.00  | A      |        |
| ATOM         | 565        |          | LEU        |   |            |     |                | -16.717            | 20.314           | 1.00 | 0.00  | A      | C      |
| ATOM         | 566        |          | LEU        |   |            |     |                | -18.241            | 22.033           | 1.00 | 0.00  | A<br>A | C      |
| ATOM<br>ATOM | 567<br>568 | С<br>О   | TEA.       |   |            |     |                | -15.290<br>-16.045 | 23.008<br>22.655 | 1.00 | 0.00  | A      | Ö      |
| ATOM         | 569        | N .      | ALA        |   |            |     |                | -13.974            | 22.808           | 1.00 | 0.00  | A      | N      |
| ATOM         | 570        | CA       |            |   | 103        |     |                | -13.267            | 22.080           | 1.00 | 0.00  | A      |        |
| ATOM         | 571        | CB       |            |   | 103        |     | 4.998          | -11.765            | 21.920           | 1.00 | 0.00  | A      |        |
| ATOM         | 572        | C        |            |   | 103        |     |                | -13.375            | 22.765           | 1.00 | 0.00  | A      |        |
| MOTA         | 573        | 0        |            |   | 103        |     |                | -12.955            | 22.192           | 1.00 | 0.00  | A      |        |
| ATOM         | 574        | N        | GLU        |   |            |     |                | -13.671            | 24.077           | 1.00 | 0.00  | A      |        |
| ATOM<br>ATOM | 575        | CA<br>CB | GLU        |   |            |     |                | -13.871<br>-13.699 | 24.803<br>26.320 | 1.00 | 0.00  | A<br>A | C<br>C |
| ATOM         | 576<br>577 | CG       | GLU        |   |            |     |                | -13.795            | 27.139           | 1.00 | 0.00  | A      | Č      |
| ATOM         | 578        | CD       | GLU        |   |            |     |                | -12.430            | 27.153           | 1.00 | 0.00  | A      | č      |
| ATOM         | 579        |          |            |   | 104.       |     |                | -11.719            | 26.116           | 1.00 | 0.00  | A      | ō      |
| ATOM         | 580        |          | GLU        |   |            |     | 10.263         | -12.083            | 28.210           | 1.00 | 0.00  | A      | 0      |
| ATOM         | 581        | C        | GLU        | A | 104        |     | 8.470          | -15.236            | 24.589           | 1.00 | 0.00  | A      | С      |
| ATOM         | 582        | 0        | GLU        | A | 104        |     |                | -15.384            | 24.392           | 1.00 | 0.00  | A      | 0      |
| ATOM         | 583        | N        | ARG        |   |            |     |                | -16.265            | 24.654           | 1.00 | 0.00  | A      | N      |
| ATOM         | 584        | CA       |            |   | 105        |     |                | -17.645            | 24.542           | 1.00 | 0.00  | A      |        |
| ATOM<br>ATOM | 585        | CB       | ARG        |   |            |     |                | -18.610<br>-18.797 | 24.768<br>26.226 | 1.00 | 0.00  | A<br>A | C<br>C |
| ATOM         | 586<br>587 | CG<br>CD |            |   | 105<br>105 |     |                | -19.461            | 27.065           | 1.00 | 0.00  | A      | c      |
| ATOM         | 588        | NE       | ARG        |   |            |     |                | -20.546            | 27.865           | 1.00 | 0.00  | A      | N      |
| ATOM         |            | CZ       | ARG        |   |            |     |                | -20.279            | 29.062           | 1.00 | 0.00  | A      | Ċ      |
| ATOM         | 590        |          | ARG        |   |            |     |                | -18.985            | 29.464           | 1.00 | 0.00  | A      | N      |
| ATOM         | 591        |          | ARG        |   |            |     |                | -21.296            | 29.834           | 1.00 | 0.00  | A      | N      |
| ATOM         | 592        | С        | ARG        |   |            |     |                | -17.898            | 23.161           | 1.00 | 0.00  | A      | С      |
| ATOM         | 593        | 0        | ARG        |   |            |     |                | -18.652            | 22.951           | 1.00 | 0.00  | A      | 0      |
| MOTA         | 594        | N        | ALA        |   |            |     |                | -17.269            | 22.179           | 1.00 | 0.00  | A      | N      |
| MOTA         | 595        | CA       | ALA        |   |            |     |                | -17.427<br>-16.748 | 20.798<br>19.870 | 1.00 | 0.00  | A<br>  | C<br>C |
| MOTA         | 596        | CB       | ALA        | A | 100        |     |                | 20.710             | 25.070           | 1.50 | 0.00  | ·A     | C      |

|      |     |     |      |   |     |        | 4.6.000  | 00 474 | 1 00 | 0.00  | A  | С  |
|------|-----|-----|------|---|-----|--------|----------|--------|------|-------|----|----|
| ATOM | 597 | Ç   | ALA  |   |     |        | -16.860  | 20.474 | 1.00 |       |    |    |
| ATOM | 598 | 0   | ALA  | A | 106 |        | -17.382  | 19.605 | 1.00 | 0.00  | A  | .0 |
| ATOM | 599 | N   | ASN  | Α | 107 | 9.931  | -15.764  | 21.133 | 1.00 | 0.00  | A. | N  |
| ATOM | 600 | CA  | ASN  | Α | 107 | 11.131 | -15.121  | 20.662 | 1.00 | 0.00  | A  | С  |
| ATOM | 601 | СВ  | ASN  |   |     | 11.100 | -13.584  | 20.726 | 1.00 | 0.00  | A  | C  |
|      | 602 | CG  | ASN  |   |     |        | -13.037  | 19.642 | 1.00 | 0.00  | A  | С  |
| ATOM |     |     | ASN  |   |     |        | -13.110  | 19.694 | 1.00 | 0.00  | A  | 0  |
| ATOM | 603 |     |      |   |     |        |          | 18.589 | 1.00 | 0.00  | A  | N  |
| ATOM | 604 |     | ASN  |   |     |        | -12.474  |        |      |       | A  | Ċ  |
| ATOM | 605 | С   | asn  |   |     |        | -15.502  | 21.406 | 1.00 | 0.00  |    |    |
| ATOM | 606 | 0   | ASN  | A | 107 | 12.492 | -15.300  | 22.614 | 1.00 | 0.00  | A  | 0  |
| ATOM | 607 | N   | ARG  | A | 108 | 13.354 | -16.041  | 20.659 | 1.00 | 0.00  | A  | N  |
| ATOM | 608 | ÇA  | ARG  | A | 108 | 14.644 | -16.302  | 21.216 | 1.00 | 0.00  | A  | С  |
| ATOM | 609 | CB  | ARG  |   |     | 15.211 | -17.694  | 20.889 | 1.00 | 0.00  | Α  | С  |
|      | 610 | CG  | ARG  |   |     |        | -18.881  | 21.479 | 1.00 | 0.00  | Α  | C  |
| MOTA |     |     |      |   |     |        | -19.195  | 22.935 | 1.00 | 0.00  | A  | С  |
| ATOM | 611 | CD  | ARG  |   |     |        |          | 23.214 | 1.00 | 0.00  | A  | Ŋ  |
| ATOM | 612 | NE  | ARG  |   |     |        | -20.573  |        |      |       |    | č  |
| ATOM | 613 | CZ  | ARG  |   |     |        | -20.777  | 23.511 | 1.00 | 0.00  | A  |    |
| ATOM | 614 | NH1 | ARG  | A | 108 | 12.133 | -19.713  | 23.541 | 1.00 | 0.00  | A  | N  |
| ATOM | 615 | NH2 | ARG  | A | 108 | 12.522 | -22.036  | 23.766 | 1.00 | 0.00  | A  | N  |
| ATOM | 616 | С   | ARG  | A | 108 | 15.555 | -15.342  | 20.511 | 1.00 | 0.00  | A  | С  |
| ATOM | 617 | Ō.  | ARG  |   |     |        | -15.538  | 19.340 | 1.00 | 0.00  | A  | 0  |
|      |     |     | ·GLY |   |     |        | -14.268  | 21,192 | 1.00 | 0.00  | A  | N  |
| ATOM | 618 |     |      |   |     |        | -13.357  | 20.553 | 1.00 | 0.00  | A  | C  |
| ATOM | 619 | CA  | GLY  |   |     |        |          |        | 1.00 | 0.00  | A  | Č  |
| ATOM | 620 | С   | GLY  |   |     |        | -12.117  | 20.113 |      |       |    | ŏ  |
| MOTA | 621 | 0   | GLY  |   |     |        | -12.184  | 19.389 | 1.00 |       | A  |    |
| ATOM | 622 | N   | PHE  | Α | 110 | 16.718 | -10.931  | 20.493 | 1.00 | 0.00  | A  | N  |
| ATOM | 623 | CA  | PHE  | A | 110 | 16.026 | -9.701   | 20.202 | 1.00 | 0.00  | A  | С  |
| ATOM | 624 | CB  | PHE  | A | 110 | 15.797 | -8:838   | 21.457 | 1.00 | 0.00  | A  | C  |
| ATOM | 625 | ÇG  | PHE  |   |     | 15.078 | -9.671   | 22.463 | 1.00 | 0.00  | A  | С  |
|      | 626 |     | PHE  |   |     |        | -10.407  | 22.105 | 1.00 | 0.00  | A  | С  |
| MOTA |     |     |      |   |     | 15.493 |          |        | 1.00 | 0.00  | A  | С  |
| ATOM | 627 |     | PHE  |   |     |        |          | 23.026 | 1.00 | 0.00  | Α  | Č  |
| ATOM | 628 |     | PHE  |   |     |        | -11.172  |        |      |       | A  | č  |
| ATOM | 629 |     | PHE  |   |     |        | -10,470  | 24.706 | 1.00 | 0.00  |    |    |
| ATOM | 630 | CZ  | PHE  | A | 110 |        | -11.207  | 24.331 | 1.00 | 0.00  | A  | C  |
| ATOM | 631 | С   | PHE  | A | 110 | 16.818 | -8.849   | 19.253 | 1.00 | .0.00 | A  | C  |
| MOTA | 632 | 0   | PHE  | A | 110 | 17.994 | -8.574   | 19.494 | 1.00 | 0.00  | A  | 0  |
| ATOM | 633 | N   | GLY  |   |     | 16.268 | -8.567   | 18,048 | 1.00 | 0.00  | A  | N  |
| ATOM | 634 | CA  | GLY  |   |     | 16.952 |          | 17.208 | 1.00 | 0.00  | Α  | C  |
|      |     |     | GLY  |   |     | 16.544 |          | 17.386 | 1.00 | 0.00  | Α  | С  |
| ATOM | 635 | C   |      |   |     | 17.159 |          | 18.121 | 1.00 | 0.00  | A  | 0  |
| ATOM | 636 | 0   | GLY  |   |     |        |          |        |      | 0.00  | A  | N  |
| ATOM | 637 | N   |      |   | 112 | 15.514 |          | 16.596 | 1.00 |       |    |    |
| ATOM | 638 | CA  |      |   | 112 | 14.920 |          | 16.621 | 1.00 | 0.00  | A  | C  |
| ATOM | 639 | CB  | ILE  | Α | 112 | 14.906 | -3.827   | 15.256 | 1.00 | 0.00  | A  | C  |
| ATOM | 640 | CG2 | ILE  | A | 112 | 14.156 | -4.720   | 14.253 | 1.00 | 0.00  | Α  | С  |
| ATOM | 641 | CG1 | ILE  | A | 112 | 14.401 | -2.379   | 15.357 | 1.00 | 0.00  | A  | С  |
| ATOM | 642 |     | ILE  |   |     | 14.686 |          | 14.104 | 1.00 | 0.00  | Α  | С  |
|      | 643 | C   |      |   | 112 | 13.576 |          | 17.280 | 1.00 | 0.00  | A  | С  |
| ATOM |     |     |      |   |     | 13.355 |          | 18.054 | 1.00 | 0.00  | A  | 0  |
| MOTA | 644 | 0   |      |   | 112 |        |          |        | 1.00 | 0.00  | A. | N  |
| ATOM | 645 | N   |      |   | 113 | 12.626 |          | 16.936 |      |       | A  | c  |
| ATOM | 646 | CA  |      |   | 113 | 11.240 |          | 17.309 | 1.00 | 0.00  |    |    |
| ATOM | 647 | CB  | VAL  | A | 113 | 10.357 |          | 16.632 | 1.00 | 0.00  | A  | C  |
| ATOM | 648 | CG1 | VAL  | A | 113 | 8.916  | -5.932   | 17.148 | 1.00 | 0.00  | A  | C  |
| ATOM | 649 | CG2 | VAL  | Α | 113 | 10.493 | -5.895   | 15.113 | 1.00 | 0.00  | A  | C  |
| ATOM | 650 | c   |      |   | 113 | 11.026 |          | 18.784 | 1.00 | 0.00  | A  | ,C |
| ATOM | 651 | ō   |      |   | 113 | 10.310 |          | 19.391 | 1.00 | 0.00  | A  | Ō  |
|      |     |     |      |   | 114 | 11.592 |          | 19.365 | 1.00 | 0.00  | A  | N  |
| MOTA | 652 | N   |      |   |     | 11.511 |          | 20.742 | 1.00 | 0.00  | A  | С  |
| ATOM | 653 | CA  |      |   | 114 |        |          |        | 1.00 | 0.00  | A  | Č  |
| ATOM | 654 | CB  |      |   | 114 | 11.464 |          | 20.892 |      |       |    | c  |
| MOTA | 655 | CG  | PHE  | A | 114 | 10.161 |          | 20.282 | 1.00 | 0.00  | A  |    |
| MOTA | 656 | CD1 | PHE  | Α | 114 | 8.977  | -8.079   | 20.770 | 1.00 | 0.00  | A  | С  |
| ATOM | 657 | CD2 | PHE  | Α | 114 | 10.108 | -9.438   | 19.209 | 1.00 | 0.00  | Α  | С  |
| ATOM | 658 |     | PHE  |   |     | 7.773  |          | 20.213 | 1.00 | 0.00  | A  | C  |
| ATOM |     |     | PHE  |   |     | 8.910  |          | 18.644 | 1.00 | 0.00  | A  | С  |
|      | 659 |     |      |   |     | 7.735  |          | 19.141 | 1.00 | 0.00  | A  | C  |
| ATOM | 660 | CZ  |      |   | 114 |        |          |        | 1.00 | 0.00  | A  | č  |
| ATOM | 661 | С   |      |   | 114 | 12.568 |          | 21.619 |      |       | A  | Ö  |
| MOTA | 662 | 0   | PHE  | A | 114 | 12.466 |          | 22.839 | 1.00 | 0.00  |    |    |
| ATOM | 663 | N   | SER  | A | 115 | 13.664 |          | 21.041 | 1.00 | 0.00  | A  | N  |
| ATOM | 664 | CA  |      |   | 115 | 14.782 | -5.028   | 21.817 | 1.00 | 0.00  | A  | С  |
| ATOM | 665 | CB  |      |   | 115 | 16.035 | -4.720   | 20.975 | 1.00 | 0.00  | Α  | С  |
| ATOM | 666 | ŌĞ  |      |   | 115 | 15.74  |          | 19.979 | 1.00 | 0.00  | Α  | 0  |
| ATOM | 667 | C   |      |   | 115 | 14.429 |          | 22.630 | 1.00 | 0.00  | A  | С  |
|      |     |     |      |   |     | 13.39  |          | 22.420 | 1.00 | 0.00  | A  | 0  |
| ATOM | 668 | 0   |      |   | 115 |        |          | 23.646 | 1.00 | 0.00  | A  | N  |
| ATOM | 669 | N   |      |   | 116 | 15.272 |          |        | 1.00 | 0.00  | A  | Ċ  |
| ATOM | 670 | CA  |      |   | 116 | 15.088 |          | 24.518 |      |       | Ā  | Č  |
| ATOM | 671 | CB  | ASN  | Α | 116 | 14.391 | L -2.754 | 25.842 | 1.00 | 0.00  | n  | C  |

| ATOM | 672   | CG  | ASN   | A 116 | 12.925   | -3.032 | 25.550 | 1.00 | 0.00 | A              | C    |
|------|-------|-----|-------|-------|----------|--------|--------|------|------|----------------|------|
| ATOM | 673   |     |       |       |          |        |        |      |      |                |      |
|      |       |     |       | A 116 | 12.203   |        | 25.092 | 1.00 | 0.00 | A              | . 0  |
| MOTA | 674   | ND2 | : ASN | A 116 | 12.473   | -4.287 | 25.811 | 1.00 | 0.00 | A              | . N  |
| ATOM | 675   | С   | ASN   | A 116 | 16.457   | -1.908 | 24.879 |      |      |                |      |
|      |       |     |       |       |          |        |        |      |      |                |      |
| MOTA | 676   | 0   | ASN   | A 116 | 17.454   | -2.549 | 24.545 | 1.00 | 0.00 | A              | . 0  |
| ATOM | 677   | N   | GLY   | A 117 | 16.521   | -0.723 | 25.529 | 1.00 | 0.00 | A              |      |
|      | 678   |     |       |       |          |        |        |      |      |                |      |
| ATOM |       | CA  |       | A 117 | 17.746   |        | 26.049 | 1.00 | 0.00 | A              | . с  |
| ATOM | 679   | C   | GLY   | A 117 | 18.704   | 0.190  | 24.955 | 1.00 | 0.00 | A              | C    |
| ATOM | 680   | Ó   |       | A 117 |          |        |        |      |      |                |      |
|      |       |     |       |       | 18.319   |        | 23.844 | 1.00 | 0.00 | A              | . 0  |
| ATOM | 681   | N   | LYS . | A 118 | 20.005   | 0.061  | 25.286 | 1.00 | 0.00 | A              | N    |
| ATOM | 682   | ÇA  |       | A 118 |          |        |        |      |      |                |      |
|      |       |     |       |       | 21.124   |        | 24.448 | 1.00 | 0.00 | A              | С    |
| ATOM | - 683 | CB  | LYS . | A 118 | 22.465   | 0.207  | 25.198 | 1.00 | 0.00 | A              | С    |
| ATOM | 684   | CG  | 7.79  | A 118 | 22.390   |        | 26.411 | 1.00 |      |                |      |
|      |       |     |       |       |          |        |        |      | 0.00 | A              |      |
| ATOM | 685   | CD  | LYS . | A 118 | 22.078   | -2.199 | 26.111 | 1.00 | 0.00 | A              | С    |
| ATOM | 686   | CE  | LYS   | A 118 | 21.726   | -3.020 | 27.352 | 1.00 | 0.00 | A              |      |
|      |       |     |       |       |          |        |        |      | -    |                |      |
| ATOM | 687   | NZ  |       | A 118 | 20.462   | -2.528 | 27.949 | 1.00 | 0.00 | A              | N    |
| ATOM | 688   | С   | LYS   | A 118 | 21.116   | -0.478 | 23.217 | 1.00 | 0.00 | A              | С    |
| ATOM | 689   | 0   |       | A 118 | 21.499   |        |        |      |      |                |      |
|      |       |     |       |       |          |        | 22.148 | 1.00 | 0.00 | A              | 0    |
| ATOM | 690   | N   | ARG Z | A 119 | 20.682   | -1.749 | 23.351 | 1.00 | 0.00 | A              | N    |
| ATOM | 691   | ÇA  | ARG   | A 119 | 20.624   | -2.722 | 22.292 | 1.00 | 0.00 | A              |      |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 692   | CB  | AKG A | A 119 | 20.006   | -4.042 | 22.785 | 1.00 | 0.00 | · A            | C    |
| MOTA | 693   | CG  | ARG 2 | A 119 | 19.653   | -5.019 | 21.663 | 1.00 | 0.00 | A              | С    |
| ATOM | 694   | CD  |       |       |          |        |        |      |      |                |      |
|      |       |     |       | A 119 | 20.737   | -6.026 | 21.291 | 1.00 | 0.00 | A              | С    |
| ATOM | 695   | NE  | ARG I | A 119 | 20.171   | -7.377 | 21.581 | 1.00 | 0.00 | A              | N    |
| ATOM | 696   | CZ  |       | A 119 | 20.307   | -7.937 | 22.819 | 1.00 | 0.00 |                |      |
|      |       |     |       |       |          |        |        |      |      | A              | С    |
| ATOM | 697   | NHl | ARG A | A 119 | 20.971   | -7.265 | 23.800 | 1.00 | 0.00 | A              | N.   |
| ATOM | 698   | NH2 | ARG A | 110   | 19.778   | -9.172 | 23.072 | 1.00 | 0.00 |                |      |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 699   | С   | ARG A | A 119 | 19.688   | -2.231 | 21.236 | 1.00 | 0.00 | · А            | C    |
| ATOM | 700   | 0   | ARG Z | A 119 | 20.028   | -2.211 | 20.054 | 1.00 | 0 00 | · A            |      |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 701   | N   | TRP A | A 120 | 18.497   | -1.787 | 21.670 | 1.00 | 0.00 | A              | N.   |
| ATOM | 702   | CA  | TRP 7 | A 120 | 17.473   | -1.314 | 20.788 | 1.00 | 0.00 | . A            | , C. |
| ATOM |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 703   | CB  |       | A 120 | 16.143   | -1.044 | 21.516 | 1.00 | 0.00 | A              | C,   |
| ATOM | 704   | CG  | TRP A | A 120 | 15.074   | -0.432 | 20.642 | 1.00 | 0.00 | A              | C.   |
| ATOM | 705   | CD2 | TRP A | 120   | 14.578   |        | 20.800 |      |      |                |      |
|      |       |     |       |       |          | 0.907  |        | 1.00 |      | A              |      |
| ATOM | 706   | CD1 | TRP A | A 120 | 14.375   | -0.981 | 19.608 | 1.00 | 0.00 | A              | C ·  |
| ATOM | 707   |     | TRP A |       | 13.486   | -0.065 | 19.104 |      |      |                |      |
|      |       |     |       |       |          |        |        | 1.00 |      | A              |      |
| MOTA | 708   | CE2 | TRP F | A 120 | 13.595   | 1.102  | 19.830 | 1.00 | 0.00 | A              | C    |
| ATOM | 709   | CER | TRP A | 120   | 14.911   | 1.892  | 21.684 | 1.00 |      | A              |      |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 710   | CZZ | TRP A | 1 120 | 12.930   | 2.290  | 19.727 | 1.00 | 0.00 | - i - <b>A</b> | C.   |
| ATOM | 711   | CZ3 | TRP A | 120   | 14.240   | 3.089  | 21.579 | 1.00 | 0.00 | Α              | С    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 712   | CHZ | TRP F | 1 120 | . 13.269 | 3.284  | 20.619 | 1.00 | 0.00 | A              | С    |
| ATOM | 713   | С   | TRP A | 120   | 17.894   | -0.053 | 20.126 | 1.00 | 0.00 | A              | С    |
| ATOM | 714   | 0   |       | 120   |          |        |        |      |      |                |      |
|      |       |     |       |       | 17.811   | 0.016  | 18.904 | 1.00 | 0.00 | A              | 0    |
| ATOM | 715   | N   | LYS A | 121   | 18.410   | 0.916  | 20.917 | 1.00 | 0.00 | A              | N    |
| ATOM | 716   | CA  | LYS A | 121   | 18.771   | 2.247  | 20.495 | 1.00 | 0.00 | A              | C    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 717   | CB  | LYS A | 1 121 | 19.414   | 3.068  | 21.624 | 1.00 | 0.00 | A              | С    |
| ATOM | 718   | CG  | LYS A | 121   | 18.453   | 3.592  | 22.692 | 1.00 | 0.00 | A              | С    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 719   | CD  | LYS A | 121   | 17.509   | 4.685  | 22.184 | 1.00 | 0.00 | A              | С    |
| ATOM | 720   | CE  | LYS A | 121   | 16.741   | 5.389  | 23.305 | 1.00 | 0.00 | A              | С    |
| ATOM | 721   | NZ  | LYS A |       |          |        |        |      |      |                |      |
|      |       |     |       |       | 16.110   | 6.627  | 22.791 | 1.00 | 0.00 | A              | N    |
| ATOM | 722   | С   | LYS A | 121   | 19.809   | 2.194  | 19.412 | 1.00 | 0.00 | A              | С    |
| ATOM | 723   | 0   | LYS A | 121   | 19.677   | 2.874  | 18.396 | 1.00 | 0.00 | A              | 0    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 724   | N   | GLU A |       | 20.851   | 1.362  | 19.595 | 1.00 | 0.00 | A              | N    |
| ATOM | 725   | CA  | GLU A | 122   | 21.910   | 1.287  | 18.625 | 1.00 | 0.00 | A              | С    |
| ATOM | 726   | СВ  | GLU A |       | 23.131   |        |        |      |      |                |      |
|      | ~     |     |       |       |          | 0.507  | 19.131 | 1.00 | 0.00 | A              | С    |
| ATOM | 727   | CG  | GLU A | 122   | 23.903   | 1.255  | 20.222 | 1.00 | 0.00 | A              | С    |
| ATOM | 728   | CD  | GLU A |       | 25.083   | 0.396  | 20.642 | 1.00 | 0.00 |                |      |
|      |       |     |       |       |          |        |        |      |      | A              | C    |
| ATOM | 729   |     | GLU A |       | 25.813   | -0.091 | 19.735 | 1.00 | 0.00 | A              | 0    |
| MOTA | 730   | OE2 | GLU A | 122   | 25.280   | 0.226  | 21.874 | 1.00 | 0.00 | A              | 0    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 731   | C   | GLU A |       | 21.486   | 0.660  | 17.330 | 1.00 | 0.00 | A              | С    |
| ATOM | 732   | 0   | GLU A | 122   | 21.734   | 1.229  | 16.268 | 1.00 | 0.00 | A              | . 0  |
| ATOM | 733   | N   |       |       |          |        |        | _    |      |                |      |
|      |       | N   | ILE A |       | 20.809   | -0.505 | 17.400 | 1.00 | 0.00 | A              | N    |
| ATOM | 734   | CA- | ILE A | 123   | 20.409   | -1.296 | 16.258 | 1.00 | 0.00 | A              | C    |
| MOTA | 735   | CB  | ILE A |       | 19.793   | -2.602 | 16.687 | 1.00 |      |                |      |
|      |       |     |       |       |          |        |        |      | 0.00 | A              | С    |
| ATOM | 736   | CG2 | ILE A | 123   | 19.188   | -3.314 | 15.464 | 1.00 | 0.00 | A              | С    |
| ATOM | 737   |     | ILE A |       | 20.847   | -3.462 | 17.408 | 1.00 |      |                |      |
|      |       |     |       |       |          |        |        |      | 0.00 | . А            | С    |
| ATOM | 738   | CD1 | ILE A | 123   | 22.019   | -3.884 | 16.531 | 1.00 | 0.00 | A              | С    |
| ATOM | 739   | С   | ILE A |       | 19.420   | -0.531 | 15.419 | 1.00 |      |                |      |
|      |       |     |       |       |          |        |        |      | 0.00 | A              | С    |
| ATOM | 740   | 0   | ILE A | 123   | 19.468   | -0.571 | 14.191 | 1.00 | 0.00 | A              | 0    |
| ATOM | 741   | N   | ARG A | 124   | 18.508   | 0.190  | 16.094 | 1.00 | 0.00 | A              | N    |
|      |       |     |       |       |          |        |        |      |      |                |      |
| ATOM | 742   | CA  | ARG A | 124   | 17.465   | 0.999  | 15.519 | 1.00 | 0.00 | A              | С    |
| ATOM | 743   | СB  | ARG A | 124   | 16.695   | 1.708  | 16.662 | 1.00 | 0.00 | A              | C    |
| ATOM | 744   |     |       |       | 15.363   |        |        |      |      |                |      |
|      |       |     | ARG A |       |          | 2.419  | 16.433 | 1.00 | 0.00 | A              | С    |
| MOTA | 745   | CD  | ARG A | 124   | 14.797   | 2.383  | 15.032 | 1.00 | 0.00 | A              | С    |
| ATOM | 746   |     | ARG A |       | 13.985   | 3.627  | 14.874 | 1.00 |      |                |      |
|      |       |     | J A   |       |          | J. 02. |        | 4.00 | 0.00 | A              | N    |

## Figure 7

|    |        |     |      |       |    |     | •      |       |          |         |      |   |        |     |
|----|--------|-----|------|-------|----|-----|--------|-------|----------|---------|------|---|--------|-----|
|    | ATOM   | 747 | CZ   | ARG   | Α  | 124 | 12.65  | 6 3.6 | 59 15.1° | 77 1.00 | 0.00 |   | A      | С   |
|    | ATOM   | 748 |      | ARG   |    |     | 12.01  |       |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 749 |      | ARG   |    |     |        |       |          |         |      |   |        |     |
|    |        |     |      |       |    |     | 11.96  |       |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 750 | С    |       |    | 124 | 18.10  |       |          |         | 0.00 |   | A      | С   |
|    | MOTA   | 751 | 0    | ARG   | A  | 124 | 17.72  | 2.3   | 25 13.50 | 52 1.00 | 0.00 |   | A      | 0   |
|    | ATOM   | 752 | N    | ARG   | A  | 125 | 19.13  | 5 2.7 | 13 15.29 | 7 1.00  | 0.00 |   | Α      | N   |
|    | ATOM   | 753 | CA   | ARG   | A  | 125 | 19.80  | 7 3.8 | 50 14.68 | 4 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 754 | CB   | ARG   |    |     | 20.85  |       |          |         | 0.00 |   | A      | č   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 755 | ÇG   | ARG   |    |     | 21.613 |       |          |         | 0.00 |   | A      | C   |
|    | ATOM   | 756 | CD   | ARG   |    |     | 22.648 |       |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 757 | ΝE   | ARG   | A  | 125 | 23.441 | 5.2   | 50 16.42 | 0 1.00  | 0.00 |   | A      | N   |
|    | ATOM   | 758 | CZ   | ARG   | A  | 125 | 24.627 | 7 5.5 | 70 17.03 | 4 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 759 | NH1  | ARG   | A  | 125 | 25.117 | 6.8   | 12 16.94 |         | 0.00 |   | A      | N   |
|    | ATOM   | 760 |      | ARG   |    |     | 25.327 |       |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 761 | C    | ARG   |    |     |        |       |          |         | 0.00 |   |        |     |
|    |        |     |      |       |    |     | 20.538 |       |          |         |      |   | A      | C   |
|    | ATOM   | 762 | 0.   | ARG   |    |     | 20.481 |       |          | _       | 0.00 |   | A      | 0   |
|    | ATOM   | 763 | N    | PHE   |    |     | 21.248 | 2.3   | 14 13.47 |         | 0.00 |   | A      | N   |
|    | ATOM   | 764 | CA   | PHE   | A  | 126 | 22.009 | 1.83  | 39 12.39 | 2 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 765 | CB   | PHE   | A  | 126 | 22.905 | 0.6   | 2 12.67  | 1 1.00  | 0.00 |   | Α      | С   |
|    | ATOM   | 766 | CG   | PHE   | A  | 126 | 23.652 | 0.20  | 0 11.43  | 5 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 767 |      | PHE   |    |     | 24.756 |       |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 768 |      | PHE   |    |     | 23.244 |       |          |         | 0.00 |   | A      | č   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 769 |      | PHE   |    |     | 25.439 |       |          |         | 0.00 |   | A      | C   |
|    | ATOM   | 770 | CE2  | PHE   |    |     | 23.927 | -1.2  | 16 9.57  | 9 1.00  | 0.00 |   | Α      | C   |
|    | MOTA   | 771 | CZ   | PHE   | A  | 126 | 25.018 | -0.5  | 8 9.16   | 3 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 772 | C    | PHE   | A  | 126 | 21.070 | 1.47  | 3 11.25  | 0 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 773 | 0    | PHE   |    |     | 21.363 |       |          |         | 0.00 |   | A      | 0   |
|    | ATOM   | 774 | N    | SER   |    |     | 19.924 |       |          |         | 0.00 |   | A      | N . |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 775 | CA   | SER   |    |     | 18.944 |       |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 776 | . CB | SER   |    |     | 17.813 |       | 4 11.44  | 4 1.00  | 0.00 |   | A      | С   |
|    | ATOM . | 777 | OG   | SER   | Α  | 127 | 16.879 | -0.86 | 6 10.51  | 6 1.00  | 0.00 |   | Α      | 0   |
|    | ATOM   | 778 | С    | SER   | Α  | 127 | 18.352 | 1.49  | 5 9.89   | 9 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 779 | Ó    | SER   |    |     | 18.224 |       |          |         | 0.00 |   | A      | 0   |
|    | ATOM   | 780 | N    | LEU   |    |     | 18.005 |       |          |         | 0.00 |   | A      | N   |
|    |        |     |      | LEU   |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 781 | CA   |       |    |     | 17.405 |       |          |         | 0.00 |   | A      | C   |
|    | ATOM 4 | 782 | CB   | LEU . |    |     | 16.937 | 4.88  | 8 10.78  | 8 1.00  | 0.00 |   | A      | C   |
| -  | ATOM · | 783 | CG   | LEU . | A  | 128 | 15.513 | 4.71  | .7 11.35 | 2 1.00  | 0.00 |   | A      | С   |
| ÷. | ATOM   | 784 | CD2  | LEU . | A  | 128 | 15.303 | 3.33  | 3 11.95  | 8 1.00  | 0.00 |   | A      | С   |
| :  | ATOM ' | 785 |      | LEU   |    |     | 14.447 |       |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 786 | c    | LEU   |    |     | 18.367 |       |          |         | 0.00 |   | A      | č   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 787 | 0    | LEU   |    |     | 17.974 |       |          |         | 0.00 |   | A      | 0   |
|    | ATOM   | 788 | N    | MET . |    |     | 19.650 |       |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 789 | CA   | MET : | A  | 129 | 20.674 | 5.00  | 6 8.48   | 5 1:00  | 0.00 |   | A      | С   |
|    | ATOM   | 790 | CB   | MET . | A  | 129 | 21.954 | 5.22  | 1 9.32   | 0 1.00  | 0.00 |   | Α      | С   |
|    | ATOM   | 791 | CG   | MET : | A  | 129 | 22.825 | 6.39  | 1 8.86   | 4 1.00  | 0.00 |   | Α      | С   |
|    | ATOM   | 792 | .SD  | MET . |    |     | 24.231 |       |          |         | 0.00 |   | A      | s   |
|    | ATOM   | 793 | CE   | MET : |    |     | 25.211 |       |          |         | 0.00 | • | A      | Ċ   |
|    | ATOM   | 794 | c    | MET   |    |     | 20.897 |       |          |         | 0.00 |   | A      | č   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |
|    | ATOM   | 795 | 0    | MET : |    |     | 21.031 |       |          |         | 0.00 |   | A      | 0   |
|    | ATOM   | 796 | N    | THR A |    |     | 20.901 | 2.87  |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 797 | CA   | THR 3 | A  | 130 | 21.084 | 2.01  | 4 6.18   | 1 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 798 | CB   | THR A | A  | 130 | 21.350 | 0.59  | 8 6.60   | 9 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 799 | OG1  | THR A | A  | 130 | 22.404 | 0.57  | 2 7.55   | 6 1.00  | 0.00 |   | Α      | 0   |
|    | ATOM   | 800 | CG2  | THR 2 | A  | 130 | 21.807 | -0.21 |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 801 | c    | THR A |    |     | 19.839 | 2.04  |          |         | 0.00 |   | A      | č   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        | _   |
|    | ATOM   | 802 | 0    | THR   |    |     | 19.904 | 1.84  |          |         | 0.00 |   | A<br>A | N 0 |
|    | ATOM   | 803 | N    | LEU A |    |     | 18.661 | 2.23  |          |         | 0.00 |   | A      | N   |
|    | MOTA   | 804 | CA   | LEU A |    |     | 17.362 | 2.22  |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 805 | CB   | LEU A |    |     | 16.175 | 2.01  |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 806 | CG   | LEU A | A  | 131 | 16.057 | 0.53  | 8 6.72   | 1 1.00  | 0.00 |   | Α      | С   |
|    | ATOM   | 807 | CD2  | LEU A | A  | 131 | 16.259 | -0.42 | 2 5.53   | 7 1.00  | 0.00 |   | Α      | С   |
|    |        | 808 |      | LEU A |    |     | 14.765 | 0.27  |          |         | 0.00 |   | A      | С   |
|    | ATOM   | 809 | c    |       |    |     |        | 3.41  |          |         | 0.00 |   | A      | Č   |
|    |        |     |      | LEU A |    |     | 17.095 |       |          |         |      |   |        |     |
|    | ATOM   | 810 | 0    | LEU A |    |     | 16.110 | 3.41  |          |         | 0.00 |   | A      | 0   |
|    | ATOM   | 811 | N    | ARG A |    |     | 17.916 | 4.48  |          |         | 0.00 |   | A      | N   |
|    | ATOM   | 812 | CA   | ARG A | ł  | 132 | 17.781 | 5.70  | 4 3.83   |         | 0.00 |   | A      | С   |
|    | ATOM   | 813 | CB   | ARG A | A  | 132 | 18.812 | 6.75  | 4 4.27   | 4 1.00  | 0.00 |   | A      | С   |
|    | ATOM   | 814 | CG   | ARG A |    |     | 18.606 | 7.17  |          |         | 0.00 |   | Α      | Ċ   |
|    | MOTA   | 815 | CD   | ARG I |    |     | 19.895 | 7.60  |          |         | 0.00 |   | A      | Ċ.  |
|    | ATOM   | 816 |      |       |    |     |        | 8.93  |          |         | 0.00 |   | A      | N   |
|    |        |     | NE   | ARG A |    |     | 20.288 |       |          |         | 0.00 |   |        |     |
|    | MOTA   | 817 | CZ   | ARG A |    |     | 21.574 | 9.15  |          |         |      |   | A      | C   |
|    | ATOM   | 818 |      | ARG A |    |     | 22.491 | 8.14  |          |         | 0.00 |   | A      | , N |
|    | MOTA   | 819 | NH2  | ARG F | ١  | 132 | 21.944 | 10.37 | 5 5.02   |         | 0.00 |   | A      | N   |
|    | ATOM   | 820 | С    | ARG A | ١. | 132 | 17.973 | 5.37  | 5 2.38   | 1.00    | 0.00 |   | A      | С   |
|    | MOTA   | 821 | ŏ    | ARG A |    |     | 18.618 | 4.37  |          |         | 0.00 |   | A      | 0   |
|    |        |     | •    |       | •  |     | 20.020 | 4.51  |          |         |      |   |        | -   |
|    |        |     |      |       |    |     |        |       |          |         |      |   |        |     |

1.11。 高在海崎 3.21 新<sup>655</sup>

MANAGE TO SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE THE SERVICE

Figure 7

| ATOM | 822  | N   | ASN | A | 133  | 17.369 | 6.209  | 1.495  | 1.00 | 0.00 | 1  | N N |
|------|------|-----|-----|---|------|--------|--------|--------|------|------|----|-----|
| ATOM | 823  | CA  |     |   | 133  | 17.276 | 6.024  | 0.064  | 1.00 | 0.00 | Į  |     |
| ATOM | 824  | CB  |     |   | 133  | 16.641 | 7.248  | -0.619 | 1.00 | 0.00 | 7  |     |
| ATOM | 825  | CG  |     |   | 133  | 16.301 | 6.871  | -2.049 | 1.00 | 0.00 | 7  |     |
| ATOM | 826  |     |     |   | 133  | 16.844 | 7.400  | -3.017 | 1.00 | 0.00 | 7  |     |
| ATOM | 827  |     |     |   | 133  | 15.358 | 5.903  | -2.176 | 1.00 | 0.00 | Į  |     |
| ATOM | 828  | С   |     |   | 133  | 18.646 | 5.851  | -0.531 | 1.00 | 0.00 | I  |     |
| ATOM | 829  | ō   |     |   | 133  | 18.865 | 4.997  | -1.390 | 1.00 | 0.00 | 7  |     |
| ATOM | 830  | N   |     |   | 134  | 19.577 | 6.696  | -0.067 | 1.00 | 0.00 | 7  |     |
| ATOM | 831  | CA  |     |   | 134  | 20.984 | 6.747  | -0.357 | 1.00 | 0.00 | 7  |     |
| ATOM | 832  | CB  |     |   | 134  | 21.514 | 8.183  | -0.448 | 1.00 | 0.00 | Į  |     |
| ATOM | 833  | CG  |     |   | 134  | 20.917 | 8.667  | -1.724 | 1.00 | 0.00 | 7  |     |
| ATOM | 834  |     |     |   | 134  | 21.498 | 8.326  | -2.924 | 1.00 | 0.00 |    |     |
| ATOM | 835  |     | PHE |   |      | 19.777 | 9.436  | -1.726 | 1.00 | 0.00 | 7  |     |
| ATOM | 836  |     |     |   | 134  | 20.956 | 8.755  | -4.112 | 1.00 | 0.00 | F  |     |
| ATOM | 837  |     | PHE |   |      | 19.231 | 9.869  | -2.911 | 1.00 | 0.00 | 7  |     |
| ATOM | 838  | CZ  |     |   | 134  | 19.821 | 9.527  | -4.106 | 1.00 | 0.00 | Ī  |     |
| ATOM | 839  | C   |     |   | 134  | 21.870 | 5.932  | 0.554  | 1.00 | 0.00 | 7  |     |
| ATOM | 840  | 0   |     |   | 134  | 23.073 | 5.864  | 0.318  | 1.00 | 0.00 | P  |     |
| ATOM | 841  | N   |     |   | 135. | 21.328 | 5.359  | 1.642  | 1.00 | 0.00 | F  |     |
| ATOM | 842  | CA  |     |   | 135  | 22.015 | 4.760  | 2.766  | 1.00 | 0.00 | 2  |     |
| ATOM | 843  | C   |     |   | 135  | 23.062 | 3.711  | 2.468  | 1.00 | 0.00 |    |     |
| ATOM | 844  | Ō   |     |   | 135  | 23.867 |        | 3.359  | 1.00 | 0.00 | 7  |     |
| ATOM | 845  | N   |     |   | 136  | 23.053 | 3.008  | 1.310  | 1.00 | 0.00 | A  |     |
| ATOM | 846  | CA  |     |   | 136  | 24.085 | 2.001  | 1.179  | 1.00 | 0.00 | A  |     |
| ATOM | 847  | CB  |     |   | 136  | 23.652 | 0.704  | 1.879  | 1.00 | 0.00 | A  |     |
| ATOM | 848  | CG  |     |   | 136  | 22.155 | 0.432  | 1.689  | 1.00 | 0.00 | P  |     |
| ATOM | 849  | SD  |     |   | 136  | 21.590 | -1.229 | 2.139  | 1.00 | 0.00 | A  |     |
| ATOM | 850  | CE  |     |   | 136  |        | -0.878 | 1.872  | 1.00 | 0.00 | A  |     |
| ATOM | 851  | C   |     |   | 136  |        | 1.639  | -0.255 | 1.00 | 0.00 | A  |     |
| MOTA | 852  | ō   |     |   | 136  | 23.636 | 0.935  | -0.918 | 1.00 | 0.00 | 2  |     |
| ATOM | 853  | N   |     |   | 137  |        | 2.040  | -0.762 | 1.00 | 0.00 | A  |     |
| ATOM | 854  | CA  |     |   | 137  | 25.948 | 1.626  | -2.088 | 1.00 | 0.00 | A  |     |
| ATOM | 855  | C   |     |   | 137  |        | 2.573  | -3.093 | 1.00 | 0.00 | Ā  |     |
| ATOM | 856  | ō   |     |   | 137  | 24.652 | 3.510  | -2.756 | 1.00 | 0.00 | 2  |     |
| ATOM | 857  | N   |     |   | 138  | 25.715 | 2.328  | -4.373 | 1.00 | 0.00 | ZA |     |
| ATOM | 858  | CA  |     |   | 138  | 25.316 | 3.105  | -5.514 | 1.00 | 0.00 | A  |     |
| ATOM | 859  | CB  |     |   | 138  | 26.085 | 2.715  | -6.788 | 1.00 | 0.00 | A  |     |
| ATOM | 860  | CG  |     |   | 138  |        | 3.083  | -6.717 | 1.00 | 0.00 | A  |     |
| ATOM | 861  | CD  |     |   | 138  | 28.430 | 2.425  | -7.796 | 1.00 | 0.00 | A  |     |
| ATOM | 862  | CE  |     |   | 138  | 29.913 | 2.790  | -7.684 | 1.00 | 0.00 | A  |     |
| ATOM | 863  | N2  |     |   | 138  | 30.715 | 1.967  | -8.615 | 1.00 | 0.00 | A  |     |
| ATOM | 864  | c   |     |   | 138  | 23.849 | 2.968  | -5.803 | 1.00 | 0.00 | A  |     |
| ATOM | 865  | ō   |     |   | 138  | 23.247 | 3.896  | -6.340 | 1.00 | 0.00 | A  |     |
| ATOM | 866  | N   |     |   | 139  | 23.250 | 1.794  | -5.505 | 1.00 | 0.00 | A  |     |
| ATOM | 867  | CA  | ARG |   |      | 21.866 | 1.534  | -5.821 | 1.00 | 0.00 | A  |     |
| ATOM | 868  | CB  | ARG |   |      | 21.582 | 0.033  | -5.984 | 1.00 | 0.00 | A  |     |
| ATOM | 869  | CG  | ARG |   |      | 20.131 | -0.296 | -6.317 | 1.00 | 0.00 | A  |     |
| ATOM | 870  | CD  |     |   | 139  | 19.896 | -1.783 | -6.575 | 1.00 | 0.00 | A  |     |
| ATOM | .871 | NE  | ARG |   |      | 18.438 | ~1.952 | -6.816 | 1.00 | 0.00 | A  |     |
| MOTA | 872  | CZ  |     |   | 139  | 18.005 | -2.627 | -7.916 | 1.00 | 0.00 | A  |     |
| MOTA | 873  |     | ARG |   |      | 18.910 | -3.143 | -8.797 | 1.00 | 0.00 | A  |     |
| ATOM | 874  |     | ARG |   |      | 16.667 | -2.777 | -8.135 | 1.00 | 0.00 | A  | N   |
| MOTA | 875  | C   | ARG |   |      | 20.972 | 2.062  | -4.738 | 1.00 | 0.00 | A  |     |
| MOTA | 876  | 0   | ARG | Α | 139  | 21.174 | 1.791  | -3.557 | 1.00 | 0.00 | A  | . 0 |
| ATOM | 877  | N   |     |   | 140  | 19.934 | 2.834  | -5.130 | 1.00 | 0.00 | A  | . N |
| ATOM | 878  | CA  | SER |   |      | 19.052 | 3.429  | -4.165 | 1.00 | 0.00 | A  | . с |
| MOTA | 879  | CB  | SER | Α | 140  | 18.388 | 4.721  | -4.675 | 1.00 | 0.00 | A  | . с |
| MOTA | 880  | OG  | SER |   |      | 17.589 | 4.438  | -5.813 | 1.00 | 0.00 | A  | . 0 |
| ATOM | 881  | С   | SER |   |      | 17.970 | 2.472  | -3.788 | 1.00 | 0.00 | A  | . с |
| ATOM | 882  | Ō   | SER | А | 140  | 17.739 | 1.470  | -4.467 | 1.00 | 0.00 | A  | . 0 |
| ATOM | 883  | N   | ILE | A | 141  | 17.289 | 2.785  | -2.660 | 1.00 | 0.00 | A  | . N |
| ATOM | 884  | CA  | ILE |   |      | 16.183 | 2.031  | -2.146 | 1.00 | 0.00 | A  | . с |
| ATOM | 885  | CB  | ILE |   |      | 15.665 | 2.578  | -0.844 | 1.00 | 0.00 | A  |     |
| ATOM | 886  | CG2 |     |   |      | 14.337 | 1.878  | -0.516 | 1.00 | 0.00 | A  |     |
| ATOM | 887  |     | ILE |   |      | 16.722 | 2.416  | 0.262  | 1.00 | 0.00 | A  |     |
| ATOM | 888  | CD1 |     |   |      | 17.066 | 0.957  | 0.567  | 1.00 | 0.00 | A  |     |
| ATOM | 889  | C   | ILE |   |      | 15.085 | 2.121  | -3.162 | 1.00 | 0.00 | A  |     |
| ATOM | 890  | Ö   | ILE |   |      | 14.426 | 1.129  | -3.469 | 1.00 | 0.00 | A  |     |
| ATOM | 891  |     | GLU |   |      | 14.915 | 3.327  | -3.739 | 1.00 | 0.00 | A  |     |
| ATOM | 892  |     | GLU |   |      | 13.892 | 3.635  | -4.697 | 1.00 | 0.00 | A  |     |
| ATOM | 893  |     | GLU |   |      | 13.860 | 5.115  | -5.117 | 1.00 | 0.00 | A  |     |
| MOTA | 894  |     | GLU |   |      | 12.664 | 5.437  | -6.019 | 1.00 | 0.00 | A  |     |
| ATOM | 895  |     | GLU |   |      | 12.693 | 6.911  | -6.393 | 1.00 | 0.00 | A  |     |
| MOTA | 896  | OE1 |     |   |      | 13.427 | 7.688  | -5.725 | 1.00 | 0.00 | A  |     |
|      | 000  | OEI | JUU |   |      | 20.761 |        |        | • •  |      | •• | -   |

| ATOM         | 897        | OE2      | GLU        | Α  | 142 | 11.967           | 7.278            | -7.356             | 1.00         | 0.00 | 2                                       | A 0 |
|--------------|------------|----------|------------|----|-----|------------------|------------------|--------------------|--------------|------|-----------------------------------------|-----|
| ATOM         | 898        | С        | GLU        | A  | 142 | 14.066           | 2.827            | -5.944             | 1.00         | 0.00 | 2                                       | A C |
| MOTA         | 899        | 0        | GLU        | Α  | 142 | 13.076           | 2.465            | -6.577             | 1.00         | 0.00 | 2                                       | A 0 |
| ATOM         | 900        | N        | ASP        | A  | 143 | 15.330           | 2.549            | -6.317             | 1.00         | 0.00 | 2                                       | A N |
| ATOM         | 901        | CA       | ASP        | A  | 143 | 15.652           | 1.796            | -7.496             | 1.00         | 0.00 | 1                                       | A C |
| ATOM         | 902        | CB       |            |    | 143 | 17.173           | 1.730            | -7.710             | 1.00         | 0.00 |                                         | A C |
| ATOM         | 903        | CG       |            |    | 143 | 17.481           | 1.432            | -9.168             | 1.00         | 0.00 |                                         | Y C |
| ATOM         | 904        | -        | ASP        |    | -   | 16.534           | 1.138            | -9.946             | 1.00         | 0.00 |                                         | 4 0 |
| ATOM         | 905        |          | ASP        |    |     | 18.687           | 1.507            | -9.525             | 1.00         | 0.00 |                                         | . 0 |
| ATOM         | 906        | C        |            |    | 143 | 15.142           | 0.395            | -7.336             | 1.00         | 0.00 |                                         | A C |
| MOTA         | 907        | 0        |            |    | 143 | 14.560           | -0.162           | -8.268<br>-6.120   | 1.00         | 0.00 |                                         | 1 0 |
| ATOM<br>ATOM | 908<br>909 | N<br>CA  | ARG        |    | 144 | 15.329<br>14.913 | -0.170<br>-1.504 | -5.782             | 1.00         | 0.00 |                                         | A C |
| ATOM         | 910        | CB       | ARG        |    |     | 15.258           | -1.913           | -4.344             | 1.00         | 0.00 |                                         | Č   |
| ATOM         | 911        | CG       | ARG        |    |     | 16.740           | -2.172           | -4.107             | 1.00         | 0.00 |                                         | Č   |
| ATOM         | 912        | CD       | ARG        |    |     | 17.032           | -2.663           | -2.691             | 1.00         | 0.00 | ,                                       |     |
| ATOM         | 913        | NE       | ARG        |    |     | 18.500           | -2.886           | -2.613             | 1.00         | 0.00 | 2                                       |     |
| ATOM         | 914        | CZ       | ARG        | Α  | 144 | 19.325           | -1.832           | -2.365             | 1.00         | 0.00 | 1                                       | A C |
| MOTA         | 915        | NH1      | ARG        | A  | 144 | 18.802           | -0.587           | -2.168             | 1.00         | 0.00 | 7                                       | N N |
| MOTA         | 916        | NH2      | ARG        | A  | 144 | 20.674           | -2.026           | -2.323             | 1.00         | 0.00 | 7                                       | N N |
| ATOM         | 917        | С        | ARG        |    |     | 13.426           | -1.607           | -5.866             | 1.00         | 0.00 | 2                                       |     |
| MOTA         | 918        | 0        | ARG        |    |     | 12.913           | -2.580           | -6.421             | 1.00         | 0.00 | I                                       |     |
| ATOM         | 919        | N        | VAL        |    |     | 12.712           | -0.598           | -5.323             | 1.00         | 0.00 | 7                                       |     |
| ATOM         | 920        | CA       | VAL        |    |     | 11.275           | -0.608           | -5.298             | 1.00         | 0.00 | I                                       |     |
| ATOM         | 921        | CB       | VAL        |    |     | 10.696           | 0.522            | -4.492             | 1.00         | 0.00 | I                                       |     |
| ATOM<br>ATOM | 922<br>923 |          | VAL        |    |     | 9.160<br>11.229  | 0.471            | -4.584             | 1.00         | 0.00 | 1                                       |     |
| ATOM         | 924        | C        | VAL<br>VAL |    |     | 10.733           | -0.519           | -3.054<br>-6.696   | 1.00         | 0.00 | Į                                       |     |
| ATOM         | 925        | ō        | VAL        |    |     | 9.786            | -1.224           | -7.040             | 1.00         | 0.00 | Į                                       |     |
| ATOM         | 926        | N        | GLN        |    |     | 11.350           | 0.330            | -7.541             | 1.00         | 0.00 |                                         |     |
| ATOM .       | 927        | CA       | GLN        |    |     | 10.887           | 0.500            | -8.888             | 1.00         |      |                                         |     |
| ATOM         | 928        | СВ       | GLN        |    |     | 11.388           | 1.796            | -9.561             | 1.00         |      | Į                                       |     |
| ATOM         | 929        | CG       | GLN        |    |     | 12.898           | 1.990            | -9.648             | 1.00         | 0.00 | Ī                                       |     |
| ATOM         | 930        | CD       | GLN        |    |     | 13.131           |                  | -10.069            | 1.00         | 0.00 | 7                                       |     |
| ATOM         | 931        | OE1      | GLN        | Α  | 146 | 12.193           |                  | -10.408            | 1.00         | 0.00 | 1                                       | . 0 |
| ATOM         | 932        | NE2      | GLN        | A  | 146 | 14.417           | 3.881            | -10.037            | 1.00         | 0.00 | . 7                                     | N   |
| ATOM         | 933        | С        | GLN        | A  | 146 | 11.103           | -0.729           | -9.724             | 1.00         | 0.00 | 7                                       | C   |
| ATOM         | 934        | 0        | GLN        | A  | 146 | 10.273           | -1.022           | -10.587            | 1.00         | 0.00 | P                                       | 0   |
| ATOM         | 935        | N        | GLU        |    |     | 12.204           |                  | -9.484             |              | 0.00 | P                                       |     |
| ATOM         | 936        | CA       | GLU        |    |     | 12.455           |                  | -10.220            | 1.00         | 0.00 | F                                       |     |
| ATOM         | 937        | CB       | GLU        |    |     | 13.813           | -3.353           | -9.936             | 1.00         | 0.00 | 2                                       |     |
| ATOM         | 938        | CG       | GLU        |    |     | 13.996           |                  | -10.758            | 1.00         | 0.00 | P                                       |     |
| ATOM         | 939<br>940 | CD       | GLU        |    |     | 15.350<br>16.370 |                  | -10.440<br>-10.517 | 1.00         | 0.00 | P                                       |     |
| ATOM<br>ATOM | 941        |          | GLU        |    |     | 15.384           |                  | -10.115            | 1.00         | 0.00 | 7                                       | •   |
| ATOM         | 942        | C        | GLU        |    |     | 11.421           | -3.728           | -9.883             | 1.00         | 0.00 | 7                                       |     |
| ATOM         | 943        | ŏ        | GLU        |    |     | 10.928           |                  | -10.765_           |              | 0.00 | 7                                       |     |
| ATOM         | 944        | N        | GLU        |    |     | 11.063           | -3.811           | -8.588             | 1.00         | 0.00 | 2                                       |     |
| ATOM         | 945        | CA       | GLU        |    |     | 10.117           | -4.770           | -8.098             | 1.00         | 0.00 | 7                                       |     |
| ATOM         | 946        | CB       | GLU.       | A  | 148 | 10.037           | -4.813           | -6.569             | 1.00         | 0.00 | P                                       | C   |
| ATOM .       | 947        | CG       | GLU        | A  | 148 | 9.539            | -6.172           | -6.093             | 1.00         | 0.00 | P                                       | C   |
| ATOM         | 948        | CD       | GLU        | A  | 148 | 10.544           | -7.179           | -6.639             | 1.00         | 0.00 | P                                       |     |
| ATOM         | 949        |          | GLU        |    |     | 11.621           | -7.342           | -6.013             | 1.00         | 0.00 | . A                                     |     |
| ATOM         | 950        |          | GLU        |    |     | 10.264           | -7.789           | -7.703             | 1.00         | 0.00 | P                                       |     |
| ATOM         | 951        | C        | GLU        |    |     | 8.756            | -4.467           | -8.643             | 1.00         | 0.00 | A                                       |     |
| ATOM         | 952        | 0        | GLU        |    |     | 7.954            | -5.380           | -8.829             | 1.00         | 0.00 | A                                       |     |
| ATOM         | 953        | N        | ALA        |    |     | 8.463            | -3.171<br>-2.744 | -8.878             | 1.00<br>1.00 | 0.00 | Ā                                       |     |
| MOTA<br>MOTA | 954<br>955 | CA<br>CB | ALA<br>ALA |    |     | 7.183<br>7.068   | -1.215           | -9.375<br>-9.443   | 1.00         | 0.00 | A<br>A                                  |     |
| MOTA         | 956        | C        | ALA        |    |     | 6.935            |                  | -10.757            | 1.00         | 0.00 | Ā                                       |     |
| ATOM         | 957        | ŏ        | ALA        |    |     | 5.844            |                  | -11.030            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 958        | N        | ARG        |    |     | 7.956            |                  | -11.641            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 959        | CA       | ARG        |    |     | 7.848            |                  | -12.993            | 1.00         | 0.00 | P                                       |     |
| ATOM         | 960        | СВ       | ARG        | A  | 150 | 9.123            | -3.484           | -13.813            | 1.00         | 0.00 | A                                       | C   |
| ATOM         | 961        | CG       | ARG        | A  | 150 | 9.340            | -2.043           | -14.258            | 1.00         | 0.00 | A                                       | C   |
| MOTĄ         | 962        | CD       | ARG        | Α  | 150 | 10.694           | -1.809           | -14.935            | 1.00         | 0.00 | A                                       | C   |
| MOTA         | 963        | NE       | ARG        |    |     | 11.122           |                  | -15.590            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 964        | CZ       | ARG        |    |     | 12.136           |                  | -15.046            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 965        |          | ARG        |    |     | 12.777           |                  | -13.928            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 966        |          | ARG        |    |     | 12.502           |                  | -15.610            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 967        | C .      | ARG        |    |     | 7.657            |                  | -12.994            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 968        | 0        | ARG        |    |     | 6.876            |                  | -13.785            | 1.00         | 0.00 | A                                       |     |
| ATOM         | 969        | N        | CYS        |    |     | 8.387<br>8.340   |                  | -12.105<br>-12.005 | 1.00         | 0.00 | A                                       |     |
| ATOM<br>ATOM | 970<br>971 | CA<br>CB | CYS        |    |     | 9.408            |                  | -12.003            | 1.00         | 0.00 | A                                       |     |
| 011          | J 1 L      |          |            | •• |     | 3.400            |                  | 44.046             |              |      | • • • • • • • • • • • • • • • • • • • • | _   |

| ATOM 1001 CB GLU A 155 4.114 -11.451 -11.478 1.00 0.00 A: ATOM 1002 CG GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |    |     |   |     |        |         |         |      |      |   |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----|-----|---|-----|--------|---------|---------|------|------|---|-----|
| ARTON 973 C CYS A 151 6.980 -7.775 -11.542 1.00 0.00 A A ARTON 974 O CYS A 151 6.890 -7.775 -11.961 1.00 0.00 A A ARTON 975 N LEU A 152 6.359 -6.973 -10.657 1.00 0.00 A A ARTON 976 CA LEU A 152 5.57 -7.236 -10.109 1.00 0.00 A A ARTON 976 CA LEU A 152 4.715 -6.243 -8.965 1.00 0.00 A A ARTON 977 CB LEU A 152 4.715 -6.243 -8.965 1.00 0.00 A A ARTON 979 CD2 LEU A 152 3.527 -6.565 -8.012 1.00 0.00 A A ARTON 979 CD2 LEU A 152 3.527 -6.565 -8.012 1.00 0.00 A A ARTON 979 CD2 LEU A 152 3.527 -6.565 -8.012 1.00 0.00 A A ARTON 981 C LEU A 152 3.522 -5.569 -6.841 1.00 0.00 A A ARTON 981 C LEU A 152 3.922 -5.569 -6.841 1.00 0.00 A A ARTON 981 C LEU A 152 3.929 -7.846 -11.306 1.00 0.00 A A ARTON 981 C LEU A 152 3.999 -7.846 -11.306 1.00 0.00 A A ARTON 983 N VAL A 153 3.810 -5.861 -11.238 1.00 0.00 A A ARTON 986 CG1 VAL A 153 3.810 -5.865 -14.779 -11.525 7.00 0.00 A A ARTON 986 CG1 VAL A 153 3.889 -4.999 -11.961 1.00 0.00 A A ARTON 986 CG1 VAL A 153 3.889 -4.999 -11.961 1.00 0.00 A A ARTON 986 CV VAL A 153 3.889 -1.991 -11.238 1.00 0.00 A ARTON 980 N GLU A 153 3.889 -7.087 -12.976 1.00 0.00 A ARTON 980 N GLU A 153 3.889 -7.087 -12.976 1.00 0.00 A ARTON 980 N GLU A 153 3.889 -7.087 -12.976 1.00 0.00 A ARTON 980 C VAL A 153 3.889 -7.087 -12.976 1.00 0.00 A ARTON 980 N GLU A 154 6.567 -7.779 -11.00 0.00 A ARTON 990 C GE GLU A 154 6.567 -8.981 -10.791 1.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.791 1.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.791 1.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.791 1.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.791 1.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.00 0.00 A ARTON 990 CG GLU A 154 6.567 -8.981 -10.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.791 1.00 0.00 A ARTON 990 CG GLU A 155 6.79 | MOTA | 972   | SG | CYS | A | 151 | 11.074 | -7.492  | -11.657 | 1.00 |      | A | S   |
| ARTOM 974 O CYS A 151 6.480 -8.820 -11.961 1.00 0.00 A A ARTOM 975 N LEU A 152 6.399 -6.973 -10.657 1.00 0.00 A A ARTOM 976 CA LEU A 152 5.057 -7.236 -10.109 1.00 0.00 A A ARTOM 977 CS LEU A 152 4.151 6.243 -8.965 1.00 0.00 A A ARTOM 978 CG LEU A 152 3.527 -6.565 -8.012 1.00 0.00 A A ARTOM 978 CG LEU A 152 3.527 -6.565 -8.071 1.00 0.00 A A ARTOM 978 CD LEU A 152 3.527 -6.565 -8.071 1.00 0.00 A A ARTOM 980 CD1 LEU A 152 3.522 -5.569 -6.871 1.00 0.00 A A ARTOM 981 C LEU A 152 4.077 -7.099 -11.236 1.00 0.00 A A ARTOM 981 C LEU A 152 4.077 -7.099 -11.236 1.00 0.00 A A ARTOM 982 O LEU A 152 4.077 -7.099 -11.236 1.00 0.00 A A ARTOM 984 CA VALI A 153 4.11 -6.112 -12.125 1.00 0.00 A A ARTOM 986 CG VALI A 153 3.440 -5.664 -13.238 1.00 0.00 A ARTOM 986 CG VALI A 153 3.440 -5.664 -13.238 1.00 0.00 A ARTOM 986 CG VALI A 153 3.767 -3.659 -12.976 1.00 0.00 A ARTOM 980 O VALI A 153 3.767 -3.659 -12.976 1.00 0.00 A ARTOM 980 O VALI A 153 3.644 -7.005 -14.205 1.00 0.00 A ARTOM 980 O VALI A 153 3.644 -7.005 -14.205 1.00 0.00 A ARTOM 990 O VALI A 153 4.690 -7.539 -14.479 1.00 0.00 A ARTOM 990 O VALI A 153 4.690 -7.539 -14.479 1.00 0.00 A ARTOM 990 CA GUJ A 154 4.690 -7.539 -14.479 1.00 0.00 A ARTOM 990 CA GUJ A 154 4.690 -7.539 -14.479 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 154 8.552 -7.979 -16.443 1.00 0.00 A ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG GUJ A 155 8.00 ARTOM 990 CG  |      | 973 - | С  | CYS | A | 151 | 6.980  | -7.775  | -11.542 | 1.00 |      | A | С   |
| NATOM 975 CA LEU A 152 6.359 -6.973 -10.657 1.00 0.00 A A NATOM 976 CA LEU A 152 5.057 -7.236 -10.109 1.00 0.00 A A NATOM 978 CG LEU A 152 4.715 -6.243 -8.965 1.00 0.00 A A NATOM 979 CG LEU A 152 4.715 -6.243 -8.965 1.00 0.00 A A NATOM 979 CD2 LEU A 152 3.227 -6.565 -8.012 1.100 0.00 A A NATOM 979 CD1 LEU A 152 3.227 -6.565 -8.012 1.100 0.00 A A NATOM 980 CD1 LEU A 152 3.227 -6.565 -8.012 1.100 0.00 A A NATOM 981 C LEU A 152 4.077 -7.098 -11.236 1.00 0.00 A A NATOM 981 C LEU A 152 4.077 -7.098 -11.236 1.00 0.00 A A NATOM 981 C LEU A 152 4.077 -7.098 -11.236 1.00 0.00 A NATOM 984 CA VALA 153 3.180 -4.599 -7.844 -11.306 1.00 0.00 A A NATOM 984 CA VALA 153 3.180 -4.599 -12.916 1.00 0.00 A NATOM 985 CB VALA 153 3.880 -4.599 -12.916 1.00 0.00 A NATOM 985 CB VALA 153 3.517 -3.459 -12.976 1.00 0.00 A NATOM 986 CG1 VALA 153 3.517 -3.459 -12.976 1.00 0.00 A NATOM 986 CV VALA 153 3.884 -7.006 -14.205 1.00 0.00 A NATOM 989 OV VALA 153 3.884 -7.006 -14.205 1.00 0.00 A NATOM 989 OV NALA 153 3.517 -3.459 -12.976 1.00 0.00 A NATOM 989 OV GLU A 153 3.884 -7.006 -14.205 1.00 0.00 A NATOM 989 OV GLU A 153 3.886 -7.097 -14.797 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.599 -14.799 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.599 -14.799 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.599 -14.799 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.599 -15.611 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.599 -16.403 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -7.999 -16.403 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -8.690 -15.411 1.00 0.00 A NATOM 999 OV GLU A 154 4.695 -8.690 -15.410 1.00 0.00 A NATOM 999 OV GLU A 154 4.299 -9.697 -16.403 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 -10.999 1.00 0.00 A NATOM 999 OV GLU A 155 4.299 1.00 0.00 A NATOM 999 OV GLU A 1 |      |       |    |     |   |     | 6.480  | -8.820  | -11.961 | 1.00 | 0.00 | A | 0   |
| ATOM         976         CA         LEU A         152         5,057         -7,236         -10.109         1.00         0.00         A           ATOM         978         CB         LEU A         152         3,157         -6,565         -8,012         1.00         0.00         A           ATOM         979         CD2         LEU A         152         3,527         -6,565         -8,012         1.00         0.00         A           ATOM         980         CD1         LEU A         152         3,522         -5,569         -6,841         1.00         0.00         A           ATOM         982         O         LEU A         152         3,099         -7,844         -11,336         1.00         0.00         A           ATOM         984         CA         VAL         1,53         3,440         -5,864         -13,238         1.00         0.00         A           ATOM         986         CG         VAL         1,53         3,481         -7,099         -13,961         1,00         0.00         A           ATOM         980         O         VAL         1,53         3,484         -7,006         -14,295         1.00         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       | N  | LEU | A | 152 | 6.359  | -6.973  | -10.657 | 1.00 | 0.00 | A | N   |
| ATOM 977 GB LEU A 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     | 5.057  | -7.236  | -10.109 | 1.00 | 0.00 | A | С   |
| NTON 978 GG LEU A 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     | 4.715  | -6.243  | -8.965  | 1.00 | 0.00 | A | С   |
| ATOM 990 CD1 LEU N 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    | LEU | Α | 152 | 3.527  | -6.565  | -B.012  | 1.00 | 0.00 | A | С   |
| ATOM 980 CDI LÉU À 152 3.522 -5.569 -6.841 1.00 0.00 Å ATOM 981 C LEU À 152 3.099 -7.844 -11.306 1.00 0.00 Å ATOM 983 N VAL À 153 3.40 -5.864 -13.238 1.00 0.00 Å ATOM 985 N VAL À 153 3.440 -5.864 -13.238 1.00 0.00 Å ATOM 985 CGI VAL À 153 3.440 -5.864 -13.238 1.00 0.00 Å ATOM 986 CGI VAL À 153 3.440 -5.864 -13.238 1.00 0.00 Å ATOM 987 CG2 VAL À 153 3.440 -5.864 -13.238 1.00 0.00 Å ATOM 987 CG2 VAL À 153 3.440 -5.864 -13.238 1.00 0.00 Å ATOM 987 CG2 VAL À 153 2.985 -4.479 -15.257 1.00 0.00 Å ATOM 987 CG2 VAL À 153 3.517 -3.469 -12.976 1.00 0.00 Å ATOM 980 C VAL À 153 3.844 -7.006 -14.205 1.00 0.00 Å ATOM 980 N GLU À 154 4.890 -7.539 -14.479 1.00 0.00 Å ATOM 980 N GLU À 154 4.890 -7.539 -14.479 1.00 0.00 Å ATOM 991 CA GLU À 154 4.890 -7.539 -14.479 1.00 0.00 Å ATOM 993 CG GLU À 154 4.875 -8.620 -15.11 1.00 0.00 Å ATOM 993 CG GLU À 154 4.875 -8.620 1.01 1.00 0.00 Å ATOM 993 CG GLU À 154 8.891 -9.121 -16.11 1.00 0.00 Å ATOM 995 CEI GLU À 154 8.891 -9.121 -16.11 1.00 0.00 Å ATOM 995 CEI GLU À 154 8.891 -9.121 -16.11 1.00 0.00 Å ATOM 997 C GLU À 154 8.971 -9.121 -16.119 1.00 0.00 Å ATOM 998 O GLU À 154 8.971 -9.121 -16.119 1.00 0.00 Å ATOM 999 N GLU À 154 8.971 -9.121 -16.119 1.00 0.00 Å ATOM 999 N GLU À 155 8.711 1.123 -12.938 1.00 0.00 Å ATOM 999 N GLU À 155 4.223 -10.089 -16.830 1.00 0.00 Å ATOM 999 N GLU À 155 4.223 -10.089 -13.550 1.00 0.00 Å ATOM 999 N GLU À 155 4.223 -10.089 -13.550 1.00 0.00 Å ATOM 100 CG GLU À 155 5.253 -13.592 -11.840 1.00 0.00 Å ATOM 100 CG GLU À 155 5.253 -13.592 -11.840 1.00 0.00 Å ATOM 100 CG GLU À 155 5.253 -13.596 -12.986 1.00 0.00 Å ATOM 100 CG GLU À 155 5.253 -13.596 -12.986 1.00 0.00 Å ATOM 100 CG GLU À 155 5.253 -13.596 -12.986 1.00 0.00 Å ATOM 101 CG GLU À 155 5.253 -13.596 -12.986 1.00 0.00 Å ATOM 101 CG GLU À 155 5.253 -13.592 -11.480 1.00 0.00 Å ATOM 102 CD CLEU À 156 -0.107 -9.905 -14.377 1.00 0.00 Å ATOM 103 CD GLU À 155 5.253 -13.599 -11.100 0.00 Å ATOM 104 CG LEU À 156 -0.107 -9.905 -14.377 1.00 0.00 Å ATOM 105 CG LEU À 156 -0.107 -9.905 -14.377 1.00 0.00 Å ATOM 102 CD CLE |      |       |    |     |   |     |        | -6.596  | -8.677  | 1.00 | 0.00 | A | С   |
| ATOM   981   C   LEU A 152   4.077   -7.098   -11.236   1.00   0.00   A   ATOM   982   O   LEU A 152   3.099   -7.044   -11.306   1.00   0.00   A   ATOM   983   C   VAL A 153   4.311   -6.112   -12.125   1.00   0.00   A   ATOM   985   C   VAL A 153   3.788   -4.599   -13.961   1.00   0.00   A   ATOM   986   C   C   VAL A 153   3.788   -4.599   -13.961   1.00   0.00   A   ATOM   986   C   C   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   987   C   C   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   988   C   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   980   C   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   991   C   G   GUA   154   4.900   -7.539   -14.479   1.00   0.00   A   ATOM   991   C   G   GUA   154   4.900   -7.539   -14.479   1.00   0.00   A   ATOM   991   C   G   GUA   154   4.905   -7.539   -14.479   1.00   0.00   A   ATOM   992   C   GUA   154   6.367   -8.694   -15.670   1.00   0.00   A   ATOM   993   C   GUA   154   6.367   -8.694   -15.670   1.00   0.00   A   ATOM   995   C   GUA   154   8.552   -7.979   -16.433   1.00   0.00   A   ATOM   995   C   GUA   154   8.552   -7.979   -16.358   1.00   0.00   A   A   ATOM   995   C   GUA   154   9.296   -7.039   -16.330   1.00   0.00   A   A   ATOM   995   C   GUA   154   9.296   -7.039   -16.330   1.00   0.00   A   A   ATOM   995   C   GUA   154   9.296   -7.039   -16.330   1.00   0.00   A   A   ATOM   995   C   GUA   155   3.711   -11.236   -12.938   1.00   0.00   A   A   ATOM   995   C   GUA   155   3.711   -11.236   -12.938   1.00   0.00   A   A   ATOM   996   C   GUA   155   S.611   -12.155   -11.376   1.00   0.00   A   A   A   ATOM   996   C   GUA   155   S.611   -12.155   -11.376   1.00   0.00   A   A   A   A   A   A   A   A   A                                                                                                                                                                                                                                                                |      |       |    |     |   |     |        | -5.569  | -6.841  | 1.00 | 0.00 | Ä | С   |
| ATOM   982   O   LEU A 152   3.099   -7.844   -11.306   1.00   0.00   A   ATOM   983   N   VAL A 153   3.440   -5.864   -13.238   1.00   0.00   A   ATOM   986   CB   VAL A 153   3.440   -5.864   -13.238   1.00   0.00   A   ATOM   986   CB   VAL A 153   3.440   -5.864   -13.238   1.00   0.00   A   ATOM   987   CG2   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   987   CG2   VAL A 153   3.517   -3.459   -12.976   1.00   0.00   A   ATOM   987   CG2   VAL A 153   3.844   -7.006   -14.205   1.00   0.00   A   ATOM   989   N   GLU A 153   2.443   -7.421   -14.709   1.00   0.00   A   ATOM   990   N   GLU A 154   4.690   -7.539   -14.479   1.00   0.00   A   ATOM   991   CA   GLU A 154   4.690   -7.539   -14.479   1.00   0.00   A   ATOM   993   CG   GLU A 154   4.675   -8.620   -15.411   1.00   0.00   A   ATOM   993   CG   GLU A 154   4.675   -8.620   -15.411   1.00   0.00   A   ATOM   993   CG   GLU A 154   8.571   -9.121   -16.119   1.00   0.00   A   ATOM   995   CEI   GLU A 154   8.571   -9.121   -16.119   1.00   0.00   A   ATOM   995   CEI   GLU A 154   8.571   -9.121   -16.119   1.00   0.00   A   ATOM   997   C   GLU A 154   4.229   -9.867   -14.876   1.00   0.00   A   ATOM   997   C   GLU A 154   4.229   -9.867   -14.876   1.00   0.00   A   ATOM   999   N   GLU A 155   4.223   -10.099   -16.830   1.00   0.00   A   ATOM   999   N   GLU A 155   4.223   -10.099   -13.550   1.00   0.00   A   ATOM   999   N   GLU A 155   4.223   -10.099   -13.550   1.00   0.00   A   ATOM   999   N   GLU A 155   5.253   -13.592   -11.840   1.00   0.00   A   ATOM   999   N   GLU A 155   5.253   -13.592   -11.840   1.00   0.00   A   ATOM   999   N   GLU A 155   5.253   -13.592   -11.840   1.00   0.00   A   ATOM   997   C   GLU A 155   5.253   -13.592   -11.840   1.00   0.00   A   ATOM   997   C   GLU A 155   5.253   -13.592   -11.840   1.00   0.00   A   ATOM   997   C   GLU A 155   5.253   -13.596   -10.00   0.00   A   ATOM   997   C   GLU A 155   5.253   -13.592   -13.400   0.00   A   ATOM   997   C   GLU A 155   5.253    |      |       | -  |     |   |     | 4.077  | -7.098  | -11.236 | 1.00 | 0.00 | A | С   |
| AROM 983 N VAL A 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |    |     |   |     | 3.099  | -7.844  | -11.306 | 1.00 | 0.00 | A | 0   |
| AROM 984 CA VALA 153 3.440 -5.864 -13.238 1.00 0.00 A AROM 985 CB VALA 153 3.788 -4.599 -13.961 1.00 0.00 A AROM 987 CG2 VALA 153 3.788 -4.599 -13.961 1.00 0.00 A AROM 987 CG2 VALA 153 3.789 -4.479 -15.257 1.00 0.00 A AROM 988 C VALA 153 3.484 -7.006 -14.205 1.00 0.00 A AROM 989 O VALA 153 3.484 -7.006 -14.205 1.00 0.00 A AROM 999 N GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A AROM 999 N GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A AROM 991 CA GLU A 154 4.875 -8.620 -15.411 1.00 0.00 A AROM 992 CB GLU A 154 6.367 -8.894 -15.670 1.00 0.00 A AROM 993 CG GLU A 154 7.056 -7.710 -16.358 1.00 0.00 A AROM 994 CD GLU A 154 8.552 -7.799 -16.431 1.00 0.00 A AROM 995 ORI GLU A 154 8.971 -9.121 -16.139 1.00 0.00 A AROM 995 ORI GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A AROM 997 C GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A AROM 998 ORZ GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A AROM 999 N GLU A 154 3.644 -10.643 -15.629 1.00 0.00 A AROM 999 N GLU A 155 4.229 -9.867 -14.876 1.00 0.00 A AROM 999 N GLU A 155 4.223 -10.099 -13.550 1.00 0.00 A AROM 998 N GLU A 155 4.223 -10.099 -13.550 1.00 0.00 A AROM 998 N GLU A 155 4.323 -10.099 -13.550 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.377 1.00 0.00 A AROM 1000 CB GLU A 155 5.461 -12.155 -11.377 1.00 0.00 A AROM 1000 CB GLU A 155 6.70 -13.996 -12.867 1.00 0.00 A AROM 1000 CB GLU A 155 6.70 -13.996 1.2.867 1.00 0.00 A AROM 1000 CB GLU A 156 6.70 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14                                                                                                                                                                                                                                                                                                                                                                                      |      |       |    |     |   |     |        | -6.112  | -12.125 | 1.00 | 0.00 | A | N   |
| ATOM 985 CE VAL A 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         | 1.00 | 0.00 | A | С   |
| ARTOM 986 CGI VAL A 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         | 1.00 | 0.00 | A | С   |
| ATOM 987 CG2 VAL A 153 3.517 -3.459 -12.976 1.00 0.00 A ATOM 988 C VAL A 153 2.443 -7.421 -14.709 1.00 0.00 A ATOM 990 N GLD A 154 4.690 -7.539 -14.479 1.00 0.00 A ATOM 991 CA GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A ATOM 991 CA GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A ATOM 991 CA GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A ATOM 992 CB GLU A 154 6.367 -8.894 -15.670 1.00 0.00 A ATOM 992 CB GLU A 154 8.552 -7.979 -16.443 1.00 0.00 A ATOM 993 CB GLU A 154 8.552 -7.979 -16.443 1.00 0.00 A ATOM 995 CB GLU A 154 8.552 -7.979 -16.443 1.00 0.00 A ATOM 997 C GLU A 154 8.552 -7.979 -16.431 1.00 0.00 A ATOM 997 C GLU A 154 9.296 -7.039 -16.830 1.00 0.00 A ATOM 998 O GLU A 154 9.296 -7.039 -16.830 1.00 0.00 A ATOM 999 N GLU A 154 4229 -9.867 -14.870 1.00 0.00 A ATOM 999 N GLU A 155 4.229 -9.867 -14.870 1.00 0.00 A ATOM 999 N GLU A 155 4.223 -10.099 -13.550 1.00 0.00 A ATOM 999 N GLU A 155 4.233 -10.099 -13.550 1.00 0.00 A ATOM 1001 CB GLU A 155 4.334 1.14 -11.451 -11.478 1.00 0.00 A ATOM 1001 CB GLU A 155 4.114 -11.451 -11.478 1.00 0.00 A ATOM 1001 CB GLU A 155 5.661 -12.155 -11.376 1.00 0.00 A ATOM 1001 CB GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.996 -12.867 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.996 -12.867 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.996 -12.896 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.996 -12.896 1.00 0.00 A ATOM 1000 CC GLU A 155 5.253 -13.996 -12.896 1.00 0.00 A ATOM 1000 CC GLU A 155 5.870 -13.996 -12.896 1.00 0.00 A ATOM 1009 CC GLU A 155 5.870 -13.996 -12.896 1.00 0.00 A ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1009 CC GLU A 155 6.00 ATOM 1000 |      |       |    |     |   |     |        | -4.479  | -15.257 | 1.00 | 0.00 | A | С   |
| ARTOM 988 C VAL A 153 3.484 -7.006 -14.205 1.00 0.00 A ARTOM 990 VAL A 153 2.443 -7.421 -14.709 1.00 0.00 A ARTOM 990 N GLU A 154 4.690 -7.539 -14.479 1.00 0.00 A ARTOM 991 CA GLU A 154 4.695 -8.620 -15.411 1.00 0.00 A ARTOM 992 CB GLU A 154 4.695 -8.692 -15.411 1.00 0.00 A ARTOM 992 CB GLU A 154 6.367 -8.894 -15.670 1.00 0.00 A ARTOM 993 CG GLU A 154 7.056 -7.710 -16.358 1.00 0.00 A ARTOM 994 CD GLU A 154 8.951 -9.979 -16.443 1.00 0.00 A ARTOM 995 CB GLU A 154 8.971 -9.121 -16.139 1.00 0.00 A ARTOM 995 CB GLU A 154 8.971 -9.121 -16.139 1.00 0.00 A ARTOM 995 CB GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A ARTOM 996 CB GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A ARTOM 997 CB GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ARTOM 999 N GLU A 155 3.644 -10.643 -15.629 1.00 0.00 A ARTOM 1000 CB GLU A 155 4.223 -10.089 -13.550 1.00 0.00 A ARTOM 1000 CB GLU A 155 4.223 -10.089 -13.550 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1001 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1002 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1003 CD GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1000 CB GLU A 155 5.800 -13.966 -12.867 1.00 0.00 A ARTOM 1009 CA LEU A 156 0.00 -1.11 -8.196 -12.896 1.00 0.00 A ARTOM 1009 CA LEU A 156 0.00 -1.11 -8.196 -12.896 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.00 -1.11 -8.196 -12.639 1.00 0.00 A ARTOM 1010 CB LEU |      |       |    |     |   |     |        |         |         | 1.00 | 0.00 | A | С   |
| ARTOM 999 N GLU A 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        | -7.006  | -14,205 | 1.00 | 0.00 | A | С   |
| ARTOM 990 N GLU A 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      | 0.00 | A | 0   |
| APOM 991 CA GLU A 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      | 0.00 | A | N   |
| ARTOM 992 CB GLU A 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      | 0.00 | A | C   |
| ARTOM 994 CD GLU A 154 7.056 -7.710 -16.358 1.00 0.00 A ARTOM 995 OEL GLU A 154 8.552 -7.979 -16.431 1.00 0.00 A ARTOM 995 OEL GLU A 154 8.571 -9.121 -16.119 1.00 0.00 A ARTOM 996 OEL GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A ARTOM 997 C GLU A 154 9.296 -7.039 -16.830 1.00 0.00 A ARTOM 997 C GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ARTOM 998 O GLU A 155 3.644 -10.643 -15.629 1.00 0.00 A ARTOM 998 O GLU A 155 3.711 -11.235 -12.938 1.00 0.00 A ARTOM 998 O GLU A 155 3.711 -11.235 -12.938 1.00 0.00 A ARTOM 1001 CB GLU A 155 3.711 -11.235 -12.938 1.00 0.00 A ARTOM 1001 CB GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1002 CG GLU A 155 5.253 -13.1592 -11.376 1.00 0.00 A ARTOM 1002 CG GLU A 155 5.253 -13.1592 -11.840 1.00 0.00 A ARTOM 1005 OEZ GLU A 155 5.253 -13.1592 -11.840 1.00 0.00 A ARTOM 1006 OEL GLU A 155 5.253 -13.1592 -11.840 1.00 0.00 A ARTOM 1006 OEL GLU A 155 5.253 -13.1592 -11.840 1.00 0.00 A ARTOM 1006 OEL GLU A 155 5.253 -13.1592 -11.840 1.00 0.00 A ARTOM 1006 OEL GLU A 155 5.251 -11.16 -13.001 1.00 0.00 A ARTOM 1006 OEL GLU A 155 5.251 -11.16 -13.001 1.00 0.00 A ARTOM 1006 OEL GLU A 155 1.516 -12.117 -13.126 1.00 0.00 A ARTOM 1007 O GLU A 155 1.516 -12.117 -13.126 1.00 0.00 A ARTOM 1009 CA LEU A 156 0.301 -9.876 -12.893 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.301 -9.637 -12.893 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.301 -9.637 -12.893 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1014 C LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1014 C LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1015 O LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1015 O LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1015 O LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1017 CA ARGA 157 0.235 -9.773 -16.769 1.00 0.00 A ARTOM 1015 O LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1017 CA ARGA 157 0.235 -9.773 -16.769 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.0475 -6.441 -10.846 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.0475 -6.44 |      |       |    |     |   |     |        |         |         |      | 0.00 | A | C   |
| ATOM 994 CD GLU A 154 8.552 -7.979 -16.443 1.00 0.00 A ATOM 995 CB GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A ATOM 996 CB GLU A 154 8.971 -9.121 -16.119 1.00 0.00 A ATOM 997 C GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ATOM 997 C GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ATOM 998 O GLU A 155 4.229 -9.867 -14.876 1.00 0.00 A ATOM 999 N GLU A 155 4.223 -10.089 -13.550 1.00 0.00 A ATOM 1000 CA GLU A 155 3.711 -11.236 -12.938 1.00 0.00 A ATOM 1001 CB GLU A 155 5.4114 -11.451 -11.478 1.00 0.00 A ATOM 1002 CG GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATOM 1002 CG GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATOM 1004 OB1 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1005 CD GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1006 C GLU A 155 5.253 -13.986 -12.867 1.00 0.00 A ATOM 1007 OB LU A 155 1.516 -12.117 -13.126 1.00 0.00 A ATOM 1008 N EUB A 156 1.709 -9.876 -12.895 1.00 0.00 A ATOM 1009 CA LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1011 CG LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1011 CG LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1011 CG LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.301 -9.637 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.773 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.773 -12.993 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1010 CB LEU A 156 0.035 -9.789 -11.136 1.00 0.00 A ATOM 1020 CB ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATOM 1020 CB ARG A 157 0.990 -14.377 1.00 0.00 A ATOM 1020 CB ARG A 157 0.990 -14.377 1.00 0.00 A ATOM 1020 CB ARG A 157 1.996 -6.189 -19.10 0.00 |      |       |    |     |   |     |        |         |         |      |      | A | С   |
| ATOM 996 OE1 GLU A 154 8.991 -9.121 -16.119 1.00 0.00 A ATOM 997 C GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ATOM 998 O GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ATOM 998 O GLU A 155 4.323 -10.089 -13.550 1.00 0.00 A ATOM 1000 CA GLU A 155 3.711 -11.236 -12.938 1.00 0.00 A ATOM 1001 CB GLU A 155 4.114 -11.451 -11.478 1.00 0.00 A ATOM 1002 CG GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATOM 1003 CD GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATOM 1004 OE1 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1005 OE2 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATOM 1006 OE1 GLU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATOM 1007 O GLU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATOM 1008 N LEU A 156 1.516 -12.117 -13.126 1.00 0.00 A ATOM 1009 CA LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ATOM 1010 CB LEU A 156 0.011 -9.637 -12.983 1.00 0.00 A ATOM 1010 CB LEU A 156 0.011 -9.637 -12.983 1.00 0.00 A ATOM 1010 CB LEU A 156 0.011 -9.637 -12.983 1.00 0.00 A ATOM 1010 CB LEU A 156 0.011 -9.637 -12.983 1.00 0.00 A ATOM 1010 CB LEU A 156 0.011 -9.637 -12.983 1.00 0.00 A ATOM 1011 CB LEU A 156 0.0890 -8.911 -10.344 1.00 0.00 A ATOM 1014 C LEU A 156 0.890 -8.911 -10.344 1.00 0.00 A ATOM 1015 O LEU A 156 0.0890 -8.911 -10.344 1.00 0.00 A ATOM 1016 CB ARG A 157 0.635 -9.589 -15.404 1.00 0.00 A ATOM 1017 CA ARG A 157 0.635 -9.589 -15.404 1.00 0.00 A ATOM 1018 CB ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1019 CG ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1010 CB ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1017 CA ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1018 CB ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1019 CG ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1020 CD ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1021 CD ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1022 CD ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1023 CD ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1020 CD ARG A 157 0.231 -1.233 -1.100 0.00 A ATOM 1020 CD ARG A 157 0.231 -1.233 -1.100 0.00 A ATOM 1020 CD ARG A 157 0.231 -1.233 - |      |       |    |     |   |     |        |         |         |      |      | A | C   |
| ARTOM 996 OE2 GLU A 154 9.296 -7.039 -16.830 1.00 0.00 A ARTOM 997 C GLU A 154 4.229 -9.867 -14.876 1.00 0.00 A ARTOM 998 O GLU A 155 4.323 -10.089 -13.550 1.00 0.00 A ARTOM 998 N GLU A 155 4.323 -10.089 -13.550 1.00 0.00 A ARTOM 1000 CA GLU A 155 4.323 -10.089 -13.550 1.00 0.00 A ARTOM 1001 CB GLU A 155 5.253 -11.12.26 -12.938 1.00 0.00 A ARTOM 1002 CG GLU A 155 5.261 -11.256 -12.376 1.00 0.00 A ARTOM 1003 CD GLU A 155 5.261 -12.155 -11.376 1.00 0.00 A ARTOM 1003 CD GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1004 OE1 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1006 C GLU A 155 5.870 -13.986 -12.867 1.00 0.00 A ARTOM 1006 C GLU A 155 2.221 -11.116 -13.001 1.00 0.00 A ARTOM 1007 O GLU A 155 1.516 -12.117 -13.126 1.00 0.00 A ARTOM 1008 N LEU A 156 1.709 -9.876 -12.896 1.00 0.00 A ARTOM 1009 CA LEU A 156 0.311 -9.637 -12.983 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.311 -9.637 -12.983 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.311 -9.637 -12.983 1.00 0.00 A ARTOM 1011 CG LEU A 156 -0.111 -8.196 -12.639 1.00 0.00 A ARTOM 1012 CD2 LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ARTOM 1012 CD2 LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ARTOM 1014 C LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ARTOM 1015 O LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ARTOM 1017 CA ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ARTOM 1016 N ARG A 157 0.995 -14.377 1.00 0.00 A ARTOM 1017 CA ARG A 157 0.995 -14.377 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1020 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1021 NE ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1022 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1023 NH1 ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1024 NE ARG A 157 0.995 -1.106 -1.107 -1.00 0.00 A ARTOM 1027 N LYS A 158 0.994 -8.967 -17.858 1.00 0.00 A ARTOM 1028 CR LYS A 158 0.994 -8.967 -17.856 1.00 0.00 A ARTOM 1029 CR LYS A 158 0.994 -8.967 -17.856 1.00 0.00 A ARTOM 1030 CG LYS A 158 0.994 -8.967 -17.856 1.00 0.00 A  |      |       |    |     |   |     |        |         |         |      |      | A | 0   |
| ATCM 998 C GUU A 154 4.229 -9.867 -14.876 1.00 0.00 A ATCM 998 O GUU A 155 3.644 -10.643 -15.629 1.00 0.00 A ATCM 999 N GUU A 155 3.711 -11.236 -12.938 1.00 0.00 A ATCM 1001 CB GUU A 155 3.711 -11.236 -12.938 1.00 0.00 A ATCM 1002 CG GUU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATCM 1003 CD GUU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATCM 1004 CEI GUU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATCM 1005 CE GUU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATCM 1006 CG GUU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATCM 1007 CEI GUU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATCM 1007 C GUU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATCM 1007 C GUU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATCM 1007 C GUU A 155 1.516 -12.117 -13.126 1.00 0.00 A ATCM 1007 C GUU A 155 1.516 -12.117 -13.126 1.00 0.00 A ATCM 1009 CA LEU A 156 1.709 -9.876 -12.893 1.00 0.00 A ATCM 1009 CA LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ATCM 1010 CB LEU A 156 0.011 -8.196 -12.639 1.00 0.00 A ATCM 1011 CG LEU A 156 -0.057 -7.889 -11.136 1.00 0.00 A ATCM 1012 CD2 LEU A 156 -0.057 -7.889 -11.136 1.00 0.00 A ATCM 1014 C LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ATCM 1015 O LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ATCM 1016 C B ATCM 1016 C -0.057 -7.889 -11.437 1.00 0.00 A ATCM 1017 CA ARG A 157 0.635 -9.589 -15.404 1.00 0.00 A ATCM 1018 C B ATCM 1016 N ARG A 157 0.635 -9.773 -16.769 1.00 0.00 A ATCM 1017 CA ARG A 157 0.635 -9.773 -16.769 1.00 0.00 A ATCM 1019 C CA RG A 157 0.335 -9.773 -16.769 1.00 0.00 A ATCM 1020 CD ARG A 157 0.335 -9.773 -16.769 1.00 0.00 A ATCM 1021 CC LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATCM 1020 CD ARG A 157 0.535 -9.773 -16.769 1.00 0.00 A ATCM 1021 CC LEU A 156 -0.167 -1.278 -1.0393 -14.559 1.00 0.00 A ATCM 1022 CD ARG A 157 0.535 -9.773 -16.769 1.00 0.00 A ATCM 1020 CD ARG A 157 0.535 -9.773 -16.769 1.00 0.00 A ATCM 1021 CC ARG A 157 0.335 -9.773 -16.769 1.00 0.00 A ATCM 1022 CD ARG A 157 0.336 -9.789 -15.404 1.00 0.00 A ATCM 1023 NEIL ARG A 157 0.336 -9.789 -15.404 1.00 0.00 A ATCM 1024 C YES A 158 0.986 -14.989 -15.00 0.00  |      |       |    |     |   |     |        |         |         |      |      |   | 0   |
| ATCM 998 0 GUD A 154 3.644 -10.643 -15.629 1.00 0.00 A ATCM 999 N GUU A 155 4.323 -10.089 -13.550 1.00 0.00 A ATCM 1000 CA GLU A 155 4.323 -10.089 -13.550 1.00 0.00 A ATCM 1001 CB GLU A 155 3.711 -11.236 -12.938 1.00 0.00 A ATCM 1002 CG GLU A 155 5.4114 -11.451 -11.476 1.00 0.00 A ATCM 1003 CD GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ATCM 1004 OE1 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATCM 1005 OE2 GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATCM 1006 C GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ATCM 1006 C GLU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATCM 1007 OE2 GLU A 155 5.870 -13.986 -12.867 1.00 0.00 A ATCM 1008 N LEU A 156 1.709 -9.876 -12.895 1.00 0.00 A ATCM 1009 CA LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ATCM 1010 CB LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ATCM 1011 CG LEU A 156 -0.111 -8.196 -12.639 1.00 0.00 A ATCM 1012 CD2 LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ATCM 1013 CD1 LEU A 156 -0.475 -6.441 -10.846 1.00 0.00 A ATCM 1014 C LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATCM 1016 N ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1016 N ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1017 CA ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1019 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1019 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1010 CB LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATCM 1020 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1020 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1021 CD LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATCM 1020 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1021 CD LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATCM 1020 CD ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATCM 1021 CD LYS A 158 0.914 -9.505 -10.00 0.00 A ATCM 1020 CD ARG A 157 0.650 -9.589 -15.00 0.00 A ATCM 1021 CD LYS A 158 0.914 -9.004 -18.032 1.00 0.00 A ATCM 1022 CZ ARG A 157 0.914 -9.004 -18.032 1.00 0.00 A ATCM 1023 CT LYS A 158 0.914 -9.004 -18.032 1.00 0.00 A ATCM 1024 CLYS A 158 0.914 -9.004 -18.032 1.00 0.00 A ATCM 1032 CE LYS A 158 0.912 - |      |       |    |     |   |     |        |         |         |      |      |   | С   |
| ARCM 999 N GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |    |     |   |     |        |         |         |      |      |   | 0   |
| AROM 1000 CA GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| AROM 1001 CB GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      | A | C.  |
| ARTOM 1002 CG GLU A 155 5.461 -12.155 -11.376 1.00 0.00 A ARTOM 1003 CD GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1004 OBL GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1006 OBL GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1006 CB GLU A 155 5.253 -13.592 -11.840 1.00 0.00 A ARTOM 1006 OBL GLU A 155 5.253 -13.986 -12.867 1.00 0.00 A ARTOM 1006 OBLU A 155 2.221 -11.116 -13.001 1.00 0.00 A ARTOM 1007 O GLU A 155 1.516 -12.117 -13.126 1.00 0.00 A ARTOM 1009 N LEU A 156 1.709 -9.876 -12.896 1.00 0.00 A ARTOM 1000 CB LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.301 -9.637 -12.983 1.00 0.00 A ARTOM 1010 CB LEU A 156 0.011 -9.637 -12.896 1.00 0.00 A ARTOM 1011 CG LEU A 156 0.057 -7.889 -11.136 1.00 0.00 A ARTOM 1012 CDZ LEU A 156 0.057 -7.889 -11.136 1.00 0.00 A ARTOM 1013 CD1 LEU A 156 0.057 -9.899 -11.136 1.00 0.00 A ARTOM 1013 CD1 LEU A 156 0.167 -9.905 -14.377 1.00 0.00 A ARTOM 1015 O LEU A 156 0.167 -9.905 -14.377 1.00 0.00 A ARTOM 1016 N ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ARTOM 1016 N ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.934 -8.967 -17.858 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.934 -8.967 -17.858 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.934 -8.967 -17.858 1.00 0.00 A ARTOM 1018 CB ARG A 157 0.934 -8.967 -17.858 1.00 0.00 A ARTOM 1020 CD ARG A 157 3.132 -8.353 -19.133 1.00 0.00 A ARTOM 1021 NE ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1022 CZ ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1022 CZ ARG A 157 0.935 -6.189 -19.410 1.00 0.00 A ARTOM 1023 NHI ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 1.00 0.00 A ARTOM 1025 C ARG A 157 1.956 -6.189 -19.410 0.00 0.00 A ARTOM 1026 C ARG A 157 1.956 -6.189 -19.410 0.00 0 |      |       |    |     |   |     |        |         |         |      |      |   | Ċ.  |
| ARTOM 1003 CD GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         |      |      |   | Ċ   |
| ARTOM 1004 OE1 GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |    |     |   |     |        |         |         | _    |      | Α |     |
| ATOM 1005 CE GIU A 155 5.870 -13.986 -12.887 1.00 0.00 A ATOM 1006 C GIU A 155 1.516 -12.117 -13.126 1.00 0.00 A ATOM 1007 C GIU A 155 1.516 -12.117 -13.126 1.00 0.00 A ATOM 1008 N LEU A 156 1.709 -9.876 -12.896 1.00 0.00 A ATOM 1009 CA LEU A 156 0.301 -9.637 -12.898 1.00 0.00 A ATOM 1010 CB LEU A 156 -0.111 -8.196 -12.639 1.00 0.00 A ATOM 1011 CG LEU A 156 -0.057 -7.889 -11.136 1.00 0.00 A ATOM 1012 CD2 LEU A 156 -0.890 -8.911 -10.344 1.00 0.00 A ATOM 1013 CD1 LEU A 156 -0.475 -6.441 -10.846 1.00 0.00 A ATOM 1014 C LEU A 156 -0.167 -9.905 -14.377 1.00 0.00 A ATOM 1015 CN ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATOM 1016 N ARG A 157 0.650 -9.589 -15.404 1.00 0.00 A ATOM 1017 CA ARG A 157 0.235 -9.773 -16.769 1.00 0.00 A ATOM 1018 CB ARG A 157 0.994 -8.967 -17.889 1.00 0.00 A ATOM 1019 CG ARG A 157 0.994 -8.967 -17.889 1.00 0.00 A ATOM 1019 CG ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1018 CB ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1019 CG ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1020 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1020 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1020 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1021 NE ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1020 CD ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1021 NE ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1022 CZ ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1021 NE ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1022 CB ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1031 NE ARG A 157 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1032 NELYS A 158 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1033 NELYS A 158 0.994 -8.967 -17.858 1.00 0.00 A ATOM 1036 CB LYS A 158 0.991 -11.233 -17.117 1.00 0.00 A ATOM 1031 CD LYS A 158 0.991 -11.295 -11.796 1.00 0.00 A ATOM 1034 NELYS A 158 0.991 -11.396 -11.090 0.00 A ATOM 1035 CB LYS A 158 0.991 -11.395 -11.090 0.00 A ATOM 1036 CB LYS A 158 0.991 -11.395 -10.00 0.00 A ATOM 1037 CA THR A 159 -3.329 -13.336 -15.041 1.00 0.00 A ATOM 1036 CB LYS A 158 0.991 -11.993  |      |       |    |     |   |     |        |         |         |      |      |   |     |
| ATCM 1006 C GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | 0 : |
| ATOM 1007 O GLU A 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      | _ | C   |
| ATOM 1008 N LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | 0   |
| ATOM 1010 CB LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   |     |
| ATOM 1010 CB LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | c.  |
| ATOM 1011 CG LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | C-  |
| ATOM 1012 CD2 LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         |      |      |   | Č   |
| ATOM 1013 CD1 LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1014 C LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1015 O LEU A 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1016 N ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | ŏ   |
| ATOM 1017 CA ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| ATOM 1018 CB ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | Ċ   |
| ATOM 1019 CG ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1020 CD ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1021 NE ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1022 CZ ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| ATOM 1023 NH1 ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         |      |      |   | Ċ   |
| ATOM 1024 NH2 ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |    |     |   |     |        |         |         |      |      |   | · N |
| ATOM 1025 C ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| ATOM 1026 O ARG A 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | Ċ   |
| ATOM 1027 N LYS A 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | ō   |
| ATOM 1028 CA LYS A 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     | _ | 480 | -0.357 | -12.010 | -16 373 |      |      |   | N   |
| ATOM 1029 CB LYS A 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |    |     |   |     | 0.007  | -12.002 | -16 512 |      |      |   | C   |
| ATOM 1030 CG LYS A 158 2.231 -15.599 -15.796 1.00 0.00 A ATOM 1031 CD LYS A 158 3.463 -16.078 -15.026 1.00 0.00 A ATOM 1032 CE LYS A 158 3.463 -16.078 -15.026 1.00 0.00 A ATOM 1033 NZ LYS A 158 5.100 -17.866 -14.600 1.00 0.00 A ATOM 1034 C LYS A 158 -0.445 -14.104 -16.252 1.00 0.00 A ATOM 1035 O LYS A 158 -0.766 -15.159 -16.796 1.00 0.00 A ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 CG1 THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1041 C THR A 159 -4.381 -13.898 -15.064 1.00 0.00 A ATOM 1042 O THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |    |     |   |     | 1.002  | -13.310 | -15 519 |      |      |   | č   |
| ATOM 1031 CD LYS A 158 3.463 -16.078 -15.026 1.00 0.00 A ATOM 1032 CE LYS A 158 3.826 -17.541 -15.281 1.00 0.00 A ATOM 1033 NZ LYS A 158 5.100 -17.866 -14.600 1.00 0.00 A ATOM 1034 C LYS A 158 -0.445 -14.104 -16.252 1.00 0.00 A ATOM 1035 O LYS A 158 -0.766 -15.159 -16.796 1.00 0.00 A ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.586 -14.704 -16.236 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |    |     |   |     |        |         |         |      |      |   | Č   |
| ATOM 1032 CE LYS A 158 3.826 -17.541 -15.281 1.00 0.00 A ATOM 1033 NZ LYS A 158 5.100 -17.866 -14.600 1.00 0.00 A ATOM 1034 C LYS A 158 -0.445 -14.104 -16.252 1.00 0.00 A ATOM 1035 O LYS A 158 -0.766 -15.159 -16.796 1.00 0.00 A ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.275 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1033 NZ LYS A 158 5.100 -17.866 -14.600 1.00 0.00 A ATOM 1034 C LYS A 158 -0.445 -14.104 -16.252 1.00 0.00 A ATOM 1035 O LYS A 158 -0.766 -15.159 -16.796 1.00 0.00 A ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1034 C LYS A 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| ATOM 1035 O LYS A 158 -0.766 -15.159 -16.796 1.00 0.00 A ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |    |     |   |     |        |         |         |      |      |   | č   |
| ATOM 1036 N THR A 159 -1.295 -13.436 -15.431 1.00 0.00 A ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |    |     |   |     |        |         |         |      |      |   | ŏ   |
| ATOM 1037 CA THR A 159 -2.617 -13.888 -15.064 1.00 0.00 A ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |    |     |   |     |        |         |         |      |      |   | N   |
| ATOM 1038 CB THR A 159 -3.329 -13.043 -14.033 1.00 0.00 A ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |    |     |   |     |        |         |         |      |      |   | C   |
| ATOM 1039 OG1 THR A 159 -4.381 -13.808 -13.476 1.00 0.00 A ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |    |     |   |     |        |         |         |      |      |   | c   |
| ATOM 1040 CG2 THR A 159 -3.960 -11.793 -14.668 1.00 0.00 A ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |    |     |   |     |        |         |         |      |      |   |     |
| ATOM 1041 C THR A 159 -3.513 -13.979 -16.275 1.00 0.00 A ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |    |     |   |     |        |         |         |      |      |   | 0   |
| ATOM 1042 O THR A 159 -4.506 -14.704 -16.236 1.00 0.00 A ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |    |     |   |     |        |         |         |      |      |   | C   |
| ATOM 1043 N LYS A 160 -3.203 -13.216 -17.351 1.00 0.00 A ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |    |     |   |     |        |         |         |      |      |   | C   |
| ATOM 1044 CA LYS A 160 -3.895 -13.205 -18.608 1.00 0.00 A ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |    |     |   |     |        |         |         |      |      |   | 0   |
| ATOM 1045 CB LYS A 160 -3.826 -14.526 -19.391 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |    |     |   |     | -3.203 | -13.216 | 10 600  |      |      |   | N   |
| 0.511 14.671 20.161 1.00 0.00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |    |     |   |     | -3.895 | -13.205 | -10.008 |      |      |   | C   |
| ATOM 1046 CG LYS A 160 -2.511 -14.6/1 -20.101 1.00 0.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |    |     |   |     |        |         |         |      |      |   | C   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 1046  | CG | LYS | A | 160 | -2.511 | -14.671 | -20.161 | T.00 | 0.00 | A | L   |

|      |      |     |     | _ |     |   | _  |       |         |         | 1 00 |      |   | _ | _   |
|------|------|-----|-----|---|-----|---|----|-------|---------|---------|------|------|---|---|-----|
| ATOM | 1047 | CD  | LYS |   |     |   |    |       | -13.513 |         | 1.00 | 0.00 |   | A | С   |
| ATOM | 1048 | CE  | LYS | A | 160 |   |    |       |         | -21.999 | 1.00 | 0.00 |   | A | С   |
| ATOM | 1049 | NZ  | LYS | A | 160 |   | -1 | . 365 | -14.242 | -23.308 | 1.00 | 0.00 |   | A | N   |
| ATOM | 1050 | С   | LYS | A | 160 |   | -5 | .314  | -12.787 | -18.444 | 1.00 | 0.00 |   | A | С   |
| ATOM | 1051 | 0   | LYS | Α | 160 |   | -6 | .193  | -13.248 | -19.171 | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1052 | N   | ALA |   |     |   | -5 | .534  | -11.855 | -17.497 | 1.00 | 0.00 |   | A | N   |
| ATOM | 1053 | CA  | ALA |   |     |   |    |       | -11.242 |         | 1.00 | 0.00 |   | A | С   |
|      |      | CB  | ALA |   |     |   |    |       |         | -18.479 | 1.00 | 0.00 |   | A | č   |
| ATOM | 1054 |     |     |   |     |   |    |       |         |         |      | 0.00 |   | A | č   |
| ATOM | 1055 | С   | ALA |   |     |   |    |       | -12.219 |         | 1.00 |      |   |   |     |
| ATOM | 1056 | 0   | ALA |   |     |   |    |       |         | -17.225 | 1.00 | 0.00 |   | A | 0   |
| MOTA | 1057 | N   | SER | A | 162 |   |    |       |         | -16.086 | 1.00 | 0.00 |   | A | N   |
| ATOM | 1058 | CA  | SER | Α | 162 |   | -8 | . 499 | -14.191 | -15.618 | 1.00 | 0.00 |   | A | С   |
| MOTA | 1059 | CB  | SER | A | 162 |   | ~8 | .083  | -15.658 | -15.811 | 1.00 | 0.00 |   | A | С   |
| ATOM | 1060 | OG  | SER | A | 162 |   | -6 | . 911 | -15.922 | -15.055 | 1.00 | 0.00 |   | A | 0   |
| MOTA | 1061 | C   | SER | A | 162 |   | -8 | .588  | -13.929 | -14.153 | 1.00 | 0.00 |   | A | С   |
| ATOM | 1062 | 0   | SER | A | 162 |   | -7 | .718  | -13.239 | -13.626 | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1063 | N   | PRO |   |     |   |    |       |         | -13.500 | 1.00 | 0.00 |   | A | N   |
| ATOM | 1064 | ÇA  | PRO |   |     |   |    |       |         | -12.090 | 1.00 | 0.00 |   | A | С   |
| ATOM | 1065 | CD  | PRO |   |     |   |    |       |         | ~14.173 | 1.00 | 0.00 |   | A | Ċ   |
|      |      |     |     |   |     |   |    |       |         |         | 1.00 | 0.00 |   | A | č   |
| ATOM | 1066 | CB  | PRO |   |     |   |    |       | -14.682 |         |      |      |   | A | č   |
| ATOM | 1067 | CG  | PRO |   |     |   |    |       |         | -13.083 | 1.00 | 0.00 |   |   |     |
| ATOM | 1068 | C   | PRO |   |     |   |    |       |         | -11.262 | 1.00 | 0.00 |   | A | C   |
| MOTA | 1069 | 0   | PRO | Α | 163 |   | -8 | .220  | -15.876 | -11.613 | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1070 | N   | CYS | A | 164 |   | -8 | .324  | -14.104 | -10.196 | 1.00 | 0.00 |   | A | N   |
| ATOM | 1071 | CA  | CYS | Α | 164 |   | -7 | .265  | -14.612 | -9.392  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1072 | СВ  | CYS | Α | 164 |   | -5 | .859  | ~14.352 | -9.967  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1073 | SG  | CYS |   |     |   |    |       | -12.599 | -9.860  | 1.00 | 0.00 |   | A | s   |
| ATOM | 1074 | c   | CYS |   |     |   |    |       | -13.959 | -8.054  | 1.00 | 0.00 |   | A | C   |
|      |      |     |     |   |     |   |    |       |         | -7.863  | 1.00 | 0.00 | • | A | ō   |
| ATOM | 1075 | 0   | CYS |   |     |   |    |       | -12.876 |         | 1.00 | 0.00 |   | A | N   |
| ATOM | 1076 | N   | ASP |   |     |   |    |       | -14.661 | -7.094  |      |      |   |   |     |
| ATOM | 1077 | CA  | ASP |   |     | , |    |       | -14.290 | -5.725  | 1.00 | 0.00 |   | A | C   |
| ATOM | 1078 | CB  | ASP | A | 165 |   | -6 | . 659 | -15.601 | -4.901  | 1.00 | 0.00 |   | A | C   |
| ATOM | 1079 | CG  | ASP | A | 165 |   | -5 | .849  | -15.666 | -3.608  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1080 | OD1 | ASP | A | 165 |   | -5 | .753  | -14.672 | -2.840  | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1081 | OD2 | ASP | A | 165 |   | -5 | .303  | -16.781 | -3.391  | 1.00 | 0.00 |   | A | 0   |
|      | 1082 | C   | ASP | Α | 165 |   | -5 | .183  | -13.635 | -5.648  | 1.00 | 0.00 |   | Α | С   |
| ATOM | 1083 | ŏ   | ASP |   |     |   |    |       | -14.279 | -5.704  | 1.00 | 0.00 |   | A | 0   |
| ***  | 1084 | N   | PRO |   |     |   |    |       | -12.332 | -5.531  | 1.00 | 0.00 |   | A | N   |
|      |      |     |     |   | 166 |   |    |       | -11.465 | -5.541  | 1.00 | 0.00 |   | A | Ċ   |
| ATOM | 1085 | CA  |     |   |     |   |    |       |         | -5.186  | 1.00 | 0.00 |   | A | č   |
| ATOM | 1086 | CD  | PRO |   |     |   |    |       | -11.616 |         |      |      |   |   | č   |
| ATOM | 1087 | CB  | PRO |   |     |   |    |       | -10.047 | -5.544  | 1.00 | 0.00 |   | A |     |
| ATOM | 1088 | CG  | PRO | A | 166 |   | -5 | .968  | -10.198 | -4.810  | 1.00 | 0.00 |   | A | C   |
| ATOM | 1089 | С   | PRO | A | 166 |   | -3 | .116  | -11.628 | -4.383  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1090 | 0   | PRO | A | 166 |   | -2 | .032  | -11.056 | -4.464  | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1091 | N   | THR | Α | 167 |   | -3 | .509  | -12.365 | -3.321  | 1.00 | 0.00 |   | Α | N   |
| ATOM | 1092 | CA  | THR |   |     |   |    |       | -12.452 | -2.073  | 1.00 | 0.00 |   | Α | С   |
| ATOM | 1093 | CB  | THR |   |     |   |    |       | -13.315 | -1.069  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1094 | OG1 | THR |   |     |   |    |       | -12.808 | -0.870  | 1.00 | 0.00 | • | A | 0   |
|      |      |     |     |   |     |   |    |       | -13.310 | 0.267   | 1.00 | 0.00 |   | A | č   |
| ATOM | 1095 |     | THR |   |     |   |    |       |         |         |      | 0.00 |   | A | č   |
| MOTA | 1096 | C   |     |   | 167 |   | _  |       | -12.954 | -2.220  | 1.00 |      |   |   |     |
| ATOM | 1097 | 0   |     |   | 167 |   |    |       | -12.414 | -1.579  | 1.00 | 0.00 |   | A | 0   |
| ATOM | 1098 | N   |     |   | 168 |   |    |       | -13.987 | -3.050  | 1.00 | 0.00 |   | A | N   |
| MOTA | 1099 | CA  | PHE | Α | 168 |   |    |       | -14.526 | -3.186  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1100 | CB  | PHE | Α | 168 |   | 0  | .197  | -15.875 | -3.940  | 1.00 | 0.00 |   | Α | С   |
| MOTA | 1101 | CG  | PHE | A | 168 |   | 1  | .573  | -16.458 | -3.937  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1102 | CD1 | PHE |   |     |   | 2  | .058  | -17.078 | -2.808  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1103 |     | PHE |   |     |   |    |       | -16.376 | -5.050  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1104 |     | PHE |   |     |   |    |       | -17.614 | -2.793  | 1.00 | 0.00 |   | Α | С   |
| ATOM | 1105 |     | PHE |   |     |   |    |       | -16.910 | -5.041  | 1.00 | 0.00 |   | A | С   |
|      |      | CZ  |     |   | 168 |   |    |       | -17.531 | -3.910  | 1.00 | 0.00 |   | A | Ċ   |
| ATOM | 1106 |     |     |   |     |   |    |       | -13.585 | -3.880  | 1.00 | 0.00 |   | A | Č   |
| ATOM | 1107 | C   |     |   | 168 |   |    |       |         |         | 1.00 |      |   |   |     |
| ATOM | 1108 | 0   |     |   | 168 |   |    |       | -13.359 | -3.378  |      | 0.00 |   | A | 0   |
| ATOM | 1109 | N   |     |   | 169 |   |    |       | -13.028 | -5.047  | 1.00 | 0.00 |   | A | N   |
| ATOM | 1110 | CA  |     |   | 169 |   |    |       | -12.173 | -5.864  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1111 | CB  | ILE | Α | 169 |   | 0  | .904  | -11.775 | -7.151  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1112 |     | ILE |   |     |   |    |       | -10.712 | -7.828  | 1.00 | 0.00 |   | A | C   |
| ATOM | 1113 |     | ILE |   |     |   |    |       | -13.010 | -8.029  | 1.00 | 0.00 |   | A | С   |
| ATOM | 1114 |     | ILE |   |     |   |    |       | -12.719 | -9.232  | 1.00 | 0.00 |   | A | C   |
|      |      |     |     |   | 169 |   |    |       | -10.912 | -5.124  | 1.00 | 0.00 |   | A | Č   |
| MOTA | 1115 | C   |     |   |     | • |    |       | -10.494 | -5.055  | 1.00 | 0.00 |   | A | ŏ   |
| ATOM | 1116 | 0   |     |   | 169 |   |    |       |         | -4.499  | 1.00 | 0.00 |   | A | N   |
| MOTA | 1117 | N   |     |   | 170 |   |    |       | -10.318 |         |      |      |   |   |     |
| MOTA | 1118 | CA  |     |   | 170 |   |    | .944  | -9.112  |         | 1.00 | 0.00 |   | A | C   |
| MOTA | 1119 | CB  |     |   | 170 |   |    | .423  | -8.589  | -3.238  | 1.00 | 0.00 |   | A | C   |
| MOTA | 1120 | CG  | LEU | A | 170 |   |    | .179  | -7.701  | -4.252  | 1.00 | 0.00 |   | A | , C |
| ATOM | 1121 | CD2 | LEU |   |     |   | -2 | .559  | -7.312  | -3.695  | 1.00 | 0.00 |   | A | С   |
|      |      |     |     |   |     |   |    |       |         |         |      |      |   |   |     |

| ATOM   | 1122 |     | LEU |   |     | -1.295 |         | -5.645 | 1.00 | 0.00 |     | r c |
|--------|------|-----|-----|---|-----|--------|---------|--------|------|------|-----|-----|
| ATOM   | 1123 | С   | LEU | A | 170 | 1.808  | -9.346  | -2.530 | 1.00 | 0.00 | i   | Y C |
| ATOM   | 1124 | 0   | LEU | A | 170 | 2.398  | -8.411  | -2.006 | 1.00 | 0.00 | 1   | A 0 |
| ATOM   | 1125 | N   | GLY | Α | 171 | 1.843  | -10.583 | -2.013 | 1,00 | 0.00 | 1   | A N |
| ATOM   | 1126 | CA  | GLY | Α | 171 | 2,709  | -10.893 | -0.914 | 1.00 | 0.00 | 2   | A C |
| ATOM   | 1127 | C   | GLY |   |     |        | -10.900 | -1.353 | 1.00 | 0.00 | 1   | A C |
| ATOM · | 1128 | ŏ   | GLY |   |     |        | -10.588 | -0.574 | 1.00 | 0.00 |     | . 0 |
|        |      |     |     |   |     |        | -11.331 | -2.606 | 1.00 | 0.00 |     |     |
| ATOM   | 1129 | N   | CYS |   |     |        |         | -3.110 |      |      |     |     |
| ATOM   | 1130 | CA  | CYS |   |     |        | -11.534 |        | 1.00 | 0.00 |     |     |
| ATOM   | 1131 | CB  | CYS |   |     |        | -12.175 | -4.506 | 1.00 | 0.00 |     | C   |
| ATOM   | 1132 | SG  | CYS |   |     |        | -13.908 | -4.496 | 1.00 | 0.00 |     | A S |
| ATOM   | 1133 | С   | CYS | A | 172 | 6.533  | -10.281 | -3.192 | 1.00 | 0.00 | 1   | , c |
| ATOM   | 1134 | 0   | CYS | A | 172 | 7.683  | -10.296 | -2.754 | 1.00 | 0.00 | 1   | . 0 |
| ATOM   | 1135 | N   | ALA | A | 173 | 5.957  | -9.183  | -3.729 | 1.00 | 0.00 | 1   | A N |
| MOTA   | 1136 | CA  | ALA |   |     | 6.690  | -7.966  | -3.976 | 1.00 | 0.00 | 1   | A C |
| ATOM   | 1137 | СВ  | ALA |   |     | 5.935  |         | -4.863 | 1.00 | 0.00 | 1   | A C |
| ATOM   | 1138 | č   | ALA |   |     | 7.227  |         | -2.728 | 1.00 | 0.00 |     | . C |
|        | 1139 | ŏ   | ALA |   |     | 8.389  |         | -2.789 | 1.00 | 0.00 |     | . 0 |
| ATOM   |      |     |     |   |     | 6.517  |         | -1.615 | 1.00 | 0.00 |     | N   |
| ATOM   | 1140 | N   | PRO |   |     |        |         |        |      |      |     | . c |
| ATOM   | 1141 | CA  | PRO |   |     | 7.124  |         | -0.445 | 1.00 | 0.00 |     |     |
| ATOM   | 1142 | CD  | PRO |   |     | 5.090  |         | -1.632 | 1.00 | 0.00 |     | C   |
| ATOM   | 1143 | CB  | PRO | A | 174 | 5.989  |         | 0.528  | 1.00 | 0.00 |     | , c |
| ATOM   | 1144 | CG  | PRO | Α | 174 | 4.791  | -6.026  | -0.397 | 1.00 | 0.00 |     | , с |
| ATOM   | 1145 | С   | PRO | A | 174 | 8.192  | -7.446  | 0.154  | 1.00 | 0.00 | 1   | , c |
| ATOM   | 1146 | 0   | PRO | A | 174 | 9.152  | -6.904  | 0.700  | 1.00 | 0.00 | 1   | . 0 |
| ATOM   | 1147 | N   | CYS |   |     | 8.040  | -8.779  | 0.027  | 1.00 | 0.00 | 1   | N N |
| ATOM   | 1148 | CA  | CYS |   |     | 9.014  |         | 0.549  | 1.00 | 0.00 | 1   | , c |
| ATOM   | 1149 | CB  | CYS |   |     |        | -11.164 | 0.454  | 1.00 | 0.00 |     | Č   |
|        | 1150 | SG  |     |   |     |        | -12.300 | 1.121  | 1.00 | 0.00 | 7   |     |
| ATOM   |      |     | CYS |   |     |        |         |        | 1.00 | 0.00 |     | C   |
| ATOM   | 1151 | С   |     |   | 175 |        | -9.558  | -0.215 |      |      |     |     |
| ATOM   | 1152 | 0   | CYS |   |     |        | -9.519  | 0.364  | 1.00 | 0.00 |     | . 0 |
| ATOM   | 1153 | N   |     |   | 176 |        | -9.472  | -1.556 | 1.00 | 0.00 |     | N N |
| ATOM   | 1154 | CA  | ASN | A | 176 | 11.426 | -9.382  | -2.301 | 1.00 | 0.00 | . 1 |     |
| ATOM   | 1155 | CB  | ASN | Α | 176 | 11.526 | -10.099 | -3.673 | 1.00 | 0.00 | 1   | , c |
| MOTA   | 1156 | CG  | ASN | A | 176 | 10.420 | -9.774  | -4.634 | 1.00 | 0.00 | 1   | v c |
| ATOM   | 1157 |     | ASN |   |     | 9.568  | 8.943   | -4.351 | 1.00 | 0.00 | 1   | . 0 |
| ATOM   | 1158 |     |     |   | 176 |        | -10.456 | -5.809 | 1.00 | 0.00 |     | N   |
|        |      |     | ASN |   |     | 12.085 |         | -2.220 | 1.00 | 0.00 |     | C   |
| ATOM   | 1159 | C   |     |   |     |        |         | -2.537 | 1.00 | 0.00 |     |     |
| ATOM   | 1160 | 0   |     |   | 176 | 13.270 |         |        |      |      |     |     |
| ATOM   | 1161 | N   | VAL |   |     | 11.345 |         | -1.839 | 1.00 | 0.00 |     |     |
| ATOM   | 1162 | CA  | VAL |   |     | 11.945 |         | -1.638 | 1.00 | 0.00 |     | C   |
| ATOM   | 1163 | CB  | VAL | A | 177 | 10.938 |         | -1.339 | 1.00 | 0.00 |     | , c |
| ATOM   | 1164 | CG1 | VAL | Α | 177 | 11.677 | -3.311  | -0.914 | 1.00 | 0.00 | 1   |     |
| ATOM   | 1165 | CG2 | VAL | A | 177 | 10.076 | -4.376  | -2.595 | 1.00 | 0.00 | 7   | , c |
| ATOM   | 1166 | С   | VAL | A | 177 | 12.893 | -5.778  | -0.476 | 1.00 | 0.00 | 1   | , C |
| ATOM   | 1167 | 0   | VAL | Α | 177 | 14.000 | -5.242  | -0.518 | 1.00 | 0.00 | 1   | ٠ ٥ |
| ATOM   | 1168 | N   | ILE | Α | 178 | 12.470 | -6.506  | 0.579  | 1.00 | 0.00 | 1   | A N |
| ATOM   | 1169 | CA  | ILE |   |     | 13.266 |         | 1.754  | 1.00 | 0.00 | 1   | ı c |
| ATOM   | 1170 | СВ  | ILE |   |     | 12.492 |         | 2.859  | 1.00 | 0.00 |     | , c |
|        | 1171 |     | ILE |   |     | 13.440 |         | 4.051  | 1.00 | 0.00 |     | Č   |
| ATOM   |      |     | ILE |   |     |        |         | 3.208  | 1.00 | 0.00 |     | Č   |
| MOTA   | 1172 |     |     |   |     | 11.298 |         |        |      |      |     | . c |
| MOTA   | 1173 |     | ILE |   |     | 10.223 |         | 4.054  | 1.00 | 0.00 |     |     |
| MOTA   | 1174 | С   |     |   | 178 | 14.455 |         | 1.401  | 1.00 | 0.00 | -   | C   |
| MOTA   | 1175 | 0   | ILE |   |     | 15.552 |         | 1.876  | 1.00 | 0.00 |     | . 0 |
| MOTA   | 1176 | N   | CYS | Α | 179 | 14.256 | -8.578  | 0.541  | 1.00 | 0.00 | 1   | A N |
| ATOM   | 1177 | CA  | CYS | Α | 179 | 15.292 | -9.481  | 0.092  | 1.00 | 0.00 | 1   | 7 C |
| MOTA   | 1178 | CB  | CYS | Α | 179 | 14.774 | -10.542 | -0.894 | 1.00 | 0.00 | 1   | , C |
| MOTA   | 1179 | SG  | CYS | A | 179 | 13.627 | -11.727 | -0.133 | 1.00 | 0.00 | 1   | A S |
| ATOM   | 1180 | С   | CYS |   |     | 16.348 |         | -0.645 | 1.00 | 0.00 | 2   | v c |
| ATOM   | 1181 | ō   | CYS |   |     | 17.532 |         | -0.507 | 1.00 | 0.00 |     | . 0 |
|        |      |     | SER |   |     | 15.948 |         | -1.437 | 1.00 | 0.00 |     | N   |
| ATOM   | 1182 | N   |     |   |     | 16.881 |         | -2.165 | 1.00 | 0.00 |     | Č   |
| ATOM   | 1183 | CA  | SER |   |     |        |         |        | 1.00 | 0.00 |     | C   |
| MOTA   | 1184 | CB  | SER |   |     | 16.220 |         | -3.121 |      |      |     |     |
| ATOM   | 1185 | OG  | SER |   |     | 15.690 |         | -4.260 | 1.00 | 0.00 |     | . 0 |
| MOTA   | 1186 | C   | SER |   |     | 17.665 |         | -1.226 | 1.00 | 0.00 |     | C   |
| MOTA   | 1187 | 0   | SER | Α | 180 | 18.848 |         | -1.452 | 1.00 | 0.00 |     | . 0 |
| MOTA   | 1188 | N   | ILE | A | 181 | 17.011 | -5.491  | -0.176 | 1.00 | 0.00 | 1   |     |
| ATOM   | 1189 | CA  | ILE |   |     | 17.677 | -4.623  | 0.756  | 1.00 | 0.00 | 1   | L C |
| ATOM   | 1190 | СВ  | ILE |   |     | 16.722 | -4.003  | 1.742  | 1.00 | 0.00 | 2   | C C |
| ATOM   | 1191 |     | ILE |   |     | 17.527 | -3.245  | 2.811  | 1.00 | 0.00 | 1   |     |
| ATOM   | 1192 |     | ILE |   |     | 15.715 | -3.108  | 1.001  | 1.00 | 0.00 | 1   |     |
| ATOM   | 1193 |     | ILE |   |     | 14.548 | -2.646  | 1.872  | 1.00 | 0.00 |     | Č   |
|        |      |     |     |   |     |        | -5.394  | 1.534  | 1.00 | 0.00 | ;   |     |
| MOTA   | 1194 | C   | ILE |   |     | 18.718 |         | 1.746  | 1.00 | 0.00 |     |     |
| ATOM   | 1195 | 0   | ILE |   |     | 19.835 | -4.924  |        |      |      |     |     |
| ATOM   | 1196 | N   | ILE | A | 182 | 18.370 | -6.597  | 2.019  | 1.00 | 0.00 | 1   | N N |

| ATOM | 1197   | CA   | ILE  | Α | 182   | 19.317 | -7.339  | 2.804   | 1.00 | 0.00 |   | A   | С  |
|------|--------|------|------|---|-------|--------|---------|---------|------|------|---|-----|----|
|      | 1198   | СВ   |      |   | 182   | 18.654 | -8.321  | 3.722   | 1.00 | 0.00 |   | A   | С  |
| ATOM |        |      |      |   |       |        |         |         |      |      |   |     |    |
| MOTA | 1199   | CG2  | ILE  | A | 182   | 19.739 | -9.166  | 4.408   | 1.00 | 0.00 |   | A   | C  |
| ATOM | 1200   | CG1  | ILE  | A | 182   | 17.773 | -7.538  | 4.715   | 1.00 | 0.00 |   | A   | С  |
| MOTA | 1201   | CD1  | ILE  | Δ | 182   | 16.975 | -8.408  | 5.677   | 1.00 | 0.00 |   | A.  | С  |
|      |        |      |      |   |       | 20.395 | -8.025  | 1.995   | 1.00 | 0.00 |   | A   | C  |
| ATOM | 1202   | С    |      |   | 182   |        |         |         |      |      |   |     |    |
| ATOM | 1203   | 0    | ILE  | A | 182   | 21.577 | -7.929  | 2.308   | 1.00 | 0.00 |   | A   | 0  |
| ATOM | 1204   | N    | PHE  | A | 183   | 19.985 | -8.782  | 0.963   | 1.00 | 0.00 |   | A   | N  |
|      | 1205   | CA   |      |   | 183   | 20.758 | -9.640  | 0.091   | 1.00 | 0.00 |   | A   | C  |
| ATOM |        |      |      |   |       |        |         |         |      |      |   |     |    |
| MOTA | 1206   | CB   | PHE  | A | 183   | 19.961 | -10.824 | -0.472  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1207   | CG   | PHE  | A | 183   | 19.428 | -11.547 | 0.715   | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1208   | CD1  | PHE  | A | 183   | 20.287 | -12.079 | 1.647   | 1.00 | 0.00 |   | A   | C  |
|      |        |      |      |   |       |        |         | 0.926   | 1.00 | 0.00 |   | A   | Č  |
| ATOM | 1209   |      | PHE  |   |       |        | -11.634 |         |      |      |   |     |    |
| ATOM | 1210   | CE1  | PHE  | A | 183   | 19.800 | -12.733 | 2.754   | 1.00 | 0.00 |   | A   | C  |
| ATOM | 1211   | CE2  | PHE  | Α | 183   | 17.581 | -12.290 | 2.028   | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1212   | CZ   |      |   | 183   |        | -12.843 | 2.943   | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         |         |      |      |   | A   | Č  |
| ATOM | 1213   | С    |      |   | 183   | 21.437 | -8.960  | -1.064  | 1.00 | 0.00 |   |     |    |
| ATOM | 1214   | 0    | PHE  | A | 183   | 22.320 | -9.568  | -1.667  | 1.00 | 0.00 |   | A   | 0  |
| ATOM | 1215 - | N    | GLN  | Α | 184   | 20.997 | -7.734  | -1.430  | 1.00 | 0.00 |   | A   | N  |
| ATOM | 1216   | CA   |      |   | 184   | 21.447 |         | -2.535  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         |         |      |      |   |     |    |
| ATOM | 1217   | CB   |      |   | 184   | 23.007 | -6.781  | -2.601  | 1.00 | 0.00 |   | A.  | С  |
| ATOM | 1218   | CG   | GLN  | Α | 184   | 23.744 | -6.312  | -3.874  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1219   | CD   | GLN  | А | 184   | 23.489 | -4.848  | -4.216  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1220   |      | GLN  |   |       | 24.020 | -4.369  | -5.218  | 1.00 | 0.00 |   | A   | 0  |
|      |        |      |      |   |       |        |         |         |      |      |   |     |    |
| MOTA | 1221   | NE2  | GLN  | A | 184   | 22,678 | -4.120  | -3.408  | 1.00 | 0.00 |   | A   | Ŋ  |
| MOTA | 1222   | С    | GLN  | Α | 184   | 20.832 | -7.348  | -3.841  | 1.00 | 0.00 |   | A   | С  |
| MOTA | 1223   | 0    | GI.N | Α | 184   | 20.897 | -6.619  | -4.829  | 1.00 | 0.00 |   | A   | 0  |
| MOTA |        |      |      |   |       | 20.104 |         | -3.878  | 1.00 | 0.00 |   | A   | N  |
|      | 1224   | N    |      |   | 185   |        | -8.481  |         |      |      |   |     |    |
| MOTA | 1225   | CA   | LYS  | Α | 185   | 19.464 | -8.794  | -5.129  | 1.00 | 0.00 |   | A   | С  |
| MOTA | 1226   | CB   | LYS  | Α | 185   | 20.246 | -9.779  | -6.023  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1227   | CG   | T.YS | A | 185   | 20.312 | -11.207 | -5.477  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         | -6.525  |      | 0.00 |   | A   | Ċ  |
| ATOM | 1228   | CD   |      |   | 185   |        | -12.254 |         |      |      |   |     |    |
| MOTA | 1229   | CE   | LYS  | A | 185   | 19.755 | -12.279 | -7, 729 | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1230   | NZ   | LYS  | A | 185   | 19.814 | -13.591 | -8.409  | 1.00 | 0.00 |   | A   | N  |
| ATOM | 1231   | С    |      |   | 185   | 18.143 | -9.434  | -4.825  |      | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         |         | 1.00 |      |   | A   | ō  |
| ATOM | 1232   | 0    |      |   | 185   |        | -10.119 | -3.814  |      |      |   |     |    |
| ATOM | 1233   | N    | ARG  | A | 186   | 17.130 | -9.216  | -5.688  | 1.00 |      |   | A   | N  |
| ATOM | 1234   | CA   | ARG  | Α | 186 · | 15.846 | -9.818  | -5.452  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1235   | СВ   |      |   | 186   | 14.646 |         | -6.078  | 1.00 |      |   | A   | С  |
|      |        |      |      |   |       |        |         |         |      |      |   |     | č  |
| MOTA | 1236   | CG   |      |   | 186   | 14.642 |         | -7.603  | 1.00 | 0.00 |   | A.  |    |
| MOTA | 1237   | CD   | ARG  | Α | 186   | 13.452 | -8.411  | -8.235  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1238   | NE   | ARG  | Α | 186   | 13.234 | -9.033  | -9.568  | 1.00 | 0.00 |   | A   | N  |
|      |        |      |      |   |       |        | -10.024 | -9.725  | 1.00 | 0.00 |   | A   | C  |
| ATOM | 1239   | CZ   |      |   | 186   |        |         |         |      |      |   |     |    |
| ATOM | 1240   | NHl  | ARG  | A | 186   | 11.425 | -10.310 | -8.728  | 1.00 | 0.00 |   | A   | N. |
| ATOM | 1241   | NH2  | ARG  | Α | 186   | 12.251 | -10.724 | -10.894 | 1.00 | 0.00 |   | A   | N  |
| ATOM | 1242   | С    |      |   | 186   | 15 883 | -11.178 | -6.062  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         | -6.835  | 1.00 | 0.00 |   | A   | ō  |
| MOTA | 1243   | 0    |      |   | 186   |        | -11.502 |         |      |      |   |     |    |
| ATOM | 1244   | N    | PHE  | Α | 187   | 14.899 | -12.022 | -5.701  | 1.00 | 0.00 |   | A   | N  |
| ATOM | 1245   | CA   | PHE  | Α | 187   | 14.823 | -13.353 | -6.218  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1246   | CB   |      |   | 187   |        | -14.393 | -5.174  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        | -14.427 | -4.124  | 1.00 | 0.00 |   | A   | Ċ  |
| ATOM | 1247   | CG   |      |   | 187   |        |         |         |      |      |   |     |    |
| ATOM | 1248   | CD1  | PHE  | Α | 187   | 16.583 | -15.178 | -4.313  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1249   | CD2. | PHE  | A | 187   | 15.305 | -13.695 | -2.966  | 1.00 | 0.00 |   | A   | С  |
| MOTA | 1250   | CE1  | PHE  | Α | 187   | 17.562 | -15.213 | -3.348  | 1.00 | 0.00 |   | A   | C  |
|      |        |      |      |   |       |        |         | -1.999  | 1.00 | 0.00 |   | A   | C  |
| MOTA | 1251   |      | PHE  | _ |       |        | -13.728 |         | 1.00 |      |   |     |    |
| ATOM | 1252   | CZ   | PHE  | A | 187   |        | -14.488 | -2.188  |      | 0.00 |   | A   | C  |
| ATOM | 1253   | С    | PHE  | Α | 187   | 13.749 | -13.358 | -7.244  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1254   | 0    | PHE  | A | 187   | 12.951 | -12.429 | -7.334  | 1.00 | 0.00 |   | A   | 0  |
|      |        |      |      |   | 188   |        | -14.410 | -8.078  | 1.00 | 0.00 |   | Α ' | N  |
| MOTA | 1255   | N    |      |   |       |        |         |         |      |      |   |     |    |
| ATOM | 1256   | CA   | ASP  | A | 188   |        | -14.566 | -9.018  | 1.00 | 0.00 |   | A   | Ç  |
| ATOM | 1257   | CB   | ASP  | Α | 188   | 13.025 | -15.600 | -10.113 | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1258   | CG   |      |   | 188   |        |         | -11.336 | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         |         | 1.00 | 0.00 |   | A.  | ŏ  |
| MOTA | 1259   |      | ASP  |   |       |        |         | -11.308 |      |      |   |     |    |
| ATOM | 1260   | OD2  | ASP  | A | 188   |        |         | -12.339 | 1.00 | 0.00 |   | A   | 0  |
| ATOM | 1261   | С    |      |   | 188   | 11.586 | -15.113 | -8.159  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1262   | ō    |      |   | 188   |        | -15.768 | -7.158  | 1.00 | 0.00 |   | A   | 0  |
|      |        |      |      |   |       |        |         |         |      |      |   |     |    |
| ATOM | 1263   | N    |      |   | 189   |        | -14.866 | -8.528  | 1.00 | 0.00 |   | A.  | N  |
| MOTA | 1264   | CA   | TYR  | Α | 189   | 9.149  | -15.295 | -7.798  | 1.00 | 0.00 |   | A   | С  |
| ATOM | 1265   | СВ   |      |   | 189   |        | -14.800 | -8.407  | 1.00 | 0.00 |   | A   | С  |
|      |        | CG   |      |   |       |        | -13.313 | -8.330  | 1.00 | 0.00 |   | A   | č  |
| ATOM | 1266   |      |      |   | 189   |        |         |         |      |      |   |     |    |
| ATOM | 1267   | CD1  | TYR  | Α | 189   |        | -12.679 | -7.131  | 1.00 | 0.00 |   | A.  | С  |
| ATOM | 1268   | CD2  | TYR  | Α | 189   | 8.072  | -12.550 | -9.445  | 1.00 | 0.00 |   | A.  | C  |
| ATOM | 1269   |      | TYR  |   |       |        | -11.307 | -7.052  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         | -9.375  | 1.00 | 0.00 |   | A   | č  |
| ATOM | 1270   |      | TYR  |   |       |        | -11.177 |         |      |      |   |     |    |
| MOTA | 1271   | CZ   | TYR  | A | 189   | 7.811  | -10.554 | -8.176  | 1.00 | 0.00 |   | A   | С  |
|      |        |      |      |   |       |        |         |         |      |      | _ |     |    |

| ATOM   | 1272   | OH  | TYR  | A  | 189 | 7.781   | -9.147  | -8.096  | 1.00 | 0.00 |   | A   | 0    |
|--------|--------|-----|------|----|-----|---------|---------|---------|------|------|---|-----|------|
| ATOM   | 1273   | C   | mvb  | 7. | 189 | 9 097   | -16.796 | -7.770  | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1274   | 0   | TYR  | Α  | 189 | 8.540   | -17.383 | -6.846  | 1.00 | 0.00 |   | A   | 0    |
| MOTA   | 1275   | N   | LYS  | A  | 190 | 9.607   | -17.436 | -8.839  | 1.00 | 0.00 |   | A   | N    |
|        |        |     |      |    |     |         | -18.858 | -8.996  | 1.00 | 0.00 |   | A   | C    |
| ATOM   | 1276   | CA  |      |    | 190 |         |         |         |      |      |   |     |      |
| ATOM   | 1277   | CB  | LYS  | Α  | 190 | 9.928   | -19.277 | -10.465 | 1.00 | 0.00 |   | Α   | ¢    |
| MOTA   | 1278   | CG  | LVS  | Δ  | 190 | 11.178  | -18.707 | -11.152 | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1279   | CD  | PAR  | A  | 190 | 12.495  | -19.425 | -10.838 | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1280   | CE  | LYS  | Α  | 190 | 12.546  | -20.860 | -11.365 | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1281   | NZ  | T.VC | D. | 190 | 12 536  | -20.858 | -12 845 | 1.00 | 0.00 |   | Α.  | N    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1282   | С   | LYS  | A  | 190 | 10.697  | -19.523 | -8.107  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1283   | 0   | LYS  | A  | 190 | 10.444  | -20.659 | -7.704  | 1.00 | 0.00 |   | A   | 0    |
|        | 1284   |     |      |    | 191 |         | -18.842 | -7.817  | 1.00 | 0.00 |   | A   | N    |
| ATOM   |        | N   |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1285   | CA  | ASP  | Α  | 191 | 13.021  | -19.325 | -7.108  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1286   | CB  | ASP  | Α  | 191 | 14.046  | -18.203 | -6.822  | 1.00 | 0.00 |   | A   | С    |
|        |        |     | ASP  |    |     |         | -18.769 | -6.489  | 1.00 | 0.00 |   | A   | c    |
| ATOM   | 1287   | CG  |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1288   | OD1 | ASP  | A  | 191 | 15.598  | -19.466 | -5.453  | 1.00 | 0.00 |   | A   | 0    |
| ATOM   | 1289   | OD2 | ASP  | À  | 191 | 16.364  | -18.475 | -7.282  | 1.00 | 0.00 |   | A   | 0    |
|        |        |     |      |    | 191 |         | -19.948 | -5.798  | 1.00 | 0.00 |   | A   | C    |
| ATOM   | 1290   | С   |      |    |     |         |         |         |      |      |   |     |      |
| MOTA   | 1291   | 0   | ASP  | A  | 191 | .11.825 | -19.412 | -5.040  | 1.00 | 0.00 |   | A   | 0    |
| ATOM   | 1292   | N   | GLN  | A  | 192 | 13.194  | -21,149 | -5.562  | 1.00 | 0.00 |   | A   | N    |
|        | 1293   | CA  |      |    | 192 |         | -22.010 | -4.468  | 1.00 | 0.00 |   | A   | С    |
| ATOM   |        |     |      |    |     |         |         |         |      |      |   |     |      |
| MOTA   | 1294 - | CB  | GLN  | Α  | 192 | 13.542  | -23.382 | -4.557  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1295   | ÇG  | GLN  | А  | 192 | 13.132  | -24.339 | ~3.434  | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    | 192 |         | -24.671 | -3.621  | 1.00 | 0.00 |   | A   | С    |
| MOTA   | 1296   | CD  |      |    |     |         |         |         |      |      |   |     |      |
| MOTA   | 1297   | OE1 | GLN  | A  | 192 | 11.165  | -24.763 | -4.743  | 1.00 | 0.00 |   | A   | 0    |
| ATOM   | 1298   | NE2 | GLN  | Δ  | 192 | 10.930  | -24.850 | -2.487  | 1.00 | 0.00 |   | A   | N    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1299   | С   | GLN  | A  | 192 |         | -21.430 | -3.135  | 1.00 | 0.00 |   | A   | C ·  |
| ATOM   | 1300   | 0   | GLN  | Α  | 192 | 12.381  | -21.607 | -2.213  | 1.00 | 0.00 |   | A,  | 0 ·  |
| ATOM   | 1301   | N   |      |    | 193 | 14 346  | -20.759 |         | 1.00 | 0.00 |   | A   | N-   |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1302 . | CA  | GLN  | А  | 193 | 14.770  | -20.209 | -1.726  | 1.00 | 0.00 |   | A.  | C    |
| MOTA   | 1303   | CB  | GLN  | A  | 193 | 16.227  | -19.707 | -1.726  | 1.00 | 0.00 |   | Α·  | ·C   |
| ATOM   | 1304   | CG  |      |    | 193 |         | -18.572 | -2.694  | 1.00 | 0.00 |   | A : | ·c · |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1305   | CD  | GLN  | А  | 193 | 18.047  | -18.385 | -2.652  | 1.00 | 0.00 |   | A   | C),  |
| ATOM   | 1306   | OE1 | GLN  | Α  | 193 | 18.618  | -18.155 | -1.586  | 1.00 | 0.00 |   | A.  | 0    |
| ATOM   | 1307   |     | GLN  |    |     |         | -18.502 | -3.830  | 1.00 | 0.00 |   | A   | N    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1308   | С   | GLN  | A  | 193 | 13.830  | -19.116 | -1.321  | 1.00 | 0.00 |   | A . | Ç    |
| MOTA   | 1309   | 0   | GLN  | Α  | 193 | 13.512  | -18.959 | -0.140  | 1.00 | 0.00 |   | A · | 0    |
| ATOM   | 1310   | N   | PHE  | A  | 194 |         | -18.367 | -2.324  | 1.00 | 0.00 |   | Α.  | N    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| MOTA   | 1311   | CA  |      |    | 194 |         | -17.301 | -2.151  | 1.00 | 0.00 |   | A   | C    |
| ATOM . | 1312   | CB  | PHE  | Α  | 194 | 12.142  | -16.567 | -3.489  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1313   | CG  | PHE  | A  | 194 | 11.162  | -15.445 | -3.335  | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    |     |         |         | -2.864  | 1.00 | 0.00 |   | A   | Č    |
| ATOM   | 1314   |     | PHE  |    |     |         | -14.219 |         |      |      |   |     |      |
| ATOM   | 1315   | CD2 | PHE  | А  | 194 | 9.833   | -15.614 | -3.671  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1316   | CE1 | PHE  | А  | 194 | 10.669  | -13.182 | -2.725  | 1.00 | 0.00 |   | A   | С    |
|        | 1317   |     | PHE  |    |     |         | -14.584 | -3.537  | 1.00 | 0.00 |   | A   | С    |
| ATOM   |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1318   | CZ  | PHE  | A  | 194 | 9.349   | -13.364 | -3.063  | 1.00 | 0.00 | • | A   | С    |
| ATOM   | 1319   | С   | PHE  | Α  | 194 | 11,107  | -17.857 | -1.645  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1320   | 0   | PHE  | Δ  | 194 | 10 526  | -17.330 | -0.695  | 1.00 | 0.00 |   | A   | 0    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1321   | N   | LEU  | A  | 195 | 10.642  | -18:965 | -2.265  | 1.00 | 0.00 |   | A   | N    |
| MOTA   | 1322   | CA  | LEU  | Α  | 195 | 9.385   | -19.599 | -1.965  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1323   | CB  | LEU  |    |     | 9 095   | -20.778 | -2.909  | 1.00 | 0.00 |   | A   | C    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1324   | CG  | LEU  | Α  | 195 | 8.893   | -20.358 | -4.377  | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1325   | CD2 | LEU  | Α  | 195 | 7.831   | -19.253 | -4.511  | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    |     |         |         | -5.268  | 1.00 | 0.00 |   | Α   | С    |
| ATOM   | 1326   | _   | LEU  |    |     |         | -21.572 |         |      |      |   |     |      |
| ATOM   | 1327   | C   | LEU  | А  | 195 | 9.377   | -20.131 | -0.566  | 1.00 | 0.00 | • | A   | С    |
| ATOM   | 1328   | Ö   | LEU  | Α  | 195 | 8.346   | -20.076 | 0.103   | 1.00 | 0.00 |   | A   | 0    |
|        | 1329   |     |      |    | 196 |         | -20.680 | -0.102  | 1.00 | 0.00 |   | Α.  | N    |
| MOTA   |        | N   |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1330   | CA  |      |    | 196 | 10.604  | -21.237 | 1.220   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1331   | CB  | ASN  | А  | 196 | 11,915  | -22.003 | 1.475   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1332   | CG  |      |    | 196 |         | -23.360 | 0.793   | 1.00 | 0.00 |   | A   | С    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1333   | OD1 | asn  | A  | 196 | 10.851  | -24.113 | 1.049   | 1.00 | 0.00 |   | A   | 0    |
| ATOM   | 1334   | ND2 | ASN  | Α  | 196 | 12.755  | -23.675 | -0.110  | 1.00 | 0.00 |   | A   | N    |
| ATOM   | 1335   | C   |      |    | 196 |         | -20.169 | 2.262   | 1.00 | 0.00 |   | A   | C    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| MOTA   | 1336   | 0   |      |    | 196 |         | -20.376 | 3.277   | 1.00 | 0.00 |   | A   | 0    |
| ATOM   | 1337   | N   | LEU  | Α  | 197 | 11.124  | -19.008 | 2.031   | 1.00 | 0.00 |   | A   | N    |
| ATOM   | 1338   | CA  |      |    | 197 |         | -17.901 | 2.946   | 1.00 | 0.00 |   | A   | Ċ.   |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1339   | СВ  | LEU  | A  | 197 | 12.027  | -16.753 | 2.495   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1340   | CG  | LEU  | Α  | 197 | 12.022  | -15.551 | 3.457   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1341   |     | LEU  |    |     |         | -14.362 | 2.866   | 1.00 | 0.00 |   | A   | C    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1342   | CD1 | LEU  | A  | 197 |         | -15.953 | 4.852   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1343   | С   | LEU  | Α  | 197 | 9.717   | -17.350 | 3.042   | 1.00 | 0.00 |   | A   | С    |
| ATOM   | 1344   | ō   |      |    | 197 |         | -17.039 | 4.139   | 1.00 | 0.00 |   | A   | 0    |
|        |        |     |      |    |     |         |         |         |      |      |   |     |      |
| ATOM   | 1345   | N   | MET  | A  | 198 |         | -17.246 | 1.884   | 1.00 | 0.00 |   | A.  | N    |
| ATOM   | 1346   | CA  | MET  | Α  | 198 | 7.690   | -16.743 | 1.772   | 1.00 | 0.00 |   | A   | C    |
|        |        |     |      | -  |     |         |         |         |      |      |   |     |      |

|      |        |       |     |   |     |                  |         | 0 200  | 1 00 | 0.00 |     | _   |
|------|--------|-------|-----|---|-----|------------------|---------|--------|------|------|-----|-----|
| MOTA | 1347   | CB    | MET |   |     |                  | -16.686 | 0.322  | 1.00 | 0.00 | A   |     |
| ATOM | 1348   | CG    | MET | A | 198 | 7.590            | -15.436 | -0.455 | 1.00 | 0.00 | A   |     |
| MOTA | 1349   | SD    | MET | Α | 198 | 6.456            | -14.016 | -0.301 | 1.00 | 0.00 | A   |     |
| MOTA | 1350   | CE    | MET | A | 198 | 6.662            | -13.651 | 1.467  | 1.00 | 0.00 | A   | C   |
| ATOM | 1351   | Ç     | MET | Α | 198 | 6.765            | -17.643 | 2.524  | 1.00 | 0.00 | A   | . с |
| ATOM | 1352   | Ó     | MET | A | 198 | 5.822            | -17.180 | 3.165  | 1.00 | 0.00 | A   | . 0 |
| ATOM | 1353   | N     | GLU |   |     |                  | -18.959 | 2.451  | 1.00 | 0.00 | A   | N   |
|      |        |       | GLU |   |     |                  | -19.957 | 3.094  | 1.00 | 0.00 | A   |     |
| ATOM | 1354   | CA    |     |   |     |                  |         | 2.753  | 1.00 | 0.00 | A   |     |
| ATOM | 1355   | СВ    | GLU |   |     |                  | -21.373 |        |      |      |     |     |
| ATOM | 1356   | CG    | GLU |   |     |                  | -22.484 | 3.407  | 1.00 | 0.00 | A   |     |
| ATOM | 1357   | CD    | GLU | Α | 199 |                  | -23.800 | 3.061  | 1.00 | 0.00 | A   |     |
| MOTA | 1358   | OE1   | GLU | А | 199 | 7.492            | -23.780 | 2.207  | 1.00 | 0.00 | A   |     |
| ATOM | 1359   | OE2   | GLU | A | 199 | 6.172            | -24.842 | 3.650  | 1.00 | 0.00 | A   | . 0 |
| ATOM | 1360   | С     | GLU | Α | 199 | 6.290            | -19.836 | 4.586  | 1.00 | 0.00 | A   | . С |
| ATOM | 1361   | 0     | GLU |   |     | 5.263            | -19.899 | 5.266  | 1.00 | 0.00 | A   | . 0 |
| ATOM | 1362   | N     | LYS |   |     |                  | -19.668 | 5.125  | 1.00 | 0.00 | A   | . N |
| ATOM | 1363   | CA    | LYS |   |     |                  | -19.580 | 6.544  | 1.00 | 0.00 | A   |     |
| ATOM |        |       | LYS |   |     |                  | -19.594 | 6.941  | 1.00 | 0.00 | A   |     |
|      | 1364   | CB    |     |   |     |                  |         | 7.161  | 1.00 | 0.00 | A   |     |
| ATOM | 1365   | CG    | LYS |   |     |                  | -21.009 |        |      |      |     |     |
| MOTA | 1366   | CD    | LYS |   |     |                  | -21.899 | 5.921  | 1.00 | 0.00 | A   |     |
| MOTA | 1367   | ÇE    | LYS |   |     |                  | -23.330 | 6.161  | 1.00 | 0.00 | A   |     |
| ATOM | 1368   | NZ    | LYS | Α | 200 | 9.128            | -24.106 | 6.855  | 1.00 | 0.00 | A   |     |
| MOTA | 1369   | С     | LYS | Α | 200 | 7.112            | -18.343 | 7.107  | 1.00 | 0.00 | A   | . с |
| ATOM | 1370   | 0     | LYS | А | 200 | 6.595            | -18.374 | 8.225  | 1.00 | 0.00 | A   | . 0 |
| ATOM | 1371   | N     | LEU |   |     |                  | -17.227 | 6.350  | 1.00 | 0.00 | A   | N   |
| ATOM | 1372   | -     | LEU |   |     |                  | -15.982 | 6.794  | 1.00 | 0.00 | A   | . c |
|      |        |       |     |   |     |                  | -14.819 | 5.829  | 1.00 | 0.00 | A   |     |
| ATOM | 1373   | CB    | LEU |   |     |                  |         |        | 1.00 | 0.00 | A   |     |
| MOTA | 1374   | CG    | LEU |   |     |                  | -14.392 | 5.798  |      |      |     |     |
| MOTA | 1375   |       | LEU |   |     |                  | -14.061 | 7.213  | 1.00 | 0.00 | A   |     |
| ATOM | 1376   | CD1   | LEU | A | 201 |                  | -13.230 | 4.821  | 1.00 | 0.00 | A   |     |
| ATOM | . 1377 | C     | LEU | A | 201 | 5.090            | -16.095 | 6.894  | 1.00 | 0.00 | A   |     |
| ATOM | 1378   | 0     | LEU | A | 201 | 4.499            | -15.668 | 7.882  | 1.00 | 0.00 | A   | . 0 |
|      | .1379  |       | ASN | А | 202 | 4.455            | -16.695 | 5.868  | 1.00 | 0.00 | A   | N N |
| MOTA | 1380   | CA    |     |   | 202 |                  | -16.801 | 5.782  | 1.00 | 0.00 | · A | C   |
| ATOM | 1381   | CB    |     |   | 202 |                  | -17.315 | 4.414  | 1.00 | 0.00 | A   | C   |
|      |        |       |     |   |     |                  | -16.232 | 3.389  | 1.00 | 0.00 | A   |     |
| ATOM | 1382   | CG    |     |   | 202 |                  |         |        |      | 0.00 | A   |     |
| ATOM | 1383   |       | asn |   |     |                  | -16.523 | 2.251  | 1.00 |      |     |     |
| ATOM |        | · ND2 |     |   |     |                  | -14.944 | 3.803  | 1.00 | 0.00 | A   |     |
| ATOM | · 1385 | .C    | ASN | A | 202 |                  | -17.696 | 6.844  | 1.00 | 0.00 | A   |     |
| ATOM | 1386   | 0     | ASN | A | 202 | 1.369            | -17.452 | 7.324  | 1.00 | 0.00 | A   |     |
| ATOM | 1387   | N     | GLU | A | 203 | 3.226            | -18.762 | 7.208  | 1.00 | 0.00 | A   | . N |
| ATOM | 1388   | CA    | GLU | А | 203 | 2.800            | -19.708 | 8.204  | 1.00 | 0.00 | A   | C   |
| ATOM | 1389   | CB    |     |   | 203 |                  | -20.868 | 8.434  | 1.00 | 0.00 | A   | C   |
| ATOM | 1390   | CG    |     |   | 203 |                  | -21.883 | 7.301  | 1.00 | 0.00 | A   | C   |
|      | 1391   | CD    |     |   | 203 |                  | -23.064 | 7.885  | 1.00 | 0.00 | A   |     |
| ATOM |        |       |     |   |     |                  |         | 9.139  | 1.00 | 0.00 | A   |     |
| ATOM | 1392   | OE1   |     |   | 203 |                  | -23.195 |        |      |      | A   |     |
| ATOM | 1393   |       | GLU |   |     |                  | -23.846 | 7.101  | 1.00 | 0.00 |     |     |
| ATOM | 1394   | С     |     |   | 203 |                  | -19.029 | 9.527  | 1.00 | 0.00 | A   |     |
| ATOM | 1395   | 0     | GLU | A | 203 | 1.793            | -19.285 | 10.298 | 1.00 | 0.00 | A   |     |
| ATOM | 1396   | N     | ASN | Α | 204 | 3.699            | -18.150 | 9.806  | 1.00 | 0.00 | A   |     |
| ATOM | 1397   | CA    | ASN | Α | 204 | 3.753            | -17.428 | 11.043 | 1.00 | 0.00 | P   | C   |
| ATOM | 1398   | СВ    | ASN | A | 204 | 5.062            | -16.651 | 11.235 | 1.00 | 0.00 | P   | C   |
| ATOM | 1399   | CG    | ASN | A | 204 | 6.110            | -17.698 | 11.576 | 1.00 | 0.00 | P   | C.  |
| ATOM | 1400   |       | ASN |   |     |                  | -18.866 | 11.789 | 1.00 | 0.00 | 7   | . 0 |
| ATOM | 1401   |       | ASN |   |     |                  | -17.276 | 11.649 | 1.00 | 0.00 | 2   |     |
|      |        |       |     |   |     |                  | -16.483 | 11.133 | 1.00 | 0.00 | P   | _   |
| MOTA | 1402   | C     |     |   | 204 |                  |         | 12.225 | 1.00 | 0.00 | P   |     |
| ATOM | 1403   | 0     |     |   | 204 |                  | -16.233 |        |      |      |     |     |
| ATOM | 1404   | N     |     |   | 205 |                  | -15.935 | 9.978  | 1.00 | 0.00 | P   |     |
| ATOM | 1405   | CA    | ILE | A | 205 |                  | -15.032 | 9.895  | 1.00 | 0.00 | P   |     |
| MOTA | 1406   | CB    | ILE | Α | 205 | 0.821            | -14.526 | 8.496  | 1.00 | 0.00 | P   |     |
| ATOM | 1407   | CG2   | ILE | A | 205 | -0.465           | -13.683 | 8.486  | 1.00 | 0.00 | P   | C   |
| ATOM | 1408   |       | ILE |   |     |                  | -13.751 | 7.990  | 1.00 | 0.00 | F   | C   |
| MOTA | 1409   |       | ILE |   |     |                  | -13.441 | 6.497  | 1.00 | 0.00 | P   |     |
|      | 1410   | C     |     |   | 205 |                  | -15.773 | 10.285 | 1.00 | 0.00 | F   |     |
| MOTA |        |       |     |   |     |                  | -15.248 | 11.001 | 1.00 | 0.00 | 7   |     |
| MOTA | 1411   | 0     |     |   | 205 |                  |         |        |      |      |     |     |
| MOTA | 1412   | N     |     |   | 206 |                  | -17.018 | 9.794  | 1.00 | 0.00 | P   |     |
| ATOM | 1413   | CA    |     |   | 206 |                  | -17.818 | 10.060 |      | 0.00 | P   |     |
| ATOM | 1414   | CB    | ARG | A | 206 |                  | -19.113 | 9.233  | 1.00 | 0.00 | F   |     |
| ATOM | 1415   | CG    | ARG | A | 206 |                  | -19.960 | 9.513  | 1.00 | 0.00 | P   |     |
| ATOM | 1416   | .CD   | ARG | A | 206 | -2.861           | -21.241 | 8.680  | 1.00 | 0.00 | F   |     |
| MOTA | 1417   | NE    |     |   | 206 |                  | -22.188 | 9.227  | 1.00 | 0.00 | 7   | N N |
| ATOM | 1418   | CZ    |     |   | 206 |                  | -23.454 | 8.724  | 1.00 | 0.00 | P   | ı c |
| ATOM | 1419   |       | ARG |   |     |                  | -23.838 | 7.723  | 1.00 | 0.00 | I   |     |
|      | 1420   |       |     |   |     | _2.020<br>_n g57 | -24.333 | 9.220  | 1.00 | 0.00 | Ī   |     |
| MOTA |        |       | ARG |   |     | -0.03/           | -18.212 | 11.506 | 1.00 | 0.00 | Į   |     |
| ATOM | 1421   | С     | ARG | A | 206 | ~1.363           | 10.212  |        |      |      | •   | . • |

Figure 7

| ATOM | 1422   | 0   | ARG  | A | 206   | -2.675  | -18.251 | 12.075 | 1.00            | 0.00 |    | A   | 0 |
|------|--------|-----|------|---|-------|---------|---------|--------|-----------------|------|----|-----|---|
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1423   | N   |      |   | 207   |         | -18.547 | 12.119 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1424   | CA  | ILE  | A | 207   | -0.372  | -18.990 | 13.489 | 1.00            | 0.00 |    | Α   | С |
| ATOM | 1425   | CB  | TIVE | Α | 207   | 1.017   | -19.399 | 13.895 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1426   | ÇGZ | ILE  | A | 207   | 1.002   | -19.685 | 15.407 | 1.00            | 0.00 |    | A   | С |
| MOTA | 1427   | CG1 | ILE  | Α | 207   | 1.504   | -20.587 | 13.041 | 1.00            | 0.00 |    | A   | С |
|      |        |     | ILE  |   |       |         | -20.820 |        | 1.00            | 0.00 |    | A   | С |
| MOTA | 1428   |     |      |   |       |         |         | 13.098 |                 |      |    |     |   |
| MOTA | 1429   | С   | ILE  | Α | 207   | -0.791  | -17.869 | 14.399 | 1.00            | 0.00 |    | A . | С |
| ATOM | 1430   | 0   | TT.W | Δ | 207   | -1 642  | -18.049 | 15.268 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1431   | N   | VAL  | Ą | 208   | -0.231  | -16.668 | 14.174 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1432   | CA  | VAL  | A | 208   | -0.501  | -15.523 | 14.998 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1433   | CB  |      |   | 208   |         | -14.360 | 14.762 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | . 1434 | CG1 | VAL  | Ą | 208   | 1.865   | -14.819 | 15.065 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1435   | CG2 | VAL  | Α | 208   | 0.232   | -13.801 | 13.347 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   | 208   |         |         |        |                 |      |    |     |   |
| MOTA | 1436   | С   |      |   |       |         | -15.047 | 14.827 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1437   | 0   | VAL  | Ą | 208   | -2.465  | -14.405 | 15.718 | 1.00            | 0.00 |    | A   | 0 |
| MOTA | 1438   | N.  | SER  | Α | 209   | -2.520  | -15.290 | 13.653 | 1.00            | 0.00 |    | A   | N |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1439   | CA  |      |   | 209   |         | -14.790 | 13.383 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1440   | CB  | SER  | A | 209   | -4.183  | -14.734 | 11.883 | 1.00            | 0.00 |    | A   | C |
| ATOM | 1441   | OG  | SER  | Α | 209   | -4.351  | -16.042 | 11.362 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1442   | С   |      |   | 209   |         | -15.579 | 14.059 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1443   | 0   | SER  | A | 209   | -6.078  | -15.181 | 13.971 | 1.00            | 0.00 |    | A   | 0 |
| ATOM | 1444   | N   | TUD  | 2 | 210   | -4 508  | -16.720 | 14.711 | 1.00            | 0.00 |    | A   | N |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1445   | CA  | THR  | Ą | 210   | -5.660  | -17.479 | 15.312 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1446   | CB  | THR  | A | 210   | -5.330  | -18.920 | 15.617 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         | 16.089 | 1.00            | 0.00 |    | A   | 0 |
| ATOM | 1447   | OG1 |      |   |       |         | -19.592 |        |                 |      |    |     |   |
| ATOM | 1448   | CG2 | THR  | A | 210   | -4.195  | -19.013 | 16.646 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1449   | С   | THR  | Δ | 210   | -6 136  | -16.772 | 16.539 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1450   | 0   |      |   | 210   |         | -16.296 | 17.376 | 1.00            | 0.00 |    | A   | 0 |
| ATOM | 1451   | N   | PRO  | A | 211   | -7.445  | -16.724 | 16.627 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1452   | CA  |      |   |       |         | -16.035 | 17.665 | 1.00            | 0.00 |    | A   | C |
|      |        |     |      |   | 211   |         |         |        |                 |      |    |     |   |
| ATOM | 1453   | CD  | PRO  | Α | 211   | -8.288  | -17.029 | 15.486 | 1.00            | 0.00 |    | A   | С |
| MOTA | 1454   | СВ  | PRO  | Α | 211   | -9.641  | -16.064 | 17.248 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1455   | CG  |      |   | 211   | -9.702  | -17.069 | 16.080 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1456   | С   | PRO  | A | 211   | -7.895  | -16.573 | 19.032 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1457   | 0   |      |   | 211   | -8 068  | -15.843 | 20.004 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1458   | N   | TRP  | Ą | 212   | -7.452  | -17.837 | 19.136 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1459   | CA  | TRP  | Α | 212   | -7:133  | -18.437 | 20.389 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 | 0.00 |    | A   | C |
| ATOM | 1460   | CB  |      |   | 212   |         | -19.972 | 20.444 | 1.00            |      |    |     |   |
| ATOM | 1461   | CG  | TRP  | Α | 212   | -6.257  | -20.948 | 20.007 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1462   | CD2 | TRP  | Α | 212   | -5.772  | -21.951 | 20.914 | 1.00            | 0.00 |    | A   | С |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1463   | CDI | TRP  | A | 212   | -5, /00 | -21.222 | 18.792 | 1.00            | 0.00 |    | A   | C |
| ATOM | 1464   | NE1 | TRP  | Α | 212   | -4.877  | -22.324 | 18.894 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1465   | CE2 | TRP  |   |       | -4 924  | -22.787 | 20.195 | 1.00            | 0.00 |    | A   | C |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1466   | CE3 | TRP  | A | 212   | -6.036  | -22.169 | 22.235 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1467   | CZ2 | TRP  | Α | 212   | -4.321  | -23.862 | 20.792 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1468   |     | TRP  |   |       |         | -23.239 | 22.840 | 1.00            | 0.00 |    | A   | С |
|      |        |     | •    |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1469   | CH2 | TRP  | A | 212   | -4.572  | -24.070 | 22.132 | 1.00            | 0.00 |    | A   | C |
| ATOM | 1470   | С   | TRP  | A | 212   | -5.810  | -17.936 | 20.931 | 1.00            | 0.00 |    | A   | С |
|      |        | ō   | TRP  |   |       |         |         |        |                 | 0.00 |    | A   | 0 |
| ATOM | 1471   |     |      |   |       |         | -18.323 | 22.025 | 1.00            |      |    |     |   |
| ATOM | 1472   | N   | ILE  | A | 213   | -5.039  | -17.133 | 20.157 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1473   | CA  | ILE  | A | .213  | -3.782  | -16.550 | 20.577 | 1.00            | 0.00 |    | A   | С |
|      | 1474   |     |      |   |       |         | -15.800 |        | 1.00            | 0.00 |    | A   | С |
| MOTA |        | CB  | ILE  |   |       |         |         | 19.449 |                 | 0.00 |    |     |   |
| MOTA | 1475   | CG2 | ILE  | Α | 213   |         | -14.890 | 19.967 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1476   | CG1 | ILE  | A | 213   | -2.551  | -16.808 | 18.422 | 1.00            | 0.00 |    | A   | С |
| ATOM | 1477   |     | ILE  |   |       |         | -17.750 | 18.993 | 1.00            | 0.00 |    | A   | Ċ |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1478   | С   | ILE  | A | 213   |         | -15.645 | 21.769 | 1.00            | 0.00 |    | A . | С |
| ATOM | 1479   | 0   | ILE  | A | 213   | -3.160  | -15.549 | 22.652 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         | 21.836 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1480   | N   | GLN  |   |       |         | -14.945 |        |                 |      |    |     |   |
| ATOM | 1481   | CA  | GLN  | A | 214   |         | -14.070 | 22.941 | 1.00            | 0.00 |    | A   | C |
| ATOM | 1482   | СВ  | GLN  |   |       | -6.740  | -13.247 | 22.758 | 1.00            | 0.00 |    | A   | C |
|      | 1483   |     |      |   |       |         | -12.139 | 21.723 | 1.00            | 0.00 |    | A   | č |
| ATOM |        | CG  | GLN  |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1484   | CD  | GLN  | A | 214   | -5.381  | -11.319 | 22.104 | 1.00            | 0.00 | į. | A   | С |
| ATOM | 1485   |     | GLN  |   |       |         | -11.050 | 21.245 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1486   |     | GLN  |   |       |         | -10.925 | 23.403 | 1.00            | 0.00 |    | A   | N |
| ATOM | 1487   | С   | GLN  | Α | 214   | -5.645  | -14.816 | 24.225 | 1.00            | 0.00 |    | A   | С |
| MOTA | 1488   | 0   | GLN  |   |       |         | -14.233 | 25.291 | 1.00            | 0.00 |    | A   | 0 |
|      |        |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1489   | N   | ILE  | Α | 215   |         | -16.085 | 24.148 | 1.00            | 0.00 | i  | A   | N |
| MOTA | 1490   | CA  | ILE  | Α | 215   | -6.365  | -16.852 | 25.339 | 1.00            | 0.00 | i  | A   | C |
|      | 1491   |     |      |   |       |         | -18.137 | 25.198 | 1.00            | 0.00 |    | A   | Ċ |
| ATOM |        | CB  | ILE  |   |       |         |         |        |                 |      |    |     |   |
| MOTA | 1492   | CG2 | ILE  | A | 215   |         | -19.305 | 24.759 | 1.00            | 0.00 |    | A   | С |
| MOTA | 1493   |     | ILE  |   |       | -7.805  | -18.446 | 26.559 | 1.00            | 0.00 | i  | A   | С |
|      |        |     |      |   |       |         | -19.539 | 26.500 | 1.00            | 0.00 |    | A   | č |
| ATOM | 1494   |     |      |   |       |         |         |        |                 |      |    |     |   |
| ATOM | 1495   | C   | ILE  | А | 215   |         | -17.105 | 26.070 | 1.00            | 0.00 | 1  | A   | С |
| ATOM | 1496   | 0   | ILE  |   |       |         | -17.149 | 27.299 | 1.00            | 0.00 | 1  | A   | 0 |
|      |        | -   | 1110 | n | ~ 1 ~ | 5.0.1   |         |        | - · <del></del> |      | •  |     | _ |

|        |      |     |     | _  |     | 2 255  |         | 25 246 | 1 00 | 0.00 |   | N   |
|--------|------|-----|-----|----|-----|--------|---------|--------|------|------|---|-----|
| MOTA   | 1497 | N   | CYS |    |     |        | -17.277 | 25.346 | 1.00 |      | A |     |
| ATOM   | 1498 | CA  | CYS | A  | 216 | -2.724 | -17.492 | 26.047 | 1.00 | 0.00 | A | С   |
| ATOM   | 1499 | CB  | CYS | A  | 216 | -1.613 | -18.198 | 25.246 | 1.00 | 0.00 | Α | С   |
| ATOM   |      | SG  | CYS |    |     |        | -17.176 | 24.004 | 1.00 | 0.00 | Α | S   |
|        |      |     |     |    |     |        |         | 26.737 | 1.00 | 0.00 | A | Č   |
| ATOM   | 1501 | С   | CYS |    |     |        | -16.236 |        |      |      |   |     |
| MOTA   | 1502 | 0   | CYS | A  | 216 | -1.534 | -16.328 | 27.749 | 1.00 | 0.00 | A | 0   |
| MOTA   | 1503 | N   | ASN | Α  | 217 | -2.551 | -15.033 | 26.206 | 1.00 | 0.00 | A | N   |
| ATOM   | 1504 | CA  | ASN | A  | 217 | -2.133 | -13.787 | 26.807 | 1.00 | 0.00 | A | С   |
|        | 1505 | CB  | ASN |    |     |        | -12.582 | 25.911 | 1.00 | 0.00 | A | С   |
| MOTA   |      |     |     |    |     |        |         |        |      |      | A | č   |
| MOTA   | 1506 | CG  | asn |    |     |        | -12.714 | 24.659 | 1.00 | 0.00 |   |     |
| ATOM   | 1507 | OD1 | ASN | Α  | 217 |        | -13.378 | 24.658 | 1.00 | 0.00 | A | 0   |
| MOTA   | 1508 | ND2 | ASN | Α  | 217 | -2.051 | -12.056 | 23.555 | 1.00 | 0.00 | A | N   |
| ATOM   | 1509 | С   | ASN |    |     |        | -13.610 | 28.123 | 1.00 | 0.00 | A | С   |
|        |      |     | ASN |    |     |        | -13.033 | 29.073 | 1.00 | 0.00 | A | 0   |
| MOTA   | 1510 | 0   |     |    |     |        |         |        |      |      | A | N   |
| ATOM   | 1511 | N   | ASN |    |     |        | -14.065 | 28.171 | 1.00 | 0.00 |   |     |
| ATOM   | 1512 | CA  | ASN | Α  | 218 |        | -13.962 | 29.338 | 1.00 | 0.00 | A | С   |
| ATOM   | 1513 | CB  | ASN | A  | 218 | -6.361 | -14.220 | 28.949 | 1.00 | 0.00 | A | С   |
| ATOM   | 1514 | CG  | ASN | Α  | 218 | -7.223 | -13.341 | 29.819 | 1.00 | 0.00 | A | С   |
| ATOM   | 1515 |     | ASN | A  | 218 | -7.021 | -12.129 | 29.893 | 1.00 | 0.00 | Α | 0   |
|        | 1516 |     | ASN |    |     |        | -13.962 | 30.480 | 1.00 | 0.00 | A | N   |
| ATOM   |      |     |     |    |     |        |         | 30.351 | 1.00 | 0.00 | A | c   |
| ATOM   | 1517 | С   | ASN |    |     |        | -14.972 |        |      |      |   | ŏ   |
| ATOM   | 1518 | 0   | ASN |    |     |        | -14.666 | 31.535 | 1.00 | 0.00 | A |     |
| ATOM   | 1519 | N   | PHE | A  | 219 | -4.180 | -16.224 | 29.910 | 1.00 | 0.00 | A | 'n  |
| ATOM   | 1520 | CA  | PHE | A  | 219 | -3.725 | -17.223 | 30.833 | 1.00 | 0.00 | A | С   |
| MOTA   | 1521 | СВ  | PHE | A  | 219 | -4.716 | -18.388 | 31.015 | 1.00 | 0.00 | A | С   |
| ATOM   | 1522 | CG  | PHE |    |     |        | -17.883 | 31.797 | 1.00 | 0.00 | A | С   |
|        |      |     |     |    |     |        | -17.933 | 33.174 | 1.00 | 0.00 | A | C   |
| MOTA   | 1523 |     | PHE |    |     |        |         |        |      |      |   | č   |
| ATOM   | 1524 |     | PHE |    |     |        | -17.349 | 31.164 | 1.00 |      | A |     |
| ATOM   | 1525 | CE1 | PHE | Α  | 219 | -6.939 | -17.470 | 33.908 | 1.00 |      | A | С   |
| ATOM   | 1526 | CE2 | PHE | Α  | 219 | -8.048 | -16.882 | 31.895 | 100% | 0.00 | Α | C   |
| ATOM   | 1527 | CZ  | PHE | A  | 219 | -8.035 | -16.940 | 33.270 | 1.00 | 0.00 | Α | С   |
| ATOM   | 1528 | c   | PHE |    |     |        | -17.826 | 30.295 | 1.00 | 0.00 | Α | С   |
|        |      |     |     |    |     |        | -18.866 | 29.642 | 1.00 |      | A | ō   |
| ATOM   | 1529 | 0   | PHE |    |     |        |         |        |      |      |   | N   |
| ATOM   | 1530 | N   | PRO |    |     |        | -17.252 | 30.645 | 1.00 |      | A |     |
| ATOM   | 1531 | CA: | PRO | А  | 220 | -0.036 | -17.660 | 30.210 | 1.00 |      | A | С   |
| ATOM   | 1532 | CD  | PRO | Α  | 220 | -1.305 | -16.234 | 31.681 | 1.00 | 000  | A | С   |
| ATOM   | 1533 | CB  | PRO | A  | 220 | 0.916  | -16.628 | 30.810 | 1.00 | 0.00 | A | С   |
| ATOM   | 1534 | CG  | PRO |    |     |        | -16.135 | 32.066 | 1.00 |      | A | С   |
|        |      |     |     |    |     |        |         | 30.633 | 1.00 |      | A | Ċ   |
| ATOM   | 1535 | С   | PRO |    |     |        | -19.057 |        |      |      |   | ŏ   |
| ATOM   | 1536 | 0   | PRO |    |     |        | -19.653 | 29.998 | 1.00 | 0.00 | A |     |
| ATOM   | 1537 | N   | THR | Α  | 221 | -0.321 | -19.602 | 31.679 | 1.00 | 0.00 | A | N   |
| ATOM   | 1538 | CA  | THR | Α  | 221 | -0.074 | -20.917 | 32.195 | 1.00 | 0.00 | A | С   |
| ATOM   | 1539 | СВ  | THR | Α  | 221 | -0.915 | -21.182 | 33.408 | 1.00 | 0.00 | A | С   |
| ATOM   | 1540 |     | THR |    |     |        | -20.174 | 34.379 | 1.00 | 0.00 | A | 0   |
|        |      |     |     |    |     |        | -22.558 | 34.002 | 1.00 | 0.00 | A | С   |
| MOTA   | 1541 |     | THR |    |     |        |         |        |      |      | A | Č   |
| ATOM   | 1542 | С   |     |    | 221 |        | -21.945 | 31.150 | 1.00 | 0.00 |   |     |
| MOTA   | 1543 | 0   | THR | A  | 221 |        | -23.005 | 31.091 | 1.00 | 0.00 | A | 0   |
| MOTA   | 1544 | N   | ILE | Α  | 222 | -1.404 | -21.642 | 30.282 | 1.00 | 0.00 | A | N.  |
| ATOM   | 1545 | CA  | ILE | A  | 222 | -1.888 | -22.525 | 29.254 | 1.00 | 0.00 | Α | С   |
| MOTA   | 1546 | CB  | TLE | A  | 222 | -3.080 | -22.069 | 28.463 | 1.00 | 0.00 | Α | С   |
|        | 1547 |     | ILE |    |     |        | -21.688 | 29.480 | 1.00 | 0.00 | A | С   |
| ATOM   |      |     |     |    |     |        | -20.960 | 27.457 | 1.00 | 0.00 | A | Č   |
| ATOM   | 1548 |     | ILE |    |     |        |         |        |      |      |   |     |
| MOTA   | 1549 | CD1 | ILE |    |     |        | -20.768 | 26.435 | 1.00 | 0.00 | A | C   |
| ATOM   | 1550 | С   | ILE | A  | 222 |        | -22.827 | 28.246 | 1.00 | 0.00 | A | С   |
| ATOM   | 1551 | 0   | ILE | Α  | 222 | -0.969 | -23.833 | 27.555 | 1.00 | 0.00 | Α | 0   |
| ATOM   | 1552 | N   |     | _  | 223 |        | -21.939 | 28.075 | 1.00 | 0.00 | A | N · |
| ATOM   | 1553 | CA  |     |    | 223 |        | -22.092 | 27.089 | 1.00 | 0.00 | A | С   |
|        |      |     |     |    |     |        |         | 26.962 | 1.00 | 0.00 | A | C   |
| ATOM . | 1554 | CB  |     |    | 223 |        | -20.860 |        |      |      |   |     |
| MOTA   | 1555 |     | ILE |    |     |        | -20.820 | 28.042 | 1.00 | 0.00 | A | C   |
| MOTA   | 1556 | CG1 | ILE | Α  | 223 |        | -20.778 | 25.564 | 1.00 | 0.00 | A | С   |
| ATOM   | 1557 | CD1 | ILE | A  | 223 |        | -19.381 | 25.274 | 1.00 | 0.00 | A | С   |
| ATOM   | 1558 | С   | ILE | Α  | 223 | 1.998  | -23.361 | 27.369 | 1.00 | 0.00 | Α | С   |
| ATOM   | 1559 | ō   |     |    | 223 |        | -24.067 |        | 1.00 | 0.00 | A | 0   |
|        | 1560 | N   |     |    |     |        | -23.713 | 28.656 | 1.00 | 0.00 | A | N   |
| ATOM   |      |     |     |    | 224 |        | -24.908 | 29.051 | 1.00 | 0.00 | A | Ċ   |
| ATOM   | 1561 | CA  |     |    | 224 |        |         |        |      |      |   |     |
| ATOM   | 1562 | CB  |     |    | 224 |        | -24.969 | 30.565 | 1.00 | 0.00 | A | . C |
| MOTA   | 1563 | CG  | ASP | Α  | 224 |        | -24.070 | 30.835 | 1.00 | 0.00 | A | С   |
| ATOM   | 1564 | OD1 | ASP | A  | 224 | 5.424  | -24.277 | 30.150 | 1.00 | 0.00 | A | 0   |
| ATOM   | 1565 |     | ASP |    |     |        | -23.185 | 31.727 | 1.00 | 0.00 | A | ٠0  |
| ATOM   | 1566 | C   |     |    | 224 |        | -26.123 | 28.655 | 1.00 | 0.00 | A | Ċ   |
|        | 1567 |     |     |    |     |        | -27.164 | 28.328 | 1.00 | 0.00 | A | ō   |
| ATOM   |      | 0   |     |    | 224 |        |         | 28.726 | 1.00 | 0.00 | A | N   |
| MOTA   | 1568 | N   |     |    | 225 |        | -26.030 |        |      |      |   |     |
| MOTA   | 1569 | CA  | TYR | A  | 225 |        | -27.097 | 28.365 | 1.00 | 0.00 | A | C   |
| ATOM   | 1570 | CB  | TYR | A  | 225 |        | -26.880 | 28.861 | 1.00 | 0.00 | A | С   |
| MOTA   | 1571 | CG  |     |    | 225 |        | -27.087 | 30.324 | 1.00 | 0.00 | A | С   |
|        |      | _   |     | ٠. |     |        |         |        |      |      |   |     |

| ATOM   | 1572 | CD1 | TYR  | Α | 225 | -1.489  | -28.364             | 30.826 | 1.00 | 0.00 | A | С     |
|--------|------|-----|------|---|-----|---------|---------------------|--------|------|------|---|-------|
|        |      |     |      |   |     |         | -26.027             |        | 1.00 | 0.00 | A | č     |
| ATOM   | 1573 | CD2 |      |   |     |         |                     | 31.172 |      |      |   |       |
| ATOM   | 1574 |     | TYR  |   |     |         | -28.580             | 32.177 | 1.00 | 0.00 | A | С     |
| ATOM   | 1575 | CE2 | TYR  | A | 225 | -1.039  | -26.238             | 32.521 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1576 | CZ  | TYR  | Α | 225 | -1.138  | -27.515             | 33.022 | 1.00 | 0.00 | A | С     |
|        |      |     | TYR  |   |     |         | -27.737             | 34.407 | 1.00 | 0.00 | A | ō     |
| ATOM   | 1577 | OH  |      |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1578 | С   | TYR  |   |     | -0.133  | -27.290             | 26.893 | 1.00 | 0.00 | A | С     |
| ATOM   | 1579 | 0   | TYR  | A | 225 | -0.163  | -28.424             | 26.415 | 1.00 | 0.00 | Α | 0     |
| ATOM   | 1580 | N   | PHE  | Δ | 226 | -0.139  | -26.186             | 26.117 | 1.00 | 0.00 | A | N     |
|        |      |     |      |   |     |         |                     |        |      | 0.00 |   |       |
| ATOM   | 1581 | CA  |      |   | 226 |         | -26.284             | 24.689 | 1.00 |      | A | С     |
| ATOM   | 1582 | СВ  | PHE  | A | 226 | -1.323  | -25.467             | 24.064 | 1.00 | 0.00 | A | Ç     |
| ATOM   | 1583 | CG  | PHE  | A | 226 | -2.607  | -25.939             | 24.662 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1584 |     | PHE  |   |     | -3 280  | -27.012             | 24.129 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         |                     |        |      |      |   |       |
| ATOM ' | 1585 |     | PHE  |   |     |         | -25.306             | 25.761 | 1.00 | 0.00 | A | С     |
| ATOM   | 1586 | CE1 | PHE  | A | 226 | -4.458  | -27.453             | 24.683 | 1.00 | 0.00 | A | С     |
| ATOM   | 1587 | CE2 | PHE  | A | 226 | -4.317  | -25.741             | 26.320 | 1.00 | 0.00 | Α | C     |
| ATOM   | 1588 | CZ  |      |   | 226 |         | -26.812             | 25.777 | 1.00 | 0.00 | Α | С     |
|        |      |     |      |   |     |         | -25.679             | 24.164 | 1.00 | 0.00 | A | č     |
| ATOM   | 1589 | C   | PHE  |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1590 | 0   | PHE  | A | 226 | 1.091   | -24.533             | 23.717 | 1.00 | 0.00 | A | 0     |
| ATOM   | 1591 | N   | PRO  | Α | 227 | 2.192   | -26.393             | 24.120 | 1.00 | 0.00 | A | N     |
| ATOM · | 1592 | CA  | PRO  | A | 227 | 3.415   | -25.835             | 23.624 | 1.00 | 0.00 | A | С     |
| ATOM   | 1593 |     | PRO  |   |     |         | -27.683             | 24.760 | 1.00 | 0.00 | A | C     |
|        |      | CD  |      |   |     |         |                     |        |      |      |   |       |
| MOTA   | 1594 | CB  | PRO  |   |     |         | -26.746             | 24.130 | 1.00 | 0.00 | A | C     |
| ATOM   | 1595 | CG  | PRO  | Α | 227 | 3.831   | -28.089             | 24.370 | 1.00 | 0.00 | A | С     |
| ATOM   | 1596 | С   | PRO  | A | 227 | 3.429   | -25.705             | 22.132 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1597 | ō   | PRO  |   |     |         | -25.115             | 21.647 | 1.00 | 0.00 | A | 0     |
|        |      |     |      |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1598 | N   | GLY  |   |     |         | -26.252             | 21.407 | 1.00 | 0.00 | A | N     |
| ATOM   | 1599 | CA  | GLY  | A | 228 | 2.378   | -26.347             | 19.965 | 1.00 | 0.00 | A | С     |
| ATOM   | 1600 | С   | GLY  | Δ | 228 | 2.496   | -25.005             | 19.307 | 1.00 | 0.00 | A | С     |
| ATOM   |      |     |      |   |     |         | -24.851             | 18.372 | 1.00 | 0.00 | A | 0     |
|        | 1601 | 0   | GLY  |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1602 | N   | THR  | A | 229 | 1.740   | -23.998             | 19.781 | 1.00 | 0.00 | A | 'N    |
| ATOM   | 1603 | CA  | THR  | Α | 229 | 1.954   | -22.696             | 19.228 | 1.00 | 0.00 | A | _ C ∵ |
| MOTA   | 1604 | СВ  | THR. |   |     |         | -21.692             | 19.523 | 1.00 | 0.00 | A | C :   |
|        |      |     |      |   |     |         |                     |        | 1.00 | 0.00 | A | 0     |
| ATOM   | 1605 |     | THR  |   |     |         | -21.591             | 20.922 |      |      |   |       |
| MOTA   | 1606 | CG2 | THR  | A | 229 | -0.413  | -22.095             | 18.793 | 1.00 | 0.00 | A | C .,  |
| ATOM   | 1607 | С   | THR  | Α | 229 | 3.190   | -22.229             | 19.904 | 1.00 | 0.00 | A | C ; : |
| ATOM   | 1608 | 0   | THR  | Δ | 229 | 3.421   | -22.528             | 21.068 | 1.00 | 0.00 | A | 0 .   |
|        |      |     |      |   |     |         | -21.479             | 19.161 | 1.00 | 0.00 | A | N     |
| ATOM   | 1609 | N   | HIS  |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1610 | CA  | HIS  | A | 230 |         | -20.950             | 19.482 | 1.00 | 0.00 | A | C.    |
| ATOM   | 1611 | ND1 | HIS  | A | 230 | 4.923   | -21.103             | 23.166 | 1.00 | 0.00 | A | N     |
| ATOM   | 1612 | CG  | HIS  | A | 230 | 5.799   | -20.873             | 22.123 | 1.00 | 0.00 | Α | С     |
|        | 1613 |     | HIS  |   |     |         | -20.162             | 20.831 | 1.00 | 0.00 | A | C     |
| ATOM   |      | СВ  |      |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1614 | NE2 | HIS  | A | 230 | 6.885   | -21.904             | 23.824 | 1.00 | 0.00 | A | N     |
| ATOM   | 1615 | CD2 | HIS  | Α | 230 | 6.995   | -21.371             | 22.556 | 1.00 | 0.00 | A | С     |
| ATOM . | 1616 | CEL | HIS  | A | 230 | 5.622   | -21.720             | 24.153 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1617 | c   | HIS  |   |     |         |                     | 19.387 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         |                     |        |      |      |   |       |
| ATOM   | 1618 | 0   | HIS  |   |     |         | -21.638             | 19.402 | 1.00 | 0.00 | A | 0     |
| ATOM   | 1619 | N   | ASN  | A | 231 | 6.053   | -23.298             | 19.277 | 1.00 | 0.00 | A | N     |
| MOTA   | 1620 | CA  | ASN  | A | 231 | 7.104   | -24.210             | 18.945 | 1.00 | 0.00 | A | С     |
| ATOM   | 1621 | CB  | ASN  |   |     |         | -25.690             | 19.269 | 1.00 | 0.00 | Α | С     |
|        |      |     |      |   |     |         | -25.905             |        | 1.00 | 0.00 | A | č     |
| ATOM   | 1622 | CG  | ASN  |   |     |         |                     | 20.735 |      |      |   |       |
| ATOM   | 1623 | ODI | ASN  | Ą | 231 |         | -25.072             | 21.349 | 1.00 | 0.00 | A | 0     |
| MOTA   | 1624 | ND2 | ASN  | Α | 231 | 6.734   | -27.054             | 21.309 | 1.00 | 0.00 | A | N     |
| MOTA   | 1625 | С   | ASN  | A | 231 | 7.253   | -24.067             | 17.473 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1626 | ō   | ASN  |   |     |         | -24.147             | 16.931 | 1.00 | 0.00 | A | ō     |
|        |      |     |      |   |     |         |                     |        | 1.00 |      |   |       |
| ATOM   | 1627 | N   | LYS  |   |     | 6.100   | -23.868             | 16.797 |      | 0.00 | A | N     |
| ATOM   | 1628 | CA  | LYS  | A | 232 | • 6.031 | -23.700             | 15.375 | 1.00 | 0.00 | A | С     |
| ATOM   | 1629 | CB  | LYS  | Α | 232 | 4.571   | -23.564             | 14.913 | 1.00 | 0.00 | Α | С     |
| MOTA   | 1630 | CG  | LYS  |   |     |         | -23.931             | 13.456 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         | -25.442             | 13.223 | 1.00 | 0.00 | A | Ċ     |
| ATOM   | 1631 | CD  | LYS  |   |     |         |                     |        |      |      |   |       |
| MOTA   | 1632 | CE  | LYS  | A | 232 |         | -25.860             | 11.953 | 1.00 | 0.00 | A | C     |
| ATOM   | 1633 | NZ  | LYS  | A | 232 | 4.454   | -25.708             | 10.776 | 1.00 | 0.00 | Α | N     |
| ATOM   | 1634 | С   | LYS  |   |     |         | -22.411             | 15.034 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         | -22.312             | 14.044 | 1.00 | 0.00 | A | ŏ     |
| ATOM   | 1635 | 0   | LYS  |   |     |         |                     |        |      |      |   |       |
| MOTA   | 1636 | N   | LEU  | A | 233 |         | -21.381             | 15.863 | 1.00 | 0.00 | A | Ņ     |
| MOTA   | 1637 | CA  | LEU  | Α | 233 | 6.989   | -20.067             | 15.664 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1638 | CB  | LEU  |   |     |         | -19.042             | 16.646 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         |                     |        |      |      |   |       |
| MOTA   | 1639 | CG  | LEU  |   |     |         | -18.816             | 16.434 | 1.00 | 0.00 | A | C     |
| MOTA   | 1640 | CD2 | LEU  | A | 233 | 4.588   | -18.454             | 14.974 | 1.00 | 0.00 | A | С     |
| ATOM   | 1641 | CD1 | LEU  | A | 233 | 4.328   | -17.788             | 17.429 | 1.00 | 0.00 | Α | С     |
| ATOM   | 1642 | c   | LEU  |   |     |         | -20.088             | 15.851 | 1.00 | 0.00 | A | С     |
|        |      |     |      |   |     |         |                     | 15.084 | 1.00 | 0.00 | A | ŏ     |
| ATOM   | 1643 | 0   | LEU  |   |     |         | -19.460             |        |      |      |   |       |
| MOTA   | 1644 | N   | LEU  | A | 234 |         | -20.814             | 16.888 | 1.00 | 0.00 | A | N     |
| MOTA   | 1645 | CA  | LEU  | A | 234 | 10.317  | -20.86 <del>9</del> | 17.245 | 1.00 | 0.00 | A | С     |
| MOTA   | 1646 | СВ  | LEU  |   |     | 10.507  | -21.570             | 18.611 | 1.00 | 0.00 | Α | C     |
|        |      |     |      |   |     |         | •                   | -      |      | _    |   |       |

#### 462/514

| ATOM   | 1647  | CG  | LEU | Δ | 234 | 11.878 | -21.360 | 19.286  | 1.00 | 0.00 |   | Α | С |
|--------|-------|-----|-----|---|-----|--------|---------|---------|------|------|---|---|---|
|        |       |     |     |   |     |        | -19.866 | 19.270  | 1.00 | 0.00 |   | A | С |
| MOTA   | 1648  |     | LEU |   |     |        |         |         |      |      |   |   |   |
| ATOM   | 1649  | CD1 | LEU | A | 234 |        | -22.238 | 18.712  | 1.00 | 0.00 |   | A | C |
| ATOM   | 1650  | С   | LEU | A | 234 | 11.066 | -21.586 | 16.162  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1651  | ō   | LEU |   |     | 12 174 | -21.196 | 15.794  | 1.00 | 0.00 |   | Α | 0 |
|        |       |     |     |   |     |        | -22.656 | 15.625  | 1.00 | 0.00 |   | A | N |
| ATOM   | 1652  | N   | LYS |   |     |        |         |         |      |      |   |   |   |
| ATOM   | 1653  | CA  | LYS | А | 235 | 11.022 | -23.479 | 14.601  | 1.00 | 0.00 |   | A | С |
| MOTA   | 1654  | CB  | LYS | Δ | 235 | 10.134 | -24.692 | 14.279  | 1.00 | 0.00 |   | Α | С |
|        |       |     |     |   |     |        |         | 13.431  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1655  | CG  | LYS |   |     |        | -25.763 |         |      |      |   |   |   |
| ATOM   | 1656  | CD  | LYS | Α | 235 | 11.908 | -26.535 | 14.187  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1657  | CE  | LYS | Α | 235 | 11.408 | -27.181 | 15.480  | 1.00 | 0.00 |   | A | С |
|        |       |     | LYS |   |     |        | -28.160 | 15.179  | 1.00 | 0.00 |   | A | N |
| MOTA   | 1658  | NZ  |     |   |     |        |         |         |      |      |   |   | c |
| ATOM   | 1659  | С   | LYS | A | 235 |        | -22.690 | 13.337  | 1.00 | 0.00 |   | Α |   |
| ATOM   | 1660  | 0   | LYS | Α | 235 | 12.196 | -22.761 | 12.675  | 1.00 | 0.00 |   | Α | 0 |
| ATOM   | 1661  | N   | ASN | Δ | 236 | 10.114 | -21.923 | 12.975  | 1.00 | 0.00 |   | A | N |
|        |       |     |     |   |     |        | -21.182 | 11.740  | 1.00 | 0.00 |   | A | C |
| ATOM   | 1662  | CA  | asn |   |     |        |         |         |      |      | • |   |   |
| ATOM   | 1663  | CB  | ASN | A | 236 |        | -20.569 | 11.377  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1664  | CG  | ASN | A | 236 | 7.857  | -21.628 | 10.713  | 1.00 | 0.00 |   | A | С |
|        | 1665  |     | ASN |   |     |        | -21.293 | 10.149  | 1.00 | 0.00 |   | Α | 0 |
| ATOM   |       |     |     |   |     |        |         |         |      | 0.00 |   | A | N |
| ATOM   | 1666  | ND2 | ASN | A | 236 |        | -22.922 | 10.760  | 1.00 |      |   |   |   |
| ATOM   | 1667  | С   | asn | A | 236 | 11.099 | -20.078 | 11.753  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1668  | 0   | ASN | Α | 236 | 11.741 | -19.834 | 10.732  | 1.00 | 0.00 |   | Α | 0 |
|        |       |     |     |   |     |        | -19.393 | 12.908  | 1.00 | 0.00 |   | A | N |
| ATOM   | 1669  | N   | LEU |   |     |        |         |         |      |      |   |   |   |
| ATOM   | 1670  | CA  | LEU | Α | 237 | 12.159 | -18.307 | 13.070  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1671  | CB  | LEU | Α | 237 | 12.061 | -17.616 | 14.441  | 1.00 | 0.00 |   | A | С |
|        |       | CG  | LEU |   |     |        | -16.856 | 14.661  | 1.00 | 0.00 |   | A | С |
| atom   | 1672  |     |     |   |     |        |         |         |      |      |   |   | Č |
| ATOM   | 1673  |     | LEU |   |     |        | -15.867 | 13.520  | 1.00 | 0.00 |   | A |   |
| ATOM   | 1674. | CD1 | LEU | Α | 237 | 10.703 | -16.184 | 16.044  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1675  |     | LEU | Δ | 237 | 13.541 | -18.858 | 12.940  | 1.00 | 0.00 |   | A | С |
|        | •     |     |     |   |     |        |         | 12.372  | 1.00 | 0.00 |   | A | 0 |
| ATOM / | 1676  | 0   | LEU |   |     |        | -18.208 |         |      |      |   |   |   |
| ATOM:  | 1677  | N   | ALA | Α | 238 | 13.745 | -20.085 | 13.455  | 1.00 | 0.00 |   | A | N |
| ATOM:  | 1678  | CA  | ALA | Α | 238 | 15.005 | -20.769 | 13.427  | 1.00 | 0.00 |   | A | Ç |
|        |       |     | ALA |   |     |        | -22.113 | 14.174  | 1.00 | 0.00 |   | A | С |
| ATOM   | 1679  |     |     |   |     |        |         |         |      |      |   |   | č |
| ATOM.  | 1680  | С   | ALA | A | 238 |        | -21.065 | 12.015  | 1.00 | 0.00 |   | A |   |
| ATOM   | 1681  | . 0 | ALA | Α | 238 | 16.576 | -20.942 | 11.671  | 1.00 | 0.00 |   | A | 0 |
| ATOM   | 1682  |     |     |   | 239 | 14.414 | -21.471 | 11.186  | 1.00 | 0.00 |   | A | N |
|        |       |     |     |   |     |        |         |         | 1.00 | 0.00 |   | A | C |
| ATOM   | 1683  | CA  |     |   | 239 |        | -21.839 | 9.808   |      |      |   |   |   |
| ATOM   | 1684  | CB  | PHE | A | 239 | 13.276 | -22.306 | 9.176   | 1.00 | 0.00 |   | A | Ç |
| ATOM   | 1685  | CG  | PHE | А | 239 | 13.502 | -22.917 | 7.832   | 1.00 | 0.00 |   | Α | С |
|        |       |     | PHE |   |     |        | -24.266 | 7.731   | 1.00 | 0.00 |   | Α | С |
| MOTA   | 1686  |     |     |   |     |        |         |         |      |      |   |   | č |
| MOTA   | 1687  | CD2 | PHE | A | 239 |        | -22.164 | 6.677   | 1.00 | 0.00 |   | A |   |
| ATOM   | 1688  | CE1 | PHE | Α | 239 | 13.960 | -24.854 | 6.505   | 1.00 | 0.00 |   | A | С |
| ATOM   | 1689  | CE2 | PHE | Δ | 239 | 13.664 | -22.746 | 5.450   | 1.00 | 0.00 |   | A | С |
|        |       |     |     |   |     |        |         | 5.360   | 1.00 | 0.00 |   | A | С |
| ATOM   | 1690  | CZ  |     |   | 239 |        | -24.095 |         |      |      |   |   |   |
| ATOM   | 1691  | С   | PHE | A | 239 | 15.079 | -20.628 | 9.061   | 1.00 | 0.00 |   | A | Ç |
| MOTA   | 1692  | 0   | PHE | Α | 239 | 16.031 | -20.700 | 8.284   | 1.00 | 0.00 |   | A | 0 |
| ATOM   | 1693  | N   | MET | Δ | 240 | 14.411 | -19.486 | 9.305   | 1.00 | 0.00 |   | A | N |
|        |       |     |     |   |     |        |         | B.649   |      | 0.00 |   | A | С |
| ATOM   | 1694  | CA  |     |   | 240 |        | -18.244 |         |      |      |   |   |   |
| ATOM   | 1695  | CB  | MET | Ą | 240 | 13.701 | -17.140 | 8.980   | 1.00 | 0.00 |   | A | С |
| ATOM   | 1696  | CG  | MET | A | 240 | 12.478 | -17.167 | 8.060   | 1.00 | 0.00 |   | A | С |
| ATOM   | 1697  | SD  |     |   | 240 | 10 919 | -16.676 | 8.857   | 1.00 | 0.00 |   | A | S |
|        |       |     |     |   |     |        |         |         |      | 0.00 |   | A | C |
| ATOM   | 1698  | CE  |     |   | 240 |        | -15.158 | 9.594   | 1.00 |      |   |   |   |
| ATOM   | 1699  | C   | MET | A | 240 | 16.074 | -17.748 | . 9,022 | 1.00 | 0.00 |   | A | C |
| ATOM   | 1700  | Ó   |     |   | 240 | 16,809 | -17.290 | 8.150   | 1.00 | 0.00 |   | A | 0 |
|        |       |     |     |   |     |        | -17.853 | 10.320  | 1.00 | 0.00 |   | A | N |
| MOTA   | 1701  | N   |     |   | 241 |        |         |         |      |      |   | _ | _ |
| MOTA   | 1702  | CA  |     |   | 241 |        | -17.389 | 10.864  | 1.00 | 0.00 |   | A | C |
| ATOM   | 1703  | CB  | GLU | A | 241 | 17.790 | -17.587 | 12.386  | 1.00 | 0.00 |   | A | C |
| ATOM   | 1704  | CG  |     |   | 241 | 16.898 | -16.644 | 13.194  | 1.00 | 0.00 |   | Α | С |
|        |       |     |     |   | 241 |        | -17.024 | 14.662  | 1.00 | 0.00 |   | Α | С |
| ATOM   | 1705  | CD  |     |   |     |        |         |         |      | 0.00 |   | A | ŏ |
| MOTA   | 1706  | OE1 | GLU | A | 241 | 18.113 | -16.809 | 15.244  | 1.00 |      |   |   |   |
| ATOM   | 1707  | OE2 | GLU | A | 241 | 16.012 | -17.538 | 15.219  | 1.00 | 0.00 |   | A | 0 |
| MOTA   | 1708  | С   |     |   | 241 | 18.810 | -18.146 | 10.231  | 1.00 | 0.00 |   | A | C |
|        |       |     |     |   |     |        | -17.588 | 9.979   | 1.00 | 0.00 |   | A | ō |
| MOTA   | 1709  | 0   |     |   | 241 |        |         |         |      |      |   |   |   |
| ATOM   | 1710  | N   | SER | A | 242 |        | -19.443 | 9.956   | 1.00 | 0.00 |   | A | N |
| ATOM   | 1711  | CA  | SER | A | 242 | 19.587 | -20.284 | 9.365   | 1.00 | 0.00 |   | A | C |
| ATOM   | 1712  | СВ  |     |   | 242 |        | -21.763 | 9.324   | 1.00 | 0.00 |   | Ά | С |
|        |       |     |     |   |     |        |         |         |      | 0.00 |   | A | ō |
| ATOM   | 1713  | OG  |     |   | 242 |        | -22.260 | 10.642  | 1.00 |      |   |   |   |
| ATOM   | 1714  | С   | SER | A | 242 | 19.875 | -19.880 | 7.952   | 1.00 | 0.00 |   | A | С |
| MOTA   | 1715  | ō   |     |   | 242 |        | -19.816 | 7.568   | 1.00 | 0.00 |   | A | 0 |
|        |       |     |     |   |     |        | -19.616 | 7.161   | 1.00 | 0.00 |   | A | N |
| ATOM   | 1716  | N   |     |   | 243 |        |         |         |      |      |   |   |   |
| MOTA   | 1717  | CA  | ASP | A | 243 |        | -19.270 | 5.763   | 1.00 | 0.00 |   | A | C |
| MOTA   | 1718  | CB  | ASP | A | 243 | 17.500 | -19.098 | 5.114   | 1.00 | 0.00 |   | A | С |
| ATOM   | 1719  | CG  |     |   | 243 |        | -19.151 | 3.593   | 1.00 | 0.00 |   | A | C |
|        |       |     |     |   |     |        |         |         | 1.00 |      |   | A | ŏ |
| ATOM   | 1720  |     | ASP |   |     |        | -19.371 | 3.087   |      | 0.00 |   |   |   |
|        |       |     |     | _ | 042 | 16 590 | -18.976 | 2.912   | 1.00 | 0.00 |   | A | 0 |
| ATOM   | 1721  | OD2 | ASP | A | 243 | 10.550 | 10.5.0  |         |      |      |   |   | - |

| ATOM   | 1722  | С    | ASP | A | 243   | 19.614 | -17.967 | 5.657  | 1.00 | 0.00 |   | A      | С |
|--------|-------|------|-----|---|-------|--------|---------|--------|------|------|---|--------|---|
| ATOM   | ,1723 | ō    | ASP | А | 243   |        | -17.771 | 4.755  | 1.00 | 0.00 |   | A      | ō |
| ATOM   | 1724  | N    |     |   | 244   |        | -17.061 | 6.611  | 1.00 | 0.00 |   | A      | N |
|        |       |      |     |   |       |        | -15.776 |        |      |      |   |        |   |
| ATOM   | 1725  | CA   |     |   | 244   |        |         | 6.667  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1726  | CB   |     |   | 244   |        | -14.880 | 7.710  | 1.00 | 0.00 |   | A _    | С |
| ATOM   | 1727  | CG2  | ILE | A | 244   | 20.200 | -13.617 | 7.876  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1728  | CG1  | ILE | Α | 244   | 17.885 | -14.556 | 7.329  | 1.00 | 0.00 |   | A      | C |
| ATOM   | 1729  | CD1  | ILE | A | 244   | 17.090 | -13.903 | 8.458  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1730  | C.   |     |   | 244   |        | -15.935 | 6.965  | 1.00 | 0.00 |   | A      | Č |
|        |       |      |     |   |       |        |         |        |      |      |   |        |   |
| MOTA   | 1731  | 0    |     |   | 244   |        | -15.275 | 6.317  | 1.00 | 0.00 |   | A      | 0 |
| MOTA   | 1732  | N    |     |   | 245   |        | -16.825 | 7.913  | 1.00 | 0.00 |   | A      | N |
| ATOM   | 1733  | CA   | LEU | A | 245   | 23.143 | -17.040 | 8.368  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1734  | CB   | LEU | Α | 245   | 23.208 | -18.043 | 9.550  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1735  | CG   | LEU | A | 245   | 24.563 | -18.213 | 10.292 | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1736  |      | LEU |   |       |        | -16.838 | 10.631 | 1.00 | 0.00 |   | A      | Ċ |
| ATOM   | 1737  |      | LEU |   |       |        | -19.139 | 9.591  | 1.00 | 0.00 |   | A      | č |
|        |       |      |     |   |       |        |         |        |      |      |   |        |   |
| ATOM   | 1738  | C    |     |   | 245   |        | -17.555 | 7.242  | 1.00 | 0.00 |   | A<br>- | C |
| ATOM   | 1739  | 0    |     |   | 245   |        | -17.191 | 7.141  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1740  | N    | GLU | A | 246   | 23.399 | -18.426 | 6.396  | 1.00 | 0.00 |   | A      | N |
| ATOM . | 1741  | CA   | GLU | Α | 246   | 24.080 | -18.985 | 5.262  | 1.00 | 0.00 | • | A      | С |
| ATOM   | 1742  | CB   | GLU | A | 246   |        | -20.031 | 4.525  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1743  | CG   |     |   | 246   |        | -20.654 | 3.326  | 1.00 | 0.00 |   | A      | Ċ |
|        |       |      |     |   |       |        |         |        |      |      |   |        |   |
| ATOM   | 1744  | CD   |     |   | 246   |        | -21.756 | 2.778  | 1.00 | 0.00 |   | A      | C |
| MOTA   | 1745  |      | GLU |   |       |        | -21.996 | 3.384  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1746  | OE2  | GLU | Α | 246   | 23.432 | -22.373 | 1.748  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1747  | С    | GLU | Α | 246   | 24.369 | -17.865 | 4.316  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1748  | 0    | GLU | A | 246   |        | -17.815 | .3.698 | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1749  | N    | LYS |   |       |        | -16.924 | 4.210  | 1.00 | 0.00 |   | A.     | N |
|        |       |      |     |   | 0.47  |        |         |        |      |      |   |        |   |
| ATOM   | 1750  | CA   | LYS |   |       |        | -15.786 | 3.358  | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1751  | CB   | LYS | A | 247   |        | -14.967 | 3.193  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1752  | CG   | LYS | Α | 247   | 21.380 | -15.532 | 2.102  | 1.00 | 0.00 |   | A.     | C |
| ATOM   | 1753  | CD   | LYS | Α | 247   | 22.000 | -15.425 | 0.706  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1754  | CE   |     |   | 247   |        | -16.003 | -0.409 | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1755  | NZ   | LYS |   |       |        | -17.467 | -0.484 | 1.00 | 0:00 |   | A      | N |
|        |       |      |     |   |       |        |         |        |      |      |   |        |   |
| ATOM   | 1756  | С    |     |   | 247   |        | -14.869 | 3.830  | 1.00 | 0.00 |   | A.     | С |
| MOTA   | 1757  | 0    | LYS |   |       |        | -14.409 | 3.008  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1758  | N    | VAL | Α | 248   | 24.750 | -14.587 | 5.151  | 1.00 | 0.00 |   | A.     | N |
| ATOM   | 1759  | CA   | VAL | Α | 248   | 25.703 | -13.660 | 5.693  | 1.00 | 0.00 |   | A.     | С |
| MOTA   | 1760  | СB   | VAL | А |       | 25.473 | -13.254 | 7,133  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1761  |      | VAL |   |       |        | -12.716 | 7.244  | 1.00 | 0.00 |   | A      | c |
| ATOM   | 1762  |      | VAL |   |       |        | -14.383 | 8.116  |      | 0.00 |   | A      | č |
|        |       |      |     |   |       |        |         |        | 1.00 |      |   |        |   |
| ATOM   | 1763  | С    | VAL |   |       |        | -14.230 | 5.559  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1764  | 0    | VAL | A | 248   | 28.040 | -13.479 | 5.478  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1765  | N    | LYS | Α | 249   | 27.189 | -15.571 | 5.567  | 1.00 | 0.00 |   | A.     | N |
| MOTA   | 1766  | CA   | LYS | Α | 249   | 28.464 | -16.205 | 5.448  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1767  | СВ   | LYS |   |       |        | -17.705 | 5.773  | 1.00 | 0.00 |   | A.     | Č |
| ATOM   |       |      |     |   |       |        |         |        |      |      |   | A      | č |
|        | 1768  | CG   | LYS |   |       |        | -18.347 | 5.938  | 1.00 | 0.00 |   |        |   |
| ATOM   | 1769  | CD   | LYS |   |       |        | -19.616 | 6.793  | 1.00 | 0.00 |   | A.     | C |
| MOTA   | 1770  | CE   | LYS | A | 249   | 28.345 | -20.176 | 7.025  | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1771  | NZ   | LYS | A | 249   | 28.395 | -21.243 | 8.051  | 1.00 | 0.00 |   | Ą      | N |
| ATOM   | 1772  | С    | LYS | Α | 249   | 29.015 | -15.997 | 4.073  | 1.00 | 0.00 |   | A.     | C |
| ATOM   | 1773  | 0    | LYS | А | 249   |        | -15.733 | 3.925  | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1774  | N    | GLU |   |       |        | -16.093 | 3.047  | 1.00 | 0.00 |   | A.     | N |
| ATOM   | 1775  | CA   |     |   |       |        | -15.918 |        | 1.00 | 0.00 |   | A      | Ċ |
|        |       |      | GLU |   |       |        |         | 1.660  |      |      |   |        |   |
| ATOM   | 1776  | СВ   | GLU |   |       |        | -16.191 | 0.720  | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1777  | CG   | GLU |   |       |        | -17.645 | 0.783  | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1778  | ÇD   | GLU | A | 250 . | 25.660 | -17.826 | -0.172 | 1.00 | 0.00 |   | A.     | С |
| ATOM   | 1779  | OE1  | GLU | A | 250   | 25.370 | -16.875 | -0.945 | 1.00 | 0.00 |   | A.     | 0 |
| ATOM   | 1780  |      | GLU |   |       |        | -18.923 | -0.141 | 1.00 | 0.00 |   | A      | 0 |
| ATOM   | 1781  | C    | GLU |   |       |        | -14.496 | 1.480  | 1.00 | 0.00 |   | A      | Č |
|        |       |      |     |   |       |        |         |        |      |      |   |        |   |
| ATOM   | 1782  | 0    | GLU |   |       |        | -14.201 | 0.709  | 1.00 | 0.00 |   | A.     | 0 |
| ATOM   | 1783  | N    | HIS |   |       |        | -13.586 | 2.211  | 1.00 | 0.00 |   | A      | N |
| ATOM   | 1784  | CA - | HIS | Α | 251   |        | -12.194 | 2.163  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1785  | ND1  | HIS | A | 251   | 25.297 | -11.758 | 1.726  | 1.00 | 0.00 |   | A      | N |
| ATOM   | 1786  | CG   | HIS |   |       |        | -10.989 | 1.875  | 1.00 | 0.00 |   | A      | С |
| ATOM   | 1787  | СВ   | HIS |   |       |        | -11.278 | 2.835  | 1.00 | 0.00 |   | Ą      | č |
| ATOM   |       |      |     |   |       |        | -10.139 | 0.214  |      |      |   | Ā      | N |
|        | 1788  |      | HIS |   |       |        |         |        | 1.00 | 0.00 |   |        |   |
| MOTA   | 1789  |      | HIS |   |       | 26.327 | -9.999  | 0.946  | 1.00 | 0.00 |   | A.     | C |
| MOTA   | 1790  | CE1  | HIS | A | 251   |        | -11.207 | 0.720  | 1.00 | 0.00 |   | A      | C |
| MOTA   | 1791. | С    | HIS | A | 251   | 29.923 | -11.936 | 2.747  | 1.00 | 0.00 | i | A      | С |
| ATOM   | 1792  | 0    | HIS |   |       |        | -11.125 | 2.186  | 1.00 | 0.00 | 1 | 4      | 0 |
| ATOM   | 1793  | N    | GLN |   |       |        | -12.629 | 3.852  | 1.00 | 0.00 | 1 | A      | N |
| ATOM   | 1794  | CA   |     |   |       |        | -12.472 | 4.556  | 1.00 | 0.00 |   | Ä      | Ç |
|        |       |      | GLN |   |       |        |         |        |      |      |   | À      | c |
| MOTA   | 1795  | CB   | GLN |   |       |        | -13.368 | 5.807  | 1.00 | 0.00 |   |        |   |
| MOTA   | 1796  | CG   | GLN | A | 252   | 30.672 | -12.964 | 6.922  | 1.00 | 0.00 |   | 4      | С |

| * mov  | 1202           | an   |       |   | 0.50  | 20 050 | 12 010  | 0 000   |      |       | _   | _   |
|--------|----------------|------|-------|---|-------|--------|---------|---------|------|-------|-----|-----|
| MOTA   | 1797           | CD   |       |   | 252   |        | -13.918 | 8.096   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1798           | OE1  | GLN   | Α | 252 - | 30.772 | -13.513 | 9.252   | 1.00 | 0.00  | Α   | 0   |
| ATOM   | 1799           | NE2  | GLN   | A | 252   | 31.104 | -15.222 | 7.789   | 1.00 | 0.00  | 'A  | N   |
| ATOM   |                |      |       |   |       |        |         |         |      |       |     |     |
|        | 1800           | С    |       |   | 252   |        | -12.851 | 3.630   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1801           | 0    | GLN   | A | 252   | 33.737 | -12.275 | 3.680   | 1.00 | 0.00  | Α   | 0   |
| ATOM   | 1802           | N    | GLU   | Δ | 253   | 32.402 | -13.859 | 2.775   | 1.00 | 0.00  | A   | N   |
| ATOM   |                |      |       |   |       |        |         |         |      |       |     |     |
|        | 1803           | CA   |       |   | 253   |        | -14.277 | 1.813   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1804           | CB   | GĽŪ   | Α | 253   | 32.939 | -15.578 | 1.105   | 1.00 | 0.00  | A   | С   |
| ATOM ' | 1805           | CG   | GLU   | A | 253   | 33.840 | -16.048 | -0.039  | 1.00 | 0.00  | A   | С   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1806           | CD   |       |   | 253   | 33.166 | -15.666 | -1.354  | 1.00 | 0.00  | A   | C   |
| ATOM   | 1807           | OE1  | GLU   | A | 253   | 32.005 | -16.110 | -1.571  | 1.00 | 0.00  | Α   | 0   |
| ATOM   | 1808           | OE2  | GLU   | A | 253   | 33.796 | -14.922 | -2.152  | 1.00 | 0.00  | A   | 0   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1809           | C    |       |   | 253   |        | -13.215 | 0.776   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1810           | 0    | GLU   | A | 253   | 34.738 | -12.740 | 0.623   | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1811           | N    | SER   | A | 254   | 32,563 | -12.763 | 0.061   | 1.00 | 0.00  | A   | N   |
| ATOM   | 1812           | ÇA   | SER   |   |       |        |         | -0.996  |      | 0.00  |     |     |
|        |                |      |       |   |       |        | -11.825 |         | 1.00 |       | A   | С   |
| ATOM   | 1813           | CB   | SER   | A | 254   | 32.068 | -12.168 | -2.290  | 1.00 | 0.00  | A   | С   |
| ATOM   | 1814           | OG   | SER   | Α | 254   | 30.672 | -12.245 | -2.036  | 1.00 | 0.00  | A   | 0   |
| MOTA   | 1815           | С    | SER   |   |       |        | -10.459 | -0.557  | 1.00 | 0.00  | A   | Č   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1816           | 0    | SER   |   |       | 31.771 | -9.711  | -1.282  | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1817           | N    | MET   | Α | 255   | 32.890 | -10.085 | 0.644   | 1.00 | 0.00  | Α   | N   |
| ATOM   | 1818           | CA   | MET   | A | 255   | 32.576 | -8.811  | 1.201   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1819           |      |       |   |       |        |         |         |      |       |     |     |
|        |                | CB   | MET   |   |       | 32.584 | -8.854  | 2.744   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1820           | CG   | MET   | Α | 255   | 31.996 | -7.639  | 3.457   | 1.00 | 0.00  | Α   | С   |
| ATOM   | 1821           | SD   | MET   | Α | 255   | 33.184 | -6.300  | 3.728   | 1.00 | 0.00  | Α   | s   |
| ATOM   | 1822           | CE   | MET   |   |       | 34.048 | -7.146  | 5.085   | 1.00 | 0.00  |     | č   |
|        |                |      |       |   |       |        |         |         |      |       | A   |     |
| ATOM   | 1823           | С    | MET   | A | 255   | 33.641 | -7.891  | 0.740   | 1.00 | 0.00  | A   | C   |
| ATOM   | 1824           | 0    | MET   | Α | 255   | 34.800 | -8.284  | 0.606   | 1.00 | 0.00  | Α   | 0   |
| ATOM   | 1825           | N    | ASP   |   |       | 33.260 | -6.637  |         | 1.00 |       |     |     |
|        |                |      |       |   |       |        |         |         |      |       | A   | N   |
| MOTA   | 1826           | ÇA   | ASP   | A | 256   | 34.230 | -5.677  | 0.051   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1827           | CB   | ASP   | A | 256   | 34.087 | -5.305  | -1.434  | 1.00 | 0.00  | A   | С   |
| ATOM   | 1828           | CG   | ASP   |   |       |        |         |         |      |       |     |     |
|        |                |      |       |   |       | 35.305 | -4.536  |         |      |       | A   | С   |
| MOTA   | 1829           | ODI  | ASP   | A | 256   | 36.246 | -4.255  | -1.154  | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1830           | OD2  | ASP   | Α | 256   | 35.300 | -4.234  | -3.163  | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1831           | C    | ASP   |   |       | 33.979 |         | 0.867   |      |       |     |     |
|        |                |      |       |   |       |        |         |         |      |       | A   | C   |
| ATOM   | 1832           | 0    | ASP   | A | 256   | 32.969 | -3.770  | 0.715   | 1.00 | .0.00 | Α   | 0   |
| ATOM   | 1833           | N    | ILE   | Α | 257   | 34.951 | -4.129  | 1.739   | 1.00 | 0.00  | A   | N   |
| ATOM   | 1834           | CA   | ILE   |   |       | 34.957 | -2.958  |         |      |       | A   | C   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1835           | CB   | ILE   |   |       | 36.099 | -3.002  | 3.551   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1836           | CG2  | ILE   | Α | 257   | 36.075 | -1.751  | 4.447   | 1.00 | 0.00  | A   | С   |
| MOTA   | 1837           | CG1  | ILE   | Δ | 257   | 36.018 | -4.304  | 4.365   | 1.00 | 0.00  | A   | C   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1838           | CDI  | ILE   | A | 25/   | 37.292 | -4.607  | 5.151   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1839           | С    | ILE   | Α | 257   | 35.181 | -1.833  | 1.589   | 1.00 | 0.00  | Α   | С   |
| MOTA   | 1840           | 0    | ILE   | Δ | 257   | 35.743 | -2.044  |         | 1.00 | 0.00  | A   | Ó   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1841           | N    | ASN   |   |       | 34.658 | -0.622  | 1.897   | 1.00 | 0.00  | A   | N   |
| ATOM   | 1842           | CA   | ASN   | A | 258   | 34.671 | 0.613   | 1.135   | 1.00 | 0.00  | A   | С   |
| ATOM   | .1843          | CB   | ASN   | A | 258   | 35.988 | 0.952   | . 0.396 | 1.00 | 0.00  | Α   | С   |
| ATOM   | 1844           |      |       |   |       |        |         |         |      |       |     |     |
|        |                | CG.  | ASN   |   |       | 37.144 | 0.779   | 1.366   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1845           | OD1  | ASN   | А | 258   | 37.270 | 1.472   | 2.374   | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1846           | ND2  | ASN   | Α | 258   | 38.013 | -0.220  | 1.050   | 1.00 | 0.00  | Α   | N.  |
| ATOM   | 1847           | C .  | ASN   |   |       | 33.599 | 0.575   |         |      |       |     |     |
|        |                |      |       |   |       |        |         | 0.086   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1848           | 0    | ASN   | Ą | 258   | 33.317 | 1.596   | -0.540  | 1.00 | 0.00  | A   | 0   |
| ATOM   | 1849           | N    | ASN   | Α | 259   | 32.947 | -0.579  | -0.135  | 1.00 | 0.00  | Α   | N   |
| ATOM   | 1850           | CA   | ASN   |   |       | 31.772 | -0.531  | -0.941  | 1.00 | 0.00  |     | Ċ   |
|        |                |      |       |   |       |        |         |         |      |       | A   |     |
| ATOM   | 1851           | CB   | ASN   |   |       | 32.045 | -0.694  | -2.449  | 1.00 | 0.00  | A . | С   |
| ATOM   | 1852           | CG   | ASN   | Α | 259   | 32.997 | -1.847  | -2.712  | 1.00 | 0.00  | A   | С   |
| ATOM   | 1853           | OD1  | ASN   | Δ | 259   | 32.621 | -3.012  | -2.810  | 1.00 | 0.00  | A   | 0   |
| ATOM   |                |      |       |   |       |        |         |         |      |       |     |     |
|        | 1854           |      | ASN   |   |       | 34.294 | -1.477  | -2.890  | 1.00 | 0.00  | A   | N   |
| ATOM   | 1855           | С    | ASN   | Α | 259   | 30.697 | -1.472  | -0.445  | 1.00 | 0.00  | Α   | C.  |
| ATOM   | 1856           | 0    | ASN   | А | 259   | 30.480 | -2.515  | -1.066  | 1.00 | 0.00  | Α   | o · |
| ATOM   | 1857           |      |       |   |       |        | -1.184  |         |      |       |     |     |
|        |                | N    | PRO   |   |       | 29.959 |         | 0.623   | 1.00 | 0.00  | A   | N · |
| ATOM   | 1858           | CA   | PRO   | A | 260   | 28.883 | -2.072  | 0.973   | 1.00 | 0.00  | Α   | С   |
| ATOM   | 1859           | CD   | PRO . |   |       | 30.446 | -0.486  | 1.816   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1860           |      |       |   |       | 28.512 | -1.774  |         |      |       |     |     |
|        |                | СВ   | PRO . |   |       |        |         | 2.426   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1861           | CG   | PRO . | A | 260   | 29.784 | -1.165  | 3.020   | 1.00 | 0.00  | A   | С   |
| ATOM   | 1862           | С    | PRO . | A | 260   | 27.718 | -1.859  | 0.054   | 1.00 | 0.00  | A   | Č   |
| ATOM   |                |      |       |   |       |        |         |         |      |       |     |     |
|        | 1863           | 0    | PRO . |   |       | 27.394 | -0.709  | -0.237  | 1.00 | 0.00  | A   | 0   |
| MOTA   | 1864           | N    | ARG . | A | 261   | 27.151 | -2.962  | -0.468  | 1.00 | 0.00  | A   | N   |
| ATOM   | 1865           | CA   | ARG . |   |       | 25.995 | -3.047  | -1.325  | 1.00 | 0.00  | A   | C   |
| ATOM   |                |      |       |   |       |        |         |         |      |       |     |     |
|        | 1866           |      | ARG . |   |       | 26.019 | -4.323  | -2.193  | 1.00 | 0.00  | A   | С   |
| MOTA   | 1867           | CG   | ARG : | A | 261   | 27.246 | -4.521  | -3.098  | 1.00 | 0.00  | A   | С   |
| ATOM   | 1868           |      | ARG   |   |       | 28.498 | -5.043  | -2.378  | 1.00 | 0.00  | A   | č   |
|        |                |      |       |   |       |        |         |         |      |       |     |     |
| ATOM   | 1869           |      | ARG   |   |       | 29.513 | -5.393  | -3.410  | 1.00 | 0.00  | A   | N   |
| MOTA   | 1870           | CZ   | ARG A | A | 261   | 29.709 | -6.694  | -3.768  | 1.00 | 0.00  | A   | С   |
| ATOM   | 1871           |      | ARG   |   |       | 28.997 | -7.690  | -3.160  | 1.00 | 0.00  | A   | N   |
|        | · <del>-</del> | **** |       | • |       |        |         |         |      | 2.00  | ••  | **  |

| ATOM | 1872 | NH2 | ARG | A | 261   | 30.631           | -7.001           | -4.728 | 1.00 | 0.00 | A     | N   |
|------|------|-----|-----|---|-------|------------------|------------------|--------|------|------|-------|-----|
| ATOM | 1873 | C   |     |   | 261   | 24.686           | -3.110           | -0.581 | 1.00 | 0.00 | A     | C   |
| ATOM | 1874 | ō   |     |   | 261   | 23.660           | -2.624           | -1.056 | 1.00 | 0.00 | A     | 0   |
| ATOM | 1875 | N   |     |   | 262   | 24.661           | -3.788           | 0.582  | 1.00 | 0.00 | A     | N   |
| ATOM | 1876 | CA  |     |   | 262   | 23.402           | -4.081           | 1.215  | 1.00 | 0.00 | Α .   | С   |
| ATOM | 1877 | CB  |     |   | 262   | 22.879           | -5.472           | 0.793  | 1.00 | 0.00 | A     | С   |
| ATOM | 1878 | CG  |     |   | 262   | 23.960           | -6.565           | 0.936  | 1.00 | 0.00 | A     | C   |
| ATOM | 1879 |     | ASP |   |       | 24.944           | -6.449           | 1.710  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1880 |     | ASP |   |       | 23.800           | -7.580           | 0.222  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1881 | c   |     |   | 262   | 23.495           | -4.000           | 2.709  | 1.00 | 0.00 | A     | С   |
| ATOM | 1882 | ō   |     |   | 262   | 24.523           | -3.611           | 3.261  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1883 | N   |     |   | 263   | 22.394           | -4.407           | 3.377  | 1.00 | 0.00 | A     | N   |
| ATOM | 1884 | CA  |     |   | 263   | 22.213           | -4.351           | 4.802  | 1.00 | 0.00 | A     | C   |
| ATOM | 1885 | CB  |     |   | 263   | 20.805           | -4.803           | 5.224  | 1.00 | 0.00 | A     | č   |
| ATOM | 1886 | CG  |     |   | 263   | 20.566           | -4.259           | 6.589  | 1.00 | 0.00 | A     | č   |
| ATOM | 1887 |     | PHE |   |       | 20.229           | -2.933           | 6.741  | 1.00 | 0.00 | A     | č   |
| ATOM | 1888 |     | PHE |   |       | 20.666           | -5.050           | 7.711  | 1.00 | 0.00 | A     | č   |
| ATOM | 1889 |     | PHE |   |       | 19.996           | -2.403           | 7.991  | 1.00 | 0.00 | A     | č   |
| ATOM | 1890 | -   | PHE |   |       | 20.433           | -4.521           | 8.964  | 1.00 | 0.00 | A     | Č   |
| ATOM | 1891 | CZ  |     |   | 263   | 20.100           | -3.193           | 9.109  | 1.00 | 0.00 | A     | č   |
| ATOM | 1892 | C   |     |   | 263   | 23.229           | -5.218           | 5.486  | 1.00 | 0.00 | A     | Č   |
| ATOM | 1893 | Ö   |     |   | 263   | 23.788           | -4.812           | 6.506  | 1.00 | 0.00 |       | ō   |
| ATOM | 1894 | N   |     |   | 264   | 23.486           | -6.420           | 4.916  | 1.00 | 0.00 | Α.    | N   |
|      | 1895 | CA  |     |   | 264   | 24.424           | -7.385           | 5.434  | 1.00 | 0.00 | A     | C   |
| ATOM | 1896 | CB  |     |   | 264   | 24.550           | -8.607           | 4.553  | 1.00 | 0.00 | A     | č   |
| ATOM |      |     | ILE |   |       | 25.696           | -9.477           | 5.103  | 1.00 | 0.00 | A     | Ċ.  |
| ATOM | 1897 |     |     |   |       | 23.222           | -9.371           | 4.424  | 1.00 | 0.00 | À     | c   |
| ATOM | 1898 |     | ILE |   |       |                  | -10.097          | 5.684  | 1.00 | 0.00 | Ä     | č   |
| ATOM | 1899 |     | ILE |   |       |                  | -6.777           | 5.428  | 1.00 | 0.00 | A     | Ċ.  |
| ATOM | 1900 | C   |     |   | 264   | 25.795<br>26.490 | -6.858           | 6.432  | 1.00 | 0.00 | A     | 0 : |
| MOTA | 1901 | 0   | ILE |   |       |                  |                  | 4.310  | 1.00 | 0.00 |       | N   |
| ATOM | 1902 | N   | ASP |   |       | 26.189           | -6.131           | 4.155  | 1.00 | 0.00 | . A . | C   |
| MOTA | 1903 | CA  | ASP |   |       | 27.499<br>27.778 | -5.561<br>-5.045 |        | 1.00 | 0.00 | A     | Ç.  |
| ATOM | 1904 | CB  | ASP |   |       |                  |                  | 2.737  | 1.00 | 0.00 | Â.    | C   |
| ATOM | 1905 | CG  | ASP |   |       | 28.076           | -6.253           | 1.864  |      |      | A     | 0 ' |
| ATOM | 1906 |     | ASP |   |       | 28.346           | -7.342           | 2.433  | 1.00 | 0.00 |       |     |
| ATOM | 1907 |     | ASP |   |       | 28.048           | -6.097           | 0.615  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1908 | C   |     |   | 265   | 27.718           | -4.437           | 5.115  | 1.00 | 0.00 | A     | C   |
| ATOM | 1909 | 0   | ASP |   |       | 28.795           | -4.335           | 5.696  | 1.00 | 0.00 |       | 0   |
| ATOM | 1910 | N   |     |   | 266   | 26.691           | -3.588           | 5.315  | 1.00 | 0.00 | A     | N   |
| ATOM | 1911 | CA  |     |   | 266   | 26.775           | -2.461           | 6.198  | 1.00 | 0.00 | A     | Ċ   |
| ATOM | 1912 | CB  |     |   | 266   | 25.534           | -1.559           | 6.076  | 1.00 | 0.00 | A     | C   |
| MOTA | 1913 | SG  |     |   | 266   | 25.424           | -0.708           | 4.479  | 1.00 | 0.00 | A     | s   |
| ATOM | 1914 | C   |     |   | 266   | 26.936           | -2.902           |        | 1.00 | 0.00 | A     | С   |
| ATOM | 1915 | 0   | CYS | A | 266   | 27.729           | -2.332           | 8.386  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1916 | N   | PHE |   |       | 26.176           | -3.942           | 8.029  | 1.00 | 0.00 | A     | N.  |
| ATOM | 1917 | ÇA  | PHE |   |       | 26.194           | -4.440           | 9.376  | 1.00 | 0.00 | A     | C   |
| MOTA | 1918 | CB  | PHE | A | 267   | 25.083           | -5.474           | 9.622  | 1.00 | 0.00 | A     | С   |
| ATOM | 1919 | CG  | PHE |   |       | 24.855           | -5.586           | 11.094 | 1.00 | 0.00 | . А   | C.  |
| MOTA | 1920 |     | PHE |   |       | 23.956           | -4.737           | 11.699 | 1.00 | 0.00 | A     | C   |
| MOTA | 1921 |     | PHE |   |       | 25.527           | -6.512           | 11.859 | 1.00 | 0.00 | A     | С   |
| ATOM | 1922 | CE1 | PHE | A | 267   | 23.717           | -4.808           | 13.051 | 1.00 | 0.00 | A     | С   |
| ATOM | 1923 |     | PHE | A | 267   | 25.293           | -6.587           | 13.212 | 1.00 | 0.00 | A     | C   |
| ATOM | 1924 | ÇZ  | PHE |   |       | 24.388           | -5.739           | 13.810 | 1.00 | 0.00 | A     | C   |
| ATOM | 1925 | С   | PHE |   |       | 27.524           | -5.092           | 9.633  | 1.00 | 0.00 | A     | С   |
| MOTA | 1926 | 0   | PHE | Α | 267 - | 28.096           | -4.958           | 10.713 | 1.00 | 0.00 | A     | 0   |
| ATOM | 1927 | N   | LEU |   |       | 28.036           | -5.815           | 8.617  | 1.00 | 0.00 | A     | N   |
| ATOM | 1928 | CA  | LEU | Α | 268   | 29.253           | -6.574           | 8.687  | 1.00 | 0.00 | A     | Ç   |
| MOTA | 1929 | CB  | LEU | Α | 268   | 29.478           | -7.397           | 7.407  | 1.00 | 0.00 | A     | C   |
| ATOM | 1930 | CG  | LEU | A | 268   | 30.556           | -8.480           | 7.549  | 1.00 | 0.00 | A     | С   |
| ATOM | 1931 | CD2 | LEU | Α | 268   | 30.835           | -9.179           | 6.205  | 1.00 | 0.00 | A     | С   |
| MOTA | 1932 | CD1 | LEU | Α | 268   | 30.154           | -9.475           | 8.649  | 1.00 | 0.00 | A     | С   |
| ATOM | 1933 | С   | LEU | Α | 268   | 30.417           | -5.639           | 8.887  | 1.00 | 0.00 | A     | С   |
| MOTA | 1934 | 0   | LEU | Α | 268   | 31.259           | -5.861           | 9.755  | 1.00 | 0.00 | A     | 0   |
| ATOM | 1935 | N   | ILE | A | 269   | 30.452           | -4.538           | 8.116  | 1.00 | 0.00 | A     | N   |
| MOTA | 1936 | ÇA  | ILE |   |       | 31.470           | -3.522           | 8.162  | 1.00 | 0.00 | A     | С   |
| ATOM | 1937 | CB  | ILE |   |       | 31.238           | -2.504           | 7.066  | 1.00 | 0.00 | A     | С.  |
| ATOM | 1938 |     | ILE |   |       | 32.018           | -1.206           | 7.324  | 1.00 | 0.00 | A     | С   |
| MOTA | 1939 |     | ILE |   |       | 31.598           | -3.139           | 5.719  | 1.00 | 0.00 | A     | С   |
| ATOM | 1940 |     | ILE |   |       | 33.082           | -3.473           | 5.629  | 1.00 | 0.00 | A     | С   |
| ATOM | 1941 | c   | ILE |   |       | 31.457           | -2.847           | 9.490  | 1.00 | 0.00 | A     | С   |
| MOTA | 1942 | ō   | ILE |   |       | 32.518           | -2.509           | 10.019 | 1.00 | 0.00 | A     | 0   |
| ATOM | 1943 | N   | LYS |   |       | 30.234           | -2.649           | 10.027 | 1.00 | 0.00 | A     | N   |
| ATOM | 1944 | CA  | LYS |   |       | 29.988           | -1.981           | 11.273 | 1.00 | 0.00 | A     | С   |
| MOTA | 1945 | CB  | LYS |   |       | 28.490           | -1.862           | 11.607 | 1.00 | 0.00 | A     | С   |
| ATOM | 1946 | CG  | LYS |   |       | 28.123           | -0.521           | 12.248 | 1.00 | 0.00 | A     | С   |
|      |      |     |     | • | 210   |                  |                  |        |      |      |       |     |
|      |      |     |     |   |       |                  |                  |        |      |      |       |     |

A CROSS CONTRACTOR

466/514

Figure 7

| ATOM | 1947 | CD   | LYS  | Α | 270   | 29.109 | -0.028 | 13.308 | 1.00 | 0.00 | A  | С   |
|------|------|------|------|---|-------|--------|--------|--------|------|------|----|-----|
| MOTA | 1948 | CE   | T.VQ | Δ | 270   | 29.044 | 1.484  | 13,528 | 1.00 | 0.00 | A  | Ç   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 1949 | NZ   |      |   | 270   | 30.403 | 2.002  | 13.799 | 1.00 | 0.00 | A  | N   |
| MOTA | 1950 | С    | LYS  | A | 270   | 30.626 | -2.807 | 12.353 | 1.00 | 0.00 | A  | С   |
| ATOM | 1951 | 0    | LYS  | A | 270   | 31.148 | -2.270 | 13.324 | 1.00 | 0.00 | A  | 0   |
| ATOM | 1952 | N    | MET  | Δ | 271   | 30.594 | -4.146 | 12.218 | 1.00 | 0.00 | A  | N   |
|      |      |      | MET  |   |       |        |        |        |      |      |    |     |
| ATOM | 1953 | CA   |      |   |       | 31.195 | -4.990 | 13.213 | 1.00 | 0.00 | A  | C   |
| MOTA | 1954 | СВ   | MET  | Α | 271   | 30.607 | -6.413 | 13.314 | 1.00 | 0.00 | A  | С   |
| MOTA | 1955 | CG   | MET  | A | 271   | 31.095 | -7.459 | 12.324 | 1.00 | 0.00 | A  | С   |
| ATOM | 1956 | SD   | MET  | A | 271   | 30.292 | -9.074 | 12.530 | 1.00 | 0.00 | A  | S   |
|      |      |      |      |   |       |        | -9.965 | 11.575 | 1.00 | 0.00 | A  | č   |
| MOTA | 1957 | CE   |      |   | 271   | 31.550 |        |        |      |      |    |     |
| MOTA | 1958 | С    | MET  | A | 271   | 32.696 | -5.007 | 13.163 | 1.00 | 0.00 | A  | С   |
| ATOM | 1959 | 0    | MET  | A | 271   | 33.291 | -5.355 | 14.178 | 1.00 | 0.00 | A  | 0   |
| ATOM | 1960 | N    | GLU  | A | 272   | 33.347 | -4.695 | 12.009 | 1.00 | 0.00 | A  | N   |
| ATOM | 1961 | CA   |      |   | 272   | 34.794 | -4.643 | 11.926 | 1.00 | 0.00 | A  | C   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 1962 | CB   |      |   | 272   | 35.346 | -4.382 | 10.513 | 1.00 | 0.00 | A  | Ç   |
| MOTA | 1963 | ÇG   | GLU  | A | 272   | 35.523 | -5.658 | 9.697  | 1.00 | 0.00 | A  | С   |
| ATOM | 1964 | CD   | GLU  | Α | 272   | 36.533 | -6.502 | 10.461 | 1.00 | 0.00 | A  | С   |
| ATOM | 1965 | OE1  | GLU  | A | 272   | 37.761 | -6.322 | 10.249 | 1.00 | 0.00 | A  | 0   |
|      |      |      | GLU  |   |       | 36.069 | -7.334 | 11.286 | 1.00 | 0.00 | A  | ō   |
| MOTA | 1966 |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 1967 | С    |      |   | 272   | 35.298 | -3.561 | 12.815 | 1.00 | 0.00 | A  | C   |
| ATOM | 1968 | 0    | GLU  | Α | 272   | 36.255 | -3.737 | 13.569 | 1.00 | 0.00 | A  | 0   |
| ATOM | 1969 | N    | LYS  | Α | 273   | 34.600 | -2.415 | 12.789 | 1.00 | 0.00 | A  | N   |
| ATOM | 1970 | CA   |      |   | 273   | 34.877 | -1.345 | 13.694 | 1.00 | 0.00 | A  | С   |
|      |      |      |      |   |       |        |        |        |      |      | A  | č   |
| MOTA | 1971 | CB   |      |   | 273   | 34.288 | -0.012 | 13.219 | 1.00 | 0.00 |    |     |
| ATOM | 1972 | CG   | LYS  | A | 273   | 34.918 | 0.443  | 11.902 | 1.00 | 0.00 | A  | С   |
| ATOM | 1973 | CD   | LYS  | A | 27.3  | 34.090 | 1.483  | 11.153 | 1.00 | 0.00 | A  | C   |
| ATOM | 1974 | CE   | LYS  |   |       | 34.641 | 1.810  | 9.765  | 1.00 | 0.00 | A  | C   |
|      |      |      |      |   |       | 33.617 |        | 8.971  | 1.00 | 0.00 | A  | N   |
| ATOM | 1975 | NZ   | LYS  |   |       |        | 2.524  |        |      |      |    |     |
| ATOM | 1976 | С    | LYS  | A | 273   | 34.191 | -1.765 | 14.949 | 1.00 | 0.00 | A  | С   |
| ATOM | 1977 | 0    | LYS  | A | 273   | 33.368 | -2.659 | 14.949 | 1.00 | 0.00 | A  | 0   |
| ATOM | 1978 | N    | GLU  | А | 274   | 34.563 | -1.238 | 16.111 | 1.00 | 0.00 | A  | N   |
| ATOM |      | CA   |      |   | 274   | 33.960 | -1.596 | 17.371 | 1.00 | 0.00 | A. | С   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 1980 | CB   |      |   | 274   | 32.442 | -1.324 | 17.482 | 1.00 | 0.00 | A  | C   |
| ATOM | 1981 | CG   | GLU  | A | 274   | 32.119 | 0.153  | 17.265 | 1.00 | 0.00 | A  | С   |
| ATOM | 1982 | CD   | GLU  | Α | 274   | 30.615 | 0.354  | 17.373 | 1.00 | 0.00 | A  | С   |
| MOTA | 1983 |      | GLU  | A | 274   | 29.972 | -0.412 | 18.136 | 1.00 | 0.00 | A  | 0   |
|      | 1984 |      | GLU  |   |       | 30.092 | 1.282  | 16.696 | 1.00 | 0.00 | A  | ō   |
| •    |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 1985 | C    | ·GLU |   |       | 34.277 | -3.004 | 17.825 | 1.00 | 0.00 | A  | C   |
| ATOM | 1986 | 0    | GLU  | Α | 274   | 33.984 | -3.278 | 18.975 | 1.00 | 0.00 | A  | 0   |
| ATOM | 1987 | N    | LYS  | A | 275   | 34.978 | -3.879 | 17.053 | 1.00 | 0.00 | A  | N   |
| MOTA | 1988 | CA   | LYS  | А | 275   | 35.352 | -5.243 | 17.390 | 1.00 | 0.00 | A  | С   |
| ATOM | 1989 | СВ   | LYS  |   |       | 36.315 | -5.945 | 16.421 | 1.00 | 0.00 | A  | . c |
|      |      |      |      |   |       |        |        |        |      |      |    | Č   |
| MOTA | 1990 | CG   | LYS  |   |       | 35.701 | -6.769 | 15.313 | 1.00 | 0.00 | A  |     |
| MOTA | 1991 | CD   | Lys  | A | 275   | 36.739 | -7.419 | 14.394 | 1.00 | 0.00 | A  | С   |
| ATOM | 1992 | CE   | LYS  | A | 275   | 37.683 | -6.427 | 13.707 | 1.00 | 0.00 | A  | С   |
| ATOM | 1993 | NZ   | LYS  | Α | 275   | 38.954 | -6.307 | 14.457 | 1.00 | 0.00 | A  | N   |
| ATOM | 1994 | C    | LYS  |   |       | 36.228 | -5.238 | 18.583 | 1.00 | 0.00 | A  | C   |
|      |      |      |      |   |       |        |        | 19.374 |      |      | A  | ŏ   |
| ATOM | 1995 | 0    | LYS  |   |       | 36.205 | -6.182 |        | 1.00 | 0.00 |    |     |
| ATOM | 1996 | N    | GLN  | A | 276   | 37.052 | -4.175 | 18.664 | 1.00 | 0.00 | A  | N   |
| ATOM | 1997 | . CA | GLN  | Α | 276   | 37.980 | -3.963 | 19.728 | 1.00 | 0.00 | A  | С   |
| ATOM | 1998 | CB   | GLN  | Α | 276   | 38.783 | -2.665 | 19.549 | 1.00 | 0.00 | A  | С   |
| ATOM | 1999 | CG   |      |   | 276   | 39.726 | -2.697 | 18.345 | 1.00 | 0.00 | A  | Ċ   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 2000 | CD   |      |   | 276   | 40.421 | -1.345 | 18.245 | 1.00 | 0.00 | A  | C   |
| ATOM | 2001 | OE1  | GLN  | А | 276   | 40.983 | -0.840 | 19.214 | 1.00 | 0.00 | A  | 0   |
| ATOM | 2002 | NE2  | GLN  | A | 276 · | 40.379 | -0.732 | 17.031 | 1.00 | 0.00 | A  | N   |
| ATOM | 2003 | С    | GLN  |   |       | 37.184 | -3.832 | 20.985 | 1.00 | 0.00 | A  | C   |
| ATOM | 2004 | ŏ    |      |   | 276   | 37.473 | -4.494 | 21.979 | 1.00 | 0.00 | A  | ō   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| ATOM | 2005 | N    | ASN  |   |       | 36.108 | -3.028 | 20.952 | 1.00 | 0.00 | A  | N   |
| ATOM | 2006 | CA   | asn  | Α | 277   | 35.319 | -2.976 | 22.146 | 1.00 | 0.00 | A  | С   |
| ATOM | 2007 | CB   | ASN  | Α | 277   | 34.549 | -1.661 | 22.331 | 1.00 | 0.00 | A  | С   |
| ATOM | 2008 | CG   | ASN  |   |       | 34.044 | -1.682 | 23.759 | 1.00 | 0.00 | A  | C   |
|      |      |      |      |   |       |        |        |        |      | 0.00 | A  | ŏ   |
| ATOM | 2009 |      | ASN  |   |       | 32.925 | -2.123 | 24.012 | 1.00 |      |    |     |
| MOTA | 2010 | ND2  | ASN  |   |       | 34.902 | -1.234 | 24.717 | 1.00 | 0.00 | A  | N   |
| MOTA | 2011 | С    | ASN  | A | 277   | 34.329 | -4.100 | 22.049 | 1.00 | 0.00 | A  | С   |
| ATOM | 2012 | ō    | ASN  |   |       | 33.208 | -3.942 | 21.567 | 1.00 | 0.00 | A  | 0   |
| ATOM |      |      |      |   |       | 34.709 | -5.268 | 22.589 | 1.00 | 0.00 | A  | N   |
|      | 2013 | N    | GLN  |   |       |        |        |        |      |      |    |     |
| ATOM | 2014 | CA   | GLN  |   |       | 34.004 | -6.513 | 22.459 | 1.00 | 0.00 | A  | C   |
| MOTA | 2015 | CB   | GLN  | A | 278   | 34.781 | -7.753 | 22.913 | 1.00 | 0.00 | A  | С   |
| ATOM | 2016 | CG   | GLN  |   |       | 35.691 | -8.277 | 21.802 | 1.00 | 0.00 | A  | С   |
| ATOM | 2017 | CD   | GLN  |   |       | 34.825 | -9.010 | 20.772 | 1.00 | 0.00 | A  | С   |
| ATOM |      |      |      |   |       | 34.745 |        | 20.817 | 1.00 | 0.00 | A  | ō   |
|      | 2018 |      | GLN  |   |       |        |        |        |      |      | A  |     |
| ATOM | 2019 |      | GLN  |   |       | 34.163 | -8.275 | 19.835 | 1.00 | 0.00 |    | N   |
| MOTA | 2020 | С    | GLN  | Α | 278   | 32.631 | -6.563 | 23.031 | 1.00 | 0.00 | A  | С   |
|      |      |      |      |   |       |        |        |        |      |      |    |     |
| MOTA | 2021 | 0    | GLN  | A | 278   | 31.898 | -7.493 | 22.699 | 1.00 | 0.00 | A  | 0   |

| ATOM   | 2022 | N    | GLN | Α | 279         | 32.279 | -5.616  | 23.922 | 1.00 | 0.00 |   | Α  | N |
|--------|------|------|-----|---|-------------|--------|---------|--------|------|------|---|----|---|
| ATOM   | 2023 | CA   | GLN | A | 279         | 31.005 | -5.500  | 24.589 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2024 | СВ   |     |   | 279         | 30.951 | -4.174  | 25.368 | 1.00 | 0.00 |   | А  | С |
|        |      |      |     |   |             |        |         |        |      |      |   |    |   |
| MOTA   | 2025 | CG   |     |   | 279         | 29.839 | -4.059  | 26.406 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2026 | CD   | GLN | Α | 279         | 30.495 | -4.195  | 27.774 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2027 | OE1  | GLN | A | 279         | 30.210 | -5.122  | 28.529 | 1.00 | 0.00 |   | Α  | 0 |
|        |      | NE2  |     |   | 279         | 31.398 | -3.234  | 28.109 | 1.00 | 0.00 |   | A  | N |
| ATOM   | 2028 |      |     |   |             |        |         |        |      |      |   |    |   |
| MOTA   | 2029 | С    | GLN |   |             | 29.890 | -5.416  | 23.553 | 1.00 | 0.00 |   | A  | C |
| ATOM   | 2030 | 0    | GLN | A | 279         | 28.840 | -6.028  | 23.724 | 1.00 | 0.00 |   | А  | 0 |
| ATOM   | 2031 | N    | SER | Α | 280         | 30.163 | -4.726  | 22.427 | 1.00 | 0.00 |   | A  | N |
|        | 2032 | CA   | SER |   |             | 29.401 | -4.301  | 21.264 | 1.00 | 0.00 |   | A  | С |
| ATOM   |      |      |     |   |             |        |         |        |      |      |   |    |   |
| ATOM   | 2033 | CB   |     |   | 280         | 30.290 | -4.300  | 20.007 | 1.00 | 0.00 |   | A  | C |
| ATOM   | 2034 | OG   | SER | A | 280         | 29.557 | -3.876  | 18.868 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2035 | C    | SER | Α | 280         | 28.121 | -5.059  | 20.939 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2036 | Ó    | SER |   |             | 28.020 | -6.282  | 21.022 | 1.00 | 0.00 |   | A  | 0 |
|        |      |      |     |   |             |        | -4.261  | 20.580 | 1.00 | 0.00 |   | A  | N |
| ATOM ' | 2037 | N    | GLU |   |             | 27.080 |         |        |      |      |   |    |   |
| ATOM   | 2038 | CA   | GLU |   |             | 25.738 | -4.623  | 20.178 | 1.00 | 0.00 |   | A  | C |
| ATOM   | 2039 | CB   | GLU | A | 281         | 24.728 | -3.460  | 20.189 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2040 | CG   | GLU | A | 281         | 23.856 | -3.331  | 21.449 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2041 | CD   | GLU |   |             | 24.638 | -3.596  | 22.727 | 1.00 | 0.00 |   | A  | С |
|        |      |      |     |   |             |        |         |        |      | 0.00 |   | A  | ō |
| ATOM   | 2042 |      | GLU |   |             | 24.765 | -4.793  | 23.093 | 1.00 |      |   |    |   |
| ATOM   | 2043 | OE2  | GLU | A | 281         | 25.091 | -2.609  | 23.371 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2044 | C    | GLU | A | 281         | 25.643 | -5.266  | 18.824 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2045 | 0    | GLU | A | 281         | 24.714 | -6.029  | 18.579 | 1.00 | 0.00 |   | Α  | 0 |
| ATOM   | 2046 | N    | PHE |   |             | 26.544 | -4.939  | 17.882 | 1.00 | 0.00 |   | A  | N |
|        |      |      |     |   |             |        |         |        |      | 0.00 |   |    |   |
| ATOM   | 2047 | CA   | PHE |   |             | 26.475 | -5.489  | 16.555 | 1.00 |      |   | A  | С |
| ATOM   | 2048 | CB   | PHE | A | 282         | 27.299 | -4.677  | 15.527 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2049 | CG   | PHE | A | 282         | 26.875 | -3.244  | 15.528 | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2050 |      | PHE | Δ | 282         |        | -2.344  | 16.374 | 1.00 | 0.00 |   | A  | С |
|        |      |      |     |   |             | 25.887 |         | 14.680 |      | 0.00 |   | A  | Č |
| ATOM   | 2051 |      |     |   | 282         |        | -2.797  |        | 1.00 |      |   |    |   |
| MOTA   | 2052 | CE1  | PHE | A | 282         | 27.105 | -1.021  | 16.384 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2053 | CE2  | PHE | Α | 282 € . 🤼 1 | 25.503 | -1.478  | 14.683 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2054 | CZ   | PHE | A | 282.        | 26.113 | -0.589  | 15.536 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2055 | c    |     |   | 282         | 27.137 | -6.836  | 16.602 | 1.00 | 0.00 |   | A  | С |
|        |      |      |     |   |             | 28.320 | -6.933  |        | 1.00 | 0.00 |   | A  | ŏ |
| MOTA   | 2056 | 0    |     |   |             |        |         | 16.930 |      |      |   |    |   |
| MOTA   | 2057 | N    |     |   | 283         | 26.388 | -7.918  | 16.282 | 1.00 | 0.00 |   | A  | N |
| ATOM   | 2058 | CA   | THR | A | 283         | 26.979 | -9.227  | 16.335 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2059 | CB ' | THR | Α | 283         | 26.641 | -9.940  | 17.616 | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2060 |      |     |   | 283         | 26.736 | -9.052  | 18.713 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2061 |      | THR |   |             |        | -11.025 | 17.864 | 1.00 | 0.00 |   | A  | Ċ |
|        |      |      |     |   |             |        |         |        |      |      |   | A  | č |
| MOTA   | 2062 | С    | THR |   |             | 26.265 | -9.988  | 15.257 | 1.00 | 0.00 |   |    |   |
| MOTA   | 2063 | 0    | THR |   |             | 25.255 | -9.509  | 14.754 | 1.00 | 0.00 |   | A  | 0 |
| MOTA   | 2064 | N    | ILE | Α | 284         | 26.759 | -11.189 | 14.887 | 1.00 | 0.00 |   | A  | N |
| MOTA   | 2065 | CA   | ILE | Α | 284         | 26.171 | -12.043 | 13.889 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2066 | CB   | ILE | Α | 284         | 27.042 | -13.230 | 13.576 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2067 |      | ILE |   |             |        | -14.222 | 12.659 | 1.00 | 0.00 |   | A  | С |
|        |      |      |     |   |             |        |         |        | 1.00 | 0.00 |   | A  | č |
| ATOM   | 2068 |      | ILE |   |             |        | -12.704 | 12.951 |      |      |   |    |   |
| ATOM   | 2069 | CD1  | ILE |   |             |        | -13.790 | 12.659 | 1.00 | 0.00 |   | A  | C |
| MOTA   | 2070 | С    | ILE | Α | 284         | 24.811 | -12.471 | 14.360 | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2071 | 0    | ILE | Α | 284         | 23.892 | -12.615 | 13.551 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2072 | N    | GLU | Α | 285         | 24.669 | -12.671 | 15.692 | 1.00 | 0.00 |   | A  | N |
| ATOM   | 2073 | CA   | GLU |   |             |        | -13.054 | 16.335 | 1.00 | 0.00 |   | А  | С |
|        |      |      |     |   |             |        | -13.144 |        | 1.00 | 0.00 |   | A  | Č |
| MOTA   | 2074 | CB   | GLU |   |             |        |         | 17.865 |      |      |   |    |   |
| MOTA   | 2075 | CG   | GLU | А | 285         | 22.292 | -13.184 | 18.651 | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2076 | CD   | GLU | Α | 285         | 21.844 | -14.627 | 18.849 | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2077 | OE1  | GLU | Α | 285         | 22.735 | -15.508 | 18.980 | 1.00 | 0.00 |   | A  | 0 |
|        |      |      |     |   |             |        | -14.864 | 18.894 | 1.00 | 0.00 |   | Α  | 0 |
| MOTA   | 2078 |      | GLU |   |             |        |         |        |      |      |   |    | č |
| MOTA   | 2079 | С    | GLU |   |             |        | -11.989 | 16.105 | 1.00 | 0.00 |   | A  |   |
| MOTA   | 2080 | 0    | GLU | Α | 285         |        | -12.272 | 15.631 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2081 | N    | ASN | Α | 286         | 22.771 | -10.726 | 16.383 | 1.00 | 0.00 |   | A  | N |
| ATOM   | 2082 | CA   | ASN | A | 286         | 21.862 | -9.630  | 16.242 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2083 | СВ   |     |   | 286         | 22.319 | -8.367  | 16.987 | 1.00 | 0.00 |   | Α  | С |
| ATOM   | 2084 | CG   |     |   | 286         | 22.048 | -8,698  | 18.454 | 1.00 | 0.00 |   | A  | č |
|        |      |      |     |   |             |        |         |        |      |      |   |    |   |
| ATOM   | 2085 |      | ASN |   |             |        | -9.693  | 18.750 | 1.00 | 0.00 | • | A  | 0 |
| ATOM   | 2086 | ND2  | ASN | A | 286         | 22.543 | -7.854  | 19.394 | 1.00 | 0.00 |   | A  | N |
| MOTA   | 2087 | С    | ASN | Α | 286         | 21.563 | -9.352  | 14.808 | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2088 | 0    |     |   | 286         | 20.498 | -8.824  | 14.511 | 1.00 | 0.00 |   | A  | 0 |
| ATOM   | 2089 | N    | LEU |   |             | 22.498 | -9.661  | 13.893 | 1.00 | 0.00 |   | A  | N |
| ATOM   | 2090 |      | LEU |   |             | 22.315 | -9.444  | 12.487 | 1.00 | 0.00 |   | A  | c |
|        |      | CA   |     |   |             |        |         |        |      | 0.00 |   | A  | č |
| ATOM   | 2091 | CB   | LEU |   |             | 23.582 | -9.757  | 11.673 | 1.00 |      |   |    |   |
| MOTA   | 2092 | CG   | LEU |   |             | 23.430 | -9.540  | 10.157 | 1.00 | 0.00 |   | A  | C |
| MOTA   | 2093 | CD2  | LEU | Α | 287         | 24.674 | -10.037 | 9.401  | 1.00 | 0.00 |   | A  | С |
| MOTA   | 2094 |      | LEU |   |             | 23.081 | -8.076  | 9.831  | 1.00 | 0.00 |   | A  | С |
| ATOM   | 2095 | C    | LEU |   |             |        | -10.324 | 11.997 | 1.00 | 0.00 |   | A  | С |
| ATOM   |      |      |     |   |             | 20.321 | -9.851  | 11.290 | 1.00 | 0.00 |   | A  | ō |
| ni Oli | 2096 | 0    | LEU | А | 401         | 20.321 | -,,,,,, |        | 1.00 | 00   |   | •• | 9 |

|        |      |     |     | _ |     |        |         |        |      |      |   | _  |     |
|--------|------|-----|-----|---|-----|--------|---------|--------|------|------|---|----|-----|
| ATOM   | 2097 | N   | VAL | A | 288 | 21,209 | -11.609 | 12.408 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2098 | CA  | VAL | A | 288 | 20.188 | -12.521 | 11.967 | 1,00 | 0.00 |   | Α  | С   |
| ATOM   | 2099 | CB  | VAL |   |     | 20 516 | -13.979 | 12.184 | 1.00 | 0.00 |   | Α  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2100 |     | VAL |   |     |        | -14.389 | 13.658 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2101 | CG2 | VAL | Α | 288 | 19.629 | -14.790 | 11.232 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2102 | С   | VAL | A | 288 | 18.864 | -12.168 | 12.574 | 1.00 | 0.00 |   | A  | С   |
|        |      |     | VAL |   |     |        | -12.359 | 11.938 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2103 | 0   |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2104 | N   | ILE | A | 289 | 18.863 | -11.660 | 13.829 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2105 | CA  | ILE | Α | 289 | 17.615 | -11.332 | 14.453 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 2106 | CB  | ILE | Δ | 289 |        | -11.175 | 15.940 | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      | 0.00 |   |    | č   |
| MOTA   | 2107 |     | ILE |   |     |        | -11.215 | 16.406 | 1.00 |      |   | A  |     |
| ATOM   | 2108 | CG1 | ILE | A | 289 | 18.421 | -12.361 | 16.576 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 2109 | CD1 | ILE | A | 289 | 17.762 | -13.714 | 16.299 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 2110 | C   | ILE |   |     | 16 996 | -10.116 | 13.810 | 1.00 | 0.00 |   | A. | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| MOTA   | 2111 | 0   | ILE |   |     |        | -10.072 | 13.612 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2112 | N   | THR | Α | 290 | 17.824 | -9.107  | 13.466 | 1.00 | 0.00 |   | A  | N   |
| MOTA   | 2113 | CA  | THR | A | 290 | 17.397 | -7.878  | 12.846 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2114 | СВ  | THR |   |     | 18.494 | -6.841  | 12.724 | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| MOTA   | 2115 | OG1 | THR | A | 290 | 18.956 | -6.470  | 14.015 | 1.00 | 0.00 |   | A  | 0   |
| MOTA   | 2116 | CG2 | THR | Α | 290 | 17.968 | -5.585  | 12.000 | 1.00 | 0.00 |   | Α  | Ç   |
| ATOM   | 2117 | С   | THR |   |     | 16.845 | -8.178  | 11.487 | 1.00 | 0.00 |   | Α  | С   |
|        |      |     |     |   |     |        |         |        |      | 0.00 | • | A  | ō   |
| MOTA   | 2118 | 0   | THR |   |     | 15.864 | -7.567  | 11.060 | 1.00 |      |   |    |     |
| ATOM   | 2119 | N   | ALA | Α | 291 | 17.477 | -9.134  | 10.778 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2120 | CA  | ALA | Α | 291 | 17.064 | -9.523  | 9.457  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2121 | СВ  | ALA |   |     |        | -10.551 | 8.819  | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2122 | С   | ALA |   |     |        | -10.141 | 9.486  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2123 | 0   | ALA | Α | 291 | 14.864 | -9.838  | 8.629  | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2124 | N   | ALA | А | 292 | 15.433 | -11.013 | 10.482 | 1.00 | 0.00 |   | A  | N   |
|        |      |     | ALA |   |     |        | -11.686 |        | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2125 | CA  |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2126 | CB  | ĄLА | A | 292 | 14.159 | -12.730 | 11.745 | 1.00 | 0.00 |   | A. | С   |
| ATOM   | 2127 | С   | ALA | Α | 292 | 13.096 | -10.688 | 10.931 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 2128 | 0   | ALA |   |     |        | -10.806 | 10.417 | 1.00 | 0:00 |   | A  | 0   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2129 | N   | ASP |   |     | 13.423 | -9.685  | 11.779 |      | 0.00 |   | A  | N   |
| ATOM   | 2130 | ÇA  | ASP | Α | 293 | 12.504 | -8.650  | 12.172 | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2131 | CB  | ASP | A | 293 | 13.090 | -7.683  | 13.218 | 1.00 | 0.00 |   | Α  | С   |
| ATOM   | 2132 | CG  | ASP |   |     | 13.118 | -8.392  | 14.567 |      | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2133 |     | ASP |   |     | 12.725 | -9.587  | 14.619 | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2134 | OD2 | ASP | Α | 293 | 13.532 | -7.742  | 15.566 | 1.00 | 0.00 |   | Α  | 0   |
| ATOM   | 2135 | С   | ASP | Δ | 293 | 12.111 | -7.835  | 10.968 | 1.00 | 0.00 |   | Α  | С   |
|        |      |     |     |   |     |        |         |        | 1.00 | 0.00 |   | A  | ō   |
| ATOM   | 2136 | 0   | ASP |   |     | 10.944 | -7.483  |        |      |      |   |    |     |
| ATOM   | 2137 | N   | LEU | A | 294 | 13.072 | -7.530  | 10.072 | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2138 | CA  | LEU | Α | 294 | 12.813 | -6.773  | 8.878  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2139 | СВ  | LEU |   |     | 14.092 | -6.420  | B.102  | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2140 | CG  | LEU | A | 294 | 14.987 | -5.407  | 8.838  | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 2141 | CD2 | LEU | Α | 294 | 14.193 | -4.151  | 9.229  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2142 | CD1 | LEU | Δ | 294 | 16.251 | -5.085  | 8.022  | 1.00 | 0.00 |   | Α  | С   |
| ATOM   |      |     | LEU |   |     | 11.922 | -7.538  | 7.949  | 1.00 | 0.00 |   | Α  | C   |
|        | 2143 | C   |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2144 | 0   | LEU | A | 294 | 11.034 | -6.945  | 7.344  | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2145 | N   | LEU | Α | 295 | 12.140 | -8.859  | 7.806  | 1.00 | 0.00 |   | Α  | N   |
| MOTA   | 2146 | CA  | LEU | Δ | 295 | 11.345 | -9.694  | 6.937  | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        | -11.148 | 6.898  | 1.00 | 0.00 |   | A  | Č   |
| ATOM   | 2147 | CB  | LEU |   |     |        |         |        |      |      |   |    |     |
| MOTA   | 2148 | CG  | LEU | A | 295 | 13.25/ | -11.349 | 6.316  | 1.00 | 0.00 |   | A  | С   |
| MOTA   | 2149 | CD2 | LEU | Α | 295 | 13.375 | -10.741 | 4.912  | 1.00 | 0.00 |   | A  | С   |
| MOTA   | 2150 | CD1 | LEU | Α | 295 | 13.655 | -12.834 | 6.325  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2151 | C   | LEU |   |     | 9.933  | -9.762  | 7.448  | 1.00 | 0.00 |   | A  | c   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| MOTA   | 2152 | 0   | LEU |   |     | 8.983  |         | 6.670  |      | 0.00 |   | A  | 0   |
| ATOM   | 2153 | N   | GLY | Α | 296 | 9.763  | -9.919  | 8.771  | 1.00 | 0.00 |   | Α  | N   |
| MOTA   | 2154 | CA  | GLY | Α | 296 | 8.448  | -10.066 | 9.328  | 1.00 | 0.00 |   | A  | . C |
|        |      |     |     |   |     | 7.658  |         | 9.280  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2155 | С   | GLY |   |     |        | -8.797  |        |      |      |   |    |     |
| ATOM   | 2156 | 0   | GLY | Α | 296 | 6.496  | -8.788  | 8.882  | 1.00 | 0.00 |   | A  | 0   |
| ATOM   | 2157 | N   | ALA | A | 297 | 8.284  | -7.698  | 9.732  | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2158 | CA  | ALA |   |     | 7.677  | -6.408  | 9.840  | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2159 |     | ALA |   |     | 8.582  | -5.408  | 10.572 | 1.00 | 0.00 |   | A  | C   |
| ATOM   | 2160 | С   | ALA | Α | 297 | 7.365  | -5.865  | 8.480  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2161 | 0   | ALA |   |     | 6.347  | -5.211  | 8.271  | 1.00 | 0.00 |   | A  | 0   |
|        |      |     |     |   |     | 8.292  | -6.083  | 7.538  | 1.00 | 0.00 |   | A  | N   |
| ATOM   | 2162 | N   | GLY |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2163 | CA  | GLY | Α | 298 | 8.246  | -5.607  | 6.185  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2164 | С   | GLY | Α | 298 | 7.223  | -6.284  | 5.317  | 1.00 | 0.00 |   | A  | С   |
| ATOM . | 2165 | ō   | GLY |   |     | 6.748  | -5.679  | 4.357  | 1.00 | 0.00 |   | Α  | 0   |
|        |      |     |     |   |     |        |         |        |      |      |   | A  | N   |
| ATOM   | 2166 | N   | THR |   |     | 6.992  | -7.599  | 5.503  | 1.00 | 0.00 |   |    |     |
| MOTA   | 2167 | CA  | THR | A | 299 | 6.101  | -8.289  | 4.605  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2168 | CB  | THR |   |     | 6.430  | -9.749  | 4.449  | 1.00 | 0.00 |   | A  | С   |
| ATOM   | 2169 |     | THR |   |     | 7.811  | -9.945  | 4.191  | 1.00 | 0.00 |   | Α  | 0   |
|        |      |     |     |   |     |        |         |        |      |      |   |    |     |
| ATOM   | 2170 | CG2 | THR | Α | 299 |        | -10.305 | 3.289  | 1.00 | 0.00 |   | A  | Ç   |
| MOTA   | 2171 | С   | THR | Α | 299 | 4.618  | -8.187  | 4.831  | 1.00 | 0.00 |   | A  | С   |
|        |      |     |     | - |     |        |         |        |      |      |   |    |     |

Figure 7

|   | ATOM -       | 2172         | 0       | THR        | А | 299 | 3.898            | -7.781           | 3.920            | 1.00 | 0.00  | A      | 0      |
|---|--------------|--------------|---------|------------|---|-----|------------------|------------------|------------------|------|-------|--------|--------|
|   | ATOM         | 2173         | N       |            |   | 300 | 4.135            | -8.541           | 6.048            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2174         | CA      | GLU        | A | 300 | 2.728            | -8.750           | 6.294            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2175         | CB      | GLU        | A | 300 | 2.445            | -9.339           | 7.686            | 1.00 | 0.00  | Α      | С      |
|   | ATOM         | 2176         | CG      | GLU        | A | 300 | 0.954            | -9.455           | 8.018            | 1.00 | 0.00  | A      | С      |
|   | MOTA         | 2177         | CD      | GLU        | A | 300 | 0.253            | -10.389          | 7.035            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2178         |         | GLU        |   |     |                  | -11.204          | 6.357            | 1.00 | 0.00  | Α      | 0      |
|   | ATOM         | 2179         |         | GLU        |   |     |                  | -10.292          | 6.954            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2180         | С       |            |   | 300 | 1.846            | -7.542           | 6.114            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2181         | 0       |            |   | 300 | 0.884            | -7.613           | 5.347            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2182         | N       |            |   | 301 | 2.176            | -6.411           | 6.767            | 1.00 | 0.00  | A      | N .    |
|   | ATOM         | 2183         | CA      |            |   | 301 | 1.382            | -5.212           | 6.747            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2184         | CB      |            |   | 301 | 1.942<br>2.056   | -4.148<br>-4.644 | 7.650<br>8.975   | 1.00 | 0.00  | A<br>A | C      |
|   | ATOM<br>ATOM | 2185<br>2186 |         | THR        |   |     | 1.001            | -2.931           | 7.631            | 1.00 | 0.00  | A      | c      |
|   | ATOM         | 2187         | C       |            |   | 301 | 1.308            | -4.604           | 5.381            | 1.00 | 0.00  | A      | c      |
|   | ATOM         | 2188         | ŏ       |            |   | 301 | 0.233            | -4.186           | 4.959            | 1.00 | 0.00  | A      | ŏ      |
|   | ATOM         | 2189         | N       |            |   | 302 | 2.451            | -4.531           | 4.668            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2190         | CA      |            |   | 302 | 2.532            | -3.923           | 3.364            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2191         | СВ      |            |   | 302 | 3.941            | -3.852           | 2.859            | 1.00 | 0.00  | A      | С      |
|   | MOTA         | 2192         | OG1     | THR        |   |     | 4.746            | -3.122           | 3.774            | 1.00 | 0.00  | Α      | 0      |
|   | MOTA         | 2193         | CG2     | THR        | A | 302 | 3.935            | -3.156           | 1.490            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2194         | С       | THR        | A | 302 | 1.726            | -4.724           | 2,385            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2195         | 0       | THR        | A | 302 | 1.024            | -4.168           | 1.536            | 1.00 | 0.00  | A      | . 0    |
|   | MOTA         | 2196         | N       |            |   | 303 | 1.809            | -6.061           | 2.503            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2197         | CA      |            |   | 303 | 1.118            | -6.959           | 1.624            | 1.00 | 0.00  | A      | С      |
|   | MOTA         | 2198         | CB      |            |   | 303 | 1.493            | -8.434           | 1.856            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2199         | OG      |            |   | 303 | 2.821            | -8.683           | 1.421            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2200         | C       |            |   | 303 | -0.362           | -6.844           | 1.810            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2201         | 0       |            |   | 303 | -1.116           | -6.798           | 0.838            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2202         | N       |            |   | 304 | -0.804           | -6.782           | 3.079            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2203         | CA      |            |   | 304 | -2.198           | -6.705           | 3.394            | 1.00 | 0.00  | A<br>A | .C     |
| • | ATOM         | 2204         | CB      | THR        |   | 304 | -2.471<br>-1.957 | -6.951<br>-8.224 | 4.852<br>5.211   | 1.00 | 0.00  | A      | 0.     |
|   | MOTA<br>MOTA | 2205<br>2206 |         | THR        |   |     | -1.957<br>-3.989 | -6.942           | 5.106            | 1.00 | 0.00  | A      | C.     |
|   | ATOM         | 2207         | C       | THR        |   |     | -2.750           | -5.378           | 2.968            | 1.00 | 0.00  | A      | Č      |
|   | ATOM         | 2208         | ŏ       | THR        |   |     | -3.896           | -5.317           | 2.536            | 1.00 | 0.00  | Α      | ŏ      |
|   | ATOM         | 2209         | N       | THR        |   |     | -1.961           | -4.286           | 3.084            | 1.00 | 0.00  | A      | N ·    |
|   | ATOM         | 2210         | CA      | THR        |   |     | -2.420           | -2.981           | 2.692            | 1.00 | 0.00  | A      | · C    |
|   | ATOM         | 2211         | СВ      | THR        |   |     | -1.592           | -1.804           | 3.153            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2212         |         | THR        |   |     | -0.238           | -1.919           | 2.758            | 1.00 | 0.00  | A      | 0      |
|   | MOTA         | 2213         |         | THR        |   |     | -1.700           | -1.671           | 4.677            | 1.00 | 0.00  | A      | С      |
|   | MOTA         | 2214         | С       | THR        | A | 305 | -2.598           | -2.922           | 1.214            | 1.00 | .0.00 | Α      | С      |
|   | MOTA         | 2215         | 0       | THR        | A | 305 | -3.559           | -2.308           | 0.762            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2216         | N       | LEU        | A | 306 | -1.701           | -3.563           | 0.435            | 1.00 | 0.00  | A      | N      |
|   | MOTA         | 2217         | ÇA      |            |   | 306 | -1.811           | -3.585           | -1.001           | 1.00 | 0.00  | A      | С      |
|   | MOTA         | 2218         | CB      |            |   | 306 | -0.625           | 4.281            | -1.693           | 1.00 | 0.00  | A      | . C    |
|   | MOTA         | 2219         | CG      |            |   | 306 | 0.721            | -3.546           | -1.545           | 1.00 | 0.00  | A      | C      |
|   | MOTA         | 2220         |         | LEU        |   |     | 0.608            | -2.087           | -2.012           | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2221         |         | LEU        |   |     | 1.855            | -4.298           | -2.259           | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2222         | C       |            |   | 306 | -3.047           | -4.330           | -1.423           | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2223         | 0       | LEU        |   |     | -3.783<br>-3.316 | -3.845           | -2.279           | 1.00 | 0.00  | A<br>A | N<br>O |
|   | ATOM<br>ATOM | 2224<br>2225 | N<br>CA | ARG<br>ARG |   |     | -4.472           | -5.509<br>-6.294 | -0.814<br>-1.175 | 1.00 | 0.00  | A      | C      |
|   |              | 2225         | CB      | ARG        |   |     | -4.464           | -7.752           | -0.667           | 1.00 | 0.00  | A      | č      |
|   | ATOM<br>ATOM | 2227         | CG      | ARG        |   |     | -4.346           | -7.935           | 0.841            | 1.00 | 0.00  | A      | č      |
|   | ATOM         | 2228         | CD      | ARG        |   |     | -3.955           | -9.364           | 1.228            | 1.00 | 0.00  | A      | č      |
|   | ATOM         | 2229         | NE      | ARG        |   |     |                  | -10.203          | 1.266            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2230         | CZ      | ARG        |   |     |                  | -10.605          | 2.484            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2231         |         | ARG        |   |     |                  | -10.207          | 3.625            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2232         |         | ARG        |   |     |                  | -11.393          | 2.574            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2233         | С       | ARG        | A | 307 | -5.738           | -5.586           | -0.781           | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2234         | 0       | ARG        | A | 307 | -6.756           | -5.680           | -1.466           | 1.00 | 0.00  | Α      | 0      |
|   | MOTA         | 2235         | N       | TYR        | A | 308 | -5.687           | -4.833           | 0.324            | 1.00 | 0.00  | A      | N      |
|   | ATOM         | 2236         | CA      | TYR        | A | 308 | -6.797           | -4.103           | 0.859            | 1.00 | 0.00  | Α      | С      |
|   | ATOM         | 2237         | CB      | TYR        |   |     | -6.411           | -3.378           | 2.150            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2238         | CG      | TYR        | A | 308 | -7.532           | -3.556           | 3.094            | 1.00 | 0.00  | A      | С      |
|   | ATOM         | 2239         |         | TYR        |   |     | -8.809           | -3.178           | 2.761            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2240         |         | TYR        |   |     | -7.291           | -4.180           | 4.296            | 1.00 | 0.00  | A      | C      |
|   | MOTA         | 2241         |         | TYR        |   |     | -9.832           | -3.379           | 3.655            | 1.00 | 0.00  | A      | C      |
|   | MOTA         | 2242         |         | TYR        |   |     | -8.308           | -4.383           | 5.190            | 1.00 | 0.00  | A      | Ç      |
|   | ATOM         | 2243         | CZ      | TYR        |   |     | -9.577           | -3.975           | 4.865            | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2244         | OH      | TYR        |   |     | -10.628          | -4.180           | 5.772            | 1.00 | 0.00  | A      | 0      |
|   | ATOM         | 2245         | C       | TYR        |   |     | -7.143<br>-9.319 | -2.993<br>-2.706 | -0.095<br>-0.335 | 1.00 | 0.00  | A      | C      |
|   | ATOM         | 2246         | 0       | TYR        | A | 208 | -8.318           | -2.706           | -0.335           | 1.00 | 0.00  | A      | U      |
|   |              |              |         |            |   |     |                  |                  |                  |      |       |        |        |

#### Figure 7

| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2247<br>2248<br>2249<br>2250<br>2251<br>2252<br>2253<br>2254<br>2255<br>2256<br>2257                                 | N<br>CA<br>CB<br>C<br>O<br>N                                        | ALA                                                         |                                                                                                          |                                                                                                                                             |                                                                                                                            |                                                                                                                                            |                                                              |                                                             |                                      |                                         |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2248<br>2249<br>2250<br>2251<br>2252<br>2253<br>2254<br>2255<br>2256<br>2257                                         | CA<br>CB<br>C                                                       |                                                             | A 309                                                                                                    | -6.092                                                                                                                                      | -2.331                                                                                                                     | -0.626                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2249<br>2250<br>2251<br>2252<br>2253<br>2254<br>2255<br>2256<br>2257                                                 | CB<br>C<br>O                                                        |                                                             | A 309                                                                                                    | -6.197                                                                                                                                      | -1,186                                                                                                                     | -1.485                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 2250<br>2251<br>2252<br>2253<br>2254<br>2255<br>2256<br>2257                                                         | C<br>0                                                              |                                                             | A 309                                                                                                    | -4.829                                                                                                                                      | -0.594                                                                                                                     | -1.863                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2251<br>2252<br>2253<br>2254<br>2255<br>2256<br>2257                                                                 | 0                                                                   |                                                             | A 309                                                                                                    | -6.899                                                                                                                                      | -1.556                                                                                                                     | -2.753                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2252<br>2253<br>2254<br>2255<br>2256<br>2257                                                                         |                                                                     |                                                             | A 309                                                                                                    | -7.799                                                                                                                                      | -0.834                                                                                                                     | -3.171                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | 0                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2253<br>2254<br>2255<br>2256<br>2257                                                                                 |                                                                     |                                                             | A 310                                                                                                    | -6.531                                                                                                                                      | -2.708                                                                                                                     | -3.356                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM         | 2254<br>2255<br>2256<br>2257                                                                                         | CA                                                                  |                                                             | A 310                                                                                                    | -7.091                                                                                                                                      | -3.200                                                                                                                     | -4.594                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 2255<br>2256<br>2257                                                                                                 | CB                                                                  |                                                             | A 310                                                                                                    | -6.380                                                                                                                                      | -4.478                                                                                                                     | -5.100                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 2256<br>2257                                                                                                         | CG                                                                  |                                                             | A 310                                                                                                    | -5.038                                                                                                                                      | -4.310                                                                                                                     | -5.869                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA                         | 2257                                                                                                                 |                                                                     |                                                             | A 310                                                                                                    | -4.099                                                                                                                                      | -3.259                                                                                                                     | -5.250                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| MOTA<br>MOTA<br>MOTA<br>MOTA                                 |                                                                                                                      |                                                                     |                                                             | A 310                                                                                                    | -5.280                                                                                                                                      | -4.011                                                                                                                     | -7.352                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| MOTA<br>MOTA<br>MOTA                                         | 2258                                                                                                                 | C                                                                   |                                                             | A 310                                                                                                    | -8.552                                                                                                                                      | -3.497                                                                                                                     | -4.407                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| MOTA<br>MOTA                                                 | 2259                                                                                                                 | ŏ                                                                   |                                                             | A 310                                                                                                    | -9.346                                                                                                                                      | -3.212                                                                                                                     | -5.304                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | ŏ                                       |
| MOTA                                                         | 2260                                                                                                                 | N                                                                   |                                                             | A 311                                                                                                    | -8.931                                                                                                                                      | -4.062                                                                                                                     | -3.234                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
|                                                              | 2261                                                                                                                 | CA                                                                  |                                                             | A 311                                                                                                    | -10.307                                                                                                                                     | -4.374                                                                                                                     | -2.919                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Ċ                                       |
| ATOM                                                         | 2262                                                                                                                 | CB                                                                  |                                                             | A 311                                                                                                    | -10.484                                                                                                                                     | -5.062                                                                                                                     | -1.559                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| ATOM                                                         | 2263                                                                                                                 | CG                                                                  |                                                             | A 311                                                                                                    | -11.963                                                                                                                                     | -5.328                                                                                                                     | -1.211                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| MOTA                                                         | 2264                                                                                                                 |                                                                     |                                                             | A 311                                                                                                    | -12.111                                                                                                                                     | -5.870                                                                                                                     | 0.221                                                                                                                                      | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| ATOM                                                         | 2265                                                                                                                 |                                                                     |                                                             | A 311                                                                                                    | -12.639                                                                                                                                     | -6.227                                                                                                                     | -2.259                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Ċ                                       |
| ATOM                                                         | 2266                                                                                                                 | C                                                                   |                                                             | A 311                                                                                                    | -11.122                                                                                                                                     | -3.110                                                                                                                     | -2.877                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| ATOM                                                         | 2267                                                                                                                 | ŏ                                                                   |                                                             | A 311                                                                                                    | -12.196                                                                                                                                     | -3.051                                                                                                                     | -3.476                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | ō                                       |
| ATOM                                                         | 2268                                                                                                                 | N                                                                   |                                                             | A 312                                                                                                    | -10.584                                                                                                                                     | -2.058                                                                                                                     | -2.222                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM                                                         | 2269                                                                                                                 | CA                                                                  |                                                             | A 312                                                                                                    | -11.225                                                                                                                                     | -0.771                                                                                                                     | -2.093                                                                                                                                     | 1.00                                                         | 0.00                                                        | . A                                  | Ċ                                       |
| ATOM                                                         | 2270                                                                                                                 | CB                                                                  |                                                             | A 312                                                                                                    | -10.433                                                                                                                                     | 0.199                                                                                                                      | -1.186                                                                                                                                     | 1.00                                                         | 0.00                                                        | <br>A                                | č                                       |
| ATOM                                                         | 2271                                                                                                                 | CG                                                                  |                                                             | A 312                                                                                                    | -10.487                                                                                                                                     | -0.166                                                                                                                     | 0.314                                                                                                                                      | 1.00                                                         | 0.00                                                        | <br>A                                | č                                       |
| ATOM                                                         | 2272                                                                                                                 |                                                                     |                                                             | A 312                                                                                                    | -11.944                                                                                                                                     | -0.274                                                                                                                     | 0.795                                                                                                                                      | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
| ATOM                                                         | 2273                                                                                                                 |                                                                     |                                                             | A 312                                                                                                    | -9.676                                                                                                                                      | 0.812                                                                                                                      | 1.182                                                                                                                                      | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
|                                                              | 2273                                                                                                                 | CDI                                                                 |                                                             | A 312                                                                                                    | -11.395                                                                                                                                     | -0.130                                                                                                                     | -3.445                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
| MOTA                                                         | 2275.                                                                                                                |                                                                     |                                                             | A 312                                                                                                    | -12.426                                                                                                                                     | 0.485                                                                                                                      | -3.715                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | ŏ                                       |
| ATOM                                                         | 2275                                                                                                                 | O.                                                                  |                                                             | A 313                                                                                                    | -10.389                                                                                                                                     | -0.269                                                                                                                     | -4.333                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM                                                         | 2277                                                                                                                 | CA                                                                  |                                                             | A 313                                                                                                    | -10.414                                                                                                                                     | 0.306                                                                                                                      | -5.659                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | Č                                       |
| ATOM                                                         | 2278                                                                                                                 | CB                                                                  |                                                             | A 313                                                                                                    | -9.082                                                                                                                                      | 0.139                                                                                                                      | -6.408                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
| ATOM                                                         |                                                                                                                      |                                                                     |                                                             | A 313                                                                                                    |                                                                                                                                             | 0.133                                                                                                                      | -5.794                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | č                                       |
| ATOM                                                         |                                                                                                                      | CG                                                                  |                                                             |                                                                                                          | -7.933                                                                                                                                      |                                                                                                                            | -5.650                                                                                                                                     |                                                              | 0.00                                                        | A                                    | č                                       |
| ATOM                                                         | 2280                                                                                                                 |                                                                     |                                                             | A 313                                                                                                    | -8.331                                                                                                                                      | 2.438                                                                                                                      |                                                                                                                                            | 1.00                                                         |                                                             |                                      | Ċ                                       |
| ATOM                                                         | 2281                                                                                                                 |                                                                     |                                                             | A 313                                                                                                    | -6.619                                                                                                                                      | 0.774                                                                                                                      | -6.574                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | c                                       |
| ATOM                                                         | 2282                                                                                                                 | C ·                                                                 |                                                             | A 313                                                                                                    | -11.475                                                                                                                                     | -0.368                                                                                                                     | -6.471                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    |                                         |
| ATOM                                                         | 2283                                                                                                                 | 0                                                                   |                                                             | A 313                                                                                                    | -12.085                                                                                                                                     | 0.230                                                                                                                      | -7.352                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | 0                                       |
| ATOM                                                         | 2284                                                                                                                 | N                                                                   |                                                             | A 314                                                                                                    | -11.676                                                                                                                                     | -1.665                                                                                                                     | -6.210                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM                                                         | 2285                                                                                                                 | CA                                                                  |                                                             | A 314                                                                                                    | -12.657                                                                                                                                     | -2.455                                                                                                                     | -6.885                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM                                                         | 2286                                                                                                                 | CB                                                                  |                                                             | A 314                                                                                                    | -12.440                                                                                                                                     | -3.907                                                                                                                     | -6.417                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2287                                                                                                                 | CG                                                                  |                                                             | A 314                                                                                                    | -13.101                                                                                                                                     | -5.011                                                                                                                     | -7.235                                                                                                                                     | 1.00                                                         | 0.00                                                        | , A                                  | С                                       |
| ATOM                                                         | 2288                                                                                                                 |                                                                     |                                                             | A 314                                                                                                    | -12.932                                                                                                                                     | -6.364                                                                                                                     | -6.526                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2289                                                                                                                 |                                                                     |                                                             | A 314                                                                                                    | -12.526                                                                                                                                     | -5.048                                                                                                                     | -8.657                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2290                                                                                                                 | C                                                                   |                                                             | A 314                                                                                                    | -14.022                                                                                                                                     | -1.953                                                                                                                     | -6.475                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| MOTA                                                         | 2291                                                                                                                 | 0                                                                   |                                                             | A 314                                                                                                    | -14.908                                                                                                                                     | -1.742                                                                                                                     | -7.306                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | 0                                       |
| MOTA                                                         | 2292                                                                                                                 | N                                                                   |                                                             | A 315                                                                                                    | -14.194                                                                                                                                     | -1.716                                                                                                                     | -5.158                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| MOTA                                                         | 2293                                                                                                                 | CA                                                                  |                                                             | A 315                                                                                                    | -15.426                                                                                                                                     | -1.292                                                                                                                     | -4.549                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2294                                                                                                                 | CB                                                                  |                                                             | A 315                                                                                                    | -15.306                                                                                                                                     | -1.207                                                                                                                     | -3.019                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| MOTA                                                         | 2295                                                                                                                 | CG                                                                  |                                                             | A 315                                                                                                    | -16.632                                                                                                                                     | -0.971                                                                                                                     | -2.295                                                                                                                                     | 1.00                                                         | 0.00                                                        | - A                                  | C                                       |
| MOTA                                                         | 2296                                                                                                                 | ÇD                                                                  |                                                             | A 315                                                                                                    | -17.587                                                                                                                                     | -2.165                                                                                                                     | -2.357                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2297                                                                                                                 | CE                                                                  |                                                             | A 315                                                                                                    | -18.820                                                                                                                                     | -1.996                                                                                                                     | -1.469                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM                                                         | 2298                                                                                                                 | NZ                                                                  |                                                             | A 315                                                                                                    | -19.642                                                                                                                                     | -0.863                                                                                                                     | -1.947                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM                                                         | 2299                                                                                                                 | С                                                                   |                                                             | A 315                                                                                                    | -15.837                                                                                                                                     | 0.063                                                                                                                      | -5.037                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | C                                       |
| ATOM                                                         | 2300                                                                                                                 | 0                                                                   |                                                             | A 315                                                                                                    | -17.023                                                                                                                                     | 0.296                                                                                                                      | -5.276                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | 0                                       |
| ATOM                                                         | 2301                                                                                                                 | N                                                                   |                                                             | A 316                                                                                                    | -14.877                                                                                                                                     | 1.001                                                                                                                      | -5.196                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
|                                                              |                                                                                                                      | CA                                                                  |                                                             | A 316                                                                                                    | -15.210                                                                                                                                     | 2.327                                                                                                                      | -5.659                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
| ATOM                                                         | 2302                                                                                                                 | ND1                                                                 |                                                             | A 316                                                                                                    | -16.430                                                                                                                                     | 4.408                                                                                                                      | -3.165                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM                                                         | 2303                                                                                                                 |                                                                     |                                                             | A 316                                                                                                    | -15.387                                                                                                                                     | 3.547                                                                                                                      | -3.416                                                                                                                                     | 1.00                                                         | 0.00                                                        | A                                    | С                                       |
|                                                              |                                                                                                                      | CG                                                                  | HIS A                                                       | ል 316                                                                                                    | -14.691                                                                                                                                     | 3.447                                                                                                                      |                                                                                                                                            | 1 00                                                         | 0.00                                                        | A                                    | ~                                       |
| ATOM                                                         | 2303                                                                                                                 | CB                                                                  |                                                             |                                                                                                          |                                                                                                                                             |                                                                                                                            | -4.,740                                                                                                                                    | 1.00                                                         |                                                             |                                      | С                                       |
| MOTA<br>MOTA                                                 | 2303<br>2304                                                                                                         | CB                                                                  |                                                             | A 316                                                                                                    | -16.041                                                                                                                                     | 3.315                                                                                                                      | -4.,740<br>-1.270                                                                                                                          | 1.00                                                         | 0.00                                                        | A                                    | N                                       |
| ATOM<br>ATOM<br>ATOM                                         | 2303<br>2304<br>2305                                                                                                 | CB<br>NE2                                                           | HIS                                                         |                                                                                                          | -16.041<br>-15.162                                                                                                                          |                                                                                                                            |                                                                                                                                            |                                                              |                                                             | A<br>A                               |                                         |
| MOTA<br>MOTA<br>MOTA<br>MOTA                                 | 2303<br>2304<br>2305<br>2306                                                                                         | CB<br>NE2<br>CD2                                                    | HIS A                                                       | A 316                                                                                                    |                                                                                                                                             | 3.315                                                                                                                      | -1.270<br>-2.248<br>-1.867                                                                                                                 | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        |                                      | N<br>C<br>C                             |
| MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA                         | 2303<br>2304<br>2305<br>2306<br>2307                                                                                 | CB<br>NE2<br>CD2                                                    | HIS HIS                                                     | A 316<br>A 316                                                                                           | -15.162                                                                                                                                     | 3.315<br>2.885                                                                                                             | -1.270<br>-2.248                                                                                                                           | 1.00<br>1.00                                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A                                    | N<br>C                                  |
| MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA                         | 2303<br>2304<br>2305<br>2306<br>2307<br>2308                                                                         | CB<br>NE2<br>CD2<br>CE1                                             | HIS HIS HIS HIS                                             | A 316<br>A 316<br>A 316                                                                                  | -15.162<br>-16.782                                                                                                                          | 3.315<br>2.885<br>4.230                                                                                                    | -1.270<br>-2.248<br>-1.867                                                                                                                 | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        | A<br>A                               | N<br>C<br>C                             |
| MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA                 | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309                                                                 | CB<br>NE2<br>CD2<br>CE1<br>C                                        | HIS A                                                       | A 316<br>A 316<br>A 316<br>A 316                                                                         | -15.162<br>-16.782<br>-14.553                                                                                                               | 3.315<br>2.885<br>4.230<br>2.579                                                                                           | -1.270<br>-2.248<br>-1.867<br>-6.986                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A                          | и<br>С<br>С                             |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309<br>2310                                                         | CB<br>NE2<br>CD2<br>CE1<br>C                                        | HIS A<br>HIS A<br>HIS A<br>HIS A<br>PRO                     | A 316<br>A 316<br>A 316<br>A 316<br>A 316                                                                | -15.162<br>-16.782<br>-14.553<br>-13.425                                                                                                    | 3.315<br>2.885<br>4.230<br>2.579<br>3.073                                                                                  | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016                                                                                             | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A                          | N<br>C<br>C<br>C                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309<br>2310<br>2311<br>2312                                         | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA                        | HIS HIS HIS HIS HIS PRO PRO                                 | A 316<br>A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317                                              | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218                                                                                         | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532                                                                | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        | A<br>A<br>A<br>A                     | N<br>C<br>C<br>C<br>O<br>N              |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309<br>2310<br>2311<br>2312<br>2313                                 | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA<br>CD                  | HIS HIS HIS HIS HIS PRO PRO PRO                             | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317                                              | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625                                                                              | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249                                                       | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                | A<br>A<br>A<br>A<br>A                | NCCCONCC                                |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309<br>2310<br>2311<br>2312<br>2313<br>2314                         | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA                        | HIS HIS HIS HIS PRO PRO PRO PRO                             | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317                                              | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211                                                                   | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249                                                       | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | A<br>A<br>A<br>A<br>A                | и<br>С<br>С<br>С<br>О<br>и<br>С         |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315                         | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA<br>CD<br>CB            | HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO     | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317<br>A 317                                     | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495                                                        | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665                                     | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392                                                    | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | A<br>A<br>A<br>A<br>A<br>A           | исссоиссс                               |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2309<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315<br>2316         | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA<br>CD<br>CB            | HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO     | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317                                              | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495<br>-16.130                                             | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665<br>3.975                            | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392<br>-9.564                                          | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A           | исссоиссс                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315                         | CB NE2 CD2 CE1 C O N CA CD CB CG                                    | HIS HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317                   | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495<br>-16.130<br>-14.443                                  | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665<br>3.975                            | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392<br>-9.564<br>-9.733                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A           | исссоисссс                              |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315<br>2316<br>2317<br>2318 | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA<br>CD<br>CB<br>CG<br>C | HIS HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO | A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317          | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495<br>-16.130<br>-14.443<br>-13.632                       | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665<br>3.975<br>4.253                   | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392<br>-9.564<br>-9.733<br>-10.615                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A      | N C C C C C C C N                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315<br>2316<br>2317<br>2318 | CB NE2 CD2 CE1 C O N CA CD CB CG C O N CA                           | HIS HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO | A 316<br>A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 318<br>A 318 | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495<br>-16.130<br>-14.443<br>-13.632<br>-15.200            | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665<br>3.975<br>4.253<br>4.887<br>6.289 | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392<br>-9.564<br>-9.733<br>-10.615<br>-9.088           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A      | N C C C C C C C C C C C C C C C C C C C |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 2303<br>2304<br>2305<br>2306<br>2307<br>2308<br>2310<br>2311<br>2312<br>2313<br>2314<br>2315<br>2316<br>2317<br>2318 | CB<br>NE2<br>CD2<br>CE1<br>C<br>O<br>N<br>CA<br>CD<br>CB<br>CG<br>C | HIS HIS HIS HIS HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO | A 316<br>A 316<br>A 316<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317<br>A 317          | -15.162<br>-16.782<br>-14.553<br>-13.425<br>-15.218<br>-14.625<br>-16.211<br>-15.495<br>-16.130<br>-14.443<br>-13.632<br>-15.200<br>-15.090 | 3.315<br>2.885<br>4.230<br>2.579<br>3.073<br>2.308<br>2.532<br>1.249<br>1.791<br>0.665<br>3.975<br>4.253<br>4.887          | -1.270<br>-2.248<br>-1.867<br>-6.986<br>-7.016<br>-8.087<br>-9.380<br>-8.148<br>-10.392<br>-9.733<br>-9.733<br>-10.615<br>-9.088<br>-9.384 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | N C C C C C C C N                       |

ACCOMING TO THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTR

Figure 7

| ATOM | 2322 | CD  | GLU | A | 318  | -18.354 | 6.212  | -8.218          | 1.00 | 0.00 | A | С  |
|------|------|-----|-----|---|------|---------|--------|-----------------|------|------|---|----|
| ATOM | 2323 |     | GLU |   |      | -18.703 | 6.721  | -7.119          | 1.00 | 0.00 | A | 0  |
|      |      |     | GLU |   |      | -18.625 | 5.030  | -8.563          | 1.00 | 0.00 | A | ō  |
| ATOM | 2324 |     |     |   |      |         |        |                 |      |      |   | č  |
| ATOM | 2325 | С   |     |   | 318  | -13.743 | 6.780  | -8,951          | 1.00 | 0.00 | A |    |
| MOTA | 2326 | 0   | GLU | A | 318  | -13.116 | 7.581  | -9.645          | 1.00 | 0.00 | A | 0  |
| ATOM | 2327 | N   | VAL | A | 319  | -13.282 | 6.300  | -7 <b>.7</b> 79 | 1.00 | 0.00 | A | N  |
| MOTA | 2328 | CA  | VAL | A | 319  | -12.031 | 6.698  | -7.202          | 1.00 | 0.00 | A | С  |
| ATOM | 2329 | СВ  |     |   | 319  | -11.834 | 6.142  | -5.822          | 1.00 | 0.00 | A | С  |
|      |      |     |     |   |      |         |        | -5.291          | 1.00 | 0.00 | A | č  |
| MOTA | 2330 |     | VAL |   |      | -10.452 | 6.559  |                 |      |      |   |    |
| ATOM | 2331 | CG2 | VAL |   |      | -12.998 | 6.631  | -4.946          | 1.00 | 0.00 | A | ¢  |
| ATOM | 2332 | С   | VAL | A | 319  | -10.904 | 6.224  | -8.057          | 1.00 | 0.00 | A | С  |
| ATOM | 2333 | 0   | VAL | Α | 319  | -9.940  | 6.962  | -8.270          | 1.00 | 0.00 | A | 0  |
| ATOM | 2334 | N   | THR | Α | 320  | -11.018 | 4.976  | -8.565          | 1.00 | 0.00 | A | N  |
| ATOM | 2335 | CA  |     |   | 320  | -9.965  | 4.393  | -9.343          | 1.00 | 0.00 | A | С  |
|      |      |     |     |   | 320  |         | 2.902  | -9.536          | 1.00 | 0.00 | A | Č  |
| MOTA | 2336 | CB  |     |   |      | -10.070 |        |                 |      |      |   |    |
| ATOM | 2337 |     | THR |   |      | -8.805  | 2.398  | -9.928          | 1.00 | 0.00 | A | 0  |
| MOTA | 2338 | CG2 | THR | A | 320  | -11.112 |        | -10.602         | 1.00 | 0.00 | A | С  |
| ATOM | 2339 | С   | THR | Α | 320  | -9.829  | 5.117  | -10.654         | 1.00 | 0.00 | A | С  |
| ATOM | 2340 | 0   | THR | Α | 320  | -8.722  | 5.245  | -11.172         | 1.00 | 0.00 | A | 0  |
| ATOM | 2341 | N   | ALA | A | 321  | -10.960 | 5.619  | -11.202         | 1.00 | 0.00 | A | N  |
| ATOM | 2342 | CA  |     |   | 321  | -10.972 |        | -12.444         | 1.00 | 0.00 | A | С  |
|      |      |     |     |   |      |         |        | -12.899         | 1.00 | 0.00 | A | č  |
| MOTA | 2343 | CB  |     |   | 321  | -12.393 |        |                 |      |      |   |    |
| MOTA | 2344 | С   |     |   | 321  | -10.207 |        | -12.311         | 1.00 | 0.00 | A | C  |
| ATOM | 2345 | 0   | ALA | A | 321  | -9.433  | 7.982  | -13.203         | 1.00 | 0.00 | A | 0  |
| ATOM | 2346 | N   | LYS | A | 322  | -10.405 | 8.349  | -11.185         | 1.00 | 0.00 | A | N  |
| ATOM | 2347 | CA  | LYS | A | 322  | -9.755  | 9.611  | -10.937         | 1.00 | 0.00 | A | C  |
| ATOM | 2348 | СВ  |     |   | 322  | -10.267 | 10.333 | -9.683          | 1.00 | 0.00 | A | С  |
|      | 2349 | CG  |     |   | 322  | -11.674 | 10.904 | -9.866          | 1.00 | 0.00 | A | Ċ  |
| ATOM |      |     |     |   |      |         |        |                 |      |      |   | č  |
| ATOM | 2350 | CD  |     |   | 322  | -12.312 | 11.379 | -8.563          | 1.00 | 0.00 | A |    |
| ATOM | 2351 | CE  | LYS | A | 322  | -13.716 | 11.952 | -8.751          | 1.00 | 0.00 | A | С  |
| ATOM | 2352 | NZ  | LYS | A | 322  | -14.261 | 12.375 | -7.446          | 1.00 | 0.00 | A | N  |
| ATOM | 2353 | С   | LYS | Α | 322  | -8.278  | 9.404  | -10.788         | 1.00 | 0.00 | A | C  |
| ATOM | 2354 | ō   |     |   | 322  | -7.492  |        | -11.230         | 1.00 | 0.00 | A | 0  |
|      |      |     |     |   | 4    | -7.882  |        | -10.150         | 1.00 | 0.00 | A | N  |
| ATOM | 2355 | N   |     |   | 323  |         |        |                 |      |      |   | c. |
| MOTA | 2356 | CA  |     |   | 323  | -6.497  | 7.954  | -9.950          | 1.00 | 0.00 | A |    |
| ATOM | 2357 | CB  | VAL | A | 323  | -6.317  | 6.760  | -9.064          | 1.00 | 0.00 | A | С  |
| ATOM | 2358 | CG1 | VAL | A | 323  | -4.822  | 6.397  | -9.004          | 1.00 | 0.00 | A | С  |
| MOTA | 2359 | CG2 | VAL | A | 323  | -6.931  | 7.097  | -7.694          | 1.00 | 0.00 | A | C  |
| ATOM | 2360 | C   |     |   | 323  | -5.850  | 7.691  | -11.277         | 1.00 | 0.00 | A | С  |
| ATOM | 2361 | ō   |     |   | 323  | -4.721  |        | -11.518         | 1.00 | 0.00 | A | 0  |
|      |      |     |     |   |      |         |        | -12.178         | 1.00 | 0.00 | A | N  |
| ATOM | 2362 | N   |     |   | 324  | -6.571  |        |                 |      |      |   |    |
| MOTA | 2363 | CA  |     |   | 324  | -6.069  |        | -13.484         | 1.00 | 0.00 | A | C  |
| ATOM | 2364 | CB  | GLN | A | .324 | -6.957  | 5.668  | -14.235         | 1.00 | 0.00 | A | С  |
| ATOM | 2365 | CG  | GLN | A | 324  | -6.986  | 4.308  | -13.527         | 1.00 | 0.00 | A | С  |
| ATOM | 2366 | CD  | GLN | A | 324  | -7.846  | 3.333  | -14.316         | 1.00 | 0.00 | A | С  |
| ATOM | 2367 |     | GLN |   |      | -7.403  |        | -15.318         | 1.00 | 0.00 | A | 0  |
| ATOM |      |     | GLN |   |      | -9.104  |        | -13.849         | 1.00 | 0.00 | A | N  |
|      | 2368 |     |     |   |      |         |        |                 |      |      | A | Ċ  |
| ATOM | 2369 | C   |     |   | 324  | -5.909  |        | -14.299         | 1.00 | 0.00 |   |    |
| ATOM | 2370 | 0   | GLN | A | 324  | -5.027  |        | -15.155         | 1.00 | 0.00 | A | 0  |
| ATOM | 2371 | N   | GLU | Α | 325  | -6.773  | 8.940  | -14.059         | 1.00 | 0.00 | A | N  |
| ATOM | 2372 | CA  | GLU | A | 325  | -6.712  | 10.197 | -14.759         | 1.00 | 0.00 | A | C  |
| ATOM | 2373 | СВ  |     |   | 325  | -7.878  | 11.129 | ~14.386         | 1.00 | 0.00 | A | C  |
| ATOM | 2374 | CG  |     |   | 325  | -9.243  |        | -14.817         | 1.00 | 0.00 | A | С  |
|      | 2375 |     |     |   | 325  | -10.306 |        | -14.364         | 1.00 | 0.00 | A | C  |
| MOTA |      | CD  |     |   |      |         |        |                 | 1.00 | 0.00 | A | ŏ  |
| MOTA | 2376 |     | GLU |   |      | -10.258 |        | -13.178         |      |      |   |    |
| MOTA | 2377 | OE2 | GLU | A | 325  | -11.178 |        | -15.202         | 1.00 | 0.00 | A | 0  |
| ATOM | 2378 | С   | GLU | Α | 325  | -5.444  | 10.895 | -14.378         | 1.00 | 0.00 | A | С  |
| ATOM | 2379 | 0   | GLU | Α | 325  | -4.764  | 11.460 | -15.237         | 1.00 | 0.00 | A | 0  |
| ATOM | 2380 | N   |     |   | 326  | -5.099  | 10.849 | -13.075         | 1.00 | 0.00 | A | N  |
| ATOM | 2381 | CA  |     |   | 326  | -3.906  |        | -12.597         | 1.00 | 0.00 | A | С  |
|      |      |     |     |   |      | -3.791  |        | -11.068         | 1.00 | 0.00 | A | C  |
| ATOM | 2382 | СВ  |     |   | 326  |         |        |                 |      | 0.00 |   |    |
| ATOM | 2383 | CG  |     |   | 326  | -4.640  |        | -10.489         | 1.00 |      | A | C  |
| MOTA | 2384 | CD  | GLU | Α | 326  | -4.179  | 12.953 | -9.070          | 1.00 | 0.00 | A | C  |
| MOTA | 2385 | OE1 | GLU | Α | 326  | -3.451  | 12.094 | -8.506          | 1.00 | 0.00 | A | 0  |
| ATOM | 2386 |     | GLU |   |      | -4.552  | 14.031 | -8.532          | 1.00 | 0.00 | A | 0  |
| ATOM | 2387 | C   |     |   | 326  | -2.697  |        | -13.126         | 1.00 | 0.00 | A | С  |
|      |      |     |     |   |      | -1.729  |        | -13.477         | 1.00 | 0.00 | A | ō  |
| ATOM | 2388 | 0   |     |   | 326  |         |        |                 | 1.00 | 0.00 | A | N  |
| ATOM | 2389 | N   |     |   | 327  | -2.734  |        | -13.189         |      |      |   |    |
| ATOM | 2390 | CA  |     |   | 327  | -1.602  |        | -13.660         | 1.00 | 0.00 | A | C  |
| ATOM | 2391 | CB  | ILE | A | 327  | -1.570  |        | -13.320         | 1.00 | 0.00 | A | С  |
| ATOM | 2392 | CG2 | ILE | A | 327  | -1.399  | 7.118  | -11.803         | 1.00 | 0.00 | A | С  |
| ATOM | 2393 |     | ILE |   |      | -2.766  | 6.450  | -13.854         | 1.00 | 0.00 | A | С  |
| ATOM | 2394 |     | ILE |   |      | -2.661  |        | -13.575         | 1.00 | 0.00 | A | С  |
|      |      |     |     |   |      | -1.347  |        | -15.097         | 1.00 | 0.00 | A | č  |
| ATOM | 2395 | С   |     |   | 327  |         |        |                 |      | 0.00 | A | ŏ  |
| ATOM | 2396 | 0   | ILE | A | 327  | -0.195  | 9.19/  | -15.405         | 1.00 | 0.00 | A | 9  |

Figure 7

| ATOM | 2397 | N   | GLU | Α | 328 | -2.362  | 8.996  | -15.985 | 1.00  | 0.00  | A | N   |
|------|------|-----|-----|---|-----|---------|--------|---------|-------|-------|---|-----|
| ATOM | 2398 | CA  | GLU | Α | 328 | -2.098  | 9.250  | -17.380 | 1.00  | 0.00  | A | С   |
| ATOM | 2399 | CB  |     |   | 328 | -3.255  | 8.850  | -18.310 | 1.00  | 0.00  | A | c   |
| ATOM | 2400 | CG  |     |   | 328 | -4.638  |        | -17.930 | 1.00  | 0.00  | A | č   |
| ATOM | 2401 | CD  |     |   | 328 | -5.597  |        | -18.801 | 1.00  | 0.00  | A | č   |
|      |      |     |     |   |     |         |        |         |       |       |   |     |
| ATOM | 2402 |     | GLU |   |     | -5.512  |        | -20.048 | 1.00  | 0.00  | A | 0   |
| MOTA | 2403 | OE2 | GLU |   |     | -6.409  |        | -18.239 | 1.00  | 0.00  | A | 0   |
| ATOM | 2404 | С   | GLU | Α | 328 | -1.640  | 10.657 | -17.638 | 1.00  | 0.00  | A | . С |
| ATOM | 2405 | 0   | GLU | Α | 328 | -0.846  | 10.890 | -18.548 | 1.00  | 0.00  | Α | 0   |
| ATOM | 2406 | N   | ARG | Α | 329 | -2.150  | 11.650 | -16.890 | 1.00  | 0.00  | A | N   |
| ATOM | 2407 | CA  |     |   | 329 | -1.686  |        | -17.124 | 1.00  | 0.00  | A | С   |
| ATOM | 2408 | СВ  |     |   | 329 | -2.581  |        | -16.460 | 1.00  | 0.00  | A | č   |
| ATOM | 2409 | CG  |     |   | 329 | -3.904  |        | -17.201 | 1.00  | 0.00  | A | Č   |
|      |      |     |     |   |     |         |        |         |       |       |   |     |
| ATOM | 2410 | CD  |     |   | 329 | -4.823  |        | -16.573 | 1.00  | 0.00  | A | C   |
| ATOM | 2411 | NE  |     |   | 329 | -5.392  |        | -15.333 | 1.00  | 0.00  | A | N   |
| MOTA | 2412 | CZ  | ARG | Ą | 329 | -5.498  |        | -14.199 | 1.00  | 0.00  | Α | · С |
| ATOM | 2413 | NH1 | ARG | Α | 329 | -5.039  | 16.725 | -14.186 | 1.00  | 0.00  | Α | N   |
| ATOM | 2414 | NH2 | ARG | Α | 329 | -6.060  | 14.903 | -13.077 | 1.00  | 0.00  | A | N   |
| ATOM | 2415 | С   |     |   | 329 | -0.271  | 13.208 | -16.651 | 1.00  | 0.00  | A | С   |
| ATOM | 2416 | ō   |     |   | 329 | 0.551   |        | -17.381 | 1.00  | 0.00  | A | ō   |
| ATOM | 2417 | N   |     |   | 330 | 0.038   |        | -15.403 | 1.00  | 0.00  | A | N   |
|      |      |     |     |   |     |         |        |         |       |       |   |     |
| MOTA | 2418 | CA  |     |   | 330 | 1.324   |        | -14.790 | 1.00  | 0.00  | A | C   |
| ATOM | 2419 | CB  |     |   | 330 | 1.276   |        | -13.305 | 1.00  | 0.00  | A | С   |
| MOTA | 2420 |     | VAL |   |     | 2.669   |        | -12.698 | 1.00  | 0.00  | A | C   |
| ATOM | 2421 | CG2 | VAL | Α | 330 | 0.183   | 13.722 | -12.714 | 1.00  | 0.00  | Α | С   |
| ATOM | 2422 | С   | VAL | Α | 330 | 2.432   | 12.204 | -15.357 | 1.00  | 0.00  | A | C   |
| ATOM | 2423 | 0   | VAL | A | 330 | 3.540   | 12.682 | -15.596 | 1.00. | 0.00  | A | 0   |
| ATOM | 2424 | N   |     |   | 331 | 2.149   |        | -15.569 | 1.00/ |       | A | N   |
| ATOM | 2425 | CA  |     |   | 331 | 3.101   |        | -16:005 | 1.00  |       | A | Ċ   |
| ATOM |      |     |     |   |     |         |        |         |       |       | A | č   |
|      | 2426 | CB  |     |   | 331 | 3.104   |        | -15:030 | 1.00  |       |   |     |
| ATOM | 2427 |     | ILE |   |     | 3.987   |        | -15.526 | 1.00  |       | A | C   |
| ATOM | 2428 |     | ILE |   |     | 3.512   |        | -13.642 | 1.00~ |       | A | С   |
| ATOM | 2429 | CD1 | ILE |   |     | 3.219   | 8.307  | -12:517 | 1.00  | 0.00  | A | С   |
| ATOM | 2430 | C   | ILE | A | 331 | 2.587   | 9.462  | -17:332 | 1.00  | .0.00 | Α | С   |
| ATOM | 2431 | 0   | ILE | Α | 331 | 1.400   | 9.499  | -17.609 | 1.00  | 0.00  | Α | 0   |
| ATOM | 2432 | N   | GLY | A | 332 | 3.421   | 9.027  | -18:272 | 1.00  | .0.00 | A | N   |
| ATOM | 2433 | CA  |     |   | 332 | 2.721   |        | -19:449 |       | 0.00  | A | C   |
| ATOM | 2434 | C   |     |   | 332 | 2.413   |        | -19:318 | 1.00  |       | Α | Č   |
|      |      |     |     |   |     |         |        |         |       |       |   |     |
| ATOM | 2435 | 0   |     |   | 332 | 2.407   |        | -18.231 | 1.00  |       | A | 0   |
| ATOM | 2436 | Ņ   | ARG |   |     | 2.036   |        | -20.445 | 1.00  | 0.00  | Α | N   |
| ATOM | 2437 | CA  | ARG | Α | 333 | 1.877   | 5.115  | -20.446 | 1.00  | 0.00  | A | С   |
| ATOM | 2438 | CB  | ARG | Α | 333 | 1.064   | 4.599  | -21.647 | 1.00  | 0.00  | A | С   |
| ATOM | 2439 | CG  | ARG | Α | 333 | -0.386  | 5.109  | -21.688 | 1.00  | 0.00  | Α | С   |
| ATOM | 2440 | CD  | ARG | Α | 333 | -1.356  | 4.393  | -20.738 | 1.00  | 0.00  | Α | С   |
| ATOM | 2441 | NE  |     |   | 333 | -2.718  |        | -21.001 | 1.00  | 0.00  | A | N   |
| ATOM | 2442 | CZ  |     |   | 333 | -3.734  |        | -20.103 | 1.00  | 0.00  | A | Ċ   |
| ATOM | 2443 |     | ARG |   |     | -3.513  |        | -18.923 |       | 0.00  | A | N   |
|      |      |     |     |   |     |         |        |         | 1.00  |       |   |     |
| ATOM | 2444 |     | ARG |   |     | 4.977   |        | -20.385 | 1.00  | 0.00  | Α | N   |
| ATOM | 2445 | C   | ARG |   |     | 3.257   |        | -20.495 | 1.00  | 0.00  | A | C   |
| MOTA | 2446 | 0   | ARG | A | 333 | 3.494   | 3.418  | -19.993 | 1.00  | 0.00  | Α | 0   |
| MOTA | 2447 | N   | ASN | A | 334 | 4.200   | 5.206  | -21.171 | 1.00  | 0.00  | Α | N   |
| MOTA | 2448 | CA  | ASN | A | 334 | 5.512   | 4.658  | -21.399 | 1.00  | 0.00  | A | С   |
| MOTA | 2449 | СВ  | ASN | Α | 334 | 6.319   | 5.522  | -22.381 | 1.00  | 0.00  | A | С   |
| ATOM | 2450 | CG  | ASN |   |     | 5.541   |        | -23.689 | 1.00  | 0.00  | A | č   |
| ATOM | 2451 |     | ASN |   |     | 4.898   |        | -24.064 | 1.00  | 0.00  | A | ō   |
|      |      |     |     |   |     | 5.584   | 6 711  | 24.004  |       | 0.00  |   | -   |
| ATOM | 2452 |     | ASN |   |     |         |        | -24.396 | 1.00  |       | A | N   |
| ATOM | 2453 | С   | ASN |   |     | 6.357   |        | -20.161 | 1.00  | 0.00  | A | C   |
| MOTA | 2454 | 0   | ASN |   |     | 6.608   | 3.365  | -19.728 | 1.00  | 0.00  | A | 0   |
| ATOM | 2455 | N   | ARG | A | 335 | 6.781   | 5.596  | -19.521 | 1.00  | 0.00  | A | N   |
| ATOM | 2456 | CA  | ARG | Α | 335 | 7.698   | 5.507  | -18.413 | 1.00  | 0.00  | A | С   |
| ATOM | 2457 | СВ  | ARG | A | 335 | 8.536   | 6.786  | -18.188 | 1.00  | 0.00  | A | С   |
| ATOM | 2458 | CG  | ARG |   |     | 7.751   |        | -18.131 | 1.00  | 0.00  | A | č   |
| ATOM |      | CD  | ARG |   |     | 6.872   |        | -16.904 | 1.00  | 0.00  | A | č   |
|      | 2459 |     |     |   |     |         |        |         |       |       |   |     |
| ATOM | 2460 | NE  | ARG |   |     | 7.716   |        | -15.806 | 1.00  | 0.00  | A | N   |
| ATOM | 2461 | CZ  | ARG |   |     | 7.344   |        | -15.202 | 1.00  | 0.00  | A | C   |
| ATOM | 2462 |     | ARG |   |     | 6.311   |        | -15.714 | 1.00  | 0.00  | A | N   |
| MOTA | 2463 | NH2 | ARG |   |     | 7.996   |        | -14.083 | 1.00  | 0.00  | A | N   |
| MOTA | 2464 | C   | ARG | Α | 335 | 7.025   | 5.064  | -17.156 | 1.00  | 0.00  | A | С   |
| ATOM | 2465 | 0   | ARG | A | 335 | 5.803   | 5.110  | -17.021 | 1.00  | 0.00  | A | 0   |
| MOTA | 2466 | N   | SER | A | 336 | . 7.838 |        | -16.208 | 1.00  | 0.00  | A | N   |
| ATOM | 2467 | CA  | SER |   |     | 7.318   |        | -14.973 | 1.00  | 0.00  | A | C   |
| ATOM | 2468 | CB  | SER |   |     | 8.187   |        | -14.379 | 1.00  | 0.00  | A | č   |
| ATOM |      | OG  | SER |   |     | 9.483   |        | -14.078 | 1.00  | 0.00  | A | ŏ   |
|      | 2469 |     |     |   |     |         |        |         |       | 0.00  |   |     |
| ATOM | 2470 | C   | SER |   |     | 7.255   |        | -13.976 | 1.00  |       | A | C   |
| ATOM | 2471 | 0   | SER | A | 336 | 7.911   | 6.199  | -14.115 | 1.00  | 0.00  | A | 0   |

|      |      |      |      |    |     |                    |        |         |      |      | •              |          |
|------|------|------|------|----|-----|--------------------|--------|---------|------|------|----------------|----------|
| MOTA | 2472 | N    | PRO  | A  | 337 | 6.458              | 4.962  | -12.963 | 1.00 | 0.00 | A              | N        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2473 | CA   | PRO  | А  | 337 | 6.292              | 5.960  | -11.943 | 1.00 | 0.00 | A              | С        |
| ATOM | 2474 | CD   | PRO  | Δ  | 337 | 5.247              | 4 173  | -13.143 | 1.00 | 0.00 | A              | С        |
| ATOM |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2475 | CB   | PRO  | Α  | 337 | 5.039              | 5.561  | -11.165 | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     | 4.203              |        | -12.195 | 1.00 | 0.00 | A              | С        |
| ATOM | 2476 | CG   | PRO  | M  | 337 |                    |        |         |      |      |                |          |
| ATOM | 2477 | С    | PRO  | Α  | 337 | 7.496              | 6.086  | -11.076 | 1.00 | 0.00 | A              | C        |
|      |      |      |      |    |     |                    |        |         |      | 0 00 |                |          |
| MOTA | 2478 | 0    | PRO  | A  | 337 | . 8.321            | 5.175  | -11.050 | 1.00 | 0.00 | A              | 0        |
| BEOM | 2479 | N    | CYS  | 70 | 338 | 7.615              | 7 235  | -10.384 | 1.00 | 0.00 | A              | N        |
| ATOM | 2413 | TA . |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2480 | CA   | CYS  | А  | 338 | 8.694              | 7.486  | -9.477  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    | 0 420  |         | 1 00 | 0 00 | *              |          |
| ATOM | 2481 | CB   | CYS  | A  | 338 | 9.754              | 8.470  | -9.993  | 1.00 | 0.00 | A              | С        |
| ATOM | 2482 | SG   | CVQ  | Z. | 338 | 10.500             | 8.019  | -11.574 | 1.00 | 0.00 | . А            | s        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2483 | С    | CYS  | A  | 338 | 8.083              | 8.243  | -8.350  | 1.00 | 0.00 | A              | С        |
|      | 2484 | 0    | ave  | *  | 338 | 6.940              | 8.686  | -B.422  | 1.00 | 0.00 | A              | 0        |
| ATOM | 2404 | U    | _    |    |     |                    |        |         |      |      |                |          |
| ATOM | 2485 | N    | MET  | А  | 339 | 8.887              | 8.438  | -7.297  | 1.00 | 0.00 | A              | N        |
|      |      |      |      |    |     |                    |        |         |      | 0 00 |                | С        |
| ATOM | 2486 | CA   | MET  | А  | 339 | 8.518              | 9.083  | -6.077  | 1.00 | 0.00 | A              |          |
| ATOM | 2487 | CB   | MET  | Δ  | 339 | 9.676              | 9.004  | -5.073  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2488 | CG   | MET  | А  | 339 | 9.224              | 8.923  | -3.620  | 1.00 | 0.00 | A              | С        |
| MOTA | 2489 | SD   | MRT  | Δ  | 339 | 8.442              | 7.336  | -3.201  | 1.00 | 0.00 | A              | S        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2490 | CE   | MET  | A  | 339 | 6.751              | 7.855  | -3.600  | 1.00 | 0.00 | A              | C        |
| ATOM | 2491 | С    | MPP  | n  | 339 | 8.191              | 10.527 | -6.343  | 1.00 | 0.00 | A              | С        |
| AION |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2492 | 0    | MET  | A  | 339 | 7.324              | 11.103 | -5.685  | 1.00 | 0.00 | A              | 0        |
|      |      | 3.7  | CTN  | 70 | 340 | 8.883              | 11,128 | -7.333  | 1.00 | 0.00 | A              | N        |
| ATOM | 2493 | N    | GLIN | м  | 340 | 0.003              | 11,120 |         |      |      |                |          |
| ATOM | 2494 | CA   | GLN  | A  | 340 | 8.808              | 12.510 | -7.732  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      | 70             | С        |
| ATOM | 2495 | СВ   | GLN  | A  | 340 | 9.683              | 12.773 | -8.969  | 1.00 | 0.00 | A              |          |
| ATOM | 2496 | CG   | CT.N | n  | 340 | 11.154             | 12,389 | -8.792  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2497 | CD   | GLN  | Α  | 340 | 11.789             | 12.373 | -10.175 | 1.00 | 0.00 | A              | c ·      |
|      |      |      | GLN  |    |     | 11.163             | 12.755 | -11.164 | 1.00 | 0.00 | A              | 0        |
| MOTA | 2498 |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2499 | NE2  | GLN  | Α  | 340 | 13.064             | 11.908 | -10.256 | 1.00 | 0.00 | <b> A</b>      | N        |
|      |      |      |      |    |     | 7,408              |        |         | 1.00 | 0.00 |                | C        |
| ATOM | 2500 | С    | GLIN | А  | 340 | 7.400              | 12.839 | -8.165  |      |      | 1,750 A        | C.,      |
| ATOM | 2501 | 0    | GLN  | Α  | 340 | 6.917              | 13.947 | -7.954  | 1.00 | 0.00 | , А            | 0        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2502 | N    | ASP  | A  | 341 | 6.741              | 11.862 | -8.793  | 1.00 | 0.00 | A              | N        |
| ATOM | 2503 | CA   | 100  | 78 | 341 | 5.438              | 12.001 | -9.370  | 1.00 | 0.00 | А              | Ç        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2504 | CB . | ASP  | Α  | 341 | 5.025              | 10,747 | -10.158 | 1.00 | 0.00 | ., А           | C ·      |
|      |      |      |      |    |     | 5.965              |        | -11.348 | 1.00 | 0.00 |                | C        |
| ATOM | 2505 | CG   | ASP  | А  | 341 | 3.903              |        |         |      |      | <b>A</b> ريد د |          |
| MOTA | 2506 | OD1  | ASP  | A  | 341 | 6.438              | 11.670 | -11.850 | 1.00 | 0.00 | . А            | . O.     |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2507 | OD2  | ASP  | А  | 341 | 6.230              | 9.45/  | -11.764 | 1.00 | 0.00 | i A            | 0        |
| ATOM | 2508 | С    | ASD  | Δ  | 341 | 4.364              | 12.247 | -8.354  | 1.00 | 0.00 | ::34. <b>A</b> | C.       |
|      |      |      |      |    |     |                    |        |         |      |      | : ⊅ਜ           |          |
| ATOM | 2509 | 0    | ASP  | А  | 341 | 3.332              | 12.813 | -8.713  | 1.00 | 0.00 | A              | . 0      |
|      | 2510 | N    |      |    | 342 | 4.542              | 11.792 | -7.092  | 1.00 | 0.00 |                | N -      |
| ATOM |      |      |      |    |     |                    |        |         |      |      |                | - 1 11 1 |
| MOTA | 2511 | CA   | ARG  | Α  | 342 | 3.454              | 11.862 | -6.148  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        | -4.915  | 1.00 | 0.00 | A              | С        |
| MOTA | 2512 | CB   | AKG  | A  | 342 | 3.533              | 10.950 | -4.913  | 1.00 | 0.00 |                |          |
| ATOM | 2513 | CG   | ARG  | Α  | 342 | 4.672              | 11.146 | -3.932  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2514 | CD   | ARG  | A  | 342 | 4.397              | 10.319 | -2.679  | 1.00 | 0.00 | A              | С        |
| ATOM | 2515 | NE   | ARC  | Δ  | 342 | 5.632              | 10.297 | -1.857  | 1.00 | 0.00 | A              | N        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2516 | CZ   | ARG  | Α  | 342 | 5.528              | 10.110 | -0.513  | 1.00 | 0.00 | A              | С        |
|      |      |      | ARG  | *  | 212 | 4.299              | 10.071 | 0.079   | 1.00 | 0.00 | A              | N        |
| MOTA | 2517 | MUT  | MKG  | n  | 342 |                    |        |         |      |      |                |          |
| ATOM | 2518 | NH2  | ARG  | Α  | 342 | 6.654              | 9.948  | 0.237   | 1.00 | 0.00 | A              | N        |
|      |      |      |      |    |     |                    |        |         | 1 00 | 0.00 | A              | С        |
| ATOM | 2519 | С    | ARG  | A  | 342 | 3.051              | 13.245 | -5.737  | 1.00 |      |                |          |
| ATOM | 2520 | 0    | ARG  | A  | 342 | 1.881              | 13.444 | -5.409  | 1.00 | 0.00 | A              | 0        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2521 | N    | GLY  | A  | 343 | 3.989              | 14.218 | -5.750  | 1.00 | 0.00 | A              | N        |
| ATOM | 2522 | CA   | CT.V | Δ  | 343 | 3.714              | 15.598 | -5.422  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| MOTA | 2523 | С    | GĽY  | Α  | 343 | 2.730              | 16.157 | -6.416  | 1.00 | 0.00 | A              | С        |
| ATOM | 2524 | 0    | GLY  | Δ  | 343 | 1.925              | 17.028 | -6.096  | 1.00 | 0.00 | A              | 0        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2525 | N    | HIS  | Α  | 344 | 2.828              | 15.694 | -7.672  | 1.00 | 0.00 | A              | N        |
| ATOM | 2526 | CA   | ито  | Δ  | 344 | 1.957              | 16.045 | -8.752  | 1.00 | 0.00 | , A            | С        |
|      |      |      |      | -  |     |                    |        |         |      |      | -              |          |
| ATOM | 2527 | ND1  | HIS  | Α  | 344 | 3.809              | 17.956 | -10.392 | 1.00 | 0.00 | A              | N        |
| ATOM | 2528 | CG   |      |    | 344 | 3.824              |        | -10.291 | 1.00 | 0.00 | A              | C        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2529 | CB   | HIS  | Α  | 344 | 2.588              | 15.760 | -10.121 | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        | -10.480 | 1.00 | 0.00 | A              | N        |
| MOTA | 2530 |      | HIS  |    |     | 5.942              |        |         |      |      |                |          |
| ATOM | 2531 |      | HIS  |    |     | 5.134              | 16.220 | -10.347 | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2532 | CEI  | HIS  | Α  | J44 | 5.101              | 18.354 | -10.502 | 1.00 | 0.00 | A              | С        |
| ATOM | 2533 | С    |      |    | 344 | 0.643              | 15.316 | -8.666  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2534 | 0    | HIS  | Α  | 344 | -0.297             | 15.683 | -9.371  | 1.00 | 0.00 | A              | 0        |
|      |      |      |      |    |     |                    | 14.208 |         | 1.00 | 0.00 | A              | N        |
| ATOM | 2535 | N    |      |    | 345 | 0.564              |        |         |      |      |                |          |
| ATOM | 2536 | CA   | MET  | A  | 345 | <del>-</del> 0.664 | 13.450 | -7.870  | 1.00 | 0.00 | A              | С        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2537 | CB   | MET  | Α  | 345 | -0.410             | 11.974 | -8.195  | 1.00 | 0.00 | A              | С        |
| ATOM | 2538 | CG   |      |    | 345 | 0.117              | 11.715 | -9.604  | 1.00 | 0.00 | A              | C        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| MOTA | 2539 | SD   | MET  | Α  | 345 | 0.782              | 10.039 | -9.809  | 1.00 | 0.00 | A              | S        |
|      |      |      |      |    |     | 0.579              |        | -11.607 | 1.00 | 0.00 | A              | С        |
| ATOM | 2540 | CE   |      |    | 345 |                    |        |         |      |      |                |          |
| MOTA | 2541 | С    | MET  | Α  | 345 | -1.306             | 13.441 | -6.503  | 1.00 | 0.00 | A              | C        |
|      |      |      |      |    |     |                    |        |         | 1.00 | 0.00 |                |          |
| MOTA | 2542 | 0    |      |    | 345 | -1.302             | 12.396 | -5.850  |      |      | A              | 0        |
|      | 2543 | N    |      |    | 346 | -1.914             | 14.533 | -6.081  | 1.00 | 0.00 | A              | N        |
|      |      |      |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2544 | CA   | PRO  | Α  | 346 | -2.550             | 14.677 | -4.790  | 1.00 | 0.00 | A              | C        |
|      |      |      |      |    | 346 | -2.308             | 15.597 | -6.985  | 1.00 | 0.00 | A              | C        |
| MOTA | 2545 | CD   |      |    |     |                    |        |         |      |      |                |          |
| ATOM | 2546 | CB   | PRO  | Α  | 346 | -3.061             | 16.111 | -4.745  | 1.00 | 0.00 | A              | C        |
|      |      | QD   |      |    |     |                    |        |         |      |      |                |          |

ar saiseo

COLUMN TO THE COLUMN TO THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUM

A CARCAR COLOR

474/514

|    | -      |      |     |      |   |     |         |        |        |      |       |   |    |   |
|----|--------|------|-----|------|---|-----|---------|--------|--------|------|-------|---|----|---|
|    | ATOM   | 2547 | CG  | PRO  | A | 346 | -3.357  | 16.420 | -6.220 | 1.00 | 0.00  |   | Α  | С |
|    | MOTA   | 2548 | С   | PRO  | A | 346 | -3.680  | 13.723 | -4.547 | 1.00 | 0.00  |   | Α  | С |
|    |        | 2549 | ō   |      |   | 346 | -3.837  | 13.301 | -3,404 | 1.00 | 0.00  |   | A  | 0 |
|    | MOTA   |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2550 | N   |      |   | 347 | -4.468  | 13.390 | -5.592 | 1.00 | 0.00  |   | A  | N |
|    | MOTA   | 2551 | CA  | TYR  | Á | 347 | -5.609  | 12.528 | -5.452 | 1.00 | 0.00  |   | Α  | С |
|    | MOTA   | 2552 | ÇВ  | TYR  | Α | 347 | -6.435  | 12.420 | -6.750 | 1.00 | 0.00  |   | A  | C |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | MOTA   | 2553 | CG  |      |   | 347 | -7.759  | 11.766 | -6.492 | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2554 | CD1 | TYR  | A | 347 | -8.841  | 12.546 | -6.167 | 1.00 | 0.00  |   | Α  | C |
|    | ATOM   | 2555 | CD2 | TYR  | Δ | 347 | -7.952  | 10.404 | -6.581 | 1.00 | 0.00  |   | Α  | С |
|    |        |      |     |      |   | -   |         |        |        |      | 0.00  | • | A  | Č |
|    | MOTA   | 2556 |     | TYR  |   |     | -10.073 | 11.987 | -5.928 | 1.00 |       |   |    |   |
|    | ATOM   | 2557 | CE2 | TYR  | Α | 347 | -9.183  | 9.837  | -6.343 | 1.00 | 0.00  |   | Α  | C |
|    | ATOM   | 2558 | ÇZ  | TYR  | Α | 347 | -10.252 | 10.632 | -6.016 | 1.00 | 0.00  |   | Α  | С |
|    | ATOM   | 2559 | OH  |      |   | 347 | -11.520 | 10.064 | -5.771 | 1.00 |       |   | Α  | 0 |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | MOTA   | 2560 | С   |      |   | 347 | -5.143  | 11.156 | -5.095 | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2561 | 0   | TYR  | A | 347 | -5.716  | 10.549 | -4.196 | 1.00 | 0.00  |   | Α  | 0 |
|    | ATOM   | 2562 | N   | THR  | Δ | 348 | -4.092  | 10.655 | -5.787 | 1.00 | 0.00  |   | A  | N |
|    |        |      |     |      |   |     | -3.551  | 9.334  | -5.597 | 1.00 | 0.00  |   | A  | c |
|    | ATOM   | 2563 | CA  |      |   | 348 |         |        |        |      |       |   |    |   |
|    | ATOM   | 2564 | CB  | THR  | A | 348 | -2.449  | 9.010  | -6.579 | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2565 | 0G1 | THR  | Α | 348 | -2.935  | 9.079  | -7.912 | 1.00 | 0.00  |   | Α  | 0 |
|    | ATOM   | 2566 |     | THR  |   |     | -1.912  | 7.596  | -6.295 | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    | č |
|    | ATOM   | 2567 | С   |      |   | 348 | -2.993  | 9.205  | -4.215 | 1.00 | 0.00  |   | A  |   |
|    | ATOM   | 2568 | 0   | THR  | Α | 348 | -3.235  | 8.195  | -3.547 | 1.00 | 0.00  |   | A  | 0 |
|    | MOTA   | 2569 | N   | ASP  | Α | 349 | -2.269  | 10.250 | -3.749 | 1.00 | 0.00  |   | Α  | N |
|    | ATOM   | 2570 | CA  |      |   | 349 | -1.649  | 10.297 | -2.447 | 1.00 | 0.00  |   | Α  | С |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2571 | CB  |      |   | 349 | -0.780  | 11.557 | -2.243 | 1.00 | 0.00  |   | A  | С |
|    | MOTA   | 2572 | CG  | ASP  | Α | 349 | 0.253   | 11.311 | -1.139 | 1.00 | 0.00  |   | Α  | С |
|    | ATOM   | 2573 |     | ASP  |   |     | 0.277   | 10.185 | -0.572 | 1.00 | 0.00  |   | Α  | 0 |
|    |        |      |     |      |   |     |         |        |        |      |       |   | A  | ō |
|    | ATOM   |      |     | ASP  |   |     | 1.038   | 12.253 | -0.858 | 1.00 | 0.00  |   |    |   |
|    | ATOM . | 2575 | С   | ASP  | A | 349 | -2.745  | 10.271 | -1.414 | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2576 | 0   | ASP  | Α | 349 | -2.603  | 9.685  | -0.342 | 1.00 | 0.00  |   | A  | 0 |
|    | ATOM   | 2577 | N   |      |   | 350 | -3.884  | 10.911 | -1.740 | 1.00 | 0.00  |   | Α  | N |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2578 | CA  | ALA  | А | 350 | -5.042  | 10.920 | -0.895 | 1.00 | 0.00  |   | A  | С |
|    | ATOM · | 2579 | CB  | ALA  | Α | 350 | -6.149  | 11.828 | -1.438 | 1.00 | 0.00  |   | Α  | С |
|    | ATOM   | 2580 | С   |      |   | 350 | -5.611  | 9.532  | -0.791 | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   |     |         |        |        |      |       |   | A  | ŏ |
|    | ATOM   |      | 0   |      |   | 350 | -6.048  | 9.128  | 0.282  | 1.00 | 0.00  |   |    |   |
| •  | ATOM . | 2582 | N   | VAL  | A | 351 | -5.631  | 8.780  | -1.912 | 1.00 | 0.00  |   | A, | N |
|    | ATOM   | 2583 | CA  | VAT. | Δ | 351 | -6.180  | 7.455  | -1.986 | 1.00 | 0.00  |   | Α  | С |
| ÷, |        |      |     |      |   |     |         |        | -3.389 | 1.00 | 0.00  |   | A  | С |
|    | ATOM   |      | CB  |      |   | 351 | -6.194  | 6.911  |        |      |       |   |    |   |
| •  | ATOM   | 2585 | CG1 | VAL  | Α | 351 | -6.652  | 5.444  | -3.369 | 1.00 | 0.00  |   | А  | С |
|    | ATOM   | 2586 | CG2 | VAL  | Α | 351 | -7.095  | 7.820  | -4.244 | 1.00 | 0.00  |   | Α  | С |
|    | ATOM   | 2587 | C   |      |   | 351 | -5.364  | 6.526  | -1.135 | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2588 | 0   | VAL  | A | 351 | -5.933  | 5.703  | -0.418 | 1.00 | 0.00  |   | A  | 0 |
|    | ATOM   | 2589 | N   | VAL  | Α | 352 | -4.017  | 6.647  | -1.201 | 1.00 | 0.00  |   | A  | N |
|    | ATOM   | 2590 | CA  | VAT. | Α | 352 | -3.118  | 5.801  | -0.460 | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   | 352 | -1.677  | 6.051  | -0.798 | 1.00 | 0.00  |   | A  | С |
|    | MOTA   | 2591 | СВ  |      |   |     |         |        |        |      |       |   |    |   |
|    | MOTA   | 2592 | CG1 | VAL  | A | 352 | -0.802  | 5.166  | 0.106  | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2593 | CG2 | VAL  | Α | 352 | -1,472  | 5.784  | -2.301 | 1.00 | 0.00  |   | А  | С |
|    | ATOM   | 2594 | С   |      |   | 352 | -3.288  | 6.039  | 1.012  | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   |     |         |        |        |      | 0.00  |   | A  | ŏ |
|    | ATOM   | 2595 | 0   |      |   | 352 | -3.401  | 5.085  | 1.779  | 1.00 |       |   |    |   |
|    | ATOM   | 2596 | N   | HIS  | A | 353 | -3.343  | 7.320  | 1.429  | 1.00 | 0.00  |   | Α  | N |
|    | ATOM   | 2597 | CA  | HIS  | Α | 353 | -3.485  | 7.671  | 2.817  | 1.00 | 0.00  |   | Α  | C |
|    |        |      |     | HIS  |   |     | -0.924  | 9.267  | 2.264  | 1.00 | 0.00  |   | A  | N |
|    | ATOM   | 2598 |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2599 | CG  |      |   | 353 | -1.895  | 9.581  | 3.182  | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2600 | CB  | HIS  | Α | 353 | -3.332  | 9.173  | 3.076  | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2601 |     | HIS  |   |     | 0.073   | 10.458 | 3.851  | 1.00 | 0.00  |   | A  | N |
|    |        |      | _   |      | _ |     |         |        |        | 1.00 | 0.00  |   | A  | c |
|    | ATOM   | 2602 |     | HIS  |   |     | -1.270  | 10.306 | 4.144  |      |       |   |    |   |
|    | ATOM   | 2603 | CEL | HIS  |   |     | 0.234   | 9.816  | 2.712  | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2604 | С   | HIS  | A | 353 | -4.807  | 7.220  | 3.357  | 1.00 | 0.00  | - | A  | С |
|    | ATOM   | 2605 | ō   |      |   | 353 | -4.865  | 6.698  | 4.467  | 1.00 | 0.00  |   | A  | 0 |
|    |        |      |     |      |   |     |         |        |        | 1.00 | 0.00  |   | A  | N |
|    | ATOM   | 2606 | N   |      |   | 354 | -5.891  | 7.368  | 2.574  |      |       |   |    |   |
|    | ATOM   | 2607 | CA  | GLU  | A | 354 | -7.204  | 6.957  | 2.986  | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2608 | CB  | GLU  | A | 354 | -8.360  | 7.402  | 2.094  | 1.00 | 0.00  |   | Α  | С |
|    | ATOM   | 2609 | CG  |      |   | 354 | -8.880  | 8.757  | 2.544  | 1.00 | 0.00  |   | A  | С |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |
|    | ATOM   | 2610 | CD  |      |   | 354 | -9.246  | 8.642  | 4.018  | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2611 | OE1 | GLU  | A | 354 | -10.134 | 7.813  | 4.330  | 1.00 | 0.00  |   | Α  | 0 |
|    | ATOM   | 2612 |     | GLU  |   |     | -8.639  | 9.371  | 4.850  | 1.00 | 0.00  |   | Α  | 0 |
|    |        |      |     |      |   |     |         |        |        |      | 0.00  |   | A  |   |
|    | ATOM   | 2613 | С   |      |   | 354 | -7.316  | 5.486  | 3.136  | 1.00 |       |   |    | C |
|    | ATOM   | 2614 | 0   | GLU  | A | 354 | -8.102  | 5.048  | 3.983  | 1.00 | 0.00  |   | A  | 0 |
|    | ATOM   | 2615 | N   |      |   | 355 | -6.592  | 4.698  | 2.299  | 1.00 | 0.00  |   | Α  | N |
|    |        |      |     |      |   |     |         |        |        |      | .0.00 |   | A  | Ċ |
|    | ATOM   | 2616 | ÇA  |      |   | 355 | -6.696  | 3.276  | 2.489  |      |       |   |    |   |
|    | ATOM   | 2617 | CB  | VAL  | A | 355 | -6.211  | 2.339  | 1.410  | 1.00 | 0.00  |   | A  | С |
|    | ATOM   | 2618 |     | VAL  |   |     | -7.050  | 2.587  | 0.162  | 1.00 | 0.00  |   | Α  | С |
|    |        |      |     |      |   |     | -4.703  |        | 1.187  | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2619 |     | VAL  |   |     |         | 2.417  |        |      |       |   |    |   |
|    | ATOM   | 2620 | С   | VAL  | Α | 355 | -6.053  | 2.898  | 3.782  | 1.00 | 0.00  |   | A  | C |
|    | ATOM   | 2621 | 0   |      |   | 355 | -6.641  | 2.118  | 4.525  | 1.00 | 0.00  |   | A  | 0 |
|    | • •    |      | -   |      |   |     |         |        |        |      |       |   |    | • |
|    |        |      |     |      |   |     |         |        |        |      |       |   |    |   |

Figure 7

| ATOM         | 2622           | N         | GLN        | Α | 356        | -4.895             | 3.508            | 4.113            | 1.00 | 0.00           |          | A N |
|--------------|----------------|-----------|------------|---|------------|--------------------|------------------|------------------|------|----------------|----------|-----|
| ATOM         | 2623           | CA        |            |   | 356        | -4.219             | 3.214            | 5.343            | 1.00 |                |          | A C |
| ATOM         | 2624           | CB        | GLN        | Ą | 356        | -2.837             | 3.875            | 5.464            | 1.00 | 0.00           |          | A C |
| MOTA         | 2625           | CG        | GLN        | A | 356        | -1.814             | 3.279            | 4.500            | 1.00 |                | 1        | A C |
| ATOM         | 2626           | CD        |            |   | 356        | -0.420             | 3.663            | 4.971            | 1.00 |                |          | A C |
| ATOM         | 2627           |           |            |   | 356        | 0.188              | 4.618            | 4.488            | 1.00 |                |          | A 0 |
| ATOM<br>ATOM | 2628<br>2629   | C NE2     |            |   | 356<br>356 | 0.108<br>-5.014    | 2.875<br>3.639   | 5.947<br>6.547   | 1.00 |                |          | A N |
| ATOM         | 2630           | Ö         |            |   | 356        | -5.077             | 2.864            | 7.499            | 1.00 |                |          | A 0 |
| ATOM         | 2631           | N         |            |   | 357        | -5.639             | 4.845            | 6.552            | 1.00 |                |          | A N |
| ATOM         | 2632           | CA        |            |   | 357        | -6.340             | 5.256            | 7.746            | 1.00 |                |          | A C |
| ATOM         | 2633           | CB        |            |   | 357        | -6.710             | 6.751            | 7.904            | 1.00 | 0.00           | 1        | A C |
| MOTA         | 2634           | CG        |            |   | 357        | -7.857             | 7.265            | 7.045            | 1.00 |                |          | A C |
| ATOM         | 2635           | CD        |            |   | 357        | -8.626             | 8.388            | 7.755            | 1.00 |                |          | A C |
| MOTA<br>MOTA | 2636<br>2637   | NE<br>CZ  |            |   | 357<br>357 | -10.023<br>-10.924 | 8.340<br>7.507   | 7.253<br>7.848   | 1.00 |                |          | A N |
| ATOM         | 2638           |           |            |   | 357        | -10.635            | 6.881            | 9.029            | 1.00 |                |          | A N |
| ATOM         | 2639           |           |            |   | 357        | -12.110            | 7.274            | 7.222            | 1.00 | 0.00           |          | N N |
| ATOM         | 2640           | С         |            |   | 357        | -7.605             | 4.463            | 7.942            | 1.00 | 0.00           |          | A C |
| ATOM         | 2641           | 0         | ARG        | A | 357        | -7.964             | 4.123            | 9.066            | 1.00 | 0.00           | 2        | 0   |
| ATOM         | 2642           | N         |            |   | 358        | -8.311             | 4.151            | 6.840            | 1.00 | 0.00           |          | N A |
| ATOM         | 2643           | CA        |            |   | 358        | -9.547             | 3.410            | 6.870            | 1.00 |                |          | ı c |
| ATOM<br>ATOM | 2644           | CB        |            |   | 358        | -10.169            | 3.331            | 5.457            | 1.00 | 0.00           |          | A C |
| ATOM         | 2645<br>2646   | CG<br>CD1 |            |   | 358<br>358 | -11.191<br>-12.386 | 2.243<br>2.290   | 5.351<br>6.027   | 1.00 | 0.00           |          | A C |
| ATOM         | 2647           |           |            |   | 358        | -10.961            | 1.172            | 4.515            | 1.00 | 0.00           |          | ì č |
| ATOM         | 2648           |           |            |   | 358        | -13.304            | 1.271            | 5.887            | 1.00 | 0.00           | ,        |     |
| ATOM         | 2649           |           |            |   | 358        | -11.879            | 0.157            | 4.374            | 1.00 | 0.00           | 1        |     |
| MOTA         | 2650           | CZ        | TYR        | A | 358        | -13.060            | 0.200            | 5.065            | 1.00 | 0.00           | 7        |     |
| ATOM         | 2651           | OH        |            |   | 358        | -14.005            | -0.841           | 4.926            | 1.00 | 0.00           | 1        |     |
| ATOM         | 2652           | C         |            |   | 358        | -9.359             | 2.004            | 7.372            | 1.00 | 0.00           | 7        |     |
| ATOM         | 2653           | 0         |            |   | 358        | -10.098            | 1.562            | 8.251<br>6.840   | 1.00 | 0.00           | Į        |     |
| ATOM<br>ATOM | · 2654<br>2655 | N<br>CA   |            |   | 359<br>359 |                    | 1.272<br>-0.125  | 7.145            | 1.00 | 0.00           | 7        |     |
| ATOM         | 2656           | СВ        |            |   | 359        | -7.277             | -0.849           | 6.162            | 1.00 | 0.00           | ,        |     |
| ATOM         | 2657           |           |            |   | 359        | -7.983             | -0.750           | 4.803            | 1.00 | 0.00           | 7        |     |
| ATOM         | 2658           |           |            |   | 359        | -5.823             | +0.346           | 6.105            | 1.00 | 0.00           | Į        | C   |
| ATOM         | 2659           |           |            |   | 359        | -4.882             | -0.955           | 7.133            | 1.00 | 0.00           | F        |     |
| ATOM         | 2660           | С         |            |   | 359        | -7.773             | -0.382           | 8.564            | 1.00 | 0.00           | F        |     |
| ATOM         | 2661           | 0         |            |   | 359        | -8.245             | -1.382           | 9.110            | 1.00 | 0.00           | P        |     |
| ATOM<br>ATOM | 2662<br>2663   | n<br>Ca   |            |   | 360<br>360 | -6.925<br>-6.473   | 0.504<br>0.448   | 9.167<br>10.547  | 1.00 | 0.00           | P        |     |
| ATOM         | 2664           | CB        |            |   | 360        | -7.611             | 0.861            | 11.495           | 1.00 | 0.00           | I        |     |
| ATOM         | 2665           | CG        |            |   | 360        | -7.033             | 1.146            | 12.861           | 1.00 | 0.00           | 7        |     |
| MOTA         | 2666           | OD1       |            |   | 360        | -6.541             | 2.281            | 13.100           | 1.00 | 0.00           | P        |     |
| ATOM         | 2667           | OD2       |            |   | 360        | -7.094             | 0.223            | 13.704           | 1.00 | 0.00           | P        | . 0 |
| ATOM         | 2668           | С         |            |   | 360        | -5.930             | -0.919           | 10.910           | 1.00 | 0.00           | P        |     |
| ATOM         | 2669           | 0         |            |   | 360        | -6.515             | -1.661           | 11.697           | 1.00 | 0.00           | · P      |     |
| ATOM<br>ATOM | 2670<br>2671   | n<br>Ca   |            |   | 361<br>361 | -4.822<br>-4.271   | -1.299<br>-2.622 | 10.253<br>10.299 | 1.00 | 0.00           | P        |     |
| ATOM         | 2672           | CB        |            |   | 361        | -3.150             | -2.762           | 9.263            | 1.00 | 0.00           |          |     |
| ATOM         | 2673           | CG        |            |   | 361        | -3.164             | -4.147           | 8.610            | 1.00 | 0.00           | P        |     |
| ATOM         | 2674           | CD2       | LEU        | A | 361        | -2.022             | -4.314           | 7.590            | 1.00 | 0.00           | A        |     |
| ATOM         | 2675           |           | LEU        |   |            | -4.549             | -4.371           | 7.966            | 1.00 | 0.00           | A        |     |
| ATOM         | 2676           | C .       |            |   | 361        | -3.783             | -2.992           | 11.671           | 1.00 | 0.00           | A        | _   |
| ATOM<br>ATOM | 2677           | 0         |            |   | 361        | -3.917             | -4.150<br>-2.072 | 12.063           | 1.00 | 0.00           | A.<br>A. |     |
| ATOM         | 2678<br>2679.  | N<br>CA   |            |   | 362<br>362 | -3.162<br>-2.869   | -2.072<br>-2.491 | 12.440<br>13.785 | 1.00 | 0.00           | A        |     |
| ATOM         | 2680           | ÇВ        |            |   | 362        | -1.420             | -2.828           | 14.079           | 1.00 | 0.00           | A        |     |
| ATOM         | 2681           |           | ILE        |   |            | -1.100             | -4.086           | 13.259           | 1.00 | 0.00           | A        |     |
| ATOM         | 2682           |           | ILE        |   |            | -0.412             | -1.694           | 13.850           | 1.00 | 0.00           | A        |     |
| ATOM         | 2683           | CD1       | ILE        |   |            | 0.958              | -2.047           | 14.430           | 1.00 | 0.00           | A        |     |
| ATOM         | 2684           | C ·       |            |   | 362        | -3.494             | -1.511           | 14.743           | 1.00 | 0.00           | A        |     |
| ATOM         | 2685           | 0         |            |   | 362        | -2.897             | -0.503           | 15.123           | 1.00 | 0.00           | A        |     |
| ATOM         | 2686           | N         |            |   | 363        | -4.606<br>-5.503   | -1.851           | 15.130           |      | 27.04<br>28.00 | A        |     |
| ATOM<br>ATOM | 2687<br>2688   | CA<br>C   | PRO        |   | 363<br>363 | -5.503<br>-4.846   | -1.142<br>-0.620 | 16.058<br>17.336 |      | 29.53          | A        |     |
| ATOM         | 2689           | Ö         | PRO        |   |            | -5.224             | 0.430            | 17.865           |      | 30.73          | A        |     |
| ATOM         | 2690           | СВ        | PRO        |   |            | -6.578             | -2.178           | 16.335           |      | 27.28          | A        |     |
| ATOM         | 2691           | CG        | PRO        |   |            | -6.678             | -2.896           | 15.035           | 1.00 | 25.55          | A        | C   |
| ATOM         | 2692           | CD        | PRO        |   |            | ~5.237             | -3.098           | 14.652           |      | 25.27          | A        | С   |
| ATOM         | 2693           | N         | THR        |   |            | -3.879             | -1.396           | 17.822           |      | 31.35          | A        |     |
| ATOM         | 2694           | CA        | THR        |   |            | -3.078             | -1.117           | 19.019           |      | 31.45<br>34.70 | A        |     |
| ATOM<br>ATOM | 2695<br>2696   | С<br>0    | THR<br>THR |   |            | -1.721<br>-1.319   | -1.478<br>-2.621 | 18.450<br>18.551 |      | 40.94          | A<br>A   |     |
|              |                | -         | T 111L     | • | 204        | -1.313             |                  | ,                |      |                | A        | U   |

| MOTA | 2697 | CB  | THR  | Α   | 364 | -3.458  | -2.089              | 20.201 | 1.00 | 32.11 | A | С  |
|------|------|-----|------|-----|-----|---------|---------------------|--------|------|-------|---|----|
|      |      |     |      |     |     | -3.103  | -3.441              | 19.878 | 1 00 | 29.88 | A | 0  |
| MOTA | 2698 |     | THR  |     |     |         |                     |        |      |       |   |    |
| ATOM | 2699 | ÇG2 | THR  | A   | 364 | -4.965  | -2.040              | 20.465 | 1.00 | 29.96 | A | С  |
| ATOM | 2700 | N   | CED  | n   | 365 | -1.049  | -0.529              | 17.799 | 1 00 | 34.44 | A | N  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2701 | CA  | SER  | А   | 365 | 0.239   | -0.799              | 17.159 |      | 34.52 | A | С  |
| MOTA | 2702 | C   | SER  | Α   | 365 | 0.923   | -2.031              | 17.755 | 1.00 | 34.07 | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2703 | 0   | SER  | A   | 365 | 0.534   | -3.170              | 17.477 |      | 32.94 | A | 0  |
| ATOM | 2704 | СВ  | SER  | Δ   | 365 | 1.151   | 0.415               | 17.296 | 1.00 | 33.40 | A | C  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2705 | OG  | SER  | А   | 365 | 1.113   | 0.906               | 18.618 |      | 37.21 | A | 0  |
| ATOM | 2706 | N   | LEU  | A   | 366 | 1.970   | -1.797              | 18.534 | 1.00 | 34.33 | A | N  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2707 | CA  | PPA  | А   | 366 | 2.671   | -2.868              | 19.203 |      | 33.89 | A | С  |
| ATOM | 2708 | С   | LEU  | A   | 366 | 2.736   | -2.417              | 20.637 | 1.00 | 34.54 | A | ٠c |
| ATOM | 2709 | 0   |      |     | 366 | 2.833   | -1.221              | 20.910 | 1 00 | 35.89 | A | 0  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2710 | СB  | LEU  | А   | 366 | 4.071   | -3.061              | 18.634 | 1.00 | 32.18 | A | С  |
| ATOM | 2711 | CG  | LEU  | А   | 366 | 4.214   | -4.294              | 17.738 | 1.00 | 31.05 | A | C  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2712 | CDI | LEU  | A   | 366 | 3.328   | -4.180              | 16.522 | 1.00 | 28.49 | A | С  |
| ATOM | 2713 | CD2 | LEU  | Α   | 366 | 5.672   | -4.435              | 17.335 | 1.00 | 31.02 | A | С  |
|      |      | N   | PRO  |     |     | 2.690   | -3.364              | 21.577 |      | 33.73 | A | N  |
| ATOM | 2714 |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2715 | CA  | PRO  | Α   | 367 | 2.737   | -3.034              | 22.995 | 1.00 | 32.93 | A | С  |
| ATOM | 2716 | С   | PRO  | Δ   | 367 | 3.955   | 2.209               | 23.349 | 1.00 | 33.46 | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2717 | 0   | PRO  | А   | 367 | 5.067   | -2.520              | 22.932 |      | 32.83 | A | 0  |
| ATOM | 2718 | CB  | PRO  | Α   | 367 | 2.768   | -4.398 <sup>-</sup> | 23.665 | 1.00 | 34.13 | A | С  |
|      |      | CG  | PRO  |     |     | 2.126   | -5.297              | 22.660 |      | 34.59 | A | С  |
| MOTA | 2719 |     |      |     |     |         |                     |        |      |       |   |    |
| MOTA | 2720 | CD  | PRO  | A   | 367 | 2.732   | -4.817              | 21.387 | 1.00 | 33.62 | A | С  |
| ATOM | 2721 | N   | HIS  | n.  | 360 | 3.728   | -1.110              | 23.998 | 1.00 | 0.00  | A | N  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| MOTA | 2722 | CA  | HIS  | A   | 368 | 4.816   | -0.351              | 24.546 | 1.00 | 0.00  | A | С  |
| MOTA | 2723 | ND1 | HIS. | . А | 368 | 4.390   | 2.999               | 22.662 | 1.00 | 0.00  | A | N  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| MOTA | 2724 | CG  | HIS  | А   | 368 | 4.616   | 1.680               | 22.995 | 1.00 | 0.00  | A | С  |
| ATOM | 2725 | CB  | HIS  | Α   | 368 | 4.641   | 1.175               | 24.411 | 1.00 | 0.00  | A | С  |
|      |      |     | HIS  |     |     |         |                     | •      |      |       | A | N  |
| MOTA | 2726 |     |      |     |     | 4.681   |                     | 20.748 | 1.00 | 0.00  |   |    |
| ATOM | 2727 | CD2 | HIS  | Α   | 368 | 4.792   | 1.026               | 21.812 | 1.00 | 0.00  | A | С  |
| ATOM | 2728 | CEL | HIS  | A   | 368 | 4.440   | 3.076               | 21.308 | 1.00 | 0.00  | A | ·C |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2729 | С   | HIS  | А   | 368 | 4 . 897 | -0.647              | 26.015 | 1.00 | 0.00  | A | С  |
| ATOM | 2730 | 0   | HIS  | Δ   | 368 | 4.137   | -1.454              | 26.537 | 1.00 | 0.00  | A | Ō  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2731 | N   | ALA  | A   | 369 | 5.866   | -0.036              | 26.724 | 1.00 | 0.00  | A | N  |
| ATOM | 2732 | CA  | ALA  | Α   | 369 | 5.969   | -0.226              | 28.146 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         | -1.478              |        | 1.00 | 0.00  | A | С  |
| MOTA | 2733 | CB  | ALA  |     |     |         |                     | 28,543 |      |       |   |    |
| ATOM | 2734 | С   | ALA  | А   | 369 | 6.696   | 0.963               | 28.689 | 1.00 | 0.00  | A | С  |
| ATOM | 2735 | 0   | ALA  | n.  | 360 | 7.573   | 1.516               | 28.026 | 1.00 | 0.00  | A | 0  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| MOTA | 2736 | N   | VAL  | A   | 370 | 6.361   | 1.395               | 29.921 | 1.00 | 0.00  | A | N  |
| ATOM | 2737 | CA  | VAL  | Δ   | 370 | 7.019   | 2.557               | 30.444 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2738 | CB  | VAL  | A   | 370 | 6.288   | 3.233               | 31.571 | 1.00 | 0.00  | A | С  |
| ATOM | 2739 | CG1 | VAL  | A   | 370 | 4.960   | 3.795               | 31.031 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        | 1.00 | 0.00  | A | С  |
| ATOM | 2740 |     | VAL  |     |     | 6.108   | 2.234               | 32.718 |      |       |   |    |
| ATOM | 2741 | С   | VAL  | Α   | 370 | 8.404   | 2.185               | 30.892 | 1.00 | 0.00  | A | С  |
| ATOM | 2742 | 0   | VAL  | Δ   | 370 | 8.661   | 1.136               | 31.469 | 1.00 | 0.00  | A | 0  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2743 | N   | THR  | А   | 371 | 9.350   | 3.073               | 30.578 | 1.00 | 0.00  | A | N  |
| MOTA | 2744 | CA  | THR  | Α   | 371 | 10.757  | 3.022               | 30.784 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2745 | CB  | THR  | A   | 3/1 | 11.425  | 4.160               | 30.054 | 1.00 | 0.00  | A | С  |
| ATOM | 2746 | OG1 | THR  | Α   | 371 | 11.124  | 4.085               | 28.668 | 1.00 | 0.00  | A | ٥  |
|      |      |     | THR  |     |     | 12.946  |                     | 30.255 | 1.00 | 0.00  | A | С  |
| MOTA | 2747 |     |      |     |     |         | 4.112               |        |      |       |   |    |
| ATOM | 2748 | С   | THR  | Α   | 371 | 11.081  | 3.143               | 32.240 | 1.00 | 0.00  | A | С  |
| MOTA | 2749 | 0   | THR  | Α   | 371 | 12.058  | 2.566               | 32.714 | 1.00 | 0.00  | A | 0  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2750 | N   | CYS  |     |     | 10.287  | 3.933               | 32.983 | 1.00 | 0.00  | A | N  |
| ATOM | 2751 | CA  | CYS  | Α   | 372 | 10.606  | 4.216               | 34.351 | 1.00 | 0.00  | A | С  |
|      |      |     | CYS  |     |     | 11.464  | 5.500               | 34.392 | 1.00 | 0.00  | A | С  |
| ATOM | 2752 | СВ  |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2753 | SG  | CYS  | А   | 372 | 12.212  | 5.952               | 35.981 | 1.00 | 0.00  | A | s  |
| MOTA | 2754 | С   | CYS  | A   | 372 | 9.289   | 4.480               | 35.012 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2755 | 0   | CYS  |     |     | 8.273   | 4.520               | 34.322 | 1.00 | 0.00  | A | 0  |
| ATOM | 2756 | N   | ASP  | A   | 373 | 9.261   | 4.621               | 36.361 | 1.00 | 0.00  | A | N  |
|      |      |     | ASP  |     |     | 8.062   | 4.975               | 37.070 | 1.00 | 0.00  | A | C  |
| MOTA | 2757 | ÇA  |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2758 | CB  | ASP  | Α   | 373 | 8.246   | 5.007               | 38.599 | 1.00 | 0.00  | A | С  |
| ATOM | 2759 | CG  | ASP  |     |     | 8.480   | 3.587               | 39.101 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| MOTA | 2760 |     | ASP  |     |     | 7.519   | 2.775               | 39.058 | 1.00 | 0.00  | A | 0  |
| ATOM | 2761 | 002 | ASP  | A   | 373 | 9.623   | 3.300               | 39.549 | 1.00 | 0.00  | A | 0  |
|      |      |     |      |     |     |         |                     | 36.635 | 1.00 | 0.00  |   | Ċ  |
| ATOM | 2762 | С   | ASP  |     |     | 7.738   | 6.375               |        |      |       | A |    |
| ATOM | 2763 | 0   | ASP  | Α   | 373 | 8.517   | 7.296               | 36.860 | 1.00 | 0.00  | A | 0  |
|      |      |     |      |     |     |         |                     | 35.966 | 1.00 | 0.00  | A | N  |
| ATOM | 2764 | N   | VAL  |     |     | 6.583   | 6.560               |        |      |       |   |    |
| ATOM | 2765 | CA  | VAL  | Α   | 374 | 6.268   | 7.864               | 35.450 | 1.00 | 0.00  | A | С  |
| ATOM | 2766 | СВ  | VAL  |     |     | 6.310   | 7.871               | 33.933 | 1.00 | 0.00  | A | С  |
|      |      |     |      |     |     |         |                     |        |      |       |   |    |
| ATOM | 2767 |     | VAL  |     |     | 5.973   | 9.252               | 33.338 | 1.00 | 0.00  | A | С  |
| ATOM | 2768 | CG2 | VAL  | Α   | 374 | 7.708   | 7.397               | 33.513 | 1.00 | 0.00  | A | C  |
|      |      |     |      |     |     |         |                     | _      | 1.00 |       |   |    |
| MOTA | 2769 | С   | VAL  |     |     | 4.894   | 8.218               | 35.938 |      | 0.00  | A | С  |
| ATOM | 2770 | 0   | VAL  | Α   | 374 | 4.104   | 7.327               | 36.217 | 1.00 | 0.00  | A | 0  |
|      |      |     | LYS  |     |     | 4.586   | 9.525               | 36.109 | 1.00 | 0.00  | A | N  |
| MOTA | 2771 | N   | 112  | •   | 5/5 | 4.300   | 9.343               | 50.105 |      | 00    | n | 14 |

Figure 7

| ATOM | 2772 | CA  | LYS | A | 375 | 3.278  | 9.991  | 36.499 | 1.00  | 0.00 | A                | С  |
|------|------|-----|-----|---|-----|--------|--------|--------|-------|------|------------------|----|
| ATOM | 2773 | СВ  | LYS | A | 375 | 3.328  | 11.207 | 37.444 | 1.00  | 0.00 | A                | С  |
| ATOM | 2774 | CG  | LYS |   |     | 3.502  | 10.910 | 38.932 | 1.00  | 0.00 | A                | С  |
| ATOM | 2775 | CD  | LYS |   | -   | 2.240  | 10.352 | 39.589 | 1.00  | 0.00 | A                | C  |
|      | 2776 | CE  | LYS |   | 375 | 2.371  | 10.136 | 41.099 | 1.00  | 0.00 | A                | Ċ  |
| MOTA |      |     |     |   |     | 1.069  | 9.715  | 41.663 | 1.00  | 0.00 | A                | N  |
| MOTA | 2777 | NZ  | LYS |   | 375 |        |        | 35.262 |       |      | A                | c  |
| MOTA | 2778 | C   | LYS |   | 375 | 2.632  | 10.528 |        | 1.00  | 0.00 |                  |    |
| ATOM | 2779 | 0   | LY5 |   | 375 | 3.068  | 11.546 | 34.725 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2780 | N   | PHE | A | 376 | 1.555  | 9.877  | 34.781 | 1.00  | 0.00 | A                | N  |
| ATOM | 2781 | CA  | PHE | A | 376 | 0.942  | 10.310 | 33.559 | 1.00  | 0.00 | A                | С  |
| ATOM | 2782 | CB  | PHE | Α | 376 | 0.951  | 9.159  | 32.535 | 1.00  | 0.00 | A                | С  |
| ATOM | 2783 | CG  | PHE | Α | 376 | 0.320  | 9.544  | 31.246 | 1.00  | 0.00 | A                | С  |
| ATOM | 2784 |     | PHE |   |     | 0.998  | 10.334 | 30.342 | 1.00  | 0.00 | A                | С  |
| ATOM | 2785 |     | PHE |   | 376 | -0.933 | 9.084  | 30.926 | 1.00  | 0.00 | A                | Č  |
|      | 2786 |     | PHE |   |     | 0.413  | 10.675 | 29.147 | 1.00  | 0.00 | A                | c  |
| ATOM |      |     |     |   |     |        |        | 29.730 | 1.00  | 0.00 | A                | c  |
| ATOM | 2787 |     | PHE |   |     | -1.522 | 9.421  |        |       |      |                  |    |
| ATOM | 2788 | CZ  | PHE |   |     | -0.848 | 10.220 | 28.840 | 1.00  | 0.00 | A                | C  |
| ATOM | 2789 | С   | PHE |   |     | -0.470 | 10.669 | 33.858 | 1.00  | 0.00 | A                | C  |
| ATOM | 2790 | 0   | PHE | A | 376 | -1.236 | 9.808  | 34.275 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2791 | N   | ARG | A | 377 | -0.844 | 11.956 | 33.644 | 1.00  | 0.00 | A                | N  |
| ATOM | 2792 | CA  | ARG | A | 377 | -2.166 | 12.486 | 33.888 | 1.00  | 0.00 | A                | Ç  |
| ATOM | 2793 | СВ  | ARG | A | 377 | -3.242 | 11.774 | 33.046 | 1.00  | 0.00 | A                | C  |
| ATOM | 2794 | CG  | ARG | А | 377 | -2.906 | 11.765 | 31.554 | 1.00  | 0.00 | A                | С  |
| ATOM | 2795 | CD  | ARG |   |     | -3.332 | 13.014 | 30.784 | 1.00  | 0.00 | A                | С  |
| ATOM | 2796 | NE  | ARG |   | 377 | -4.782 | 12.877 | 30.477 | 1.00  | 0.00 | A                | N  |
|      |      |     |     |   |     |        | 13.477 | 29.363 | 1.00  | 0.00 |                  | c  |
| ATOM | 2797 | CZ  | ARG |   |     | -5.289 |        |        |       |      |                  |    |
| ATOM | 2798 |     | ARG |   |     | -4.470 | 14.205 | 28.548 | 1.00  | 0.00 | A                | N  |
| ATOM | 2799 | NH2 | ARG |   | 377 | -6.614 | 13.346 | 29.055 | 1.00  | 0.00 | A                | N  |
| ATOM | 2800 | С   | ARG |   |     | -2.524 | 12.324 | 35.353 | 1.00  | 0.00 |                  | С  |
| ATOM | 2801 | 0   | ARG | Α | 377 | -3.695 | 12.158 | 35.696 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2802 | N   | ASN | Α | 378 | -1.506 | 12.380 | 36.246 | 1.00  | 0:00 | A                | N  |
| ATOM | 2803 | CA  | ASN | А | 378 | -1.587 | 12.221 | 37.679 | 1.00  | 0.00 | 2 <b>A</b> 10.00 | C. |
| ATOM | 2804 | СВ  | ASN |   |     | -2.570 | 13.219 | 38.329 | 1.00  | 0.00 | A.               | C. |
| ATOM | 2805 | CG  | ASN |   | 378 | -2.181 | 13.468 | 39.788 | 1.00  | 0.00 | A                | c  |
|      |      |     |     |   |     | -2.899 | 14.149 | 40.517 | 1.00  | 0.00 |                  | ō  |
| ATOM | 2806 |     | ASN |   |     |        |        |        |       |      | A .              | N  |
| ATOM | 2807 |     | ASN |   |     | -1.017 | 12.910 | 40.223 | 1.00  | 0.00 |                  |    |
| ATOM | 2808 | С   | ASN |   | 378 | -1.981 | 10.799 | 38.037 | 1.00  | 0.00 | Α.               | C  |
| ATOM | 2809 | 0   | ASN | A | 378 | -2.533 | 10.528 | 39.103 | ·1.00 | 0.00 |                  | .0 |
| ATOM | 2810 | N   | TYR | Α | 379 | -1.764 | 9.849  | 37.116 | 1.00  | 0.00 | . A              | N  |
| ATOM | 2811 | CA  | TYR | A | 379 | -2.030 | 8.454  | 37.328 | 1.00  | 0.00 | A `              | С  |
| ATOM | 2812 | CB  | TYR | Α | 379 | -2.606 | 7.717  | 36.115 | 1.00  | 0.00 | A                | C  |
| ATOM | 2813 | CG  | TYR |   |     | -4.020 | 8.178  | 36.130 | 1.00  | 0.00 | A                | С  |
| ATOM | 2814 |     | TYR |   |     | -4.861 | 7.705  | 37.113 | 1.00  | 0.00 | A                | C  |
|      | 2815 |     | TYR |   |     | -4.500 | 9.105  | 35.235 | 1.00  | 0.00 | A                | Č  |
| ATOM |      |     |     |   |     |        | 8.115  | 37.179 | 1.00  | 0.00 | A                | č  |
| ATOM | 2816 |     | TYR |   |     | -6.169 |        |        |       |      |                  | č  |
| ATOM | 2817 | CE2 | TYR |   |     | -5.812 | 9.516  | 35.296 | 1.00  | 0.00 | A                |    |
| ATOM | 2818 | CZ  | TYR |   |     | -6.648 | 9.019  | 36.267 | 1.00  | 0.00 | A                | Ç  |
| ATOM | 2819 | OH  | TYR |   |     | -7.994 | 9.441  | 36.331 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2820 | С   | TYR | A | 379 | -0.952 | 7.638  | 37.983 | 1.00  | 0.00 | A                | С  |
| ATOM | 2821 | 0   | TYR | Α | 379 | -1.287 | 6.745  | 38.760 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2822 | N   | LEU | Α | 380 | 0.348  | 7.930  | 37.724 | 1.00  | 0.00 | A                | N  |
| ATOM | 2823 | CA  | LEU | A | 380 | 1.450  | 7.128  | 38.217 | 1.00  | 0.00 | A                | С  |
| ATOM | 2824 | CB  | LEU | A | 380 | 1.573  | 7.153  | 39.750 | 1.00  | 0.00 | A                | C  |
| ATOM | 2825 | CG  | LEU |   |     | 2.702  | 6.259  | 40.290 | 1.00  | 0.00 | A                | C  |
| ATOM | 2826 |     | LEU |   |     | 2.666  | 6.186  | 41.824 | 1.00  | 0.00 | A                | C  |
|      |      |     |     |   |     | 4.070  | 6.687  | 39.738 | 1.00  | 0.00 | A                | č  |
| ATOM | 2827 |     | LEU |   |     |        |        |        |       | 0.00 |                  | c  |
| ATOM | 2828 | C   | LEU |   |     | 1.398  | 5.673  | 37.812 | 1.00  |      | A                |    |
| MOTA | 2829 | 0   | LEU |   |     | 0.743  | 4.837  | 38.435 | 1.00  | 0.00 | A                | 0  |
| ATOM | 2830 | N   | ILE |   |     | 2.077  | 5.346  | 36.692 | 1.00  | 0.00 | A                | N  |
| MOTA | 2831 | CA  | ILE | A | 381 | 2.128  | 3.998  | 36.235 | 1.00  | 0.00 | A                | С  |
| ATOM | 2832 | CB  | ILE | A | 381 | 1.722  | 3.907  | 34.798 | 1.00  | 0.00 | A                | С  |
| ATOM | 2833 |     | ILE | A | 381 | 0.977  | 2.573  | 34.664 | 1.00  | 0.00 | A                | С  |
| ATOM | 2834 | CG1 | ILE | A | 381 | 0.708  | 5.016  | 34.470 | 1.00  | 0.00 | A                | С  |
| ATOM | 2835 |     | ILE |   |     | 0.499  | 5.218  | 32.970 | 1.00  | 0.00 | A                | C  |
|      |      |     | ILE |   |     | 3.557  | 3.557  | 36.421 | 1.00  | 0.00 | A                | č  |
| ATOM | 2836 | C   |     |   |     |        |        |        | 1.00  | 0.00 | A                | ŏ  |
| ATOM | 2837 | 0   | ILE |   |     | 4.502  | 4.194  | 35.949 |       |      |                  |    |
| ATOM | 2838 | N   | PRO |   |     | 3.701  | 2.479  | 37.152 | 1.00  | 0.00 | A                | N  |
| ATOM | 2839 | CA  | PRO |   |     | 4.963  | 1.900  | 37.543 | 1.00  | 0.00 | A                | C  |
| ATOM | 2840 | CD  | PRO |   |     | 2.575  | 1.616  | 37.472 | 1.00  | 0.00 |                  | С  |
| ATOM | 2841 | CB  | PRO | A | 382 | 4.602  | 0.723  | 38.447 | 1.00  | 0.00 | A                | С  |
| ATOM | 2842 | CG  | PRO |   |     | 3.207  | 0.300  | 37.947 | 1.00  | 0.00 | A                | С  |
| ATOM | 2843 | c   | PRO |   |     | 5.742  | 1.445  | 36.359 | 1.00  | 0.00 | A                | С  |
| ATOM | 2844 | ŏ   | PRO |   |     | 5.132  | 1.075  | 35.357 | 1.00  | 0.00 | A                | ō  |
| ATOM | 2845 | N   | LYS |   |     | 7.084  | 1.466  | 36.486 | 1.00  | 0.00 | A                | N  |
|      |      |     | LYS |   |     | 8.019  | 1.120  | 35.455 | 1.00  | 0.00 | A                | С  |
| ATOM | 2846 | CA  | פות | ~ | 202 | 0.019  | 1.120  |        |       | 00   | n                | -  |

478/514

| ATOM         | 2847         | СВ       | LYS  | A | 383        | 9.483            | 1.215            | 35.915           | 1.00 | 0.00  |   | A      | С      |
|--------------|--------------|----------|------|---|------------|------------------|------------------|------------------|------|-------|---|--------|--------|
| MOTA         | 2848         | CG       |      |   | 383        | 10.477           | 0.697            | 34.875           | 1.00 | 0.00  |   | A      | C      |
| MOTA         | 2849         | CD       |      |   | 383        | 11.941           | 0.896            | 35.268           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2850         | CE       |      |   | 383        | 12.917           | 0.143            | 34.362           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2851         | NZ       |      |   | 383        | 12.696           | -1.316           | 34.484           | 1.00 | 0.00  |   | A<br>A | N<br>C |
| MOTA         | 2852         | C        |      |   | 383<br>383 | 7.814<br>7.668   | -0.296<br>-1.204 | 35.026<br>35.841 | 1.00 | 0.00  |   | A      | Ö      |
| ATOM<br>ATOM | 2853<br>2854 | O<br>N   |      |   | 384        | 7.791            | -0.489           | 33.698           | 1.00 | 0.00  |   | A      | N      |
| ATOM         | 2855         | CA       |      |   | 384        | 7.705            | -1.776           | 33.087           | 1.00 | 0.00  |   | A      | Ċ      |
| ATOM         | 2856         |          | ·GLY |   |            | 6.293            | -2.128           | 32.772           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2857         | 0        | GLY  | A | 384        | 6.069            | -3.169           | 32.155           | 1.00 | 0.00  |   | A      | 0      |
| MOTA         | 2858         | N        |      |   | 385        | 5.321            | -1.272           | 33.167           | 1.00 | 0.00  |   | A      | N      |
| MOTA         | 2859         | CA       |      |   | 385        | 3.924            | -1.532           | 32.945           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2860         | CB       |      |   | 385        | 3.050            | -0.553<br>-0.991 | 33.680<br>33.687 | 1.00 | 0.00  |   | A<br>A | C      |
| ATOM<br>ATOM | 2861<br>2862 |          | THR  |   |            | 1.705<br>3.166   | 0.833            | 33.035           | 1.00 | 0.00  |   | A      | Č      |
| ATÓM         | 2863         | C        |      |   | 385        | 3.653            | -1.506           | 31.463           | 1.00 | 0.00  |   | A      | č      |
| ATOM         | 2864         | ō        |      |   | 385        | 4.246            | -0.738           | 30.711           | 1.00 | 0.00  |   | A      | o      |
| ATOM         | 2865         | N        |      |   | 386        | 2.797            | -2.419           | 30.974           | 1.00 | 0.00  |   | A      | N      |
| ATOM         | 2866         | CA       | THR  | A | 386        | 2.640            | -2.460           | 29.552           | 1.00 | 0.00  |   | A      | C      |
| atom         | 2867         | CB       |      |   | 386        | 2.342            | -3.850           | 29.063           | 1.00 | 0.00  |   | A      | С      |
| ATOM         | 2868         | OG1      |      |   | 386        | 3.230            | -4.771           | 29.681           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2869         |          | THR  |   |            | 2.643            | -3.905           | 27.558<br>29.154 | 1.00 | 0.00  |   | A<br>A | C      |
| ATOM         | 2870         | C        |      |   | 386<br>386 | 1.555<br>0.552   | -1.482<br>-1.338 | 29.154           | 1.00 | 0.00  |   | A      | Ö      |
| ATOM .       | 2871<br>2872 | Ŋ        |      |   | 387        | 1.750            | -0.774           | 28.016           | 1.00 | 0.00  |   | Ä      | N      |
| ATOM         | 2873         | CA       |      |   | 387        | 0.857            | 0.249            | 27.512           | 1.00 | 0.00  |   | A      | Ċ      |
| - ATOM       | 2874         | СВ       |      |   | 387        | 1.523            | 1.613            | 27.363           | 1.00 | 0.00  |   | A      | Č      |
|              | 2875         |          | ILE  |   |            | 0.694            | 2.513            | 26.432           | 1.00 | 0.00  |   | A      | С      |
| ATOM         | 2876         |          | ILE  |   |            | 1.770            | 2.296            | 28.716           | 1.00 | 0.00  |   | A      | С      |
| ATOM         |              | . CD1    | ILE  | A | 387        | 2.903            | 1.722            | 29.542           | 1.00 | 0.00  | - | A      | С      |
| MOTA         | 2878         | С        | ILE  | A | 387        | 0.341            | -0.126           | 26.142           | 1.00 | 0.00  |   | A      | С      |
| ATOM .       |              | Ò        |      |   | 387        | 1.116            | -0.479           | 25.254           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         |              | N        |      |   | 388        | -1.001           | -0.063           | 25.937           | 1.00 | 0.00  |   | A      | N      |
| ATOM         | 2881         | CA       |      |   | 388        | -1.587           | -0.273           | 24.635           | 1.00 | 0.00  |   | A<br>A | C      |
|              | - 2882       | CB       |      |   | 388        | -2.923           | -1.051           | 24.594           | 1.00 | 0.00  |   | A      | C      |
|              | 2883<br>2884 | CG       | LEU  |   | 388        | -2.868<br>-1.808 | -2.574<br>-3.212 | 24.778           | 1.00 | 0.00  |   | A      | č      |
| ATOM         | 2885         |          | LEU  |   |            | -4.261           | -3.212           | 24.620           | 1.00 | 0.00  |   | A      | č      |
| ATOM         | 2886         | C        |      |   | 388        | -1.977           | 1.067            | 24.065           | 1.00 | 0.00  |   | A      | Č      |
| ATOM         | 2887         | ō        |      |   | 388        | -2.814           | 1.772            | 24.633           | 1.00 | 0.00  |   | A      | 0      |
| MOTA         | 2888         | N        | THR  | A | 389        | -1.420           | 1.444            | 22.894           | 1.00 | 0.00  |   | A      | N      |
| ATOM         | 2889         | CA       | THR  | A | 389        | -1.799           | 2.703            | 22.303           | 1.00 | 0.00  |   | A      | Ç      |
| MOTA         | 2890         | CB       |      |   | 389        | -0.649           | 3.445            | 21.653           | 1.00 | 0.00  |   | A      |        |
| ATOM         | 2891         | OG1      |      |   | 389        | -1.109           | 4.664            | 21.091           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2892         |          | THR  |   |            | 0.055            | 2.576            | 20.592<br>21.312 | 1.00 | 0.00  |   | A<br>A | C      |
| ATOM         | 2893<br>2894 | C<br>O   |      |   | 389<br>389 | -2.895<br>-2.794 | 2.425<br>1.532   | 20.478           | 1.00 | 0.00  |   | A      | ŏ      |
| ATOM<br>ATOM | 2895         | N        |      |   | 390        | -4.023           | 3.167            | 21.396           | 1.00 | 0.00  |   | A      | N      |
| ATOM         | 2896         | CA       |      |   | 390        | -5.057           | 2.833            | 20.460           | 1.00 | 0.00  |   | A      | c      |
| ATOM         | 2897         | СВ       |      |   | 390        | -6.503           | 2.882            | 21.024           | 1.00 | 0.00  |   | A      | С      |
| ATOM         | 2898         | OG       |      |   | 390        | -6.867           | 4.177            | 21.477           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2899         | С        | SER  | A | 390        | -4.924           | 3.697            | 19.242           | 1.00 | 0.00  |   | A      | С      |
| MOTA         | 2900         | 0        |      |   | 390        | -5.303           | 4.864            | 19.206           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2901         | N        |      |   | 391        | -4.364           | 3.102            | 18.177           | 1.00 | 0.00  | _ | A      | N      |
| MOTA         | 2902         | CA       |      |   | 391        | -4.166           | 3.769            | 16.925           | 1.00 | 0.00  | • | , A    | C      |
| ATOM         | 2903         | CB       |      |   | 391<br>391 | -3.336           | 2.937            | 15.934<br>16.425 | 1.00 | 0.00  |   | A<br>A | C      |
| ATOM         | 2904         | CG       | LEU  |   |            | -1.896<br>-1.280 | 2.706<br>4.009   | 16.961           | 1.00 | 0.00  |   | A      | č      |
| ATOM<br>ATOM | 2905<br>2906 |          | PEO  |   |            | -1.031           | 2.032            | 15.348           | 1.00 | 0.00  |   | A      | Č      |
| ATOM         | 2907         | C        |      |   | 391        | -5.494           | 4.079            | 16.293           | 1.00 | 0.00  |   | A      | Č      |
| ATOM         | 2908         | ŏ        |      |   | 391        | -5.631           | 5.124            | 15.663           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2909         | N        |      |   | 392        | -6.496           |                  | 16.494           | 1.00 | 0.00  | • | A      | N      |
| MOTA         | 2910         | CA       | THR  | A | 392        | -7.826           | 3.235            | 15.924           | 1.00 | 0.00  |   | A      | С      |
| ATOM         | 2911         | CB       | THR  | A | 392        | -8.700           | 2.152            | 16.482           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2912         |          | THR  |   |            | -8.077           | 0.894            | 16.310           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2913         |          | THR  |   |            | -10.055          | 2.162            | 15.751           | 1.00 | 0.00  |   | A      | C      |
| ATOM         | 2914         | С        |      |   | 392        | -8.507           | 4.499            | 16.319           | 1.00 | 0.00. |   | A      | C      |
| ATOM         | 2915         | 0        |      |   | 392        | -9.233           | 5.091            | 15.527           | 1.00 | 0.00  |   | A      | 0      |
| ATOM         | 2916         | N        |      |   | 393        | -8.303<br>-8.990 | 4.937            | 17.565<br>18 004 | 1.00 | 0.00  |   | A<br>A | N<br>C |
| MOTA<br>MOTA | 2917         | CA       |      |   | 393<br>393 | -8.980<br>-8.947 | 6.113<br>6.233   | 18.004<br>19.510 | 1.00 | 0.00  |   | A      | c      |
| ATOM         | 2918<br>2919 | CB<br>OG |      |   | 393        | -8.947<br>-9.292 | 4.980            | 20.074           | 1.00 | 0.00  |   | A      | ŏ      |
| ATOM         | 2920         | C        |      |   | 393        | -8.374           | 7.332            | 17.372           | 1.00 | 0.00  |   | A      | č      |
| ATOM         | 2921         | Ö        |      |   | 393        | -9.017           | 8.377            | 17.291           | 1.00 | 0.00  |   | A      | ō      |
|              |              | •        |      |   |            | *                |                  |                  | -,   |       |   |        |        |

位の (100 A) の (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200 A) (200

| ATOM         | 2922         | N         | VAL        | A | 394        | -7.093             | 7.265            | 16.971           | 1.00 | 0.00 |     | A        | N      |
|--------------|--------------|-----------|------------|---|------------|--------------------|------------------|------------------|------|------|-----|----------|--------|
| ATOM         | 2923         | CA        |            |   | 394        | -6.530             | 8.394            | 16.289           | 1.00 | 0.00 |     | A        | С      |
| ATOM         | 2924         | CB        |            |   | 394        | -5.033             | 8.405            | 16.314           | 1.00 | 0.00 |     | A        | С      |
| ATOM<br>ATOM | 2925<br>2926 |           | VAL        |   |            | -4.581<br>-4.549   | 9.653            | 15.545           | 1.00 | 0.00 |     | A        | C      |
| ATOM         | 2927         | C         |            |   | 394        | -6.971             | 8.355<br>8.434   | 17.771<br>14.839 | 1.00 | 0.00 |     | A<br>A   | C      |
| ATOM         | 2928         | ŏ         |            |   | 394        | -7.399             | 9.477            | 14.353           | 1.00 | 0.00 |     | A        | ō      |
| MOTA         | 2929         | N         |            |   | 395        | -6.881             | 7.291            | 14.117           | 1.00 | 0.00 |     | A        | N      |
| ATOM         | 2930         | CA        |            |   | 395        | -7.191             | 7.227            | 12.706           | 1.00 | 0.00 |     | A        | С      |
| ATOM         | 2931         | CB        |            |   | 395        | -6.866             | 5.900            | 11.986           | 1.00 | 0.00 |     | A        | С      |
| ATOM         | 2932         | CG        |            |   | 395        | -5.378             | 5.645            | 11.648           | 1.00 | 0.00 |     | A        | C      |
| ATOM<br>ATOM | 2933<br>2934 |           | LEU        |   |            | -4.540<br>-4.785   | 5.143<br>6.858   | 12.829<br>10.920 | 1.00 | 0.00 |     | A<br>A   | C      |
| ATOM         | 2935         | c         |            |   | 395        | -8.645             | 7.459            | 12.440           | 1.00 | 0.00 |     | A        | Č      |
| ATOM         | 2936         | 0         |            |   | 395        | -9.034             | 7.902            | 11.364           | 1.00 | 0.00 |     | A        | ŏ      |
| ATOM         | 2937         | N         |            |   | 396        | -9.484             | 7.000            | 13.368           | 1.00 | 0.00 |     | A        | N      |
| ATOM         | 2938         | CA        |            |   | 396        | -10.919            | 7.062            | 13.326           | 1.00 | 0.00 |     | A        | C      |
| ATOM<br>ATOM | 2939<br>2940 | CG        | HIS        |   | 396<br>396 | -12.493<br>-11.648 | 3.635<br>4.721   | 12.840           | 1.00 | 0.00 |     | A        | N      |
| ATOM         | 2941         | CB        |            |   | 396        | -11.659            | 5.817            | 12.820<br>13.841 | 1.00 | 0.00 |     | A<br>A   | C      |
| ATOM         | 2942         |           | HIS        |   |            | -11.192            | 3.400            | 11.050           | 1.00 | 0.00 |     | Α.       | N      |
| ATOM         | 2943         |           | HIS        |   |            | -10.858            | 4.563            | 11.721           | 1.00 | 0.00 |     | A        | C      |
| ATOM         | 2944         |           | HIS        |   |            | -12.177            | 2.876            | 11.760           | 1.00 | 0.00 |     | A        | C      |
| ATOM         | 2945         | C         |            |   | 396        | -11.546            | 8.262            | 13.941           | 1.00 | 0.00 |     | A        | С      |
| ATOM<br>ATOM | 2946<br>2947 | Ŋ         |            |   | 396        | -12.769<br>-10.756 | 8.207<br>9.248   | 14.079<br>14.446 | 1.00 | 0.00 |     | A<br>A   | O<br>N |
| ATOM         | 2948         | CA        |            |   | 397        | -11.195            | 10.455           | 15.128           | 1.00 | 0.00 |     | n<br>A   | C      |
| ATOM         | 2949         | CB        |            |   | 397        | -10.029            | 11.456           | 15.303           | 1.00 | 0.00 |     | A        | Č      |
| ATOM         | 2950         | CG        | ASP        | A | 397        | -10.378            | 12.557           | 16.302           | 1.00 | 0.00 |     | A        | C      |
| ATOM         | 2951         |           | ASP        |   |            | -11.212            | 13.443           | 15.975           | 1.00 | 0.00 |     | A        | 0      |
| ATOM         | 2952         |           | ASP        |   |            | -9.801             | 12.518           | 17.420           | 1.00 | 0.00 |     | A        | 0      |
| ATOM<br>ATOM | 2953<br>2954 |           | ASP        |   |            | -12.299<br>-12.142 | 11.126<br>11.473 | 14.336<br>13.169 | 1.00 | 0.00 |     | A<br>A   | C      |
| ATOM         | 2955         | N .       |            |   | 398        | -13.475            | 11.249           | 14.989           | 1.00 | 0.00 |     | n.<br>A  | N      |
| ATOM         | 2956         |           | ASN        |   |            | -14.706            | 11.708           | 14.403           | 1.00 | 0.00 |     | Α.       | c      |
| ATOM         | 2957         | CB.       | ASN        | A | 398        | -15.897            | 11.648           | 15.373           | 1.00 | 0.00 |     | A        | C      |
| ATOM         | 2958         | CG        | ASN        |   |            | -16.294            | 10.189           | 15.582           | 1.00 | 0.00 |     | A.       | С      |
| ATOM         | 2959         |           | ASN        |   |            | -15.476            | 9.316            | 15.860           | 1.00 | 0.00 |     | A.       | 0      |
| ATOM<br>ATOM | 2960<br>2961 | C KDS     | ASN        |   |            | -17.621<br>-14.588 | 9.919<br>13.117  | 15.447<br>13.935 | 1.00 | 0.00 |     | A.<br>A. | N<br>C |
| ATOM         | 2962         | ŏ         | ASN        |   |            | -15.137            | 13.461           | 12.888           | 1.00 | 0.00 |     | A.       | ŏ      |
| ATOM         | 2963         | N         | LYS        |   |            | -13.913            | 13.974           | 14.719           | 1.00 | 0.00 |     | Α.       | N      |
| ATOM         | 2964         | CA        | LYS        |   |            | -13.793            | 15.353           | 14.350           | 1.00 | 0.00 |     | A        | С      |
| ATOM         | 2965         | CB        | LYS        |   |            | -13.171            | 16.225           | 15.446           | 1.00 | 0.00 |     | Ą        | C      |
| ATOM<br>ATOM | 2966<br>2967 | CG<br>CD  | LYS        |   |            | -13.018<br>-12.704 | 17.681<br>18.636 | 15.005<br>16.155 | 1.00 | 0.00 |     | A<br>A   | C      |
| ATOM         | 2968         | CE        | LYS        |   |            | -11.867            | 19.848           | 15.734           | 1.00 | 0.00 |     | ,        | c      |
| MOTA         | 2969         | NZ        | LYS        |   |            | -12.548            | 20.617           | 14.663           | 1.00 | 0.00 |     | À        | N      |
| MOTA         | 2970         | С         | LYS        |   |            | -12.946            | 15.551           | 13.127           | 1.00 | 0.00 |     | 4        | С      |
| ATOM         | 2971         | 0         | LYS        |   |            | -13.371            | 16.224           | 12.190           | 1.00 | 0.00 |     | <b>.</b> | 0      |
| ATOM<br>ATOM | 2972<br>2973 | N<br>CA   | GLU<br>GLU |   |            | -11.731<br>-10.800 | 14.965<br>15.164 | 13.115<br>12.041 | 1.00 | 0.00 |     | ł<br>ł   | N<br>C |
| ATOM         | 2974         | CB        | GLU        |   |            | -9.399             | 14.608           | 12.340           | 1.00 | 0.00 |     | 1        | ċ      |
| ATOM         | 2975         | CG        | GLU        |   |            | -8.318             | 15.127           | 11.382           | 1.00 | 0.00 |     | Ă        | Č      |
| ATOM         | 2976         | CD        | GLU        |   |            | -7.962             | 16.545           |                  | 1.00 | 0.00 | 1   | A.       | С      |
| ATOM         | 2977         |           | GLU        |   |            | -8.481             | 16.998           | 12.851           | 1.00 | 0.00 | 1   |          | 0      |
| ATOM<br>ATOM | 2978<br>2979 | C<br>C    | GLU        |   |            | -7.156<br>-11.281  | 17.186<br>14.514 | 11.068<br>10.782 | 1.00 | 0.00 | 1   |          | 0      |
| ATOM         | 2980         | ŏ         | GLU        |   |            | -11.074            | 15.049           | 9.693            | 1.00 | 0.00 | 2   | <b>.</b> | C<br>O |
| ATOM         | 2981         | N         | PHE        |   |            | -11.894            | 13.320           | 10.892           | 1.00 | 0.00 | i   |          | Ŋ      |
| ATOM         | 2982         | ÇA        | PHE        |   |            | -12.390            | 12.650           | 9.728            | 1.00 | 0.00 | 2   |          | С      |
| ATOM         | 2983         | CB        | PHE        |   |            | -11.710            | 11.287           | 9.515            | 1.00 | 0.00 | . 1 |          | С      |
| ATOM         | 2984         | CG<br>CD1 | PHE        |   |            | -10.226            | 11.498           | 9.414            | 1.00 | 0.00 | 7   |          | C      |
| ATOM<br>ATOM | 2985<br>2986 |           | PHE<br>PHE |   |            | -9.634<br>-9.412   | 11.775<br>11.413 | 8.203<br>10.527  | 1.00 | 0.00 | 1   |          | C<br>C |
| ATOM         | 2987         |           | PHE        |   |            | -8.273             | 11.967           | 8.095            | 1.00 | 0.00 | I   |          | C      |
| ATOM         | 2988         | CE2       | PHE        | A | 401        | -8.050             | 11.605           | 10.427           | 1.00 | 0.00 | I   |          | Ċ      |
| MOTA         | 2989         | CZ        | PHE        |   |            | -7.476             | 11.878           | 9.210            | 1.00 | 0.00 | 7   | 1        | С      |
| MOTA         | 2990         | C         | PHE        |   |            | -13.843            | 12.405           | 10.004           | 1.00 | 0.00 | 1   |          | С      |
| ATOM<br>ATOM | 2991<br>2992 | N<br>O    | PHE        |   |            | -14.184<br>-14.681 | 11.523<br>13.144 | 10.792<br>9.311  | 1.00 | 0.00 | Į,  |          | 0      |
| ATOM         | 2992         | CA        | PRO        |   |            | -16.106            | 13.144           | 9.550            | 1.00 | 0.00 | 7   |          | N<br>C |
| ATOM         | 2994         | CD        | PRO        |   |            | -14.211            | 14.347           | 8.643            | 1.00 | 0.00 | ,   |          | C      |
| ATOM         | 2995         | CB        | PRO        | A | 402        | -16.646            | 14.272           | 8.631            | 1.00 | 0.00 | P   |          | Ċ      |
| ATOM         | 2996         | CG        | PRO        | A | 402        | -15.458            | 15.240           | 8.475            | 1.00 | 0.00 | P   |          | С      |

Figure 7

|        |       |     |     |   |     |         |        |         |      |      | _ | _   |
|--------|-------|-----|-----|---|-----|---------|--------|---------|------|------|---|-----|
| MOTA   | 2997  | С   | PRO | A | 402 | -16.869 | 11.901 | 9.469   | 1.00 | 0.00 | A | С   |
| ATOM   | 2998  | ο.  | PRO | A | 402 | -17.694 | 11.655 | 10.347  | 1.00 | 0.00 | A | 0   |
| ATOM   | 2999  | N   | ASN | A | 403 | -16.626 | 11.059 | 8.454   | 1.00 | 0.00 | A | N   |
| ATOM   | 3000  | CA  | ASN | Α | 403 | -17.347 | 9.827  | 8.466   | 1.00 | 0.00 | A | С   |
| ATOM . | 3001  | СВ  | ASN |   |     | -18.193 | 9.661  | 7.194   | 1.00 | 0.00 | Α | С   |
| ATOM   | 3002  | CG  | ASN |   |     | -19.212 | 10.798 | 7.124   | 1.00 | 0.00 | Α | C   |
| ATOM   | 3003  |     | ASN |   |     | -18.902 | 11.917 | 6.716   | 1.00 | 0.00 | Α | 0   |
|        |       |     | ASN |   |     | -20.477 | 10.506 | 7.532   | 1.00 | 0.00 | A | N   |
| ATOM   | 3004  |     |     |   |     |         |        | 8.451   | 1.00 | 0.00 | A | Ċ   |
| MOTA   | 3005  | С   | ASN |   |     | -16.279 | 8.780  |         |      |      |   |     |
| ATOM   | 3006  | 0   | asn |   |     | -16.064 | 8.133  | 7.427   | 1.00 | 0.00 | A | 0   |
| MOTA   | 3007  | N   | PRO |   |     | -15.669 | 8.592  | 9.607   | 1.00 | 0.00 | A | N   |
| ATOM   | 3008  | CA  | PRO | Α | 404 | -14.493 | 7.774  | 9.805   | 1.00 | 0.00 | Α | С   |
| ATOM   | 3009  | CD  | PRO | Α | 404 | -16.340 | 8.878  | 10.865  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3010  | CB  | PRO | А | 404 | -14.173 | 7.896  | 11.288  | 1.00 | 0.00 | Α | C.  |
| ATOM   | 3011  | CG  | PRO | A | 404 | -15.546 | 8.118  | 11.937  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3012  | c   | PRO |   |     | -14.662 | 6.337  | 9.414   | 1.00 | 0.00 | Α | С   |
|        | 3013  | ŏ   | PRO |   |     | -13.672 | 5.670  | 9.136   | 1.00 | 0.00 | A | o   |
| ATOM   |       |     | GLU |   |     | -15.887 | 5.806  | 9.448   | 1.00 | 0.00 | A | N   |
| ATOM   | 3014  | N   |     |   |     |         |        |         | 1.00 | 0.00 | A | Ċ   |
| MOTA   | 3015  | CA  | GLU |   |     | -16.054 | 4.438  | 9.076   |      |      |   |     |
| MOTA   | 3016  | CB  | GLU |   |     | -17.159 | 3.736  | 9.853   | 1.00 | 0.00 | A | , C |
| MOTA   | 3017  | CG  | GLU |   |     | -16.615 | 3.657  | 11.281  | 1.00 | 0.00 | A | C   |
| ATOM   | 3018  | CD  | GLU | Α | 405 | -17.509 | 2.860  | 12.188  | 1.00 | 0.00 | A | С   |
| ATOM   | 3019  | OE1 | GLU | A | 405 | -17.873 | 1.708  | 11.835  | 1.00 | 0.00 | A | 0   |
| ATOM   | 3020  | OE2 | GLU | A | 405 | -17.813 | 3.407  | 13.281  | 1.00 | 0.00 | A | 0   |
| ATOM   | 3021  | C   | GLU |   |     | -16.098 | 4.222  | 7.596   | 1.00 | 0.00 | A | С   |
| ATOM   | 3022  | ŏ   | GLU |   |     | -15.953 | 3.087  | _       | 1.00 | 0.00 | A | 0   |
|        |       |     | MET |   |     | -16.361 | 5.273  | 6.794   | 1.00 | 0.00 | A | N   |
| MOTA   | 3023  | N   |     |   |     |         |        | 5.377   | 1.00 | 0.00 | A | Ċ   |
| ATOM   | 3024  | CA  | MET |   |     | -16.422 |        |         |      | 0.00 | A | č   |
| ATOM   | 3025  | CB  | MET |   |     | -17.637 | -5.696 | 4.686   | 1.00 |      |   |     |
| MOTA   | 3026  | CG  | MET |   |     | -18.206 | 6.919  |         | 1.00 | 0.00 | A | C   |
| ATOM   | 3027  | SD  | MET | Α | 406 | -19.405 | 6.511  | 6.713   | 1.00 | 0.00 | A | S   |
| ATOM   | 3028  | CE  | MET | Α | 406 | -20.758 | 6.112  | 5.568   | 1.00 | 0.00 | A | С   |
| ATOM   | 3029  | С   | MET | A | 406 | -15.150 | 5.474  | 4.704   | 1.00 | 0.00 | A | С   |
| ATOM   | 3030  | 0   | MET | A | 406 | -14.331 | 6.184  | 5.284   | 1.00 | 0.00 | A | 0   |
| ATOM   | 3031  | N   |     |   | 407 | -14.942 | 4.943  | 3.471   | 1.00 | 0.00 | A | N   |
| ATOM   | 3032  | CA  |     |   | 407 | -13.727 |        | 2.713   | 1.00 | 0.00 | A | С   |
| ATOM   | 3033  | CB  |     |   | 407 | -13.819 |        | 1.421   | 1.00 | 0.00 | A | С   |
|        |       |     |     |   | 407 | -12.578 |        |         | 1.00 | 0.00 | A | C   |
| ATOM   | 3034  | CG  |     |   |     | -11.327 |        |         | 1.00 | 0.00 | A | Č   |
| ATOM   | 3035  |     | PHE |   |     |         |        |         |      | 0.00 | A | č   |
| ATOM   | 3036  |     | PHE |   |     | -12.677 |        | -0.733  | 1.00 |      |   |     |
| ATOM   | 3037  |     | PHE |   |     | -10.195 | 4.490  | 0.449   | 1.00 | 0.00 | A | C   |
| ATOM   | 3038  | CE2 | PHÉ | A | 407 | -11.542 | 4.778  | -1.501  | 1.00 | 0.00 | A | C   |
| ATOM   | 3039  | CZ  | PHE | Α | 407 | -10.301 | 4.715  | -0.904  | 1.00 | 0.00 | A | С   |
| ATOM   | 3040  | С   | PHE | Α | 407 | -13.365 | 6.560  | 2.437   | 1.00 | 0.00 | A | С   |
| ATOM   | 3041  | 0   | PHE | Α | 407 | -12.630 | 7.120  | 3.238   | 1.00 | 0.00 | A | 0   |
| ATOM   | 3042  | N   | ASP |   |     | -13.954 | 7.244  | 1.427   | 1.00 | 0.00 | A | N   |
| ATOM   | 3043  | CA  | ASP |   |     | -13.731 | 8.649  | 1.087   | 1.00 | 0.00 | A | С   |
|        | 3044  | CB  |     |   | 408 | -14.618 | 9.570  | 1.953   | 1.00 | 0.00 | A | С   |
| ATOM   |       |     |     |   | 408 | -14.710 | 10.959 | 1.333   | 1.00 | 0.00 | A | č   |
| ATOM   | 3045  | CG  |     |   |     |         |        |         | 1.00 | 0.00 | A | ŏ   |
| ATOM   | 3046  |     | ASP |   |     | -14.473 | 11.104 | . 0.102 |      |      |   | ŏ   |
| ATOM   | 3047  | _   | ASP |   |     | -15.055 | 11.897 | 2.100   | 1.00 | 0.00 | A |     |
| MOTA   | 3048  | С   |     |   | 408 | -12.306 | 9.227  | 1.105   | 1.00 | 0.00 | A | C   |
| MOTA   | 3049. | 0   |     |   | 408 | -11.814 | 9.607  | 2.163   | 1.00 | 0.00 | A | 0   |
| MOTA   | 3050  | N   | PRO | A | 409 | -11.635 | 9.361  | -0.041  | 1.00 | 0.00 | A | N   |
| ATOM   | 3051  | CA  | PRO | A | 409 | -10.317 | 9.969  | -0.173  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3052  | CD  | PRO | A | 409 | -11.986 | 8.580  | -1.215  | 1.00 | 0.00 | A | С   |
| ATOM   | 3053  | CB  | PRO | Α | 409 | -9.913  | 9.789  | -1.635  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3054  | CG  |     |   | 409 | -10.712 | 8.553  | -2.087  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3055  | c   |     |   | 409 | -10.283 | 11.415 | 0.217   | 1.00 | 0.00 | A | С   |
|        |       | ŏ   |     |   | 409 | -9.207  | 11.929 | 0.530   | 1.00 | 0.00 | A | 0   |
| ATOM   | 3056  |     |     |   |     | -11.450 |        | 0.258   | 1.00 | 0.00 | A | N   |
| MOTA   | 3057  | N   |     |   | 410 |         | 12.084 |         |      |      |   |     |
| ATOM   | 3058  | CA  |     |   | 410 | -11.623 | 13.479 | 0.539   | 1.00 | 0.00 | A | C   |
| MOTA   | 3059  | CB  |     |   | 410 | -13.070 | 13.943 | 0.377   | 1.00 | 0.00 | A | С   |
| ATOM   | 3060  | CG  | ARG | A | 410 | -13.527 | 13.836 | -1.081  | 1.00 | 0.00 | A | C   |
| MOTA   | 3061  | ÇD  | ARG | A | 410 | -14.909 | 14.426 | -1.364  | 1.00 | 0.00 | A | C   |
| ATOM   | 3062  | NE  | ARG | A | 410 | -14.726 | 15.839 | -1.790  | 1.00 | 0.00 | A | N   |
| ATOM   | 3063  | CZ  |     |   | 410 | -15.556 | 16.355 | -2.741  | 1.00 | 0.00 | Α | С   |
| ATOM   | 3064  |     | ARG |   |     | -16.514 | 15.562 | -3.304  | 1.00 | 0.00 | A | N   |
| ATOM   |       |     | ARG |   |     | -15.429 | 17.659 | -3.121  | 1.00 | 0.00 | A | N   |
|        | 3065  |     |     |   | 410 | -11.133 | 13.853 | 1.905   | 1.00 | 0.00 | A | Ċ   |
| ATOM   | 3066  | C   |     |   |     | -10.923 |        | 2.131   | 1.00 | 0.00 | A | Ö   |
| ATOM   | 3067  | 0   |     |   | 410 |         | 15.044 |         | 1.00 |      |   |     |
| ATOM · | 3068  | N   |     |   | 411 | -10.965 | 12.887 | 2.848   |      | 0.00 | A | N   |
| MOTA   | 3069  | CA  |     |   | 411 | -10.436 | 13.129 | 4.166   | 1.00 | 0.00 | A | C   |
| ATOM   | 3070  | ND1 | HIS | A | 411 | -12.067 | 10.014 | 5.576   | 1.00 | 0.00 | A | N   |
| ATOM   | 3071  | CG  | HIS | A | 411 | -11.744 | 11.343 | 5.396   | 1.00 | 0.00 | A | C,  |

| ATOM | 3072  | CB  | HIS | Α | 411 | -10.385 | 11.859 | 5.026  | 1.00 | 0.00  |       | A  | С   |
|------|-------|-----|-----|---|-----|---------|--------|--------|------|-------|-------|----|-----|
| ATOM | 3073  | NE2 | HIS | A | 411 | -13.924 | 11.176 | 5.946  | 1.00 | 0.00  |       | A  | N   |
|      | 3074  |     | HIS |   |     | -12.887 | 12.034 | 5.627  | 1.00 | 0.00  |       | A  | C   |
| MOTA |       |     |     |   |     |         | 9.975  | 5.902  | 1.00 | 0.00  |       | A  | č   |
| MOTA | 3075  |     | HIS |   |     | -13.386 |        |        |      |       |       |    |     |
| MOTA | 3076  | С   | HIS | А | 411 | ~9.040  | 13.689 | 4.048  | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3077  | 0   | HIS | Α | 411 | -8.598  | 14.442 | 4.911  | 1.00 | 0.00  |       | A  | 0   |
| ATOM | 3078  | N   | PHE | A | 412 | -8.295  | 13.264 | 3.017  | 1.00 | 0.00  |       | A  | N   |
|      | 3079  | CA  | PHE |   |     | -7.018  | 13.750 | 2.595  | 1.00 | 0.00  |       | A  | С   |
| MOTA |       |     |     |   |     |         |        | 2.178  | 1.00 | 0.00  |       | A  | č   |
| ATOM | 3080  | CB  | PHE |   |     | -6.014  | 12.661 |        |      |       |       |    |     |
| ATOM | 3081  | CG  | PHE | A | 412 | -5.569  | 12.073 | 3.476  | 1.00 | 0.00  |       | A  | C   |
| ATOM | 3082  | CD1 | PHE | A | 412 | -4.540  | 12.650 | 4.191  | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3083  | CD2 | PHE | Α | 412 | -6.194  | 10.969 | 4.000  | 1.00 | 0.00  |       | Α  | С   |
| ATOM | 3084  |     | PHE |   |     | -4.129  | 12.120 | 5.394  | 1.00 | 0.00  |       | A  | С   |
|      |       |     | PHE |   |     | -5.793  | 10.429 | 5.202  | 1.00 | 0.00  |       | A  | Ċ   |
| ATOM | 3085  |     |     |   |     |         |        |        |      |       |       |    | Ċ.  |
| ATOM | 3086  | CZ  | PHE |   |     | -4.761  | 11.010 | 5.901  | 1.00 | 0.00  |       | A  |     |
| MOTA | 3087  | С   | PHE | А | 412 | -7.064  | 14.886 | 1.597  | 1.00 | 0.00  |       | Α  | C   |
| ATOM | 3088  | 0   | PHE | А | 412 | -5.996  | 15.273 | 1.149  | 1.00 | 0.00  |       | A  | 0   |
| MOTA | 3089  | N   | LEU | Α | 413 | -8.222  | 15.347 | 1.061  | 1.00 | 0.00  |       | A  | N   |
| ATOM | 3090  | CA  | LEU |   |     | -8.133  | 16.454 | 0.121  | 1.00 | 0.00  |       | A  | С   |
|      |       |     |     |   |     | -8.878  | 16.304 | -1.230 | 1.00 | 0.00  |       | A  | Ċ   |
| ATOM | 3091  | CB  | LEU |   |     |         |        |        |      |       |       |    | č   |
| ATOM | 3092  | CG  | LEU |   |     | -8.552  | 15.098 | -2.153 | 1.00 | 0.00  |       | A  |     |
| MOTA | 3093  | CD2 | LEU | А | 413 | -9.364  | 13.849 | -1.805 | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3094  | CD1 | LEU | A | 413 | -7.045  | 14.856 | -2.325 | 1.00 | 0.00  |       | A  | С   |
| MOTA | 3095  | С   | LEU | А | 413 | -8.699  | 17.721 | 0.736  | 1.00 | 0.00  |       | A  | С   |
|      | 3096  |     | LEU |   |     | -9.417  | 17.689 | 1.738  | 1.00 | 0.00  |       | A  | 0   |
| ATOM |       | 0   |     |   |     |         |        |        |      |       |       | A  | N   |
| ATOM |       | · N | HIS |   |     | -8.366  | 18.882 | 0.117  | 1.00 |       |       |    |     |
| ATOM | 3098  | CA  | HIS | А | 414 | -8.758  | 20.207 | 0.543  | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3099  | ND1 | HIS | A | 414 | -7.214  | 22.456 | 2.597  | 1.00 | 0.00  | • • • | A  | N   |
| MOTA | 3100  | CG  | HIS | Α | 414 | -7.595  | 22.415 | 1.279  | 1.00 | 0.00  | A     | A  | C   |
| ATOM | 3101  | СВ  | HIS |   |     | -7.553  | 21.172 | 0.428  | 1.00 | 0.00  |       | A  | С   |
|      |       |     |     |   |     | -7.793  | 24.528 | 2.041  | 1.00 |       | 1.0   | A  | N   |
| ATOM | 3102  |     | HIS |   |     |         |        |        |      |       |       |    |     |
| ATOM | 3103  |     | HIS |   |     | -7.949  | 23.690 | 0.953  |      | :0,00 |       |    | C   |
| ATOM | 3104  | CE1 | HIS | Α | 414 | -7.349  | 23.744 | 3.004  | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3105  | С   | HIS | A | 414 | -9.879  | 20.623 | -0.383 | 1.00 | 0.00  |       | A  | ¢   |
| ATOM | 3106  | 0   | HIS | А | 414 | -10.488 | 19.763 | -1.017 | 1.00 | 0.00  |       | Α  | .0  |
|      |       | N   |     |   | 415 | -10.203 | 21.937 | -0.451 |      | 0.00  |       | ·A | N   |
| ATOM | 3107  |     |     |   |     |         |        |        | 1.00 |       |       | A  | C   |
| ATOM | 3108  | CA  |     |   | 415 | -11.250 | 22.500 |        |      |       |       |    |     |
| ATOM | 3109  | CB  | GLU |   |     | -11.385 | 24.013 | -1.080 |      | 0.00  |       |    | C   |
| ATOM | 3110· | CG  | GLU | Α | 415 | -12.515 | 24.600 | -1.917 | 1.00 | .0.00 | · 33  | 'A | С   |
| ATOM | 3111  | CD  | GLU | Α | 415 | -12.553 | 26.095 | 1.683  | 1.00 | 0.00  | •     | A  | С   |
| ATOM | 3112  | OE1 | GLU | Α | 415 | -11.678 | 26.612 | -0.939 | 1.00 | 0.00  |       | Α  | 0   |
| ATOM | 3113  |     | GLU |   |     | -13.466 | 26.745 | -2.253 | 1.00 | 0.00  |       | A  | 0   |
|      |       |     |     |   |     |         | 22.257 | -2.700 | 1.00 | 0.00  |       | A  | Ċ   |
| ATOM | 3114  | С   |     |   | 415 | -10.910 |        |        |      |       |       | A  | ŏ   |
| ATOM | 3115  | 0   |     |   | 415 | -11.773 | 21.933 | -3.518 | 1.00 | 0.00  |       |    |     |
| ATOM | 3116  | N   | GLY | A | 416 | -9.606  | 22.384 | -3.033 | 1.00 | 0.00  |       | A  | N   |
| ATOM | 3117  | CA  | GLY | A | 416 | -9.131  | 22.105 | -4.357 | 1.00 | .0.00 |       | A  | С   |
| ATOM | 3118  | С   | GLY | Α | 416 | -8.723  | 20.659 | -4.335 | 1.00 | 0.00  | ••    | A  | C   |
| ATOM | 3119  | ō   |     |   | 416 | -9.241  | 19.878 | -3.537 | 1.00 | 0.00  |       | A  | 0   |
|      |       |     |     |   | 417 | -7.820  | 20.242 | -5.248 | 1.00 | 0.00  |       | A  | N   |
| ATOM | 3120  | N   |     |   |     |         |        |        | 1.00 |       |       | A  | C   |
| ATOM | 3121  | CA  |     |   | 417 | -7.381  | 18.867 | -5.252 |      | 0.00  |       |    |     |
| MOTA | 3122  | С   | GLY | Α | 417 | -6.564  | 18.587 | -4.035 | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3123  | 0   | GLY | Α | 417 | -6.978  | 17.762 | -3.226 | 1.00 | 0.00  |       | A  | 0   |
| ATOM | 3124  | N   | ASN | А | 418 | -5.517  | 19.413 | -3.841 | 1.00 | 0.00  |       | A  | N   |
| ATOM | 3125  | CA  |     |   | 418 | -4.395  | 19.468 | -2.926 | 1.00 | 0.00  |       | Α  | С   |
|      |       |     |     |   |     |         | 20.882 | -2.358 | 1.00 | 0.00  |       | A  | Č   |
| ATOM | 3126  | CB  |     |   | 418 | -4.190  |        | -3.480 | 1.00 |       |       | A  | č   |
| MOTA | 3127  | CG  |     |   | 418 | -4.310  | 21.918 |        |      | 0.00  |       |    |     |
| ATOM | 3128  | OD1 | ASN | Α | 418 | -3.938  | 21.720 | -4.633 | 1.00 | 0.00  |       | A  | 0   |
| MOTA | 3129  | ND2 | ASN | A | 418 | -4.912  | 23.085 | -3.116 | 1.00 | 0,00  |       | A  | N   |
| ATOM | 3130  | С   | ASN | A | 418 | -4.493  | 18.573 | -1.732 | 1.00 | 0.00  |       | A  | С   |
| ATOM | 3131  | ō   |     |   | 418 | -5.478  | 18.556 | -0.993 | 1.00 | 0.00  |       | A  | . 0 |
|      |       |     |     |   | 419 | -3.408  | 17.802 | -1.542 | 1.00 | 0.00  |       | Α. | N   |
| MOTA | 3132  | N   |     |   |     |         |        |        |      |       |       |    |     |
| MOTA | 3133  | CA  |     |   | 419 | -3.270  | 16.873 | -0.472 | 1.00 | 0.00  |       | A  | C   |
| MOTA | 3134  | CB  |     |   | 419 | -1.973  | 16.078 | -0.626 | 1.00 | 0.00  |       | A  | C   |
| ATOM | 3135  | CG  | PHE | Α | 419 | -1.903  | 15.010 | 0.401  | 1.00 | 0.00  |       | A  | C   |
| MOTA | 3136  |     | PHE |   |     | -2.574  | 13.828 | 0.200  | 1.00 | 0.00  |       | Α  | С   |
| ATOM | 3137  |     | PHE |   |     | -1.172  | 15.178 | 1.551  | 1.00 | 0.00  |       | A  | С   |
|      |       |     |     |   |     |         | 12.813 | 1.126  | 1.00 | 0.00  |       | A  | Č   |
| ATOM | 3138  |     | PHE |   |     | -2.523  |        |        |      |       |       |    |     |
| MOTA | 3139  | CE2 | PHE |   |     | -1.113  | 14.171 | 2.481  | 1.00 | 0.00  |       | A  | C   |
| ATOM | 3140  | CZ  | PHE | A | 419 | -1.790  | 12.994 | 2.271  | 1.00 | 0.00  |       | A  | C   |
| ATOM | 3141  | С   | PHE | A | 419 | -3.206  | 17.651 | 0.801  | 1.00 | 0.00  |       | Α  | С   |
| ATOM | 3142  | ō   |     |   | 419 | -2.436  | 18.600 | 0.935  | 1.00 | 0.00  |       | A  | 0   |
|      |       |     |     |   | 420 | -4.068  | 17.274 | 1.756  | 1.00 | 0.00  |       | A  | N   |
| ATOM | 3143  | N   |     |   |     |         |        | 3.044  | 1.00 | 0.00  |       | A  | Ċ   |
| ATOM | 3144  | CA  |     |   | 420 | -4.102  | 17.871 |        |      |       |       |    |     |
| ATOM | 3145  | CB  |     |   | 420 | -5.448  | 18.500 | 3.463  | 1.00 | 0.00  |       | A  | . C |
| ATOM | 3146  | CG  | LYS | A | 420 | -6.671  | 17.587 | 3.448  | 1.00 | 0.00  |       | A. | С   |
|      |       |     |     |   |     |         |        |        |      |       |       |    |     |

482/514

| ATOM | 3147   | CD  | LYS | A | 420 | -7.816  | 18.120 | 4.306  | 1.00 | 0.00 | A  | С      |
|------|--------|-----|-----|---|-----|---------|--------|--------|------|------|----|--------|
|      |        |     |     |   |     | -8.023  | 19.629 | 4.181  | 1.00 | 0.00 | A  | С      |
| ATOM | 3148   | CE  | LYS |   |     |         |        |        |      |      |    |        |
| ATOM | 3149   | NZ  | LYS | A | 420 | -9.157  | 20.052 | 5.032  | 1.00 | 0.00 | A  | N      |
| MOTA | 3150   | С   | LYS | A | 420 | ~3.705  | 16.834 | 4.043  | 1.00 | 0.00 | A  | С      |
| ATOM | 3151   | 0   | LYS | A | 420 | -4.360  | 15.810 | 4.248  | 1.00 | 0.00 | A  | 0      |
|      |        |     | LYS |   |     | -2.577  | 17.082 | 4.708  | 1.00 | 0.00 | A  | N      |
| ATOM | 3152   | N   |     |   |     |         |        |        |      |      |    |        |
| MOTA | 3153   | CA  | LYS | А | 421 | -2.097  | 16.134 | 5.653  | 1.00 | 0.00 | A  | C      |
| ATOM | 3154   | CB  | LYS | A | 421 | -0.615  | 16.289 | 6.019  | 1.00 | 0.00 | A  | С      |
| ATOM | 3155   | CG  | LYS |   |     | 0.342   | 15.789 | 4.939  | 1.00 | 0.00 | Α  | С      |
|      |        |     |     |   |     | 1.810   | 16.028 | 5.298  | 1.00 | 0.00 | A  | C      |
| ATOM | 3156   | CD  | LYS |   |     |         |        |        |      |      |    |        |
| MOTA | 3157   | CE  | LYS | A | 421 | 2.811   | 15.378 | 4.336  | 1.00 | 0.00 | A  | С      |
| MOTA | 3158   | NZ  | LYS | Α | 421 | 2.656   | 13.902 | 4.319  | 1.00 | 0.00 | A  | N      |
| ATOM | 3159   | С   | LYS |   |     | -2.866  | 16.270 | 6.919  | 1.00 | 0.00 | A  | С      |
|      |        |     | LYS |   |     | -3.642  | 17.209 | 7.093  | 1.00 | 0.00 | Α  | 0      |
| ATOM | 3160   | 0   |     |   |     |         |        |        |      |      |    |        |
| MOTA | 3161   | Ν.  | SER |   |     | -2.679  | 15.277 | 7.814  | 1.00 | 0.00 | A  | N      |
| ATOM | 3162   | CA  | SER | A | 422 | -3.280  | 15.272 | 9.116  | 1.00 | 0.00 | Α  | С      |
| ATOM | 3163   | CB  | SER | А | 422 | -4.497  | 14.346 | 9.272  | 1.00 | 0.00 | A  | C      |
| ATOM | 3164   | ŌĞ  | SER |   |     | -5.684  | 15.017 | 8.891  | 1.00 | 0.00 | A  | 0      |
|      |        |     |     |   |     |         | 14.748 | 10.108 | 1.00 | 0.00 | A  | C      |
| MOTA | 3165   | C.  | SER |   |     | -2.289  |        |        |      |      |    |        |
| ATOM | 3166   | 0   | SER | A | 422 | -1.460  | 13.885 | 9.823  | 1.00 | 0.00 | A  | 0      |
| ATOM | 3167   | N   | ASN | Α | 423 | -2.374  | 15.283 | 11.343 | 1.00 | 0.00 | A  | N      |
| ATOM | 3168   | CA  | ASN |   |     | -1.589  | 14.847 | 12.467 | 1.00 | 0.00 | A  | С      |
|      |        |     | ASN |   |     | -1,632  | 15.833 | 13.645 | 1.00 | 0.00 | Α  | С      |
| MOTA | 3169   | CB  |     |   |     |         |        |        |      |      |    | č      |
| MOTA | 3170   | CG  | ASN |   |     | -0.832  | 17.065 | 13.238 | 1.00 | 0.00 | A  |        |
| ATOM | 3171   | OD1 | ASN | Α | 423 | 0.214   | 16.948 | 12.600 | 1.00 | 0.00 | Α  | 0      |
| MOTA | 3172   |     | ASN |   |     | -1.331  | 18.277 | 13.605 | 1.00 | 0.00 | A  | N      |
|      |        | C   | ASN |   |     | -2.134  | 13.528 | 12.925 | 1.00 | 0.00 | A  | С      |
| ATOM | 3173   |     |     |   |     |         |        |        |      | 0.00 | A  | Ŏ ···  |
| MOTA | 3174 . | 0   | ASN |   |     | -1.457  | 12.725 | 13.563 | 1.00 |      |    |        |
| ATOM | 3175   | N   | TYR | А | 424 | -3.421  | 13.310 | 12.635 | 1.00 | 0.00 | A  | N.     |
| ATOM | 3176   | CA  | TYR | Α | 424 | -4.211  | 12.165 | 12.958 | 1.00 | 0.00 | A  | С.,    |
| ATOM | 3177   | СВ  | TYR | Δ | 424 | -5.713  | 12.417 | 12.732 | 1.00 | 0.00 | A  | С      |
|      |        |     |     |   |     | -6.116  | 13.332 | 13.847 | 1.00 | 0.00 | A  | C :    |
| MOTA | 3178   | CG  | TYR |   |     |         |        |        |      |      |    |        |
| MOTA | 3179   | CDI | TYR | A | 424 | -6.010  | 14.699 | 13.717 | 1.00 | 0.00 | A  | C of   |
| ATOM | 3180   | CD2 | TYR | A | 424 | -6.576  | 12.817 | 15.040 | 1.00 | 0.00 | A  | C; j i |
| ATOM | 3181   | CE1 | TYR | Α | 424 | -6.372  | 15.533 | 14.746 | 1.00 | 0.00 | Α  | C .    |
| ATOM | 3182   |     | TYR |   |     | -6.941  | 13.650 | 16.074 | 1.00 | 0.00 | Α  | C . :  |
|      |        | CZ  | TYR |   |     | -6.832  | 15.011 | 15.927 | 1.00 | 0.00 | A  | , C    |
| ATOM | 3183   |     |     |   |     |         |        |        | 1.00 | 0.00 | A  | 0.5    |
| MOTA | 3184   | ОН  | TYR |   | 424 | -7.200  | 15.880 | 16.975 |      |      |    |        |
| ATOM | 3185   | C   | TYR | А | 424 | -3.749  | 10.945 | 12.203 | 1.00 | 0.00 | A  | C, S   |
| ATOM | 3186   | 0   | TYR | A | 424 | -4.184  | 9.842  | 12.528 | 1.00 | 0.00 | A  | 0      |
| ATOM | 3187   | N   | PHE | A | 425 | -2.965  | 11.091 | 11.108 | 1.00 | 0.00 | Α  | N      |
| ATOM | 3188   | CA  | PHE |   |     | -2.571  | 9.943  | 10.314 | 1.00 | 0.00 | A  | С      |
|      |        | СВ  | PHE |   | 425 | -2.291  | 10.385 | 8.853  | 1.00 | 0.00 | A  | С      |
| ATOM | 3189   |     |     |   |     |         |        |        |      | 0.00 | A  | ,ç     |
| ATOM | 3190   | CG  | PHE |   | 425 | -1.933  | 9.278  | 7.911  | 1.00 |      |    |        |
| ATOM | 3191   | CD1 | PHE | A | 425 | -2.896  | 8.454  | 7.372  | 1.00 | 0.00 | A  | C      |
| ATOM | 3192   | CD2 | PHE | Α | 425 | -0.624  | 9.070  | 7.545  | 1.00 | 0.00 | A  | С      |
| ATOM | 3193   | CE1 | PHE | A | 425 | -2.550  | 7.450  | 6.495  | 1.00 | 0.00 | A  | .c     |
| ATOM | 3194   |     | PHE |   |     | -0.272  | 8.072  | 6.668  | 1.00 | 0.00 | A  | С      |
|      | 3195   | CZ  | PHE |   | 425 | -1.237  | 7.252  | 6.143  | 1.00 | 0.00 | A  | С      |
| ATOM |        |     |     |   |     |         | 9.229  | 10.901 | 1.00 | 0.00 | A  | C      |
| ATOM | 3196   | С   | PHE |   | 425 | -1.368  |        |        |      |      |    |        |
| ATOM | 3197   | 0   | PHE | A | 425 | -0.219  | 9.468  | 10.541 | 1.00 | 0.00 | A  | 0      |
| ATOM | 3198   | N   | MET | A | 426 | -1.666  | 8.354  | 11.880 | 1.00 | 0.00 | A  | N      |
| ATOM | 3199   | CA  | MET | А | 426 | -0.938  | 7.426  | 12.715 | 1.00 | 0.00 | Α  | С      |
|      | 3200   | СВ  |     |   | 426 | -1.576  | 7.263  | 14.103 | 1.00 | 0.00 | Α  | С      |
| MOTA |        |     |     |   |     |         | 8.520  | 14.971 | 1.00 | 0.00 | A  | Č      |
| ATOM | 3201   | CG  |     |   | 426 | -1.565  |        |        |      |      |    | s      |
| ATOM | 3202   | SD  |     |   | 426 | -0.001  | 8.876  | 15.821 | 1.00 | 0.00 | A  |        |
| ATOM | 3203   | CE  | MET | A | 426 | 0.778   | 9,696  | 14.406 | 1.00 | 0.00 | A  | С      |
| ATOM | 3204   | С   |     |   | 426 | -0.716  | 6.009  | 12.240 | 1.00 | 0.00 | A  | С      |
|      | 3205   | ō   |     |   | 426 | -0.412  | 5.309  | 13.201 | 1.00 | 0.00 | A  | 0      |
| MOTA |        |     |     |   |     |         | 5.423  | 11.059 | 1.00 | 0.00 | A  | N      |
| ATOM | 3206   | N   |     |   | 427 | -0.986  |        |        |      |      |    |        |
| ATOM | 3207   | CA  | PRO | Α | 427 | -0.878  | 3.979  | 10.842 | 1.00 | 0.00 | A  | С      |
| ATOM | 3208   | CD  | PRO | A | 427 | -0.773  | 6.104  | 9.789  | 1.00 | 0.00 | A  | Ç      |
| ATOM | 3209   | CB  |     |   | 427 | -1.139  | 3.750  | 9.351  | 1.00 | 0.00 | A  | С      |
|      | 3210   | CG  |     |   |     | -1.404  | 5.148  | 8.769  | 1.00 | 0.00 | A  | С      |
| MOTA |        |     |     |   | 427 |         | 3.348  | 11.180 | 1.00 | 0.00 | A  | č      |
| MOTA | 3211   | С   |     |   | 427 | 0.457   |        |        |      |      |    |        |
| MOTA | 3212   | 0   |     |   | 427 | 0.505   | 2,166  | 11.518 | 1.00 | 0.00 | A  | 0      |
| ATOM | 3213   | N   | PHE | A | 428 | 1.532   | 4.140  | 11.073 | 1.00 | 0.00 | A  | N      |
| ATOM | 3214   | CA  |     |   | 428 | 2.891   | 3.805  | 11.371 | 1.00 | 0.00 | ·A | С      |
| ATOM | 3215   | СВ  |     |   | 428 | 3.896   | 4.695  | 10.619 | 1.00 | 0.00 | A  | С      |
|      |        |     |     |   |     |         | 4.352  | 9.175  | 1.00 | 0.00 | A  | č      |
| MOTA | 3216   | CG  |     |   | 428 | 3.723   |        |        | 1.00 |      |    |        |
| ATOM | 3217   |     | PHE |   |     | 4.401   | 3.306  | 8.606  |      | 0.00 | A  | C      |
| ATOM | 3218   | CD2 | PHE | A | 428 | 2.863   | 5.060  | 8.377  | 1.00 | 0.00 | A  | C      |
| MOTA | 3219   |     | PHE |   |     | 4.238   | 2.992  | 7.276  | 1.00 | 0.00 | A  | С      |
| MOTA | 3220   |     | PHE |   |     | 2.694   | 4.751  | 7.048  | 1.00 | 0.00 | Α  | С      |
|      |        |     |     |   |     |         | 3.713  | 6.484  | 1.00 | 0.00 | A  | Ċ      |
| MOTA | 3221   | CZ  | PHE | A | 428 | . 3.303 | 2.,    |        |      |      |    | -      |

483/514

Figure 7

| ATOM  | 3222         | С    | PHE | A | 428        | 3.185          | 3.865          | 12.840           | 1.00 | 0.00 | A     | С   |
|-------|--------------|------|-----|---|------------|----------------|----------------|------------------|------|------|-------|-----|
| ATOM  | 3223         | ŏ    |     |   | 428        | 4,199          | 3.321          | 13.268           | 1.00 | 0.00 | A     | ō   |
| ATOM  | 3224         | N    |     |   | 429        | 2.367          | 4.629          | 13.598           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3225         | CA   |     |   | 429        | 2.411          | 4.932          | 15.011           | 1.00 | 0.00 | A     | Ċ   |
| MOTA  | 3226         | СВ   |     |   | 429        | 2.970          | 3.857          | 15.998           | 1.00 | 0.00 | A     | Č   |
| ATOM  | 3227         | OG   |     |   | 429        | 4.389          | 3.810          | 16.068           | 1.00 | 0.00 | A     | ŏ   |
|       | 3228         | C    |     |   | 429        | 3.132          | 6.242          | 15.128           | 1.00 | 0.00 | <br>A | Č   |
| ATOM  | 3229         | 0    | -   |   | 429        | 3.259          | 6.953          | 14.133           | 1.00 | 0.00 | A     | ŏ   |
| ATOM  |              | N    |     |   | 430        | 3.591          | 6.629          | 16.337           | 1.00 | 0.00 | A     | Ŋ   |
| MOTA  | 3230         | CA   |     |   | 430        | 4.249          | 7.898          | 16.453           | 1.00 | 0.00 | A     | · C |
| MOTA  | 3231<br>3232 | CB   |     |   | 430        | 3.294          | 9.052          | 16.799           | 1.00 | 0.00 | A     | c   |
| MOTA  |              |      |     |   | 430        | 5.258          | 7.808          | 17.563           | 1.00 | 0.00 | A     | Č   |
| ATOM  | 3233         | C    |     |   | 430        | 5.196          | 6.919          | 18.407           | 1.00 | 0.00 | A     | Ö   |
| ATOM  | 3234         | 0    |     |   |            | 6.237          | 8.737          | 17.578           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3235         | N    |     |   | 431        | 7.184          | 8.777          | 18.659           | 1.00 | 0.00 | A     | Ċ   |
| ATOM  | 3236         | CA   |     |   | 431<br>431 | 8.467          | 8.063          | 18.352           | 1.00 | 0.00 | A     | Č   |
| ATOM  | 3237         | C    |     |   |            | 8.855          | 7.875          | 17.203           | 1.00 | 0.00 | A     | ŏ   |
| MOTA  | 3238         | 0    |     |   | 431        | 9.179          | 7.680          | 19.432           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3239         | N    |     |   | 432<br>432 | 10.480         | 7.066          | 19.403           | 1.00 | 0.00 | A     | Č   |
| MOTA  | 3240         | CA   |     |   |            | 10.996         | 6.747          | 20.819           | 1.00 | 0.00 | A     | Č   |
| ATOM  | 3241         | CB   |     |   | 432        | 11.478         | 7.942          | 21.650           | 1.00 | 0.00 | A     | č   |
| MOTA  | 3242         | CG   |     |   | 432<br>432 | 12.822         | 8.522          | 21.200           | 1.00 | 0.00 | A     | č   |
| ATOM  | 3243         | CD   |     |   |            | 13.427         | 9.510          | 22.202           | 1.00 | 0.00 | A     | č   |
| ATOM  | 3244         | CE   |     |   | 432        | 14.821         | 9.828          | 21.823           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3245         | NZ   |     |   | 432        | 10.438         | 5.747          | 18.692           | 1.00 | 0.00 | A     | Č   |
| ATOM  | 3246         | C    |     |   | 432<br>432 |                | 5.350          | 18.039           | 1.00 | 0.00 | A     | Ö   |
| ATOM  | 3247         | 0    |     |   |            | 11.398         |                |                  | 1.00 | 0.00 | A     | N   |
| ATOM  | 3248         | N    |     |   | 433        | 9.335          | 5.014          | 18.893           | •    | 0.00 | A     | C   |
| ATOM  | 3249         |      | ARG |   |            | 9.045<br>8.008 | 3.700          | 18.395<br>19.222 | 1.00 | 0.00 | A     | c   |
| ATOM  | 3250         |      |     |   | 433        |                | 2.931          |                  |      |      | A     | c   |
| MOTA  |              | . CG |     |   | 433        | 8.647          | 2.211<br>0.946 | 20.398           | 1.00 | 0.00 |       | c   |
| ATOM  | 3252         | CD   |     |   |            | 9.394          |                | 19.977           | 1.00 | 0.00 | A     | N   |
|       | 3253         | NE   |     |   | 433        | 10.178         | 0.550          | 21.165           | 1.00 | 0.00 | A     | Č   |
|       | 3254         |      |     |   |            | 10.963         | -0.561         | 21.202           | 1.00 | 0.00 | A     |     |
| ATOM  | 3255         |      |     |   |            | 11.011         | -1.424         | 20.147           | 1.00 | 0.00 | A     | N   |
|       | ·3256        |      | ARG |   |            | 11.704         | -0.784         | 22.325           | 1.00 | 0.00 | A     | N   |
|       | 3257         | С    | ARG |   |            | 8.577          | 3.629          | 16.994           | 1.00 | 0.00 | A     | C   |
| ATOM  |              | •    |     |   | 433        | 8.423          | 2.485          | 16.566           | 1.00 | 0.00 | A     | 0   |
| ATOM  | 3259         |      |     |   |            | 8.241          | 4.778          | 16.321           | 1.00 | 0.00 | A     | N   |
| ATOM  |              |      |     |   | 434        | 7.692          | 4.902          | 14.965           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3261         | СВ   |     |   | 434        | 7.866          | 6.207          | 14.217           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3262         |      | ILE |   |            | 7.021          | 7.286          | 14.858           | 1.00 | 0.00 | A     | C   |
| MOTA  | 3263         |      | ILE |   |            | 9.332          | 6.603          | 13.987           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3264         |      | ILE |   |            | 9.480          | 7.709          | 12.943           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3265         | С    |     |   | 434        | 8.280          | 3.929          | 14.001           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3266         | 0    |     |   | 434        | 9.457          | 3.572          | 14.117           | 1.00 | 0.00 | A     | 0   |
| MOTA  | 3267         | N    |     |   | 435        | 7.414          | 3.438          | 13.083           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3268         | CA   | CYS |   |            | 7.799          | 2.407          | 12.171           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3269         | CB   |     |   | 435        | 6.646          |                | 11.393           | 1.00 | 0.00 | A     | C   |
| ATOM  | 3270         | SG   |     |   | 435        | 7.357          | 0.594          | 10.193           | 1.00 | 0.00 | A     | Ś   |
| ATOM. | 3271         | С    |     |   | 435        | 8.946          | 2.813          | 11.298           | 1.00 | 0.00 | A     | C   |
| MOTA  | 3272         | 0    |     |   | 435        |                | 3.820          | 10.593           | 1.00 | 0.00 | A     | 0   |
| ATOM' | 3273         | N    | VAL | Α | 436        | 10.010         | 1.984          | 11.416           | 1.00 | 0.00 | A     | N   |
| ATOM  | 3274         | CA   |     |   | 436        | 11.315         |                | 10.832           | 1.00 | 0.00 | A     | C   |
| MOTA  | 3275         | СВ   |     |   | 436        | 12.185         | 0.952          | 11.222           | 1.00 | 0.00 | A     | C   |
| MOTA  | 3276         |      | VAL |   |            | 13.530         | 1.001          |                  |      | 0.00 | A     | C   |
| ATOM  | 3277         |      | VAL |   |            | 12.318         | 0.985          | 12.755           | 1.00 | 0.00 | A     | C   |
| MOTA  | 3278         | С    |     |   | 436        | 11.165         | 2.141          | 9.343            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3279         | 0    |     |   | 436        | 11.911         | 2.809          | 8.630            | 1.00 | 0.00 | A     | 0   |
| ATOM  | 3280         | N    |     |   | 437        | 10.201         | 1.350          | 8.867            | 1.00 | 0.00 | A     | N   |
| MOTA  | 3281         | CA   |     |   | 437        | 9.755          | 1.076          | 7.543            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3282         | С    |     |   | 437        | 8.964          | 2.135          | 6.859            | 1.00 | 0.00 | A     | Ç   |
| ATOM  | 3283         | 0    |     |   | 437        | 8.686          | 1.907          | 5.692            | 1.00 | 0.00 | A     | 0   |
| MOTA  | 3284         | N    |     |   | 438        | 8.499          | 3.210          | 7.544            | 1.00 | 0.00 | A     | N   |
| MOTA  | 3285         | CA   |     |   | 438        | 7.534          | 4.199          | 7.088            | 1.00 | 0.00 | A     | С   |
| MOTA  | 3286         | СВ   | GLU | A | 438        | 7.485          | 5.374          | 8.077            | 1.00 | 0.00 | A     | С   |
| MOTA  | 3287         | CG   | GLU | A | 438        | 6.429          | 6.438          | 7.791            | 1.00 | 0.00 | A     | С   |
| MOTA  | 3288         | CD   | GLU | A | 438        | 6.575          | 7.477          | 8.895            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3289         |      | GLU |   |            | 7.516          | 7.328          | 9.719            | 1.00 | 0.00 | A     | 0   |
| ATOM  | 3290         |      | GLU |   |            | 5.750          | 8.427          | 8.934            | 1.00 | 0.00 | A     | 0   |
| ATOM  | 3291         | С    | GLU |   |            | 7.835          | 4.769          | 5.716            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3292         | Ō    | GLU |   |            | 6.943          | 4.834          | 4.867            | 1.00 | 0.00 | A     | 0   |
| ATOM  | 3293         | N    |     |   | 439        | 9.093          | 5.159          | 5.451            | 1.00 | 0.00 | A     | N   |
| ATOM  | 3294         | CA   |     |   | 439        | 9.461          | 5.679          | 4.159            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3295         | c    |     |   | 439        | 9.390          | 4.617          | 3.095            | 1.00 | 0.00 | A     | С   |
| ATOM  | 3296         | ŏ    |     |   | 439        | 8.928          | 4.888          | 1.985            | 1.00 | 0.00 | A     | 0   |
|       |              | -    | ~   | • |            |                |                |                  |      |      |       |     |

| ATOM         | 3297         | N        | LEU        | Α | 440 | 9.863          | 3.391           | 3,415            | 1.00 | 0.00         | A      | N      |
|--------------|--------------|----------|------------|---|-----|----------------|-----------------|------------------|------|--------------|--------|--------|
| ATOM         | 3298         | CA       | LEU        |   |     | 9.917          | 2.299           | 2.477            | 1.00 | 0.00         | A      | C      |
| ATOM ·       | 3299         | CB       | LEU        | A | 440 | 10.624         | 1.057           | 3.046            | 1.00 | 0.00         | A      | С      |
| MOTA         | 3300         | CG       | LEU        |   |     | 10.687         | -0.115          | 2.047            | 1.00 | 0.00         | A      | С      |
| MOTA         | 3301         |          | LEU        |   |     | 11.242         | -1.388          | 2.707            | 1.00 | 0.00         | A      | С      |
| MOTA         | 3302         | CD1      | LEU        |   |     | 11.463         | 0.275           | 0.778            | 1.00 | 0.00         | A      | C      |
| MOTA         | 3303         | С        | LEU        |   |     | 8.535          | 1.885           | 2.080            | 1.00 | 0.00         | A      | C      |
| MOTA         | 3304         | 0        | LEU        |   |     | 8.270          |                 | 0.917            | 1.00 | 0.00         | A      | N<br>O |
| ATOM         | 3305         | N        | ALA        |   |     | 7.620          | 1.840           | 3.057            | 1.00 | 0.00<br>0.00 | A<br>A | C      |
| ATOM         | 3306         | CA       | ALA<br>ALA |   |     | 6.268<br>5.528 | 1.412<br>1.379  | 2.917<br>4.263   | 1.00 | 0.00         | A      | Č      |
| ATOM         | 3307<br>3308 | CB<br>C  | ALA        |   |     | 5.518          | 2.340           | 2.028            | 1.00 | 0.00         | A      | č      |
| ATOM<br>ATOM | 3309         | ō        | ALA        |   |     | 4.740          | 1.877           | 1.201            | 1.00 | 0.00         | A      | ŏ      |
| MOTA         | 3310         | N        | ARG        |   |     | 5.714          | 3.664           | 2.201            | 1.00 | 0.00         | A      | N      |
| ATOM         | 3311         | CA       | ARG        |   |     | 5.012          | 4.650           | 1.417            | 1.00 | 0.00         | A      | С      |
| ATOM         | 3312         | CB       | ARG        | A | 442 | 5.233          | 6.087           | 1.915            | 1.00 | 0.00         | A      | С      |
| ATOM         | 3313         | CG       | ARG        | A | 442 | 4.524          | 6.355           | 3.244            | 1.00 | 0.00         | A      | С      |
| MOTA         | 3314         | CD       | ARG        |   | _   | 4.563          | 7.818           | 3.683            | 1.00 | 0.00         | A      | C      |
| ATOM         | 3315         | NE       | ARG        |   |     | 5.954          | 8.124           | 4.116            | 1.00 | 0.00         | A      | N      |
| ATOM         | 3316         | CZ       | ARG        |   |     | 6.374          | 9.420           | 4.171            | 1.00 | 0.00         | A      | C<br>N |
| ATOM         | 3317         |          | ARG        |   |     | 5.533          | 10.424<br>9.712 | 3.787<br>4.612   | 1.00 | 0.00<br>0.00 | A<br>A | N      |
| ATOM         | 3318         |          | ARG<br>ARG |   |     | 7.633<br>5.474 | 4.555           | 0.005            | 1.00 | 0.00         | A      | Č      |
| ATOM<br>ATOM | 3319<br>3320 | С<br>О   | ARG        |   |     | 4.696          | 4.748           | -0.932           | 1.00 | 0.00         | A      | ŏ      |
| ATOM         | 3321         | N        | MET        |   |     | 6.774          | 4.253           | -0.157           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3322         | CA       | MET        |   |     | 7.377          | 4.107           | -1.445           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3323         | CB       | MET        |   |     | 8.887          | 3.890           | -1.312           | 1.00 | 0.00         | A      | C-     |
| ATOM         | 3324         | CG       | MET        | A | 443 | 9.671          | 4.000           | -2.613           | 1.00 | 0.00         | A      | С      |
| MOTA         | 3325         | SD       | MET        |   |     | 11.460         | 3.913           | -2.334           | 1.00 | 0.00         | A      | S      |
| ATOM         | 3326         | CE       | MET        |   |     | 11.616         | 5.607           | -1.703           | 1.00 | 0.00         | Α      | ·C     |
| MOTA         | 3327         | С        | MET        |   |     | 6.776          | 2.913           | -2.145           | 1.00 | 0.00         | Α      | C      |
| MOTA         | 3328         | 0        | MET        |   |     | 6.459          | 2.973           | -3.329           | 1.00 | 0.00         | A<br>A | O<br>N |
| ATOM         | 3329         | N        | GLU        |   |     | 6.586<br>6.054 | 1.792<br>0.597  | -1.421<br>-2.013 | 1.00 | 0.00         | A      | C      |
| ATOM         | 3330<br>3331 | CA<br>CB | GLU<br>GLU |   |     | 6.202          | -0.645          | -1.122           | 1.00 | 0.00         | A      | č      |
| ATOM<br>ATOM | 3332         | CG       | GLU        |   |     | 7.661          | -1.062          | -0.933           | 1.00 | 0.00752      | A      | č      |
| ATOM         | 3333         | CD       | GLU        |   |     | 7.683          | -2.325          | -0.089           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3334         |          | GLU        |   |     | 7.066          | -3.332          | -0.528           | 1.00 | 0.00         | A      | Ō      |
| ATOM         | 3335         |          | GLU        |   |     | 8.308          | -2.304          | 1.005            | 1.00 | 0.00         | A      | 0      |
| MOTA         | 3336         | С        | GLU        | A | 444 | 4.607          | 0.755           | -2.360           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3337         | 0        | GLU        | A | 444 | 4.186          | 0.278           | -3.406           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3338         | N        | LEU        |   |     | 3.809          | 1.406           | -1.489           | 1.00 | 0.00         | A      | N      |
| MOTA         | 3339         | CA       | LEU        |   |     | 2.391          | 1.572           | -1.695           | 1.00 | 0.00         | A<br>A | C      |
| MOTA         | 3340         | CB       | LEU        |   |     | 1.693<br>1.713 | 2.249<br>1.401  | -0.505<br>0.779  | 1.00 | 0.00<br>0.00 | A      | č      |
| MOTA<br>MOTA | 3341<br>3342 | CG       | LEU        |   |     | 1.162          | -0.009          | 0.520            | 1.00 | 0.00         | A      | č      |
| MOTA         | 3343         |          | LEU        |   |     | 1.000          | 2.121           | 1.936            | 1.00 | 0.00         | A      | Ċ      |
| ATOM         | 3344         | c        |            |   | 445 | 2,151          | 2.432           | -2.891           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3345         | 0        |            |   | 445 | 1.349          | 2.076           | -3.755           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3346         | N        | PHE        | A | 446 | 2.881          | 3.564           | -2.971           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3347         | CA       |            |   | 446 | 2.721          | 4.491           | -4.056           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3348         | CB       |            |   | 446 | 3.526          | 5.796           | -3.829           | 1.00 | 0.00         | A<br>A | C      |
| MOTA         | 3349         | CG       | PHE        |   | 446 | 3.337<br>2.177 | 6.734<br>7.470  | -4.982<br>-5.085 | 1.00 | 0.00<br>0.00 | A      | Č      |
| MOTA<br>MOTA | 3350<br>3351 |          | PHE        |   |     | 4.296          | 6.883           | -5.962           | 1.00 | 0.00         | A      | č      |
| ATOM         | 3352         |          | PHE        |   |     | 1.977          | 8.332           | -6.139           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3353         | CE2      |            |   | 446 | 4.102          | 7.743           | -7.018           |      | 0.00         | A      | С      |
| ATOM         | 3354         | CZ       |            |   | 446 | 2.941          | 8.475           | -7.105           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3355         | С        |            |   | 446 | 3.157          | 3.881           | -5.366           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3356         | 0        | PHE        | A | 446 | 2.397          | 3.898           | -6.331           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3357         | N        | LEU        | A | 447 | 4.378          | 3.312           | -5.429           | 1.00 | 0.00         | A      | N      |
| MOTA         | 3358         | CA       |            |   | 447 | 4.877          | 2.796           | -6.678           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3359         | CB       |            |   | 447 | 6.403          | 2.573           | -6.700<br>-6.871 |      | 0.00         | A      | C      |
| MOTA         | 3360         | CG       |            |   | 447 | 7.206          | 3.886           | -6.871<br>-7.288 | 1.00 | 0.00<br>0.00 | A<br>A | C      |
| MOTA         | 3361<br>3362 |          | LEU        |   |     | 8.649<br>7.128 | 4.817           | -5.655           | 1.00 | 0.00         | A      | c      |
| MOTA<br>MOTA | 3363         | C        |            |   | 447 | 4.169          | 1.561           | -7.154           | 1.00 | 0.00         | A      | ç      |
| ATOM         | 3364         | 0        |            |   | 447 | 3.969          | 1.402           | -8.357           | 1.00 | 0.00         | A      | ŏ      |
| ATOM         | 3365         | N        |            |   | 448 | 3.802          | 0.633           | -6.248           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3366         | CA       |            |   | 448 | 3.134          | -0.568          | -6.678           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3367         | СВ       |            |   | 448 | 3.017          | -1.699          | -5.632           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3368         | CG       |            |   | 448 | 4.364          | -2.295          | -5.383           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3369         |          | PHE        | A | 448 | 5.194          | -2.616          | -6.433           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3370         |          | PHE        |   |     | 4.772          | -2.612          | -4.106           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3371         | CE1      | PHE        | A | 448 | 6.429          | -3.177          | -6.203           | 1.00 | 0.00         | A      | C      |

| ATOM         | 3372         | CE2       | PHE        | A | 448        | 6.003            | -3.173         | -3.869             | 1.00 | 0.00 | A          | C      |
|--------------|--------------|-----------|------------|---|------------|------------------|----------------|--------------------|------|------|------------|--------|
| ATOM         | 3373         | CZ        | PHE        |   | 448        | 6.839            | -3.450         | -4.920             | 1.00 | 0.00 | A          | C      |
| MOTA         | 3374         | С         | PHE        | A | 448        | 1.742            | -0.275         | -7.157             | 1.00 | 0.00 | A          | C      |
| ATOM         | 3375         | 0         | PHE        |   | 448        | 1.294            | -0.843         | -8.151             | 1.00 | 0.00 | A          | 0      |
| ATOM         | 3376         | N         | LEU        |   | 449        | 1.006            | 0.598          | -6.441             | 1.00 | 0.00 | A          | N<br>C |
| MOTA         | 3377         | CA        | LEU        |   | 449        | -0.357           | 0.893          | -6.802<br>-5.736   | 1.00 | 0.00 | A<br>A     | C      |
| ATOM         | 3378         | CB        | LEU        |   | 449<br>449 | -1.102<br>-1.391 | 1.714<br>0.927 | -4.446             | 1.00 | 0.00 | A          | Ċ      |
| MOTA<br>MOTA | 3379<br>3380 | CG        | LEU        |   | 449        | -2.116           | -0.394         | -4.744             | 1.00 | 0.00 | A          | č      |
| ATOM         | 3381         |           | LEU        |   | 449        | -2.138           | 1.796          | -3.424             | 1.00 | 0.00 | A          | Ċ      |
| ATOM         | 3382         | c         | LEU        |   | 449        | -0.460           | 1.641          | -8.100             | 1.00 | 0.00 | A          | С      |
| ATOM         | 3383         | 0         | LEU        | A | 449        | -1.320           | 1.327          | -8.922             | 1.00 | 0.00 | A          | 0      |
| MOTA         | 3384         | N         | THR        | A | 450        | 0.411            | 2.653          | -8.300             | 1.00 | 0.00 | A          | N      |
| MOTA         | 3385         | CA        | THR        |   | 450        | 0.382            | 3.470          | -9.486             | 1.00 | 0.00 | A          | C      |
| ATOM         | 3386         | CB        | THR        |   |            | 1.329            | 4.636          | -9.406             | 1.00 | 0.00 | A          | C<br>0 |
| MOTA         | 3387         |           | THR        |   | 450        | 1.007<br>1.209   | 5.444<br>5.488 | -8.289<br>-10.673  | 1.00 | 0.00 | A<br>A     | Č.     |
| MOTA         | 3388<br>3389 | CG2<br>C  | THR        |   | 450        | 0.775            |                | -10.659            | 1.00 | 0.00 | A          | č      |
| ATOM<br>ATOM | 3390         | Ö         | THR        |   | 450        | 0.226            |                | -11.743            | 1.00 | 0.00 | A          | ō      |
| ATOM         | 3391         | N         | PHE        |   | 451        | 1.733            |                | -10.457            | 1.00 | 0.00 | A          | N      |
| ATOM         | 3392         | CA        | PHE        |   | 451        | 2.231            | 0.875          | -11.516            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3393         | CB        | PHE        | A | 451        | 3.432            |                | -11.083            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3394         | CG        | PHE        |   | 451        | 4.412            |                | -12.205            | 1.00 | 0.00 | A          | C      |
| ATOM         | 3395         |           | PHE        |   |            | 4.048            |                | -13.486            | 1.00 | 0.00 | . A        | C      |
| ATOM         | 3396         |           | PHE        |   | 451        | 5.723            |                | -11.965            | 1.00 | 0.00 | · A        | C<br>C |
| ATOM         | 3397         |           | PHE        |   | 451        | 4.960<br>6.644   |                | -14.514<br>-12.984 | 1.00 | 0.00 | A          | c      |
| ATOM         | 3398<br>3399 | CE2<br>CZ | PHE        |   | 451        | 6.265            |                | -14.266            | 1.00 | 0.00 | A.         | Č      |
| MOTA<br>MOTA | 3400         | C         |            |   | 451        | 1.140            |                | -11.953            | 1.00 | 0.00 | Α.         |        |
| ATOM         | 3401         | ŏ         |            |   | 451        | 0.968            |                | -13.148            | 1.00 | 0.00 | A:         |        |
| ATOM         | 3402         | N         |            |   | 452        | 0.381            |                | -10.984            | 1.00 | 0.00 | Α.         | N      |
| ATOM         | 3403         | CA        | ILE        | A | 452        | -0.688           | -1.549         | -11.289            | 1.00 | 0.00 | A,         |        |
| ATOM         | 3404         | CB        | ILE        | A | 452        | -1.282           |                | -10.065            | 1.00 | 0.00 | A.         |        |
| ATOM         | 3405         |           | ILE        |   | 452        | -2.601           |                | -10.444            | 1.00 | 0.00 | <b>A</b> ) |        |
| ATOM         | 3406         |           | ILE        |   |            | -0.259           | -3.139         | -9.419             | 1.00 | 0.00 | A.<br>A    | C      |
| ATOM         | 3407         |           | ILE        |   |            | -0.686<br>-1.797 | -3.640         | -8.039<br>-12.046  | 1.00 | 0.00 | A          | Č      |
| MOTA<br>MOTA | 3408<br>3409 | 0         | ILE        |   | 452<br>452 | -2.262           |                | -13.064            | 1.00 | 0.00 | A          |        |
| ATOM         | 3410         | N         |            |   | 453        | -2.231           |                | -11.586            | 1.00 | 0.00 |            | N      |
| ATOM         | 3411         | CA        | LEU        |   | 453        | -3.308           |                | -12.217            | 1.00 | 0.00 | À          | С      |
| ATOM         | 3412         | CB        |            |   | 453        | -3.858           |                | -11.385            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3413         | CG        | LEU        | A | 453        | -4.702           | 1.764          | -10.181            | 1.00 | 0.00 | A          | C      |
| MOTA         | 3414         | CD2       | LEU        |   | 453        | -5.811           |                | -10.627            | 1.00 | 0.00 | A          | С      |
| MOTA         | 3415         |           | LEU        |   | 453        | -5.249           | 2.959          | -9.383             | 1.00 | 0.00 | A          | C      |
| ATOM         | 3416         | С         | LEU        |   | 453        | -2.922           |                | -13.561            | 1.00 | 0.00 | A<br>A     | C<br>O |
| ATOM         | 3417         | 0         | LEU        |   | 453        | -3.785<br>-1.630 |                | -14.411<br>-13.763 | 1.00 | 0.00 | A          | N      |
| ATOM<br>ATOM | 3418<br>3419 | N<br>CA   | GLN<br>GLN |   | 454<br>454 | -1.164           |                | -15.017            | 1.00 | 0.00 | A          | Ċ      |
| ATOM         | 3420         | CB        | GLN        |   | 454        | 0.301            |                | -14.949            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3421         | CG        | GLN        |   | 454        | 0.832            |                | -16.268            | 1.00 | 0.00 | A          | C      |
| ATOM         | 3422         | CD        | GLN        |   | 454        | 2.211            |                | -15.989            | 1.00 | 0.00 | A          | C      |
| ATOM         | 3423         | OE1       | GLN        | A | 454        | 2.330            |                | -15.356            | 1.00 | 0.00 | A          | 0      |
| MOTA         | 3424         | NE2       | GLN        |   | 454        | 3.278            |                | -16.461            | 1.00 | 0.00 | A          | N      |
| MOTA         | 3425         | C         |            |   | 454        | -1.292           |                | -16.071            | 1.00 | 0.00 | • A        | o      |
| ATOM         | 3426         | 0         |            |   | 454.       | -1.589           |                | -17.227<br>-15.699 | 1.00 | 0.00 | A<br>A     | O<br>N |
| ATOM         | 3427         | N<br>CA   |            |   | 455<br>455 | -1.002<br>-1.030 |                | -16.591            | 1.00 | 0.00 | A          | Ċ      |
| ATOM<br>ATOM | 3428<br>3429 | CB        |            |   | 455        | -0.038           |                | -16.180            | 1.00 | 0.00 | A          | č      |
| ATOM         | 3430         | CG        |            |   | 455        | 1.341            |                | -16.416            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3431         |           | ASN        |   |            | 2.173            |                | -15.514            | 1.00 | 0.00 | . А        | 0      |
| ATOM         | 3432         |           | ASN        |   |            | 1.596            |                | -17.662            | 1.00 | 0.00 | A          | N      |
| MOTA         | 3433         | С         | ASN        | A | 455        | -2.363           |                | -16.795            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3434         | 0         | ASN        | A | 455        | -2.619           |                | -17.864            | 1.00 | 0.00 | A          | 0      |
| ATOM         | 3435         | N         |            |   | 456        | -3.245           |                | -15.780            | 1.00 | 0.00 | A          | N      |
| ATOM         | 3436         | CA        |            |   | 456        | -4.397           |                | -15.953            | 1.00 | 0.00 | A<br>A     | C<br>C |
| MOTA         | 3437         | CB        |            |   | 456        | -4.473<br>-2.220 |                | -14.912<br>-14.999 | 1.00 | 0.00 | A          | C      |
| ATOM         | 3438<br>3439 | CG        | PHE        |   | 456        | -3.220<br>-3.027 |                | -16.017            | 1.00 | 0.00 | A          | č      |
| ATOM<br>ATOM | 3440         |           | PHE        |   |            | -2.240           |                | -14.044            | 1.00 | 0.00 | A          | č      |
| ATOM         | 3441         |           | PHE        |   |            | -1.868           |                | -16.087            | 1.00 | 0.00 | A          | č      |
| ATOM         | 3442         |           | PHE        |   |            | -1.079           | -5.132         | -14.107            | 1.00 | 0.00 | A          | С      |
| ATOM         | 3443         | CZ        |            |   | 456        | -0.893           |                | -15.132            | 1.00 | 0.00 | A          | C      |
| ATOM         | 3444         | С         |            |   | 456        | -5.642           |                | -15.765            | 1.00 | 0.00 | A          | С      |
| MOTA         | 3445         | 0         |            |   | 456        | -5.716           |                | -16.090            | 1.00 | 0.00 | A          | 0      |
| ATOM         | 3446         | N         | ASN        | A | 457        | -6.695           | -2.507         | -15.313            | 1.00 | 0.00 | A          | N      |

|      |        |          |      |        |            |                    |         |         |      |       | _   | _ |
|------|--------|----------|------|--------|------------|--------------------|---------|---------|------|-------|-----|---|
| ATOM | 3447   | ÇA       | ASN  | Α      | 457        | -7.959             | -1.972  | -14.933 | 1.00 | 0.00  | A   | С |
| ATOM | 3448   | CB       | ASN  | A      | 457        | -9.047             | -2.066  | -16.014 | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         |         |      |       | A   | C |
| ATOM | 3449   | ÇG       | ASN  |        |            | -8.737             |         | -17.107 | 1.00 | 0.00  |     |   |
| ATOM | 3450   | OD1      | ASN  | Α      | 457        | -8.458             | -1.430  | -18.244 | 1.00 | 0.00  | A   | 0 |
| ATOM | 3451   | ND2      | ASN  | A      | 457        | -8.790             | 0.258   | -16.760 | 1.00 | 0.00  | A   | N |
|      |        |          | ASN  |        |            | -8.339             |         | -13.854 | 1.00 | 0.00  | A   | C |
| ATOM | 3452   | С        |      |        |            |                    |         |         |      |       |     |   |
| MOTA | 3453   | 0        | ASN  | А      | 457        | -7.782             | -4.020  | -13.796 | 1.00 | 0.00  | A   | 0 |
| ATOM | 3454   | N        | LEU  | Α      | 458        | -9.255             | -2.547  | -12.944 | 1.00 | 0.00  | A   | N |
|      |        |          | LEU  |        |            | -9.597             |         | -11.932 | 1.00 | 0.00  | A   | С |
| ATOM | 3455   | CA       |      |        |            |                    |         |         |      |       |     |   |
| ATOM | 3456   | СВ       | LEU  | А      | 458        | -9.465             |         | -10.496 | 1.00 | 0.00  | A   | С |
| ATOM | 3457   | CG       | LEU  | A      | 458        | -8.015             | -2.605  | -10.115 | 1.00 | 0.00  | A   | С |
| ATOM | 3458   |          | LEU  |        |            | -7.041             | -3.764  | -10.397 | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         |         |      |       |     |   |
| ATOM | 3459   | CDI      | LEU  |        |            | -7.935             |         | -8.673  | 1.00 | 0.00  | A   | C |
| ATOM | 3460   | С        | LEU  | A      | 458        | -11.015            | -3.938  | -12.153 | 1.00 | 0.00  | A   | С |
| ATOM | 3461   | 0        | LEU  | A      | 458        | -11.949            | -3.144  | -12.044 | 1.00 | 0.00  | A   | 0 |
|      |        |          | LYS  |        |            | -11.205            |         | -12.461 | 1.00 | 0.00  | A   | N |
| ATOM | 3462   | N        |      |        |            |                    |         |         |      |       |     |   |
| ATOM | 3463   | CA       | LYS  |        |            | -12.509            |         | -12.757 | 1.00 | 0.00  | A   | С |
| ATOM | 3464   | CB       | LYS  | Α      | 459        | -12.545            | -6.428  | -14.146 | 1.00 | 0.00  | A   | С |
| MOTA | 3465   | CG       | LYS  | A      | 459        | -13.919            | -6.898  | -14.615 | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         | -14.998 | 1.00 | 0.00  | A   | C |
| ATOM | 3466   | CD       | LYS  |        |            | -14.861            |         |         |      |       |     |   |
| ATOM | 3467   | CE       | LYS. | A      | 459        | -16.102            | -6.252  | -15.736 | 1.00 | 0.00  | . А | ¢ |
| MOTA | 3468   | NZ       | LYS  | Α      | 459        | -15.689            | -7.135  | -16.850 | 1.00 | ·0.00 | A   | N |
| ATOM | 3469   | С        | LYS  |        |            | -12,887            | -6 814  | -11.736 | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         |         |      | 0.00  | A   | ō |
| MOTA | 3470   | 0        | LYS  |        |            | -12.213            |         | -11.610 | 1.00 |       |     |   |
| ATOM | 3471 ' | N        | SER  | A      | 460        | -13.984            | -6.589  | -10.970 | 1.00 | 0.00  | A   | N |
| ATOM | 3472   | CA       | SER  | A      | 460        | -14.455            | -7.570  | -10.016 | 1.00 | 0.00  | A   | С |
|      |        |          | SER  |        |            | -15.202            | -6.969  |         | 1.00 | 0.00  | A   | С |
| ATOM | 3473   | CB       |      |        |            |                    |         |         |      |       |     |   |
| MOTA | 3474   | OG       | SER  | Α      | 460        | -16.376            | -6.285  | -9.229  | 1.00 | 0.00  | A   | æ |
| ATOM | 3475   | C        | SER  | A      | 460        | -15.423            | 8.462   | -10.733 | 1.00 | 0.00  | A   | С |
| MOTA | 3476   | ō        | SER  |        |            | -16.229            |         | -11.529 | 1.00 | 0.00  | A   | 0 |
|      |        |          |      |        |            |                    |         |         |      |       |     | N |
| MOTA | 3477   | N        | LEU  |        |            |                    | -9.793  |         | 1.00 | 0.00  | A   |   |
| ATOM | 3478   | CA       | LEU  | A      | 461        | -16.290            | -10.677 | -11.139 | 1.00 | 0.00  | A   | C |
| ATOM | 3479   | CB       | LEU  | А      | 461        | -15.897            | -12.181 | -11.172 | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         | -9.958  | 1.00 | 0.00  | A   | C |
| MOTA | 3480   | ÇG       | LEU  |        |            |                    | -12.788 |         |      |       |     |   |
| MOTA | 3481.  | CD2      | LEU  | A      | 461·       | -13.671            | -12.355 | -9.900  | 1.00 | 0.00  | A   | С |
| ATOM | 3482   | CD1      | LEU  | A      | 461        | -15,206            | -14.324 | -10.010 | 1.00 | 0.00  | A   | С |
|      |        |          | LEU  |        |            |                    | -10.528 |         | 1.00 | 0.00  | A   | C |
| ATOM | 3483   | C        |      |        |            |                    |         |         |      |       |     |   |
| MOTA | 3484   | 0        | LEU  | A      | 461        |                    | -10.213 |         | 1.00 | 0.00  | A   | 0 |
| MOTA | 3485   | N        | ILE  | Α      | 462        | -17.583            | -10.694 | -9.101  | 1.00 | 0.00  | A   | N |
| ATOM | 3486   | CA       | TLE  | Δ      | 462        | -18.799            | -10.487 | -8.390  | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         | -7.026  | 1.00 | 0.00  | A   | Č |
| MOTA | 3487   | CB       | ILE  |        |            |                    | -11.112 |         |      |       |     |   |
| ATOM | 3488   | CG2      | ILE  | A      | 462        | -20.121            | -10:718 | -6.327  | 1.00 | 0.00  | A   | С |
| MOTA | 3489   | CG1      | ILE  | A      | 462        | -18.605            | -12.632 | -7.141  | 1.00 | 0.00  | A   | С |
| ATOM | 3490   |          | ILE  |        |            |                    | -13.331 | -7.965  | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    |         |         |      |       | A   | ç |
| MOTA | 3491   | С        | ILE  |        |            | -18.822            | -9.007  | -8.234  | 1.00 | 0.00  |     |   |
| MOTA | 3492   | 0        | ILE  | A      | 462        | -17.847            | -8.452  | -7.730  | 1.00 | 0.00  | A   | 0 |
| ATOM | 3493   | N        | ASP  | A      | 463        | -19.936            | -8.381  | -8.684  | 1.00 | 0.00  | A   | N |
|      |        |          |      |        |            | -20.274            |         | -8.789  | 1.00 | 0.00  | A   | C |
| MOTA | 3494   | CA       | ASP  |        |            |                    |         |         |      |       |     |   |
| MOTA | 3495   | CB       | ASP  | A      | 463        | -21.793            | -6.726  | -8.777  | 1.00 | 0.00  | A   | С |
| ATOM | 3496   | CG       | ASP  | Α      | 463        | -22.342            | -6.753  | -10.176 | 1.00 | 0.00  | A   | С |
| ATOM | 3497   | נמס      | ASP  | Δ      | 463        | -21.891            | -5.895  | -10.979 | 1.00 | 0.00  | A   | 0 |
|      |        |          |      |        |            |                    |         | -10.457 | 1.00 | 0.00  | A   | Ó |
| ATOM | 3498   |          | ASP  |        |            | -23.223            |         |         |      |       |     |   |
| MOTA | 3499   | С        | ASP  | A      | 463        | -19.810            | -6.171  | -7.629  | 1.00 | 0.00  | A   | С |
| ATOM | 3500   | 0        | ASP  | A      | 463        | -20.003            | -6.568  | -6.481  | 1.00 | 0.00  | A   | 0 |
|      | 3501   | N        | PRO  |        |            | -19.215            | -5.039  | -7.976  | 1.00 | 0.00  | A   | N |
| ATOM |        |          |      | _      |            |                    | -4.063  |         | 1.00 | 0.00  | A   | č |
| ATOM | 3502   | CA       | PRO  |        |            | -18.666            |         | -7.007  |      |       |     |   |
| ATOM | 3503   | CD       | PRO  | Α      | 464        | -19.321            | -4.515  | -9.330  | 1.00 | 0.00  | A   | С |
| MOTA | 3504   | CB       | PRO  | A      | 464        | -18.167            | -2.912  | -7.935  | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            | -19.033            | -3.011  | -9.202  | 1.00 | 0.00  | A   | С |
| ATOM | 3505   | CG       |      |        | 464        |                    |         |         |      |       |     |   |
| ATOM | 3506   | С        |      |        | 464        | -19.664            | -3.600  | -6.051  | 1.00 | 0.00  | A   | С |
| ATOM | 3507   | 0        | PRO  | A      | 464        | -19.268            | -3.402  | -4.906  | 1.00 | 0.00  | A   | 0 |
| ATOM | 3508   | N        |      |        | 465        | -20.942            | -3.470  | -6.446  | 1.00 | 0.00  | A   | N |
|      |        |          |      |        |            |                    |         | -5.638  | 1.00 | 0.00  | A   | Ċ |
| MOTA | 3509   | CA       |      |        | 465        | -22.036            | -3.001  |         |      |       |     |   |
| ATOM | 3510   | CB       | LYS  | Α      | 465        | -23.388            | -3.022  | -6.391  | 1.00 | 0.00  | A   | С |
| MOTA | 3511   | CG       | LYS  | Α      | 465        | -23.404            | -2.361  | -7.779  | 1.00 | 0.00  | A   | С |
|      |        |          |      |        |            |                    | -3.263  | -8.898  | 1.00 | 0.00  | A   | c |
| ATOM | 3512   | CD       |      |        | 465        | -22.863            |         |         |      |       |     |   |
| ATOM | 3513   | CE       | LYS  | Α      | 465        | -22.813            |         | -10.283 | 1.00 | 0.00  | A   | С |
| ATOM | 3514   | NZ       | LYS  | Α      | 465        | -24.179            | -2.515  | -10.836 | 1.00 | 0.00  | A   | N |
| MOTA | 3515   | c        |      |        |            | -22.215            | -3.952  | -4.487  | 1.00 | 0.00  | A   | С |
|      |        |          |      |        | 465        |                    |         |         |      |       |     |   |
| ATOM | 3516   | 0        | LYS  | A      | 465        | -22.496            | -3.535  | -3.364  | 1.00 | 0.00  | A   | 0 |
| ATOM | 3517   | N        | ASP  | Α      | 466        | -22.075            | -5.261  | -4.778  | 1.00 | 0.00  | A   | N |
| ATOM |        |          |      |        |            |                    | -6.367  | -3.878  | 1.00 | 0.00  | A   | С |
|      | 3518   | בס       | 765  |        |            |                    |         |         |      |       |     |   |
|      | 3518   | CA       | ASP  |        |            | -22.280            |         |         |      |       |     |   |
| ATOM | 3519   | CA<br>CB |      |        | 466        | -22.342            | -7.707  | -4.634  | 1.00 | 0.00  | A   | С |
|      |        |          | ASP  | A      | 466        | -22.342<br>-23.610 |         |         |      |       |     |   |
| ATOM | 3519   | CB<br>CG |      | A<br>A | 466<br>466 | -22.342            | -7.707  | -4.634  | 1.00 | 0.00  | A   | С |

| ATOM  | 3522 | OD2 | ASP  | A | 466 | -23.586 | -8.409   | -6.542 | 1.00 | 0.00  |    | A    | 0     |
|-------|------|-----|------|---|-----|---------|----------|--------|------|-------|----|------|-------|
| ATOM  | 3523 | C   |      |   | 466 | -21.225 |          | -2.804 | 1.00 | 0.00  |    | A    | C     |
|       |      |     |      |   | 466 | -21.577 |          |        | 1.00 | 0.00  |    | A    | ŏ     |
| MOTA  | 3524 | 0   |      |   |     |         |          | -1.674 |      |       |    |      |       |
| MOTA  | 3525 | N   | LEU  | A | 467 | -19.924 |          | -3.124 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3526 | CA  | LEU  | A | 467 | -18.762 | -6.683   | -2.321 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3527 | CB  | LEU  | Α | 467 | -17,434 | -6.204   | -2.944 | 1.00 | 0.00  |    | A    | С     |
| MOTA  | 3528 | ÇG  | LEU  | A | 467 | -17.123 | -6.689   | -4.372 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3529 |     | LEU  |   |     | -17.176 |          | -4.507 | 1.00 | 0.00  |    | A    | Č     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3530 |     | LEU  |   |     | -15.773 |          | -4.836 | 1.00 | 0.00  |    | A    | C     |
| MOTA  | 3531 | С   | LEU  | Α | 467 | -18.745 | -6.068   | -0.938 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3532 | 0   | LEU  | Α | 467 | -19.178 | 4.937    | -0.736 | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3533 | N   | ASP  | Α | 468 | -18.214 | -6.844   | 0.040  | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3534 | CA  |      |   | 468 | -18.095 |          | 1.432  | 1.00 | 0.00  |    | Α    | С     |
| ATOM  | 3535 | CB  |      |   | 468 | -18.423 |          | 2.359  | 1.00 | 0.00  |    | A    | č     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3536 | CG  |      |   | 468 | -18.137 |          | 3.783  | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3537 | OD1 | ASP  | A | 468 | -18.841 | -6.337   | 4.306  | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3538 | OD2 | ASP  | Α | 468 | -17.192 | 2 -7.837 | 4.364  | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3539 | С   | ASP  | Α | 468 | -16.678 | -6.071   | 1.724  | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3540 | Ō   |      |   | 468 | -15.731 |          | 1.487  | 1.00 | 0.00  |    | A    | 0     |
|       |      | N   |      |   | 469 | -16.515 |          | 2.168  | 1.00 | 0.00  |    | A    | . N   |
| ATOM  | 3541 |     |      |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3542 | CA  |      |   | 469 | -15.297 |          | 2.541  | 1.00 | 0.00  |    | A    | С     |
| MOTA  | 3543 | CB  | THR  | A | 469 | -15.329 | -2.680   | 2.197  | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3544 | OG1 | THR  | Α | 469 | -16.310 | -2.009   | 2.973  | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3545 | CG2 | THR  | Α | 469 | -15.661 | -2.557   | 0.698  | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3546 | C   |      |   | 469 | -14.955 |          | 3.995  | 1.00 | 0.00  |    | A    | С     |
|       |      |     |      |   | 469 | -13.912 |          | 4.393  |      |       |    | A    | ŏ     |
| ATOM  | 3547 | 0   |      |   |     |         |          |        | 1.00 | 0.00  |    |      |       |
| ATOM  | 3548 | N ' |      |   | 470 | -15.866 |          | 4.840  | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3549 | CA  | THR  | A | 470 | -15.635 | -4.804   | 6.265  | 1.00 | 0.00  |    | A.   | С     |
| ATOM  | 3550 | ÇВ  | THR  | Α | 470 | -16.799 | -5.198   | 7.130  | 1.00 | 0.00  |    | . A. | С     |
| ATOM  | 3551 | OG1 | THR  | А | 470 | -17.154 | -6.553   | 6.915  | 1.00 | 0.00  |    | A    | 0 :   |
| ATOM  | 3552 |     | THR  |   |     | -17.984 |          | 6.828  | 1.00 | 0.00  |    | A    |       |
|       | 3553 |     |      |   |     |         |          |        | 1.00 |       |    | . A  |       |
| ATOM  |      | С   |      |   | 470 | -14.489 |          | 6.647  |      | 0.00  |    |      |       |
| ATOM  | 3554 | 0   | THR  |   |     | -14.331 |          | 6.224  | 1.00 | 0.00  |    | Α    |       |
| ATOM  | 3555 | N   | PRO  | A | 471 | -13.689 | -5.056   | 7.468  | 1.00 | 0.00  |    | A    | N .   |
| ATOM  | 3556 | CA  | PRO  | Α | 471 | -12.462 | 5.609    | 7.963  | 1.00 | 0.00  |    | . A  | C     |
| ATOM  | 3557 | CD  | PRO  | А | 471 | -13.793 | -3.624   | 7.687  | 1.00 | 0.00  |    | (A.  | . C   |
| ATOM  | 3558 | CB  | PRO  |   |     | -11.788 |          | 8.752  | 1.00 | 0.00  |    | A    | C     |
|       |      |     |      |   |     |         |          | 8.195  | 1.00 | 0.00  |    | , A  | . C : |
| ATOM  | 3559 | CG  | PRO  |   |     | -12.412 |          |        |      |       | 1. |      |       |
| MOTA  | 3560 | C   | PRO  |   |     | -12.806 |          | 8.860  | 1.00 | 0.00  |    |      | : C   |
| ATOM  | 3561 | 0   | PRO  | Α | 471 | -13.765 | -6.626   | 9.615  | 1.00 | 0.00. |    | · A  | 0     |
| MOTA  | 3562 | N   | VAL  | Α | 472 | -12.048 | -7.859   | 8.808  | 1.00 | 0.00  |    | A    | N     |
| MOTA  | 3563 | CA  | VAL  | А | 472 | -12.331 | -8.892   | 9.749  | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3564 | CB  | VAL  |   |     |         | -10.281  | 9.165  | 1.00 | 0.00  |    | A    | Č     |
|       |      |     |      |   |     |         | _        |        | 1.00 | 0.00  |    | A    | č     |
| MOTA  | 3565 |     | VAL  |   |     |         | -10.731  | 8.430  |      |       | •  |      |       |
| MOTA  | 3566 |     | VAL  |   |     |         | -11.218  | 10.303 | 1.00 | 0.00  |    | A    | С     |
| MOTA  | 3567 | С   | VAL  | Α | 472 | -11.259 | -8.796   | 10.798 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3568 | 0   | VAL  | A | 472 | -10.060 | -8.856   | 10.520 | 1.00 | 0.00  |    | A    | 0     |
| MOTA  | 3569 | N   | VAL  | Α | 473 | -11.675 | -8.604   | 12.066 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3570 | CA  | VAL  |   |     | -10.707 |          | 13.096 | 1.00 | 0.00  |    | A    | С     |
| MOTA  | 3571 | СВ  | VAL  |   |     | -11.151 |          | 14.033 | 1.00 | 0.00  |    | A    | č     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3572 |     | VAL  |   |     | -10.090 |          | 15.124 | 1.00 | 0.00  |    | A    | C     |
| MOTA  | 3573 | CG2 | VAL  | A | 473 | -11.458 | -5.988   | 13.207 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3574 | C   | VAL  | A | 473 | -10.485 | -9.585   | 13.923 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3575 | 0   | VAL  | Α | 473 | -11.422 | -10.304  | 14.280 | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3576 | N   | ASN  | A | 474 | -9.204  | -9.887   | 14.220 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3577 | CA  | ASN  |   | _   |         | -10.968  | 15.098 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3578 | СВ  |      |   |     |         | -12.114  | 14.419 | 1.00 | 0.00  |    | A    | č     |
|       |      |     | ASN  |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3579 | CG  | ASN  |   |     |         | -12.895  | 13.535 | 1.00 | 0.00  |    | A    | C     |
| ATOM  | 3580 | OD1 | asn  | A | 474 | -8.901  | -12.954  | 12.318 | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3581 | ND2 | "ASN | Α | 474 | -10.090 | -13.515  | 14.169 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3582 | С   | ASN  | Α | 474 | -7.968  | -10.410  | 16.159 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3583 | ō   | ASN  |   |     |         | -10.463  | 16.039 | 1.00 | 0.00  |    | A    | Ó     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |
| MOTA  | 3584 | N   | GLY  |   |     | -8.559  |          | 17.258 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3585 | CA  | GLY  |   |     | -7.778  |          | 18.344 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3586 | С   | GLY  | A | 475 | -7.111  |          | 17.940 | 1.00 | 0.00  |    | A    | С     |
| ATOM. | 3587 | 0   | GLY  | Α | 475 | -7.758  | -7.047   | 17.848 | 1.00 | 0.00  |    | A    | 0     |
| ATOM  | 3588 | N   | PHE  |   |     | -5.768  |          | 17.824 | 1.00 | 0.00  |    | A    | N     |
| ATOM  | 3589 | CA  | PHE  |   |     | -4.825  |          | 17.508 | 1.00 | 0.00  |    | Ä    | Ċ     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |
| ATOM  | 3590 | CB  | PHE  |   |     | -3.434  |          | 18.135 | 1.00 | 0.00  |    | A    | C     |
| MOTA  | 3591 | CG  | PHE  |   |     | -3.623  |          | 19.617 | 1.00 | 0.00  |    | A    | C     |
| MOTA  | 3592 | CD1 | PHE  | A | 476 | -4.063  |          | 20.181 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3593 | CD2 | PHE  | A | 476 | -3.423  | -8.319   | 20.444 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3594 |     | PHE  |   |     | -4.260  |          | 21.537 | 1.00 | 0.00  |    | A    | С     |
| ATOM  | 3595 |     | PHE  |   |     | -3.617  |          | 21.804 | 1.00 | 0.00  |    | A    | Č     |
|       |      |     |      |   |     |         |          | 22.361 | 1.00 |       |    |      |       |
| ATOM  | 3596 | CZ  | PHE  | A | 4/6 | -4.033  | -7.020   | 44.301 | 1.00 | 0.00  |    | A    | С     |
|       |      |     |      |   |     |         |          |        |      |       |    |      |       |

atom atom atom

WERN 2-13 OLD ACTION OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL

488/514

| ATOM         | 3597         | С      | PHE | A | 476        | -4.662            | -6.786             | 16.040           | 1.00 | 0.00 | A      | С      |
|--------------|--------------|--------|-----|---|------------|-------------------|--------------------|------------------|------|------|--------|--------|
| ATOM         | 3598         | ō      |     |   | 476        | -4.031            | -5.781             | 15.726           | 1.00 | 0.00 | A      | 0      |
| ATOM         | 3599         | N      | ALA |   |            | -5.078            | -7.651             | 15.090           | 1.00 | 0.00 | A      | N      |
| ATOM         | 3600         | CA     | ALA | Α | 477        | -4.843            | -7.338             | 13.696           | 1.00 | 0.00 | A      | С      |
| ATOM         | 3601         | CB     | ALA | Α | 477        | -3.797            | -8.251             | 13.031           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3602         | С      | ALA | A | 477        | -6.121            | -7.504             | 12.928           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3603         | 0 ,    | ALA |   |            | -7.082            | -8.071             | 13.438           | 1.00 | 0.00 | A      | 0      |
| ATOM         | 3604         | N      |     |   | 478        | -6.176            | -6.973             | 11.684           | 1.00 | 0.00 | A      | N      |
| MOTA         | 3605         | CA     |     |   | 478        | -7.354            | -7.085             | 10.867           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3606         | CB     |     |   | 478        | -8.174            | -5.786             | 10.807           | 1.00 | 0.00 | . A    | C<br>O |
| ATOM         | 3607         | OG     |     |   | 478        | -8.590            | -5.419<br>-7.368   | 12.114<br>9.469  | 1.00 | 0.00 | A      | Č      |
| ATOM         | 3608         | C      |     |   | 478<br>478 | -6.903<br>-5.780  | -7.028             | 9.099            | 1.00 | 0.00 | A      | ŏ      |
| ATOM         | 3609<br>3610 | O<br>N |     |   | 479        | -7.773            | -8.012             | 8.661            | 1.00 | 0.00 | A      | N      |
| ATOM<br>ATOM | 3611         | CA     |     |   | 479        | -7.437            | -8.314             | 7.295            | 1.00 | 0.00 | A      | Ċ      |
| ATOM         | 3612         | CB     |     |   | 479        | -6.940            | -9.721             | 7.088            | 1.00 | 0.00 | A      | Ċ      |
| ATOM         | 3613         |        | VAL |   |            | -5.617            | -9.914             | 7.846            | 1.00 | 0.00 | A      | С      |
| ATOM         | 3614         |        | VAL |   |            |                   | -10.699            | 7.505            | 1.00 | 0.00 | A      | С      |
| ATOM         | 3615         | c      | VAL | Α | 479        | -8.684            | -8.180             | 6.480            | 1.00 | 0.00 | A      | С      |
| ATOM         | 3616         | 0      | VAL | Α | 479        | -9.784            | -8.163             | 7.021            | 1.00 | 0.00 | A      | 0      |
| ATOM         | 3617         | N      | PRO | A | 480        | -8.564            | -8.062             | 5.184            | 1.00 | 0.00 | A      | N      |
| ATOM         | 3618         | CA     | PRO | A | 480        | -9.724            | -7.926             | 4.342            | 1.00 | 0.00 | A      | C      |
| ATOM         | 3619         | CD     |     |   | 480        | -7.360            | -7.549             | 4.550            | 1.00 | 0.00 | A      | C      |
| ATOM         | 3620         | CB     |     |   | 480        | -9.239            | -7.215             | 3.077            | 1.00 | 0.00 | A      | C      |
| ATOM         | 3621         | CG     |     |   | 480        | -7.722            | -7.457             | 3.061            | 1.00 | 0.00 | A      | C      |
| ATOM         |              | C      |     |   | 480        | -10.314           | -9.273             | 4.057            | 1.00 | 0.00 | A<br>A | C<br>O |
| ATOM         | 3623         | 0      |     |   | 480        | -9.686<br>-11.494 | -10.284            | 4.370<br>3.502   | 1.00 | 0.00 | A      | Ŋ      |
| ATOM         | 3624         | N      |     | - | 481        | -12.139           | -9.282             | 3.302            | 1.00 | 0.00 | A      | Č      |
| ATOM.        | 3625<br>3626 | CA     |     |   | 481<br>481 | -12.139           | -8.261             | 3.880            | 1.00 | 0.00 | A      | č      |
| ATOM         | 3627         |        |     |   | 481        | -13.623           |                    | 2.981            | 1.00 | 0.00 | A      | č      |
| ATOM<br>ATOM |              |        | PRO |   |            | -13.829           | -8.959             | 3.880            | 1.00 | 0.00 | A      | Ċ      |
|              |              | C      |     |   | 481        | -11.541           |                    | 1.861            | 1.00 | 0.00 | A      | С      |
|              | 3630         |        |     |   | 481        | -10.785           |                    | 1.208            | 1.00 | 0.00 | A      | 0      |
| ATOM         |              | . N    |     |   | 482        | -11.861           |                    | 1.500            | 1.00 | 0.00 | A      | N      |
|              | 3632         |        |     |   | 482        | -11.350           | -12.890            | 0.298            | 1.00 | 0.00 | A      | С      |
| ATOM         |              |        |     |   | 482        | -11.528           | -14.429            | 0.286            | 1.00 | 0.00 | A      | С      |
| ATOM         | 3634         | CG     | PHE | Α | 482        | -11.121           | -15.031            | -1.020           | 1.00 | 0.00 | A      | С      |
| ATOM.        | 3635         | (CD1   | PHE | Α | 482        |                   | -15.255            | -1.309           | 1.00 | 0.00 | A      | С      |
| ATOM         | 3636         |        | PHE |   |            | -12.067           |                    | -1.964           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3637         |        | PHE |   |            |                   | -15.811            | -2.509           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3638         |        | PHE |   |            |                   | -15.923            | -3.166           | 1.00 | 0.00 | A<br>A | C      |
| ATOM         | 3639         | CZ     |     |   | 482        |                   | -16.140            | -3.441           | 1.00 | 0.00 | A      | Č      |
| ATOM         | 3640         | C      |     |   | 482        |                   | -12.299<br>-12.037 | -0.874<br>-0.819 | 1.00 | 0.00 | A      |        |
| ATOM         | 3641<br>3642 | o<br>N |     |   | 482<br>483 |                   | -12.044            | -1.975           | 1.00 | 0.00 | A      | N      |
| ATOM<br>ATOM | 3643         | CA     |     |   | 483        |                   | -11.591            | -3.166           | 1.00 | 0.00 | A      | C      |
| ATOM         | 3644         | CB     |     |   | 483        |                   | -10.075            | -3.182           | 1.00 | 0.00 | A      |        |
| ATOM         | 3645         | CG     |     |   | 483        | -11.052           | -9.280             | -3.327           | 1.00 | 0.00 | A      | С      |
| ATOM         | 3646         |        | TYR |   |            | -10.199           | -9.119             | -2.259           | 1.00 | 0.00 | A      | С      |
| MOTA         | 3647         | CD2    | TYR | A | 483        | -10.736           | -8.700             | -4.540           | 1.00 | 0.00 | A      |        |
| MOTA         | 3648         | CE1    | TYR | Α | 483        | -9.042            | -8.390             | -2.408           | 1.00 | 0.00 | A      |        |
| ATOM         | 3649         | CE2    | TYR | A | 483        | -9.588            | -7.973             | -4.695           | 1.00 | 0.00 | A      |        |
| MOTA         | 3650         | CZ     |     |   | 483        | -8.742            | -7.819             | -3.628           | 1.00 | 0.00 | A      |        |
| MOTA         | 3651         | OH     |     |   | 483        | -7.566            |                    | -3.817           |      | 0.00 | A      |        |
| MOTA         | 3652         | С      |     |   | 483        |                   | -11.939            | -4.315           | 1.00 | 0.00 | A      |        |
| MOTA         | 3653         | 0      |     |   | 483        |                   | -12.307<br>-11.825 | -4.120<br>-5.552 | 1.00 | 0.00 | A<br>A |        |
| MOTA         | 3654         | N      |     |   | 484        |                   | -12.128            | -6.719           | 1.00 | 0.00 | A      |        |
| ATOM         | 3655<br>3656 | CA     |     |   | 484        |                   | -13.389            | -7.445           | 1.00 | 0.00 | A      |        |
| ATOM<br>ATOM | 3657         | CB     |     |   | 484<br>484 |                   | -14.662            | -6.607           | 1.00 | 0.00 | A      |        |
| ATOM         | 3658         | CD     |     |   | 484        |                   | -15.732            | -7.418           | 1.00 | 0.00 | A      |        |
| ATOM         | 3659         |        | GLN |   |            |                   | -16.897            | -7.031           | 1.00 | 0.00 | . А    | 0      |
| ATOM         | 3660         |        | GLN |   |            |                   | -15.317            | -8.592           | 1.00 | 0.00 | A      | N      |
| ATOM         | 3661         | ¢      |     |   | 484        | -11.062           | -11.015            | -7.693           | 1.00 | 0.00 | A      |        |
| ATOM         | 3662         | ŏ      |     |   | 484        |                   | -10.270            | -7.585           | 1.00 | 0.00 | A      |        |
| ATOM         | 3663         | N      |     |   | 485        |                   | -10.860            | -8.668           | 1.00 | 0.00 | A      |        |
| ATOM         | 3664         | CA     |     |   | 485        | -10.308           | -9.826             | -9.653           | 1.00 | 0.00 | A      |        |
| MOTA         | 3665         | CB     |     |   | 485        | -9.971            | -8.390             | -9.179           | 1.00 | 0.00 | A      |        |
| ATOM         | 3666         | CG     | LEU | A | 485        | -8.479            | -8.054             | -8.952           | 1.00 | 0.00 | A      |        |
| ATOM         | 3667         |        | LEU |   |            | -7.814            | -8.936             | -7.886           | 1.00 | 0.00 | A      |        |
| ATOM         | 3668         |        | LEU |   |            | -8.303            | -6.565             | -8.608           | 1.00 | 0.00 | A      |        |
| ATOM         | 3669         | С      |     |   | 485        |                   | -10.137            |                  | 1.00 | 0.00 | A<br>A |        |
| MOTA         | 3670         | 0      |     |   | 485        |                   | -10.972            | -10.744          | 1.00 | 0.00 | A      |        |
| ATOM         | 3671         | N      | CYS | A | 486        | -9.689            | -3.410             | 11.7/0           | 1.00 | 0.00 | A      |        |
|              |              |        |     |   |            |                   |                    |                  |      |      |        |        |

Figure 7

|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3672                                                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CYS                                                                | А                                                                       | 486                                                                | -8.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -13.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---|---------------------------------------------------------------------------------------------|---------------------------------------------------|
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3673                                                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                         | 486                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -14.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   | A                                                                                           | s                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3674                                                                                                                                                                                                                                                                 | SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                         |                                                                    | -11.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -14.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3675                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CYS                                                                | A                                                                       | 486                                                                | -8.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -13.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3676                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CYS                                                                | Α                                                                       | 486                                                                | -8.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -13.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3677                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                | A                                                                       | 487                                                                | -6.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -8.677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -13.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | Α                                                                                           | N                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3678                                                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                | A                                                                       | 487                                                                | -6.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -14.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3679                                                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                |                                                                         |                                                                    | -4.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -13.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    | -4.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -12.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | č                                                 |
|   | AŢOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3680                                                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3681                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHE                                                                |                                                                         |                                                                    | -4.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                 |
| ٠ | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3682                                                                                                                                                                                                                                                                 | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                | A                                                                       | 487                                                                | -4.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3683                                                                                                                                                                                                                                                                 | CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                | A                                                                       | 487                                                                | -4.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -8.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3684                                                                                                                                                                                                                                                                 | CE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                | A                                                                       | 487                                                                | -4.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3685                                                                                                                                                                                                                                                                 | CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                |                                                                         |                                                                    | -4.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -9.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3686                                                                                                                                                                                                                                                                 | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                |                                                                         |                                                                    | -6.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -15.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Č                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 0.00                                                        |   | A                                                                                           | ŏ                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3687                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                |                                                                         |                                                                    | -5.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -16.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         |                                                             |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3688                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ILE                                                                |                                                                         |                                                                    | -7.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -16.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3689                                                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILE                                                                | A                                                                       | 488                                                                | -7.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -17.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3690                                                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILE                                                                | A                                                                       | 488                                                                | -8.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -18.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Ç                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3691                                                                                                                                                                                                                                                                 | CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILE                                                                | Α                                                                       | 488                                                                | -8.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -19.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3692                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ILE                                                                |                                                                         |                                                                    | -9.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3693                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ILE                                                                |                                                                         |                                                                    | -10.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Ċ                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   | A ·                                                                                         | č                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3694                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ILE                                                                |                                                                         |                                                                    | -6.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -18.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3695                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ILE                                                                |                                                                         |                                                                    | -6.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3696                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRO                                                                | A                                                                       | 489                                                                | -5.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -19.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3697                                                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRO                                                                | A                                                                       | 489                                                                | -4.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -19.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3698                                                                                                                                                                                                                                                                 | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRO                                                                | A                                                                       | 489                                                                | -4.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -19.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3699                                                                                                                                                                                                                                                                 | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                         | 489 13                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         | 489                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                         | 0.00                                                        |   | A                                                                                           | č                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3700                                                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3701                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                         | 489                                                                | -5.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -20.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Ç                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3702                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                         | 489                                                                | -6.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -20.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3703                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VAL                                                                | A                                                                       | 490                                                                | -4.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -20.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3704                                                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VAL                                                                | Α                                                                       | 490                                                                | -5:175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -20.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Ç                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3705                                                                                                                                                                                                                                                                 | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                         |                                                                    | -5.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -19.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3706                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAL                                                                |                                                                         |                                                                    | -3.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -18.926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Č                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   |                                                                                             | č                                                 |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3707                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    | -5.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -20.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3708                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                         |                                                                    | -4.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -21.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   |                                                                                             |                                                   |
|   | ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3709                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VAL                                                                | A                                                                       | 490                                                                | -3.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~-1.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -22.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3709                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VAL                                                                | A                                                                       | 490                                                                | -3.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -22.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                 |
|   | TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                         | 2015                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                             |   |                                                                                             |                                                   |
|   | ter<br>Hetatm                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3710                                                                                                                                                                                                                                                                 | FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HEM                                                                | A                                                                       | 501                                                                | 6.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                         | 0.00                                                        | ; | A                                                                                           | F                                                 |
|   | TER<br>HETATM<br>HETATM                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3710<br>3711                                                                                                                                                                                                                                                         | FE<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEM<br>HEM                                                         | A<br>A                                                                  | 501<br>501                                                         | 6.215<br>5.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.510<br>-0.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.365<br>11.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A<br>A                                                                                      | F<br>·N                                           |
|   | TER<br>HETATM<br>HETATM<br>HETATM                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3710<br>3711<br>3712                                                                                                                                                                                                                                                 | FE<br>NA<br>NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM<br>HEM<br>HEM                                                  | A<br>A<br>A                                                             | 501<br>501<br>501                                                  | 6.215<br>5.238<br>4.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.510<br>-0.813<br>-0.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.365<br>11.908<br>9.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        |   | A<br>A<br>A                                                                                 | F<br>· N<br>N                                     |
|   | TER<br>HETATM<br>HETATM                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3710<br>3711<br>3712                                                                                                                                                                                                                                                 | FE<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEM<br>HEM<br>HEM<br>HEM                                           | A<br>A<br>A                                                             | 501<br>501<br>501<br>501                                           | 6.215<br>5.238<br>4.869<br>7.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.510<br>-0.813<br>-0.717<br>-1.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                |   | A<br>A<br>A                                                                                 | F<br>·N<br>N                                      |
|   | TER<br>HETATM<br>HETATM<br>HETATM                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3710<br>3711<br>3712<br>3713                                                                                                                                                                                                                                         | FE<br>NA<br>NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM<br>HEM<br>HEM                                                  | A<br>A<br>A                                                             | 501<br>501<br>501<br>501                                           | 6.215<br>5.238<br>4.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.510<br>-0.813<br>-0.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.365<br>11.908<br>9.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        |   | A<br>A<br>A                                                                                 | F<br>· N<br>N<br>N                                |
|   | TER<br>HETATM<br>HETATM<br>HETATM<br>HETATM                                                                                                                                                                                                                                                                                                                                                                                                                         | 3710<br>3711<br>3712<br>3713<br>3714                                                                                                                                                                                                                                 | FE<br>NA<br>NB<br>NC<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM<br>HEM<br>HEM<br>HEM                                           | A<br>A<br>A<br>A                                                        | 501<br>501<br>501<br>501<br>501                                    | 6.215<br>5.238<br>4.869<br>7.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.510<br>-0.813<br>-0.717<br>-1.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                |   | A<br>A<br>A                                                                                 | F<br>·N<br>N                                      |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                                                       | 3710<br>3711<br>3712<br>3713<br>3714<br>3715                                                                                                                                                                                                                         | FE<br>NA<br>NB<br>NC<br>ND<br>C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEM<br>HEM<br>HEM<br>HEM<br>HEM                                    | A<br>A<br>A<br>A                                                        | 501<br>501<br>501<br>501<br>501<br>501                             | 6.215<br>5.238<br>4.869<br>7.318<br>7.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.365<br>11.908<br>9.168<br>8.785<br>11.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00                                |   | A<br>A<br>A<br>A                                                                            | F<br>· N<br>N<br>N                                |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                                         | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716                                                                                                                                                                                                                 | FE<br>NA<br>NB<br>NC<br>ND<br>C1A<br>C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM                             | A<br>A<br>A<br>A<br>A                                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501                      | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                |   | A<br>A<br>A<br>A<br>A                                                                       | F<br>N<br>N<br>C<br>C                             |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                                  | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717                                                                                                                                                                                                         | FE<br>NA<br>NB<br>NC<br>ND<br>C1A<br>C2A<br>C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM                             | A<br>A<br>A<br>A<br>A<br>A                                              | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501               | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        |   | A<br>A<br>A<br>A<br>A<br>A                                                                  | F<br>N<br>N<br>C<br>C                             |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                           | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718                                                                                                                                                                                                 | FE<br>NA<br>NB<br>NC<br>ND<br>C1A<br>C2A<br>C3A<br>C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM                      | A<br>A<br>A<br>A<br>A<br>A                                              | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501        | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        |   | A<br>A<br>A<br>A<br>A<br>A                                                                  | F<br>N<br>N<br>N<br>C<br>C<br>C                   |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                    | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719                                                                                                                                                                                         | FE<br>NA<br>NB<br>NC<br>ND<br>C1A<br>C2A<br>C3A<br>C4A<br>C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM               | A<br>A<br>A<br>A<br>A<br>A<br>A                                         | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             | F N N N C C C C C                                 |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                             | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720                                                                                                                                                                                 | FE NA NB NC ND C1A C2A C3A C4A C1B C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                    | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | FNNNCCCCCC                                        |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                                    | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720                                                                                                                                                                                 | FE NA NB NC ND C1A C2A C3A C4A C1B C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                    | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             | FNNNCCCCCCC                                       |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                                             | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721                                                                                                                                                                         | FE NA NB NC ND C1A C2A C3A C4A C1B C2B C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                          | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | FNNNCCCCCCC                                       |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                                                               | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722                                                                                                                                                                 | FE NA NB NC ND C1A C2A C1B C2B C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM        | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                     | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.696<br>2.880<br>3.565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | FNNNCCCCCCC                                       |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                                            | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723                                                                                                                                                         | FE NA NB NC ND C1A C2A C4A C1B C2B C3B C4B C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235<br>-0.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                               | FNNNCCCCCCC                                       |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                                              | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724                                                                                                                                                 | FE NA NB NC ND C1A C2A C4A C1B C2B C3B C4B C1C C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A                                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.640<br>3.696<br>2.880<br>3.565<br>4.805<br>6.959<br>8.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235<br>-0.235<br>-1.852<br>-2.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.800<br>7.465<br>6.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | FNNNCCCCCCCCC                                     |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                         | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725                                                                                                                                         | FE NA NB NC ND C1A C2A C3A C4A C1B C2B C3B C4B C1C C2C C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A                                             | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>9.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.096<br>0.215<br>-0.235<br>-0.781<br>-1.852<br>-2.210<br>-2.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | <b>тиииссоссоссос</b>                             |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                                                  | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726                                                                                                                                         | FE NA NB NC ND C1A C2A C3A C4A C1B C2B C3B C4C C4C C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A                                             | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>2.880<br>6.959<br>8.056<br>9.132<br>8.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.232<br>-0.202<br>-0.206<br>0.215<br>-0.235<br>-0.235<br>-0.235<br>-0.235<br>-0.235<br>-0.235<br>-0.2428<br>-2.210<br>-2.428<br>-2.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | <b>нии и сососососо</b>                           |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                             | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727                                                                                                                                 | FE NA NB NC C1A C2A C3A C4A C1B C2B C3C C4C C1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A A                                           | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>9.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.202<br>-0.202<br>-0.205<br>-0.215<br>-0.215<br>-0.2781<br>-1.852<br>-2.210<br>-2.428<br>-2.257<br>-2.2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | <b>тиииссососососос</b>                           |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                               | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727                                                                                                                         | FE NA NB NC C1A C2A C4A C1B C2B C4C C2C C3C C4C C1D C2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A A                                           | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.056<br>9.132<br>8.074<br>9.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.281<br>-1.852<br>-2.210<br>-2.428<br>-2.251<br>-2.428<br>-2.2112<br>-2.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.465<br>6.590<br>7.401<br>8.132<br>11.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCC                               |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                                             | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727                                                                                                                         | FE NA NB NC C1A C2A C4A C1B C2B C4C C2C C3C C4C C1D C2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A A                                           | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>9.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.202<br>-0.202<br>-0.205<br>-0.215<br>-0.215<br>-0.2781<br>-1.852<br>-2.210<br>-2.428<br>-2.257<br>-2.2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | FNNNNCCCCCCCCCCCCCCC                              |
| - | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                                                                                               | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3728                                                                                                         | FE NA NB NC C1A C2A C4A C1B C2B C4C C3C C3C C4C C1C C3C C4C C1D C2D C3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A A A A                                       | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.056<br>9.132<br>8.074<br>9.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.281<br>-1.852<br>-2.210<br>-2.428<br>-2.251<br>-2.428<br>-2.2112<br>-2.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.465<br>6.590<br>7.401<br>8.132<br>11.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCC                               |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                         | 3710<br>3711<br>3712<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730                                                                                         | FE NA NB NC C1A C2A C1B C2B C3C C4C C3C C3C C4C C3C C4C C3C C4C C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM<br>HEM | A A A A A A A A A A A A A A A A A A                                     | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.696<br>2.880<br>3.655<br>4.805<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235<br>-1.852<br>-2.210<br>-2.428<br>-2.257<br>-2.112<br>-2.2124<br>-2.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCC                              |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                         | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731                                                                                 | FE NA NB NC C1A C2A C1B C2B C3C C4C C3C C4C C3C C4C C4C C4C C4C C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | A A A A A A A A A A A A A A A A A A A                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.646<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.064<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.510<br>-0.813<br>-0.717<br>-1.912<br>-1.754<br>-0.753<br>-0.202<br>-0.202<br>-0.205<br>-0.235<br>-0.235<br>-0.285<br>-0.285<br>-2.210<br>-2.428<br>-2.227<br>-2.112<br>-2.224<br>-1.918<br>-1.668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCC                           |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                                                  | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731                                                                         | FE NA NB NC C1A C1A C2A C3A C4A C1B C2C C3C C4C C1C C3C C4C C1D C2D C3D C4D C4B C4B C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | A A A A A A A A A A A A A A A A A A A                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.649<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.074<br>9.952<br>9.211<br>7.886<br>8.875<br>3.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.202<br>-0.202<br>-0.205<br>-0.2781<br>-1.852<br>-2.210<br>-2.428<br>-2.257<br>-2.112<br>-2.224<br>-1.918<br>-1.626<br>-1.1626<br>0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.871<br>10.805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCCC                          |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                      | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732                                                                                 | FE NA NB NC C1A C1B C2A C3A C4A C1B C2C C3C C4C C1C C3C C4C C1D C2D C4D C4D C4D C4D C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | A A A A A A A A A A A A A A A A A A A                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.701<br>3.696<br>2.880<br>3.565<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235<br>-0.235<br>-2.210<br>-2.429<br>-2.257<br>-2.112<br>-2.224<br>-1.1624<br>-1.624<br>-1.624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>81.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNCCCCCCCCCCCCCCCCCCCC                          |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                      | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732                                                                 | FE NA NB CC1A CC2A CC3A CC4A CC2C CC3C CC4C CC1D CC4C CC4C CC4C CC4C CC4C CC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | AAAAAAAAAAAAAAAAAAAA                                                    | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.696<br>2.880<br>3.565<br>4.805<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.030 0.232 -0.096 0.215 -0.235 -0.235 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -2.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCCCCC                        |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                      | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735                                                         | FE NA NB NC C1A C2A C3A C4B C4B C4C C1C C3C C4C C1D C4D C4D C4D C4D C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | AAAAAAAAAAAAAAAAAAAAA                                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.921<br>7.886<br>6.875<br>3.292<br>5.778<br>3.292<br>5.778<br>9.464<br>2.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.202 -0.202 -0.205 -0.235 -0.235 -0.285 -0.285 -0.281 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -1.325 -1.325 -0.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>FNNNNCCCCCCCCCCCCCCCCCCCCC</b>                 |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                      | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735                                                         | FE NA NB NC C1A C2A C3A C4B C4B C4C C1C C3C C4C C1D C4D C4D C4D C4D C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | AAAAAAAAAAAAAAAAAAAAA                                                   | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.696<br>2.880<br>3.696<br>9.132<br>8.056<br>9.132<br>8.056<br>9.132<br>9.211<br>6.875<br>3.292<br>5.778<br>9.464<br>4.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.030 0.232 -0.096 0.215 -0.235 -0.235 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -2.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCCCCC                        |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                                                                                      | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3733                                                         | FE NA NB NC C1A C1A C2A C3A C4C C1B C2C C3C C4C C1D C4C C1D C4D C4D C4A CHA CAA CAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAA</b>                                              | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.921<br>7.886<br>6.875<br>3.292<br>5.778<br>3.292<br>5.778<br>9.464<br>2.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.202 -0.202 -0.205 -0.235 -0.235 -0.285 -0.285 -0.281 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -1.325 -1.325 -0.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>FNNNNCCCCCCCCCCCCCCCCCCCCC</b>                 |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                       | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3733<br>3734<br>3735                                                 | FE NA NB NC C1A C2A C2A C3A C4A C2C C3C C3C C4C C4C C4C C4C C4C C4C C4C C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAA</b>                                              | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.056<br>9.132<br>8.074<br>9.952<br>9.211<br>7.886<br>5.778<br>9.464<br>2.378<br>9.464<br>2.386<br>5.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>-0.202<br>-0.096<br>0.215<br>-0.2781<br>-1.852<br>-2.210<br>-2.428<br>-2.257<br>-2.112<br>-2.224<br>-1.918<br>-1.624<br>-1.168<br>0.129<br>-1.325<br>-2.344<br>0.813<br>0.565<br>-0.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840<br>9.840 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCCCCCC                       |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                       | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3727<br>3728<br>3727<br>3728<br>3727<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3733<br>3734<br>3735                         | FE NA NB NC C1A C2A C1B C2B C3B C4B C1C C3C C4C C3C C4C C4C C4C C4C C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAA</b>                                            | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464<br>2.336<br>4.966<br>4.966<br>4.966<br>4.966<br>4.966<br>5.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.510<br>-0.813<br>-0.713<br>-1.912<br>-1.754<br>-0.753<br>-0.030<br>0.232<br>-0.202<br>-0.096<br>0.215<br>-0.235<br>-0.235<br>-2.210<br>-2.428<br>-2.251<br>-2.429<br>-2.254<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1.1624<br>-1 | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>81.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639<br>15.383<br>16.532<br>17.769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>FNNNNCCCCCCCCCCCCCCCCCCCCCCC</b>               |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                       | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3727<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737                         | FE NA NB NC C1A C2A C1B C3A C1B C2C C3C C4C C1C C1C C1D C3D C4D C4D C4D C4D C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAA</b>                                          | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.951<br>7.886<br>6.875<br>3.292<br>5.778<br>6.875<br>3.292<br>5.778<br>4.966<br>5.112<br>6.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.030 0.232 -0.096 0.215 -0.235 -0.235 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -2.344 0.813 0.565 -0.424 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639<br>15.383<br>16.532<br>17.769<br>18.628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>гиии</b> иссососососососососососососо          |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM                                                                       | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3733<br>3733<br>3735<br>3737<br>3738                         | FE NA NB NC C1A C2A C2A C3A C4B C2C C3C C3C C4C C1D CAB CHA CHB CHC CAA CBA CAA CBA CAA CCAA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAA</b>                                         | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.696<br>2.880<br>3.696<br>9.074<br>9.952<br>9.211<br>6.875<br>3.292<br>5.778<br>9.486<br>6.875<br>3.292<br>5.778<br>9.496<br>5.119<br>5.312<br>4.966<br>5.119<br>5.312<br>4.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.032 -0.202 -0.096 0.215 -0.235 -0.781 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.918 -1.168 0.129 -1.325 -2.344 -1.168 0.129 -1.325 -0.424 0.444 0.489 1.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>7.800<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639<br>15.383<br>16.532<br>17.769<br>18.628<br>17.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | FNNNNCCCCCCCCCCCCCCCCCCCCCCCC                     |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM        | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3737<br>3738<br>3737<br>3738<br>3738         | FE NA NB NC C1A C2A C4A C1B C3C C3C C3C C4C C1D C3D C4B CHB CHB CHC CAA CBA CBA CBA CBA CBA CMB CMB CMB CMB CMB CMB CMB CMB CAA CBB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CCB CMB CC | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAA</b>                                         | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.704<br>3.648<br>4.010<br>3.696<br>2.880<br>9.074<br>9.952<br>9.211<br>7.864<br>9.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.952<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>7.864<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.211<br>8.074<br>9.2111<br>8.074<br>9.2111<br>8.074<br>9.2111<br>8.074<br>9.2111<br>8.074<br>9.2111<br>8.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9.074<br>9 | -1.510 -0.813 -0.713 -1.912 -1.754 -0.753 -0.030 -0.202 -0.096 0.215 -0.2781 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.918 -1.628 0.129 -1.325 -2.344 0.813 0.565 -0.424 0.444 0.089 0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.800<br>7.465<br>6.590<br>7.401<br>8.748<br>11.132<br>12.271<br>13.353<br>12.870<br>13.671<br>10.805<br>7.007<br>9.840<br>13.639<br>15.383<br>16.532<br>17.769<br>18.628<br>17.866<br>8.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>ги и и и и с</b> ососососососососососососососо |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM        | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3720<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737<br>3738<br>3739<br>3739<br>3730<br>3731 | FE NA NB NC C1A C2A C2A C2B C2C C3C C3C C4C C4C C4C C4C C4C C4D C4C C4C C4C C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAAA</b>                                        | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.056<br>9.132<br>8.056<br>9.132<br>8.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464<br>2.336<br>4.966<br>5.119<br>5.312<br>6.161<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.510 -0.813 -0.713 -1.912 -1.754 -0.753 -0.030 -0.202 -0.096 0.215 -0.235 -1.852 -2.210 -2.428 -2.224 -1.918 -1.624 -1.168 0.129 -1.325 -2.344 0.813 0.565 -0.424 0.089 1.489 0.0270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.365<br>11.908<br>9.168<br>8.785<br>11.497<br>13.227<br>14.043<br>13.245<br>11.926<br>9.520<br>8.370<br>7.280<br>7.465<br>6.590<br>7.401<br>8.373<br>12.271<br>13.353<br>12.271<br>13.353<br>12.271<br>10.805<br>7.007<br>9.840<br>13.671<br>10.805<br>7.007<br>9.840<br>13.671<br>10.805<br>7.866<br>8.464<br>5.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>FNNNNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</b>        |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM        | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737<br>3738<br>3739<br>3730<br>3731<br>3732<br>3733 | FE NA NB NC C1A C2A C2A C2B C2C C3C C3C C4C C4C C4C C4C C4C C4D C4C C4C C4C C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAAA</b>                                        | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.701<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464<br>2.336<br>4.966<br>5.119<br>5.312<br>6.161<br>4.617<br>1.562<br>2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.510 -0.813 -0.713 -1.912 -1.754 -0.753 -0.030 0.232 -0.096 0.215 -0.235 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.918 -1.624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.365 11.908 9.168 8.785 11.497 13.227 14.043 13.245 11.926 9.520 8.370 7.280 7.465 6.590 7.461 8.748 11.132 12.271 13.353 12.870 13.671 10.805 7.007 9.840 13.639 15.383 16.532 17.769 18.628 17.866 8.464 5.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | <b>гииииссосососососососососососососососос</b>    |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM        | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3716<br>3717<br>3718<br>3719<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3729<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737<br>3738<br>3739<br>3730<br>3731<br>3732<br>3733 | FE NA NB NC C1A C2A C1B C3B C1C C2C C3C C4C C4C C4C C4C C4D C4D C4D C4D C4D C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAAAA</b>                                       | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.7010<br>3.696<br>2.880<br>3.565<br>9.132<br>8.056<br>9.132<br>8.056<br>9.132<br>8.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464<br>2.336<br>4.966<br>5.119<br>5.312<br>6.161<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617<br>4.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.510 -0.813 -0.713 -1.912 -1.754 -0.753 -0.030 -0.202 -0.096 0.215 -0.235 -1.852 -2.210 -2.428 -2.224 -1.918 -1.624 -1.168 0.129 -1.325 -2.344 0.813 0.565 -0.424 0.089 1.489 0.0270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.365 11.908 9.168 8.785 11.497 13.227 14.043 13.245 11.926 9.520 8.370 7.280 7.465 6.590 7.465 6.590 7.401 13.637 12.271 13.353 12.271 13.353 12.271 13.353 12.707 9.840 13.671 10.805 7.007 9.840 13.6383 16.532 17.769 18.628 17.866 8.464 5.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | <b>FNNNNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</b>        |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737<br>3737<br>3738<br>3737<br>3738<br>3737<br>3737 | FE NA NB NC ND C1A C2A C2A C3A C4C C3C C4C C3C C4C C3C C4C C4D C4A C6A C6A C6A C6A C6A C6A C6A C6A C6A C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAAAAAA</b>                                     | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.701<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.648<br>9.074<br>9.952<br>9.211<br>7.886<br>6.875<br>3.292<br>5.778<br>9.464<br>2.336<br>4.966<br>5.119<br>5.312<br>6.161<br>4.617<br>1.562<br>2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.510 -0.813 -0.713 -1.912 -1.754 -0.753 -0.030 0.232 -0.096 0.215 -0.235 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.918 -1.624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.1624 -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.365 11.908 9.168 8.785 11.497 13.227 14.043 13.245 11.926 9.520 8.370 7.280 7.465 6.590 7.461 8.748 11.132 12.271 13.353 12.870 13.671 10.805 7.007 9.840 13.639 15.383 16.532 17.769 18.628 17.866 8.464 5.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | <b>гииииссосососососососососососососососос</b>    |
|   | TER HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM        | 3710<br>3711<br>3712<br>3713<br>3714<br>3715<br>3717<br>3718<br>3719<br>3721<br>3722<br>3723<br>3724<br>3725<br>3726<br>3727<br>3728<br>3727<br>3728<br>3730<br>3731<br>3732<br>3733<br>3734<br>3735<br>3736<br>3737<br>3737<br>3738<br>3737<br>3738<br>3737<br>3737 | FE NA NB NC ND C1A C2A C2A C3A C4C C3C C4C C3C C4C C3C C4C C4D C4A C6A C6A C6A C6A C6A C6A C6A C6A C6A C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEM HEM HEM HEM HEM HEM HEM HEM HEM HEM                            | <b>AAAAAAAAAAAAAAAAAAAAAAAAAAAA</b>                                     | 501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501<br>501 | 6.215<br>5.238<br>4.869<br>7.318<br>7.800<br>5.648<br>4.010<br>3.696<br>2.880<br>3.565<br>4.802<br>6.959<br>8.056<br>9.132<br>8.056<br>9.132<br>9.074<br>9.952<br>9.211<br>6.875<br>3.292<br>5.778<br>8.468<br>9.464<br>4.966<br>5.119<br>5.319<br>5.319<br>5.319<br>5.319<br>5.319<br>6.6161<br>4.617<br>1.562<br>3.220<br>7.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.510 -0.813 -0.717 -1.912 -1.754 -0.753 -0.030 0.232 -0.202 -0.096 0.215 -0.235 -0.781 -1.852 -2.210 -2.428 -2.257 -2.112 -2.224 -1.168 0.129 -1.325 -0.3813 0.565 -0.424 0.444 0.813 0.565 -0.424 0.444 0.813 0.565 -0.424 0.444 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565 -0.424 0.813 0.565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.365 11.908 9.168 8.785 11.497 13.227 14.043 13.245 11.926 9.520 8.370 7.465 6.590 7.465 6.590 7.401 8.748 11.132 12.271 13.353 12.870 13.671 10.805 7.007 9.840 13.639 15.383 16.532 17.7628 17.866 8.464 5.930 5.369 5.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | FNNNNCCCCCCCCCCCCCCCCCCCCCCCCCCCC                 |

| HETATM 3752 O2D HEM A 501 9.671 -0.871 17.543 1.00 0.00 A O |  | 747 CMD<br>748 CAD<br>749 CBD<br>750 CGD<br>751 O1D | HEM A<br>HEM A<br>HEM A<br>HEM A | 501<br>501<br>501<br>501<br>501 | 11.392<br>9.671<br>9.985<br>10.470<br>11.642 | -2.740<br>-2.611<br>-1.856<br>-0.427<br>-0.461<br>-0.081<br>-0.871 | 12.257<br>14.772<br>15.224<br>16.665<br>16.912 | 1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | A<br>A<br>A | 0000000 |
|-------------------------------------------------------------|--|-----------------------------------------------------|----------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|------------------------------|--------------------------------------|-------------|---------|
|-------------------------------------------------------------|--|-----------------------------------------------------|----------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|------------------------------|--------------------------------------|-------------|---------|

## Figure 8

### Table 19

| ATOM         | 8          | N      | SER        | Α    | 31       | 9.736          | 63.854           | 49.703           | 1.00 | 0.00  | A   | . N |
|--------------|------------|--------|------------|------|----------|----------------|------------------|------------------|------|-------|-----|-----|
| ATOM         | 9          | CA     | SER        |      | 31       | 9.926          | 64.926           | 50.648           | 1.00 | 0.00  | A   | C   |
| ATOM         | 10         | СВ     | SER        |      | 31       | 11.179         | 64.699           | 51.522           | 1.00 | 0.00  | A   |     |
| ATOM         | 11         | ŌG     | SER        |      | 31       | 11.213         | 65.582           | 52.635           | 1.00 | 0.00  | A   |     |
| ATOM         | 12         | C      | SER        | A    | 31       | 10.081         | 66.214           | 49.889           | 1.00 | 0.00  | A   |     |
| ATOM         | 13         | ō.     | SER        |      | 31       | 10.135         | 66.209           | 48.670           | 1.00 | 0.00  | A   | . 0 |
| •            |            |        |            |      |          |                |                  |                  |      |       |     |     |
| ATOM         | 54         | N      | ILE        | A    | 38       | -1.691         | 79.606           | 49.752           | 1.00 | 0.00  | A   |     |
| ATOM         | 55         | ÇA     | ILE        | A    | 38       | -1.990         | 79.922           | 48.375           | 1.00 | 0.00  | A   |     |
| ATOM         | 56         | CB     | ILE        | A    | 38       | -2.508         | 81.324           | 48.227           | 1.00 | 0.00  | A   |     |
| ATOM         | 57         | CG2    | ILE        | Α    | 38       | -2.688         | 81.625           | 46.729           | 1.00 | 0.00  | A   |     |
| ATOM         | 58         | CG1    | ILE        | A    | 38       | -3.800         | 81.503           | 49.042           | 1.00 | 0.00  | A   |     |
| ATOM         | 59         | CD1    | ILE        | A    | 38       | -4.233         | 82.961           | 49.184           | 1.00 | 0.00  | A   |     |
| MOTA         | 60         | С      | ILE        | A    | 38       | -0.817         | 79.793           | 47.444           | 1.00 | 0.00  | A   |     |
| MOTA         | 61         | 0      | ILE        | A    | 38       | -0.880         | 79.195           | 46.369           | 1.00 | 0.00  | A   | . 0 |
|              |            |        |            |      |          |                |                  |                  | 1 00 | 0.00  | A   | N   |
| ATOM         | 107        | N      | LEU        |      | 45       | 11.288         | 78.658           | 45.498           | 1.00 | 0.00  | A   |     |
| ATOM         | 108        | CA     | LEU        |      | 45       | 11.681         | 78.446           | 44.125           | 1.00 | 0.00  | Ä   |     |
| ATOM         | 109        | СВ     | LEU        |      | 45       | 10.620         | 77.648           | 43.352           | 1.00 | 0.00  | A   |     |
| MOTA         | 110        | CG     | LEU        |      | 45       | 11.031         | 77.295           | 41.916<br>41.126 | 1.00 | 0.00  | A   |     |
| ATOM         | 111        |        | LEU        |      | 45       | 9.841          | 76.728           |                  | 1.00 | 0.00  | A   |     |
| ATOM         | 112        |        | LEU        |      | 45       | 12.254         | 76.363<br>79.726 | 41.913<br>43.386 | 1.00 | 0.00  | A   |     |
| ATOM         | 113        | C      | LEU        |      | 45       | 11.911         |                  | 42.534           | 1.00 | 0.00  | A   |     |
| ATOM         | 114        | 0      | LEU        |      | 45       | 12.797         | 79.762<br>80.767 | 43.655           | 1.00 | 0.00  | A   |     |
| ATOM         | 115        | N      | ASP        |      | 46       | 11.087         |                  | 43.050           | 1.00 | 0.00  | A   |     |
| ATOM         | 116        | CA     | ASP        |      | 46       | 11.180         | 82.079           | 43.140           |      | 0.00  | Ä   |     |
| ATOM         | 117        | CB     | ASP        |      | 46       | 12.622         | 82.693<br>84.199 | 42.944           | 1.00 | 0.00  | A   |     |
| ATOM         | 118        | CG     | ASP        |      | 46       | 12.728         |                  | 43.782           | 1.00 | 0.00  | A   |     |
| ATOM         | 119        |        | ASP        |      | 46       | 12.192         | 84.972           | 41.921           | 1.00 | 0.00  | 1   |     |
| ATOM         | 120        |        | ASP        |      | 46       | 13.356         | 84.584           | ** .             | 1.00 | 0.00  | A   |     |
| ATOM         | 121        | C      | ASP        |      | 46       | 10.614         | 82.028           | 41.214           | 1.00 | 0.00  | P   |     |
| ATOM         | 122        | 0      | ASP        |      | 46       | 10.039         | 81.024<br>83.213 | 40.999           | 1.00 | 0.00  | A   |     |
| ATOM         | 123        | N      | VAL        |      | 47       | 10.531         |                  | 39.647           | 1.00 | 0.00  | 7   |     |
| MOTA         | 124        | CA     | VAL        |      | 47       | 10.137         | 83.514<br>84.857 | 39.534           | *.   | 0.00  | P   |     |
| MOTA         | 125        | CB     | VAL        |      | 47       | 9.474<br>8.170 | 84.823           |                  |      | 0.00  | 7   |     |
| ATOM         | 126        |        | VAL        |      | 47<br>47 | 10.463         | 85.943           | 39.991           | 1.00 | 0.00  |     |     |
| ATOM         | 127        |        | VAL        |      |          | 11.277         | 83.498           | 38.659           | 1.00 | 0.00  | P   |     |
| ATOM         | 128<br>129 | С<br>0 | VAL<br>VAL |      | 47<br>47 | 11.041         | 83.343           | 37.459           | 1.00 | 0.00  | 7   |     |
| ATOM         | 123        | •      | 4111       | ••   | • •      |                |                  | •                |      |       |     |     |
| ATOM         | 147        | N      | MET        | A    | 50       | 14.532         | 79.499           | 38.222           | 1.00 | 0.00  | F   |     |
| ATOM         | 148        | CA     | MET        | A    | 50       | 13.844         | 78.448           | 38.924           | 1.00 | 0.00  | 7   |     |
| ATOM         | 149        | CB     | MET        | A    | 50       | 12.578         | 78.003           | 38.170           | 1.00 | 0.00  | 2   |     |
| ATOM         | 150        | CG     | MET        | A    | 50       | 12.004         | 76.675           | 38.660           | 1.00 | ọ.00  | Į   |     |
| ATOM         | 151        | SD     | MET        | A    | 50       | 10.541         | 76.087           | 37.755           | 1.00 | 0.00  | I   |     |
| ATOM         | 152        | CE     | MET        | A    | 50       | 10.690         | 74.386           | 38.373           | 1.00 | 0.00  | Į   |     |
| ATOM         | 153        | С      | MET        | Α    | 50       | 14.747         | 77.256           | 38.962           | 1.00 | 0.00  | . I |     |
| ATOM         | 154        | 0      | MET        | Α    | 50       | 14.767         | 76.516           | 39.943           | 1.00 | 0.00  | 7   | 4 0 |
|              |            |        |            |      |          |                |                  |                  |      |       |     |     |
| ATOM         | 199        | N      | PHE        |      | 57       | 17.746         | 72.929           | 46.225           | 1.00 | 0.00  | 1   |     |
| MOTA         | 200        | CA     | PHE        |      | 57       | 16.752         | 72.143           | 46.887           | 1.00 | 0.00  |     |     |
| MOTA         | 201        | CB     | PHE        |      | 57       | 15.355         | 72.109           | 46.240           | 1.00 | 0.00  |     | A C |
| ATOM         | 202        | CG     | PHE        |      | 57       | 14.736         | 73.430           | 46.485           | 1.00 | 0.00  |     | A C |
| MOTA         | 203        |        | PHE        |      | 57       | 14.676         | 73.917           | 47.768           | 1.00 | 0.00  |     | A C |
| ATOM         | 204        |        | PHE        |      | 57       | 14.164         | 74.133           | 45.455           | 1.00 |       |     | -   |
| ATOM         | . 205      |        | PHE        |      | 57       | 14.104         | 75.139           | 48.012           | 1.00 | 0.00  |     | A C |
| MOTA         | 206        |        | PHE        |      | 57       | 13.592         | 75.356           | 45.688           |      | .0.00 |     | A C |
| MOTA         | 207        | CZ     | PHE        |      | 57       | 13.574         | 75.850           | 46.965           | 1.00 | 0.00  |     | A C |
| MOTA         | 208        | С      | PHE        |      | 57       | 17.177         | 70.726           | 46.925           | 1.00 | 0.00  | .7  |     |
| ATOM         | 209        | 0,     | PHE        | A    | 57       | 16.896         | 70.059           | 47.908           | 1.00 | 0.00  | •   |     |
| ⊼.TOM        | 280        | N      | 1771 T     | . 71 | 67       | 7.706          | 69.754           | 44.844           | 1.00 | 0.00  | 1   | A N |
| MOTA         | 281        | N      | VAL        |      | 67       | 7.676          | 71.191           | 44.865           | 1.00 | 0.00  |     | A C |
| ATOM<br>ATOM | 282        | CA     | VAL        |      | 67       | 8.641          | 71.771           | 43.853           | 1.00 | 0.00  |     | A C |
|              | 283        | CB     |            |      | 67       | 8.623          | 73.312           | 43.861           | 1.00 | 0.00  |     | A C |
| MOTA         | 284        |        | VAL        |      |          | 10.027         | 71.184           | 44.151           | 1.00 | 0.00  |     | A C |
| ATOM         | 285        |        |            |      | 67<br>67 | 6.282          | 71.614           | 44.497           | 1.00 | 0.00  |     | A C |
| atom<br>atom | 286        | C      | VAL        |      | 67<br>67 | 5.610          | 70.934           | 43.737           | 1.00 | 0.00  |     | A 0 |
| ALON         | 200        | 0      | VAL        | . "  | 67       | 3.010          |                  |                  |      |       | **  |     |
| ATOM         | 462        | N      | HIS        | Δ.   | 90       | 12.355         | 53.260           | 33.477           | 1.00 | 0.00  |     | A N |
| ATOM         | 463        | CA     | HIS        |      | 90       | 10,972         | 53.538           | 33.715           | 1.00 | 0.00  |     | A C |
| MOTA         | 464        |        | HIS        |      | 90       | 12.160         | 53.614           | 36.917           | 1.00 | 0.00  | i   | A N |
|              |            |        |            |      | 20       |                | ٠.               |                  |      |       |     |     |

## Figure 8

| 2001   | ACE   | CC   | ите   | *  | 90  | 10.966  | 53.630 | 36.233 | 1.00 | 0.00 | A              | С   |
|--------|-------|------|-------|----|-----|---------|--------|--------|------|------|----------------|-----|
| ATOM   | 465   | CG   | HIS   |    |     |         | -      |        | 1.00 | 0.00 | A              | Č   |
| MOTA   | 466   | ÇВ   | HIS   |    | 90  | 10.720  | 54.396 | 34.966 |      |      |                |     |
| ATOM   | 467   | NE2  | HIS   | Α  | 90  | 10.767  | 52.290 | 38.038 | 1.00 | 0.00 | A              | N   |
| ATOM   | 468   | CD2  | HIS   | Α  | 90  | 10.127  | 52.815 | 36.932 | 1.00 | 0.00 | A              | С   |
| MOTA   | 469   | CEI  | HIS   | Α  | 90  | 11.986  | 52.797 | 37.988 | 1.00 | 0.00 | A              | С   |
| ATOM   | 470   | C    | HIS   |    | 90  | 10.355  | 54.217 | 32.538 | 1.00 | 0.00 | A              | С   |
|        |       |      |       |    |     | 9.308   | 54.830 | 32.723 | 1.00 | 0.00 | A              | 0   |
| ATOM   | 471   | 0    | HIS   | А  | 90  | 9.300   | 34.030 | 32.723 | 1.00 | 0.00 | ••             | •   |
|        |       |      |       |    |     |         |        |        |      |      | _              |     |
| ATOM   | 530   | N    | SER   | Α  | 99  | 1.319   | 69.192 | 31.322 | 1.00 | 0.00 | A              | N   |
| ATOM   | 531   | CA   | SER   | Α  | 99  | 1.046   | 70.524 | 30.872 | 1.00 | 0.00 | A              | С   |
| ATOM   | 532   | СВ   | SER   |    | 99  | -0.184  | 70.617 | 29.954 | 1.00 | 0.00 | A              | С   |
|        |       |      | SER   |    | 99  | -0.390  | 71.963 | 29.549 | 1.00 | 0.00 | A              | 0   |
| MOTA   | 533   | OG . |       |    |     |         |        | _      | 1.00 | 0.00 | A              | C   |
| MOTA   | 534   | C    | SER   |    | 99  | 0.780   | 71.420 | 32.046 |      |      |                |     |
| MOTA   | 535   | 0    | SER   | A  | 99  | 0.081   | 71.054 | 32.987 | 1.00 | 0.00 | A              | 0   |
|        |       |      |       |    |     |         |        |        |      |      |                |     |
| ATOM   | 554   | N    | VAL   | A  | 102 | -0.666  | 77.870 | 31.818 | 1.00 | 0.00 | A              | N   |
| ATOM   | 555   | CA   | VAL   |    |     | -0.617  | 78.832 | 30.742 | 1.00 | 0.00 | A              | С   |
|        |       |      | VAL   |    |     | 0.687   | 79.572 | 30.690 | 1.00 | 0.00 | A              | С   |
| ATOM   | 556   | CB   |       |    |     |         |        |        |      | 0.00 | A              | č   |
| ATOM   | 557 . |      | VAL   |    |     | 0.645   | 80.562 | 29.515 | 1.00 |      |                |     |
| ATOM   | 558   | CG2  | VAL   | Α  | 102 | 0.984   | 80.184 | 32.062 | 1.00 | 0.00 | A              | С   |
| ATOM   | 559   | С    | VAL   | A  | 102 | -0.655  | 78.107 | 29.445 | 1.00 | 0.00 | A              | С   |
| ATOM   | 560   | 0    | VAL   | Α  | 102 | -1.495  | 78.359 | 28.587 | 1.00 | 0.00 | A              | 0   |
|        |       | -    |       |    |     |         |        |        |      |      |                |     |
| 2004   | C76   | 1.1  | LYS   | 70 | 105 | -4.023  | 76.759 | 28.313 | 1.00 | 0.00 | A              | N   |
| ATOM   | 575   | N    |       |    |     |         | 77.763 | 27.868 | 1.00 | 0.00 | A              | Ĉ   |
| ATOM   | 576   | CA   | LYS   |    |     | -4.949  |        |        |      |      |                |     |
| ATOM   | 577   | CB   | LYS   | Α  | 105 | -4.862  | 79.006 | 28.749 | 1.00 | 0.00 | A              | С   |
| ATOM   | 578   | CG   | LYS   | A  | 105 | -5.424  | 78.817 | 30.155 | 1.00 | 0.00 | A              | С   |
| ATOM   | 579   | CD   | LYS   |    |     | -6.936  | 78.606 | 30.178 | 1.00 | 0.00 | A              | С   |
|        | 580   | CE   | LYS   |    |     | -7.534  | 78.730 | 31.576 | 1.00 | 0.00 | A              | С   |
| ATOM   |       |      |       |    |     |         | 78.946 | 31.475 | 1.00 | 0.00 | A              | N . |
| ATOM   | 581   | NZ   | LYS   |    |     | -8.993  |        |        |      |      |                | Ĉ   |
| MOTA   | 582   | С    | LYS   | A  | 105 | -4.583  | 78.168 | 26.477 | 1.00 | 0.00 | A              |     |
| ATOM   | 583   | 0    | LYS   | Α  | 105 | -5.442  | 78.414 | 25.632 | 1.00 | 0.00 | A <sub>.</sub> | 0   |
| ATOM   | 584   | N    | VAL   | Α  | 106 | -3.268  | 78.246 | 26.234 | 1.00 | 0.00 | A              | N.  |
| ATOM   | 585   | CA   |       |    | 106 | -2.657  | 78.609 | 24.990 | 1.00 | 0.00 | A              | С   |
|        |       | CB   |       |    | 106 | -1.149  | 78.504 | 25.102 | 1.00 | 0.00 | A              | C - |
| ATOM   | 586   |      |       |    |     |         |        | 23.709 | 1.00 | 0.00 | A              | C : |
| ATOM   | 587   |      | VAL   |    |     | -0.496  | 78.488 |        |      |      |                |     |
| ATOM   | 588   | CG2  | VAL   | A  | 106 | -0.624  | 79.640 | 25.992 | 1.00 | 0.00 | A              | ~   |
| MOTA   | 589   | С    | VAL   | Α  | 106 | -3.036  | 77.634 | 23.915 | 1.00 | 0.00 | A              | C   |
| ATOM   | 590   | 0    | VAL   | Α  | 106 | -3.351  | 78.020 | 22.790 | 1.00 | 0.00 | A              | 0 . |
| 0      |       | -    |       |    |     |         |        |        |      |      |                |     |
| 7 mov  | 500   | N    | TVC   | *  | 108 | -4.940  | 75.039 | 21.646 | 1.00 | 0.00 | A              | N   |
| ATOM   | 599   |      |       |    |     |         |        |        |      | 0.00 | A              | c   |
| ATOM   | 600   | ÇA   |       |    | 108 | -6.190  | 74.500 | 21.222 | 1.00 |      |                |     |
| ATOM   | 601   | CB   | LYS   | Α  | 108 | -7.070  | 75.551 | 20.526 | 1.00 | 0.00 | A              | С   |
| ATOM   | 602   | CG   | LYS   | Α  | 108 | -8.572  | 75.280 | 20.603 | 1.00 | 0.00 | A              | С   |
| MOTA   | 603   | CD   | LYS   | Α  | 108 | -9.144  | 75.561 | 21.995 | 1.00 | 0.00 | A              | С   |
| ATOM   | 604   | CE   |       |    | 108 | -10.673 | 75.560 | 22.053 | 1.00 | 0.00 | A              | С   |
|        | 605   | NZ   |       |    | 108 | -11.124 | 75.906 | 23.419 | 1.00 | 0.00 | A              | N   |
| ATOM   |       |      |       |    |     | -5.816  | 73.477 | 20.187 | 1.00 | 0.00 | A              | Ċ   |
| ATOM   | 606   | С    |       |    | 108 |         |        |        |      |      |                |     |
| ATOM   | 607   | 0    | LYS   | A  | 108 | -5.478  | 73.823 | 19.057 | 1.00 | 0.00 | A              | 0   |
|        |       |      |       |    |     |         |        |        |      |      |                |     |
| ATOM   | 612   | N    | LEU   | A  | 110 | -4.041  | 69.305 | 19.856 | 1.00 | 0.00 | A              | N.  |
| ATOM   | 613   | CA   |       |    | 110 | -2.779  | 68.702 | 20.165 | 1.00 | 0.00 | A              | С   |
| ATOM   | 614   | CB   |       |    | 110 | -2.879  | 67.646 | 21,276 | 1.00 | 0.00 | A              | С   |
|        |       |      |       |    |     | -3.448  | 68.202 | 22.595 | 1.00 | 0.00 | A              | С   |
| ATOM   | 615   | CG   |       |    | 110 |         |        |        |      | 0.00 | A              | č   |
| ATOM   | 616   |      | LEU   |    |     | -2.792  | 69.540 | 22.973 | 1.00 |      |                |     |
| ATOM   | 617   | CD1  | LEU   | A  | 110 | -3.385  | 67.157 | 23.720 | 1.00 | 0.00 | A              | С   |
| ATOM   | 618   | С    | LEU   | Α  | 110 | -2.235  | 68.022 | 18.955 | 1.00 | 0.00 | A              | С   |
| MOTA   | 619   | 0    |       |    | 110 | -2.978  | 67.467 | 18.149 | 1.00 | 0.00 | A              | 0   |
|        |       | •    |       | •• |     |         |        |        |      |      |                |     |
| T DOOR | 622   | 1.7  | 7 555 | -  | 112 | 3.751   | 67.734 | 20.398 | 1.00 | 0.00 | A              | N.  |
| MOTA   | 632   | N    |       |    | 113 |         |        |        |      |      |                |     |
| MOTA   | 633   | CA   |       |    | 113 | 4.395   | 68.171 | 21.607 | 1.00 | 0.00 | A              | C   |
| MOTA   | 634   | CB   | LEU   | A  | 113 | 4.709   | 69.674 | 21.576 | 1.00 | 0.00 | A              | C   |
| ATOM   | 635   | CG   | LEU   | A  | 113 | 5.562   | 70.106 | 22.774 | 1.00 | 0.00 | A              | C   |
| ATOM   | 636   |      | LEU   |    |     | 5.728   | 71.634 | 22.836 | 1.00 | 0.00 | A              | C   |
| ATOM   | 637   |      | LEU   |    |     | 6.899   | 69.350 | 22.753 | 1.00 | 0.00 | A              | С   |
|        |       |      |       |    |     |         | 67.909 | 22.839 | 1.00 | 0.00 | A              | č   |
| ATOM   | 638   | С    |       |    | 113 | 3.580   |        |        |      |      |                |     |
| ATOM   | 639   | 0    | LEU   | A  | 113 | 4.105   | 67.445 | 23.846 | 1.00 | 0.00 | A              | 0   |
|        |       |      |       |    |     |         |        |        |      |      |                |     |
| ATOM   | 678   | N    | ARG   | Α  | 119 | -2.604  | 58.930 | 20.334 | 1.00 | 0.00 | Α              | N   |
| ATOM   | 679   | CA   |       |    | 119 | -2.477  | 60.043 | 19.436 | 1.00 | 0.00 | A              | C   |
| ATOM   | 680   | CB   |       |    | 119 | -3.291  | 61.273 | 19.875 | 1.00 | 0.00 | Α              | С   |
|        |       |      |       |    |     | -3.312  | 62.382 | 18.821 | 1.00 | 0.00 | A              | C   |
| ATOM   | 681   | CG   |       |    | 119 |         |        |        |      |      | A              | č   |
| ATOM   | 682   | CD   |       |    | 119 | -4.214  | 63.567 | 19.173 | 1.00 | 0.00 |                |     |
| ATOM   | 683   | NE   | ARG   | A  | 119 | -4.190  | 64.499 | 18.012 | 1.00 | 0.00 | A              | N   |
| ATOM   | 684   | CZ   |       |    | 119 | -5.225  | 65.364 | 17.806 | 1.00 | 0.00 | Α              | С   |
|        |       |      |       | •• |     |         |        |        |      |      |                |     |

SUBSTITUTE SHEET (RULE 26)

Figure 8

| » MOM     | 685          | MUI      | ARG . | Δ  | 119        |     | -6.266 | 65.403 | 18.689 | 1.00 | 0.00 |   | Α   | N   |
|-----------|--------------|----------|-------|----|------------|-----|--------|--------|--------|------|------|---|-----|-----|
| MOTA      |              |          |       |    |            |     | -5.226 | 66.181 | 16.714 | 1.00 | 0.00 |   | A   | N   |
| MOTA      | 686          |          | ARG   |    |            |     |        |        |        |      | 0.00 |   | A   | Ċ   |
| MOTA      | 687          | С        | ARG . | A  | 119        |     | -1.046 | 60.462 | 19.334 | 1.00 |      |   |     |     |
| ATOM      | 688          | 0        | ARG   | Α  | 119        |     | -0.532 | 60.664 | 18.234 | 1.00 | 0.00 |   | A   | 0   |
|           |              |          |       |    |            |     |        |        |        |      |      | • |     |     |
| мом       | 762          | N        | CYS   | n  | 127        |     | 6.144  | 60.899 | 12.343 | 1.00 | 0.00 |   | A   | N   |
| ATOM      |              |          |       |    |            |     | 6.968  | 62.043 | 12.104 | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 763          | CA       | CYS   |    |            |     |        |        |        |      | 0.00 |   | A   | Ç   |
| MOTA      | 764          | CB       | CYS   | A  | 127        |     | 6.710  | 63.228 | 13.036 | 1.00 |      |   |     |     |
| ATOM      | 765          | SG       | CYS   | A  | 127        |     | 7.229  | 64.739 | 12.178 | 1.00 | 0.00 |   | A   | S   |
| ATOM      | 766          | С        | CYS   | A  | 127        |     | 8.426  | 61.698 | 12.088 | 1.00 | 0.00 |   | A   | С   |
|           | 767          | ō        | CYS   |    |            |     | 9.181  | 62.306 | 11.332 | 1.00 | 0.00 |   | A   | 0   |
| ATOM      | 101          | v        | 010   | _  |            |     | 3.202  |        |        |      |      |   |     |     |
|           |              |          |       | _  |            |     |        | 00 763 | 4.378  | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1031         | N        | ASN   |    |            |     | 28.218 | 92.763 |        |      |      |   |     |     |
| MOTA      | 1032         | CA       | ASN   | A  | 160        |     | 29.317 | 93.538 | 3.882  | 1.00 | 0.00 |   | A   | C   |
| ATOM      | 1033         | CB       | ASN   | Α  | 160        |     | 28.882 | 94.873 | 3.252  | 1.00 | 0.00 | ٠ | A   | С   |
| ATOM      | 1034         | CG       | ASN   | A  | 160        |     | 28.186 | 94.551 | 1.936  | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1035         |          | ASN   |    |            |     | 27.394 | 95.340 | 1.424  | 1.00 | 0.00 |   | A   | 0   |
|           |              |          |       |    |            |     | 28.490 | 93.351 | 1.372  | 1.00 | 0.00 |   | A   | N   |
| MOTA      | 1036         |          | ASN   |    |            |     |        |        |        | 1.00 | 0.00 |   | A   | c   |
| ATOM      | 1037         | С        | asn   |    |            |     | 30.304 | 93.815 | 4.962  |      |      |   |     |     |
| ATOM      | 1038         | 0        | ASN   | A  | 160        |     | 30.984 | 94.839 | 4.938  | 1.00 | 0.00 |   | A   | 0   |
|           |              |          |       |    |            |     |        |        |        |      |      |   |     |     |
| ATOM      | 1175         | N        | VAL   | A  | 181        |     | 11.086 | 71.181 | 4.800  | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1176         | CA       | VAL   |    |            |     | 10.644 | 69.832 | 5.053  | 1.00 | 0.00 |   | A   | С   |
|           |              |          |       |    |            |     | 11.109 | 69.215 | 6.356  | 1.00 | 0.00 |   | A   | ¢   |
| MOTA      | 1177         | CB       | VAL   |    |            |     |        |        |        |      |      |   |     | č   |
| MOTA      | 1178         | CG1      | VAL   | A  | 181        |     | 12.645 | 69.258 | 6.369  | 1.00 | 0.00 |   | A   |     |
| MOTA      | 1179         | CG2      | VAL   | Α  | 181        | ٠   | 10.435 | 69.854 | 7.577  | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1180         | C        | VAL   | Δ  | 181        |     | 9.136  | 69.710 | 4.931  | 1.00 | 0.00 |   | A   | С   |
|           |              |          | VAL   |    |            |     | 8.625  | 68.689 | 4.477  | 1.00 | 0.00 |   | A   | 0   |
| ATOM      | 1181         | 0        | VAL   | М  | TOT        |     | 0.023  | 00.005 | 3.3    |      |      |   |     |     |
|           |              |          |       |    |            |     |        |        |        |      |      |   |     | 3.7 |
| ATOM      | 1211         | Ň        | ASP   | Α  | 185        |     | 9.739  | 73.264 | -0.272 | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1212         | CA       | ASP   | Α  | 185        |     | 10.531 | 74.286 | -0.893 | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1213         | СВ       |       |    | 185 '      |     | 9.795  | 74.954 | -2.070 | 1.00 | 0.00 |   | A   | С   |
|           |              |          | ASP   |    |            |     | 10.756 | 75.820 | -2.873 | 1.00 | 0.00 |   | Α   | С   |
| ATOM      | 1214         | CG       |       |    |            | 2   |        |        | -2.730 | 1.00 | 0.00 |   | A   | 0   |
| MOTA      | 1215         |          | ASP   |    |            |     | 11.994 |        |        |      |      |   |     | ŏ   |
| MOTA      | 1216         | OD2      | ASP   | Α  | 185        |     | 10.256 | 76.671 | -3.657 | 1.00 | 0.00 |   | A   |     |
| MOTA      | 1217         | С        | ASP   | Α  | 185        |     | 10.784 | 75.345 | 0.131  | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1218         | 0        | 'ASP  |    |            | ٠., | 9.893  | 75.701 | 0.899  | 1.00 | 0.00 |   | Α   | 0   |
| 71.011    |              | •        |       | •• |            | • ' |        |        |        |      |      |   |     |     |
|           | ****         | .,       | 3.00  |    | 102        |     | 5.547  | 85.782 | 2.771  | 1.00 | 0.00 |   | A   | N   |
| MOTA      | 1287         | N        | ARG   |    |            |     |        |        |        |      |      |   | A   | Ċ   |
| MOTA      | 1288         | CA       | ARG   | Α  | 193        |     | 4.883  | 84.678 | 3.421  | 1.00 | 0.00 |   |     |     |
| ATOM      | 1289         | CB       | ARG   | Α  | 193        |     | 4.668  | 83.506 | 2.452  | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1290         | CG       | ARG   | А  | 193        |     | 3.791  | 83.862 | 1.248  | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1291         | CD       | ARG   |    |            |     | 3.875  | 82.821 | 0.130  | 1.00 | 0.00 |   | A   | С   |
|           |              |          |       |    |            |     | 2.908  | 83.201 | -0.937 | 1.00 | 0.00 |   | Α . | N   |
| MOTA      | 1292         | NE       | ARG   |    |            |     |        |        |        |      |      |   | A   | Ċ   |
| ATOM      | 1293         | CZ       | ARG   |    |            |     | 2.874  | 82.488 | -2.100 | 1.00 | 0.00 |   |     |     |
| ATOM      | 1294         | NH1      | ARG   | Α  | 193        |     | 3.744  | 81.455 | -2.293 | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1295         | NH2      | ARG   | A  | 193        |     | 1.967  | 82.803 | -3.072 | 1.00 | 0.00 |   | A   | N   |
|           | 1296         | С        | ARG   |    |            |     | 5.777  | 84.180 | 4.510  | 1.00 | 0.00 |   | A   | С   |
| ATOM      |              |          |       |    |            |     | 5.338  | 83.882 | 5.620  | 1.00 | 0.00 |   | A   | 0   |
| ATOM      | 1297         | 0        | ARG   | A  | 193        |     | 3.330  | 05.002 | 3.020  | 1.00 |      |   |     |     |
|           |              |          |       |    |            |     |        | 00 515 | 14 000 | 1 00 | 0.00 |   | 70  | N   |
| MOTA      | 1359         | N        | PHE   | Α  | 201        |     | 6.285  | 83.517 | 14.872 | 1.00 | 0.00 |   | A   |     |
| ATOM      | 1360         | CA       | PHE   | A  | 201        |     | 7.034  | 82.675 | 15.772 | 1.00 | 0.00 |   | A   | С   |
| MOTA      | 1361         | СВ       | PHE   |    |            |     | 8.175  | 81.859 | 15.153 | 1.00 | 0.00 |   | Α   | С   |
|           | 1362         | CG       |       |    | 201        |     | 7.551  | 80.961 | 14.174 | 1.00 | 0.00 |   | A   | С   |
| MOTA      |              |          |       |    |            |     | 6.458  | 80.223 | 14.544 | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1363         |          | PHE   |    |            |     |        |        | 12.926 | 1.00 | 0.00 |   | A   | č   |
| MOTA      | 1364         |          | PHE   |    |            |     | 8.100  | 80.820 |        |      |      |   |     |     |
| ATOM      | 1365         |          | . DHE |    |            |     | 5.871  | 79.387 | 13.638 | 1.00 | 0.00 |   | A   | C   |
| ATOM      | 1366         |          | PHE   |    |            |     | 7.514  | 79.981 | 12.020 | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1367         | cz       |       |    | 201        |     | 6.395  | 79.274 | 12.373 | 1.00 | 0.00 |   | A   | С   |
|           | 1368         |          |       |    |            |     | 7.744  | 83.489 | 16.803 | 1.00 | 0.00 |   | A   | С   |
| ATOM      |              | C        |       |    | 201        |     |        | 83.125 | 17.978 | 1.00 | 0.00 |   | A   | 0   |
| MOTA      | 1369         | 0        | PHE   | A  | 201        |     | 7.748  | 03.123 | 11.370 | 1.00 | 0.00 |   |     | •   |
|           |              |          |       |    |            |     |        |        |        | ,    | 0.00 |   |     | 27  |
| ATOM      | 1395         | N        | LEU   | A  | 205        |     | 7.738  | 83.765 | 20.992 | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1396         | CA       | LED   | A  | 205        |     | 8.910  | 83.598 | 21.809 | 1.00 | 0.00 |   | A   | С   |
|           |              |          |       |    | 205        |     | 10.223 | 83.626 | 21.012 | 1.00 | 0.00 |   | A   | С   |
| MOTA      | 1397         | CB.      |       |    |            |     |        | 83.580 | 21.921 | 1.00 | 0.00 |   | A   | Č   |
| MOTA      | 1398         | CG       |       |    | 205        |     | 11.465 |        |        |      | 0.00 |   |     | Ċ   |
| ATOM      | 1399         |          | LEU   |    |            |     | 12.758 | 83.763 | 21.111 | 1.00 |      |   | A   |     |
| MOTA      | 1400         |          | LEU   |    |            |     | 11.476 | 82.314 | 22.793 | 1.00 | 0.00 |   | A   | С   |
| ATOM      | 1401         | C        |       |    | 205        |     | 8.994  | 84.700 | 22.823 | 1.00 | 0.00 |   | A   | С   |
|           |              |          |       |    |            |     | 9.359  | 84.463 | 23.973 | 1.00 | 0.00 |   | A   | 0   |
| MOTA      | 1402         | 0        |       |    | 205        |     |        | 85.937 | 22.406 | 1.00 | 0.00 |   | A   | N   |
| ATOM      | 1403         | N        |       |    | 206        |     | 8.669  |        |        |      |      |   |     |     |
| ATOM      | 1404         | CA       | ARG   | A  | 206        |     | 8.746  | 87.086 | 23.263 | 1.00 | 0.00 |   | A   | C   |
| ATOM      | 1405         | CB       |       |    | 206        |     | 8.522  | 88.405 | 22.502 | 1.00 | 0.00 |   | A   | С   |
|           |              |          |       |    |            |     |        | 89.652 | 23.366 | 1.00 | 0.00 |   | A   | С   |
| Z 'J'E IM | 1406         | ~~       | A DC  | 'n | 206        |     | 8.724  | 05.052 | 45.550 | 1.00 | 0.00 |   | •   | C   |
| MOTA      | 1406         | CG       | ARG   |    |            |     | 8.724  |        |        |      |      |   |     |     |
| ATOM      | 1406<br>1407 | CG<br>CD |       |    | 206<br>206 |     | 8.724  | 90.963 | 22.609 | 1.00 | 0.00 |   | A   | c   |

| ATOM                                                         | 1408                                                                                                                                                         | NE                                                                                                                                 | ARG                                                                                 | A                                    | 206                                                                                                                                                    | 8.734                                                                                                                                                                                                                              | 92.078                                                                                                                                                                                                                   | 23.568                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|
| MOTA                                                         | 1409                                                                                                                                                         | CZ                                                                                                                                 | ARG                                                                                 |                                      |                                                                                                                                                        | 9.140                                                                                                                                                                                                                              | 93.299                                                                                                                                                                                                                   | 23.110                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| ATOM                                                         | 1410                                                                                                                                                         |                                                                                                                                    | ARG                                                                                 |                                      |                                                                                                                                                        | 9.337                                                                                                                                                                                                                              | 93.495                                                                                                                                                                                                                   | 21.774                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N<br>N                  |
| ATOM                                                         | 1411                                                                                                                                                         |                                                                                                                                    | ARG<br>ARG                                                                          |                                      |                                                                                                                                                        | 9.354<br>7.725                                                                                                                                                                                                                     | 94.322<br>87.014                                                                                                                                                                                                         | 23.989<br>24.357                                                                                                                                                                                                                   | 1.00                                                         | 0.00                                                                                                                                                                 | A<br>A                                                                                      | C                       |
| ATOM<br>ATOM                                                 | 1412<br>1413                                                                                                                                                 | C<br>O                                                                                                                             | ARG                                                                                 |                                      |                                                                                                                                                        | 8.016                                                                                                                                                                                                                              | 87.402                                                                                                                                                                                                                   | 25.490                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | ŏ                       |
| ATOM                                                         | 1410                                                                                                                                                         | •                                                                                                                                  | ,,,,,                                                                               | ••                                   | 200                                                                                                                                                    | 0.010                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                              |                                                                                                                                                                      |                                                                                             |                         |
| ATOM                                                         | 1487                                                                                                                                                         | N                                                                                                                                  | CYS                                                                                 | A                                    | 216                                                                                                                                                    | 1.606                                                                                                                                                                                                                              | 82.875                                                                                                                                                                                                                   | 36.294                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
| MOTA                                                         | 1488                                                                                                                                                         | CA                                                                                                                                 | CYS                                                                                 |                                      |                                                                                                                                                        | 0.401                                                                                                                                                                                                                              | B2.224                                                                                                                                                                                                                   | 35.882                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1489                                                                                                                                                         | СВ                                                                                                                                 | CYS                                                                                 |                                      |                                                                                                                                                        | 0.156                                                                                                                                                                                                                              | 82.338                                                                                                                                                                                                                   | 34.374                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| ATOM                                                         | 1490                                                                                                                                                         | SG                                                                                                                                 | CYS                                                                                 |                                      |                                                                                                                                                        | -1.473                                                                                                                                                                                                                             | 81.693                                                                                                                                                                                                                   | 33.894                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A<br>N                                                                                      | S<br>C                  |
| MOTA                                                         | 1491                                                                                                                                                         | C                                                                                                                                  | CYS                                                                                 |                                      |                                                                                                                                                        | 0.390<br>-0.667                                                                                                                                                                                                                    | 80.769<br>80.236                                                                                                                                                                                                         | 36.283<br>36.614                                                                                                                                                                                                                   | 1.00                                                         | 0.00                                                                                                                                                                 | A<br>A                                                                                      | o                       |
| ATOM                                                         | 1492                                                                                                                                                         | 0                                                                                                                                  | CIS                                                                                 | М                                    | 210                                                                                                                                                    | -0.007                                                                                                                                                                                                                             | 00.230                                                                                                                                                                                                                   | 30.014                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 |                                                                                             | •                       |
| ATOM                                                         | 1540                                                                                                                                                         | N                                                                                                                                  | ILE                                                                                 | A                                    | 223                                                                                                                                                    | -5.052                                                                                                                                                                                                                             | 83.867                                                                                                                                                                                                                   | 35.121                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
| ATOM                                                         | 1541                                                                                                                                                         | CA                                                                                                                                 | ILE                                                                                 |                                      |                                                                                                                                                        | -5.178                                                                                                                                                                                                                             | 83.837                                                                                                                                                                                                                   | 33.684                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| ATOM                                                         | 1542                                                                                                                                                         | СВ                                                                                                                                 | ILE                                                                                 | Α                                    | 223                                                                                                                                                    | -4.905                                                                                                                                                                                                                             | 82.468                                                                                                                                                                                                                   | 33.091                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| ATOM                                                         | 1543                                                                                                                                                         | CG2                                                                                                                                | ILE                                                                                 | A                                    | 223                                                                                                                                                    | -6.121                                                                                                                                                                                                                             | 81.536                                                                                                                                                                                                                   | 33.224                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1544                                                                                                                                                         |                                                                                                                                    | ILE                                                                                 |                                      |                                                                                                                                                        | -4.430                                                                                                                                                                                                                             | 82.621                                                                                                                                                                                                                   | 31.641                                                                                                                                                                                                                             | 1.00                                                         |                                                                                                                                                                      | A                                                                                           | С                       |
|                                                              | 1545                                                                                                                                                         |                                                                                                                                    | ILE                                                                                 |                                      |                                                                                                                                                        | -3.660                                                                                                                                                                                                                             | 81.394                                                                                                                                                                                                                   | 31.154                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| MOTA                                                         | 1546                                                                                                                                                         | C                                                                                                                                  | ILE                                                                                 |                                      |                                                                                                                                                        | -6.514                                                                                                                                                                                                                             | 84.421                                                                                                                                                                                                                   | 33.271                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| ATOM                                                         | 1547                                                                                                                                                         | 0                                                                                                                                  | ILE                                                                                 | A                                    | 223                                                                                                                                                    | -6.591                                                                                                                                                                                                                             | 85.135                                                                                                                                                                                                                   | 32.274                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | U                       |
| ATOM                                                         | 1568                                                                                                                                                         | N                                                                                                                                  | LEU                                                                                 | Δ                                    | 226                                                                                                                                                    | -6.202                                                                                                                                                                                                                             | 88.133                                                                                                                                                                                                                   | 33.542                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
| ATOM                                                         | 1569                                                                                                                                                         | CA                                                                                                                                 | LEU                                                                                 |                                      |                                                                                                                                                        | -5.457                                                                                                                                                                                                                             | 88.716                                                                                                                                                                                                                   | 32.456                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| ATOM                                                         | 1570                                                                                                                                                         | CB                                                                                                                                 | LEU                                                                                 |                                      |                                                                                                                                                        | -3.963                                                                                                                                                                                                                             | 88.944                                                                                                                                                                                                                   | 32.766                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| ATOM                                                         | 1571                                                                                                                                                         | CG                                                                                                                                 | LEU                                                                                 | A                                    | 226                                                                                                                                                    | -3.648                                                                                                                                                                                                                             | 90.004                                                                                                                                                                                                                   | 33.848                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1572                                                                                                                                                         | CD2                                                                                                                                | LEU                                                                                 | A                                    | 226                                                                                                                                                    | -4.003                                                                                                                                                                                                                             | 89.541                                                                                                                                                                                                                   | 35.271                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1573                                                                                                                                                         | CD1                                                                                                                                | LEU                                                                                 |                                      |                                                                                                                                                        | -4.240                                                                                                                                                                                                                             | 91.372                                                                                                                                                                                                                   | 33.473                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1574                                                                                                                                                         | С                                                                                                                                  | LEU                                                                                 |                                      |                                                                                                                                                        | -5.508                                                                                                                                                                                                                             | 87.798                                                                                                                                                                                                                   | 31.264                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| MOTA                                                         | 1575                                                                                                                                                         | 0                                                                                                                                  | LEU                                                                                 | A                                    | 226                                                                                                                                                    | -4.601                                                                                                                                                                                                                             | 86.990                                                                                                                                                                                                                   | 31.068                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | A                                                                                           | 0                       |
| ATOM                                                         | 1587                                                                                                                                                         | N                                                                                                                                  | SER                                                                                 | 7.                                   | 229                                                                                                                                                    | -2.243                                                                                                                                                                                                                             | 87.555                                                                                                                                                                                                                   | 27.706                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | 'A                                                                                          | N                       |
| ATOM                                                         | 1588                                                                                                                                                         | CA                                                                                                                                 | SER                                                                                 |                                      |                                                                                                                                                        | -1.326                                                                                                                                                                                                                             | 86.554                                                                                                                                                                                                                   | 27.258                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| ATOM                                                         | 1589                                                                                                                                                         | CB                                                                                                                                 | SER                                                                                 |                                      |                                                                                                                                                        | -0.234                                                                                                                                                                                                                             | 86.226                                                                                                                                                                                                                   | 28.290                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | A                                                                                           | Ċ                       |
| ATOM                                                         | 1590                                                                                                                                                         | OG                                                                                                                                 | SER                                                                                 |                                      |                                                                                                                                                        | 0.639                                                                                                                                                                                                                              | 85.228                                                                                                                                                                                                                   | 27.785                                                                                                                                                                                                                             |                                                              | 0.00                                                                                                                                                                 | A                                                                                           | 0                       |
| ATOM                                                         | 1591                                                                                                                                                         | c                                                                                                                                  | SER                                                                                 |                                      |                                                                                                                                                        | -2.202                                                                                                                                                                                                                             | 85.361                                                                                                                                                                                                                   | 27:117                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | С                       |
| MOTA                                                         | 1592                                                                                                                                                         | 0                                                                                                                                  | SER                                                                                 |                                      |                                                                                                                                                        | -3.070                                                                                                                                                                                                                             | 85.183                                                                                                                                                                                                                   | 27.959                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | 0                       |
|                                                              |                                                                                                                                                              |                                                                                                                                    |                                                                                     |                                      |                                                                                                                                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    | 4                                                            |                                                                                                                                                                      |                                                                                             |                         |
| ATOM                                                         | 1620                                                                                                                                                         | N                                                                                                                                  | ILE                                                                                 |                                      |                                                                                                                                                        | -1.218                                                                                                                                                                                                                             | 84.302                                                                                                                                                                                                                   | 21.950                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
| ATOM                                                         | 1621                                                                                                                                                         | CA                                                                                                                                 | ILE                                                                                 |                                      |                                                                                                                                                        | -0.656                                                                                                                                                                                                                             | 83.068                                                                                                                                                                                                                   | 21.491                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C<br>C                  |
| MOTA                                                         | 1622                                                                                                                                                         | CB                                                                                                                                 | ILE                                                                                 |                                      |                                                                                                                                                        | 0.050                                                                                                                                                                                                                              | 82.251<br>81.710                                                                                                                                                                                                         | 22.531<br>23.503                                                                                                                                                                                                                   | 1.00                                                         | 0.00                                                                                                                                                                 | A<br>A                                                                                      | c                       |
| ATOM<br>ATOM                                                 | 1623<br>1624                                                                                                                                                 |                                                                                                                                    | ILE                                                                                 |                                      |                                                                                                                                                        | -0.979<br>0.906                                                                                                                                                                                                                    | 81.164                                                                                                                                                                                                                   | 21.859                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | č                       |
| ATOM                                                         | 1625                                                                                                                                                         |                                                                                                                                    | ILE                                                                                 |                                      |                                                                                                                                                        | 1.920                                                                                                                                                                                                                              | 80.516                                                                                                                                                                                                                   | 22.801                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | Ċ                       |
| ATOM                                                         | 1626                                                                                                                                                         | c                                                                                                                                  | ILE                                                                                 |                                      |                                                                                                                                                        | -1.666                                                                                                                                                                                                                             | 82,263                                                                                                                                                                                                                   | 20.724                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | C                       |
| ATOM                                                         | 1627                                                                                                                                                         | ō                                                                                                                                  | ILE                                                                                 |                                      |                                                                                                                                                        | -1.305                                                                                                                                                                                                                             | 81.604                                                                                                                                                                                                                   | 19.750                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | 0                       |
| MOTA                                                         | 1628                                                                                                                                                         |                                                                                                                                    |                                                                                     |                                      |                                                                                                                                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                              |                                                                                                                                                                      |                                                                                             | 27                      |
| MOTA                                                         |                                                                                                                                                              | N                                                                                                                                  | ALA                                                                                 | A                                    | 234                                                                                                                                                    | -2.947                                                                                                                                                                                                                             | 82.293                                                                                                                                                                                                                   | 21.154                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A                                                                                           | N                       |
| ATOM                                                         | 1629                                                                                                                                                         | N<br>CA                                                                                                                            | ALA<br>ALA                                                                          | A                                    | 234                                                                                                                                                    | -4.017                                                                                                                                                                                                                             | 81.568                                                                                                                                                                                                                   | 20.529                                                                                                                                                                                                                             | 1.00                                                         | 0.00                                                                                                                                                                 | A<br>A                                                                                      | С                       |
| MA OLI                                                       | 1630                                                                                                                                                         |                                                                                                                                    | ALA<br>ALA<br>ALA                                                                   | A<br>A                               | 234<br>234                                                                                                                                             | -4.017<br>-5.350                                                                                                                                                                                                                   | 81.568<br>81.694                                                                                                                                                                                                         | 20.529<br>21.287                                                                                                                                                                                                                   | 1.00<br>1.00                                                 | 0.00                                                                                                                                                                 | A<br>A<br>A                                                                                 | C<br>C                  |
| ATOM                                                         | 1630<br>1631                                                                                                                                                 | CA<br>CB<br>C                                                                                                                      | ALA<br>ALA<br>ALA<br>ALA                                                            | A<br>A<br>A                          | 234<br>234<br>234                                                                                                                                      | -4.017<br>-5.350<br>-4.234                                                                                                                                                                                                         | 81.568<br>81.694<br>82.121                                                                                                                                                                                               | 20.529<br>21.287<br>19.158                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                                                                                                                                 | A<br>A<br>A<br>A                                                                            | C<br>C                  |
| ATOM<br>ATOM                                                 | 1630<br>1631<br>1632                                                                                                                                         | CA<br>CB<br>C                                                                                                                      | ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                     | A<br>A<br>A<br>A                     | 234<br>234<br>234<br>234                                                                                                                               | -4.017<br>-5.350<br>-4.234<br>-4.453                                                                                                                                                                                               | 81.568<br>81.694<br>82.121<br>81.376                                                                                                                                                                                     | 20.529<br>21.287<br>19.158<br>18.205                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                                                                                                                         | A<br>A<br>A<br>A                                                                            | C C C O                 |
| ATOM<br>ATOM<br>ATOM                                         | 1630<br>1631<br>1632<br>1633                                                                                                                                 | CA<br>CB<br>C<br>O<br>N                                                                                                            | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU                                              | A<br>A<br>A<br>A                     | 234<br>234<br>234<br>234<br>235                                                                                                                        | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175                                                                                                                                                                                     | 81.568<br>81.694<br>82.121<br>81.376<br>83.461                                                                                                                                                                           | 20.529<br>21.287<br>19.158<br>18.205<br>19.041                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                                                                                                                         | A<br>A<br>A<br>A<br>A                                                                       | 0<br>C<br>C             |
| ATOM<br>ATOM<br>ATOM<br>ATOM                                 | 1630<br>1631<br>1632<br>1633<br>1634                                                                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA                                                                                                      | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU                                       | A<br>A<br>A<br>A                     | 234<br>234<br>234<br>234<br>235<br>235                                                                                                                 | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391                                                                                                                                                                           | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139                                                                                                                                                                 | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                 | A<br>A<br>A<br>A<br>A                                                                       | C C C                   |
| MOTA<br>MOTA<br>MOTA<br>MOTA<br>MOTA                         | 1630<br>1631<br>1632<br>1633<br>1634<br>1635                                                                                                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB                                                                                                | ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>GLU                                       | A<br>A<br>A<br>A<br>A                | 234<br>234<br>234<br>234<br>235<br>235<br>235                                                                                                          | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471                                                                                                                                                                 | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666                                                                                                                                                       | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                         | А<br>А<br>А<br>А<br>А<br>А                                                                  | 0<br>C<br>C             |
| MOTA MOTA MOTA MOTA MOTA MOTA                                | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636                                                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB                                                                                                | ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>GLU<br>GLU                                | A<br>A<br>A<br>A<br>A                | 234<br>234<br>234<br>234<br>235<br>235<br>235<br>235                                                                                                   | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856                                                                                                                                                       | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397                                                                                                                                             | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                 | А<br>А<br>А<br>А<br>А<br>А                                                                  | C C C C C               |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA                           | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637                                                                                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG                                                                                          | ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>GLU<br>GLU                                | A<br>A<br>A<br>A<br>A<br>A<br>A      | 234<br>234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235                                                                                     | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921                                                                                                                                             | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887                                                                                                                                   | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                         | А<br>А<br>А<br>А<br>А<br>А                                                                  | C C C O M C C           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638                                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CC<br>CD<br>OE1                                                                             | ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU                                             | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                              | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670                                                                                                                                   | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397                                                                                                                                             | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             | C C C C C               |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA                           | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637                                                                                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2                                                                      | ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>GLU<br>GLU                                | A A A A A A A A A                    | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                       | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921                                                                                                                                             | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264                                                                                                                         | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | C C C O C C C O         |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639                                                                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CC<br>CD<br>OE1                                                                             | ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU                                             | A A A A A A A A A A                  | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225                                                                                                                         | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669                                                                                                               | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | C C C O M C C C C O O   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2<br>C                                                                 | ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU GLU                                         | A A A A A A A A A A                  | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517                                                                                                     | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622                                                                                           | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1641                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2<br>C                                                                 | ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU                                 | A A A A A A A A A A A A              | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517                                                                                                     | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.669<br>83.838<br>83.622<br>81.252                                                                                           | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1641                                                                         | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2<br>C                                                                 | ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU GLU FHE PHE                                 | A A A A A A A A A A A                | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270                                                                                 | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842                                                                       | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>16.847<br>15.660                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOCCO NC        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640<br>1641                                                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2<br>C                                                                 | ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU                                 | AAAAAAAAA AAA                        | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235                                                                | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777                                                                       | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139                                                                       | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO NCC       |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653                                 | CA<br>CB<br>C<br>O<br>N<br>CA<br>CB<br>CG<br>CD<br>OE1<br>OE2<br>C<br>O                                                            | ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU GLU GLU FHE PHE PHE                     | AAAAAAAAA AAAA                       | 234<br>234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237                                           | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.270<br>-1.777<br>-1.629                                                   | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139<br>77.662                                                   | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO NCCC      |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653<br>1654                                 | CA CB C O N CA CB CG CD OE1 OE2 C O N CA CB CG CD CD CA CB CC CD CD CA CB CC CD CD CD CA CB CC CD CD CD CD CD CD CD CD CD CD CD CD | ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE PHE PHE PHE                     | AAAAAAAAA AAAAA                      | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237                                           | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450                                                   | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.638<br>83.622<br>81.252<br>79.842<br>79.139<br>77.662<br>77.070                                         | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO NCCCC     |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640<br>1641<br>1650<br>1651<br>1652<br>1652<br>1653<br>1654<br>1655         | CA CB C O N CA CB CC O OE1 OE2 C O N CA CB CC C O CD CD CD CD CD CD CD CD CD CD CD CD CD                                           | ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE FHE PHE PHE PHE                 | AAAAAAAAA AAAAA                      | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237                                    | -4.017<br>-5.350<br>-4.234<br>-4.4233<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450<br>-2.679                                        | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139<br>77.662                                                   | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO NCCC      |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653<br>1654                                 | CA CB C O N CA CB CC O OE1 OE2 C O N CA CB CC CD CC CC CC CC CC CC CC CC CC CC CC                                                  | ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE FHE PHE PHE PHE                 | AAAAAAAAAA AAAAAA                    | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237<br>237<br>237                             | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450                                                   | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139<br>77.662<br>77.070<br>76.868                               | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180<br>17.405                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | CCCONCCCCOOCO NCCCCC    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653<br>1655<br>1655                 | CA CB C O N CA CB CC O OE1 OE2 C O N CA CB CC CD CC CC CC CC CC CC CC CC CC CC CC                                                  | ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE FHE PHE PHE PHE                 | AAAAAAAAAA AAAAAAA                   | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                      | -4.017<br>-5.350<br>-4.234<br>-4.453<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450<br>-2.679<br>-0.319                               | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>77.070<br>76.868<br>75.702<br>76.862<br>77.070<br>74.915                     | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180<br>17.405<br>18.156<br>17.377<br>17.753           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                         | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                          | сссоисссоосо исссссс    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653<br>1654<br>1655<br>1655                 | CA CB C O N CA CB CCD OE2 C O N CA CB CCD CCD CCD CCD CCD CCD CCD CCD CCD                                                          | ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE PHE PHE PHE PHE PHE PHE             | AAAAAAAAAA AAAAAAAA                  | 234<br>234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237 | -4.017<br>-5.350<br>-4.234<br>-4.423<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450<br>-2.679<br>-0.319<br>-2.556<br>-1.371<br>-2.283 | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139<br>77.070<br>76.868<br>75.702<br>75.500<br>74.915<br>79.651 | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180<br>17.405<br>18.156<br>17.377<br>17.753<br>15.469 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | <b>AAAAAAAAAAAAAAAAAAAAAAAAAA</b>                                                           | сссоисссоосо иссосссо   |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1639<br>1640<br>1641<br>1650<br>1651<br>1652<br>1653<br>1654<br>1655<br>1655<br>1657<br>1658 | CA CB C O N CA CB CCD OE2 C O N CA CB CCD CCD CCD CCD CCD CCD CCD CCD CCD                                                          | ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE PHE PHE PHE PHE PHE PHE PHE         | AAAAAAAAAA AAAAAAAAA                 | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237        | -4.017<br>-5.350<br>-4.234<br>-4.423<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450<br>-2.679<br>-0.319<br>-2.556<br>-1.371           | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>77.070<br>76.868<br>75.702<br>76.862<br>77.070<br>74.915                     | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180<br>17.405<br>18.156<br>17.377<br>17.753           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                         | <b>A A A A A A A A A A A A A A A A A A A </b>                                               | сссоисссоосо исссссс    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1640<br>1651<br>1650<br>1651<br>1652<br>1653<br>1654<br>1655<br>1656<br>1656<br>1658 | CA CB C O N CA CB CCD OE1 OE2 C O N CA CB CCB CCB CCB CCB CCB CCB CCB CCB C                                                        | ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU FHE FHE PHE PHE PHE PHE PHE PHE PHE | AAAAAAAAAA AAAAAAAAA                 | 234<br>234<br>234<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237        | -4.017<br>-5.350<br>-4.234<br>-4.423<br>-4.175<br>-4.391<br>-4.471<br>-4.856<br>-4.921<br>-4.670<br>-5.225<br>-3.277<br>-3.517<br>-1.220<br>-1.270<br>-1.777<br>-1.629<br>-0.450<br>-2.679<br>-0.319<br>-2.556<br>-1.371<br>-2.283 | 81.568<br>81.694<br>82.121<br>81.376<br>83.461<br>84.139<br>85.666<br>86.397<br>87.887<br>88.264<br>88.669<br>83.838<br>83.622<br>81.252<br>79.842<br>79.139<br>77.070<br>76.868<br>75.702<br>75.500<br>74.915<br>79.651 | 20.529<br>21.287<br>19.158<br>18.205<br>19.041<br>17.800<br>17.964<br>16.676<br>16.980<br>18.157<br>16.040<br>16.847<br>15.660<br>16.832<br>16.561<br>17.835<br>17.794<br>18.180<br>17.405<br>18.156<br>17.377<br>17.753<br>15.469 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | <b>AAAAAAAAAAAAAAAAAAAAAAAAAA</b>                                                           | CCCONCCCCOOCO NCCCCCCCC |

## Figure 8

|        |      |     |     |    |      |        |        | -      |      |       |       |       |
|--------|------|-----|-----|----|------|--------|--------|--------|------|-------|-------|-------|
| ATOM   | 1667 | CA  | MVD | ħ  | 239  | -2.645 | 82.509 | 12.081 | 1.00 | 0.00  | A     | С     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| MOTA   | 1668 | СB  | TYR | A  | 239  | -1.790 | 83.759 | 12.390 | 1.00 | 0.00  | A     | C     |
| ATOM   | 1669 | CG  | TYR | Α  | .239 | -1.262 | 84.376 | 11.131 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1670 |     | TYR |    |      | -2.063 | 85.208 | 10.383 | 1.00 | 0.00  | A     | С     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1671 | CD2 | TYR | A  | 239  | 0.026  | 84.137 | 10.693 | 1.00 | 0.00  | Α     | С     |
| ATOM   | 1672 | CE1 | TYR | A  | 239  | -1.595 | 85.784 | 9.226  | 1.00 | 0.00  | Α     | С     |
|        | 1673 |     | TYR |    |      | 0.499  | 84.709 | 9.537  | 1.00 | 0.00  | A     | С     |
| MOTA   |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1674 | CZ  | TYR | А  | 239  | -0.314 | 85.536 | 8.800  | 1.00 | 0.00  | A     | C     |
| MOTA   | 1675 | OH  | TYR | Α  | 239  | 0.165  | 86.127 | 7.611  | 1.00 | 0.00  | A     | 0     |
|        |      |     |     |    | 239  | -1.789 |        | 11.361 |      |       |       | č     |
| ATOM   | 1676 | С   |     |    |      |        | 81.511 |        | 1.00 | 0.00  | A     |       |
| MOTA   | 1677 | 0   | TYR | A  | 239  | -1.915 | 81.365 | 10.143 | 1.00 | 0.00  | A     | 0     |
| ATOM   | 1678 | N   | ILE | А  | 240  | -0.903 | 80.805 | 12.102 | 1.00 | 0.00  | Α     | N     |
| ATOM   | 1679 | CA  |     |    | 240  | -0.025 | 79.847 | 11.487 | 1.00 | 0.00  | A     | c     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1680 | CB  | ILE | A  | 240  | 1.158  | 79.357 | 12.309 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1681 | CG2 | ILE | A  | 240  | 0.722  | 78.532 | 13.523 | 1.00 | -0.00 | Α     | С     |
| ATOM   | 1682 | CG1 | ILE | n  | 240  | 2.114  | 78.576 | 11.387 | 1.00 | 0.00  | A     | C     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1683 |     | ILE |    |      | 3.351  | 78.021 | 12.077 | 1.00 | 0.00  | A     | С     |
| ATOM . | 1684 | С   | ILE | Α  | 240  | -0.788 | 78.671 | 10.952 | 1.00 | 0.00  | А     | С     |
| ATOM   | 1685 | 0   | The | A  | 240  | -0.472 | 78.214 | 9.853  | 1.00 | 0.00  | A     | 0     |
|        |      | •   |     |    |      | ••••   |        |        |      | ****  | ••    | _     |
|        |      |     |     |    |      |        |        |        |      |       | _     |       |
| ATOM   | 1713 | N   | VAL | A  | 244  | -0.792 | 77.324 | 7.096  | 1.00 | 0.00  | A     | N     |
| ATOM   | 1714 | CA  | VAL | A  | 244  | -0.434 | 75.988 | 6.744  | 1.00 | 0.00  | A     | С     |
|        |      |     |     |    |      |        |        |        |      |       |       | Č     |
| ATOM . | 1715 | СВ  |     |    | 244  | 0.171  | 75.162 | 7.852  | 1.00 | 0.00  | A     |       |
| ATOM   | 1716 | CG1 | VAL | A  | 244  | 1.497  | 75.827 | 8.257  | 1.00 | 0.00  | A     | С     |
| ATOM   | 1717 | CG2 | VAL | Α  | 244  | ~0.807 | 74.999 | 9.014  | 1.00 | 0.00  | Α     | С     |
|        |      |     |     |    |      |        |        | 6.080  |      |       |       | Č     |
| ATOM   | 1718 | C   |     |    | 244  | -1.563 | 75.271 |        | 1.00 | 0.00  | A     |       |
| MOTA   | 1719 | 0   | VAL | Α  | 244  | -1.297 | 74.502 | 5.166  | 1.00 | 0.00  | A     | .0    |
|        |      |     |     |    |      |        |        |        |      |       |       | 5 - 1 |
| ATOM   | 1737 | N   | ARG | 7  | 247  | -1.705 | 75.926 | 2.644  | 1.00 | 0.00  | A     | · N-  |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1738 | CA  | ARG | A  | 247  | -0.667 | 75.164 | 2.014  | 1.00 | 0.00  | A     | 🙄 C 👑 |
| ATOM   | 1739 | CB  | ARG | Α  | 247  | 0.632  | 75.099 | 2.825  | 1.00 | 0.00  | A     | , . C |
| ATOM   | 1740 | CG  | ARG |    |      | 1.701  | 76.066 | 2.325  | 1.00 | 0.00  | A     | C     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1741 | CD  | ARG | Α  | 247  | 1.325  | 77.542 | 2.332  | 1.00 | 0.00  | A     | C     |
| ATOM   | 1742 | NE  | ARG | Α  | 247  | 2.527  | 78.239 | 1.803  | 1.00 | 0.00  | Α     | N     |
|        | 1743 | CZ  | ARG |    |      | 2.414  | 79.141 | 0.788  | 1.00 | 0.00  | A     |       |
| ATOM   |      |     |     |    |      |        |        |        |      |       |       | С     |
| ATOM   | 1744 | NH1 | ARG | A  | 247  | 1.186  | 79.505 | 0.321  | 1.00 | 0.00  | A     | N:    |
| ATOM   | 1745 | NH2 | ARG | Α  | 247  | 3.545  | 79.657 | 0.226  | 1.00 | 0.00  | A     | N.    |
| ATOM   | 1746 | С   | ARG |    |      | -1.076 | 73.753 | 1.737  | 1.00 | 0.00  | A     |       |
|        |      |     |     |    |      |        |        |        |      |       |       | _     |
| ATOM   | 1747 | 0   | ARG | A  | 247  | -0.790 | 73.246 | 0.656  | 1.00 | 0.00  | A     | Ο,    |
| ATOM   | 1748 | N   | ILE | Α  | 248  | -1.752 | 73.099 | 2.700  | 1.00 | 0.00  | A     | N ·   |
| ATOM   | 1749 | CA  | ILE |    |      | -2.174 | 71.726 | 2.669  | 1.00 | 0.00  | A     | C.    |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| MOTA   | 1750 | CB  | ILE | A  | 248  | -2.849 | 71.329 | 3.962  | 1.00 | 0.00  | A     | C     |
| ATOM   | 1751 | CG2 | ILE | A  | 248  | -3.376 | 69.885 | 3.866  | 1.00 | 0.00  | A     | С     |
| ATOM   | 1752 |     | ILE |    |      | -1.877 | 71.513 | 5.138  | 1.00 | 0.00  | A     | С     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1753 | CDI | ILE | A  | 248  | -2.567 | 71.502 | 6.503  | 1.00 | 0.00  | A     | С     |
| ATOM   | 1754 | С.  | ILE | A  | 248  | -3.146 | 71.570 | 1.548  | 1.00 | 0.00  | A     | С     |
| ATOM   | 1755 | 0   | ILE |    |      | -3.180 | 70.525 | 0.903  | 1.00 | 0.00  | A     | 0     |
| AI OH  | 1755 | •   | TDE | ~  | 240  | 3.100  | 10.323 | 0.303  | 1.00 | 0.00  | -     | •     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1808 | N   | LEU | Α  | 255  | -1.111 | 66.925 | -5.424 | 1.00 | 0.00  | A     | N     |
| MOTA   | 1809 | CA  | LEU | Δ  | 255  | -0.533 | 65.781 | -4.784 | 1.00 | 0.00  | Α     | C,    |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1810 | CB  | LEU |    |      | -1.347 | 65.303 | -3.561 | 1.00 | 0.00  | A     | С     |
| MOTA   | 1811 | CG  | LEU | A  | 255  | -0.775 | 64.073 | -2.829 | 1.00 | 0.00  | A     | C     |
| MOTA   | 1812 | CD2 | LEU | Α  | 255  | -1.764 | 63.535 | -1.782 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1813 |     | LEU |    |      | 0.613  | 64.371 | -2.239 | 1.00 | 0.00  | A     | Ċ     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1814 | С   | LEU |    |      | -0.471 | 64.646 | -5.741 | 1.00 | 0.00  | A     | C     |
| ATOM   | 1815 | 0   | LEU | A  | 255  | -1.354 | 64.464 | -6.579 | 1.00 | 0.00  | A     | 0     |
|        |      |     |     |    |      |        |        | •      |      |       |       |       |
| λ TOM  | 1040 | M   | 000 | ,  | 250  | A 701  | 59.463 | _4 035 | 1 00 | 0.00  | 70    | 12    |
| ATOM   | 1840 | N   | SER |    |      | 4.791  | _      | -4.935 | 1.00 | 0.00  | A     | N     |
| ATOM   | 1841 | CA  | SER | A  | 259  | 5.845  | 60.399 | -5.157 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1842 | CB  | SER | Д  | 259  | 5.806  | 61.007 | -6.575 | 1.00 | 0.00  | A     | C     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1843 | OG  | SER |    |      | 7.001  | 61.727 | -6.850 | 1.00 | 0.00  | A     | 0     |
| ATOM   | 1844 | С   | SER | A  | 259  | 5.682  | 61.514 | -4.161 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1845 | 0   | SER |    |      | 5.634  | 62.687 | -4.528 | 1.00 | 0.00  | A     | 0     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1846 | N   | ALA |    |      | 5.613  | 61.182 | -2.855 | 1.00 | 0.00  | A     | N     |
| ATOM   | 1847 | CA  | ALA | Α  | 260  | 5.493  | 62.222 | -1.868 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1848 | CB  | ALA |    |      | 5.072  | 61.703 | -0.483 | 1.00 | 0.00  | A     | Ċ     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1849 | С   | ALA |    |      | 6.830  | 62.886 | -1.721 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1850 | 0   | ALA | Α  | 260  | 7.859  | 62.221 | -1.606 | 1.00 | 0.00  | Α     | 0     |
| ATOM   | 1851 | N   | ARG |    |      | 6.830  | 64.229 | -1.845 | 1.00 | 0.00  | A     | N     |
|        |      |     |     |    |      |        |        |        |      |       |       |       |
| ATOM   | 1852 | CA  | ARG |    |      | 7.941  | 65.138 | -1.719 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1853 | CB  | ARG | Α  | 261  | 7.689  | 66.390 | -2.570 | 1.00 | 0.00  | A     | С     |
| MOTA   | 1854 | CG  | ARG |    |      | 7.332  | 66.081 | -4.025 | 1.00 | 0.00  | A     | Č     |
|        |      |     |     |    |      |        | 65.701 |        |      |       |       |       |
| MOTA   | 1855 | CD  | ARG |    |      | 8.523  |        | -4.905 | 1.00 | 0.00  | A     | С     |
| ATOM   | 1856 | NE  | ARG | Α  | 261  | 7.984  | 65.434 | -6.269 | 1.00 | 0.00  | <br>A | N     |
| ATOM   | 1857 | CZ  | ARG |    |      | 8.829  | 65.314 | -7.334 | 1.00 | 0.00  | A     | Ċ     |
|        |      |     |     | ** |      | 3.523  |        |        |      |       | •     | •     |

SUBSTITUTE SHEET (RULE 26)

### Figure 8

| T COM  | 1050  | NILI 1 | ARG  | TA. | 261 | 10.176  | 65.437 | -7.153 | 1.00 | 0.00 |   | A   | N  |
|--------|-------|--------|------|-----|-----|---------|--------|--------|------|------|---|-----|----|
| ATOM   | 1858  |        |      |     |     |         |        |        |      |      |   |     |    |
| MOTA   | 1859  |        | ARG  |     |     | 8.325   | 65.071 | -8.578 | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 1860  | С      | ARG  | Α   | 261 | 8.230   | 65.620 | -0.313 | 1.00 | 0.00 |   | Α   | C  |
| ATOM   | 1861  | 0      | ARG  | Α   | 261 | 9.377   | 65.890 | 0.036  | 1.00 | 0.00 |   | A   | 0  |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |
| ATOM   | 1922  | N      | ILE  | A   | 269 | -0.983  | 61.188 | 2.255  | 1.00 | 0.00 |   | A   | N  |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |
| ATOM   | 1923  | CA     | ILE  |     |     | -1.028  | 59.840 | 1.750  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1924  | CB     | ILE  | A   | 269 | 0.211   | 59.409 | 0.992  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1925  | CG2    | ILE  | A   | 269 | 1.421   | 59.366 | 1.930  | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     |         |        |        |      | 0.00 |   | A   | č  |
| MOTA   | 1926  |        | ILE  |     |     | -0.033  | 58.074 | 0.270  | 1.00 |      |   |     |    |
| ATOM   | 1927  | CD1    | ILE  | A   | 269 | 1.055   | 57.722 | -0.743 | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1928  | С      | ILE  | A   | 269 | -1.316  | 58.889 | 2.865  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1929  | Ō      | ILE  |     |     | -1.932  | 57.847 | 2.645  | 1.00 | 0.00 | • | Α   | 0  |
| A1OI1  | 1343  | •      |      |     | 200 |         |        |        |      |      |   | ••  | -  |
|        |       |        |      | _   |     |         |        |        |      |      |   | _   |    |
| ATOM   | 1956  | N      | GLN  | A   | 273 | -4.388  | 55.688 | 3.599  | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 1957  | CA     | GLN  | Α   | 273 | -4.387  | 54.468 | 4.374  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1958  | СВ     | GLN  | A   | 273 | -2.979  | 53.997 | 4.771  | 1.00 | 0.00 |   | A   | С  |
|        |       | CG     | GLN  |     |     | -2.095  | 53.633 | 3.578  | 1.00 | 0.00 |   | A   | Ċ  |
| ATOM   | 1959  |        |      |     |     |         |        |        |      |      |   |     |    |
| ATOM   | 1960  | CD     | GLN  | А   | 273 | -0.745  | 53.189 | 4.120  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 1961  | OE1    | GLN  | Α   | 273 | 0.189   | 52.927 | 3.362  | 1.00 | 0.00 |   | A   | 0  |
| ATOM   | 1962  | NE2    | GLN  | Α   | 273 | -0.635  | 53.103 | 5.472  | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 1963  | C      | GLN  |     |     | -5.097  | 54.866 | 5.634  | 1.00 | 0.00 |   | Α   | С  |
|        |       |        |      |     |     |         |        |        |      |      |   | A   | ō  |
| ATOM   | 1964  | 0      | GLN  | A   | 213 | -5.444  | 56.023 | 5.761  | 1.00 | 0.00 |   | ~   | •  |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |
| ATOM   | 2010  | N      | GLN  | Α   | 279 | -11.744 | 56.008 | 12.753 | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 2011  | CA     | GLN  |     |     | -11.367 | 56.515 | 14.065 | 1.00 | 0.00 | • | Α   | C  |
|        |       |        |      |     |     |         |        | 15.035 | 1.00 | 0.00 |   | A   | Č  |
| ATOM   | 2012  | CB     | GLN  |     |     | -10.915 | •      |        |      |      |   |     |    |
| ATOM   | 2013  | CG     | GLN  | A   | 279 | -12.010 | 54.394 | 15.393 | 1.00 | 0.00 |   | A   | C. |
| ATOM   | 2014  | CD     | GLN  | Α   | 279 | -12.046 | 53.306 | 14.327 | 1.00 | 0.00 | • | A   | С  |
| ATOM   | 2015  |        | GLN  |     |     | -13.036 | 52.589 | 14.188 | 1.00 | 0.00 |   | A   | 0  |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |
| ATOM · | 2016. | NEZ    | GLN  |     |     | -10.937 | 53.175 | 13.551 | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 2017  | C      | GLN  | A   | 279 | -10.200 | 57.462 | 13.890 | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 2018  | 0 :-   | GLN  | A   | 279 | -10.248 | 58.580 | 14.393 | 1.00 | 0.00 |   | A   | 0  |
|        |       |        | .*   |     |     |         |        |        |      |      |   |     |    |
| 2004   |       |        |      | *   | 201 | _C C72  | 66 346 | 0 034  | 3 00 | 0.00 |   | A   | N  |
| MOTA   | 2052  |        | VAL  |     |     | -6.672  | 66.345 | 9.034  | 1.00 |      |   |     |    |
| ATOM   | 2053  | CA 1   | VAL  | A   | 284 | -6.224  | 67.655 | 8.633  | 1.00 | 0.00 |   | A   | С  |
| MOTA   | 2054  | CB .   | VAL  | Α   | 284 | -7.198  | 68.364 | 7.722  | 1.00 | 0.00 |   | Α   | С  |
| ATOM   | 2055  |        | VAL  |     |     | -7.242  | 67.590 | 6.395  | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     |         |        |        |      | 0.00 |   | A   | Č  |
| ATOM   | 2056  |        | VAL  |     |     | -8.579  | 68.469 | 8.394  | 1.00 |      |   |     |    |
| ATOM   | 2057  | С      | VAL  | A   | 284 | -5.955  | 68.500 | 9.849  | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 2058  | 0      | VAL  | A   | 284 | -5.041  | 69.324 | 9.836  | 1.00 | 0.00 |   | A   | 0  |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |
| MOTA   | 2082  | N      | ILE  |     | 200 | -2.265  | 70.162 | 10.837 | 1.00 | 0.00 |   | Ą   | N  |
|        |       |        |      |     |     |         |        |        |      |      |   |     | Ċ  |
| MOTA   | 2083  | CA     | ILE  |     |     | -2.081  | 71.565 | 11.095 | 1.00 | 0.00 |   | A   |    |
| ATOM   | 2084  | CB     | ILE  | A   | 288 | -3.442  | 72.286 | 10.996 | 1.00 | 0.00 | • | A   | С  |
| ATOM   | 2085  | CG2    | ILE  | Α   | 288 | -4.267  | 72.296 | 12.283 | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 2086  |        | ILE  |     |     | -3.390  | 73.736 | 10.576 | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     | -4.848  | 74.210 | 10.553 | 1,00 | 0.00 |   | Α   | С  |
| ATOM   | 2087  |        | ILE  |     |     |         |        |        |      |      |   |     |    |
| MOTA   | 2088  | С      | ILE  | A   | 288 | -1.386  | 71.706 | 12.433 | 1.00 | 0.00 |   | A   | C  |
| ATOM   | 2089  | 0      | ILE  | Α   | 288 | -0.491  | 72.535 | 12.603 | 1.00 | 0.00 |   | A   | 0  |
| ATOM   | 2090  | N      |      |     | 289 | -1.770  | 70.862 | 13.415 | 1.00 | 0.00 |   | Α   | N  |
|        |       |        |      |     | 289 | -1.221  | 70.897 | 14.737 | 1.00 | 0.00 |   | A   | C  |
| ATOM   | 2091  | CA     |      |     |     |         |        |        |      |      |   |     |    |
| ATOM   | 2092  | CB     |      |     | 289 | -1.971  | 69.971 | 15.709 | 1.00 | 0.00 |   | A   | C  |
| ATOM   | 2093  | С      | ALA  | Α   | 289 | 0.216   | 70.472 | 14.740 | 1.00 | 0.00 |   | Α   | С  |
| ATOM   | 2094  | 0      |      |     | 289 | 1.046   | 71.082 | 15.408 | 1.00 | 0.00 |   | A   | 0  |
|        | 2031  | •      | nur. | ••  | 20, |         |        |        |      |      |   |     |    |
| 3.000t | 0100  | .,     |      |     | 201 | . 0.000 | 70 470 | 10 040 | 1 00 | 0.00 |   | Α   | N7 |
| ATOM   | 2102  | N      |      |     | 291 | 2.292   | 70.479 | 12.243 | 1.00 | 0.00 |   |     | N  |
| ATOM   | 2103  | CA     | VAL  | A   | 291 | 3.087   | 71.422 | 11.505 | 1.00 | 0.00 |   | A   | С  |
| MOTA   | 2104  | СВ     | VAL  | Α   | 291 | 2.381   | 71.958 | 10.285 | 1.00 | 0.00 |   | A   | C  |
| ATOM   | 2105  |        | VAL  |     |     | 3.181   | 73.133 | 9.694  | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     | 2.234   | 70.805 |        | 1.00 | 0.00 |   | A   | С  |
| MOTA   | 2106  |        | VAL  |     |     |         |        | 9.278  |      |      |   |     |    |
| ATOM   | 2107  | С      |      |     | 291 | 3.495   | 72.579 | 12.372 | 1.00 | 0.00 |   | A   | C  |
| ATOM   | 2108  | 0      | VAL  | Α   | 291 | 4.663   | 72.963 | 12.346 | 1.00 | 0.00 |   | A   | 0  |
| ATOM   | 2109  | N      |      |     | 292 | 2.563   | 73.134 | 13.181 | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 2110  | CA     |      |     | 292 | 2.894   | 74.263 | 14.010 | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     |         |        |        |      | 0.00 |   | A   | č  |
| ATOM   | 2111  | CB     |      |     | 292 | 1.705   | 74.994 | 14.583 | 1.00 |      |   |     |    |
| MOTA   | 2112  | OG1    | THR  | Α   | 292 | . 2.132 | 76.199 | 15.198 | 1.00 | 0.00 |   | A   | 0  |
| ATOM   | 2113  | CG2    |      |     |     | 0.966   | 74.115 | 15.595 | 1.00 | 0.00 |   | A   | С  |
| ATOM   | 2114  | C      |      |     | 292 | 3.842   | 73.860 | 15.100 | 1.00 | 0.00 |   | A   | С  |
|        |       |        |      |     |     |         |        |        |      | 0.00 |   | A   | ŏ  |
| MOTA   | 2115  | 0      | THR  | Ą   | 292 | 4.696   | 74.655 | 15.488 | 1.00 | 0.00 |   |     | J  |
|        |       |        |      |     |     |         |        |        |      |      |   | _   |    |
| MOTA   | 2124  | N      | MET  | A   | 294 | 6.163   | 71.544 | 14.781 | 1.00 | 0.00 |   | A   | N  |
| ATOM   | 2125  | CA     | MET  |     |     | 7.456   | 71.428 | 14.153 | 1.00 | 0.00 |   | A   | С  |
| ATOM   |       |        |      |     |     | 7.432   | 70.810 | 12.749 | 1.00 | 0.00 |   | A   | С  |
|        | 2126  | CB     |      |     | 294 |         |        |        |      |      |   | A A | č  |
| MOTA   | 2127  | CG     | MET  | Α   | 294 | 6.980   | 69.356 | 12.695 | 1.00 | 0.00 |   | n   |    |
|        |       |        |      |     |     |         |        |        |      |      |   |     |    |

SUBSTITUTE SHEET (RULE 26)

| ATOM<br>ATOM<br>ATOM | 2128<br>2129<br>2130 | SD<br>CE<br>C | MET<br>MET<br>MET | A  | 294 | 7.302<br>5.765<br>8.074 | 68.586<br>67.635<br>72.771 | 11.086<br>11.135<br>13.967 | 1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00 |   | A<br>A<br>A | s<br>C<br>C |
|----------------------|----------------------|---------------|-------------------|----|-----|-------------------------|----------------------------|----------------------------|----------------------|----------------------|---|-------------|-------------|
| ATOM                 | 2131                 | 0             | MET               |    |     | 9.273<br>26.446         | 72.913<br>80.063           | 14.167<br>19.836           | 1.00                 | 0.00                 |   | А           | O           |
| ATOM                 | 2237                 | N<br>CA       | GLY               |    |     | 27.655                  | 79.459                     | 19.352                     | 1.00                 | 0.00                 |   | A           | Č           |
| ATOM                 | 2238<br>2239         | C             | GLY               |    |     | 28.578                  | 80.507                     | 18.834                     | 1.00                 | 0.00                 |   | A           | č           |
| ATOM<br>ATOM         | 2240                 | ō             | GLY               |    |     | 29.760                  | 80.472                     | 19.159                     | 1.00                 | 0.00                 |   | A           | ŏ           |
| ATOM                 | 2397<br>2398         | N<br>CA       | CYS               |    |     | 41.655<br>42.234        | 71.732<br>70.459           | 6.605<br>6.287             | 1.00                 | 0.00                 |   | A<br>A      | N<br>C      |
| ATOM<br>ATOM         | 2399                 | CB            | CYS               |    |     | 42.863                  | 69.779                     | 7.515                      | 1.00                 | 0.00                 |   | A           | č           |
| ATOM                 | 2400                 | SG            | CYS               |    |     | 43.599                  | 68.166                     | 7.110                      | 1.00                 | 0.00                 |   | A           | s           |
| ATOM                 | 2401                 | C             | CYS               |    |     | 41.233                  | 69.493                     | 5.718                      | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2402                 | 0             | CYS               | A  | 329 | 41.475                  | 68.880                     | 4.678                      | 1.00                 | 0.00                 |   | A           | 0           |
| ATOM                 | 2410                 | N             | VAL               | A  | 331 | 37.862                  | 69.897                     | . 4.685                    | 1.00                 | 0.00                 |   | A           | N           |
| ATOM                 | 2411                 | CA            | VAL               | A  | 331 | 37.110                  | 70.285                     | 3.527                      | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2412                 | CB            | VAL               |    |     | 35.726                  | 70.802                     | 3.830                      | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2413                 |               | VAL               |    |     | 35.818                  | 72.201                     | 4.457                      | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2414                 |               | VAL               |    |     | 34.894                  | 70.764                     | 2.541                      | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2415                 | C             | VAL               |    |     | 37.905                  | 71.381                     | 2.895                      | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2416                 | 0             | VAL               |    |     | 38.725                  | 72.028                     | 3.525                      | 1.00                 | 0.00                 |   | A -         |             |
| MOTA                 | 2602                 | N             | ILE               |    |     | 29.043                  | 73.634                     | 23.089                     | 1.00                 | 0.00                 |   | A .         | N           |
| ATOM                 | 2603                 | CA            | ILE               |    |     | 28.163                  | 74.773                     | 23.147                     | 1.00                 | 0.00                 |   | A<br>A      | C           |
| ATOM                 | 2604                 | CB            | ILE               |    |     | 27.907<br>27.197        | 75.584<br>74.838           | 21.890<br>20.758           | 1.00<br>1.00         | 0.00                 |   | A           | c           |
| ATOM<br>ATOM         | 2605<br>2606         |               | ILE               |    |     | 27.098                  | 76.796                     | 22.342                     | 1.00                 | 0.00                 |   | A           | č           |
| ATOM                 | 2607                 |               | ILE               |    |     | 26.164                  | 77.294                     | 21.269                     |                      | 0.00                 |   | A           | č           |
| ATOM                 | 2608                 | Ç             | ILE               |    |     | 26.835                  | 74.350                     | 23.719                     | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2609                 | Ö             | ILE               |    |     | 26.359                  | 75.000                     | 24.649                     | 1.00                 | 0.00                 |   | <b>A</b> .  | 0           |
| ATOM                 | 2688                 | N             | ASN               | A  | 365 | 13.601                  | 70.092                     | 30.959                     | 1.00                 | 0.00                 |   | A           | N           |
| ATOM                 | 2689                 | CA            | ASN               |    |     | 13.133                  | 69.958                     | 29.616                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2690                 | ÇВ            | ASN               | A  | 365 | 13.364                  | 68.544                     | 29.157                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2691                 | CG            | ASN               | A  | 365 | 13.696                  |                            | 27.735                     | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2692                 | OD1           | ASN               | A  | 365 | 13.978                  | 67.748                     |                            | 1.00                 | 0.00                 |   | A           | 0           |
| ATOM                 | 2693                 |               | ASN               |    |     | 13.690                  | 70.024                     | 27.262                     | 1.00                 | 0.00                 |   | A           | N           |
| ATOM                 | 2694                 | С             | ASN               |    |     | 11.623                  | 70.216                     | 29.644                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2695                 | 0             | ASN               |    |     | 11.080                  | 70.764                     | 30.604                     | 1.00                 | 0.00                 |   | A           | 0           |
| ATOM                 | 2754                 | N             | VAL               |    |     | 3.026                   | 54.851                     | 39.731                     | 1.00                 | 0.00                 |   | A           | N           |
| ATOM                 | 2755                 | CA            | VAL               |    |     | 4.287                   | 54.176                     | 39.706                     | 1.00                 | 0.00                 |   | A<br>A      | C           |
| ATOM                 | 2756                 | CB            | VAL               |    |     | 5.245<br>4.649          | 54.733<br>54.530           | 38.694<br>37.291           | 1.00                 | 0.00                 |   | A           | c           |
| ATOM<br>ATOM         | 2757<br>2758         |               | VAL               |    |     | 5.529                   | 56.204                     | 39.045                     | 1.00                 | 0.00                 |   | A           | č           |
| ATOM                 | 2759                 | C             | VAL               |    |     | 4.912                   | 54.337                     | 41.045                     | 1.00                 | 0.00                 |   | A           | Č           |
| ATOM                 | 2760                 | ŏ             | VAL               |    |     | 4.487                   | 55.178                     | 41.828                     | 1.00                 | 0.00                 |   | A           | 0           |
| ATOM                 | 2781                 | N             | LYS               | A  | 377 | 11.808                  | 54.899                     | 43.485                     | 1.00                 | 0.00                 |   | A           | N           |
| ATOM                 | 2782                 | CA            | LYS               |    |     | 12.718                  | 55.066                     | 44.594                     | 1.00                 | 0.00                 |   | A           | С           |
| MOTA                 | 2783                 | СВ            | LYS               | A  | 377 | 13.390                  | 56.450.                    |                            | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2784                 | CG            | LYS               | A  | 377 | 14.361                  | 56.719                     | 43.459                     | 1.00                 | 0.00                 |   | A           | С           |
| MOTA                 | 2785                 | CD            | LYS               |    |     | 15.636                  | 55.876                     | 43.490                     | 1.00                 | 0.00                 |   | A           | C           |
| MOTA                 | 2786                 | CE            | LYS               |    |     | 16.695                  | 56.374                     | 42.503                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2787                 | NZ            | LYS               |    |     | 18.006<br>11.981        | 55.759                     | 42.806                     | 1.00                 | 0.00                 |   | A<br>A      | N<br>C      |
| ATOM<br>ATOM         | 2788<br>2789         | с<br>0        | LYS<br>LYS        |    |     | 12.351                  | 54.929<br>55.580           | 45.906<br>46.884           | 1.00                 | 0.00                 |   | A           | ŏ           |
| ATOM                 | 2846                 | N             | MET               | 71 | 385 | 0.870                   | 62.712                     | 37.766                     | 1.00                 | 0.00                 |   | A           | N           |
| MOTA                 | 2847                 | CA            | MET               |    |     | 1.620                   |                            | 38.468                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2848                 | СВ            | MET               |    |     | 2.235                   | 63.236                     | 39.790                     | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2849                 | CG            | MET               |    |     | 2.820                   | 64.373                     | 40.630                     | 1.00                 | 0.00                 |   | A           | С           |
| ATOM                 | 2850                 | SD            | MET               |    |     | 3.316                   | 63.898                     | 42.312                     | 1.00                 | 0.00                 |   | A           | S           |
| ATOM                 | 2851                 | CE            | MET               |    |     | 3.881                   | 65.564                     | 42.757                     | 1.00                 | 0.00                 |   | A           | C           |
| ATOM                 | 2852                 | С             | MET               |    |     | 2.724                   | 64.256                     | 37.599                     | 1.00                 | 0.00                 |   | A           | C           |
| MOTA                 | 2853                 | 0             | MET               | A  | 385 | 3,459                   | 63.505                     | 36.958                     | 1.00                 | 0.00                 |   | Α           | 0           |
| MOTA                 | 2869                 | N             | ILE               | Α  | 388 | 9.358                   | 67.098                     | 36.618                     | 1.00                 | 0.00                 | • | A           | N           |
| MOTA                 | 2870                 | CA            | ILE               |    |     | 10.258                  | 68.025                     | 36.000                     | 1.00                 | 0.00                 |   | A           | С           |
| MOTA                 | 2871                 | СВ            | ILE               |    |     | 10.191                  | 69.392                     | 36.634                     | 1.00                 | 0.00                 |   | A           | C           |
| MOTA                 | 2872                 |               | ILE               |    |     | 10.344                  | 69.270                     | 38.155                     | 1.00                 | 0.00                 |   | A<br>A      | C           |
| MOTA                 | 2873                 | CG1           | ILE               | A  | 388 | 11.148                  | 70.373                     | 35.957                     | 1.00                 | 0.00                 |   | ^           | ·           |

Figure 8

| N TOM | 2874        | נמי | ILE | Δ  | 388 | 10.853 | 71.828 | 36.324  | 1.00 | 0.00 | A   | С   |
|-------|-------------|-----|-----|----|-----|--------|--------|---------|------|------|-----|-----|
| ATOM  |             |     | ILE |    |     | 11.645 | 67.422 | 36.022  | 1.00 | 0.00 | A   | č   |
| ATOM  | 2875        | C   |     |    |     |        |        |         |      | 0.00 | A   | ŏ   |
| ATOM  | 2876        | 0   | ILE |    |     | 12.221 | 67.141 | 37.073  | 1.00 |      |     |     |
| ATOM  | 2877        | N   | THR |    |     | 12.223 | 67.183 | 34.821  | 1.00 | 0.00 | A   | N   |
| MOTA  | 2878        | CA  | THR |    |     | 13.519 | 66.560 | 34.751  | 1.00 | 0.00 | A   | С   |
| ATOM  | 2879        | CB  | THR | Α  | 389 | 13.681 | 65.594 | 33.600  | 1.00 | 0.00 | A   | С   |
| ATOM  | 2880        | OG1 | THR | Α  | 389 | 14.984 | 65.031 | 33.616  | 1.00 | 0.00 | A   | 0   |
| MOTA  | 2881        | CG2 | THR | Α  | 389 | 13.393 | 66.280 | 32.252  | 1.00 | 0.00 | A   | С   |
| MOTA  | 2882        | С   | THR | Α  | 389 | 14.550 | 67.644 | 34.694  | 1.00 | 0.00 | A   | С   |
| ATOM  | 2883        | Ō   | THR |    |     | 14.450 | 68.589 | 33.916  | 1.00 | 0.00 | A   | 0   |
|       | 2000        | •   |     | •• |     |        |        |         |      |      |     |     |
| ATOM  | 2936        | N   | ASN | Δ  | 397 | 26.987 | 68.171 | 35.454  | 1.00 | 0.00 | A   | N   |
|       |             |     | ASN |    |     | 27.525 | 67.227 | 36.423  | 1.00 | 0.00 | A   | c   |
| ATOM  | 2937        | CA  |     |    |     |        |        | 35.987  |      | 0.00 |     | Č   |
| ATOM  | 2938        | CB  | ASN |    |     | 27.314 | 65.762 |         | 1.00 |      | A   |     |
| ATOM  | 2939        | CG  | ASN |    |     | 27.581 | 64.820 | 37.158  | 1.00 | 0.00 | A   | C   |
| MOTA  | 2940        |     | asn |    |     | 28.721 | 64.566 | 37.546  | 1.00 | 0.00 | A   | 0   |
| ATOM  | 2941        | ND2 | ASN |    |     | 26.481 | 64.273 | 37.740  | 1.00 | 0.00 | A   | N   |
| ATOM  | 2942        | С   | ASN | Α  | 397 | 29.003 | 67.459 | 36.629  | 1.00 | 0.00 | · A | С   |
| MOTA  | 2943        | 0   | ASN | Α  | 397 | 29.795 | 67.478 | 35.688  | 1.00 | 0.00 | A   | 0   |
| ATOM  | 2944        | N   | ASP | Α  | 398 | 29.367 | 67.703 | 37.909  | 1.00 | 0.00 | A   | N   |
| ATOM  | 2945        | CA  | ASP | Α  | 398 | 30.682 | 68.104 | 38.333  | 1.00 | 0.00 | · A | С   |
| ATOM  | 2946        | ÇВ  | ASP |    |     | 30.757 | 68.379 | 39.845  | 1.00 | 0.00 | A   | С   |
| ATOM  | 2947        | ĊĠ  | ASP |    |     |        | 69.675 | 40.127  | 1.00 | 0.00 | A   | С   |
| ATOM  | 2948        |     | ASP |    |     | 30.376 | 70.715 | 39.515  | 1.00 | 0.00 | A   | ō   |
|       |             |     | ASP |    |     | 29.070 | 69.647 | 40.965  | 1.00 | 0:00 | A   | ō   |
| MOTA  | 2949        |     |     |    |     |        |        |         |      |      | A   | č   |
| ATOM  | 2950        | C   | ASP |    |     | 31.693 | 67.049 | 38.024  | 1.00 | 0.00 |     |     |
| ATOM  | 2951        | 0   | ASP | Α  | 398 | 32.814 | 67.371 | 37.637  | 1.00 | 0.00 | A   | 0   |
|       |             |     |     |    |     |        |        |         |      |      |     |     |
| ATOM  | 3046        | N   | GLY | Α  | 410 | 37.264 | 70.718 | 25.575  | 1.00 | 0.00 | Α   | N.  |
| MOTA  | 3047        | CA  | GLY | A  | 410 | 38.055 | 69.637 | 26.091  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3048        | С   | GLY | A  | 410 | 37.204 | 68.633 | 26.817  | 1.00 | 0.00 | A   | C'  |
|       | 3049        | 0   | GLY |    |     | 37.635 | 67.492 | 26.982  | 1.00 | 0.00 | · A | 0   |
|       | · · · · · · |     |     |    |     |        |        |         |      |      | 1   |     |
| ATOM  | 3087        | N   | LYS | А  | 415 | 42.674 | 62.351 | 25.280  | 1.00 | 0.00 | A.  | N   |
| ATOM  | 3088        | CA  | LYS |    |     | 44.087 | 62.612 | 25.381  | 1.00 | 0.00 | A   | C   |
|       |             |     | LYS |    |     | 44.882 | 61.355 | 25.786. |      | 0.00 | A'  | ٠č. |
| ATOM  | 3089        | CB  |     |    |     |        |        |         |      |      | · A | c   |
| MOTA  | 3090        | CG  | LYS |    |     | 44.557 | 60.120 | 24.940  | 1.00 | 0.00 |     |     |
| ATOM  | 3091        | CD  | LYS |    |     | 45.532 | 58.957 | 25.121  | 1.00 | 0.00 |     | C   |
| MOTA  | 3092        | CE  | LYS |    |     | 45.176 | 57.737 | 24.268  | 1.00 | 0.00 | A   | C   |
| ATOM  | 3093        | NZ  | LYS | А  | 415 | 46.159 | 56.656 | 24.489  | 1.00 | 0.00 | A   | N   |
| ATOM  | 3094        | С   | LYS | Α  | 415 | 44.595 | 63.115 | 24.064  | 1.00 | 0.00 | A   | С   |
| MOTA  | 3095        | 0   | LYS | A  | 415 | 45.385 | 64.056 | 24.016  | 1.00 | 0.00 | A   | 0   |
| MOTA  | 3096        | N   | SER | Α  | 416 | 44.128 | 62.507 | 22.952  | 1.00 | 0.00 | A   | N   |
| ATOM  | 3097        | CA  | SER | Α  | 416 | 44.470 | 62.930 | 21.623  | 1.00 | 0.00 | A   | C   |
| ATOM  | 3098        | CB  | SER |    |     | 44.567 | 61.752 | 20.631  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3099        | OG  |     |    | 416 | 45.263 | 62.125 | 19.448  | 1.00 | 0.00 | A   | 0   |
| ATOM  | 3100        | c   |     |    | 416 |        | 63.866 | 21.225  | 1.00 | 0.00 | A   | C   |
|       |             |     |     |    |     | 42.712 | 64.445 | 22.101  | 1.00 | 0.00 | A   | ō   |
| ATOM  | 3101        | 0   | SEK | А  | 416 | 42.712 | 04.445 | 22.101  | 1.00 | 0.00 | •   | ٠   |
|       | 22.40       |     |     | _  | 400 | 07 564 | CO 140 | 20 275  | 1 00 | 0.00 |     | 3.7 |
| ATOM  | 3149        | N   | ASP |    |     | 27.564 | 60.140 | 28.275  | 1.00 | 0.00 | A   | N   |
| ATOM  | 3150        | CA  | ASP |    |     | 26.228 | 59.724 | 28.603  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3151        | CB  | ASP | Α  | 423 | 26.206 | 58.549 | 29.604  | 1.00 | 0.00 | A   | С   |
| MOTA  | 3152        | CG  | ASP | Α  | 423 | 26.966 | 58.927 | 30.872  | 1.00 | 0.00 | A   | С   |
| MOTA  | 3153        | OD1 | ASP | Α  | 423 | 28.227 | 58.951 | 30.839  | 1.00 | 0.00 | A   | 0   |
| ATOM  | 3154        | OD2 | ASP | Α  | 423 | 26.296 | 59.170 | 31.906  | 1.00 | 0.00 | A   | 0   |
| ATOM  | 3155        | С   | ASP |    |     | 25.473 | 60.894 | 29.169  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3156        | ō   | ASP |    |     | 24.246 | 60.954 | 29.129  | 1.00 | 0.00 | · A | 0   |
|       |             | •   |     | •• |     |        |        |         |      |      |     |     |
| ATOM  | 3241        | N   | MET | 'n | 434 | 12.393 | 61.971 | 23.937  | 1.00 | 0.00 | A   | N   |
| ATOM  | 3242        |     | MET |    |     | 13.599 | 62.580 | 23.405  | 1.00 | 0.00 | A   | Ċ   |
|       | 3243        | CA  | MET |    |     | 14.739 | 61.571 | 23.189  | 1.00 | 0.00 | A   | č   |
| ATOM  |             | CB  |     |    |     |        |        | 22.839  | 1.00 | 0.00 |     | č   |
| MOTA  | 3244        | CG  | MET |    |     | 16.076 | 62.223 |         |      |      | A   |     |
| ATOM  | 3245        | SD  | MET |    |     | 17.438 | 61.044 | 22.603  | 1.00 | 0.00 | A   | s   |
| ATOM  | 3246        | CE  | MET |    |     | 18.746 | 62.304 | 22.594  | 1.00 | 0.00 | A   | C   |
| ATOM  | 3247        | C   | MET | A  | 434 | 13.334 | 63.266 | 22.107  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3248        | 0   | MET | A  | 434 | 12.503 | 62.790 | 21.331  | 1.00 | 0.00 | A   | 0   |
|       |             |     |     |    |     |        |        |         |      |      |     |     |
| ATOM  | 3255        | N   | MET | A  | 436 | 12,657 | 64.861 | 18.803  | 1.00 | 0.00 | A   | N   |
| ATOM  | 3256        | CA  | MET |    |     | 12.285 | 64.337 | 17.531  | 1.00 | 0.00 | A   | C   |
| ATOM  | 3257        | СВ  | MET |    |     | 10.879 | 64.828 | 17.230  | 1.00 | 0.00 | A   | С   |
| ATOM  | 3258        |     |     |    |     | 10.693 | 65.224 | 15.788  | 1.00 | 0.00 | A   | Č   |
|       |             | CG  | MET |    |     |        | 64.917 | 15.213  | 1.00 | 0.00 | A   | s   |
| ATOM  | 3259        | SD  | MET |    |     | 9.025  | 63.235 | 14.757  | 1.00 | 0.00 | A   | C   |
| ATOM  | 3260        | CE  | MET |    |     | 9.533  |        |         |      |      |     |     |
| ATOM  | 3261        | С   | MET |    |     | 13.228 | 64.832 | 16.481  | 1.00 | 0.00 | A   | .c  |
| ATOM  | 3262        | 0   | MET | A  | 436 | 13.533 | 64.160 | 15.501  | 1.00 | 0.00 | A   | 0   |
|       |             |     |     |    |     |        |        |         |      |      |     |     |

| N TO M                                                       | 3276                                                                                                                                                                                         | N                                                                                                                                                                                                                                                                                            | GLY                                                                       | 2                                                                                           | 439                                                                                                                                                    | 18.467                                                                                                                                                                                                                                                           | 64.616                                                                                                                                                                                                                                       | 15.248                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|
| MOTA                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        | 19.298                                                                                                                                                                                                                                                           | 64.416                                                                                                                                                                                                                                       | 14.093                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | С                                      |
| ATOM                                                         | 3277 .                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              | GLY                                                                       |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 65.648                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  | 1.00                                                         | 0.00                                                        | A                                                                                           | č                                      |
| MOTA                                                         | 3278                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                            | GLY                                                                       |                                                                                             |                                                                                                                                                        | 19.344                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              | 13.230                                                                                                                                                                                                                                                           |                                                              |                                                             |                                                                                             |                                        |
| MOTA                                                         | 3279                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                            | GLY                                                                       | A                                                                                           | 439                                                                                                                                                    | 20.407                                                                                                                                                                                                                                                           | 66.009                                                                                                                                                                                                                                       | 12.723                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | 0                                      |
|                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3293                                                                                                                                                                                         | N                                                                                                                                                                                                                                                                                            | ARG                                                                       | Α                                                                                           | 442                                                                                                                                                    | 21.410                                                                                                                                                                                                                                                           | 68.509                                                                                                                                                                                                                                       | 14.877                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
| ATOM                                                         | 3294                                                                                                                                                                                         | CA                                                                                                                                                                                                                                                                                           | ARG                                                                       | Α                                                                                           | 442                                                                                                                                                    | ^ 22.829                                                                                                                                                                                                                                                         | 68.271                                                                                                                                                                                                                                       | 14.875                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | С                                      |
| ATOM                                                         | 3295                                                                                                                                                                                         | CB                                                                                                                                                                                                                                                                                           | ARG                                                                       |                                                                                             |                                                                                                                                                        | 23.163                                                                                                                                                                                                                                                           | 66.811                                                                                                                                                                                                                                       | 15.215                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | С                                      |
|                                                              |                                                                                                                                                                                              | CG                                                                                                                                                                                                                                                                                           | ARG                                                                       |                                                                                             |                                                                                                                                                        | 24.612                                                                                                                                                                                                                                                           | 66.591                                                                                                                                                                                                                                       | 15.644                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | С                                      |
| MOTA                                                         | 3296                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 65.133                                                                                                                                                                                                                                       | 15.979                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | č                                      |
| ATOM                                                         | 3297                                                                                                                                                                                         | CD                                                                                                                                                                                                                                                                                           | ARG                                                                       |                                                                                             |                                                                                                                                                        | 24.925                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3298                                                                                                                                                                                         | NE                                                                                                                                                                                                                                                                                           | ARG                                                                       |                                                                                             |                                                                                                                                                        | 26.359                                                                                                                                                                                                                                                           | 65.056                                                                                                                                                                                                                                       | 16.375                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
| ATOM                                                         | 3299                                                                                                                                                                                         | CZ                                                                                                                                                                                                                                                                                           | ARG                                                                       | A                                                                                           | 442                                                                                                                                                    | 26.935                                                                                                                                                                                                                                                           | 63.841                                                                                                                                                                                                                                       | 16.608                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | C                                      |
| ATOM                                                         | 3300                                                                                                                                                                                         | NH1                                                                                                                                                                                                                                                                                          | ARG                                                                       | Α                                                                                           | 442                                                                                                                                                    | 26.199                                                                                                                                                                                                                                                           | 62.700                                                                                                                                                                                                                                       | 16.475                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
| ATOM                                                         | 3301                                                                                                                                                                                         | NH2                                                                                                                                                                                                                                                                                          | ARG                                                                       | A                                                                                           | 442                                                                                                                                                    | 28.249                                                                                                                                                                                                                                                           | 63.766                                                                                                                                                                                                                                       | 16.974                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | . А                                                                                         | N                                      |
| ATOM                                                         | 3302                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                            | ARG                                                                       |                                                                                             |                                                                                                                                                        | 23.347                                                                                                                                                                                                                                                           | 68.576                                                                                                                                                                                                                                       | 13.506                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | C                                      |
| ATOM                                                         | 3303                                                                                                                                                                                         | ō                                                                                                                                                                                                                                                                                            | ARG                                                                       |                                                                                             |                                                                                                                                                        | 24.449                                                                                                                                                                                                                                                           | 69.103                                                                                                                                                                                                                                       | 13.343                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | 0                                      |
|                                                              | 5500                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3374                                                                                                                                                                                         | N                                                                                                                                                                                                                                                                                            | THR                                                                       | a                                                                                           | 451                                                                                                                                                    | 29.964                                                                                                                                                                                                                                                           | 75.996                                                                                                                                                                                                                                       | 7.772                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
|                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        | 29.873                                                                                                                                                                                                                                                           | 76.803                                                                                                                                                                                                                                       | 6.585                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3375                                                                                                                                                                                         | CA                                                                                                                                                                                                                                                                                           | THR                                                                       |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              | 0.00                                                        | · A                                                                                         |                                        |
| MOTA                                                         | 3376                                                                                                                                                                                         | CB                                                                                                                                                                                                                                                                                           | THR                                                                       |                                                                                             |                                                                                                                                                        | 28.577                                                                                                                                                                                                                                                           | 76.659                                                                                                                                                                                                                                       | 5.820                                                                                                                                                                                                                                                            | 1.00                                                         |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3377                                                                                                                                                                                         | OG1                                                                                                                                                                                                                                                                                          | THR                                                                       | A                                                                                           | 451                                                                                                                                                    | 28.716                                                                                                                                                                                                                                                           | 77.256                                                                                                                                                                                                                                       | 4.539                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3378                                                                                                                                                                                         | CG2                                                                                                                                                                                                                                                                                          | THR                                                                       | A                                                                                           | 451                                                                                                                                                    | 27.398                                                                                                                                                                                                                                                           | 77.293                                                                                                                                                                                                                                       | 6.570                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| MOTA                                                         | 3379                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                            | THR                                                                       | A                                                                                           | 451 °                                                                                                                                                  | 30.172                                                                                                                                                                                                                                                           | 78.247                                                                                                                                                                                                                                       | 6.888                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3380                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                            | THR                                                                       | Α                                                                                           | 451                                                                                                                                                    | 30.815                                                                                                                                                                                                                                                           | 78.912                                                                                                                                                                                                                                       | 6.076                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        | A                                                                                           | 0                                      |
|                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3456                                                                                                                                                                                         | N                                                                                                                                                                                                                                                                                            | GLN                                                                       | А                                                                                           | 461                                                                                                                                                    | 33.030                                                                                                                                                                                                                                                           | 93.789                                                                                                                                                                                                                                       | 17.869                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
|                                                              | 3457                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | GLN                                                                       |                                                                                             |                                                                                                                                                        | 33.393                                                                                                                                                                                                                                                           | 95.182                                                                                                                                                                                                                                       | 17.949                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | С                                      |
| ATOM                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 96.112                                                                                                                                                                                                                                       | 17.751                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3458                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | GLN                                                                       |                                                                                             |                                                                                                                                                        | 32.187                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              | 0.00                                                        | A                                                                                           |                                        |
|                                                              | 3459                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | GLN                                                                       |                                                                                             |                                                                                                                                                        | 31.511                                                                                                                                                                                                                                                           | 95.981                                                                                                                                                                                                                                       | 16.387                                                                                                                                                                                                                                                           | 1.00                                                         |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3460                                                                                                                                                                                         | CD                                                                                                                                                                                                                                                                                           | GLN                                                                       |                                                                                             |                                                                                                                                                        | 30.261                                                                                                                                                                                                                                                           | 96.846                                                                                                                                                                                                                                       | 16.422                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3461                                                                                                                                                                                         | OE1                                                                                                                                                                                                                                                                                          | GLN                                                                       | Α                                                                                           | 461                                                                                                                                                    | 29.159                                                                                                                                                                                                                                                           | 96.350                                                                                                                                                                                                                                       | 16.651                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3462                                                                                                                                                                                         | NE2                                                                                                                                                                                                                                                                                          | GLN                                                                       | A                                                                                           | 461                                                                                                                                                    | 30.432                                                                                                                                                                                                                                                           | 98.176                                                                                                                                                                                                                                       | 16.193                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
| ATOM                                                         | 3463                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | GLN                                                                       | Α                                                                                           | 461                                                                                                                                                    | 33.889                                                                                                                                                                                                                                                           | 95.445                                                                                                                                                                                                                                       | 19.324                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | . С                                    |
| ATOM                                                         | 3464                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | GLN                                                                       |                                                                                             |                                                                                                                                                        | 35.020                                                                                                                                                                                                                                                           | 95.884                                                                                                                                                                                                                                       | 19.531                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | . 0                                    |
| ATOM.                                                        | 3101                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              | <b>Q</b> 24.                                                              | ••                                                                                          |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             |                                        |
| B MOM :                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              | ASP                                                                       | 70                                                                                          | 166                                                                                                                                                    | 36.424                                                                                                                                                                                                                                                           | 91.470                                                                                                                                                                                                                                       | 27.010                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | N                                      |
| ATOM                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        | 35.407                                                                                                                                                                                                                                                           | 92.176                                                                                                                                                                                                                                       | 27.748                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3497                                                                                                                                                                                         | CA                                                                                                                                                                                                                                                                                           | ASP                                                                       |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3498                                                                                                                                                                                         | CB                                                                                                                                                                                                                                                                                           |                                                                           |                                                                                             | 466                                                                                                                                                    | 35.176                                                                                                                                                                                                                                                           | 93.594                                                                                                                                                                                                                                       | 27.195                                                                                                                                                                                                                                                           | 1.00                                                         |                                                             |                                                                                             |                                        |
| ATOM                                                         | 3499                                                                                                                                                                                         | CG                                                                                                                                                                                                                                                                                           | ASP                                                                       |                                                                                             |                                                                                                                                                        | 36.377                                                                                                                                                                                                                                                           | 94.454                                                                                                                                                                                                                                       | 27.567                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | . А                                                                                         |                                        |
| ATOM                                                         | 3500                                                                                                                                                                                         | OD1                                                                                                                                                                                                                                                                                          | ASP                                                                       | Α                                                                                           | 466                                                                                                                                                    | 37.116                                                                                                                                                                                                                                                           | 94.064                                                                                                                                                                                                                                       | 28.510                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| MOTA                                                         | 3501                                                                                                                                                                                         | OD2                                                                                                                                                                                                                                                                                          | ASP                                                                       | Α                                                                                           | 466                                                                                                                                                    | 36.569                                                                                                                                                                                                                                                           | 95.514                                                                                                                                                                                                                                       | 26.914                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| MOTA                                                         | 3502                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                            | ASP                                                                       | A                                                                                           | 466                                                                                                                                                    | 34.047                                                                                                                                                                                                                                                           | 91.503                                                                                                                                                                                                                                       | 27.822                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | C                                      |
| ATOM                                                         | 3503                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        | 33.450                                                                                                                                                                                                                                                           | 91.480                                                                                                                                                                                                                                       | 28.897                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | . 0                                    |
| ATOM                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                              |                                                             |                                                                                             | N                                      |
| 111011                                                       |                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                            | ASP                                                                       |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 90.944                                                                                                                                                                                                                                       | 26.699                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A                                                                                           | . 14                                   |
| 3 TOM                                                        | 3504                                                                                                                                                                                         | O<br>N                                                                                                                                                                                                                                                                                       | ASP<br>ILE                                                                | A                                                                                           | 467                                                                                                                                                    | 33.528                                                                                                                                                                                                                                                           | 90.944                                                                                                                                                                                                                                       | 26.699<br>26.504                                                                                                                                                                                                                                                 | 1.00                                                         | 0.00                                                        | A                                                                                           |                                        |
| ATOM                                                         | 3504<br>3505                                                                                                                                                                                 | O<br>N<br>CA                                                                                                                                                                                                                                                                                 | ASP<br>ILE<br>ILE                                                         | A<br>A                                                                                      | 467<br>467                                                                                                                                             | 33.528<br>32.170                                                                                                                                                                                                                                                 | 90.450                                                                                                                                                                                                                                       | 26.504                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | A<br>A                                                                                      | . с                                    |
| MOTA                                                         | 3504<br>3505<br>3506                                                                                                                                                                         | O<br>N<br>CA<br>CB                                                                                                                                                                                                                                                                           | ASP<br>ILE<br>ILE<br>ILE                                                  | A<br>A<br>A                                                                                 | 467<br>467<br>467                                                                                                                                      | 33.528<br>32.170<br>31.958                                                                                                                                                                                                                                       | 90.450<br>89.932                                                                                                                                                                                                                             | 26.504<br>25.103                                                                                                                                                                                                                                                 | 1.00<br>1.00                                                 | 0.00                                                        | A<br>A<br>A                                                                                 | C                                      |
| MOTA<br>MOTA                                                 | 3504<br>3505<br>3506<br>3507                                                                                                                                                                 | O<br>N<br>CA<br>CB<br>CG2                                                                                                                                                                                                                                                                    | ASP<br>ILE<br>ILE<br>ILE<br>ILE                                           | A<br>A<br>A                                                                                 | 467<br>467<br>467<br>467                                                                                                                               | 33.528<br>32.170<br>31.958<br>32.770                                                                                                                                                                                                                             | 90.450<br>89.932<br>88.637                                                                                                                                                                                                                   | 26.504<br>25.103<br>24.935                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        | A<br>A<br>A                                                                                 | CCC                                    |
| MOTA                                                         | 3504<br>3505<br>3506                                                                                                                                                                         | O<br>N<br>CA<br>CB<br>CG2<br>CG1                                                                                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                                    | A<br>A<br>A<br>A                                                                            | 467<br>467<br>467<br>467<br>467                                                                                                                        | 33.528<br>32.170<br>31.958<br>32.770<br>30.465                                                                                                                                                                                                                   | 90.450<br>89.932<br>88.637<br>89.789                                                                                                                                                                                                         | 26.504<br>25.103<br>24.935<br>24.766                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A                                                                                 | C C C                                  |
| MOTA<br>MOTA                                                 | 3504<br>3505<br>3506<br>3507                                                                                                                                                                 | O<br>N<br>CA<br>CB<br>CG2<br>CG1                                                                                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE                                           | A<br>A<br>A<br>A                                                                            | 467<br>467<br>467<br>467<br>467                                                                                                                        | 33.528<br>32.170<br>31.958<br>32.770                                                                                                                                                                                                                             | 90.450<br>89.932<br>88.637<br>89.789<br>89.612                                                                                                                                                                                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A<br>A                                                                            | . C                                    |
| MOTA<br>MOTA<br>MOTA                                         | 3504<br>3505<br>3506<br>3507<br>3508                                                                                                                                                         | O<br>N<br>CA<br>CB<br>CG2<br>CG1                                                                                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                                    | A<br>A<br>A<br>A                                                                            | 467<br>467<br>467<br>467<br>467                                                                                                                        | 33.528<br>32.170<br>31.958<br>32.770<br>30.465                                                                                                                                                                                                                   | 90.450<br>89.932<br>88.637<br>89.789                                                                                                                                                                                                         | 26.504<br>25.103<br>24.935<br>24.766                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A                                                                                 | 00000                                  |
| MOTA<br>MOTA<br>MOTA                                         | 3504<br>3505<br>3506<br>3507<br>3508<br>3509                                                                                                                                                 | O<br>N<br>CA<br>CB<br>CG2<br>CG1<br>CD1                                                                                                                                                                                                                                                      | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                             | A<br>A<br>A<br>A<br>A                                                                       | 467<br>467<br>467<br>467<br>467<br>467                                                                                                                 | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198                                                                                                                                                                                                         | 90.450<br>89.932<br>88.637<br>89.789<br>89.612                                                                                                                                                                                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | A<br>A<br>A<br>A                                                                            | 00000                                  |
| MOTA<br>MOTA<br>MOTA<br>MOTA                                 | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510                                                                                                                                         | O<br>N<br>CA<br>CB<br>CG2<br>CG1<br>CD1                                                                                                                                                                                                                                                      | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                             | A<br>A<br>A<br>A<br>A                                                                       | 467<br>467<br>467<br>467<br>467<br>467                                                                                                                 | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709                                                                                                                                                                                               | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410                                                                                                                                                                                     | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        | A<br>A<br>A<br>A<br>A                                                                       | 00000                                  |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511                                                                                                                                 | O<br>N<br>CA<br>CB<br>CG2<br>CG1<br>CD1<br>C                                                                                                                                                                                                                                                 | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                             | A<br>A<br>A<br>A<br>A<br>A                                                                  | 467<br>467<br>467<br>467<br>467<br>467                                                                                                                 | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709                                                                                                                                                                                               | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410                                                                                                                                                                                     | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        | A<br>A<br>A<br>A<br>A                                                                       |                                        |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511                                                                                                                                 | O<br>N<br>CA<br>CB<br>CG2<br>CG1<br>CD1<br>C                                                                                                                                                                                                                                                 | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                             | A<br>A<br>A<br>A<br>A<br>A                                                                  | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>467                                                                                                   | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399                                                                                                                                                                           | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578                                                                                                                                                                           | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                | A<br>A<br>A<br>A<br>A<br>A                                                                  | C C C C C N                            |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM         | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511<br>3520<br>3521                                                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA                                                                                                                                                                                                                                                               | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                      | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>467<br>469                                                                                            | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986                                                                                                                                                                 | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930                                                                                                                                                       | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | A<br>A<br>A<br>A<br>A<br>A                                                                  | CCCCCONC                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511<br>3520<br>3521<br>3522                                                                                                         | O N CA CB CG1 CD1 C O N CA CB                                                                                                                                                                                                                                                                | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469                                                                                     | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149                                                                                                                                                       | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986                                                                                                                                             | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | C C C C C N C C C                      |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511<br>3520<br>3521<br>3522<br>3523                                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2                                                                                                                                                                                                                                                        | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469                                                                                     | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427                                                                                                                                             | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902                                                                                                                                   | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             |                                        |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511<br>3520<br>3521<br>3522                                                                                                         | O N CA CB CG2 CG1 CD1 C O N CA CB CG2                                                                                                                                                                                                                                                        | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469                                                                                     | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977                                                                                                                                   | 90.450<br>89.932<br>88.637<br>89.789<br>8.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621                                                                                                                          | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        |                                        |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3511<br>3520<br>3521<br>3522<br>3523                                                                                                 | O N CA CG2 CG1 CD1 C O N CA CB CG2 CG1                                                                                                                                                                                                                                                       | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE               | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                         | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469                                                                              | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427                                                                                                                                             | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902                                                                                                                                   | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C C C C C C C C C C C C C C C  |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3510<br>3511<br>3520<br>3521<br>3522<br>3523<br>3524<br>3525                                                                                         | O N CA CG2 CG1 CD1 C O N CA CB CG2 CG1                                                                                                                                                                                                                                                       | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE        | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469                                                                              | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977                                                                                                                                   | 90.450<br>89.932<br>88.637<br>89.789<br>8.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621                                                                                                                          | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | C C C C C C C C C C C C C C C C C C C  |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3522<br>3523<br>3524<br>3525<br>3526                                                                                 | O N CA CB CG1 CD1 C CA CB CG2 CG1 CD1 C CA CB CG2 CG1 CD1 C                                                                                                                                                                                                                                  | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | A A A A A A A A A A A A A A A A A A A                                                       | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469                                                                | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233                                                                                                                         | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.986<br>83.902<br>82.621<br>81.758                                                                                                     | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C C C C C C C C C C C C C C C  |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3510<br>3511<br>3520<br>3521<br>3522<br>3523<br>3524<br>3525                                                                                         | O N CA CB CG1 CD1 C O N CA CB CG2 CG1 CD1 CD1 CD1 CD1 CD1 CD1 CD1 CD1 CD1 CD                                                                                                                                                                                                                 | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | A A A A A A A A A A A A A A A A A A A                                                       | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469                                                                | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784                                                                                                               | 90.450<br>89.932<br>88.637<br>89.612<br>89.610<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451                                                                                                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C C C C C C C C C C C C C C C  |
| MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3511<br>3520<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527                                                                         | O N CA CG1 CD1 C CA CG2 CG1 CD1 CA CB CG2 CG1 CD1 C                                                                                                                                                                                                                                          | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAAAAAAAAA                                                                               | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>469                                                         | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178                                                                                                     | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452                                                                                           | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C C C C C C C C C C C C C C C  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N N CA CB CG2 CG1 CD1 C O N                                                                                                                                                                                                                | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | A A A A A A A A A A A A A A                                                                 | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>469<br>469<br>469                                           | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178                                                                                                     | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.986<br>83.986<br>83.982<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419                                                             | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | C C C C C C C C C C C C C C C C C C C  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N CA                                                                                                                                                                                                               | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAAAAA                                                                            | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472                                                  | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211                                                                                 | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099                                                                       | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C C C C C C C C C C C C C C C  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C CG1 CD1 C C CG1 CD1 C C C CG CGB CCB CCB CCB CCB CCB CCB CC                                                                                                                                                                                | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAA AAA                                                                           | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472                                                         | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841                                                                       | 90.450<br>89.932<br>88.637<br>89.612<br>89.610<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.451<br>85.099<br>86.476                                                                       | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909-<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       |                                        |
| MOTA MOTA MOTA MOTO MOTA MOTO MOTO MOTO                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3544<br>3544<br>3545                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O CA CB CG2 CG1 CD1 C O CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG1 CD1 C CA CB CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2                        | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAA AAAA                                                                          | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472                                           | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.7784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078                                                                                | 90.450<br>89.932<br>88.637<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370                                                             | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       |                                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527                                                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C CGC CG1 CCB CCG2 CG1 CCB CCG2 CG1 CCB CCG2 CG1                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472                                    | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>11.078<br>19.301                                                   | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.7370<br>86.474                                                  | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       |                                        |
| MOTA MOTA MOTA MOTO MOTA MOTO MOTO MOTO                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3544<br>3544<br>3545                                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C CGC CG1 CCB CCG2 CG1 CCB CCG2 CG1 CCB CCG2 CG1                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472                                    | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642                                         | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       |                                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3511<br>3520<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3545<br>3545<br>3545                                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C CGC CG1 CCB CCG2 CG1 CCB CCG2 CG1 CCB CCG2 CG1                                                                                                                                                                                             | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAA AAAAA                                                                         | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472                                    | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>11.078<br>19.301                                                   | 90.450<br>89.932<br>88.637<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793<br>84.176                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCC                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3544<br>3545<br>3546<br>3547<br>3548                         | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C O CA CB CG2 CG1 CD1 C C C C C CG1 CD1 C C C CG1 CD1 C C C CG1 CD1 C C CG2 CG1 CD1 C C CG1 CD1 C C CG1 CD1 C C CG1 CD1 C C C CG1 CD1 C C C C C C C C C C C C C C C C C                                                                      | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAA AAAAAA                                                                        | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472               | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642                                         | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793                               | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCC                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3544<br>3545<br>3546<br>3547<br>3548<br>3548<br>3548                 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O CA CB CG2 CG1 CD1 C C O CA CB CG2 CG1 CD1 C C O C C C C C C C C C C C C C C C C                                                                                                                                                            | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                      | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472        | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642<br>19.029<br>18.456                     | 90.450<br>89.932<br>88.637<br>89.612<br>89.610<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793<br>84.176<br>83.750                     | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCCO                       |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3511<br>3520<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3544<br>3545<br>3546<br>3547<br>3549<br>3550         | ONCACBCG2CG1CD1CCONCACBCG2CG1CD1CCONCACBCG2CG1CD1CCONCACBCG2CG1CD1CCONCACGCCG1CCD1CCONCACGCCG1CCONCACGCCGC                                                                                                                                                                                   | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | АААААА АААААА ААААААА                                                                       | 467<br>467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472<br>472 | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642<br>19.029<br>18.654                     | 90.450<br>89.932<br>88.637<br>89.612<br>89.610<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793<br>84.176<br>83.804                     | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147<br>30.145<br>32.384                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCON                       |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3544<br>3545<br>3546<br>3547<br>3548<br>3548<br>3550<br>3550 | O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C CG1 CCD1 C CG1 CCD1 C CG1 CCD1 C CG1 CCD1 C C CG2 CG1 CD1 C C CG1 CCD1 C C C CG1 CCD1 C C C CG1 CCD1 C C C CG1 CCD1 C C C CCD1 C C C C C C C C C C C | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | АААААА АААААА ААААААА                                                                       | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>473<br>473               | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642<br>19.029<br>18.456<br>18.654<br>17.621 | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>83.902<br>84.451<br>83.452<br>84.451<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793<br>84.176<br>83.750<br>83.804<br>82.819 | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147<br>30.145<br>32.384<br>32.535           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCC NCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3544<br>3545<br>3546<br>3547<br>3548<br>3549<br>3551<br>3552 | O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C C O N CA CB CGC CG1 CCD1 C C C C C C C C C C C C C C C C C                                                                                                                                                           | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | АААААА АААААА АААААААА                                                                      | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>473<br>473<br>473        | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.029<br>18.456<br>18.654<br>17.621<br>17.926           | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>82.621<br>81.758<br>84.451<br>83.452<br>84.419<br>85.099<br>86.476<br>87.793<br>84.176<br>83.750<br>83.804<br>82.819<br>81.778 | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147<br>30.145<br>32.384<br>32.535<br>33.626 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCONCC                     |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 3504<br>3505<br>3506<br>3507<br>3508<br>3509<br>3510<br>3521<br>3522<br>3523<br>3524<br>3525<br>3526<br>3527<br>3542<br>3543<br>3544<br>3545<br>3546<br>3547<br>3548<br>3548<br>3550<br>3550 | O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C O N CA CG2 CG1 CD1 C CG1 CCD1 C CG1 CCD1 C CG1 CCD1 C CG1 CCD1 C C CG2 CG1 CD1 C C CG1 CCD1 C C C CG1 CCD1 C C C CG1 CCD1 C C C CG1 CCD1 C C C CCD1 C C C C C C C C C C C | ASP<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE | АААААА АААААА АААААААА                                                                      | 467<br>467<br>467<br>467<br>467<br>467<br>469<br>469<br>469<br>469<br>469<br>469<br>472<br>472<br>472<br>472<br>472<br>472<br>473<br>473               | 33.528<br>32.170<br>31.958<br>32.770<br>30.465<br>30.198<br>31.709<br>32.485<br>29.399<br>28.986<br>30.149<br>30.427<br>29.977<br>31.233<br>27.784<br>27.178<br>21.208<br>20.211<br>19.841<br>21.078<br>19.301<br>18.642<br>19.029<br>18.456<br>18.654<br>17.621 | 90.450<br>89.932<br>88.637<br>89.789<br>89.612<br>89.410<br>88.578<br>86.265<br>84.930<br>83.986<br>83.902<br>83.902<br>84.451<br>83.452<br>84.451<br>85.099<br>86.476<br>87.370<br>86.474<br>87.793<br>84.176<br>83.750<br>83.804<br>82.819 | 26.504<br>25.103<br>24.935<br>24.766<br>23.273<br>27.507<br>27.971<br>28.522<br>28.177<br>28.400<br>29.909<br>27.718<br>27.831<br>28.943<br>28.559<br>30.302<br>31.065<br>30.555<br>30.738<br>29.115<br>28.713<br>31.147<br>30.145<br>32.384<br>32.535           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | A A A A A A A A A A A A A A A A A A A                                                       | CCCCCCO NCCCCCCONCCC                   |

| ATO  | 4 3563              | N   | ALA        | A | 475 | 13.115  | 81.683 | 34.037 | 1.00 | 0.00  | A   | N  |
|------|---------------------|-----|------------|---|-----|---------|--------|--------|------|-------|-----|----|
| ATO  | 1 3564              | CA  | ALA        | Α | 475 | 12.384  | 80.557 | 34.553 | 1.00 | 0.00  | A   | С  |
| ATO  | 1 3565              | CB  | ALA        | A | 475 | 10.861  | 80.670 | 34.352 | 1.00 | 0.00  | A   | Ċ  |
| ATON | 1 3566              | С   | ALA        | A | 475 | 12.845  | 79.257 | 33.946 | 1.00 | 0.00  | A   | Č  |
| ATON | 3567                | 0   | ALA        | A | 475 | 13.768  | 78.630 | 34.461 | 1.00 | 0.00  | A   | ŏ  |
|      |                     |     |            |   |     |         |        |        |      |       |     | -  |
| ATON | 1 3579              | N   | GLY        | A | 477 | 13.655  | 78.899 | 30.440 | 1.00 | 0.00  | A   | N  |
| ATOM | 3580                | CA  | GLY        | A | 477 | 14.508  | 78.957 | 29.277 | 1.00 | 0.00  | A   | C  |
| ATO  | 3581                | С   | GLY        | A | 477 | 15.612  | 79.930 | 29.541 | 1.00 | 0.00  | A   | Č  |
| ATON | 3582                | 0   | GLY        | A | 477 | 15.579  | 80.661 | 30.526 | 1.00 | 0.00  | A   | ō  |
| ATON | 3583                | N   | ARG        | A | 478 | 16.633  | 79.956 | 28.658 | 1.00 | 0.00  | A   | N  |
| ATO  | 3584                | CA  | ARG        | A | 478 | 17.749  | 80.828 | 28.876 | 1.00 | 0.00  | A   | c  |
| ATON | 3585                | CB  | ARG        | A | 478 | 18.882  | 80.050 | 29.565 | 1.00 | 0.00  | A   | C  |
| ATON | 3586                | CG  | ARG        | A | 478 | 19.746  | 80.839 | 30.548 | 1.00 | 0.00  | A   | С  |
| ATON | 1 3587 <sup>.</sup> | CD  | ARG        | A | 478 | 20.460  | 79.897 | 31.525 | 1.00 | 0.00  | A   | C  |
| ATOM | 3588                | NE  | ARG        | A | 478 | 20.993  | 80.701 | 32.661 | 1.00 | 0.00  | A   | N  |
| ATOM | 3589                | CZ  | ARG        | A | 478 | -22.138 | 80.300 | 33.288 | 1.00 | 0.00  | A   | С  |
| MOTA | 3590                | NH1 | ARG        | A | 478 | 22.788  | 79.178 | 32.865 | 1.00 | 0.00  | A   | N  |
| ATOM | 3591                | NH2 | ARG        | A | 478 | 22.636  | 81.024 | 34.333 | 1.00 | 0.00  | A   | N  |
| ATOM | 3592                | С   | ARG        | A | 478 | 18.186  | 81.272 | 27,514 | 1.00 | 0.00  | A   | С  |
| ATOM | 3593                | 0   | ARG        | A | 478 | 17.987  | 80.550 | 26.538 | 1.00 | 0.00  | A   | 0  |
|      |                     |     |            |   |     |         |        |        |      |       |     |    |
| ATOM |                     | N   | <b>LEU</b> | A | 482 | 22.712  | 90.262 | 24.259 | 1.00 | 0.00  | A   | N  |
| ATOM | 3616                | CA  | LEU        | A | 482 | 22.760  | 90.853 | 22.953 | 1.00 | 0.00  | A   | С  |
| ATOM | 3617                | CB  | LEU        | Α | 482 | 21.990  | 92.182 | 22.859 | 1.00 | 0.00  | A   | С  |
| ATOM |                     | CG  | LEU        | A | 482 | 22.035  | 92.830 | 21.462 | 1.00 | 0.00  | A   | С  |
| ATOM |                     | CD2 | LEU        |   |     | 21.497  | 94.270 | 21.497 | 1.00 | 0.00  | A   | ,C |
| ATOM | 3620                | CD1 | LEU        | A | 482 | 21.324  | 91.953 | 20.417 | 1.00 | 0.00  | . A | С  |
| ATOM | 3621                | С   | LEU        | Α | 482 | 24.187  | 91.130 | 22.599 | 1.00 | 0.00, | Α.  | C  |
| ATOM | 3622                | 0   | LEU        | A | 482 | 24.996  | 91.479 | 23.454 | 1.00 | 0.00  | · A | 0  |
|      |                     |     |            |   |     |         |        |        |      |       |     |    |

Figure 9

Table 20

| ATOM         | 55         | N        | ILE  | A   | 38       | -1.705         | 79.604 | 49.729 | 1.00 | 0.00 |   | A   | N   |
|--------------|------------|----------|------|-----|----------|----------------|--------|--------|------|------|---|-----|-----|
| ATOM         | 56         | CA       | ILE  |     | 38       | -2.001         | 79.914 | 48.349 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 57         | СВ       | ILE  |     | 38       | -2.511         | 81.319 | 48.195 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 58         |          | ILE  |     | 38       | -2.698         | 81.608 | 46.696 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 59         |          | ILE  |     | 38       | -3.795         | 81.512 | 49.018 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 60         |          | ILE  |     | 38 .     | -4.210         | 82.976 | 49.159 | 1.00 | 0.00 |   | A   | C   |
| MOTA         | 61         | С        | ILE  |     | 38       | -0.827         | 79.781 | 47.422 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 62         | 0        | ILE  | A   | 38       | -0.888         | 79.176 | 46.351 | 1.00 | 0.00 |   | A   | 0   |
| ATOM         | 83         | N        | MET  | a   | 42       | 6.523          | 79.249 | 46.117 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 84         | CA       | MET  |     | 42       | 6.951          | 80.352 | 45.295 | 1.00 | 0.00 |   | A . | Ċ   |
| ATOM         | 85         | CB       | MET  |     | 42       | 5.804          | 81.326 | 44.975 | 1.00 | 0.00 |   | A   | Č   |
| ATOM         | 86         | CG       | MET  |     | 42       | 6.227          | 82.509 | 44.104 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 87         | SD       | MET  |     | 42       | 4.884          | 83.672 | 43.713 | 1.00 | 0.00 |   | A   | S   |
| ATOM         | 88         | CE       | MET  |     | 42       | 5.922          | 84.781 | 42.719 | 1.00 | 0.00 |   | A   | С   |
| MOTA         | 89         | С        | MET  | A   | 42       | 8.016          | 81.131 | 46.002 | 1.00 | 0.00 |   | A   | C   |
| MOTA         | 90         | 0        | MET  | A   | 42       | 8.895          | 81.699 | 45.358 | 1.00 | 0.00 |   | A   | 0   |
| ATOM         | 116        | N        | ASP  | A   | 46       | 11.044         | 80.749 | 43.651 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 117        | CA       | ASP  |     | 46       | 11.150         | 82.065 | 43.067 | 1.00 | 0.00 |   | A   | С   |
| MOTA         | 118        |          | ASP  |     | 46       | 12.595         | 82.655 | 43.272 | 1.00 | 0.00 |   | A   | , C |
| ATOM         | 119        | CG       | ASP  | A   | 46       | 12.882         | 84.066 | 42.794 | 1.00 | 0.00 |   | A   | C   |
| MOTA         | 120        | OD1      | ASP  | A   | 46       | 12.220         | 85.036 | 43.250 | 1.00 | 0.00 |   | A   | 0   |
| MOTA         | 121        | OD2      | ASP  | Α   | 46       | 13.793         | 84.168 | 41.932 | 1.00 | 0.00 |   | A   | 0   |
| MOTA         | 122        | С        | ASP  | Α   | 46       | 10.610         | 82.022 | 41.642 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 123        | 0        | ASP  | Α   | 46       | 10.038         | 81.019 | 41.212 | 1.00 | 0.00 |   | A   | 0   |
| ATOM         | 124        | N        | VAL  | Α   | 47       | 10.525         | 83.209 | 41.001 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 125        | CA       | VAL  | Α   | 47       | 10.152         | 83.523 | 39.647 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 126        | ĊB       | VAL  | Α   | 47       | 9.500          | 84.872 | 39.545 | 1.00 | 0.00 |   | A   | С   |
| . MOTA       | 127        | CG1      | VAL  | A   | 47       | 8.185          | 84.834 | 40.341 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 128        | ÇG2      | VAL  | A   | 47       | 10.488         | 85.942 | 40.036 | 1.00 | 0.00 |   | A   | С   |
| MOTA         | 129        | C        | VAL  | A   | 47       | 11.302         | 83.509 | 38.669 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | .130       | 0        | VAL  | A   | 47       | 11.073         | 83.361 | 37.466 | 1.00 | 0.00 |   | A   | 0   |
| ATOM         | 156        | N        | CYS  | 70. | 51       | 15.430         | 77.020 | 37.848 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 157        | CA       | CYS  |     | 51       | 16.365         | 75.957 | 37.641 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 158        | СВ       | CYS  |     | 51       | 17.069         | 76.144 | 36.289 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 159        | SG       | CYS  |     | 51       | 18.675         | 75.310 | 36.199 | 1.00 | 0.00 |   | A   | S   |
| ATOM         | 160        | c        | CYS  |     | 51       | 17.437         | 75.961 | 38.696 | 1.00 | 0.00 |   | A   | C.  |
| ATOM         | 161        | 0        | CYS  |     | 51       | 17.802         | 74.917 | 39.233 | 1.00 | 0.00 |   | A   | 0   |
| 3.5004       | 177        | 27       | DUE  | 70  | E A      | 16.309         | 74.574 | 42.094 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 177        | N        | PHE  |     | 54<br>54 | 16.084         | 73.156 | 42.159 | 1.00 | 0.00 |   | A   | Č   |
| ATOM         | 178<br>179 | CA<br>CB | PHE  |     | 54       | 15.674         | 72.506 | 40.824 | 1.00 | 0.00 |   | A   | Č   |
| ATOM         | 180        | CG       | PHE  |     | 54       | 14.256         | 72.830 | 40.501 | 1.00 | 0.00 |   | A   | č   |
| ATOM<br>ATOM | 181        |          | PHE  |     | 54       | 13.236         | 72.316 | 41.268 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 182        |          | PHE  |     | 54       | 13.938         | 73.600 | 39.408 | 1.00 | 0.00 | _ | A   | Č   |
| ATOM         | 183        |          | PHE  |     | 54       | 11.923         | 72.597 | 40.973 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 184        |          | PHE  |     | 54       | 12.626         | 73.887 | 39.105 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 185        | CZ       | PHE  |     | 54       | 11.616         | 73.387 | 39.891 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 186        | c        | PHE  |     | 54       | 17.337         | 72.457 | 42.568 | 1.00 | 0.00 |   | A   | ¢   |
| MOTA         | 187        | 0        | PHE  |     | 54       | 17.271         | 71.450 | 43.272 | 1.00 | 0.00 |   | A   | 0   |
| 3 TOM        | 203        | N        | PHE  | ъ.  | 57       | 17.740         | 72.943 | 46.203 | 1.00 | 0.00 |   | A   | N   |
| ATOM         | 204        | CA       | PHE  |     | 57 -     | 16.746         | 72.152 | 46.862 | 1.00 | 0.00 |   | A   | Ċ   |
| ATOM<br>ATOM | 205        | CB       | PHE  |     | 57       | 15.351         | 72.118 | 46.214 | 1.00 | 0.00 |   | A   | č   |
| MOTA         | 206        |          | PHE  |     | 57       | 14.735         | 73.426 | 46.507 | 1.00 | 0.00 |   | A   | C   |
| ATOM         | 207        |          | PHE  |     | 57       | 14.680         | 73.857 | 47.809 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 208        |          | PHE  |     | 57       | 14.169         | 74.177 | 45.507 | 1.00 | 0.00 |   | A   | С   |
| ATOM ·       | 209        |          | PHE  |     | 57       | 14.115         | 75.067 | 48.109 | 1.00 | 0.00 |   | A   | Ċ   |
| ATOM         | 210        |          | PHE  |     | 57       | 13.602         | 75.388 | 45.794 | 1.00 | 0.00 |   | A   | Ċ   |
| ATOM         | 211        | CZ       | PHE  |     | 57       | 13.591         | 75.823 | 47.092 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 212        | c        | PHE  |     | 57       | 17.172         | 70.735 | 46.906 | 1.00 | 0.00 |   | A   | С   |
| ATOM         | 213        | ō        | PHE  |     | 57       | 16.884         | 70.070 | 47.889 | 1.00 | 0.00 |   | A   | 0   |
| 3,0004       | 204        | 3.7      | ,,   |     | 67       | 7 605          | 69.746 | 44.843 | 1.00 | 0.00 | • | A   | N   |
| ATOM         | 284        | N        | VAL  |     | 67 .     | 7.695          | 71.183 | 44.863 | 1.00 | 0.00 |   | A   | C   |
| ATOM<br>ATOM | 285        | CA       | VAL  |     | 67<br>67 | 7.659          | 71.765 | 43.844 | 1.00 | 0.00 |   | A   | Ċ   |
|              | 286<br>287 | CB       | VAL  |     | 67<br>67 | 8.613<br>8.587 | 73.306 | 43.848 | 1.00 | 0.00 |   | A   | č   |
| ATOM<br>ATOM | 288        |          | VAL  |     | 67<br>67 | 10.001         | 71.187 | 44.137 | 1.00 | 0.00 |   | A   | č   |
| ATOM         | 289        | C C      |      |     | 67       | 6.262          | 71.603 | 44.502 | 1.00 | 0.00 |   | A   | č   |
| ATOM         | 290        | 0        | VAL  |     | 67       | 5.590          | 70.923 | 43.738 | 1.00 | 0.00 |   | A   | ō   |
| WY OLD       |            | _        | A WP | u   | J/       | ٠.٠٠٥          | ,      |        |      |      |   |     | -   |

Figure 9

| ATOM                                                         | 318                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MET                                                                                                                                                                        | A                                    | 71                                                                                                                                                     |   | -1.144                                                                                                                                                                                                                                                                                    | 75.115                                                                                                                                                                                                                                         | 44.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---|---------------------------------------------------------------------------------------------|-----------------------------------------------------|
| ATOM                                                         | 319                                                                                                                                                                                       | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MET                                                                                                                                                                        | A                                    | 71                                                                                                                                                     |   | -1.759                                                                                                                                                                                                                                                                                    | 73.903                                                                                                                                                                                                                                         | 44.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 320                                                                                                                                                                                       | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                            |                                      | 71                                                                                                                                                     |   | -3.259                                                                                                                                                                                                                                                                                    | 73.838                                                                                                                                                                                                                                         | 44.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
| ATOM                                                         | 321                                                                                                                                                                                       | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MET                                                                                                                                                                        | A                                    | 71                                                                                                                                                     |   | -4.104                                                                                                                                                                                                                                                                                    | 74.874                                                                                                                                                                                                                                         | 44.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 322                                                                                                                                                                                       | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MET                                                                                                                                                                        | Α                                    | 71                                                                                                                                                     |   | -5.880                                                                                                                                                                                                                                                                                    | 74.820                                                                                                                                                                                                                                         | 44.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | S                                                   |
| ATOM                                                         | 323                                                                                                                                                                                       | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MET                                                                                                                                                                        | А                                    | 71                                                                                                                                                     |   | -6.327                                                                                                                                                                                                                                                                                    | 76.186                                                                                                                                                                                                                                         | 45.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
|                                                              | 324                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MET                                                                                                                                                                        | A                                    | 71                                                                                                                                                     |   | -1.118                                                                                                                                                                                                                                                                                    | 72.690                                                                                                                                                                                                                                         | 43.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | č                                                   |
| ATOM                                                         |                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 325                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MET                                                                                                                                                                        | Α                                    | 71                                                                                                                                                     |   | -1.212                                                                                                                                                                                                                                                                                    | 71.609                                                                                                                                                                                                                                         | 44.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                   |
| ATOM                                                         | 326                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        | Α                                    | 72                                                                                                                                                     |   | -0.518                                                                                                                                                                                                                                                                                    | 72.831                                                                                                                                                                                                                                         | 42.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
| ATOM                                                         | 327                                                                                                                                                                                       | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        | Α                                    | 72                                                                                                                                                     |   | -0.019                                                                                                                                                                                                                                                                                    | 71.726                                                                                                                                                                                                                                         | 41.888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
| ATOM                                                         | 328                                                                                                                                                                                       | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        |                                      | 72                                                                                                                                                     |   | 0.318                                                                                                                                                                                                                                                                                     | 72.161                                                                                                                                                                                                                                         | 40.446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 329                                                                                                                                                                                       | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        |                                      | 72                                                                                                                                                     |   | 0.442                                                                                                                                                                                                                                                                                     | 70.951                                                                                                                                                                                                                                         | 39.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Ç                                                   |
| ATOM                                                         | 330                                                                                                                                                                                       | OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | asn                                                                                                                                                                        | A                                    | 72                                                                                                                                                     |   | 1.087                                                                                                                                                                                                                                                                                     | 71.028                                                                                                                                                                                                                                         | 38.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                   |
| ATOM                                                         | 331                                                                                                                                                                                       | ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASN                                                                                                                                                                        | Α                                    | 72                                                                                                                                                     |   | -0.203                                                                                                                                                                                                                                                                                    | 69.814                                                                                                                                                                                                                                         | 39.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
| ATOM                                                         | 332                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        | A                                    | 72                                                                                                                                                     |   | 1.218                                                                                                                                                                                                                                                                                     | 71.121                                                                                                                                                                                                                                         | 42.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 333                                                                                                                                                                                       | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        |                                      | 72                                                                                                                                                     |   | 2.168                                                                                                                                                                                                                                                                                     | 71.836                                                                                                                                                                                                                                         | 42.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | ō                                                   |
| AT OU                                                        | 333                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | non                                                                                                                                                                        | •••                                  | , -                                                                                                                                                    |   | 2.1100                                                                                                                                                                                                                                                                                    | ,1.050                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00                                                         | 0.00                                                        |   | ••                                                                                          | ٠                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | _                                    |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   | _                                                                                           |                                                     |
| ATOM                                                         | 363                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                                                                                                                        | A                                    | 77                                                                                                                                                     |   | 13.293                                                                                                                                                                                                                                                                                    | 65.572                                                                                                                                                                                                                                         | 39.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
| ATOM                                                         | 364                                                                                                                                                                                       | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                                                                                                                        | Α                                    | 77                                                                                                                                                     |   | 14.342                                                                                                                                                                                                                                                                                    | 64.567                                                                                                                                                                                                                                         | 39.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 365                                                                                                                                                                                       | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                                                                                                                        | A                                    | 77                                                                                                                                                     |   | 14.173                                                                                                                                                                                                                                                                                    | 63.472                                                                                                                                                                                                                                         | 38.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
|                                                              | 366                                                                                                                                                                                       | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                                                                                                                        |                                      | 77                                                                                                                                                     |   | 12.975                                                                                                                                                                                                                                                                                    | 62.672                                                                                                                                                                                                                                         | 38.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | Č                                                   |
| ATOM                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 367                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHE                                                                                                                                                                        |                                      | 77                                                                                                                                                     |   | 13.045                                                                                                                                                                                                                                                                                    | 61.754                                                                                                                                                                                                                                         | 39.743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 368                                                                                                                                                                                       | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                                                                                                                        | А                                    | 77                                                                                                                                                     |   | 11.785                                                                                                                                                                                                                                                                                    | 62.826                                                                                                                                                                                                                                         | 38.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 369                                                                                                                                                                                       | CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHE                                                                                                                                                                        | А                                    | 77                                                                                                                                                     |   | 11.944                                                                                                                                                                                                                                                                                    | 61.012                                                                                                                                                                                                                                         | 40.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | Α                                                                                           | С                                                   |
| ATOM                                                         | 370                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHE                                                                                                                                                                        |                                      | 77                                                                                                                                                     |   | 10.682                                                                                                                                                                                                                                                                                    | 62.083                                                                                                                                                                                                                                         | 38.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | C                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| MOTA                                                         | 371                                                                                                                                                                                       | CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHE                                                                                                                                                                        |                                      | 77                                                                                                                                                     |   | 10.757                                                                                                                                                                                                                                                                                    | 61.172                                                                                                                                                                                                                                         | 39.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 372                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                                                                                                                        | A                                    | 77                                                                                                                                                     |   | 15.674                                                                                                                                                                                                                                                                                    | 65.244                                                                                                                                                                                                                                         | 39.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 373                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHE                                                                                                                                                                        | Α                                    | 77                                                                                                                                                     |   | 15.845                                                                                                                                                                                                                                                                                    | 65.946                                                                                                                                                                                                                                         | 38.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 468                                                                                                                                                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        | 7.                                   | 90                                                                                                                                                     |   | 12.277                                                                                                                                                                                                                                                                                    | 53.353                                                                                                                                                                                                                                         | 33.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A.                                                                                          | N                                                   |
|                                                              |                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 469                                                                                                                                                                                       | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | asn                                                                                                                                                                        | A                                    | 90                                                                                                                                                     |   | 10.845                                                                                                                                                                                                                                                                                    | 53.303                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| MOTA                                                         | 470                                                                                                                                                                                       | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        | Α                                    | 90                                                                                                                                                     |   | 10.242                                                                                                                                                                                                                                                                                    | 53.808                                                                                                                                                                                                                                         | 34.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 471                                                                                                                                                                                       | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        | А                                    | 90                                                                                                                                                     |   | 10.544                                                                                                                                                                                                                                                                                    | 52.788                                                                                                                                                                                                                                         | 35.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 472                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASN                                                                                                                                                                        |                                      | 90                                                                                                                                                     |   | 10.465                                                                                                                                                                                                                                                                                    | 53.096                                                                                                                                                                                                                                         | 37.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| MOTA                                                         | 473                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASN                                                                                                                                                                        |                                      | 90                                                                                                                                                     |   | 10.899                                                                                                                                                                                                                                                                                    | 51.541                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
| ATOM ·                                                       | 474                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | asn                                                                                                                                                                        | A                                    | 90                                                                                                                                                     |   | 10.384                                                                                                                                                                                                                                                                                    | 54.240                                                                                                                                                                                                                                         | 32.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | С                                                   |
| ATOM                                                         | 475                                                                                                                                                                                       | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.037                                                                                                                                                                      | 70                                   |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           | FF 076                                                                                                                                                                                                                                         | 20 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |                                                             |   |                                                                                             | _                                                   |
|                                                              |                                                                                                                                                                                           | U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ADN                                                                                                                                                                        | ~                                    | 90                                                                                                                                                     |   | 9.515                                                                                                                                                                                                                                                                                     | 55.076                                                                                                                                                                                                                                         | 32.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | 0                                                   |
|                                                              | 415                                                                                                                                                                                       | ٥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN                                                                                                                                                                        | A                                    | 90                                                                                                                                                     |   | 9.515                                                                                                                                                                                                                                                                                     | 55.076                                                                                                                                                                                                                                         | 32.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | U                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                      |                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                             |   |                                                                                             |                                                     |
| ATOM                                                         | 534                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        | A                                    | 99                                                                                                                                                     |   | 1.298                                                                                                                                                                                                                                                                                     | 69.167                                                                                                                                                                                                                                         | 31.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
|                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | A                                    | 99<br>99                                                                                                                                               |   | 1.298<br>0.948                                                                                                                                                                                                                                                                            | 69.167<br>70.471                                                                                                                                                                                                                               | 31.340<br>30.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                         | 0.00                                                        | , | A<br>A                                                                                      | N<br>C                                              |
| ATOM                                                         | 534                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN                                                                                                                                                                        | A<br>A                               | 99                                                                                                                                                     |   | 1.298                                                                                                                                                                                                                                                                                     | 69.167                                                                                                                                                                                                                                         | 31.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                         | 0.00                                                        |   | A                                                                                           | N                                                   |
| ATOM<br>ATOM<br>ATOM                                         | 534<br>535<br>536                                                                                                                                                                         | N<br>CA<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | asn<br>asn<br>asn                                                                                                                                                          | A<br>A<br>A                          | 99<br>99<br>99                                                                                                                                         |   | 1.298<br>0.948<br>-0.339                                                                                                                                                                                                                                                                  | 69.167<br>70.471<br>70.453                                                                                                                                                                                                                     | 31.340<br>30.866<br>30.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00                                         | 0.00<br>0.00<br>0.00                                        | ٠ | A<br>A<br>A                                                                                 | N<br>C<br>C                                         |
| ATOM<br>ATOM<br>ATOM<br>ATOM                                 | 534<br>535<br>536<br>537                                                                                                                                                                  | N<br>CA<br>CB<br>CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | asn<br>asn<br>asn<br>asn                                                                                                                                                   | A<br>A<br>A                          | 99<br>99<br>99                                                                                                                                         |   | 1.298<br>0.948<br>-0.339<br>-0.380                                                                                                                                                                                                                                                        | 69.167<br>70.471<br>70.453<br>71.683                                                                                                                                                                                                           | 31.340<br>30.866<br>30.022<br>29.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | ٠ | A<br>A<br>A                                                                                 | N<br>C<br>C                                         |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                         | 534<br>535<br>536<br>537<br>538                                                                                                                                                           | N<br>CA<br>CB<br>CG<br>OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asn<br>asn<br>asn<br>asn<br>asn                                                                                                                                            | A<br>A<br>A<br>A                     | 99<br>99<br>99<br>99                                                                                                                                   |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428                                                                                                                                                                                                                                              | 69.167<br>70.471<br>70.453<br>71.683<br>72.015                                                                                                                                                                                                 | 31.340<br>30.866<br>30.022<br>29.128<br>28.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | - | A<br>A<br>A<br>A                                                                            | N<br>C<br>C<br>C                                    |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 534<br>535<br>536<br>537<br>538<br>539                                                                                                                                                    | N<br>CA<br>CB<br>CG<br>OD1<br>ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                            | A<br>A<br>A<br>A                     | 99<br>99<br>99<br>99<br>99                                                                                                                             |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784                                                                                                                                                                                                                                     | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364                                                                                                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        | - | A<br>A<br>A<br>A<br>A                                                                       | и<br>С<br>С<br>О<br>и                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                         | 534<br>535<br>536<br>537<br>538                                                                                                                                                           | N<br>CA<br>CB<br>CG<br>OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asn<br>asn<br>asn<br>asn<br>asn                                                                                                                                            | A<br>A<br>A<br>A                     | 99<br>99<br>99<br>99                                                                                                                                   |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428                                                                                                                                                                                                                                              | 69.167<br>70.471<br>70.453<br>71.683<br>72.015                                                                                                                                                                                                 | 31.340<br>30.866<br>30.022<br>29.128<br>28.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00                                 | 0.00<br>0.00<br>0.00<br>0.00                                | - | A<br>A<br>A<br>A                                                                            | и<br>С<br>С<br>О<br>и<br>С                          |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM                 | 534<br>535<br>536<br>537<br>538<br>539                                                                                                                                                    | N<br>CA<br>CB<br>CG<br>OD1<br>ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                            | A<br>A<br>A<br>A<br>A                | 99<br>99<br>99<br>99<br>99                                                                                                                             |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784                                                                                                                                                                                                                                     | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364                                                                                                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                        | ٠ | A<br>A<br>A<br>A<br>A                                                                       | и<br>С<br>С<br>О<br>и                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541                                                                                                                                      | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                              | A<br>A<br>A<br>A<br>A<br>A           | 99<br>99<br>99<br>99<br>99<br>99                                                                                                                       |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027                                                                                                                                                                                                                   | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040                                                                                                                                                                   | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                |   | A<br>A<br>A<br>A<br>A<br>A                                                                  | и<br>С<br>С<br>О<br>и<br>С                          |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542                                                                                                                               | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER                                                                                                                       | A<br>A<br>A<br>A<br>A<br>A           | 99<br>99<br>99<br>99<br>99<br>99<br>99                                                                                                                 |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289                                                                                                                                                                                                          | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607                                                                                                                                                         | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        |   | A<br>A<br>A<br>A<br>A<br>A                                                                  | и<br>С<br>С<br>О<br>и<br>С                          |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543                                                                                                                        | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER                                                                                                                | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.                                                                                                         |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206                                                                                                                                                                                                 | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636                                                                                                                                               | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             | N<br>C<br>C<br>O<br>N<br>C<br>O<br>N                |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543                                                                                                                        | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER                                                                                                                | A A A A A A A A A                    | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100                                                                                                  |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480                                                                                                                                                                                        | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506                                                                                                                                     | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | и<br>С<br>С<br>С<br>О<br>и<br>С<br>О<br>и<br>С<br>О |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543                                                                                                                        | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER                                                                                                                | A A A A A A A A A                    | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.                                                                                                         |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206                                                                                                                                                                                                 | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636                                                                                                                                               | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A                                                             | N<br>C<br>C<br>O<br>N<br>C<br>O<br>N                |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543                                                                                                                        | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER                                                                                                                | A A A A A A A A A A                  | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100                                                                                                  | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480                                                                                                                                                                                        | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506                                                                                                                                     | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                        | и<br>С<br>С<br>С<br>О<br>и<br>С<br>О<br>и<br>С<br>О |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545                                                                                                          | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER                                                                                                         | A A A A A A A A A A                  | 99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100                                                                                                  | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009                                                                                                                                                                     | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476                                                                                                                 | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | N C C C O N C C O C                                 |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544                                                                                                                 | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER                                                                                                         | A A A A A A A A A A                  | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100                                                                                                   |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691                                                                                                                                                                               | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218                                                                                                                           | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                   | и с с с о и с о о и с с о                           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546                                                                                                   | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                         | A A A A A A A A A A A                | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100                                                                                     | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.299<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545                                                                                                                                                           | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476<br>74.325                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | N C C C O N C C O C O                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547                                                                                            | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                         | A A A A A A A A A A A A              | 99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100<br>100<br>100                                                                                          |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545                                                                                                                                                                    | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476<br>74.325                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | N C C C O N C C O C O N                             |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546                                                                                                   | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                         | A A A A A A A A A A A A              | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100                                                                                     | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.299<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545                                                                                                                                                           | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476<br>74.325                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | N C C C O N C C O C O                               |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547                                                                                            | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                  | AAAAAAAAAAA AA                       | 99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100<br>100<br>100                                                                                          | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.009<br>-0.545<br>-0.663<br>-0.677                                                                                                                                                | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476<br>74.325                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | N C C C O N C C O C O N                             |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>541<br>542<br>543<br>544<br>545<br>547<br>556<br>557                                                                                            | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>OG<br>C<br>O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE                                                                                           | AAAAAAAAAAA AAA                      | 99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>100<br>10                                                                              |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.663<br>-0.667<br>0.429                                                                                                                              | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 74.325 77.899 78.841 79.866                                                                                                                                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C O N C C O C O N C C C                       |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>539<br>541<br>542<br>543<br>544<br>545<br>547<br>556<br>557                                                                                            | N<br>CA<br>CB<br>CG<br>OD1<br>ND2<br>C<br>O<br>N<br>CA<br>CB<br>CC<br>O<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE                                                                                    | AAAAAAAAAA AAAA                      | 99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>100<br>10                                                                              |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792                                                                                                                               | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180                                                                                                                  | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C O N C C O N C C C                           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>540<br>541<br>542<br>544<br>545<br>546<br>547<br>556<br>557<br>558<br>559                                                                              | N CA CB CG CO N CA CB CG2 CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE                                                                                    | AAAAAAAAAA AAAA                      | 99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>100<br>10                                                                              |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.663<br>-0.667<br>0.429<br>1.792<br>0.366                                                                                                                     | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.040<br>71.040<br>72.607<br>73.636<br>74.506<br>74.506<br>74.476<br>74.325<br>77.899<br>78.841<br>79.866<br>79.180<br>80.831                                                     | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C C O N C C C C C                             |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>5356<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>547<br>5567<br>5589<br>560                                                                                         | N CA CB CG CO N CA CB CG2 CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE<br>ILE                                                                      | AAAAAAAAAA AAAAA                     | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102                                                 | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.663<br>-0.677<br>0.429<br>1.792<br>0.366<br>1.251                                                                                                   | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.390<br>71.040<br>72.607<br>73.636<br>74.506<br>75.218<br>74.476<br>74.325<br>77.899<br>78.841<br>79.866<br>79.180<br>80.831<br>82.064                                           | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C C O N C C C C C C                           |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM | 534<br>535<br>536<br>537<br>538<br>540<br>541<br>542<br>544<br>545<br>546<br>547<br>556<br>557<br>558<br>559                                                                              | N CA CB CG CO N CA CB CG2 CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE<br>ILE                                                                      | AAAAAAAAAA AAAAA                     | 99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>100<br>10                                                                              |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.663<br>-0.667<br>0.429<br>1.792<br>0.366                                                                                                                     | 69.167<br>70.471<br>70.453<br>71.683<br>72.015<br>72.364<br>71.040<br>71.040<br>72.607<br>73.636<br>74.506<br>74.506<br>74.476<br>74.325<br>77.899<br>78.841<br>79.866<br>79.180<br>80.831                                                     | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C C O N C C C C C                             |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>557<br>556<br>557<br>558<br>560<br>561                                                                | N CA CB CG CO. N CA CB CG2 CG1 CD1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE                                                               | AAAAAAAAAAA AAAAAA                   | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102<br>102                             |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.009<br>-0.545<br>-0.663<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600                                                                                                  | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120                                                                                                           | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | N C C C C C C C C C C C C C C C C C C C             |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>541<br>542<br>543<br>544<br>545<br>545<br>557<br>556<br>557<br>558<br>559<br>561<br>562                                                         | N CA CB CG2 CG1 CC O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASN ASN ASN ASN ASN ASN ASN SER SER SER LLE LLE LLE LLE LLE LLE LLE                                                                                                        | AAAAAAAAAAA AAAAAAA                  | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100.<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                   |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.256<br>1.2560<br>-1.300                                                                                         | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445                                                                                                           | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.830<br>29.446<br>28.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | A A A A A A A A A A A A A A A A A A A                                                       | NCCCONCCOCO NCCCCCO                                 |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>545<br>557<br>558<br>559<br>560<br>562<br>563                                                                | N CA CB CG2 CG1 CD1 C O N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASN ASN ASN ASN ASN ASN ASN ASN ER SER SER ILE ILE ILE ILE ILE ILE SER                                                                                                     | ААААААААААА АААААААА                 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102                                           | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>0.222                                                                                          | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057                                                                               | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.830<br>29.446<br>28.488<br>29.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>AAAAAAAAAAAAAAAAAA</b>                                                                   | NCCCONCCOCO NCCCCCON                                |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>541<br>543<br>544<br>545<br>547<br>555<br>556<br>557<br>558<br>559<br>560<br>561<br>562<br>563<br>564                                           | N CA CB OC CO N CA CCB CCG1 CCD1 C CO N CCA CCB CCG2 CCG1 CCD1 C C CCA CCG2 CCG1 CCD1 C C CA CCA CCA CCA CCA CCA CCA CCA CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN ASN ASN ASN ASN ASN ASN ASN EER SER ILE ILE ILE ILE ILE ILE SER SER                                                                                                    | ААААААААААА АААААААА                 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102                                           |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.663<br>-0.677<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.660<br>-1.300<br>-1.300<br>0.222<br>0.475                                                            | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270                                                                        | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.830<br>29.446<br>28.488<br>29.404<br>28.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>AAAAAAAAAAAAAAAAAAAA</b>                                                                 | N C C C O N C C C C C C C O N C                     |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>545<br>545<br>557<br>556<br>557<br>558<br>560<br>561<br>562<br>563<br>563<br>563                                    | N CA CB CG2 CG1 CD1 C O N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASN ASN ASN ASN ASN ASN ASN ASN EER SER ILE ILE ILE ILE ILE ILE SER SER                                                                                                    | ААААААААААА АААААААА                 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102                                           |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>0.222                                                                                          | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370                                                                               | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.953<br>32.032<br>32.994<br>31.954<br>32.961<br>32.961<br>32.961<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.404<br>28.234<br>28.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>AAAAAAAAAAAAAAAAAAAAA</b>                                                                | NCCCONCCOCO NCCCCCONCC                              |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>541<br>543<br>544<br>545<br>547<br>555<br>556<br>557<br>558<br>559<br>560<br>561<br>562<br>563<br>564                                           | N CA CB OC CO N CA CCB CCG1 CCD1 C CO N CCA CCB CCG2 CCG1 CCD1 C C CCA CCG2 CCG1 CCD1 C C CA CCA CCA CCA CCA CCA CCA CCA CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN ASN ASN ASN ASN ASN ASN SER SER SER ILE ILE ILE ILE ILE ILE SER SER                                                                                                    | ААААААААААА ААААААААА                | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>102                                           | • | 1.298<br>0.948<br>0.339<br>-0.380<br>-1.428<br>0.781<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.009<br>-0.545<br>-0.663<br>-0.677<br>0.429<br>1.792<br>0.325<br>1.300<br>0.225<br>0.475<br>1.300<br>0.225<br>0.475<br>1.716                                                                | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270                                                                        | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.830<br>29.446<br>28.488<br>29.404<br>28.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>AAAAAAAAAAAAAAAAAAAA</b>                                                                 | N C C C O N C C C C C C C O N C                     |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>545<br>545<br>557<br>556<br>557<br>558<br>559<br>561<br>562<br>563<br>565<br>565<br>566                                    | N CA CB CG CO. N CA CB CGC CCD1 C C O N CA CB CGC CCD1 C C O N CA CB CGC CCD1 C C O N CCA CCB CCD1 C C O N CCA CCB CCD1 C C O N CCA CCB CCD1 C C O N CCA CCB CCD1 C C O N CCA CCB CCD1 C C O N CCA CCB CCD1 C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN ASN ASN ASN ASN ASN SER SER SER ILE ILE ILE ILE ILE SER SER SER SER SER SER SER SER SER SE                                                                             | ААААААААААА АААААААААА               | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>103<br>103<br>103                             |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.009<br>-0.545<br>-0.663<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>-1.300<br>0.222<br>0.475<br>1.716<br>2.169                                                    | 69.167 70.471 70.473 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 74.824                                                                               | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.961<br>32.961<br>32.962<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.404<br>28.234<br>28.430<br>27.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>AAAAAAAAAAAAAAAAAAAAA</b>                                                                | NCCCCONCCOCCO NCCCCCONCCO                           |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>541<br>542<br>543<br>544<br>545<br>557<br>558<br>559<br>561<br>562<br>563<br>564<br>565<br>566<br>565                                           | N CA CB CG O N CA CB CGC CG1 CC O N CA CB CGC CG1 CC CG CC CG CC CG CC CG CC CG CC CG CC CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ASN ASN ASN ASN ASN ASN ASN SER SER SER ILE ILE ILE ILE ILE SER SER SER SER SER SER SER SER SER SE                                                                         | ААААААААААА ААААААААААА              | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103                      | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>-1.300<br>0.222<br>0.475<br>1.716<br>2.169<br>-0.720                                           | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 75.404                                                          | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.404<br>28.430<br>27.200<br>27.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | ААААААААААА АААААААААА                                                                      | исссоиссосо исссссоиссос                            |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>547<br>555<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>566<br>567<br>568                             | N CA CB CGO ON CA CB CGCO ON CA CB CGCO CCO ON CA CB CGCO CCO ON CA CB CCCO ON CA CB CCCO ON CA CB CCCO O CC CCCO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASN ASN ASN ASN ASN ASN SER SER SER SER SER SER SER SER SER SER                                                                                                            | АААААААААААА АААААААААААА            | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>103               |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>0.222<br>0.475<br>1.716<br>2.169<br>-0.720<br>-0.670                                           | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 75.404 74.644                                            | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.404<br>28.234<br>28.430<br>27.200<br>27.903<br>26.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА АААААААААА</b>                                                               | исссоисосо исссссоиссосо                            |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>541<br>543<br>544<br>545<br>547<br>555<br>557<br>558<br>559<br>560<br>561<br>562<br>563<br>564<br>565<br>566<br>567<br>568<br>569               | N CA CB OC O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N CA CB CG2 CG1 CD1 C O N CA CB OC C O N CA CB CCB CCB CCB CCB CCB CCB CCB CCB C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASN ASN ASN ASN ASN ASN ASN ASN ASN ER SER SER SER SER SER SER SER SER SER                                                                                                 | AAAAAAAAAAAA AAAAAAAAAAAAAA          | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>104        |   | 1.298 0.948 -0.339 -0.380 -1.428 0.784 0.711 0.027 1.206 2.480 2.691 -0.009 -0.545 -0.663 -0.677 0.429 1.792 0.366 1.251 -0.600 -1.300 -1.300 -1.316 2.169 -0.716 2.169 -0.742                                                                                                            | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 75.404 75.322                                                   | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.446<br>28.234<br>28.430<br>27.200<br>27.903<br>26.941<br>28.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА ААААААААААА</b>                                                              | исссоисонссосо иссессоиссосои                       |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>547<br>555<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>566<br>567<br>568                             | N CA CB CGO ON CA CB CGCO ON CA CB CGCO CCO ON CA CB CGCO CCO ON CA CB CCCO ON CA CB CCCO ON CA CB CCCO O CC CCCO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASN ASN ASN ASN ASN ASN SER SER SER SER SER SER SER SER SER SER                                                                                                            | AAAAAAAAAAAA AAAAAAAAAAAAAA          | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>104        | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>2.691<br>-0.009<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>0.222<br>0.475<br>1.716<br>2.169<br>-0.720<br>-0.670                                           | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 75.404 74.644                                            | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.953<br>32.934<br>31.954<br>32.961<br>32.961<br>32.961<br>32.961<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.830<br>29.446<br>28.488<br>29.404<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.234<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28.235<br>28 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА АААААААААА</b>                                                               | исссоиссосо исссссоиссосоис                         |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>545<br>545<br>557<br>556<br>557<br>558<br>569<br>564<br>565<br>566<br>567<br>568<br>569<br>570                             | N CA CB CG2 CG1 CC O N CA CB CG2 CG1 CC O N CA CCB CCC CCC CCC CCC CCC CCC CCC CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>SER<br>SER<br>SER<br>ILE<br>ILE<br>ILE<br>ILE<br>ILE<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SE | АААААААААААА ААААААААААААА           | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>104<br>104               | • | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.781<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.691<br>-0.009<br>-0.545<br>-0.663<br>-0.677<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>-1.300<br>0.222<br>0.475<br>1.716<br>2.169<br>-0.720<br>-0.672<br>-0.722                     | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 74.824 75.370 74.824 75.3404 74.644 74.644                                                  | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.446<br>28.234<br>28.430<br>27.200<br>27.903<br>26.941<br>28.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА ААААААААААА</b>                                                              | исссоиссосо исссссоиссосоис                         |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>536<br>537<br>538<br>539<br>541<br>542<br>543<br>545<br>545<br>557<br>558<br>559<br>561<br>562<br>563<br>564<br>565<br>565<br>565<br>565<br>567<br>568<br>569<br>570<br>571 | N CA CB CG OO N CA CB CGC OO N CA CB CGC CGC CGC CCB CCC CCC CCC CCC CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASN ASN ASN ASN ASN ASN SER SER SER SER ILE ILE ILE ILE SER SER SER SER GUN GUN                                                                                            | АААААААААААА АААААААААААААА          | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>104<br>104               |   | 1.298<br>0.948<br>-0.339<br>-0.380<br>-1.428<br>0.784<br>0.711<br>0.027<br>1.289<br>1.206<br>2.480<br>-0.697<br>-0.545<br>-0.667<br>0.429<br>1.792<br>0.366<br>1.251<br>-0.600<br>-1.300<br>0.222<br>0.475<br>2.169<br>-0.720<br>-0.670<br>-0.720<br>-0.670<br>-1.742<br>-2.975<br>-3.628 | 69.167 70.471 70.473 71.683 72.015 72.364 71.390 72.607 73.636 74.506 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 74.824 75.404 74.644 75.322 74.643 74.104                                                   | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>32.994<br>31.954<br>32.961<br>32.912<br>34.118<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.830<br>29.446<br>28.488<br>29.404<br>28.234<br>28.234<br>27.200<br>27.903<br>26.941<br>28.782<br>28.782<br>29.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | ААААААААААА ААААААААААААА                                                                   | исссоиссосо исссссоиссосоисс                        |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>557<br>558<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>567<br>568<br>569<br>571<br>572               | N CA CB CG OD N CA CB CGC O N CA CB CGC CG O N CA CB CGC CGC CC CC CC CC CC CC CC CC CC CC C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN ASN ASN ASN ASN ASN ASN SER SER SER SER SER SER SER SER SER SER                                                                                                        | АААААААААААА АААААААААААААА          | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>104<br>104        | • | 1.298 0.948 0.784 0.784 0.781 0.027 1.289 1.206 2.480 2.6901 0.0545 -0.683 -0.677 0.429 1.792 0.366 1.251 -0.600 -1.300 0.222 0.475 1.7169 -0.720 -0.670 -1.742 -2.975 -3.628 -4.880                                                                                                      | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 75.370 74.824 74.644 75.322 74.644 75.322                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>31.954<br>32.961<br>32.961<br>32.961<br>32.961<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.660<br>29.446<br>28.488<br>29.404<br>28.430<br>27.200<br>27.200<br>27.903<br>26.941<br>28.782<br>28.782<br>29.786<br>29.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА ААААААААААААА</b>                                                            | исссоисонссосо иссссссоиссосоисс                    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>547<br>555<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>567<br>566<br>567<br>571<br>572<br>573        | N CABCGOON CABCCGOON CABCC | ASN ASN ASN ASN ASN ASN SER SER SER SER ILE ILE ILE ILE SER SER SER SER GLN GLN GLN GLN                                                                                    | AAAAAAAAAAAA AAAAAAAAAAAAAAAAA       | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>104<br>104<br>104 |   | 1.298 0.948 0.784 0.711 0.027 1.289 1.206 2.480 2.691 -0.009 -0.545 -0.663 -0.677 0.429 1.792 0.366 1.251 -0.600 -1.300 0.222 0.475 1.716 2.169 -0.720 -0.670 -1.742 -2.975 -3.628 4.880 -5.353                                                                                           | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.6366 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 77.057 74.824 77.644 75.322 74.643 74.104 73.261 72.726 | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>31.954<br>32.961<br>32.961<br>32.961<br>32.961<br>32.962<br>34.118<br>31.527<br>31.840<br>30.855<br>31.076<br>29.446<br>29.404<br>28.234<br>28.234<br>28.430<br>27.200<br>27.903<br>26.941<br>28.782<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>30.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА АААААААААААААА</b>                                                           | исссоисонссосо иссоссоиссосоиссс                    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>557<br>558<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>567<br>568<br>569<br>571<br>572               | N CABCGOON CABCCGOON CABCC | ASN ASN ASN ASN ASN ASN ASN SER SER SER SER SER SER SER SER SER SER                                                                                                        | AAAAAAAAAAAA AAAAAAAAAAAAAAAAA       | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>104<br>104<br>104<br>104 | • | 1.298 0.948 0.784 0.784 0.781 0.027 1.289 1.206 2.480 2.6901 0.0545 -0.683 -0.677 0.429 1.792 0.366 1.251 -0.600 -1.300 0.222 0.475 1.7169 -0.720 -0.670 -1.742 -2.975 -3.628 -4.880                                                                                                      | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.636 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 75.370 74.824 74.644 75.322 74.644 75.322                       | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.953<br>32.932<br>31.954<br>32.961<br>32.961<br>32.961<br>32.621<br>31.527<br>31.840<br>30.751<br>30.855<br>31.076<br>29.830<br>29.446<br>28.234<br>28.430<br>27.200<br>27.200<br>27.200<br>27.200<br>27.903<br>26.786<br>28.502<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>29 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА ААААААААААААА</b>                                                            | исссоисонссосо иссссссоиссосоисс                    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM                      | 534<br>535<br>537<br>538<br>539<br>540<br>542<br>543<br>544<br>545<br>547<br>555<br>557<br>558<br>559<br>560<br>562<br>563<br>564<br>565<br>567<br>566<br>567<br>571<br>572<br>573        | N CA CB CGC C O N CA CB CGC C O N CA CB CGC C O N CA CB CGC C CD C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASN ASN ASN ASN ASN ASN SER SER SER SER ILE ILE ILE ILE SER SER SER SER GLN GLN GLN GLN                                                                                    | АААААААААААА ААААААААААААААААА       | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100<br>102<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>104<br>104<br>104<br>104 |   | 1.298 0.948 0.784 0.711 0.027 1.289 1.206 2.480 2.691 -0.009 -0.545 -0.663 -0.677 0.429 1.792 0.366 1.251 -0.600 -1.300 0.222 0.475 1.716 2.169 -0.720 -0.670 -1.742 -2.975 -3.628 4.880 -5.353                                                                                           | 69.167 70.471 70.453 71.683 72.015 72.364 71.390 71.040 72.607 73.6366 74.506 75.218 74.476 74.325 77.899 78.841 79.866 79.180 80.831 82.064 78.120 78.445 77.057 76.270 75.370 74.824 77.057 74.824 77.644 75.322 74.643 74.104 73.261 72.726 | 31.340<br>30.866<br>30.022<br>29.128<br>28.577<br>28.956<br>32.032<br>31.954<br>32.961<br>32.961<br>32.961<br>32.961<br>32.962<br>34.118<br>31.527<br>31.840<br>30.855<br>31.076<br>29.446<br>29.404<br>28.234<br>28.234<br>28.430<br>27.200<br>27.903<br>26.941<br>28.782<br>29.786<br>29.786<br>29.786<br>29.786<br>29.786<br>30.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |   | <b>ААААААААААА АААААААААААААА</b>                                                           | исссоисонссосо иссоссоиссосоиссс                    |

## Figure 9

| MOTA<br>MOTA | 576<br>577 | C<br>0    |     |                | 104<br>104 | -3.971<br>-4.615  | 75.521<br>75.114 | 27.813<br>26.848 | 1.00 | 0.00         | A<br>A | С<br>О |
|--------------|------------|-----------|-----|----------------|------------|-------------------|------------------|------------------|------|--------------|--------|--------|
| ATOM         | 589        | N         | ILE | A              | 106        | -3.389            | 78.205           | 26.274           | 1.00 | 0.00         | A      | N      |
| ATOM         | 590        | CA        |     |                | 106        | -2.695            | 78.618           | 25.095           | 1.00 | 0.00         | A      | С      |
| MOTA         | 591        | CB        | ILE |                | 106        | -1.219<br>-0.468  | 78.779<br>77.446 | 25.409<br>25.349 | 1.00 | 0.00         | · A    | C      |
| ATOM<br>ATOM | 592<br>593 |           | ILE |                |            | -0.555            | 79.763           | 24.477           | 1.00 | 0.00         | A      | c      |
| ATOM         | 594        |           | ILE |                |            | 0.846             | 80.139           | 24.962           | 1.00 | 0.00         | Α.     | Č      |
| MOTA         | 595        | С         | ILE | A              | 106        | -2.921            | 77.635           | 23.972           | 1.00 | 0.00         | A      | С      |
| MOTA         | 596        | 0         |     |                | 106        | -2.859            | 78.011           | 22.802           | 1.00 | 0.00         | A      | 0      |
| MOTA         | 597        | N         |     |                | 107<br>107 | -3.152<br>-3.149  | 76.337<br>75.391 | 24.272<br>23.193 | 1.00 | 0.00         | A<br>A | N<br>C |
| ATOM<br>ATOM | 598<br>599 | CA<br>CB  |     |                | 107        | -2.224            | 74.225           | 23.420           | 1.00 | 0.00         | A      | c      |
| ATOM         | 600        |           | THR |                |            | -2.568            | 73.531           | 24.611           | 1.00 | 0.00         | A      | ō      |
| ATOM         | 601        |           | THR |                |            | -0.781            | 74.749           | 23.509           | 1.00 | 0.00         | A      | C      |
| MOTA         | 602        | C         |     |                | 107        | -4.505<br>-5.101  | 74.850<br>74.256 | 22.883<br>23.714 | 1.00 | 0.00         | A<br>A | C<br>O |
| ATOM<br>ATOM | 603<br>604 | O<br>N    |     |                | 107<br>108 | -5.191<br>-4.913  | 75.038           | 21.616           | 1.00 | 0.00         | A      | N      |
| ATOM         | 605        | CA        |     |                | 108        | -6.168            | 74.529           | 21.171           | 1.00 | 0.00         | A      | Ċ      |
| MOTA         | 606        | CB        |     |                | 108        | -6.964            | 75.594           | 20.401           | 1.00 | 0.00         | A      | С      |
| MOTA         | 607        | CG        |     |                | 108        | -8.478            | 75.439           |                  | 1.00 | 0.00         | A      | C      |
| ATOM         | 608<br>609 | CE        |     |                | 108<br>108 | -8.979<br>-10.488 | 75.834           | 21.883<br>21.978 | 1.00 | 0.00<br>0.00 | . A    | C      |
| ATOM<br>ATOM | 610        | NZ        |     |                | 108        | -10.845           | 76.411           | 23.362           | 1.00 | 0.00         | A      | N      |
| ATOM         | 611        | c         |     |                | 108        | -5.812            | 73.471           | 20.170           | 1.00 | 0.00         | A      | С      |
| MOTA         | 612        | 0         | LYS | Ą              | 108        | -5.515            | 73.781           | 19.019           | 1.00 | 0.00         | A      | 0      |
| MOTA         | 617        | N         | LEU |                |            | -4.030            | 69.309           | 19.858           |      | 0.00         | - A    | N      |
| ATOM         | 618        | CA        | LEU |                |            | -2.768            | 68.710           | 20.170           |      | 0.00         | A      | C      |
| ATOM<br>ATOM | 619<br>620 | CB<br>CG  |     |                | 110<br>110 | -2.868<br>-3.438  | 67.668<br>68.251 | 21.295<br>22.603 |      | 0.00         | A<br>A | C      |
| ATOM         | 621        |           | LEU |                |            | -2.752            | 69.574           | 22.977           |      | 0.00         | Á      | č      |
| ATOM         | 622        |           | LEU |                |            | -3.417            | 67.214           | 23.737           |      | 0.00         | Ã,     | С      |
| ATOM         | 623        | С         | LEU |                |            | -2.222            | 68.025           | 18.966           |      | 0.00         | A      | С      |
| ATOM         | 624        | 0         | LEU |                |            | -2.963            | 67.461           | 18.161           |      | -0.00        | A      | 0      |
| ATOM         | 637        | N         |     |                | 113        | 3.773             | 67.751           | 20.413           |      | 0.00         | A ·    | N<br>C |
| ATOM<br>ATOM | 638<br>639 | CA<br>CB  | ILE |                | 113        | 4.395<br>4.840    | 68.178<br>69.625 | 21.637<br>21.604 | 1.00 | 0.00         | A A    | C      |
| ATOM         | 640        |           | ILE |                |            | 3.677             | 70.542           | 21.186           | 1.00 | 0.00         | A      | č      |
| ATOM         | 641        |           | ILE |                |            | 5.515             | 70.000           | 22.934           | 1.00 | 0.00         | A      | С      |
| ATOM         | 642        |           | ILE |                |            | 6.236             | 71.346           | 22.889           | 1.00 | 0.00         | A      | C      |
| MOTA         | 643        | C         |     |                | 113        | 3.555             | 67.930<br>67.475 | 22.858<br>23.873 | 1.00 | 0.00         | A<br>A | C<br>O |
| ATOM<br>ATOM | 644<br>645 | O<br>N    | SER |                | 113        | 4.075<br>2.258    | 68.282           | 22.814           | 1.00 | 0.00         | A      | N      |
| ATOM         | 646        | CA        | SER |                |            | 1.349             | 68.171           | 23.918           | 1.00 | 0.00         | A      | C      |
| ATOM         | 647        | СВ        | SER |                |            | 0.381             | 69.373           | 23.930           | 1.00 | 0.00         | A      | С      |
| MOTA         | 648        | OG        |     |                | 114        | -0.328            | 69.477           | 25.156           | 1.00 | 0.00         | A      | Ō      |
| ATOM         | 649        | C         |     |                | 114        | . 0.546           | 66.897           | 23.892           | 1.00 | 0.00         | A      | Ċ      |
| ATOM         | 650        | 0         |     |                | 114        | -0.224            | 66.644           | 24.817           | 1.00 | 0.00         | A      |        |
| ATOM<br>ATOM | 678<br>679 | n<br>Ca   | ARG |                | 119<br>119 | -2.627<br>-2.500  | 58.920<br>60.037 | 19.467           | 1.00 | 0.00         | A<br>A | N<br>C |
| ATOM         | 680        | CB        | ARG |                |            | -3.308            | 61.270           | 19.907           | 1.00 | 0.00         | A      | Č      |
| MOTA         | 681        | CG        | ARG |                |            | -3.307            | 62.377           | 18.853           | 1.00 | 0.00         | A      | C      |
| MOTA         | 682        | CD        |     |                | 119        | -4.197            | 63.575           | 19.189           | 1.00 | 0.00         | A      | С      |
| MOTA         | 683        | NE        | ARG |                |            | -4.160            | 64.489<br>65.372 | 18.012           | 1.00 | 0.00         | A      | N      |
| ATOM<br>ATOM | 684<br>685 | CZ        | ARG |                | 119        | -5.178<br>-6.207  | 65.460           | 17.796<br>18.687 | 1.00 | 0.00<br>0.00 | A<br>A | С<br>И |
| ATOM         | 686        |           | ARG |                |            | -5.171            | 66.159           | 16.680           | 1.00 | 0.00         | A      | N      |
| MOTA         | 687        | C         |     |                | 119        | -1.068            | 60.449           | 19.368           | 1.00 | 0.00         | A      | C      |
| MOTA         | 688        | 0         | ARG | A              | 119        | -0.554            | 60.627           | 18.268           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 776        | N         | THR |                |            | 9.627             | 58.831           | 11.114           | 1.00 | 0.00         | A      | N      |
| MOTA         | 777        | CA        |     |                | 129        | 9.903             | 58.153<br>57.029 | 9.876<br>9.527   | 1.00 | 0.00<br>0.00 | Α.     | C      |
| ATOM<br>ATOM | 778<br>779 | CB<br>OG1 | THR |                | 129        | 8.944<br>9.527    | 56.206           | 8.532            | 1.00 | 0.00         | A<br>A | 0      |
| ATOM         | 780        |           | THR |                |            | 7.592             | 57.541           | 9.015            | 1.00 | 0.00         | A      | č      |
| ATOM         | 781        | c         | THR |                |            | 10.063            | 59.127           | 8.736            | 1.00 | 0.00         | A      | С      |
| ATOM         | 782        | 0         | THR |                |            | 10.952            | 58.962           | 7.905            | 1.00 | 0.00         | A      | 0      |
| ATOM         | 945        | N         | HIS |                |            | 24.273            | 77.362           | 2.317            | 1.00 | 0.00         | A      | N      |
| ATOM         | 946        | CA.       | HIS |                |            | 24.879            | 78.273<br>78.211 | 1.381<br>-1.402  | 1.00 | 0.00         | A<br>A | N<br>C |
| ATOM         | 947        | NDT       | HIS | A <sub>.</sub> | 120        | 23.028            | ,0.211           | -4.402           | 1.00 | 0.00         | л      | 14     |

SUBSTITUTE SHEET (RULE 26)

### Figure 9

7.74 7.743 3.468

2701. 5704 2708

| A<br>A<br>A<br>A<br>A | FOM 948 FOM 949 FOM 950 FOM 951 FOM 953 FOM 954 | CB<br>NE2<br>CD2<br>CE1<br>C | HIS A<br>HIS A<br>HIS A<br>HIS A<br>HIS A | 150<br>150<br>150<br>150<br>150<br>150<br>150                      | 25.115<br>22.316<br>23.451<br>22.101<br>24.098<br>24.685 | 77.706<br>76.178<br>76.079<br>77.476<br>79.553<br>80.620 | -0.037<br>-1.957<br>-1.174<br>-2.067<br>1.292<br>1.114 | 1.00<br>1.00<br>1.00<br>1.00 | 0.00<br>0.00 |        | A<br>A<br>A<br>A<br>A | C C N C C C O |
|-----------------------|-------------------------------------------------|------------------------------|-------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|------------------------------|--------------|--------|-----------------------|---------------|
|                       | TOM 1174                                        | N                            | VAL A                                     | 181                                                                | 11.087                                                   | 71.181                                                   | 4.799                                                  | 1.00                         | 0.00         |        | A                     | N             |
|                       | TOM 1175                                        | CA                           | VAL A                                     | 181                                                                | 10.648                                                   | 69.833                                                   | 5.059                                                  | 1.00                         |              |        | A                     | С             |
|                       | TOM 1176                                        | CB                           | VAL A                                     | 181                                                                | 11.121                                                   | 69.217                                                   | 6.358                                                  | 1.00                         | 0.00         |        | A                     | С             |
|                       | FOM 1177<br>FOM 1178                            | CGI .                        | VAL A                                     | 181                                                                | 10 445                                                   | 69.2/1                                                   | 7 597                                                  | 1.00                         | 0.00         |        | A                     | C             |
|                       | OM 1179                                         | C                            | VAL A                                     | 181                                                                | 9.141                                                    | 69.714                                                   | 4.942                                                  | 1.00                         | 0.00         |        | A<br>A                | C             |
|                       | OM 1180                                         | 0                            | VAL A                                     | 181                                                                | 8.631                                                    | 68.694                                                   | 4.481                                                  | 1.00                         | 0.00         |        | A                     | ŏ             |
|                       | TOM 1181                                        | N '                          | VAL A                                     | 182                                                                | 8.378                                                    | 70.730                                                   | 5.390                                                  | 1.00                         | 0.00         |        | A                     | N             |
|                       | OM 1182                                         | CA '                         | VAL A                                     | 182                                                                | 6.943                                                    | 70.651                                                   | 5.305                                                  | 1.00                         | 0.00         |        | A                     | C             |
|                       | OM 1183                                         | CB 1                         | VAL A                                     | 182                                                                | 6.239                                                    | 71.512                                                   | 6.332                                                  | 1.00                         | 0.00         |        | A                     | C             |
|                       | OM 1185                                         | CG2 1                        | VAL A                                     | 182                                                                | 4.722                                                    | 71.336                                                   | 6.144                                                  | 1.00                         | 0.00         |        | A<br>A                | C             |
|                       | OM 1186                                         | C '                          | VAL A                                     | 182                                                                | 6.380                                                    | 70.913                                                   | 3.919                                                  | 1.00                         | 0.00         |        | A                     | č             |
| ľ.A                   | OM 1187                                         | 0 1                          | VAL A                                     | 181<br>181<br>181<br>181<br>181<br>181<br>182<br>182<br>182<br>182 | 5.526                                                    | 70.174                                                   | 3.436                                                  | 1.00                         | 0.00         |        | A                     | 0             |
|                       | OM 1199                                         | N (                          | GLN A                                     | 184<br>184<br>184<br>184<br>184                                    | 8.234                                                    | 71.382                                                   | 0.946                                                  | 1.00                         |              | •      | A                     | N             |
| 3.0                   | OM 1200                                         | CA                           | GLN A                                     | 184                                                                | 9.158                                                    | 70.859                                                   | -0.051                                                 |                              | 0.00         |        |                       | C             |
| A1                    | OM 1202                                         | CG (                         | GLN A                                     | 184                                                                | 9.491                                                    | 69.172                                                   | -2.012                                                 |                              | 0.00         |        |                       | C             |
| TA<br>TA              | OM 1203                                         | CD (                         | GLN A                                     | 184                                                                | 9.134                                                    | 69.142                                                   | -3.492                                                 |                              | 0.00         |        |                       | č             |
|                       | OM 1204                                         | OE1 (                        | GLN A                                     | 184                                                                | 8.162                                                    | 69.754                                                   | -3.929                                                 |                              | 0.00         |        |                       | o             |
| AT<br>AT              |                                                 | NEZ (                        | PIN M                                     | 104                                                                | 9.954                                                    | 68.405                                                   | -4.289                                                 |                              | 0.00         |        | A                     | N             |
| AT                    |                                                 | 0 (                          | GLN A                                     | 184<br>184                                                         | 9.992                                                    | 71.978                                                   |                                                        | 1.00                         | 0.00         |        | A                     | C             |
|                       |                                                 |                              |                                           |                                                                    |                                                          |                                                          |                                                        | 1.00                         | 0.00         | •      | A                     | 0             |
| A1                    | OM 1285                                         | N A                          | ASN A                                     | 193                                                                | 5.527                                                    | 85.740                                                   | 2.761                                                  |                              | 0.00         |        |                       | N             |
| AT<br>AT              | OM 1286<br>OM 1287                              | CA A                         | ASN A                                     | 193                                                                | 4.868                                                    | 84.645                                                   | 3.430<br>2.492                                         | 1.00                         |              |        |                       | C             |
| AT                    | OM 1288                                         | CG F                         | ASN A                                     | 193                                                                | 3.531                                                    | 83.872                                                   | 1.478                                                  |                              | 0.00         |        |                       | C             |
| .(m) - AT             | OM 1289                                         | OD1 A                        | ASN A                                     | 193                                                                | 3.410                                                    | 83.266                                                   | 0.413                                                  |                              | 0.00         |        | A                     | ŏ             |
| AI                    | OM 1290                                         | ND2 A                        | ASN A                                     | 193                                                                | 2.742                                                    | 84.930                                                   | 1.809                                                  |                              | 0.00         |        | A                     | N             |
|                       | OM 1291                                         | C P                          | ASN A                                     | 193                                                                | 5.778                                                    | 84.140                                                   | 4.504                                                  | 1.00                         | 0.00         |        | A                     | С             |
|                       | OM 1292                                         | O A                          | ASN A                                     | 193<br>193<br>193<br>193<br>193<br>193<br>193<br>193               | 5.347                                                    | 83.806                                                   | 5.609                                                  | 1.00                         | 0.00         |        | A.                    | 0             |
| AT<br>AT              | OM 1312<br>OM 1313                              | N I                          | HR A                                      | 196<br>196<br>196<br>196<br>196<br>196<br>196                      | 6.058                                                    | 86.709                                                   | 7.460                                                  |                              |              | į      |                       | И             |
| AT                    |                                                 | CB T                         | HR A                                      | 196                                                                | 3.597                                                    | 86.697                                                   | 7.635                                                  |                              | 0.00         | 1      |                       | C             |
| AT                    |                                                 | OG1 1                        | HR A                                      | 196                                                                | 3.431                                                    | 85.485                                                   | 6.916                                                  |                              | 0.00         | 1      |                       | ŏ             |
| AT                    |                                                 | CG2 T                        | HR A                                      | 196                                                                | 3.527                                                    | 87.896                                                   | 6.675                                                  | 1.00                         | 0.00         | 1      | Ą                     | C             |
| AT<br>AT              |                                                 | СТ                           | HR A                                      | 196                                                                | 4.983                                                    | 85.593                                                   | 9.314                                                  | 1.00                         | 0.00         |        |                       | C             |
|                       |                                                 |                              |                                           |                                                                    |                                                          |                                                          |                                                        | 1.00                         | 0.00         |        | A                     | 0             |
| AT<br>AT              |                                                 | N L                          | YS A                                      | 199<br>199<br>199<br>199                                           | 7.638                                                    | 86.189                                                   | 11.835                                                 | 1.00                         | 0.00         | 1      | 4                     | N<br>C        |
| AT                    |                                                 | CB L                         | YS A                                      | 199                                                                | 6.340                                                    | 88.271                                                   | 12.755                                                 |                              | 0.00         | 1      |                       | C             |
| AT                    |                                                 | CG L                         | YS A                                      | 199                                                                | 5.838                                                    | 89.373                                                   | 12.989                                                 | 1.00                         |              | 7      |                       | č             |
| AT                    |                                                 | CD I                         | YS A                                      | 199                                                                | 5.210                                                    | 90.555                                                   | 12.249                                                 | 1.00                         |              | 1      |                       | С             |
| AT                    |                                                 | CE D                         | IIS A                                     | 177                                                                | 4.055                                                    | 31.020                                                   | 13.175                                                 |                              | 0.00         |        | A                     | С             |
| AT<br>AT              |                                                 |                              | YS A<br>YS A                              |                                                                    | 4.048<br>6.335                                           | 92.726<br>86.603                                         | 12.375<br>13.825                                       | 1.00                         | 0.00         | 7      | 7                     | N<br>C        |
| AT                    |                                                 |                              | YS A                                      |                                                                    | 6.463                                                    | 86.957                                                   | 14.999                                                 | 1.00                         | 0.00         |        | ,                     | o             |
| AT                    |                                                 |                              | RG A                                      |                                                                    | 5.430                                                    | 85.687                                                   | 13.423                                                 | 1.00                         | 0.00         |        | Ā                     | N             |
| AT                    |                                                 |                              | RG A                                      |                                                                    | 4.464                                                    | 85.084                                                   | 14.293                                                 | 1.00                         | 0.00         | 1      |                       | С             |
| TA<br>TA              |                                                 |                              | RG A                                      |                                                                    | 3.478                                                    | 84.202                                                   | 13.512                                                 | 1.00                         | 0.00         |        | 7                     | C             |
| AT                    |                                                 |                              | RGA<br>RGA                                |                                                                    | 2.063<br>1.428                                           | 84.236<br>85.614                                         | 14.083<br>13.865                                       | 1.00                         | 0.00         | I      |                       | C             |
| AT                    | -                                               |                              | RG A                                      |                                                                    | -0.015                                                   | 85.534                                                   | 14.221                                                 | 1.00                         | 0.00         | 7      |                       | N             |
| ATC                   | DM 1350                                         |                              | RG A                                      |                                                                    | -0.795                                                   | 86.651                                                   | 14.149                                                 | 1.00                         | 0.00         | I      |                       | Ċ             |
| ATC.                  |                                                 | NH1 A                        |                                           |                                                                    | -0.252                                                   | 87.839                                                   | 13.753                                                 | 1.00                         | 0.00         | P      |                       | N             |
| )TA<br>)TA            |                                                 | NH2 A                        |                                           |                                                                    | -2.117<br>5.179                                          | 86.582                                                   | 14.479                                                 | 1.00                         | 0.00         | P      |                       | N             |
| ATC                   |                                                 |                              | RGA:<br>RGA:                              |                                                                    | 4.799                                                    | 84.227<br>84.191                                         | 15.301<br>16.470                                       | 1.00                         | 0.00         | P<br>P |                       | 0             |
| ATO                   |                                                 |                              | HE A                                      |                                                                    | 6.238                                                    | 83.508                                                   | 14.863                                                 | 1.00                         | 0.00         | 7      |                       | N             |
| ATC                   | DM 1356                                         |                              | HE A                                      |                                                                    | 6.971                                                    | 82.659                                                   | 15.763                                                 |                              | 0.00         | P      |                       | Ċ             |
| ATO                   |                                                 |                              | HE A                                      |                                                                    | 7.930                                                    | 81.661                                                   | 15.095                                                 |                              | 0.00         | P      |                       | С             |
| ATC<br>TA             |                                                 |                              | HE A                                      |                                                                    | 7.015<br>6.033                                           | 80.708                                                   | 14.419                                                 |                              | 0.00         | A      |                       | C             |
| , AI                  | 1339                                            | CD1 P                        | ne A                                      | 201                                                                | 6.033                                                    | 80.083                                                   | 15.150                                                 | 1.00                         | 0.00         | A      | •                     | С             |

Figure 9

| 3 mov | 1250 |     |        |      |     |               |        | 45 465 |      |      | • | _  | _ |
|-------|------|-----|--------|------|-----|---------------|--------|--------|------|------|---|----|---|
| ATOM  | 1360 |     |        |      | 201 | 7.156         | 80.408 | 13.087 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1361 | CE1 | . PHE  | . 7  | 201 | 5.165         | 79.203 | 14.555 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1362 | CE2 | PHE    | C A  | 201 | 6.294         | 79.527 | 12.486 | 1.00 | 0.00 |   | A  | С |
| ATOM  |      | CZ  |        |      |     | 5.294         |        |        |      |      |   |    |   |
|       | 1363 |     |        |      | 201 |               | 78.929 | 13.216 | 1.00 | 0.00 |   | A  | C |
| ATOM  | 1364 | С   | PHE    | Ą    | 201 | 7.740         | B3.456 | 16.771 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1365 | 0   | PHE    | : A  | 201 | 7.777         | 83.084 | 17.943 | 1.00 | 0.00 |   | A  | 0 |
|       |      | _   |        |      |     |               |        |        |      | 0.00 |   | •• | · |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| MOTA  | 1391 | N   |        |      | 205 | 7.739         | 83.736 | 20.997 | 1.00 | 0.00 |   | Α  | N |
| ATOM  | 1392 | CA  | PHE    | : A  | 205 | 8.909         | 83.559 | 21.816 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1393 | СВ  |        |      | 205 | 10.226        | 83.533 |        |      |      |   |    |   |
|       |      |     |        |      |     |               |        | 21.013 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1394 | CG  | PHE    | : A  | 205 | 11.337        | 83.405 | 22.000 | 1.00 | 0.00 | • | A  | С |
| ATOM  | 1395 | CD1 | PHE    | : A  | 205 | 11.451        | 82.276 | 22.779 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1396 | CD2 | PHE    | : A  | 205 | 12.266        | 84.410 | 22.149 | 1.00 | 0.00 |   | A  | Č |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1397 |     |        |      | 205 | 12.468        | 82.150 | 23.695 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1398 | CE2 | PHE    | : A  | 205 | 13.287        | 84.290 | 23.062 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1399 | CZ  | PHE    | : A  | 205 | 13.390        | 83.159 | 23.838 | 1.00 | 0.00 | • | Α  | С |
| ATOM  | 1400 | C   |        |      | 205 | 8.989         | 84.656 | 22.842 | 1.00 | 0.00 |   |    |   |
|       |      |     |        |      |     |               |        |        |      |      |   | A  | C |
| MOTA  | 1401 | Ο.  | PHE    | A    | 205 | 9.293         | 84.400 | 24.007 | 1.00 | 0.00 |   | A  | 0 |
| MOTA  | 1402 | N   | ARG    | A    | 206 | 8.699         | 85.903 | 22.417 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1403 | CA  | ARG    | . Δ  | 206 | 8.773         | 87.060 | 23.268 | 1.00 | 0.00 |   | A  | C |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1404 | CB  |        |      | 206 | 8.552         | 88.375 | 22.504 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1405 | CG  | ARG    | A    | 206 | ·8.736        | 89.619 | 23.376 | 1.00 | 0.00 |   | A  | C |
| ATOM  | 1406 | CD  | ARG    | A    | 206 | 8.522         | 90.936 | 22.628 | 1.00 | 0.00 |   | Α  | С |
| ATOM  | 1407 | NE  |        |      | 206 | 8.735         | 92.042 |        |      |      |   |    |   |
|       |      |     |        |      |     |               |        | 23.603 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1408 | CZ  |        |      | 206 | 9.124         | 93.274 | 23.163 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1409 | NH1 | ARG    | A    | 206 | 9.313         | 93.497 | 21.829 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1410 |     |        |      | 206 | 9.326         | 94.285 | 24.057 | 1.00 |      |   | A  |   |
|       |      |     |        |      |     |               |        |        |      | 0.00 |   |    | N |
| ATOM  | 1411 | С   | ARG    | A    | 206 | 7.751         | 86.995 | 24.364 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1412 | 0   | ARG    | A    | 206 | 8.057         | 87.362 | 25,499 | 1.00 | 0.00 |   | A  | 0 |
|       |      |     |        |      |     |               |        |        |      |      |   |    | _ |
| MOTA  | 1429 | NT  | D CM   | . 7. | 200 | 8.651         | 04 436 | 26 070 | 1 00 |      |   |    |   |
|       |      | N   |        |      | 209 |               | 84.436 | 26.878 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1430 | CA  | ASN    | A    | 209 | 9.885         | 84.859 | 27.476 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1431 | CB  | ASN    | Ά    | 209 | 10.701        | 85.728 | 26.495 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1432 | CG  | ACM    | À    | 209 | 12.162        | 85.776 | 26.924 | 1.00 | 0.00 |   |    | Č |
|       |      |     |        |      |     |               |        |        |      |      |   | A  |   |
| MOTA  | 1433 |     | ASN    |      |     | 12.877        | 86.732 | 26.625 | 1.00 | 0.00 |   | A  | 0 |
| ATOM  | 1434 | ND2 | ASN    | · A  | 209 | 12.623        | 84.714 | 27.636 | 1.00 | 0.00 |   | A  | N |
| MOTA  | 1435 | С   | ASN    | Δ    | 209 | 9.672         | 85.652 | 28.731 | 1.00 | 0.00 |   | A  | C |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1436 | 0   | ASN    | A    | 209 | 10.595        | 85.740 | 29.537 | 1.00 | 0.00 |   | A  | 0 |
|       |      |     |        |      |     | t . '         |        |        |      |      |   |    |   |
| ATOM  | 1488 | N   | CYS    | Α    | 216 | .1.638        | 82.849 | 36.272 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1489 | CA  |        |      | 216 |               |        |        |      |      |   |    |   |
|       |      |     |        |      |     | 0.440         | 82.199 | 35.826 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1490 | CB  | CYS    | A    | 216 | 0.299         | 82.227 | 34.296 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1491 | SG  | CYS    | A    | 216 | -1.245        | 81.461 | 33.731 | 1.00 | 0.00 |   | A  | S |
| ATOM  | 1492 | C   |        |      | 216 | 0.412         | 80.757 | 36.263 | 1.00 | 0.00 |   |    |   |
|       |      |     |        |      |     |               |        |        |      |      |   | A  | C |
| ATOM  | 1493 | 0   | CAR    | A    | 216 | -0.647        | 80.240 | 36.616 | 1.00 | 0.00 |   | A  | 0 |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| MOTA  | 1528 | N   | LEU    | A    | 221 | -5.569        | 81.198 | 38.441 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1529 |     |        |      |     |               |        |        |      |      |   |    |   |
|       |      | CA  |        |      | 221 | -6.723        | 82.047 | 38.549 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1530 | СВ  | LEU    | A    | 221 | -7.072        | 82.378 | 40.008 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1531 | CG  | LEU    | A    | 221 | -8.306        | 83.286 | 40.157 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1532 |     | LEU    |      |     | -8.442        | 83.810 | 41.598 | 1.00 | 0.00 |   | A  | Č |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1533 |     | LEU    |      |     | -9.579        | 82.592 | 39.652 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1534 | С   | LEU    | Α    | 221 | <b>-6.453</b> | 83.348 | 37.853 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1535 | 0   | LEU    | A    | 221 | -7.357        | 83.950 | 37.277 | 1.00 | 0.00 |   | A  | 0 |
|       |      | •   |        | •    |     |               |        |        | 2.00 | 0.00 |   | •• | • |
| 3.000 | 1844 |     |        | _    |     |               | 00 000 |        |      |      |   | _  |   |
| ATOM  | 1544 | N   |        |      | 223 | -5.018        | 83.876 | 35.118 | 1.00 | 0.00 |   | A  | N |
| ATOM  | 1545 | CA  | ILE    | A    | 223 | -5.173        | 83.823 | 33.681 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1546 | CB  |        |      | 223 | -4.973        | 82.425 | 33.110 | 1.00 | 0.00 |   | A  | Ċ |
| ATOM  | -    |     |        |      |     |               |        |        |      |      |   |    |   |
|       | 1547 |     | ILE    |      |     | -6.221        | 81.543 | 33.280 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1548 | CG1 | ΪLΕ    | A    | 223 | -4.524        | 82.505 | 31.646 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1549 | CD1 | ILE    | A    | 223 | -3.895        | 81.193 | 31.179 | 1.00 | 0.00 |   | A  | C |
| ATOM  | 1550 |     |        |      |     |               |        |        |      |      |   |    |   |
|       |      | C   |        |      | 223 | -6.490        | 84.455 | 33.279 | 1.00 | 0.00 |   | A. | С |
| ATOM  | 1551 | 0   | ILE    | Α    | 223 | -6.554        | 85.171 | 32.282 | 1.00 | 0.00 |   | A  | 0 |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1560 | N   | CYS    | A    | 225 | -8.034        | 86.766 | 34.940 | 1.00 | 0.00 |   | A  | N |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1561 | CA  | CYS    |      |     | -7.877        | 88.165 | 35.216 | 1.00 | 0.00 |   | A  | С |
| ATOM  | 1562 | CB  | CYS    | A    | 225 | -7.068        | 88.408 | 36.495 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1563 | SG  | CYS    |      |     | -6.875        | 90.175 | 36.837 | 1.00 | 0.00 |   | A  | S |
| ATOM  |      |     |        |      |     |               |        |        |      |      |   |    |   |
|       | 1564 | C   | CYS    |      |     | -7.149        | 88.821 | 34.084 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1565 | 0   | CYS    | Α    | 225 | -7.512        | 89.920 | 33.668 | 1.00 | 0.00 |   | A  | 0 |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |
| MOTA  | 1622 | N   | 172 T. | 2    | 232 | -1.269        | 84.327 | 21.958 | 1.00 | 0.00 |   | A  | N |
|       |      |     | VAL    |      |     |               |        |        |      |      |   |    |   |
| ATOM  | 1623 | CA  | VAL    |      |     | -0.683        | 83.108 | 21.495 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1624 | CB  | VAL    | Α    | 233 | 0.011         | 82.326 | 22.554 | 1.00 | 0.00 |   | A  | С |
| MOTA  | 1625 | CG1 |        |      |     | 0.789         | 81.187 | 21.863 | 1.00 | 0.00 |   | Α. | Č |
|       |      | -G1 | ىلى •  | H    | 233 | 0.703         | 01.107 | ~~.003 | 1.00 | 5.00 |   |    | C |
|       |      |     |        |      |     |               |        |        |      |      |   |    |   |

**SUBSTITUTE SHEET (RULE 26)** 

| ATOM | 1626 | CG2 | VAL  | . Α | 233           | 0.900       | 83.282 | 23.369 | 1.00 | 0.00  |     | A          | С  |
|------|------|-----|------|-----|---------------|-------------|--------|--------|------|-------|-----|------------|----|
| ATOM | 1627 | c   |      |     | 233           | -1.691      | 82.283 |        |      |       |     |            |    |
|      |      |     |      |     |               |             |        |        | 1.00 | 0.00  |     |            | C  |
| ATOM | 1628 | 0   | VAL  | A   | 233           | -1.338      | 81.649 | 19.745 | 1.00 | 0.00  |     | A          | 0  |
|      |      |     |      |     |               |             |        |        |      |       |     |            |    |
| ATOM | 1666 | N . | LEU  | Α   | 239           | -3.196      | 81.919 | 13.287 | 1.00 | 0.00  |     | A.         | N  |
| ATOM | 1667 | CA  | LEU  | A   | 239           | -2.733      | 82.500 | 12.054 | 1.00 | 0.00  |     | A          | С  |
| ATOM | 1668 | СВ  |      |     | 239           | -1.911      | 83.787 | 12.232 | 1.00 | 0.00  |     |            | č  |
| ATOM | 1669 | CG  |      |     |               |             |        |        |      |       |     |            |    |
|      |      |     |      |     | 239           | -1.440      | 84.363 | 10.881 | 1.00 | 0.00  |     |            | С  |
| ATOM | 1670 | CD2 | LEU  | A   | 239           | -0.395      | 85.476 | 11.058 | 1.00 | 0.00  | 1   | Ą          | С  |
| MOTA | 1671 | CD1 | LEU  | A   | 239           | -2.636      | 84.803 | 10.022 | 1.00 | 0.00  |     | A.         | C  |
| ATOM | 1672 | С   | LEU  | A   | 239           | -1.849      | 81.526 | 11.339 | 1.00 | 0.00  |     |            | Č  |
| ATOM | 1673 | ō   |      |     | 239           | -1.962      | 81.374 | 10.120 | 1.00 | 0.00  |     |            |    |
|      |      |     |      |     |               |             |        |        |      |       |     |            | 0  |
| ATOM | 1674 | N   |      |     | 240           | -0.953      | 80.843 | 12.085 | 1.00 | 0.00  |     |            | N  |
| ATOM | 1675 | CA  |      |     | 240           | -0.046      | 79.916 | 11.469 | 1.00 | 0.00  | 1   | Α .        | С  |
| ATOM | 1676 | CB  | THR  | A   | 240           | 1.152       | 79.521 | 12.306 | 1.00 | 0.00  | 1   | Α .        | С  |
| ATOM | 1677 | OG1 | THR  | A   | 240           | 2.101       | 78.863 | 11.482 | 1.00 | 0.00  |     |            | 0  |
| ATOM | 1678 |     | THR  |     |               | 0.766       | 78.605 | 13.475 | 1.00 | 0.00  | 1   |            | c  |
| ATOM | 1679 | C   |      |     | 240           | -0.765      | 78.710 |        |      |       |     |            |    |
|      |      |     |      |     |               |             |        | 10.948 | 1.00 | 0.00  |     |            | С  |
| ATOM | 1680 | 0   |      |     | 240           | -0.432      | 78.238 | 9.862  | 1.00 | 0.00  | 1   | <b>1</b>   | 0  |
| MOTA | 1681 | N   | ARG  | A   | 241           | -1.784      | 78.226 | 11.691 | 1.00 | 0.00  | 1   | <b>A</b> 1 | N  |
| ATOM | 1682 | CA  | ARG  | Α   | 241           | -2.578      | 77.074 | 11.356 | 1.00 | 0.00  |     | A (        | C  |
| ATOM | 1683 | CB  | ARG  | A   | 241           | -3.634      | 76.769 | 12.430 | 1.00 | 0.00  | 7   |            | c  |
| ATOM | 1684 | CG  |      |     | 241           | -3.033      | 76.079 |        |      |       |     |            |    |
|      |      |     |      |     |               |             |        | 13.654 | 1.00 | 0.00  | 7   |            | С  |
| ATOM | 1685 | CD  |      |     | 241           | -4.070      | 75.534 | 14.635 | 1.00 | 0.00  | 7   | ł (        | С  |
| ATOM | 1686 | NE  | ARG  | Ą   | 241           | -3.343      | 74.657 | 15.592 | 1.00 | 0.00  | 7   | A i        | N  |
| ATOM | 1687 | CZ  | ARG  | A   | 241           | -3.481      | 74.861 | 16.932 | 1.00 | 0.00  | . 1 |            | С  |
| ATOM | 1688 |     | ARG  |     |               | -4.254      | 75.892 | 17.380 | 1.00 |       | 7   |            |    |
|      |      |     |      |     |               |             |        |        |      |       |     |            | N  |
| ATOM | 1689 |     | ARG  |     |               | -2.823      | 74.052 | 17.815 |      | 0.00  | 7   |            | N  |
| ATOM | 1690 | С   | ARG  | A   | 241           | -3.297      | 77.326 | 10.061 | 1.00 | 0.00  | 7   | <b>L</b> ( | С  |
| ATOM | 1691 | 0   | ARG  | A   | 241           | -3.442      | 76.422 | 9.239  | 1.00 | 0.00  | 7   |            | 0  |
|      |      |     |      |     |               |             |        |        |      | ٠     | -   | -          | -  |
| ATOM | 1718 | N   | ADC. | 70  | 245           | -2 005      | 76 616 |        | 1 00 |       |     |            |    |
|      |      |     |      |     |               | -2.885      |        | 6.502  | 1.00 | 0.00  | P   |            | N  |
| ATOM | 1719 | CA  |      |     | 245           | -4.063      | 74.904 | 5.930  | 1.00 | .0.00 | P   | , (        | С  |
| MOTA | 1720 | CB  | ARG  | A   | 245           | -5.348      | 75.356 | 6.643  | 1.00 | 0.00  | P   | . (        | С  |
| ATOM | 1721 | CG  | ARG  | Α   | 245           | -6.611      | 74.619 | 6.199* | 1.00 | 0.00  | P   |            | С  |
| ATOM | 1722 | CD  |      |     | 245           | -7.869      | 75.095 | 6.928  | ~    |       |     |            |    |
|      |      |     |      |     |               |             |        |        | 1.00 | 0.00  | P   |            | С  |
| ATOM | 1723 | NE  |      |     | 245           | -9.024      | 74.307 | 6.412  |      | 0.00  | A   | . 1        | N  |
| MOTA | 1724 | CZ  | ARG  | А   | 245           | -10.212     | 74.324 | 7.084  | 1.00 | .0.00 | A   | . (        | С  |
| ATOM | 1725 | NH1 | ARG  | Α   | 245           | -10.344     | 75.070 | 8.221  | 1:00 | 0.00  | · A | . 1        | N  |
| ATOM | 1726 | NH2 | ARG  | A   | 245           | -11.270     | 73.597 | 6.620  | 1.00 | 0.00  | A   |            | N  |
| ATOM | 1727 | C   |      |     | 245           | -4.194      | 75.263 | 4.480  | 1.00 |       |     |            |    |
|      |      |     |      |     |               |             |        |        |      | 0.00  | A   |            | C  |
| ATOM | 1728 | 0   | ARG  | A   | 245           | -4.606      | 74.431 | 3.671  | 1.00 | 0.00  | A   | . (        | 0  |
|      |      |     |      |     |               |             |        |        |      |       |     |            |    |
| ATOM | 1791 | N   | ALA  | A   | 253           | -4.353      | 69.396 | -4.026 | 1.00 | 0.00  | A   | I          | Ŋ. |
| ATOM | 1792 | CA  | ALA  | A   | 253           | -4.612      | 69.414 | -5.436 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1793 | CB  |      |     | 253           | -4.813      | 70.840 | -5.972 | 1.00 |       | A   |            |    |
|      |      |     |      |     |               |             |        |        |      | 0.00  |     |            |    |
| ATOM | 1794 | C   |      |     | 253           | -3.488      | 68.797 | -6.235 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1795 | 0   | ALA  | A   | 253           | -3.699      | 67.868 | -7.011 | 1.00 | 0.00  | A   | . (        | )  |
|      |      |     |      |     |               |             |        |        |      |       |     |            |    |
| ATOM | 1802 | N   | LEU  | A   | 255           | -1.130      | 66.902 | -5.401 | 1.00 | 0.00  | A   | . 1        | 1  |
| ATOM | 1803 | CA  | LEU  |     |               | -0.537      | 65.768 |        |      |       | A   |            |    |
|      |      |     |      |     |               |             |        | -4.757 | 1.00 | 0.00  |     |            |    |
| ATOM | 1804 | CB  | LEU  |     |               | -1.336      | 65.294 | -3.524 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1805 | CG  | LEU  | A   | 255           | -0.746      | 64.077 | -2.787 | 1.00 | 0.00  | A   |            | 3  |
| MOTA | 1806 | CD2 | LEU  | Α   | 255           | -1.712      | 63.550 | -1.715 | 1.00 | 0.00  | A   |            | 2  |
| ATOM | 1807 | CD1 | LEU  | Α   | 255           | 0.649       | 64.388 | -2.223 | 1.00 | 0.00  | A   |            | •  |
| ATOM | 1808 | c   | LEU  |     |               | -0.464      | 64.630 | -5.710 | 1.00 | 0.00  |     |            |    |
|      |      |     |      |     |               |             |        |        |      |       | A   |            |    |
| ATOM | 1809 | 0   | LEU  | A   | 233           | -1.342      | 64.442 | -6.549 | 1.00 | 0.00  | A   |            | )  |
|      |      |     |      |     |               |             |        |        |      |       |     |            |    |
| MOTA | 1818 | N   | VAL  | A   | 257           | 0.365       | 60.554 | -5.320 | 1.00 | 0.00  | A   |            | 1  |
| ATOM | 1819 | CA  | VAL  |     |               | 0.639       | 59.392 | -4.525 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1820 | СВ  | VAL  |     |               | -0.592      | 58.523 | -4.406 | 1.00 | 0.00  | A   |            |    |
|      |      |     |      |     |               |             |        |        |      |       |     |            |    |
| ATOM | 1821 |     | VAL  |     |               | -0.321      | 57.265 | -3.564 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1822 | CG2 | VAL  |     |               | -1.721      | 59.401 | -3.841 | 1.00 | 0.00  | A   |            | :  |
| ATOM | 1823 | С   | VAL  | A   | 257           | 1.717       | 58.671 | -5.288 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1824 | ō   | VAL  |     |               |             | 58:869 | -6.487 | 1.00 | 0.00  | A   |            |    |
|      | 1    | -   |      |     | ,- <b>-</b> - | 2.007       | 55.005 |        |      |       |     |            | -  |
| 3001 | 1040 |     |      | _   |               | . ـ ـ ـ ـ ـ |        |        |      |       |     |            |    |
| ATOM | 1848 | N   | ARG  |     |               | 6.810       | 64.243 | -1.812 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1849 | CA  | ARG  | Α   | 261           | 7.922       | 65.148 | -1.705 | 1.00 | 0.00  | A   | C          | ;  |
| ATOM | 1850 | CB  | ARG  | Α   | 261           | 7.645       | 66.401 | -2.534 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1851 | CG  | ARG  |     |               | 7.245       | 66.100 | -3.980 | 1.00 | 0.00  | A   |            |    |
| ATOM |      |     |      |     |               |             |        |        |      |       |     |            |    |
|      | 1852 |     | ARG  |     |               | 8.403       | 65.676 | -4.882 | 1.00 | 0.00  | A   |            |    |
| ATOM | 1853 |     | ARG  |     |               | 7.834       | 65.420 | -6.234 | 1.00 | 0.00  | A   | N          | l  |
| MOTA | 1854 | CZ  | ARG  | A   | 261           | 8.661       | 65.300 | -7.314 | 1.00 | 0.00  | A   | C          | :  |
| ATOM | 1855 |     | ARG  |     |               | 10.010      | 65.421 | -7.152 | 1.00 | 0.00  | A   | N          |    |
| ATOM | 1856 |     | ARG  |     |               |             |        |        |      | 0.00  |     |            |    |
| 011  | 1000 | MIZ | -ANG | •   | 201           | 8.138       | 65.059 | -8.551 | 1.00 | 3.00  | A   | N          | F  |

| MOTA         | 1857         | C         | ARG |   |            |     | 8.223            | 65.627                                  |     |             | 1.00         | 0.00                                    |   | A      | C      |
|--------------|--------------|-----------|-----|---|------------|-----|------------------|-----------------------------------------|-----|-------------|--------------|-----------------------------------------|---|--------|--------|
| MOTA         | 1858         | 0         | ARG | A | 261        |     | 9.373            | 65.910                                  | 0.0 | 028         | 1.00         | 0.00                                    |   | A      | 0      |
| 3 most       | 1010         | 17        | ILE | * | 250        | _   | 0.970            | 61.200                                  | 2   | 285         | 1.00         | 0.00                                    |   | A      | N      |
| MOTA<br>MOTA | 1919<br>1920 | n<br>Ca   | ILE |   |            |     | 1.010            | 59.852                                  |     | 780         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 1921         | CB        | ILE |   |            |     | 0.232            | 59.422                                  |     | 029         | 1.00         | 0.00                                    |   | Α      | С      |
| ATOM         | 1922         |           | ILE |   |            |     | 1.435            | 59.337                                  |     | 974         | 1.00         | 0.00                                    |   | A      | С      |
| ATOM         | 1923         | CG1       | ILE | A | 269        |     | 0.029            | 58.108                                  |     | 274         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 1924         | CD1       | ILE |   |            |     | 1.119            | 57.710                                  |     |             | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 1925         | C         | ILE |   |            |     | 1.301            | 58.900                                  |     | 893<br>660  | 1.00         | 0.00                                    |   | A<br>A | 0      |
| MOTA         | 1926         | 0         | ILE | A | 269        | -   | 1.905            | 57.852                                  | ۷.  | 668         | 1.00         | 0.00                                    |   | A      | v      |
| MOTA         | 1953         | N         | GLN | A | 273        | _   | 4.391            | 55.737                                  | 3.  | 574         | 1.00         | 0.00                                    |   | A      | N      |
| ATOM         | 1954         | CA        | GLN |   |            | -   | 4.386            | 54.513                                  | 4.  | 346         | 1.00         | 0.00                                    |   | A      | С      |
| ATOM         | 1955         | СВ        | GLN | A | 273        | -   | 2.982            | 54.033                                  |     | 748         | 1.00         | 0.00                                    |   | A      | С      |
| ATOM         | 1956         | CG        | GLN |   |            |     | 2.097            | 53.640                                  |     | 566         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 1957         | CD        | GLN |   |            |     | 0.756            | 53.195                                  |     | 131<br>391  | 1.00<br>1.00 | 0.00                                    |   | A<br>A | C<br>0 |
| ATOM         | 1958<br>1959 |           | GLN |   |            |     | 0.190            | 52.927<br>53.110                        |     | 486         | 1.00         | 0.00                                    |   | A      | N      |
| ATOM -       | 1960         | C         | GLN |   |            |     | 5.092            | 54.905                                  |     | 611         | 1.00         | 0.00                                    |   | Α.     | C      |
| ATOM         | 1961         | ō         | GLN |   |            |     | 5.454            | 56.055                                  |     | 733         | 1.00         | 0.00                                    |   | A      | 0      |
|              |              | -         |     |   |            |     |                  |                                         |     |             |              |                                         |   |        |        |
| MOTA         | 1980         | N         | ASP |   |            |     | 0.503            |                                         |     | 979         | .1.00        | 0.00                                    |   | A      | N      |
| MOTA         | 1981         | CA        |     |   | 276        |     | 1.551            | 53.135                                  |     | 109         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 1982         | CB        |     |   | 276        |     | 1.143            | 51.747<br>51.840                        |     | 584<br>088  | 1.00         | 0.00                                    |   | A<br>A | C      |
| ATOM         | 1983         | CG<br>OD1 | ASP |   | 276        |     | 0.883            | 52.837                                  |     | 464         | 1.00         | 0.00                                    |   | A      | Ö      |
| ATOM<br>ATOM | 1984<br>1985 |           | ASP |   |            |     | 0.221            | 50.912                                  |     | 551         | 1.00         | 0.00                                    |   | A      | ŏ      |
| ATOM         | 1986         | C         |     |   | 276        |     | 1.751            | 52.983                                  |     | 586         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 1987         | ō         |     |   | 276        |     | 2.874            | 53.012                                  |     | 078         | 1.00         | 0.00                                    |   | A      | 0      |
|              |              |           |     |   |            |     |                  |                                         |     |             |              |                                         |   | _      |        |
| ATOM         | 2005         | N         |     |   | 279        |     | 1.708            | 56.005                                  |     |             | 1.00         | 0.00                                    |   | A      | N      |
| ATOM         | 2006         | CA        |     |   | 279        |     | 1.327            | 56.473                                  |     |             | 1.00         | 0.00                                    | • | A<br>A | C      |
| ATOM         | 2007         | CB .      |     |   | 279<br>279 |     | 0.818            | 55.342<br>54.191                        |     |             | 1.00         | 0.00                                    |   | A      | c.     |
| ATOM<br>ATOM | 2008<br>2009 | CG<br>CD  |     |   | 279        |     | 1.894            | 53.182                                  |     |             | 1.00         | 0.00                                    |   | A      | c      |
| ATOM         | 2010         | CE        |     |   | 279        |     | 2.965            | 52.107                                  |     |             | 1.00         | 0.00                                    |   | A      | Ç.     |
| ATOM         | 2011         | NZ        |     |   | 279        |     | 3.078            | 51.301                                  |     |             | 1.00         | 0.00                                    |   | A      | N      |
| ATOM         | 2012         | C         |     |   | 279        | -1  | 0.179            | 57.442                                  |     |             | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 2013         | 0         | LYS | A | 279        | -1  | 0.242            | 58.562                                  | 14. | 377         | 1.00         | 0.00                                    |   | A      | 0      |
|              |              |           |     |   | 000        |     | E 444            | 62 207                                  | 10  | <b>66</b> E | 1.00         | 0.00                                    |   | A      | N      |
| MOTA         | 2040         | N         |     |   | 283<br>283 |     | 5.444<br>6.527   | 63.397<br>64.164                        |     |             | 1.00         | 0.00                                    |   | A      | Č      |
| MOTA<br>MOTA | 2041<br>2042 | CA<br>CB  |     |   | 283        |     | 7.661            | 64.384                                  |     |             | 1.00         | 0.00                                    |   | A      | č      |
| ATOM .       | 2042         | CG        |     |   | 283        |     | 8.967            | 64.743                                  |     |             | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 2044         |           | ASN |   |            |     | 9.887            | 65.276                                  |     |             | 1.00         | 0.00                                    |   | A      | 0      |
| ATOM         | 2045         | ND2       | ASN | A | 283        |     | 9.052            | 64.446                                  |     | 108         | 1.00         | 0.00                                    |   | A      | N      |
| MOTA         | 2046         | C .       |     |   | 283        |     | 5.929            | 65.499                                  |     | 785         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 2047         | 0         | ASN | A | 283        | -   | 4.804            | 65.765                                  | 10. | 193         | 1.00         | 0.00                                    |   | A      | 0      |
| ATOM         | 2065         | N         | ASN | Δ | 286        | _   | 4.945            | 67,501                                  | 12. | 804         | 1.00         | 0.00                                    |   | A      | N      |
| ATOM         | 2066         | CA        |     |   | 286        |     | 3.755            |                                         |     |             | 1.00         | 0.00                                    |   | A      | С      |
| ATOM         | 2067         | СВ        |     |   | 286        |     | 3.806            | 65.428                                  | 13. | 397         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 2068         | CG        | ASN | A | 286        |     | 2.659            | 64.928                                  |     | 241         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 2069         |           | ASN |   |            |     | 2.109            | 63.866                                  |     | 960         | 1.00         | 0.00                                    |   | A<br>n | O<br>N |
| ATOM         | 2070         |           | ASN |   |            |     | 2.296            | 65.706                                  |     |             | 1.00         | 0.00                                    |   | A<br>A | N<br>C |
| MOTA         | 2071         | C         |     |   | 286<br>286 |     | -2.567<br>-1.498 | 67.375<br>67.579                        |     | 583<br>145  | 1.00         | 0.00                                    |   | A      | ō      |
| ATOM         | 2072         | 0         | ASN | A | 200        |     | 1.150            | 0,,5,5                                  |     | 110         |              | • • • • • • • • • • • • • • • • • • • • |   |        | -      |
| MOTA         | 2081         | N         | VAL | Α | 288        | -   | -2.195           | 70.159                                  | 10. | 806         | 1.00         | 0.00                                    |   | A      | N      |
| ATOM         | 2082         | CA        |     |   | 288        |     | -1.933           | 71.545                                  |     | 066         | 1.00         | 0.00                                    |   | A      | С      |
| ATOM         | 2083         | СВ        | VAL | A | 288        | · - | -3.193           | 72.350                                  | 11. | 018         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 2084         | CG1       | VAL |   |            |     | -2.843           | 73.807                                  |     | 303         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 2085         |           | VAL |   |            |     | -3.855           | 72.140                                  |     | 645         | 1.00         | 0.00                                    |   | A<br>A | C      |
| ATOM         | 2086         | C         |     |   | 288        |     | -1.290<br>-0.396 | 71.700                                  |     | 414<br>593  | 1.00         | 0.00                                    |   | A      | Ö      |
| MOTA         | 2087         | O<br>N    |     |   | 288<br>289 |     | -0.396<br>-1.737 | 70.887                                  |     | 393         | 1.00         | 0.00                                    |   | A      | Ŋ      |
| ATOM<br>ATOM | 2088         | CA        |     |   | 289        |     | -1.214           | 70.930                                  |     | 731         | 1.00         | 0.00                                    |   | A      | C      |
| MOTA         | 2090         | C         |     |   | 289        |     | 0.224            | 70.494                                  |     | 758         | 1.00         | 0.00                                    |   | A      | C      |
| ATOM         | 2091         | ŏ         |     |   | 289        |     | 1.052            | 71.111                                  |     | 427         | 1.00         | 0.00                                    |   | A      | 0      |
|              |              |           |     |   |            |     |                  | 80                                      |     |             | ,            |                                         |   | *      |        |
| ATOM         | 2099         | N         |     |   | 291        |     | 2.315            | 70.485                                  |     | 259         | 1.00         | 0.00                                    |   | A<br>A | N<br>C |
| ATOM         | 2100         | CA        |     |   | 291        |     | 3.131            | 71.414<br>71.923                        |     | 522<br>269  | 1.00         | 0.00                                    |   | A<br>A | C      |
| ATOM         | 2101         | CB        |     |   | 291        |     | 2.465<br>3.318   | 73.039                                  |     | 643         | 1.00         | 0.00                                    |   | A      | Č      |
| MOTA         | 2102         | CEL       | VAL | м | 4.7 I      |     | 3.310            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     |             |              | 5.00                                    |   |        | -      |

Figure 9

| ATOM         | 2103          | CG2     | VAT. | Δ   | 291 | 2.302            | 70.737           | 9.305            | 1.00 | 0.00 |   | A  |    |
|--------------|---------------|---------|------|-----|-----|------------------|------------------|------------------|------|------|---|----|----|
| ATOM         | 2104          | c       |      |     | 291 | 3.530            | 72.578           | 12.385           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2105          | ŏ       |      |     | 291 | 4.692            | 72.982           | 12.356           | 1.00 | 0.00 |   | Ā  | Ö  |
| ATOM         | 2106          | N       |      |     | 292 | 2.588            | 73.116           | 13.192           | 1.00 | 0.00 |   | A  |    |
| ATOM         | 2107          | CA      |      |     | 292 | 2.849            | 74.236           | 14.061           | 1.00 | 0.00 |   |    | N  |
| ATOM         | 2108          | CB      |      |     | 292 | 1.587            | 74.729           | 14.792           |      | 0.00 |   | A  | C  |
| ATOM         | 2109          | C       |      |     | 292 |                  |                  |                  | 1.00 |      |   | A  | C  |
| MOTA         | 2110          | Ö       |      |     | 292 | 3.846<br>4.720   | 73.846           | 15.110           | 1.00 | 0.00 |   | A  | C  |
| AIOM         | 2110          | U       | MUM  | A   | 232 | 4.720            | 74.640           | 15.448           | 1.00 | 0.00 |   | A  | 0  |
| ATOM         | 2138          | N       | WAT. | 73. | 296 | 7.477            | 75.506           | 15.745           | 1 00 | 0.00 |   |    |    |
| ATOM         | 2139          | CA      |      |     | 296 | 7.823            | 76.094           | 17.009           | 1.00 |      |   | A  | N  |
| ATOM         | 2140          | CB      |      |     | 296 | 6.718            | 75.992           |                  | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2141          |         | VAL  |     |     |                  |                  | 18.019           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2142          |         | VAL  |     |     | 7.236<br>5.501   | 76.513<br>76.771 | 19.370           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2142          | C       |      |     | 296 | 9.036            | 75.453           | 17.489           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2144          | ŏ       |      |     | 296 | 9.962            | 76.136           | 17.614<br>18.048 | 1.00 | 0.00 |   | A  | C  |
| nion         | 2111          | ·       | ٧٨   |     | 230 | 3.502            | 70.130           | 10.040           | 1.00 | 0.00 |   | A  | 0  |
| ATOM         | 2235          | N       | CT.Y | Δ.  | 309 | 26.439           | 80.074           | 19.863           | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2236          | CA      |      |     | 309 | 27.649           | 79.469           | 19.375           | 1.00 | 0.00 |   | A. | C  |
| ATOM         | 2237          | C       |      |     | 309 | 28.573           | 80.517           | 18.863           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2238          | ŏ       |      |     | 309 | 29.755           | 80.482           | 19.190           | 1.00 |      |   |    |    |
| RIOM         | 2230          | U       | GLI  | ^   | 303 | 29.133           | 00.402           | 15.150           | 1.00 | 0.00 |   | A  | 0  |
| MOTA         | 2384          | N       | ncp  | Δ   | 328 | 39.773           | 73.738           | 7.153            | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2385          | CA      |      |     | 328 | 40.656           | 73.867           | 6.014            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2386          | CB      |      |     | 328 | 41.853           | 74.790           | 6.298            | 1.00 | 0.00 |   | A  | c  |
| ATOM         | 2387          | CG      |      |     | 328 | 41.342           | 76.214           | 6.445            | 1.00 | 0.00 |   |    | c  |
| ATOM         | 2388          |         | ASP  |     |     |                  |                  |                  | 1.00 |      |   | A  |    |
| ATOM         | 2389          |         | ASP  |     |     | 40.142           | 76.448           | 6.137            |      | 0.00 |   | A  | 0  |
| ATOM         | 2390          | C .     |      |     | 328 | 42.142           | 77.087<br>72.539 | 6.874            | 1.00 | 0.00 |   | A  | 0  |
|              |               |         |      |     |     | 41.235           |                  | 5.625            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2391          | 0       | HIS  |     | 328 | 41.377           | 72.241           | 4.440            | 1.00 | 0.00 |   | A  | 0  |
| ATOM         |               | N       | ,    |     |     | 41.628           | 71.720           | 6.615            | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2393;<br>2394 | CA      |      |     |     | 42.227           | 70.453           | 6.309            | 1.00 | 0.00 |   | A  | С  |
| ATOM         |               |         | HIS  |     |     | 44.745           | 68.300           | 6.765            | 1.00 | 0.00 |   | A  | N  |
|              | 2395          |         |      |     |     | 43.469           | 68.454           | 7.263            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2396          |         |      |     |     | 42.833           | 69.781           | 7.553            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2397          |         |      |     |     | 43.912           | 66.254           | 7.020            | 1.00 | 0.00 |   | A  | N  |
| MOTA         | 2398          |         |      |     |     | 42.976           | 67.194           | 7.413            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2399          |         |      |     |     | 44.958           | 66.966           | 6.641            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2400          |         |      |     | 329 | 41.243           | 69.478           | 5.723            | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2401          | 0       | HTP  | A   | 329 | 41.501           | 68.876           | 4.683            | 1.00 | 0.00 |   | A  | 0  |
| MOTE         | 2432          | 1.7     | UTC  | 2   | 224 | 36 747           | 75 076           | 1 401            |      |      |   | _  |    |
| ATOM         |               | N       | HIS  |     |     | 36.747           | 75.276           | -1.481           | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2433          | CA      | HIS  |     |     | 35.801           | 75.140           | -2.559           | 1.00 | 0.00 |   | A  | Ç  |
| ATOM         | 2434          |         | HIS  |     |     | 38.891           | 74.830           | -3.764           | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2435          | CG      | HIS  |     |     | 37.629           | 75.008           | -4.288           | 1.00 | 0.00 |   | A  | C  |
| ATOM<br>ATOM | 2436          | CB      | HIS  |     |     | 36.396           | 74.355           | -3.739           | 1.00 | 0.00 |   | A  | C  |
|              | 2437<br>2438  |         |      |     |     | 39.108           | 76.228           | -5.478           | 1.00 | 0.00 |   | A  | N  |
| MOTA         |               |         | HIS  |     |     | 37.779           | 75.865           | -5.336           | 1.00 | 0.00 |   | A  | C  |
| ATOM<br>ATOM | 2439<br>2440  | CEI     | HIS  |     |     | 39.735           | 75.583           | -4.513           | 1.00 | 0.00 |   | A  | C  |
| ATOM         |               |         |      |     |     | 34.507           | 74.465           | -2.184           | 1.00 | 0.00 |   | A  | C  |
| AION         | 2441          | 0       | HIS  | A   | 334 | 33.455           | 75.101           | -2.149           | 1.00 | 0.00 |   | A  | 0  |
| ATOM         | 2604          | **      | ILE  | 78  | 255 | 20.040           | 72 620           | 02 004           | 1 00 | 0.00 |   |    | ** |
| ATOM         | 2605          | N<br>CA | ILE  |     |     | 29.040<br>28.158 | 73.639           | 23.094           | 1.00 | 0.00 |   | A  | N  |
| ATOM         |               |         | ILE  |     |     | 27.922           | 74.780           | 23.150           |      | 0.00 |   | A  | C  |
|              | 2606<br>2607  |         | ILE  |     |     |                  | 74.860           |                  |      |      |   | A  | •  |
| ATOM         |               |         |      |     |     | 27.193           |                  | 20.765           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2608          |         | ILE  |     |     | 27.144           | 76.833           | 22.343           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2609          |         | ILE  |     |     | 26.162           | 77.302           | 21.296           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2610          | C       | ILE  |     |     | 26.821           | 74.361           | 23.709           | 1.00 | 0.00 |   | A  | C  |
| MOTA         | 2611          | 0       | ILE  | A   | 223 | 26.312           | 75.023           | 24.615           | 1.00 | 0.00 |   | A  | 0  |
| N.M.O.M      | 2544          |         | CED  | •   | 250 | 05 471           | 75 073           |                  | 1 00 | 0.00 |   | _  |    |
| ATOM         | 2644          | N       | SER  |     |     | 25.471           | 75.873           | 27.379           | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2645          | CA      | SER  |     |     | 24.389           | 76.822           | 27.323           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2646          | CB      | SER  |     |     | 23.936           | 77.134           | 25.888           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2647          | OG      | SER  |     |     | 22.923           | 78.128           | 25.912           | 1.00 |      |   | A  | 0  |
| ATOM         | 2648          | C       | SER  |     |     | 23.184           | 76.386           | 28.090           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2649          | 0       | SER  | A   | 359 | 22.555           | 77.253           | 28.701           | 1.00 | 0.00 | • | A  | 0  |
|              |               |         |      | _   |     |                  |                  |                  | •    |      |   | _  |    |
| ATOM         | 2666          | N       | VAL  |     |     | 17.353           | 74.241           | 27.775           | 1.00 | 0.00 |   | A  | N  |
| ATOM         | 2667          | CA      | VAL  |     |     | 16.097           | 73.907           | 28.395           | 1.00 | 0.00 |   | A  | С  |
| MOTA         | 2668          | CB      | VAL  |     |     | 15.352           | 72.975           | 27.460           | 1.00 | 0.00 |   | A  | C  |
| MOTA         | 2669          |         | VAL  |     |     | 13.906           | 72.782           | 27.904           | 1.00 | 0.00 |   | A  | С  |
| ATOM         | 2670          |         | VAL  |     |     | 15.438           | 73.521           | 26.023           | 1.00 | 0.00 |   | A  | C  |
| ATOM         | 2671          | C       | VAL  |     |     | 16.453           | 73.218           | 29.704           | 1.00 | 0.00 |   | A  | C  |
| MOTA         | 2672          | 0       | VAL  | A   | J62 | 16.457           | 71.985           | 29.732           | 1.00 | 0.00 |   | A  | 0  |

Figure 9

| ATOM         | 2687         | N        | GL         | Y    | A 365          | 13.617           | 70.036           | 30.817           | 1.00 | 0.00         |          | M       |
|--------------|--------------|----------|------------|------|----------------|------------------|------------------|------------------|------|--------------|----------|---------|
| ATOM         | 2688         |          |            |      | A 365          | 13.149           |                  |                  |      |              | A<br>A   | N<br>C  |
| ATOM         | 2689         |          |            |      | A 365          | 11.642           |                  |                  |      |              | A        | č       |
| ATOM         | 2690         | 0        | GL         | Y.   | A 365          | 11.084           |                  |                  |      |              | A        | ŏ       |
| MOTA         | 2691         | . N      | VA         | L.   | A 366          | 10.922           | 69.849           | 28.408           | 1.00 |              | A        | N       |
| ATOM         | 2692         |          |            |      | A 366          | 9.487            | 70.016           | 28.468           | 1.00 | 0.00         | A        | С       |
| ATOM         | 2693         |          |            |      | A 366          | 8.816            |                  | 27.151           | 1.00 | 0.00         | A        | С       |
| ATOM         | 2694         |          |            |      | A 366          | 7.298            |                  |                  | 1.00 | 0.00         | Α        | С       |
| ATOM         | 2695         |          |            |      | A 366          | 9.442            |                  |                  | 1.00 | 0.00         | A        | C       |
| ATOM         | 2696         |          |            |      | A 366          | 8.977            |                  |                  | 1.00 | 0.00         | A        | С       |
| ATOM         | 2697         | 0        | VA.        | L    | A 366          | 9.552            | 67.949           | 29.652           | 1.00 | 0.00         | A        | 0       |
| ATOM         | 2734         | N        | TU         | ъ:   | A 372          | 1.110            | -56.181          | 24 704           | 1 00 | 0.00         | _        |         |
| ATOM         | 2735         |          |            |      | A 372          | 0.249            | 55.408           | 34.794<br>35.641 | 1.00 | 0.00         | A        | N       |
| ATOM         | 2736         |          |            |      | A 372          | 0.222            | 53.954           | 35.245           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2737         |          |            |      | A 372          | -0.872           | 53.276           | 35.847           | 1.00 | 0.00         | A<br>A   | 0       |
| ATOM         | 2738         |          |            |      | A 372          | 1.553            | 53.309           | 35.666           | 1.00 | 0.00         | A        | c       |
| ATOM         | 2739         |          |            |      | 372            | 0.835            | 55.533           | 37.010           | 1.00 | 0.00         | A        | č       |
| ATOM         | 2740         | 0        | TH         | R Z  | 372            | 1.874            | 56.173           | 37.157           | 1.00 | 0.00         | A        | ŏ       |
| тлом         | 2740         |          | m          |      |                | 2 242            |                  |                  |      |              |          |         |
| ATOM<br>ATOM | 2749<br>2750 | N<br>CA  |            |      | A 374<br>A 374 | 3.048            | 54.853           | 39.710           | 1.00 | 0.00         | A        | N       |
| ATOM         | 2751         | CB       |            |      |                | 4.303            | 54.168           | 39.671           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2752         |          |            |      | A 374<br>A 374 | 5.237<br>6.342   | 54.721           | 38.630           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2753         |          |            |      | 374            | 5.721            | 53.852<br>56.108 | 38.430           | 1.00 | 0.00         | A        | 0       |
| ATOM         | 2754         | C        |            |      | 374            | 4.940            | 54.328           | 39.085           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2755         | ŏ.       |            |      | 374            | 4.530            |                  | 41.010           | 1.00 | 0.00         | A<br>A   | 0       |
|              |              |          |            | •    |                | :                | 00.113           |                  | 2.00 | 0.00         |          | U       |
| ATOM         | 2865         | N        | MET        | r 2  | 388            | 9.365            | 67.118           | 36.603           | 1.00 | 0.00         | A        | N       |
| ATOM         | 2866         | CA       |            |      | 388            | 10.285           | 68,043           | 36.001           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2867         | CB       |            |      | 388            | 10.393           | 69:375           | 36.762           | 1.00 | 0.00         | Α .      | ·c      |
| ATOM         | 2868         | CG       |            |      | 388            | 9.116            | 70.210           | 36.676           | 1.00 | 0.00         | A        | С       |
| ATOM         | 2869         | SD       |            |      | 388            | 9.180            | 71.795           | 37.563           | 1.00 | 0.00         | A        | s       |
| ATOM         | 2870         | CE       |            |      | 388            | 7.494            | 72.296           | 37.108           | 1.00 | 0.00         | A        | С       |
| MOTA         | 2871         | C        |            |      | 388            | 11.647           |                  | 36.007           | 1.00 | 0.00         | A        | С       |
| ATOM         | 2872         | 0        |            |      | 388            | 12.209           | 67.120           | 37.064           | 1.00 | 0.00         | A        | 0       |
| ATOM<br>ATOM | 2873<br>2874 | N        |            |      | 389            | 12.228           |                  | 34.809           | 1.00 | 0.00         | A        | N       |
| ATOM         | 2875         | CA<br>CB |            |      | 389<br>389     | 13.518           |                  | 34.730           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2876         | C        |            |      | 389            | 13.699<br>14.551 | 65.667<br>67.603 | 33.465           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2877         | ŏ        |            |      | 389            | 14.462           | 68.515           | 34.688<br>33.872 | 1.00 | 0.00<br>0.00 | A        | C       |
| ATOM         | 2878         | N        |            |      | 390            | 15.578           | 67.544           | 35.561           | 1.00 | 0.00         | A<br>A   | N.<br>O |
| ATOM         | 2879         | CA       |            |      | 390            | 16.535           | 68.613           | 35.509           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2880         | CB       | LEU        | A    | 390            | 17.206           | 68.941           | 36.866           | 1.00 | 0.00         | A        | č       |
| ATOM         | 2881         | CG       | LEU        | A    | 390            | 18.156           | 70.159           | 36.815           | 1.00 | 0.00         | A        | Č       |
| ATOM         | 2882         | CD2      | LEU        | A    | 390            | 18.871           | 70.406           | 38.150           | 1.00 | 0.00         | A        | Ċ       |
| ATOM         | 2883         |          |            |      | 390            | 17.409           | 71.416           | 36.386           | 1.00 | 0.00         | A        | С       |
| ATOM         | 2884         | C        |            |      | 390            | 17.606           | 68.225           | 34.535           | 1.00 | 0.00         | A        | C       |
| ATOM         | 2885         | 0        | LEU        | A    | 390            | 18.464           | 67.404           | 34.820           | 1.00 | 0.00         | A        | 0       |
| ATOM         | 2940         | N        | 700        | . 70 | 398            | 20 250           | 67 700           | 37 000           | 1 00 | 0.00         | _        |         |
| ATOM         | 2941         | CA       |            |      | 398            | 29.359<br>30.674 | 67.709<br>68.112 | 37.900<br>38.330 | 1.00 | 0.00         | A        | N       |
| ATOM         | 2942         | СВ       |            |      | 398            | 30.744           | 68.391           | 39.842           | 1.00 | 0.00<br>0.00 | A        | C       |
| ATOM         | 2943         | CG       |            |      | 398            | 30.001           | 69.690           | 40.124           | 1.00 | 0.00         | A<br>A   | C       |
| ATOM         | 2944         | OD1      |            |      | 398            | 30.373           | 70.728           | 39.517           |      | 0.00         | A        | Ö       |
| ATOM         | 2945         |          | ASP        |      |                | 29.058           | 69.662           | 40.960           | 1.00 | 0.00         | A<br>A   | Ö       |
| ATOM         | 2946         | C        |            |      | 398            | 31.684           | 67.054           | 38.028           | 1.00 | 0.00         | A        | č       |
| ATOM         | 2947         | o ·      |            |      | 398            | 32.811           | 67.370           | 37.649           | 1.00 | 0.00         | A.       | ŏ       |
|              |              |          |            |      |                |                  |                  |                  |      |              |          | _       |
| ATOM         | 2999         | N        |            |      | 405            | 30.881           | 75.157           | 34.689           | 1.00 | 0.00         | A        | N       |
| MOTA         | 3000         | CA       |            |      | 405            | 30.386           | 76.453           | 34.344           | 1.00 | 0.00         | A        | C       |
| ATOM         | 3001         | CB       |            |      | 405            | 30.207           | 77.367           | 35.567           | 1.00 | 0.00         | A        | C       |
| ATOM         | 3002         | CG       |            |      | 405            | 29.063           | 76.824           | 36.409           | 1.00 | 0.00         | A        | С       |
| atom<br>Atom | 3003         |          | ASN        |      |                | 28.978           | 77.092           | 37.606           | 1.00 | 0.00         | A        | 0       |
| ATOM         | 3004<br>3005 | C MD2    | ASN<br>ASN |      |                | 28.158           | 76.037           | 35.770           | 1.00 | 0.00         | A        | N       |
| ATOM         | 3005         | 0        | ASN        |      |                | 31.346           | 77.153           | 33.429           | 1.00 | 0.00         | A        | C       |
| ATOM         | 3007         | N        | ILE        |      |                | 31.227<br>32.285 | 78.363<br>76.423 | 33.235<br>32.795 | 1.00 | 0.00<br>0.00 | A        | 0       |
| ATOM         | 3008         | CA       | ILE        |      |                | 33.199           | 77.093           | 31.905           | 1.00 | 0.00         | A.<br>A  | N       |
| MOTA         | 3009         | CB       | ILE        |      |                | 34.659           | 76.980           | 32,280           | 1.00 | 0.00         | A.<br>A. | C<br>C  |
| MOTA         | 3010         |          | ILE        |      |                | 35.174           | 75.576           | 31.926           | 1.00 | 0.00         | r.<br>A  | Ç       |
| MOTA         | 3011         |          | ILE        |      |                | 35.478           | 78.082           | 31.587           | 1.00 | 0.00         | n.<br>A  | c       |
| MOTA         | 3012         |          | ILE        |      |                | 36.911           | 78.188           | 32.107           | 1.00 | 0.00         | Ą        | Ċ       |
| ATOM         | 3013         | С        | ILE        | A    | 406            | 33.010           | 76.457           | 30.566           | 1.00 | 0.00         | À        | č       |
|              |              |          |            |      |                |                  |                  |                  |      |              |          |         |

510/514 ...

Figure 9

| ATOM         | 3014 | 0   | ILE | A | 406              | 32.488           | 75.344           | 30.507           | 1.00 | 0.00         | A      | 0      |
|--------------|------|-----|-----|---|------------------|------------------|------------------|------------------|------|--------------|--------|--------|
| ATOM         | 3041 | N   | GLY | n | 410              | 37.267           | 70.719           | 25.577           | 1.00 | 0.00         | A      | N      |
|              | 3042 | CA  | GLY |   |                  | 38.058           | 69.637           | 26.095           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3043 | C   | GLY |   |                  | 37.203           | 68,636           | 26.821           | 1.00 | 0.00         | A      | С      |
| atom<br>atom | 3044 | ō   | GLY |   |                  | 37.631           | 67.493           | 26.987           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3082 | N   | LYS | A | 415 <sup>.</sup> | 42.723           | 62.415           | 25.259           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3083 | CA  | LYS | A | 415              | 44.139           | 62.679           | 25.331           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3084 | CB  | LYS | A | 415              | 44.945           | 61.425           | 25.729           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3085 | CG  | LYS | A | 415              | 44.606           | 60.184           | 24.899           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3086 | CD  | LYS | A | 415              | 45.603           | 59.034           | 25.040           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3087 | CE  | LYS | A | 415              | 45.228           | 57.813           | 24.196           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3088 | NZ  | LYS | A | 415              | 46.230           | 56.741           | 24.379           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3089 | С   | LYS | A | 415              | 44.627           | 63.167           | 24.001           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3090 | 0   | LYS | A | 415              | 45.421           | 64.105           | 23.930           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3091 | N   | asn |   |                  | 44.141           | 62.552           | 22.902           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3092 | CA  | ASN |   |                  | 44.459           | 62.945           | 21.557           | 1.00 | 0.00         | A<br>A | C      |
| MOTA         | 3093 | CB  | asn |   |                  | 44.526           | 61.746           | 20.587           | 1.00 | 0.00         | A      | c      |
| ATOM         | 3094 | CG  | ASN |   |                  | 45.421           | 62.066           | 19.393           | 1.00 | 0.00         | Ä      | ŏ      |
| ATOM         | 3095 |     | ASN |   |                  | 45.575           | 61.251<br>63.283 | 18.484<br>19.392 | 1.00 | 0.00         | A      | N      |
| MOTA         | 3096 |     | ASN |   |                  | 46.028           |                  | 21.171           | 1.00 | 0.00         | A      | Ċ      |
| ATOM         | 3097 | C   | ASN |   |                  | 43.334           | 63.871           | 22.052           | 1.00 | 0.00         | · A    | ŏ      |
| ATOM         | 3098 | 0   | ASN | A | 416              | 42.695           | 64.444           | 22.032           | 1.00 |              |        |        |
| ATOM         | 3146 | N   | ASP | A | 423              | 27.546           | 60.146           | 28.253           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3147 | CA  | ASP | A | 423              | 26.218           | 59.715           | 28.600           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3148 | CB  | ASP | A | 423              | 26.221           | 58.531           | 29.602           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3149 | CG  | ASP | Α | 423              | 26.959           | 58.863           | 30.905           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3150 |     | ASP |   |                  | 28.200           | 59.087           | 30.871           | 1.00 | 0.00         | A      | . 0    |
| MOTA         | 3151 | OD2 | ASP | A | 423              | 26.291           | 58.855           | 31.972           | 1.00 | 0.00         | A      | o<br>C |
| ATOM         | 3152 | С   |     |   | 423              | 25.456           | 60.884           | 29.161           | 1.00 | 0.00         |        | 0      |
| ATOM         | 3153 | 0   | ASP | A | 423              | . 24.228         | 60.933           | 29.137           | 1.00 | 0.00         | A      | -      |
| ATOM         | 3252 | N   | ALA | A | 436              | 12.592           | 64.855           | 18.779           | 1.00 | 0.00         | A      | ·N     |
| ATOM         | 3253 | CA  | ALA | A | 436              | 12.288           | 64.292           | 17.491           | 1.00 | 0.00         | Α      | C      |
| MOTA         | 3254 | CB  | ALA | A | 436              | 10.881           | 64.673           | 17.001           | 1.00 | 0.00         | Α      | C ·    |
| ATOM         | 3255 | С   | ALA | A | 436              | 13.261           | 64.807           | 16,480           | 1.00 | 0.00         | Α.     | ·C·    |
| MOTA         | 3256 | 0   | ALA | A | 436              | 13.601           | 64.138           | 15.510           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3270 | N   | GLY | А | 439              | 18.475           | 64.603           | 15.250           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3271 | CA  |     |   | 439              | 19.307           | 64.407           | 14.092           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3272 | С   |     |   | 439              | 19.349           | 65.640           | 13.229           | 1.00 | 0.00         | A      | С      |
| ATOM         | 3273 | 0   | GLY | A | 439              | 20.411           | 66.003           | 12.722           | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3287 | N   | ARG | A | 442              | 21.409           | 68.511           | 14.885           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3288 | CÄ  | ARG | A | 442              | 22.829           | 68.278           | 14.884           | 1.00 | 0.00         | A      | C      |
| MOTA         | 3289 | CB  |     |   | 442              | 23.168           | 66.823           | 15.249           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3290 | ÇG  | ARG | A | 442              | 24.619           | 66.613           | 15.678           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3291 | CD  |     |   | 442              | 24.937           | 65.159           | 16.036           | 1.00 | 0.00         | A      | C<br>N |
| MOTA         | 3292 | NE  |     |   | 442              | 26.390           | 65.075           | 16.349           | 1.00 | 0.00         | A      | Č      |
| MOTA         | 3293 | ÇZ  |     |   | 442              | 26.961           | 63.858           | 16.587           | 1.00 | 0.00         | A<br>A | N      |
| ATOM         | 3294 |     |     |   | 442              | 26.198           | 62.728           | 16.560<br>16.849 | 1.00 | 0.00<br>0.00 | A      | N .    |
| ATOM         | 3295 |     |     |   | 442              | 28.297           | 63.771<br>68.576 | 13.516           | 1.00 | 0.00         | A      | Ċ      |
| ATOM         | 3296 | C   |     |   | 442              | 23.349<br>24.451 | 69.101           | 13.350           | 1.00 | 0.00         | A      | ŏ      |
| ATOM         | 3297 | 0   | AKG | A | 442              | . ,              |                  |                  |      |              |        |        |
| ATOM         | 3368 | N   |     |   | 451              | 29.956           | 75.997           | 7.782            | 1.00 | 0.00         | A      | И      |
| ATOM         | 3369 | CA  |     |   | 451              | 29.865           | 76.805           | 6.595            | 1.00 | 0.00         | A      | C      |
| MOTA         | 3370 | CB  |     |   | 451              | 28.567           | 76.659           | 5.831            | 1.00 | 0.00         | A      |        |
| ATOM         | 3371 |     |     |   | 451              | 28.703           |                  | 4.550            | 1.00 | 0.00         | A      | 0      |
| MOTA         | 3372 |     |     |   | 451              | 27.389           | 77.294           | 6.582            | 1.00 | 0.00<br>0.00 | A<br>A | C      |
| MOTA         | 3373 | C   |     |   | 451              | 30.165           | 78.248           | 6.899            | 1.00 | 0.00         | A      | 0      |
| ATOM         | 3374 | 0   | THE | A | 451              | 30.810           | 78.913           | 6.089            |      |              | n      |        |
| MOTA         | 3450 | N   |     |   | 461              | 33.044           | 93.815           | 17.855           | 1.00 | 0.00         | A      | N      |
| ATOM         | 3451 | CA  |     |   | 461              | 33.429           |                  | 17.928           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3452 | CB  |     |   | 461              | 32.283           |                  | 17.678           | 1.00 | 0.00         | A      | C      |
| ATOM         | 3453 |     |     |   | 461              | 32.771           | 97.579           | 17.892<br>16.269 | 1.00 | 0.00<br>0.00 | A<br>A | c      |
| ATOM         | 3454 |     |     |   | 461              | 31.728           | 95.867           |                  | 1.00 | 0.00         | A      | c      |
| ATOM         | 3455 | C   |     |   | 461              | 33.944           |                  | 19.298<br>19.472 | 1.00 | 0.00         | A      | Ö      |
| MOTA         | 3456 | 0   |     |   | 461              | 35.095           |                  | 20.309           | 1.00 | 0.00         | Ā      | N      |
| ATOM         | 3457 | N   |     |   | 462              | 33.077           |                  | 21.671           | 1.00 | 0.00         | A      | Č      |
| MOTA         | 3458 | CA  |     |   | 462              | 33.491           |                  | 22.676           | 1.00 | 0.00         | A      | č      |
| MOTA         | 3459 | CB  | ASI | A | 462              | 32.326           | 33.202           |                  |      |              | ••     | •      |

SUBSTITUTE SHEET (RULE 26)

149 (14 ) 0 14 (15 ) 14 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 ) 15 (15 )

511/514

| ATOM   | 3460  | CG  | ACD   | 70. | 462 | 32.823 | 95.694 | 24 056 | 1 00 | 0.00 |   |   | -  |
|--------|-------|-----|-------|-----|-----|--------|--------|--------|------|------|---|---|----|
|        |       |     |       |     |     |        |        |        | 1.00 |      |   | A | C  |
| ATOM   | 3461  |     | . ASP |     |     | 34.020 |        | 24.181 | 1.00 | 0.00 |   | A | 0  |
| MOTA   | 3462  | OD2 | ASP   | A   | 462 | 32.000 | 95.649 | 25.010 | 1.00 | 0.00 |   | Α | 0  |
| MOTA   | 3463  | С   | ASP   | A   | 462 | 34.335 | 94.145 | 21.835 | 1.00 | 0.00 |   | A | Ċ  |
| ATOM   | 3464  | õ   |       |     | 462 | 33.850 |        |        |      |      |   |   |    |
| AION   | 3303  | 0   | AUE   | •   | 402 | 33.030 | 33.043 | 21.560 | 1.00 | 0.00 |   | A | 0  |
|        |       |     |       | _   |     |        |        |        |      |      |   |   |    |
| ATOM   | 3473  | N   | LEU   | A   | 464 | 36.875 | 91.028 | 22.664 | 1.00 | 0.00 |   | Α | N  |
| ATOM   | 3474  | CA  | LEU   | A   | 464 | 36.637 | 89.662 | 23.038 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3475  | CB  |       |     | 464 | 37.667 |        |        |      |      |   |   |    |
|        |       |     |       |     |     |        |        | 22.394 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3476  | CG  | LEU   | A   | 464 | 37.605 | 88.489 | 20.856 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3477  | CD2 | LEU   | A   | 464 | 38.529 | 87.331 | 20.450 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3478  | CD1 | LEU   | Α   | 464 | 37.925 |        |        | 1.00 | 0.00 |   | A | Č. |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3479  | C   |       |     | 464 | 36.752 |        | 24.518 | 1.00 | 0.00 |   | A | С  |
| MOTA   | 3480  | 0   | LEU   | A   | 464 | 35.860 | 88.887 | 25.114 | 1.00 | 0.00 |   | A | 0  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3506  | N   | ASN   | A   | 468 | 30.409 | 89.485 | 27.882 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3507  | CA  |       |     | 468 |        |        |        |      |      |   |   |    |
|        |       |     |       |     |     | 29.836 |        | 28.859 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3508  | CB  | ASN   | A   | 468 | 28.907 | 89.330 | 29.840 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3509  | CG  | ASN   | Α   | 468 | 28.386 | 88.341 | 30.867 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3510  | ODI | ASN   |     |     | 27.228 | 87.934 | 30.800 | 1.00 | 0.00 |   | A | ŏ  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3511  |     | asn   |     |     | 29.256 | 87.942 | 31.833 | 1.00 | 0.00 |   | Α | N  |
| ATOM   | 3512  | С   | ASN   | А   | 468 | 29.039 | 87.516 | 28.177 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3513  | 0   | asn   | Α   | 468 | 28.202 | 87.779 | 27.316 | 1.00 | 0.00 |   | A | 0  |
|        |       |     |       |     |     |        |        |        |      |      |   |   | -  |
| ATOM   | 3528  | N   | ALA   | Δ.  | 471 | 24.552 | 83.369 | 30.599 | 1.00 | 0.00 |   | A | N  |
|        |       |     | ALA   |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3529  | CA  |       |     |     | 23.235 | 83.137 | 30.084 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3530  | СВ  | ALA   | А   | 471 | 22.831 | 81.652 | 30.080 | 1.00 | 0.00 |   | Α | С  |
| ATOM   | 3531  | С   | ALA   | А   | 471 | 22.257 | 83.874 | 30.936 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3532  | ō   | ALA   |     |     | 22.415 | 83.959 | 32.152 |      | 0.00 | • |   |    |
|        |       | Ü   | AUA   | ^   | 471 | 22.413 | 03.555 | 32.132 | 1.00 | 0.00 |   | A | 0  |
| 34: .  | 25.42 |     |       | _   |     |        |        |        |      |      |   |   |    |
| ATOM   | 3540  | N   | THR   | А   | 473 | 18.683 | 83.801 | 32.369 | 1.00 | 0.00 |   | Α | N  |
| ATOM   | 3541  | CA  | THR   | Α   | 473 | 17.659 | 82.804 | 32.494 | 1.00 | 0.00 |   | Α | С  |
| * ATOM | 3542  | ÇВ  | THR   | Δ   | 473 | 17.993 | 81.724 | 33.482 | 1.00 | 0.00 |   | A | Č  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3543  |     | THR   |     |     | 18.161 | 82.278 | 34.780 | 1.00 | 0.00 |   | A | 0  |
| ATOM   | 3544  | CG2 | THR   | А   | 473 | 19.287 | 81.030 | 33.026 | 1.00 | 0.00 |   | A | С  |
| ATOM - | 3545  | С   | THR   | A   | 473 | 16.366 | 83.426 | 32.906 | 1.00 | 0.00 |   | A | C  |
| ATOM - |       |     |       |     |     |        |        |        |      |      |   |   |    |
|        |       | 0   | THR   |     |     | 16.310 | 84.343 | 33.725 | 1.00 | 0.00 |   | A | 0  |
| MOTA   | 3547  | N   | LYS   | А   | 474 | 15.274 | 82.944 | 32.289 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3548  | CA  | LYS   | Α   | 474 | 13.967 | 83.402 | 32.638 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3549  | CB  | LYS   |     |     | 13.305 | 84.275 | 31.560 | 1.00 | 0.00 |   | A | č  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3550  | CG  | LYS   |     |     | 13.955 | 85.657 | 31.436 | 1.00 | 0.00 |   | A | С  |
| MOTA   | 3551  | CD  | LYS   | А   | 474 | 13.485 | 86.457 | 30.219 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3552  | CE  | LYS   | А   | 474 | 14.118 | 87.847 | 30.115 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3553  | NZ  | LYS   |     |     | 13.607 | 88.546 | 28.914 | 1.00 | 0.00 |   |   |    |
|        |       |     |       |     |     |        |        |        |      |      |   | A | N  |
| ATOM   | 3554  | C   | LYS   |     |     | 13.122 | 82.188 | 32.848 | 1.00 | 0.00 |   | A | С  |
| MOTA   | 3555  | 0   | LYS   | A   | 474 | 12.454 | 81.709 | 31.933 | 1.00 | 0.00 |   | A | O  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3560  | N   | ILE   | A   | 476 | 12.187 | 78.732 | 32.854 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3561  | CA  | ILE   |     |     | 12.344 | 77.549 | 32.043 | 1.00 | 0.00 |   | A | c  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3562  | СВ  | ILE   |     |     | 11.005 | 77.134 | 31.468 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3563  | CG2 | ILE   | А   | 476 | 10.571 | 78.190 | 30.438 | 1.00 | 0.00 |   | Α | С  |
| MOTA   | 3564  | CG1 | ILE   | А   | 476 | 11.001 | 75.691 | 30.930 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3565  |     | ILE   |     |     | 9.608  | 75.195 | 30.545 | 1.00 | 0.00 |   | A | č  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3566  | C   | ILE   |     |     | 13.363 | 77.658 | 30.922 | 1.00 | 0.00 |   | A | С  |
| MOTA   | 3567  | 0   | ILE   | А   | 476 | 13.842 | 76.636 | 30.439 | 1.00 | 0.00 |   | A | 0  |
| ATOM   | 3568  | N   | VAL   | Α   | 477 | 13.639 | 78.855 | 30.357 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3569  | CA  | VAL   |     |     |        | 78.921 | 29.189 | 1.00 |      |   |   |    |
|        |       |     |       |     |     | 14.498 |        |        |      | 0.00 |   | A | C  |
| ATOM   | 3570  | CB  | VAL   |     |     | 13.675 | 79.288 | 27.952 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3571  | CG1 | VAL   | Α   | 477 | 14.503 | 79.378 | 26.654 | 1.00 | 0.00 |   | Α | C  |
| ATOM   | 3572  | CG2 | VAL   | А   | 477 | 12.539 | 78,259 | 27.814 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3573  | c   | VAL   |     |     | 15.569 |        | 29.458 |      |      |   |   |    |
|        |       |     |       |     |     |        | 79.959 |        | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3574  | 0   | VAL   | Α.  | 4/7 | 15.401 | 80.797 | 30.340 | 1.00 | 0.00 |   | A | 0  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3581  | N   | LEU   | A   | 479 | 18.779 | 82.502 | 27.397 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3582  | CA  | LEU   |     |     | 19.136 | 83.063 | 26.123 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3583  |     |       |     |     |        |        |        |      |      |   |   |    |
|        |       | СВ  | LEU   |     |     | 18.078 | 84.094 | 25.679 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3584  | CG  | LEU   | A   | 479 | 18.137 | 84.535 | 24.208 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3585  | CD2 | LEU   |     |     | 17.328 | 85.820 | 23.967 | 1.00 | 0.00 |   | A | C  |
| ATOM   | 3586  |     | LEU   |     |     | 17.712 | 83.379 | 23.290 | 1.00 | 0.00 |   | A | č  |
|        | 3587  |     |       |     |     |        |        |        |      |      |   |   |    |
| ATOM   |       |     | LEU   |     |     | 20.436 | 83.798 | 26.317 | 1.00 | 0.00 |   | A | С  |
| ATOM   | 3588  | 0   | LEU   | A   | 479 | 20.770 | 84.161 | 27.443 | 1.00 | 0.00 |   | A | 0  |
|        |       |     | •     |     |     |        |        |        |      |      | • |   |    |
| ATOM   | 3603  | N   | SER . | A · | 482 | 22.707 | 90.266 | 24.266 | 1.00 | 0.00 |   | A | N  |
| ATOM   | 3604  | CA  |       |     |     | 22.756 | 90.829 | 22.947 | 1.00 | 0.00 |   | A | Ċ  |
|        |       |     | SER . |     |     |        |        |        |      |      |   |   |    |
| ATOM   | 3605  | CB  | SER . | A.  | 482 | 21.953 | 92.132 | 22.797 | 1.00 | 0.00 |   | A | С  |
|        |       |     |       |     |     |        |        |        |      |      |   |   |    |

| ATOM<br>ATOM<br>ATOM | 3606<br>3607<br>3608 | OG<br>C<br>O | SER | A  | 482<br>482<br>482 | 22.058<br>24.179<br>24.985 | 92.615<br>91.128<br>91.470 | 21.465<br>22.603<br>23.467 | 1.00<br>1.00<br>1.00 | 0.00<br>0.00<br>0.00 | A<br>A<br>A |   | 000        |
|----------------------|----------------------|--------------|-----|----|-------------------|----------------------------|----------------------------|----------------------------|----------------------|----------------------|-------------|---|------------|
| ATOM                 | 3630                 | N            | TTE | 71 | 485               | 28.457                     | 91.464                     | 15 646                     | 1 00                 |                      | _           |   |            |
|                      |                      |              |     | -  |                   |                            | 31.404                     | 15.646                     | 1.00                 | 0.00                 | A           | , | N          |
| ATOM                 | 3631                 | CA           | ILE | A  | 485               | 29.664                     | 90.889                     | 15.105                     | 1.00                 | 0.00                 | A           |   | С          |
| ATOM                 | 3632                 | CB           | ILE | Α  | 485               | 29.609                     | 89.380                     | 15.236                     | 1.00                 | 0.00                 | A           |   | С          |
| MOTA                 | 3633                 | CG2          | ILE | A  | 485               | 28.435                     | 88.876                     | 14.380                     | 1.00                 | 0.00                 | A           |   | č          |
| MOTA                 | 3634                 | CG1          | ILE | Α  | 485               | 30.939                     | 88.670                     | 14.941                     | 1.00                 | 0.00                 | A           |   | č          |
| ATOM                 | 3635                 | CD1          | ILE | A  | 485               | 30.834                     | 87.151                     | 15.088                     | 1.00                 | 0.00                 | A           |   | č          |
| ATOM                 | 3636                 | C            | ILE | A  | 485               | 29.736                     | 91.231                     | 13.634                     | 1.00                 | 0.00                 |             |   | _          |
|                      |                      | -            |     |    |                   |                            |                            |                            |                      | 0.00                 | A           |   | С          |
| ATOM                 | 3637                 | 0            | ILE | А  | 485               | 28.732                     | 91.585                     | 13.019                     | 1.00                 | 0.08                 | Δ.          |   | $^{\circ}$ |

WO 03/035693 PCT/GB02/04872 513/514

### Sheet 513/514

|                                                                                                                                                                             | 10                                                                                                                                                                                                                    | 20                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2C9                                                                                                                                                                         | MDSLVVLVLC                                                                                                                                                                                                            | LSCLLLLSLW                                                                                                                                                                                                       | RQSSGRGKLP                                                                                                                                                                                                                                             | PGPTPLPVIG                                                                                                                                                                                                                                                                                                                                                                     | NILQIGIKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9trunc                                                                                                                                                                    |                                                                                                                                                                                                                       | MA                                                                                                                                                                                                               | KKTSSKGR-P                                                                                                                                                                                                                                             | <b>PGPTPLPVIG</b>                                                                                                                                                                                                                                                                                                                                                              | NILQIGIKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9-FGloop                                                                                                                                                                  |                                                                                                                                                                                                                       | MA                                                                                                                                                                                                               | KKTSSKGR-P                                                                                                                                                                                                                                             | <b>PGPTPLPVIG</b>                                                                                                                                                                                                                                                                                                                                                              | NILQIGIKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9-P220                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | PGPTPLPVIG                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             |                                                                                                                                                                                                                       | *                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        | · · · ·                                                                                                                                                                                                                                                                                                                                                                        | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                             | 60                                                                                                                                                                                                                    | . 70                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | EAVKEALIDL                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9trunc                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | EAVKEALIDL                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-FGloop                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | EAVKEALIDL                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-P220                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | EAVKEALIDL                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C3-F22U                                                                                                                                                                    | SYSTIMPSYA                                                                                                                                                                                                            | IGPVEILIFG                                                                                                                                                                                                       | PVETAARUGI                                                                                                                                                                                                                                             | PWAVEWRIDE                                                                                                                                                                                                                                                                                                                                                                     | GEEFSGRGIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                             | 110                                                                                                                                                                                                                   | 120                                                                                                                                                                                                              | 120                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200                                                                                                                                                                         | 110                                                                                                                                                                                                                   |                                                                                                                                                                                                                  | 130                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | LRNFGMGKRS                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9trunc                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | LRNFGMGKRS                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-FGloop                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | LRNFGMGKRS                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-P220                                                                                                                                                                    | PLAERANRGF                                                                                                                                                                                                            | GIVFSNGKKW                                                                                                                                                                                                       | KEIRRFSLMT                                                                                                                                                                                                                                             | LRNFGMGKRS                                                                                                                                                                                                                                                                                                                                                                     | IEDRVQEEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             | 160                                                                                                                                                                                                                   | 170                                                                                                                                                                                                              | 180                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9                                                                                                                                                                         | CLVEELRKTK                                                                                                                                                                                                            | ASPCDPTFIL                                                                                                                                                                                                       | GCAPCNVICS                                                                                                                                                                                                                                             | IIFHKRFDYK                                                                                                                                                                                                                                                                                                                                                                     | DOQFLNLMEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9trunc                                                                                                                                                                    | CLVEELRKTK                                                                                                                                                                                                            | ASPCDPTFIL                                                                                                                                                                                                       | GCAPCNVICS                                                                                                                                                                                                                                             | IIFHKRFDYK                                                                                                                                                                                                                                                                                                                                                                     | DOOFLNLMEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9-FGloop                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | IIFHKRFDYK                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-P220                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | IIFHKRFDYK                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             | CDVDDDMMIN                                                                                                                                                                                                            | I DI COL II I D                                                                                                                                                                                                  | COM CHILOD                                                                                                                                                                                                                                             | 111111111111111111                                                                                                                                                                                                                                                                                                                                                             | DAST HUTTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                             | 210                                                                                                                                                                                                                   | 220                                                                                                                                                                                                              | 230                                                                                                                                                                                                                                                    | 240                                                                                                                                                                                                                                                                                                                                                                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9                                                                                                                                                                         |                                                                                                                                                                                                                       | •                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        | NKLLKNVAFM                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9trunc                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | NKLLKNVAFM                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-FGloop                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | NKLLKNVAFM                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C9-P220                                                                                                                                                                    | LNENIKILSS                                                                                                                                                                                                            | PMIQICNNF.                                                                                                                                                                                                       | TIIDYFPGTH                                                                                                                                                                                                                                             | NKLLKNVAFM                                                                                                                                                                                                                                                                                                                                                                     | KSYILEKVKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        | · · ·                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             | 260                                                                                                                                                                                                                   | 270                                                                                                                                                                                                              | 280                                                                                                                                                                                                                                                    | 290                                                                                                                                                                                                                                                                                                                                                                            | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9                                                                                                                                                                         | HQESMDMNNP                                                                                                                                                                                                            | QDFIDCFLMK                                                                                                                                                                                                       | MEKEKHNOPS                                                                                                                                                                                                                                             | EFTIESLENT                                                                                                                                                                                                                                                                                                                                                                     | AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9<br>2C9trunc                                                                                                                                                             | HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                                              | QDFIDCFLMK<br>QDFIDCFLMK                                                                                                                                                                                         | MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                                               | EFTIESLENT<br>EFTIESLENT                                                                                                                                                                                                                                                                                                                                                       | AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                             | HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                                              | QDFIDCFLMK<br>QDFIDCFLMK                                                                                                                                                                                         | MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                                               | EFTIESLENT                                                                                                                                                                                                                                                                                                                                                                     | AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2C9trunc                                                                                                                                                                    | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                                | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK                                                                                                                                                                           | MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                                 | EFTIESLENT<br>EFTIESLENT                                                                                                                                                                                                                                                                                                                                                       | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2C9trunc<br>2C9-FGloop                                                                                                                                                      | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                                | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK                                                                                                                                                                           | MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                                 | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT                                                                                                                                                                                                                                                                                                                                         | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2C9trunc<br>2C9-FGloop                                                                                                                                                      | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                                | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK                                                                                                                                                                           | MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                                 | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT                                                                                                                                                                                                                                                                                                                                         | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220                                                                                                                                          | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP                                                                                                                                                                  | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>320                                                                                                                                                      | MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS                                                                                                                                                                                                   | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT                                                                                                                                                                                                                                                                                                                           | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220                                                                                                                                          | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>310<br>TTSTTLRYAL                                                                                                                                             | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>320<br>LLLLKHPEVT                                                                                                                                        | MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS<br>MEKEKHNQPS<br>330<br>AKVQEEIERV                                                                                                                                                                              | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ                                                                                                                                                                                                                                                                                                      | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>350<br>DRSHMPYTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc                                                                                                                       | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>310<br>TTSTTLRYAL<br>TTSTTLRYAL                                                                                                                               | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>320<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                                                                          | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS 330 AKVQEEIERV AKVQEEIERV                                                                                                                                                                                  | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ<br>IGRNRSPCMQ                                                                                                                                                                                                                                                                                        | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>350<br>DRSHMPYTDA<br>DRSHMPYTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop                                                                                                         | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>310<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL                                                                                                                 | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                                                                   | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV                                                                                                                                                                       | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ<br>IGRNRSPCMQ<br>IGRNRSPCMQ                                                                                                                                                                                                                                                                          | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc                                                                                                                       | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>310<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL                                                                                                                 | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                                                                   | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV                                                                                                                                                                       | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ<br>IGRNRSPCMQ                                                                                                                                                                                                                                                                                        | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop                                                                                                         | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>310<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL                                                                                                   | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                                                     | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV                                                                                                                                                            | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ<br>IGRNRSPCMQ<br>IGRNRSPCMQ                                                                                                                                                                                                                                                                          | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE ORSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220                                                                                             | HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>HQESMDMNNP<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL<br>TTSTTLRYAL                                                                                                          | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>320<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                                | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV                                                                                                                                                            | EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>EFTIESLENT<br>340<br>IGRNRSPCMQ<br>IGRNRSPCMQ<br>IGRNRSPCMQ<br>IGRNRSPCMQ                                                                                                                                                                                                                                                            | AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>AVDLFGAGTE<br>ORSHMPYTDA<br>DRSHMPYTDA<br>DRSHMPYTDA<br>DRSHMPYTDA<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220                                                                                             | HQESMDMNNP HQESMDMNNP HQESMDMNNP TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID                                                                                              | QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>QDFIDCFLMK<br>320<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT<br>LLLLKHPEVT                                                                  | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL                                                                                                                                                 | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ 390 IPKGTTILIS                                                                                                                                                                                                                                                                                           | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA 400 LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9                                                                                      | HQESMDMNNP HQESMDMNNP HQESMDMNNP TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID                                                                                                         | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLKHPEVT                                                                            | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS 330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL                                                                                                                                      | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ 190 190 190 190 190 190 190 190 190 190                                                                                                                                                                                                                                                       | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE 350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop                                                                        | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID                                                                                         | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK  320 LLLLKHPEVT LLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT                                                    | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS  330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL                                                                                                                          | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IFKGTTILIS IPKGTTILIS IPKGTTILIS                                                                                                                                                                                                                                                   | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9                                                                                      | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID                                                                                         | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK  320 LLLLKHPEVT LLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT                                                    | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS  330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL                                                                                                                          | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ 190 190 190 190 190 190 190 190 190 190                                                                                                                                                                                                                                                       | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop                                                                        | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID                                                                                         | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK  320 LLLLKHPEVT LLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT                                                    | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL                                                                                                         | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IFKGTTILIS IPKGTTILIS IPKGTTILIS                                                                                                                                                                                                                                                   | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop<br>2C9-FGloop<br>2C9-P220                                              | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID                                                                   | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV                                                                   | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL                                                                                              | EFTIESLENT EFTIESLENT EFTIESLENT  340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ A90 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS                                                                                                                                                                                                                        | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop<br>2C9-P220                                                            | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH                                                        | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV                                  | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA                                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT  340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ A90 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS A40 GKRICVGEAL                                                                                                                                                                                              | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop<br>2C9-FGloop<br>2C9-P220                                              | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH                                                        | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV                                  | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA                                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT  340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ A90 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS                                                                                                                                                                                                                        | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9-FGloop<br>2C9-P220                                                            | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH                                                        | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV HFLDEGGNFK HFLDEGGNFK            | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA                                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT  340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ A90 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS A40 GKRICVGEAL                                                                                                                                                                                              | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE ASTORMAN DRSHMPYTDA DRSHMPYTDA AUO LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220                                                | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH                                             | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT 420 HFLDEGGNFK HFLDEGGNFK                                                               | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS  330 AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT  340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ A90 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL                                                                                                                                                                                                  | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA CHARLE AUD LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220                                                | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH                                             | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT 420 HFLDEGGNFK HFLDEGGNFK                                                               | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS  330 AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ 390 IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL GKRICVGEAL                                                                                                                                                                             | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA CHARLE AUD LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220<br>2C9<br>2C9trunc<br>2C9-FGloop<br>2C9-P220                                                | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH                                             | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV HFLDEGGNFK HFLDEGGNFK HFLDEGGNFK                        | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS  330 AKVOEEIERV AKVOEEIERV AKVOEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA                                                                   | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IFKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS IFKGTTILIS | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA CRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-FGloop 2C9-P220                                                                 | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH                       | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV HFLDEGGNFK HFLDEGGNFK HFLDEGGNFK                                         | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA                                                             | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IFKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL GKRICVGEAL                                                                                                                                                                                                                  | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDKE AGMELFLFLT AGMELFLFLT AGMELFLFLT SOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-FGloop 2C9-FGloop 2C9-P220  2C9 2C9 2C9+FGloop 2C9-FGloop 2C9-FGloop 2C9-FGloop | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VPHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH SILQNFNLKS | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV 420 HFLDEGGNFK HFLDEGGNFK HFLDEGGNFK HFLDEGGNFK                                     | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA                                       | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL                                                                                                                                                                                            | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT AGMELFLFLT 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-FGloop 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-P220                               | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH SILQNFNLKS SILQNFNLKS            | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LPTSLPHAV 420 HFLDEGGNFK HFLDEGGNFK HFLDEGGNFK UTPLEGGNFK HFLDEGGNFK HFLDEGGNFK LTTL | MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS MEKEKHNQPS AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA PVVNGFASVP                                       | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IFKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL                                                                                                                                                           | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFYDA AVDLFYDA AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGT AVDLFGAGTE AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLFGAGT AVDLF |
| 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-P220  2C9 2C9trunc 2C9-FGloop 2C9-FGloop 2C9-FGloop 2C9-P220  2C9 2C9 2C9+FGloop 2C9-FGloop 2C9-FGloop 2C9-FGloop | HQESMDMNNP HQESMDMNNP HQESMDMNNP HQESMDMNNP  310 TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL TTSTTLRYAL VVHEVQRYID VVHEVQRYID VVHEVQRYID VPHEVQRYID FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH FPNPEMFDPH SILQNFNLKS SILQNFNLKS SILQNFNLKS | QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK QDFIDCFLMK 320 LLLLKHPEVT LLLLKHPEVT LLLLKHPEVT LLLKHPEVT LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LLPTSLPHAV LPTSLPHAV LPTSLPHAV LPTSLPHAV LVDFKNLDTT LVDPKNLDTT LVDPKNLDTT | MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS MEKEKHNOPS  330 AKVQEEIERV AKVQEEIERV AKVQEEIERV AKVQEEIERV TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL TCDIKFRNYL KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA KSKYFMPFSA PVVNGFASVP PVVNGFASVP | EFTIESLENT EFTIESLENT EFTIESLENT 340 IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IGRNRSPCMQ IPKGTTILIS IPKGTTILIS IPKGTTILIS IPKGTTILIS GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL GKRICVGEAL                                                                                                                                                                                            | AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE AVDLFGAGTE  350 DRSHMPYTDA DRSHMPYTDA DRSHMPYTDA CHARLES AVDLFOME LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE LTSVLHDNKE AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT AGMELFLFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Figure 10

Sheet 514 of 514

## Diclofenac Metabolism



## Km/Vmax



| P450 Isoform     | Km (μM) | Vmax (min-1) |  |
|------------------|---------|--------------|--|
| Published data   | 8-15    | 15-40        |  |
| 2C9 trunc        | 8.9     | 21.7         |  |
| 2C9-FGloop K206E | 11.9    | 10.8         |  |

Figure 11

#### Sequence Listing:

2C9trunc

SEO ID NO:1

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATCTGCAATAATTTTTTC TCCTATCATTGATTACTTCCCGGGAACTCACAACAACTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

#### SEO ID NO: 2

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1072 (2C9-P220) SEQ ID NO:3

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATCTGCAATAATTTTCC GACCATCATTGATTACTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

#### SEQ ID NO:4

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPTIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

2C9-FGloop (1015)

SEQ ID NO:5

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA GCTAACAGAGGGTTTTGGAATTGTTTTCAGCAATGGAAAGAAGAAATCGGAAGAGAGTTCTCCGCTCATGACGCTGCGGAATTT

#### SEC ID NO: 6

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1155 (2C9-FGloop K206E)

#### SEQ ID NO:7

Val.

. Andrews

Proposition

tern Baran bera Ny d Amin'ny avon'ny ATGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC  ${\tt TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA}$  $\tt TGGGATGGGGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC$ CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAACCCT}$ GAGATATGCTCTCCTTCTCCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGCAGAAAACC  ${\tt GGAGCCCCTGCATGCAGAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC}$  ${\tt ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC}$ TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

#### SEO ID NO:8

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1078 SEQ ID NO:9 & 10

 AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCATCATCATCATTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPPIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1081 SEQ ID NO:11 & 12

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGAGTTTTCTGGAAGAGCCATTTTCCCACTGGCTGAAAGA CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACAACCCT}$ GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGGACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

Might have before to

PACT OF SURBLE

r Marthagarian

CLOCHTOTOS CHADEOT.

COMPANY TO THE ARMY THE

· this best of the effect.

VICEINM SVLITTER

LANGUALS BUIGHT

CONTROL BUT STRATEGY.

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QOFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKDLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1082 SEQ ID NO:13 & 14

ATGCTAAGAAACGACTCTAAAGGCCGCCCTGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACAACCCT}$ GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTCCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPSYQLCFIPVHHHH

PCT/GB02/04872 WO 03/035693 4/24

1085 SEO ID NO:15 & 16

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGGAGGTTTTCTGGAAGAGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT GAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCTCTCTCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD EOFLNLMEKLNENIKILSSPWIOVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPODFIDCFLMKMEKEKHN OPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

ากแล้วการเกมเหมือน

1097 SEQ ID NO:17 & 18

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGGAATTTCTTAACTTAATGGAAAAGTTGAATGAAAÁCÁTCAAGÁTTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD OEFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN OPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1100 SEO ID NO:19 & 20

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGGTTTTTCTGGAAGAGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQKSMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1101 SEQ ID NO:21 & 22

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAACCCT GAGATATGCTCTCCTTCTCCTGCAGAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC kadiga grang tidok Tapa Diski as dije TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNÜICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEQEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1102 SEQ ID NO:23 & 24

 $(a, \overline{a}) \in \mathcal{A}_{n, \overline{n}}$ 

Sal seption i

r - 1 1 1 2 1 1 1 1

Land of Software

an Alamania. Aga kan marin

az lak peliber

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAACTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG  ${\tt ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC}$ TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEDDN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP

Make on Lepter

sidatovininksiiduov SAFTING CONTRACT

335° (EQ. 14%).

PERKETARE ATTACK

2.增于为1.500分别的通过的10

garage services

SEBBRARE COLPERS

TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1115 SEQ ID NO:25 & 26

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA  ${\tt GCTAACAGAGGATTTGGAATTGTTTTCAGCAATGGAAGAAATGGAAGGAGGAGTCCGGCGTTTCTCCCTCATGACGCTGCGGAATTT}$ TGGGATGGGGAGGAGGACATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC  ${\tt ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC}$ TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGCAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG  ${\tt ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC}$ TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN OPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDAGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1116 SEQ ID NO:27 & 28

eradirek hilinden e

A Company of the second

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAGCCCTGATTGATCTTGGAGAGGGGTTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA  $\tt TGGGATGGGGAAGAGGACCATTGAGAGCCTGTTCAAGAGGAAGCCCGCTGCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC$ CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTG CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCAGAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAGCGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGR PPG PTPL PV I GNILQIGIKDISK SLTNLSKVYG PV FTLYFGLK PIVVLHGYE AVKE ALIDLGE EFSGRGIF PLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPANLDTTPVVNGFASVPPFYQLCFIPVHHHH

1117 SEQ ID NO:29 & 30

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTGC GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT

MAKKTSSKGRPPGPTPLPVIGNILQIGIADISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1118 SEQ ID NO:31 & 32

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCGCGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAACCAAACCCCT GAGATATGCTCTCTCTCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTAASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYOLCFIPVHHHH

#### 1121 SEQ ID NO:33 & 34

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGACAAACCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEAEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1122 SEO ID NO:35 & 36

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGCAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCCATTTTCCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT  ${\tt CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC}$ TGCTCTCCTTGATTATTTCCCGGGAACTCACAACTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAGCACAACCCT GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYAAVKEALIDLGEEFSGRGIFPLAER
ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD
QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN
QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP
TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL
TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHH

The Control of March 1961

HETELONIA TALLETA T L'ELANDALE MOLT

#### 1123 SEQ ID NO:37 & 38

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA GCTAACAGAGGATTTGGAATTGTTTTCAGCAATGGAGCGCATGGGCGGAGATCCGGCGTTTCTCCCTCATGACGCTGCGGAATTT TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGAAWAEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1165 SEQ ID NO:39 & 40

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC

TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTTCGTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA GAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCTGAGATATGC TCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACCGGAGCCCCT GCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCCACCAGCCTG ACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGAAAAGTAAAT ACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTGACCTCCATT TTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTCTGTGCCCCCC CTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHS EFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLPTSL PHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFLTSI LONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1220 SEQ ID NO:41 & 42

THE WALL STORY

use soust

CANNA CONTRA

getter hudstelleret

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACATTGAGGACCGTGTTCAAGAGGAGCCCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC がだらかむ。4.5 CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATCTGCAATAATTTTCC CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACACAACCCT STATEMENT OF THE SERVING GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

> MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVOEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPSIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN OPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1319 SEO ID NO:43 & 44

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCTCGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAGGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC  ${\tt CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT}$ CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA

AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG
ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC
TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGSKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

#### 1339 SEQ ID NO:45 & 46

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTTTATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGACGACAAGCACAACCCT}$ GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCATCATCATCATTGA

. ;-, "

Y. . .

TOTAL PLANE ALMOST

THE THE SERVE

ORIGINATION DE LES CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE

Control & Report Live.

TORRE TO THE

· THE CHASE

OSPONSO SINTE

TO TERMINE PLUS A CONTROL.

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSFILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTEVVNGFASVPPFYQLCFIPVHHHH

#### 1340 SEQ ID NO:47 & 48

W. Dart Hanner

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGCAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGATTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA  $\tt TGGGATGGGGAAGAGGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC$ CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTTTATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCATCATCATCATTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYAAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSFILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

. .

Mary Control of

to The property sales.

WO 03/035693 11/24

1361 SEQ ID NO:49 & 50

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATTTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGAGACAAGCACAACCCT GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC  ${\tt GGAGCCCTGCATGCAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC}$ ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQIYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPODFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1362 SEQ ID NO:51 & 52

A grant of the grant to the second

,在15日本版1、3月前至17 · · ·

ST. AT BOLLOW.

的事理性。如此的意思。 

torgottal gregoria.

THE PROPERTY OF THE PARTY OF THE

· Doublest states that is

Learner Branch

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC  ${\tt CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT}$ CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTGCAATAATTTCCC  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAACCCT}$ GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILOIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVCNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1363 SEQ ID NO:53 & 54

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTATCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATTTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAACCCT

GAGATATGCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGACGTGTGATTGGCAGAAACC
GGAGCCCCTGCATGCAGAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGGTCCAGAGATACATTGACCTTCTCCCC
ACCAGCCTGCCCCATGCAGTGACCTGTGACCATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC
TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAATGA
AAAGTAAATACTTCATGCCTTCTCAGCAGGAAAACGGATTTGTGTGGGAAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG
ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC
TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPAILDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

## 1364 SEQ ID NO:55 & 56

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTTTTTGGAGCTGGGACAGAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC HERE METAL AND METAL ACCORDINATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP DE PARTE ANA TICTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGAR 10 AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC WANTER STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER
ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD
QQFLNLMEKLNENIKILSSPWIQVYNNFPALIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN
QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP
TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL
TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHH

### 1366 SEQ ID NO: 57 & 58

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTGCAATAATTTCCC CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTTAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP

 ${\tt TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL}\\ {\tt TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH}\\$ 

1367 SEQ ID NO:59 & 60

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGAGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC  ${\tt CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT}$ CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTGCAATAATTTCCC TGCTCTCATTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAAGTTATATTTTGGAAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGCACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPALIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHH

THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

STATE TO STATE OF

1368 SEQ ID NO:61 & 62

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTGCAATAATTTCCC TGCTATCATTGATATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFPAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1369 SEQ ID NO:63 & 64

CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTATCATTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAAGTTATTTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSFCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYOLCFIPVHHHH

### 1370 SEQ ID NO:65 & 66

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC  ${\tt TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA}$  $\tt TGGGATGGGGAAGAGGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC$ CONGRESSION CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CO CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTGCAATAATTTCCC 一つから、TGCTATCATTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA (作)の年代代表権 しょ CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACAACCCT one in GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC 🕾 🕫 AGCCCCC in it is in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con いが、 # ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC: (10で作りなか) TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

هيد الرائزيدين

1 1921 3

 ${\tt MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER}$ ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVCNNFPAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1371 SEQ ID NO:67 & 68

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTATAATAATTTCCC CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGCGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCACCACCACCACCAC

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQIYNNFPALIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1372 SEQ ID NO:69 & 70

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATTTCTAATAATTTCCC TGCTATCATTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA **AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG** ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQISNNFPAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHH

t nagyr teleplan Standar et trens

the experience of the second

121

. . .

1723

# 1391 SEQ ID NO:71 & 72 PROPERTY AND A SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGCACAAGCACAACCCT GAGATATGCTCTCTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMHNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1392 SEQ ID NO:73 & 74

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC

16/24

TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHHESMDMNNPQDFIDCFLMKMEKEKHN QPSEFT1ESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEE1ERV1GRNRSPCMQDRSHMPYTDAVVHEVQRY1DLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILONFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1394 SEQ ID NO:75 & 76

41.

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGGTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCACCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVOEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYHLCFIPVHHHH

1396 SEQ ID NO:77 & 78

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGGAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGAGCGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA

AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG
ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC
TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMSDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1397 SEQ ID NO:79 & 80

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAACTACTTAAAAACGTTGCTTTTATGAAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACAAGCACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGTTGGTGGCAATTTTAAGA TOTAL THE TANGE AND TAKEN AND THE TOTAL CONTROL OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TANGE OF THE TA TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA 的概念。2006年1月20日,10 MAN THYSICIAN Secretary and Fig.

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER
ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD
QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN
QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP
TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDVGGNFKKSKYFMPFSAGKRICVGIALAGMELFLFL
TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHH

## 1424 SEQ ID NO:81 & 82

ATGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTTTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGAATTCTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAGCGCTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGATCTGCAATAATTTTTC TGCTCCTATTGATTACTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGACGACAAGCACACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTGTGCTTCATTCCTGTCCATCATCATCATTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFSAPIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1443 SEQ ID NO:83 & 84

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACCCT}$ GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAAAATGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCACCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIENVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYHLCFIPVHHHH

100

**"理识"。**實行

。其實際各位的代表

CAPPING SALA ARECCAPPIA

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

ANGELERANGE ANGELERANGE

Contract the state of

1444 SEQ ID NO:85%& 86% (ASS) - (ASS) (ASS)

In the company of the

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAÄGTŤGAATGAAAACATCCACATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGTTGAACGTGTGATTGGCAGAAACC  ${\tt GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC}$ ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGTTGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIHILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDVGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1475 SEQ ID NO:87 & 88

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHHKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1477 SEQ ID NO:89 & 90

ATGGCTAAGAAAACGAGCTCTAAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA  ${\tt GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC}$ TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGGTTTTCTGGAAAGAGGCATTAGCCCACTGGCTGAAAGA  $\tt TGGGATGGGGAGGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC$  ${\tt CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT}$  ${\tt CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC}$ TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG  ${\tt ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC}$ TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGISPLAER ANRGFGIVFSNGKKWKEIRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1491 SEQ ID NO:91 6 92

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTGCGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACAACCCT GAGATATGCTCTCCTTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC  ${\tt ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC}$ TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA  ${\tt AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG}$ ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEIASSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP

 ${\tt TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL}\\ {\tt TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH}\\$ 

1595 SEQ ID NO:93 & 94

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAAGAGGAGTTTTCTGGAAGAGCCCATTTCCCACTGGCTGAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACCCATAACAAATTACTTAAAAACCTTGCTTTTATGGAAAGTGATATTTTGGAGAAAGTAA GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTCGTTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACCTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGHFPLAER
ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD
QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNLAFMESDILEKVKEHQESMDINNPRDFIDCFLIKMEKEKQN
QQSEFTIENLVITAADLLGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVVGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP
TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL
TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

· 数据,有1940年的期间的主义

1600 SEQ ID NO:95 & 96

. . . . . .

(25)\$P\$ (4)\$P\$ (4) 6.

Mark Rogard to

PLACIATIANA. LINITALIANDA

21.21.15.10型的Catt可能并入

TO BUILD ON FRANCE

· 表示是2000年2月2日日本中的第三

ATGGCTAAGAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA  ${\tt GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC}$ TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGGTTTTCTGGAAGAGGCCATTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTCGTTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTATCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGHFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLVITAADLLGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVVGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLIP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1610 SEQ ID NO:97 & 98

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLVITAADLLGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1632 SEQ ID NO:99 & 100

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGCCCATTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAGGTAA GAGATATGCTCTCCTTCTCCTGCAGAGCCCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCGATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG  ${\tt ACCTCCATTTACAGGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTCCACTCCACTTGACACCACTCCAGTTGTCAATGGATTTGCCTCCACTCCACTTGACACCACTCCAGTTGTCAATGGATTTGCCTCCACTCCACTCCACTTGACACCACTCCAGTTGTCAATGGATTTGCCTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCAC$ TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGHFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLVITAADLLGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1661 SEQ ID NO:101 & 102

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGAGTTTTCTGGAAGAGCCCATTTCCCACTGGCTGAAAGA GCTAACAGAGGATTTGGAATTGTTTTCAGCAATGGAAAGAATGGAAGGAGATCCGGCGTTTCTCCCTCATGACGCTGCGGAATTT TGGGATGGGGAAGAGGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAACTTGGAAATCACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGACGACAAGCACACCCT GAGATATGCTCTCCTTCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR O

WO 03/035693 PCT/GB02/04872

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGHFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLEITAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1662 SEO ID NO:103 & 104

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA CAACCATCTGAATTTACTATTGAAAACTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAACCCT GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

 ${\tt MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER}$ ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

> 人名英格兰 医二十二 the Contract of the second

in emineralism Section of the section of the

1664 SEQ ID NO:105 & 106

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCCATTTTCCCACTGGCTGAAAGA TGGGATGGGGAAGAGGACCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCGAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCCC CAACCATCTGAATTTACTATTGAAAACTTGGAAATCACTGCAGTTGACTTGTTTTGGAGCTGGGACAGAGCACAACCCT GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG  ${\tt ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC}$ TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVOEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIEILSSPWIQVYNNFPALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIENLEITAVDLFGAGTETTSTTLRYALLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLI PKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

1039 SEQ ID NO:107 & 108

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTcTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGTTTTCTGGAAGAGGCATTTTCCCACTGGCTGAAAGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNFSAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1365 SEQ ID NO:109 & 110

ATGGCTAAGAAAACGAGCTCTAAAGGGCGGCCGCCTGGCCCCACTCCTCTCCCAGTGATTGGAAATATCCTACAGATAGGTATTAA GGACATCAGCAAATCCTTAACCAATCTCTCAAAGGTCTATGGCCCTGTGTTCACTCTGTATTTTGGCCTGAAACCCATAGTGGTGC TGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTTGGAGAGGGGGTTTTCTGGAAGAGGCGATTTTCCCACTGGCTGAAAGA TGGGATGGGAAGAGAGCATTGAGGACCGTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCCTCAC CCTGTGATCCCACTTTCATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCATAAACGTTTTGATTATAAAGAT CAGCAATTTCTTAACTTAATGGAAAAGTTGAATGAAAACATCAAGATTTTGAGCAGCCCCTGGATCCAGGTCTACAATAATTTCTC TGCTCTCCTTGATTATTTCCCGGGAACTCACAACAAATTACTTAAAAACGTTGCTTTTATGAAAAGTTATATTTTGGAAAAAGTAA  ${\tt CAACCATCTGAATTTACTATTGAAAGCTTGGAAAACACTGCAGTTGACTTGTTTGGAGCTGGGACAGAGCACAAGCACCCT}$ GAGATATGCTCTCCTCCTGCTGAAGCACCCAGAGGTCACAGCTAAAGTCCAGGAAGAGATTGAACGTGTGATTGGCAGAAACC GGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATACATTGACCTTCTCCCC ACCAGCCTGCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGGCACAACCATATTAATTTCCCTGAC TTCTGTGCTACATGACAACAAGAATTTCCCAACCCAGAGATGTTTGACCCTCATCACTTTCTGGATGAAGGTGGCAATTTTAAGA AAAGTAAATACTTCATGCCTTTCTCAGCAGGAAAACGGATTTGTGTGGGAGAAGCCCTGGCCGGCATGGAGCTGTTTTTATTCCTG ACCTCCATTTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTC TGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQVYNNFSALLDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

### 1423 SEQ ID NO:111 & 112

 ${\tt ACCTCCATTTACAGAACTTTAACCTGAAATCTCTGGTTGACCCAAAGAACCTTGACACCACTCCAGTTGTCAATGGATTTGCCTCTGTGCCGCCCTTCTACCAGCTCTGCTTCATTCCTGTCCACCACCACCACTGA}$ 

MAKKTSSKGRPPGPTPLPVIGNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAER ANRGFGIVFSNGKKWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFHKRFDYKD QQFLNLMEKLNENIKILSSPWIQICNNPSAIIDYFPGTHNKLLKNVAFMKSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHN QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYIDLLP TSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVGEALAGMELFLFL TSILQNFNLKSLVDPKNLDTTPVVNGFASVPPFYQLCFIPVHHHH

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TOTAL STATE

THE TO